Sequence space representations |
for (DFN)-algebras of entire functions
modulo closed ideals

By Reinhold Meise at Diisseldorf

Let P=(p,).n be an increasing sequence of plurisubharmonic functions on C*,
which satisfies some mild technical conditions. Denote by A4p(C™) the vector space
of all entire functions f on C" which satisfy for suitable C> 0 and ke N the estimate
[f(2)| £ Cexp(p,(z)) for all zeC". Under its natural inductive limit topology
4,(C") becomes a locally convex algebra. Algebras of this type have been studied for a
long time. They arise in complex analysis and also in functional analysis since various
convolution algebras of distributions and ultradistributions are isomorphic to algebras
of this type by Fourier transform.

Extending previous work of Ehreppreis [8], [9] and others, Befenstein and
Taylor [1], [2], [3] have investigated from the point of view of interpolation theory
the structure of A4,(C")/I, where P is of the special form (kP)ien and where I is a
localized ideal generated by a slowly decreasing N-tuple of functions in A:(C"). Some
of their results have been used by Taylor [30] to show that for P=k|z N en, 521,
every closed ideal in 4,(C) is complemented.

In the present article their investigations are continued and extended in the
discrete case where more emphasis is put on the fact that all the algebras 4,(C") are
(DEN)-spaces, i.e. strong duals of nuclear Fréchet spaces. We show that the nuclearity
of 4,(C") together with an application of the Auerbach Lemma and easy arguments
from functional analysis can be used to derive the following from results and methods
of Berenstein and Taylor [1], [2]: Let (F,..., Fy) be a slowly decreasing N-tuple of
functions in 4,(C") with a discrete zero variety and denote by Lo(Fy,. . ., Fy) the local
ideal in 4,(C") generated by F,,. .., Fy which we assume to be infinite codimensional.
Then 4,(C")/Loo(F,,. .., Fy) is isomorphic to A(B),, the strong dual of A(B), where
A(B) is the nuclear Kithe sequence space given by by :=exp (p,,(w,)) for a suitable

sequence (w));y in C" with }_1;2 {wj{=c0. In particular this implies that for

P=(kp)en the quotient space A,(C")/L(Fy,..., Fy) is the strong dual of a power
series space of infinite type. From the work of Kelleher and Taylor [13] it follows that
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under some technical conditions on P every closed ideal in Ap(C) is of the form
Lo(Fy, F,). In this situation the result stated above gives a representation of 4:(O)/1
for every closed ideal I in A4, (C).

The sequence space representation of A,(C")/l(F,,.. ., Fy) allows to use the
structure theory of nuclear Fréchet spaces to investigate whether Lo(Fyy. .., By) is
complemented in 4,(C"). In fact, we show that the results of Taylor [30] mentioned
above can be obtained and even extended to a larger class by an application of the
splitting theorem of Vogt [32]. On the other hand, we give examples of algebras
Ap(C), P=(kp)c.> Where p is a radial weight function satisfying p(22)=0(p(z)), in
which every proper infinite codimensional closed ideal is not complemented. It is also

shown that for many weight systems P =(p,),., for which Py is radial and which
satisfy

1 D (Z)

P22)=0(p(@) and  fm =t

=0 forall keN,

every proper closed infinite codimensional ideal 7 in 4,(C) is not complemented. This
is essentially a consequence of the observation that every continuous linear map from
4,(C)/I into 4,(C) is compact, which is derived from the characterization given by
Vogt [34]. In some cases it is, however, more convenient to prove this using the
remark that (4,(C)/I); has the property (DN), introduced by Vogt [34], a linear
topological invariant which is rather restrictive. There are even examples of weight
systems P for which 4,(C); has (DN), and there are other examples P for which
A5 (C), has property (@) which is also a rather restrictive linear topological invariant.
In factﬁthese are the first “natural” examples of nuclear Fréchet spaces having (DN)
resp. (£2).

As a further application of the sequence space representation we obtain results on
the structure of the translation invariant subspaces of certain weighted Fréchet spaces
of entire functions. We only mention the following two particular cases: Let A(C)
denote the Fréchet space of all entire functions on C and for s> 1 denote by Ej the
Fréchet space

s:={feA(c>

fglglf(Z)I exp (-—% Izl‘>< o forall ke N} .

Then every closed linear infinite dimensional translation invariant subspace W of A(C)
or Eg, s> 1, is isomorphic to a power series space of infinite type and is complemented.
Moreover, as we have shown in [19], W has a basis consisting of exponential
polynomials. This extends classical results of Schwartz [28], Gelfond [10], Ehrenpreis
[8] and Dickson [5] who proved that W has a finite dimensional decomposition. On
the other hand, let o=(s5),., be a strictly decreasing sequence in ]1, cof and put

A(e):={fe 4(C)| sgg |f@)| exp(~|zI")< 0 forall ke N}.

Then every closed linear infinite dimensional translation invariant subspace W of 4(0)
has a regular Schauder basis but is not complemented,
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The article is divided in five sections. In the first section we present the tools
which are needed from functional analysis. In the second one we introduce the weight
systems P and the algebras 4,(C") and we present several examples. The sequence
space representation of 4, (C")/f.(Fy,.. ., Fy) is proved in section three, and in section
four we study the complementation of closed ideals in 4,(C"). The results on the
structure of translation invariant subspaces are presented in section five,

The author wants to thank G. Fischer, S. Momm, D. Vogt and B. A. Taylor for
helpful conversations and correspondence on the subject of the present article.

1. Nuclear sequence spaces

In this section we introduce the tools from functional analysis which will be
needed in the following sections. In particular, we show that certain nuclear Fréchet
spaces with a finite dimensional decomposition already have a Schauder basis. This is
based on standard techniques and an application of the Auerbach Lemma, We begin
by introducing some notation,

1.1 Definition. (2) Let A=(a ), pey2 be a matrix of non-negative numbers
aj;. A is called a Kothe matrix, if

r

(1) a;,=a;,,, for all ke N,
@ a,,>0 forall jeN.

4 is called regular or of type (d,) (see Dubinsky [6], p. 22) if

@) bk < Gk g, all je N and all ke N.

Qir1,k41 Gy peq

(b) Let 4 be a Kéthe matrix and let F =(E}, || 1I;);en be a sequence of Banach
spaces, For 1= p< o we define

® 1
(4, E):= {x e I1 Elm, ,(x):= (z (Il ,a,,,y)"< w forall ke N}
jeN j=1

and for p=0o we put
A4, E):={xeI] Elm, ,(x):= §up llx,ll ;< o0 forall ke N}.
Jen EN

These spaces of vector-valued sequences are Fréchet spaces under their natural locally
convex topology, induced by the norms (m; ). . If E;=(C, ||) for all je N, then we
write 47(4) instead of A°(4, E). Instead of A'(4) we sometimes write A(4),
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() Under the assumptions of (b) we put for 1=<p=
k¥(A, E):= ind k?(4, E),

where

: 4
kE(d, E):= {x < I1 &l = (;Z% (uxjnfa;:y’) < oo}

for 1=p< o and

kv (4, E):={x & T] E;| 1|, oo : = sup [l 452 < c0}.
jen jeN

Again we write k?(A) instead of k?(4, F) if E=(C, ] \)jen-
Examples of regular Kéthe matrices which are particularly interesting are the
following: Let « be an increasing, unbounded sequence of positive real numbers (called

exponent sequence) and put g, ,:=e* or b; ,‘=e_7‘L. Then it is easy to see that the
matrices 4=(a,,),, and B=(b;,);« arc regular. The corresponding spaces AP(A4)
(resp. 4?(B)) are usually denoted by A2 (x) (resp. Af(x)) and are called power series
spaces of infinite (resp. finite) type. We recall that the space C*(SY) of all C>-

functions on the unit circle S! is isomorphic to 4% (log(n+1)) and that A% (’f/ﬁ is
isomorphic to the space 4(C¥) of all entire functions on C* endowed with the compact-
open topology.

