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The behavior of sine-Gordon solitons in the presence of weak perturbations is considered.
The procedure is based on the exact inverse scattering solution of the unperturbed sine-
Gordon equation. Accounting for perturbations such as those arising from impurities,
external forces as well damping and spatially inhomogeneous frequencies the corresponding
perturbed operator equation can be solved by the Green’s function technique if one ex-
pands the Green’s operator in terms of a set of biorthogonal eigenfunctions. Ordinary
linear differential equations prescribing the time evolution of the scattering data are ob-
tained. Instead of solving the inverse scattering problem completely the adiabatic assump-
tion is then used anticipating the result that solitons maintain their integrity to a high
degree. Explicit solutions for the one-soliton dynamics are presented,

1. Intxoduction

The sine-Gordon equation has many applications in
nonlinear physics [1]. Solitary wave solutions of the
sine-Gordon equation are known for a long time.
Recently, Ablowitz, Kaup, Newell, and Segur [2]
have solved the initial value problem by using the
inverse scattering technique. Emerging from multi-
soliton collisions the solitary wave solutions have the
same shapes and velocities with which they entered
thus satisfying the requirements for considering them
as solitons.

However, many real physical situations call for an
extension of the idealised sine-Gordon equation:
Impurities, external electric and magnetic fields,
spatial inhomogeneities etc. are present and their
effect on the motion of the solitons has to be con-
sidered. Several authors [3-7] have therefore con-
sidered a perturbed sine-Gordon equation and devel-
oped a technique fo solve the dynamics of perturbed
sine-Gordon solitons. However, most of them do not
use the powerfull inverse scattering technique and
their method is therefore restricted to single solitary-
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. wave solutions [3]. Recently, Karpman and Maslov

[8] developed a perturbation theory for the nonlinear
Schridinger equation as well as the Korteweg-
de Vries equation based on the inverse scattering
solution of those equations. This method has the
advantage of being not restricted to a single soliton
or non-overlapping soliton solutions,

In this paper we use the general outline of Karpman
and Maslov to derive the perturbation theory of the
sine-Gordon equation. The paper is organized as
follows: In Sect. IL, a short review of the inverse scat-
tering solution for the sine-Gordon equation is
presented since this forms the basis of the perturba-
tion theory. In Sect. I1I, the basic equations for the
time evolution of the scattering data in the presence
of perturbations are derived. The method is based on
an expansion in terms of the eigenfunctions of the un-
perturbed evolution operator (and its Hermitean
adjoint). The Green’s function allows to evaluate the
effect of perturbations. The latter are treated as an
inhomogencity of the nonlinear partial differential
equation. We apply this theory to the dynamics of a
single soliton in the presence of perturbations, an-
ticipating the adiabatic approximation, The latter
ignores radiation cffects which will be treated else-
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where. The basic formulas within the adiabatic ap-
proximation are summarized in Sect. IV. Finally, in
Sect, V we apply the basic findings to the dynamics of
a soliton in the presence of (i) an impurity, (i) an ex-
ternal driver, and (iii) spatial inhomogeneity. The
results are compared with previous investigations.

1L Review of the Inverse Scattering Solution

The sine-Gordon equation

Upp—tigy+sinu=0, 1)
can be written in the form

U, =sinu, @
by using the transformation

x=$(X+T), &)
t=3(X~T). @)

We note that the inversion procedure for the sine-
Gordon equation in light-cone coordinates (x, ) is
slightly more general than the inversion procedure
for laboratory coordinates (X, T). The related ques-
tions of the Goursat and Cauchy problems for the
sine-Gordon equation have been recently discussed
by Kaup and Newell [9]. We therefore develop the
perturbation theory based on the inverse scattering
solution for the sine-Gordon equation in light-cone
coordinates,

The inverse scattering solution [10] of (2) as well as
for the more familiar Eq, (1) in laboratory coordinates
has been first presented by Ablowitz et al. [2]. The
main finding of these authors is that (2) can be written
in the form

iL,=[4,L], (5)
where the operators L, 4 are given by
i
— 2
L=if * , ©
0
ux/ 2 —;3; ,
and
A=—% (cc':su smu) =y @
sinu —cosu

Considering the eigenvalue problem [11]

Lv=gpv, ®

the eigenvalue ¢ is time-independent since » evolves
in time according to

iv,=Av. O

Introducing Jost solutions [11-13] for the scattering
problem with the following asymptotic behavior

g ((1)) e~%*  ag x~»—0, (10)

o ((1)) €9 a5 x+ 0, (1)

for Im 920, it can be shown that, if f and g exist,
they are linearly independent except when the eigen-
value vanishes. In addition, if f=(f,, ;) is a solution
of the system at p=¢+in then f=(f¥, — £¥) satisfies
the system at ¢* =¢—iy. The pair of solutions f and
f forms a complete system of solutions, and therefore
scattering data a, b can be defined through

gO=a() FO+b(® (O 1)

The coefficient a(£) can be analytically continued
into the upper half-plane and, in particular, the zeros
¢; (j=L,...,N) of a(g) in the upper half-plane cor-
respond to the discrete eigenvalues. For these,

g(‘Pj)=cjf(€0j)= (13)

holds. The time-dependence of the scattering data a,
b, ¢ follows as [2]

a((P) = aO ((P)a

b(@)=by(p) exp(-it/29), (14)
ci(@)=c;o exp(~it/2¢).

The “potential” can be recovered by solving the
Gel'fand-Levitan-Marchenko equation

KO )+ Fxt )+ | K A Fly+2dz=0, (15
where I

/K K [0 =B
K(x’ z)" (—-K; K:)a F(Z)"' (H(Z) 0 )7
with

5 ey T DO
H(z)——zjla,—((be' +_jm2na(k)e‘k'

The solution is

ux)=-2iK%(x,x). 16)
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IIL Perturbation Theory

Using the general method of Karpman and Maslov
[8] we write the perturbed sine-Gordon equation

u.rt=Sinu_3r[u]s (17)
in operator form
iL+[L, A}=ieR[u],

where the L and 4 operators are the same as in the
preceding section for e=0 and R is given by

0 —ir[u]
2
R= ; . (18)
—-2')‘[11] 0

The eigenvalue problem

Ly=guv, (19)
yields after differentiation

(L=0)(v, +i4v)=—sRv+o,v. (20)

From here it follows already that the time-dependence
of the eigenvalue ¢ is given by

@,=&f w*Rodx/[w¥vdx, 21

where we will choose [see Eq. (42)] v=1f=(f,, f,) and
w=f=(f¥, f¥).

Next we consider the time evolution of the eigen-
functions, Rewriting (20) in the form

(L—¢@)F=—4xP, (22)

we solve this inhomogeneous equation by the Green’s
function technique [14], defining G through

[L-¢]G=—4xn]. 23)

The Green’s operator G can be expressed i terms of
biorthogonal eigenfunctions of L and I*. Since the
eigenvalue problem is not self-adjoint, one has to be
carefull in assuming the completeness of the eigen-
functions. However, one of the important by-products
of the basic investigation of Ablowitz et al, [12] is,
indeed, the completeness relation (with respect to L,)
for this nonself-adjoint operator [for details see
Appendix 6 of Ref, 12].

Using the abbreviation

(h(z),tm»sj:h*(x, 1t 1), 24

we obtain the orthogonality and normalization condi-
tions

AN
=(F)TCa)=0, for & %1, (25)
(F ) g @) =G w), f()=0, (26)
(e S =G (), 2 (h)

=27|a()P 5(u~4). @7

The “solution” of (20) can now be written in the
form [8]

(5:+14) 1 029
s ¢;0(¢;, ¢)
=18 [; a.'j((/)j"(p)f(x, (Pj!t)
C}ta((l’j’ QD) 7

G a}* (gD’;-—gO)f(x’ (Pj: t)]
-t *f"«i(u, 9)f (1) +Bl, et ),

200 lalWP(e—g—i0)
+dl f(x: 2 t)+d2 g(x: 9, t)s (28)

where

o 0=, R ()
&, g)=(/ (), RS (9)),
Blu, 9)= (1), RS (9)),
Ble, )= (), Rf (). 29)
First, considering the discrete eigenvalues, one deter-
mines the constants 4, d, by taking the limit x— — co.