1.2 Lemma, Let A'(d) be a Schwartz space and let E=(E,| |l j);eN denote a
sequence of finite dimensional normed spaces. Let E' 1= (j | 17)jen denote the sequence
of the strong duals E; of E;. Then we have:

(@) For 1Sp<co the strong dual A°(4, E), of AP(4,E) is isomorphic to
k%(4, E'), where -1-+-1-=1.

? q
(b) k%4, E') is identical with the locally convex space
® 1
{ye I'£ Ej |7, ,(y):= (121 Alp)ll; aj)9>q< o forall aci®(4), a2 0}
je =
Jor 1<g< oo and

{y eﬂ, Ej |7, ()= sup Wyillya;< oo forall aei®(d), a2 0}
E €

Jor q=o0, the topology of which is the ome induced by the semi-norms
{faql @€ A2(4), a2 0}.

Proof. (a) It is easy to see that the map &: k9(4, E")— A%(4, E);, defined by
(P(»), x)i= j§1 <yJ: x.l)!,

is linear, continuous and bijective. Since A!(4) is Schwartz, we have: For every ke N
there exists me N such that Jim Sk - g,
. = aj.m
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From this it follows by well-known arguments that AP(4,E) is a Fréchet-
Schwartz space. Hence A°(4, E), and (4, E') are (LF)-spaces, whence & is an
isomorphism by the open mapping theorem for (LF)-spaces.

(b) This follows from the observation that a set M in A? (4, E) is bounded if and
only if there exists a € A%(4), a> 0 with

<] .
Mc{xe IMTE| X (||xj||,aj’)P§1} for 1Sp<oo,
and jen =1

Mc{xe [l E| .;wup lxll;a;t<1} for p=co.
JEN €N
This can be proved in the same way as Bierstedt, Meise and Summers [1], 2.5.

1. 3 Proposition. Let 4 be a Kithe matrix and let E =(E;, |l W)jen be a sequence
of finite dimensional normed spaces E;%{0}. Then the following are equivalent:

(1) A'(4, E) is nuclear.

D k™(4,E') is nuclear, where E':=(E), || 17sen

(3) For every ke N there exists le N with ¥, (dimEj)%ifi< 0.
=1 on

Proof. The equivalence of (1) and (2) follows from Lemma 1. 2(a) since a
Fréchet space is nuclear iff its strong dual is nuclear.

To prove that (1) implies (3) we note that for each ke N the completion of the
normed space (A'(4, E), m, ,) is the Banach space

S
jeN

o]
= £ I ).

Obviously Y, is isomorphic to /*(E) by a diagonal transformation, For /> % let
M,k Y;— ¥, denote the canonical (inclusion) map, If we identify Y, and Y, with ['(E)
then =, corresponds to the diagonal map T, 1" (E)— I'(E) defined by

a
Tsen) = (Texp)yen = (ZL& x}) :
Jen

Since 4'(4) is nuclear by hypothesis, for every ke N exists /> k such that m,;, and
consequently 7, is a nuclear map (see, e.g. Pietsch [26], 4. 1. 2). Hence there exist

sequences (b"),,, in /' (E)y=1"(E) and (y"),., in I'(E) with 2 115" 1Ml < oo such
ne=1
that

Tx= 51 {x, by forall xell(E)
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Now for every ne N we have b= (b));en Wwith bjeE; and ||b"|l=sj>up i3l and
€N

P =Osen With Y€ and IYl= % 1l Sine

X0 =3 (x, b)) forall neN,
J=1

we get

7}x1="§l $xp 5> y; forall jeN
and hence
(dim E) %ﬁ-’: = trace T} = .,‘i L B
This implies '
1

hd d- E ng—S bﬂ/ 'S . ol bﬂ
T GmE)TEs 3 3 151515 3, 3 w1,

=2 10"yl < w0,
n=1
Hence (1) implies (3).

If (3) holds then for each je N put n;:=dim E; and choose an Auerbach basis
(see Jarchow [13], p. 291) {y}|1Sm=n;} of (Ep Il 1)) Let {b)|1SmZn;}cE;
denote the corresponding coefficient functionals.

Next let ke N be given and choose /e N such that (3) holds. Then define
Ve 1'(E) by Y,,{:=(§i~—*aj,ny¢,) and Bl & [{(E) = 1°(E) by Bli=(6,0, blen for
1

‘8 neN
je N and 1Sm<n;. Then we have, in the notation introduced above,

«© iy
Tax=3% X < B> Y]

j=lm=1
and

© @ a, 0 . m
X BN =X ny-kt= ¥ (dim E) 2E< oo,
j=1m=1 =1 T4 j=y 1

Hence 7, and consequently =, , is a nuclear map. Consequently A'(4, E) is nuclear.

Remark., a) Under the hypotheses of Préposition 1. 3 condition 1.3(3) is also
equivalent to

(1) 2%4,E):={xeA~(4,E)| 1121130 Ix;ll;@;,, =0 forall ke N} is nuclear,
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This follows by modifying the proof of Proposition 1. 3 in an obvious way.

b) Independently of the present work Dubinsky and Holmstrém [71 have
introduced Fréchet spaces with a locally round finite dimensional decomposition, It
turns out that this is the class of all spaces 4'(4, E), whete E=(E}, | |));oy is 2
sequence of finite dimensional Hilbert spaces. There is some overlapp between their
article and this section 1. In fact, [7], Proposition 2.2, led to an improvement of a
previous version of Proposition 1.3 and the following Proposition 1. 4.

1. 4 Proposition, Let A be a Kithe matrix, let E =(Ej;, || ));en be a sequence of

Jfinite dimensional normed spaces E;+ {0} and let 2* (4, E) be nuclear. Then the Jollowing
holds:

(@) There exists a Hilbert norm | | j on Ej for each je N so that for
E:=(B}, | |))jen we have A'(4, E)=32(4, E) as Lc. spaces.

(b)) A'(4, E)= A (B) where the matrix B is defined by b, y=a,, for

i-1 j
Y, dmE,<IS Y dimE,.
m=1 m=1

Proof. (a) It is a well-known consequence of the Auerbach Lemma (see e.g.
Jarchow [13], p. 291) that for each je N there is an inner product (-1+); on E;
such that for the corresponding norm | | ; the following estimates hold:

-1 1
(%) @mE) *|| ;S| |, dimEY || ||

We put £ '=(Ep| |)jen and show that the Fréchet spaces A'(4, E) and A2(4, F)
are identical,

To do this let ke N be given. Since A'(4, E) is nuclear, it follows from

Proposition 1.3 that there exists [ with C, ;:= iup (dimEJ)%hR oo and that for a
€N N

o0
suitable m> [ we have ¥ SLL< co. Hence we have for each x=(x);cy in A'(4, E):
i=1 % m

(3= 3, (sl T @imE) (bl a0

1
& (i o G\ (Y 2
£ X (([mE)-SE) (5L} (|lxll; ay,)
i=1 4,1) \%m

NEyen Y 2
G (El (‘H,m) ) (”m,i(x)) :

For all x=(x),., in A(4, £) we have

A

© o 1
1 (X) =JZ1 “xj"J a,,= J; (dim Ej)z 1l a4y,

i=t

s £ (gu)’)% (2.