Inserting this value into the asymptotic equation for
x-c0, and using (13), one obtains

il

doy__ 1,

it 29, "
ie[dalp, 0,) , dplo,0) ]

+_'[ : G- : G . 30
a d(P d(P P=0r ( )

A similar calculation for the continuous eigenvalues
yields

%%(l)‘):”(aﬁ(% ¢)+beg, o), (31)
d s
"%(tiL “%Hslaa*(qv, 9)~b3* (g, p)]. (32

Equations (30), (31), and (32) together with Egs. (15),
(16) are the basis for obtaining solutions of the per-
turbed sine-Gordon equation,

So far the procedure is quite general. The evolution
equations for the eigenvalues and scattering coeffi-
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cients are exact and constitute a basis for the perturba-
tion theory. However, from a practical point of view,
in most applications the evaluation will be limited to
the discrete part of the spectrum, but it should be
mentioned that recently for the Kortewag-de Vries
and nonlinear Schridinger equations progress has
been made in calculating the so-called tail formation
too [15].

IV. Adiabatic Approximation

Instead of following the general outline given in the
last section we now restrict our investigation to the
dynamics of a single soliton within the adiabatic ap-
proximation. In general, an initial pulse decays— even
in the absence of perturbations—into a sequence of
solitons and a tail. We now assume that a small per-
turbation has a neglegible effect on the soliton forma-
tion, ie, that we are below a certain threshold [16].
Starting with different solitons a small perturbation
leads to a slow change of the soliton parameters, a
weak deformation of their shapes and the formation
of a group of small amplitude waves (tail), Within the
adiabatic approximation we consider only the first
effect and leave the more difficult problem of tail
formation to future investigations,

The single soliton (kink) solution of (2) is

u=4tan~! [2i-4, (33)

and by the adiabatic approximation we mean that the
form of the soliton will be preserved although the
parameters # and ¢ as well as the eigenvalue ¢ might
become t-dependent. We note that the solution (33)
belongs to a purely imaginary eigenvalue ¢ =iy. The
(unperturbed) scattering problem (3) now reads

ov

3;‘+i<pvl= —27 sech [24(x~&)v,, (34)
0v,
T~ 190 =2nsech [21(x~)]o;. (33

Applying the boundary conditions (10) and (11) we
find from (34, 35)

_&% [ —nsech[2n(x—¢)]
f_i‘P—ﬂ (iqo-—ntanh [2n(x~§)])’ (36)
and

_ e figytanh[2n(x~¢]]

g—i(P—n( —nsech[24(x— )] ) @7

One immediately sees from the solutions (36, 37) that
the scattering parameter c(f) is related to #() and

£(8) by

c=e", (38)
Furthermore, from (21) we find
d
7¢=i%= [ F*Rfdx/{ f*fdx. (39)
Using _

_ e 1+tanh2q(x—§)>
Ri=-i= r( sech 2(x—¢)/’ (“0)
and
[f*fdx=(n0), (41)
one gets

+o0

%’%: ——Z | rsechzdz. 42)

=00

On the other hand, inserting the ansatz (38) into (30)
yields after some algebra

d__ 1 &

e 4n* 8y°

+0o0 6 dﬂ

: _jm(z+2n Or sechzdz—ﬁzz. (43)

Together with expression (42), (43) can be written as
+00

%“I}Tfﬁ% { rzsechzdz. (44)

Equations (42) and (44) are the main results for the
soliton dynamics within the adiabatic approxima-
tion.

At this stage we would like to mention that the results
obtained here could have been also derived from the
conservation laws,

Since for the unperturbed soliton the quantities

I =[4u?dx, (45)
and
L =I (20t + Bty - i 0y 0,1 dx, (46)

are conserved, one can derive from the corresponding
“conservation laws” of the perturbed Eq. (17), ¢.g.,

a%[F ~¢&fru.dx, @7

differential equations for the two parameters £ and 5,
For example, Eq.(47) yields after some algebra the
tesult (42). In a similar way one can obtain (44);

however, it is casier to operate on the perturbed sine-
Gordon equation by {dzzsechz in order to verify
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Eq. (44). Since there exists an infinite number of “con-
servation laws” the adiabatic approximation is not
restricted to a two-parameter ansatz. However, using
a finite number of conservations laws always lets the
question unanswered whether the rest of the totally
infinite set of conserved quantities will yield to con-
tradictions or not. Because it is the purpose of this
paper to investigate the dynamics of the translation
mode by a new perturbation analysis we do not got
into the details of such a multi-parameter approach.
In addition, the full treatment of the inverse scattering
problem as stated at the end of Sect, III would be
more promising than starting from the conservation
laws,