Jrm

Q, a
< (dimE)—M-—Mlxla
i 4, a4 n 3 Chm
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This shows 4' (4, E)=4%(4, £) and also the equivalence of the norm systems (%, Jcn
and (7, 2en-

(b) To show that 1'(4, E) is isomorphic to A1(B) we choose an orthonormal
basis {e; , | 1=n=n;} of the Hilbert space (Ej, | 1)), for each je N. If x=(x,),,, is in
A4, Ey=2%(4, ), then we have

n

J ny
X=X (xjle;n);e;,, and llejz'_‘ 21 I(leej.n)jlz'
n=

n=1
This implies that
@y 0
(+*) Ei ; 1(x;] ej,n)lz ajz,k=j§1 (Ileja ',k)2 = (”k,z(x))z
for all ke N. Hence the linear map F:12(4, £) — 42(B), defined by
-1 -1
FG)=(E)rens fri=(xj|ej,z)j for i=/+ Z—"x My =1+ Z.l dimE,,

is continuous. Using () it is easy to check that Fis a sutjective isomorphism, Hence
we get by the nuclearity of !(4, E)

A4, Ey=22(4, Ey= 22 (B) =11 (B).

The following elementary lemma will be rather useful in section four.

L5Lemma. Let F=(F, | |));en be a sequence of Hilbert spaces and let A be a
Kothe-matrix. For ke N denote by m,: A*(4, F)— (4, F) the map

”k((xj)Jen)i': (5 '.kxk)jeN'

Let T:3*(4, Fy— A2(A, F) be continuous and linear with T o m=m,o T for all ke N.
Then ker T is complemented in 1*(A, F).

Proof. 1t is easily checked that there exist T;e L(F)) for je N such that

T((x j)jeN) = (zjj)je N

This implies that x=(x,);, belongs to ker T iff x;ekerT; for all je N. Since F is a
Hilbert space there exists an orthogonal projection P; on F; with P(F))=ker T, It is
casy to see that P:12(4, F)— A%(4, F), defined by P(x)jen)=(Px))jen s a
continuous projection on A*(4, F) with P(A%(4, F))=kerT.

2. Weighted (DFN )-algebras of entire functions

In this section we introduce the weighted (DFN)-algebras Ap(C™) of entire
functions on C*, This class contains the algebras 4,(C™) which have been investigated
by Berenstein and Taylor [2], [3]. Using their notation we introduce weight functions
and weight systems and present some examples,
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2.1 Definition, A function p: C"— [0, oo[ is called a weight function on C* if it
has the following properties:

(1) p is continuous and plurisubharmonic.
@ log(1+|21%)=0(p(2)).
(3) There exists C21 spch that for all we C
= i .
|z—sg?§1p(z)‘ C]z—lgfgp(z)-*- ¢

A weight function will be called radial, if p(z)=p(jz|) for all ze C", where

lz]:= <1=§1 |zj|2)%.

2.2 Definition. A sequence P=(p,)., of weight functions on C" is called a
weight system if it has the following properties:

(1) For every ke N there is M20 with p,<p,,,+M.
(2) For every ke N there exist me N and L>0 with
2= p(D)+L forall zeCn
A weight system P=(p,)., is called 1:adial, if p, is radial for all ke N.

For an open set 2 in C” let 4(R) denote the algebra of all holomorphic functions
on Q. If P is a given weight system on C” then we define the subalgebra Ap(C") of
A(C") in the following way:

2.3 Definition. (a) For a weight function p on C" we put
HP(€):={fe AC") |1/, 0:= sup |£(2) e~ <o},

HC):={fe 4C) | If,2:= (CIn (1£@) &) dmy, (B < 0},

where m,, denotes the Lebesgue measure on C"=R?",
(b) For a weight system P on C" we define
A (C"):= ©(C"
o= U Hp (€
and endow this vector space with its natural inductive limit topology. Following the

notation of Berenstein and Taylor [2], [3] we write 4,(C") instead of A,(C") if
P=EPhen-

By standard arguments one proves:
2. 4 Proposition. For every weight system P on C* we have:
(@) 4,(C") is a locally convex algebra with unit under pointwise multiplication.

(b) A.(C") is a (DFN)-space, i.e. the strong dual of a nuclear Fréchet space. In
particular, A,(C") is nuclear, complete and reflexive.

© 4, (C")=kU H;k(C") holds topologically.
enN
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Next we give some examples of weight functions and weight systems which will
be used later on,

2. 5Examples. (1) Let ¢:[0, co[ — [0, o[ be continuous, convex, increasing
with tl_'qx; ¢(t)=co and assume that there exists D=1 with p(21)< De(t)+ D for all

te [0, cof, Then it follows casily from Hormander [12], Theorem 1. 6. 7, that Qopis
a weight function on C" whenever p is a weight function on C".

(2) Let ¢:[0, 0o[ — [0, [ be continuous with tlirgo 9()=co. Assume that

t @(¢') is convex and increasing and there exists D21 with o2)= Do()+ D for
all 1€ [0,00[. Then p:z > ¢(|2|") is a radial weight function on C" for every r>0,

Most of the following examples can be obtained from (1) or (2):

3) p@=lz", r>0.

@ p@)=log(1+|2?) +|Imz].

() p@=(log(t+|z1)y, s21.

© p@=|Re(@)|"+[Imzf*, r,s=1.

M p@=|z"+|Imzf5, r>0, s21.

2. 6 Associated functions, (1) Let M =(M));cy, be 2 sequence of positivle real
numbers which for the whole article is assumed to satisfy M,=1 and }:‘F}o Mj=c0.
Then the associated function py,: C"~ [0, oof is defined (see Komatsu [15], §3) by

J
sup log I for z#0,

. Jedg i
Pu(2):= 0 for z=0.

It is easy to see that p, is plurisubharmonic and continuous and that ¢+ Dule)) is
increasing and convex on [0, co[.

It is useful (see Komatsu [15]) to consider the following conditions on M:
(M1) M}sM;_ M, forall je N.
(M2) There exist 4, H21 with M, < AH" oo M;M,_, for all neN.

If M satisfies (M1) and (M2) then, by Komatsu [15], 3. 6, there exists D> 1
such that for all ze C*

2py(2)= py(D2) + D.

If M satisfies (M2) and if N:=(M,exp(—jg(/)))jen,, Where g:Ny— [0, o[ is
increasing, then it is easily checked that N satisfies M2).

(2) Assume that M=(M,),,, satisfies (M1). Petzsche [25] has shown that the
following conditions (i) and (i) are equivalent:

(1) there exists C>0 with py(22)S C(py(z) +1) for all zeC,

(i) there cxsts ke N with lim inf (%%)t 1,
. ) ,l
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If M satisfies also (M2), then (i) is equivalent to

(iiiy there exists ke N with lim inf 9> 1, where mj:=—A£L.
J R mj M]"l

It is easy to check that (i) implies that p,, is a weight function on C". Moreover,
in this case py satisfies all the conditions stated in 2. 5. (2).

(3) For 5>0 consider the so-called Gevrey sequence M:= ((p!f),cn,. Then
M satisfies (M 1) and (M2) and it is well-known that for all ze C*

1 L
Pu(@=s|z|° and |z|’§§pM(z) +2log2.

4 For s> 1 and a> 0 consider M :=(e”")pe o Then M satisfies (M1) but not
(M2). Some computation shows that there exists D> 0 such that for all z e C"

5_1 1 S_—Lf —
a3 T (L] st T4
and

1
_1/1\T .
%.T(E) (log(1+23))T< py(2) + D.

Next we describe some methods how to generate weight systems out of a given
(weight) function,

2.7 Example. (1) Let (¢,),.y be an increasing sequence of functions each
satisfying 2. 5 (1). Assume furthermore that (), satisfies the condition 2, 2 (1) and
() if p, is replaced by ¢, and C" is replaced by [0, oo[. Then Pi=(p, 0 Py 18 2
weight system on C" whenever p is a weight function on C".

Obvious examples of such sequences (@,);en are @;: x> kx and QX X"
where (r).cn is a strictly increasing sequence in [1, oo[. .

(2) Let ¢ be as in 2.5(2) and let (r,);., be a strictly increasing sequence in
10, o[, Then /P:;((p(lzl’“))kw is a weight system on C", provided that one of the
following conditions is satisfied:

. _ . N 102

(@ klgraxo r,=o0 and there exists r> 1 with 11}13 gnf W> 2
——y ()

B lim glf_—(l’(t) >2 for each r>1,

41 Journal flir Mathematik. Band 363
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r
It is casy to see that (B) is equivalent to ‘l_'gg -?’%))-=oo for each r> 1.

(3) Let M=(M)),,, satisfy (M1) and 2. 6 (2) (ii). Then
3
lim int 2.,
o py(h)
holds. To see this, choose t,> 0 so that for all t21t, we have
Pu()=j(t) logt —log My,
and M, 21, This implies
3pa () =3(j() log 1 —log M) < j(¢) log 1> — log My < pyy (%)
for all 121,.

@) If M=(M)),,, satisfies (M1) and (M2) then it follows from the characteri-
zation of condition (M2), stated in 2. 6. 1, that

r
timinf 2425 5 for each 7> 1.

()

In section four we shall need information on the structure of A.(C");. This
information can be obtained easily if a sequence space representation of A4,(C") is
known. For radial weight functions on € such representations are obtained by
estimating the Taylor coefficients of the functions in 4, (C). Here we give only some
relevant examples; for a systematic study of 4,(C) using the Young conjugate function
we refer to Meise and Taylor [22], where further interesting examples are given.

2. 8 Proposition. Let P=(p,),. be a radial weight system on C which satisfies
log(1 +|z1%) =o0(p;(2)). Then
4, (C)2k*(B)=k*(B),
? 2j+1 —% ;
where B:=(byy), by, =|2m [ r** ' exp(~2p,())dr) *, je Ny, ke N.
[

Proof. Put [}:= {x gCho

o0
T Ixeyi< oo} . Then it is easy to check that the
j=0

)
map T H: — I, T(f ):=(f—j!(0—)) , is an isometrical isomorphism for each

JeNg

ke N. Obviously we have T, | H, =T,. Hence we get from 2. 4 that
4,(0)= LkJ H} =k*(B)=k*(B).

2.9 Corollary. Let p be a radial weight function on C* which satisfies:

*) There exist A2 1 and B2 0 such that for all z € C
p(22)S Ap(z)+ B and 2p(2)S p(4d2) +B.

1
Then 4,(C")2 A, (k"
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Proof. Let us first assume n=1. Then (+) implies 4,(C)=4,(C), where P=(p,)
with p,:z— p(kz). Since

w© 1 «©
£r2j+1€_2p("')dr=k2,+z Z|‘)‘5.21+1e--2p(3)ds

we get from Proposition 2.8 that by a diagonal transformation A,C)=A, k) If

n>1 then (x) implies 4,(C")=4,(C"), where g:z++ 3' P(z;e)) ((¢;)j=y the canonical
. =

basis vectors of C"). Hence it follows from 2, 4 that

A€ = 4,C)= 4,00 +  4(0)24, (%,

2.10 Example. Let M =(M))sen, be a sequence satisfying the conditions (M 1),
(M2) and 2. 6 (2) (ii). Then it follows from 2, 6 (1) and (2) that p,, satisfies condition
(*) of Corollary 2.9, Hence we have

Ay €2 A (N

This example can also be derived from Komatsu [15], 4. 5, which we will now use to
obtain further examples.

2,11 Proposition, For ke N let M* = (M), .y, satisfy (M1) and 2.6 (2) (ii) and
assume that Mj 2 Mf** for all je Ny and all e N. Then the following holds:

(@) If P=(pypien is a weight system, then A,(C)2A(B),, where by =M},
JeNg keN.

k41
(b) If M* satisfies (M2) for each ke N and if (—%)j ) is in A, (j) for all
keN, then P=(pyu)en is a weight system on C which satisfies

Jim pﬂ&%w forall keN.
ZL7 0 Pagis 1

Proof. (2) If fe H2(C) for some k e N, then the proof of Komatsu [15], 4. 5,
shows that for each je N, we have

90

A2 (S 17 O

If (@), satisfies sup |aj} Mf=:||all,< co for some k € N, then Komatsu [15], 4. 5,
€Np

o0
shows that the function f:z+ Y a4,z can be estimated by
i=0

|/ 2= 2llall, exp (py (22))= 2 ally exp(Coppee @)+ G,
= 2llallx exp (G) exp (pyr(2)),
since P is a weight system and since M* satisfies 2.6(2)(i). This proves that

4p(C)=1(B).
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(b) Since M**! satisfies (M2) it follows from 2. 6 (1) that for some D> 1 and
all ne N we have

Vs (2)Ep(D"2)+(2"~1) D forall zeC,
and hence

z 1
D+ <ﬁ>§5"-pw¢u(2) +D.

k+1
Since (Mﬁ,‘—) is in A, () it follows from this and Komatsu [15], 3.1.10 that
} JieNo

y pMk(z) =0,

tzl = prm(Z)—
This implies that 2. 2 (2) is satisfied. Hence P is a weight system,

2.12 Corollary, Let M=(M ieno be a sequence satisfying (M1) and 2. 6 (2) Gi),
and let (ry)n be a strictly increasing sequence in [1, oof,

@ If ll’::(rl pM(|Z|"‘)) is a weight system, then
k keN

452 A, ((log M) )

(b) If M satisfies (M2) and if P is defined as in (2) then

ﬁ:=(PM(|2lm))ke~
is a weight system and A,(C)= A43(C). ‘

1
Proof. (a) Put M*:=(M/),.,, and remark that

z fiJ ¥4 J
Pl = sup fog 2 < 1, sup tog 121, )
JeNo j jeNo Mj"‘

Hence it follows from 2. 11 (a) that A, (C), 2 A(B), where
byy=(M})"'=exp (—;l-logM,> s JENy, keN,
k
which shows 4,(C); = 4, ((log M)),.,,,)-

(b) Since 0<r1§1 for all ke N we have
k

= pulle)S pullal) forall zec.
k

Since M satisfies (M2) it follows from 2, 6 (1) that for some D> 1 we have

Tew 1Py (12I™) = pr (D [21) + D= pyy (|21 +1) + D’
for all zeC. This implies 4,(C)=43(C).
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2.13 Examples. (1) Let (r,),., be a strictly increasing sequence in 0, oof and

put Pi=(|z|™),cn. Then 4,(C)xA, ((j log/)jen)s. This follows from Corollary 2. 12
and 2. 6 (3).