We conclude this section by outlining the generaliza-
tions to more difficult situations than the one-soliton
case. In general, N-soliton solutions are known and
the corresponding eigenfunctions can be constructed
by the procedure given in Ref, [12]. Thus the dynamics
of N-solitons in the presence of perturbations reduces
to an integration within the adiabatic approximation.
For example, the eigenfunctions of the two-soliton
solution, which in the case of paired complex eigen-
values corresponds to soliton states which oscillate in
time (breather), are explicitely known in the litera-
ture [S]. Taking these instead of (36) and (37), the
coefficients o, B, @ B, [Eq. (29)] can be found by inte-
gration and, in principle, the time-dependence of the
eigenvalues and the soliton parameters are' known,
Since the formulas are quite lengthy and the algebra
is quite involved we renounce the presentation and
discussion of this example.

V. Applications

We now report several results for the dynamics of the
translation mode by using different expressions for r
in Eqgs. (42) and (44).

Setting

Er=00(x-+t—Xy~1,), (48)

corresponding to a fixed impurity in real X, T'space,
we find

%’1_ ~I ek [24(xo+to—t—&), 49)

and

d¢ 1 @
3t ThE 3 5o tto—t—1)

-sech [29(xq+ 2, —t—&)]. (50)

The equations show that the soliton travels with
constant velocity until it “sees” the impurity. Then it
will be accelerrated (decelerated). The acceleration

% di sech[29(x,+t,—t—6)], (51)

induced the conjecture that solitons behave like New-
tonion particles [3].

Next, we consider a constant external driving field by
letting

gr=y=const. (52)

We immediately obtain

R (54

7: ]
ny (ﬂo"zlt)

ie. the velocity is growing or decreasing depending
on the direction of the external field.
Introducing an additional damping by considering

I' (0u du

ar=—2(5; ar)* (55)
one finds
dr] 1
i ak [1 42] 6)
and
d& 1 :
i 4—”2 (57)
There exists a “terminal velocity™
d¢ 1
i) R 58
dt|,  4n%’ (58)
where

ny 1 w2y
o =3 % +64I‘2' %9)

On the other hand, in the purely damped case
Pl - 1)t (60)

ie., the velocity is exponentially damped.

Finally, we consider soliton motion in an inhomo-
geneous medium. The simplest conclusion can be
drawn from a model which yields a jump in the fre-
quency, ie., we take
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er=—aB(x+1)sinu, (61)

where @(z) is the step function (@(z)=0 for z<0 and
O(z)=1 for z>0). After some algebra we find

dn_ 4 g

T 4se°h 29+, (62)
and

di_ 1 % o

@it

+2n(¢+1) sech [29(¢+ )1} sech [2x7(¢ +1)]. (63)

The dominant contribution arises from dy/dt. If
initially the soliton is moving (for a>0) from the high
density to the low density # decreases and thus d &ldt
increases.

All these results are in good agreement with the con-
clusions by Fogl et al. [3] and Eilenberger [4] based
on a completely different approach.

VI. Conclusions

In this paper, we investigated the effect of perturba-
tions on localized solutions of the sine-Gordon equa-
tion. We used a perturbation theory for the scattering
data, whose time dependences in the case of no per-
turbations are well-known. The method used here,
which was originally developed by Karpman and
Maslov [8] for the nonlinear Schrédinger equation
and the Korteweg-de Vries equation, has several
advantages compared to other procedures [3, 6]: It
allows to consider overlapping solitary waves and it
is not restricted to shape-conserving solutions,

The physical problem consists of two parts: the
dynamics of the translation mode (in order to draw
some conclusions about the particle-like behavior of
solitons), and the radiation. In this paper we have not
attacked the second problem although it is tractable
within the general outline given at the end of Sect, II1,
These investigations are in progress and will be
published later, For the dynamical behavior of the

translation mode we found a very general and simple
description which allows, just by straightforward
integration, to calculate the influence of different types
of perturbations. The results are in good agreement
with those obtained previously, but the procedure
proposed here seems to be more powerfull than those
used earlier, especially if one wants to consider radia-
tion problems for overlapping solitons. Thus, the
applications presented in Sect. V of this paper are
promising enough to attack the more difficult radia-
tion problem.
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