[
(2) For r>1 put p:zr (log(1+|z/%). Then A,©)=A(G" el To see
this, put s:=r—r—1 and define M*= (cxp (%)) for ke N. From 2. 6 (4) we get that
- jeNg .
there is 4> 0 such that for each ke N there exists D> 0 with

1 1
%k"‘p(z) —DSpy(2)S 34k 1p(2)+ D.

This shows that P:= (pyu),ey is @ Weight system and that 4p(C)=A4,(C). Hence the
isomorphism follows from 2. 11 (a).

(3) Let (re)ew be a strictly increasing sequence in 11, of and put
P:= ((log(1 +|21%)) )¢
Then A4,(C)=A(B), where b, , = exp(— j'"krf—'), jeNy, keN. To see this, put
M*=(exp (J"_"rf_‘))

jeNg

and put P: = (pyu);cp. Since Pis a weight system and since. 4,(C) = 45(C) by 2. 6 4,
the isomorphism follows from 2. 11 (a).

(4) Let 0<s<oo and 0<g<1 be given. Some computation shows that for each
keN one can find joe N and M*=(M}),,, which satisfies the hypotheses of
Proposition 2. 11 (b) such that

M} =exp(sj logj—kj(logj)) forall j=j,

Then P:= (pyu)i.n is @ weight system on C with \im M:O for each k e N, by
2= ® pres1(2)
Proposition 2. 11. Moreover, we have 4,(C) = A(B)}, where by =(Mf)"" for je N,

ke N. Hence we get by a diagonal transformation that
Ap(C) 2 Ay (o8 + 1)) i

(5) Let 0<s<co be given. Some computation shows that for each ke N one
can find j,e N and M¥=(M¥),.,, which satisfies the hypotheses of Proposition
2. 11 (b) such that

M =exp (sj(logj— (log log JF) forall j2j.

Then P:= (ppp)yen i8 @ weight system on C with \im —M=0 for each ke N,
2120 pyper(2)

by Proposition 2. 11. Moreover, we have 4, (C) = A(B);, where by =M forje N,,

ke N. Hence we get by a diagonal transformation that Ap(C)= A(B);, where

b,x=exp (sj(log log (e +/))).

42 Journal fr Mathematik, Band 361
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- 1 1
Later we shall use that 43(C)= A,(C), where P:= (I2]* exp ((log log |z| %)*)),e - This is
a consequence of the following remark which is proved by some computation:

For a>0 and s>0 let M =(M);en, be a sequence satisfying (M1) and M2)
such that for some j, € N we have M, =exp js(logj~ (loglog 7)) for all j2j,. Then
there exists B= B(s, a) such that for all ze C

s 1 1
7, 171° exp((log log (|21* +€))) — B= py,(2)

1 1
= sz]* exp((log log(|z|* +€))*) + B.

3. Weighted algebras modulo localized ideals
In this section we use ideas and results of Berenstein and Taylor [1], [2] to
derive a sequence space representation of 4, (C")/1 for certain closed ideals I in 4,(C"),

Since we also use the nuclearity of 4,(C") we can apply the main results of section 1 to
get a rather precise information on the structure of 4, (977

As a slight extension of a notation introduced by Berenstein and Taylor [1], [2],
we define:

3. 1 Definition. Let P be a weight system on C" and let

F=(F..., Fy)e (A,, (C"))N
be given,

a) Fis called slowly decreasing if
V(F)i={zeC"| Fi(z)=0 for 15jSN)
is discrete in C" (which implies N2n) and if there are >0 and me N with

() each component of the set S,,(F, ¢) is bounded, where

1

Su(F, ):= {z cor (;_z":1 m(z)P)’ <s exp(—Pm(Z))} :

(i) for every k2m there are D, and D; such that for each component § of
Sn(F, &) we have

sup p,(2)= D, inf p,(z) + D},
zeS 2¢8

b) Fis called slowly decreasing in the weak sense if (1) and (ii) are required to
hold only for those components S of S,(F, &) for which §n V(F)+9.
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¢) Fis called regularly slowly decreasing in the weak sense if V(F) is discrete, if
there exist 6> 0 and me N so that the corresponding conditions (i) and (i) above are
satisfied and if the following conditions (jii) and (iv) hold:

(iii) V(F) is an infinite set,

(iv) there exist an enumeration (S))jen of the components S of S,(F, ) with
SNV(F)+0 and z; S, for each je N such that for the matrix A=(a,,) defined by
8,,=exp(p(2))), je N, ke N, k2m, there exists Jo€ N such that the submatrix
A:=(a;4)1 0. xzm 18 Tegular in the sense of definition 1.1(a).

3.2 Remark. a) If P=(p,),., is a radial weight system on C with

n(22)= O(Pk(z))

for every k e N, then it follows from an application of the minimum modulus theorem
(see Levin [17], p. 20) as in Berenstein and Taylor [1], Proposition 4, that every
Je4y,(C), f+0, is slowly decreasing. Hence every F=(Fy..., Fy) e (4.(O) with
F#£0 is slowly decreasing,

b) For examples of F=(F,,..., Fy) € ((4,(C")" which are slowly decreasing, we
refer to Berenstein and Taylor [2].

¢) If p is a non-radial weight function, then there might exist fe 4,(C) which
are slowly decreasing in the weak sense, but not slowly decreasing. To see this look at
the following example which is essentially due to B. A. Taylor: Let the weight function

p on C be defined by p:zr> max(0, Re(z))+)/[z] and define the entire function
fizméf 11—-[1 1- J%— . Then fis in 4,(C), but fis not slowly decreasing since for every

&> 0 and every me N there is a< 0 with S,(f, ) > {xeR | xS a}. However, a careful
application of the minimum modulus theorem shows that fis slowly decreasing in the
weak sense.

3.3Lemma. Let P=(p,),., be a weight system on C", let
F=(F1’- vey FN) € (AP(C"))N
be slowly decreasing in the weak sense and let V(F) be infinite. Then F is regularly

slowly decreasing in the weak sense provided that P is of one of the following types:

(1) P=(py° Pen> where (@ )ey and p are as in 2.7(1) and where there exists
to20 such that g, —q, is increasing on [t,, oo for each ke N,

@ P=(@(|2)yey is as in 2.7(2) (2) and there exist s> 1 and to20 such that
t () —(2) is increasing on [t,, oof.

) P=(0z™)cn is as in 2.7(2) (B) and there exists 1,20 such that for every
5> 1 the function t - (t*)—(t) is increasing on [ty oo,

Proof. By hypothesis there exist e> 0 and m e N such that there are infinitely
many components S of §,(F, e) with SN V(F)+0 and such that the corresponding
conditions (i) and (ii) of 3.1a) are satisfied.
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Let us assume that P is of type (1). Since p is bounded on each component S of
Sn(F, 8) with SN V(F)+9, since |Ai'3'w p(z2)=o0 and since V(F) is discrete, we can
enumerate these conponents by (S));., in such a way that (susp P(2))jen is increasing,
zeS;

and we can choose z; € S; such that (p(z)));., is increasing. Then there exists jo with
p(z)2 ¢, for all j2j,. Hence (1) implies that for all jz Jo and all k=m

Pr+1 (p(zH. 1)) —~ @ (P(zj+ D)2 Py (P(Zj)) — % (P(Zj))~
By the definition of p, this implies

a a i
_M‘_S___L.k_ for all .12.10’ k; m,
QGitkrr G p+1

which completes the proof in case (1).

If P is of type (2), we may assume that r,=s* for all k € N. Then we enumerate
the countably many components § of S, (F, £) with S V(F)#%0 by (5);ey in such a

way that (sug |2]);en is increasing, and we choose z;€ §; such that (Jz)]);., is
Z€d)

increasing, Next we choose j, € N with |2j,] 2. Then we have for all j2j, and all
keN

‘P(IZJ+1|sk*l)"‘P(IZJ+1|sk)%¢(lzj|sm)—(P(Izﬂsk),
which completes the proof as in the previous case.

If P is of type (3), then an easy inspection shows that the same choices as in case
(2) work. :

3. 4 Definition. Let P be a weight systém on C*

a) For an arbitrary ideal I in 4,(C") we define
hy:={fe 4x(C") | forevery aeC":[f1,e L},

where [f], denotes the germ of f at @ and I, denotes the ideal generated by
{Lf1.|fe€I} in the ring @, of all germs of holomorphic functions at the point a. I is

called the local ideal generated by 7 or just the localization of I. I is called localized if
I=1,.

b) For F=(F,...,Fy)e (4,(C")¥ we denote by I(F) the ideal in 4,(C")
generated by the functions F,,..., Fy. The localization of I(F) is denoted by L..(F).

It has been remarked by Schwartz [28] that for
pizi=|zl and p:ze |Imz| +log(1+)z)?)

every closed ideal in 4,(C) is localized (so-called spectral synthesis property). Gurevich
[11] gave an example of a closed ideal in 4,(C?) (p:z > |z]) which is not localized.
Kelleher and Taylor [14] bave used the L’y-techniques of HOormander to study the
localization of ideals in 4,(C"). It turns out that some of their essential results also
hold for algebras 4,(C). In the following remark we collect some results which will be
used later on,
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3.5Remark. a) From the closure of modules theorem it follows that L.isa
closed ideal in 4,(C"),

b) An analysis of the proofs of Kelleher and Taylor [14] shows that for every
F=(F,,..., Fy) € (4,(C"))" which is slowly decreasing we have I(F) = L ,(F).

¢) By Berenstein and Taylor [2], Theorem 4. 2 we have I (F)=1,.(F), whenever
F=(F,..., F)e(4,(C") is slowly decreasing,

d) If Fe A,(C) is slowly decreasing, then I(F)=F- 4, (€)=1,.(F). This follows
in the same way as Proposition 3 of Berenstein and Taylor 11

¢) For n=1 every proper ideal in @, is of the form [z—~a]f @,. This implies
that every proper localized ideal I in 4,(C) is of the form
I={fe 4,(C)| f(a)=0 for 0Zj<m, andall ae V(I)},
where V(I):={aeC|f(a)=0 forall feI} and"
mg:=max{me N |fP(@)=0 for 0=j<m andall feI},

f) If Iis a proper localized ideal in 4,(C), then there exist F,, F, € 4,(C) with
I=1,(Fy, Fy). This can be shown by the “jiggling of zeros” argument indicated in
Berenstein and Taylor [1], p. 120,

g Let P={(p,),.y be a radial weight system on C and assume that

P(22)=0(py(2))

for every ke N. Then every closed ideal in A,(C) is. localized. In particular
I=1(Fy, F,) for every proper closed ideal in 4,(C). This can be proved by a slight
modification of the arguments in Kelleher and Taylor [14].

Next we want to determine the locally convex structure of 4, (CM/1h(F).

Let P be a given weight system on C" and let F=(F,,..., Fy)& (4,(C")" be
slowly decreasing in the weak sense. Without loss of generality we may assume that
PSP+ for all ke, that F,...,Fye HS(C") and that the slowly decreasing
condition in the weak sense is satisfied for m=1 and an appropriate &> 0,

a) If §y(F; ¢) has infinitely many components § with S ¥(F)+0, then we can
choose an enumeration (S)),.,, of these components and we can choose z;e §; for
JeN. Next we define the matrix 4=(a; ), cn by

oY) aj, k= CXp (pk(zj))'
Since F is slowly decreasing, for every ke N there exist D, and Dy such that for all
jeN
sup p(2) = Dy pi(2)) + Dy,
(2) zZ€S)
ni(z)S D, :&fj pi(2) + Dy

In the case that F is regularly slowly decreasing in the weak sense, then S and z; can
be chosen as in 3.1¢) and we can assume (after a suitable modification of the p, on
some compact zero neighbourhood, which does not change 4, (C)) that 4 is a regular
matrix,

43y Journe! fiir Mathematik, Band 363
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Next put I:=1,(F) and V:= V(F) and define for JeEN
3 Bi= I1 0OL,.

LT 4

We remark that 1, is closed in @, for the locally convex topology of simple convergence

on 0, (see Hormander [12] 6. 3. 5). Hence there exists a locally convex Hausdorff
topology 7; on E;

Let H*(S;) denote the Banach space of all bounded holomorphic functions on
S;. Then the map

@ Py H*(S)— E),. py(f):= ([f]a'i'la)aesmv,

is linear and continuous with respect to the topology 7, on E;. Since S is bounded, it

follows from Cartan’s theorem B that p; is sutjective. Hence we get a norm on E; by
letting

G N E—R, liely:=inf{ligly=gs, | g€ H>(S), p;(g) =}.
Remark that (), || ||,) is a Banach space.

Now let E denote the sequence (Eps |l ij)sen of Banach spaces defined by (3) and
(5). We want to show that for every fe 4,(C") we have () (f18))jen€k™(4, E). To
see this, let fe Hj (C") be given. Then we have by 2.2(2)

10, )15 1155 1l o s0p 1 (9)
S llpy, 0 X0 (D (z) + D)
S 1 Mpwy 0 €x0 (22 (2) + DF) =11 f 1], 0 a;,1exp (D).

Moreover, the estimates show that the linear map

©) Pi4p(C) = k(A E), p(f):=(p,(f15))jen
is continuous.

Next we use the semi-local to global extension theorem of Berenstein and Taylor
[2], 2.2, to show that p is suzjective. To do this, let

b=()en € k> (4, E)
be given. Then there exists ke N with
sup sl gk = il < oo

Because of (5) we can choose 4;€ H® (S)) with p;(4))=p, and

0] ' 4llg=sy=2Mlnlllc @y forall jeN.
Then we define 4: S, (F; &) —C by
M) if zeS), jeN,
0 if ZESl(F;B)\U SJ'

JeN

A(2):=

It is obvious that A is holomorphic on S, (F; ¢). For each ze S;, (2) implies the estimate
14,2 = 21l el €72 = 2| il exp (Dypy(2) + Dy).
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Since S,(F; )= S,(F;¢) we get from the semi-local to global extension theorem of
Berenstein and Taylor [2], 2.2, the existence of fe A, (€") with p(f)=(s));en- By
2,2 (2) we have 4,, (C") < 4,(C"). Hence p is surjective. By the open mapping theorem
for (LF)-spaces (6) implies that p is open. Since kerp=1.(F), we have shown

® Ao (C)1oo(F) 2k (4, E).

Now remark that 4,(C") is nuclear by 2.4. Hence A,(C")1,.(F) and consequently
k® (4, E) is nuclear. This implies that dim £, is finite for every je N. Hence we can
apply Proposition 1. 4 to obtain that

© Ap (C")/hoo(F) 221 (B);,
where B is obtained from 4 by repeating the j-th row (dim E))-times.

b) If there are only finitely many components S of 8, (F, &) with S~ V(F)+0,
then the arguments used in part a) show that A, (C")h(F)= [] E,, where M is a
JEM

finite set. Hence I,(F) is of finite codimension in A,C".
All ;cogether we have proved:
3.7 Theorem. Let P be a weight system on C* and let
F=(F,...,Fy)e (Ap(cn))N

be slowly decreasing in the weak sense. Then A, (C")/1o(F) is either finite dimensional or
the strong dual of a nuclear Fréchet space A'(B), where by x=exp(p(w)), j, k€ N, and
where (W;);cy is an appropriate sequence in C" with jl-i'nalo [w)] = o0.

If F is regularly slowly decreasing in the weak sense, then
" A CVhF)
has a regular basis, i.e. B is a regular matrix.
3.8 Corollary. Let p be a weight function on C" and let
F=(F,..., Fy)e (4,

be slowly decreasing in the weak sense. Then A (CY 1 (F) is either finite dimensional or
isomorphic to the strong dual of a nuclear power series space of infinite type.

Proaf. By hypothesis there exist m e N and e> 0 such that 3. 1 (a) (i) and (ii) are
satisfied for all components S of S,,(F,e) with Sn V(F)#@. If there is an infinite
number of such components, then it follows from Lemma 3. 3(1) that Fis regularly
slowly decreasing in the weak sense. Hence the result follows from Theorem 3.7 since
the matrix B is given by b, , =e"*™?, where (p(w;));.,, is an increasing and unbounded
sequence,

Remark. a) Theorem 3.7 and Corollary 3.8 extend Theorem 7 of Berenstein
and Taylor [1] to the n-dimensional discrete case and give a more precise formulation
of Berenstein and Taylor [2], Theorem 4. 7. The present proof is inspired by their
proof in the one dimensional case. However, it is different even for 5= 1, since it does
not use explicit extension formulas, but only estimates which every extension has to
satisfy. Morcover, the application of the Auerbach Lemma as in section 1 gives more
information on the structure of 4,(C")/I.(F) than Berenstein and Taylor [1],
Theorem 8.
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b) Assume that under the hypotheses of Corollary 3.8 we have
dim (4, €)oo (F))= 0.

Then it follows from Proposition 1. 3 (3) that (in the notation of the proof of Theorem
3.7) there exist C>0 and d> 0 with

dim E;< Cexp(dp(z))) forall jeN.

For n=1 and one slowly decreasing function Fe 4y (C) this estimate has been derived
in Berenstein and Taylor [1], Lemma 4. (f) by function theoretic arguments.

4. On the complementation of closed ideals in A, (]

The information on the structure of A, (C")/L,(F) obtained in the previous
section is now used to decide whether 1,,,(F) is complemented in 4,(C"). This is done
by means of certain linear topological invariants which were introduced and investiga-
ted by Vogt [31], [32], [34], Vogt and Wagner [36] and Wagner [37]. In particular it
turns out that the complementation results of Taylor [30], 5.1, can be obtained and
improved by an application of the splitting theorem of Vogt [32]. We begin by
recalling the definition of the invariants which we shall use later on.

4. 1 Definition, Let E be a metrizable locally convex space and let (|| [|,)xey be
an (increasing) fundamental system of semi-norms on £ generating the locally convex
structure of E. For ke N define || |[¥: E'— [0, 0] by Iyl =sup {y (o | Nlx[l, < 13
Then we say:

(2) E has property (DN) if there exists m e N such that for every ke N there
exist ne N and C>0 with || |2ZCll [l )| Il,.

(b) E has property (DN) if there exists m e N such that for every ke N there
exists e N such that for every d> 0 there exists C> 0 with

HIE*= CI AR e

(c) E has property (@) if for every p e N there exists g € N such that for every
ke N there exist >0 and C>0 with || ¥ C|| {1 | (1%,

(d) E has property () if there exists 4> 0 such that for every p € N there exists
g€ N such that for every ke N there exists. C> 0 with

I Cll i 0 hge.

(¢) E has property ({2) if for every pe N there exists g e N such that for every
ke N and every d> 0 there exists C> 0 with || [[¥'*4=< C|| |j* | f|x<.

4.2 Remark. a) It is easy to check that the propertics (DN ) and (DN) are linear
topological invariants which are inherited by topological linear subspaces. By Vogt
[31], 1.7, a nuclear mettizable locally convex space E has (DN) iff E is isomorphic to
a subspace of 5. By Vogt [31], 2. 4, a power series space A (x) has (DN) iff R= + o0,
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b) It is easy to check that the properties (@), (f2) and (@) are linear-topological
invariants which are inherited by quotient spaces. By Vogt and Wagner [36], 1.8, a
nuclear Fréchet space E has () iff £ is a quotient space of 5. By Vogt [33], 2.8 and
7.3, a strongly nuclear Fréchet space E has (Q) iff E is a quotient of a nuclear power
series space of finite type. By Vogt [34], 4.2, a Fréchet space E has (@) iff every
continuous linear map T:E— 4,(x) is bounded for some (all) power series space

Aq (@) with sup a—';ﬂ< o. For other characterizations of Fréchet spaces satisfying ()
HEW

see Vogt [35], Theorem 4. 2, and Meise and Vogt [23], Theorem 3. 3.

¢) By Vogt and Wagner [36], 2.8, a nuclear Fréchet space A(4) has (€2) and
(DN) iff A(4) is isomorphic to a power series space of infinite type. Since (DN)) implies
(DN} and since every space A, («) fails (DN), this shows that every nuclear Fréchet
space E with a Schauder basis having (@) and (DN) is finite dimensional,

d) From Vogt [33], 1.6, it follows that a nuclear Fréchet space with (2) and
(DN) is finite dimensional,

4. 3 Proposition. Let p be a weight function on C", let
F=(F,...,Fy)e (Ap(C"))N

be slowly decreasing in the weak sense, and assume that 4,(C"), has (DN). Then we
have:

(@) Ioc(F) is complemented in A,(C") if and only if L,(F), has (DN).
() If 1,.(F) equals I(F), then 1 ,(F) is complemented in 4,(C").

Proof. (a) Obviously I.(F) is complemented in 4,(C") iff the exact sequence
® 0 Lu(F) £ 4,(€") 5 4, (CWhoo(F) — 0

splits. By Proposition 2.4 all the spaces in the sequence are (DFN)-spaces. Hence the
dual sequence

@ 0 — (4, (C")hae(F))y = 4,(C")y = Lo FYy — 0

is an exact sequence of nuclear Fréchet spaces. By Corollary 3.8, (A, (C"/Eoe(F)); is
either finite dimensional or a power series space of infinite type and consequently has
(). Hence the splitting theorem of Vogt [32], Theorem 2. 2, shows that (1) splits if
hoo(F); has (DN). On the other hand, if (2) splits, then £ ,(F); is isomorphic to a
subspace of 4,(C");, and consequently /,,.(F); has (DN) since 4,(C"), has (DN) by
hypothesis.

N
b) Define Mp: (4,(C")" — I(F) by Mp(gy,...,gv)'= ¥ g F). By hypothesis
=1

I(F) =1I,o(F) is closed and hence a (DFN)-space. Since M; is surjective, it follows from
the open mapping theorem for (LF)-spaces that I(F)=(4,(C"))"/ker My and hence
I(F), = (ker Mg)* which is a topological linear subspace of (4,C"R)". Since 4,(C™;
has (DN) by hypothesis, it follows that I(F),=1,(F), has (DN). Hence Lo (F) is
complemented in 4,(C") by (a).
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The following corollary is an immediate consequence of Berenstein and Taylor
[2], Theorem 4,2 and Proposition 4. 3 above.

4.4 Corollary. If 4,(C"), has (DN) and if F=(F,,...,F)e (4, €M) is slowly
decreasing, then I(F)=1,.(F) is complemented in 4,(C").

Remark. From 2. 8 and 2.9 we know quite a number of weight functions p on
C" for which A,(C"); has (DN) since it is a power series space of infinite type.
However, Example 2.13(2) shows that there are radial weight functions p on C
satisfying p(2z) = O(p(2)) for which 4,(C); does not have (DN). For a characterization
of the radial weight functions p on C for which A,(C), has (DN), we refer to Meise
and Taylor [23].

4.5Lemma. Let P be a weight system on C*, let F=(F,,..., Fy)e 4,(C"" be
slowly decreasing and assume that I (F) is complemented in Ap(C"). Then
Lo (Fy,.. ., Fy, G) is complemented in Ap(C") for every Ge 4.(C".

Proof. Put L(F, G):=1l(F,...,Fy,G). By the arguments used in the proof
of Proposition 4.3 it follows that I (F,G) is complemented in A4,(C") iff

(4o (€M1 (F, G)), is complemented in 4, (€. Identifying (4, (C")/L(F, G)); canoni-
cally with I..(F, G)*, it suffices to show that J,(F, G)* is complemented in 4, (C");.

To prove this, we first remark that by 3. 5b) we have

®) Iloc(F)=jm and [ (F, G)=I(F,G).
This implies
) Loo(P) = T(F)* = I(F)* = (im My)* = ker'Mj,

N
where Mg: (4, (C))Y — 4,(C") is defined by My(g,,...,g¢):= 3 g;F;. We define
j=1

Mg: A, (C) > 4,(C") by Mg(f):=f-G and note that the following identity is an
easy consequence of (1)

) (kerMs) n (ker ‘M) = Lo (F, G)*.

Furthermore we remark that ker'M, is an invariant subspace of Mg since for every

N
yeker'My and every f= 3 g,F,e I(F) we have
=1

N
CMe(Y),f>= <y, j§1 G&'JFJ> =<y, Mr(8,G...., gyG))
= <'MF(y)s (gl G’- ooy NG)> =0,

Since the hypothesis implies that L, (F)* =ker'M; is complemented in A,(C")y, and
since (ker’Mg) N (ker'My) =ker (Mg | ker’Mp), it follows from (3) that I .(F,G) is
complemented in 4,,(C") if the restriction of *M; to ker'Mp=1,(F)* has a comple-
mented kernel.
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To prove this we use the notation and information from the proof of Theorem
3.7. There it has been shown that p:A4,(CY) = k>(4, E) is a surjective topological
homomorphism with kerp=1,,.(F). Hence ': k*(4, E),— (4p(C"); is an injective
topological homomorphism with im’p =, (F)* = ker'M;. We remark that by 1. 4 we can
find Hilbert norms | |y on F:i=(E;, || ||); such that

A4, F)y=i*(4, E")=k>(4, E),.
Moreover, we remark that M, (G):E;— E, M,,(G) [o,(f)1=p,(G/), is a continuous
linear map on E; for every je N. Then we have for every y=(¥;)en € A*(4, F) and
each fe 4,(C"

Moo POLL) =0 @D= F, b6

s

{rp M, (G) [o)(ND

j=1

4,0 Dyl a1
=P =Co@). 1>,

where z=(M, (G) [;1);cx. This implies
(p)~to Mgo'p:ys (‘Mp,(G) [yj])jeN-

Il

Hence it follows from Lemma 1. 5 that the kernel of (p)~to'Mg o *p is complemented
in 2*(4, F), and consequently ‘M | ker'Mp has a complemented kernel.

4. 6 Proposition. Let p be a weight function on C", let
F=(F,...,F)e(4,C")

be slowly decreasing and assume that 4,(C"), has (DN). Then

LBy . oy By Gy o, Gy)=1(Fy,. L B, Gy, Gyg)
is complemented in 4,(C") for every G,,..., Gy e 4,(C").
Proof. This follows by induction on M from Corollary 4.4 and Lemma 4. 5.

4.7 Theorem, Let p be a radial weight function on C with ?Q22)=0(p(z)) and
assume that A,(C"), has (DN). Then every closed ideal I in 4,(C) is complemented.

Proof. Let I be a proper closed ideal in A (C). By 3.5g) I=I(F,, F,) where
we may assume Fy +0. By 3.2a) F, is slowly decreasing in 4,(C). Hence the result
follows from Proposition 4. 6,

Remark. Theorem 4.7 extends the results of Taylor [30], Theorem 5.1 and
Remark 5.1, with a different proof (see also Schwerdtfeger [29], Theorem 1.1, 21).
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Remark. If p is a non-radial weight function, then in general 4,(C); does not
have (DN). For example, for ¢ as in 2. 5 (4) we have A,([C"),=E(R). Since £(R) does
not have a continuous norm, it cannot have (DN). In this situation Taylor [30],
Theorem 5. 2, shows that there are infinite codimensional proper closed ideals in 4,©)
which are complemented, and that there are such ideals which are not complemented.
In Meise and Vogt [24] the slowly decreasing fe A,(C) are characterized for which
Joe(f) is complemented in 4,(C).

Next we want to derive conditions which imply that every proper closed infinite
codimensional ideal I in 4,(C) is not complemented. A basic observation for such a
result is contained in the following lemma, which shows that A (C)/1 (F) always
belongs to a rather small class of (DFN)-spaces.

4.8 Lemma, Let P=(p.).y be a weight system on C" and let

F=(F,...,Fy)e (AP(C"))N
be slowly decreasing in the weak sense. Then we have

@ (4o (C")halE)); has (DN).

tb) If for every ke N there exists ne N with l}im ‘@=O, then

4= p,(2)
(4e (€Y1 (B));
has (DN).
Proof.  If A,(C")/L(F) is finite dimensional, then (a) and (b) hold trivially. If it
is infinite dimensional, then (4,(C")/L.(F)); 2 4(B) by Theorem 3.7, where

be=exp(plw)) JikeN
for some sequence (w;);cy in C" with Jim |y =co.

To prove (a) let ke N be given. By 2,2 (2) there exist me N and L>0 with
2p4S p,+ L. Since p, =0, this implies

b}y<exp(L)b; b, forall jeN.
By Vogt [31], 2.3, this proves that A(B) has (DN).

To prove (b) let ke N be given and choose ne N with Ix‘i_mq)i"—%:& If now
d>0 is given, then we can find j, e N so that for all j>j, '

1
Px (Wj)é mpn(wj)' .
This implies that there exists C=1 with
b} ;'S Ch b, forall jeN.
From this it follows easily that A(B) has (DN).
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4.9 Proposition. Let P=(p,),., be a weight system on C", let
F=(Fy..., ) & (4,(C7)"

be slowly decreasing in the weak sense and assume that Ao €)1 (F) is infinite

dimensional. Then 1,(F) is not complemented in A, (C") if one of the following conditions
is satisfied: ‘

@) A4,(C"); has (Q).
(b) A4,(C"); has (Q) and for every ke N there exists me N with

. B(2)
IZ‘I_I;I’IOO P_.:a =0,

Proof. Let us assume that I,,.(F) is complemented in 4,(C"). Then it follows

that Lo (F)" (4, (C")/I,(F)); is complemented in A, (C"),. By Theorem 3,7 we have
L (F) 2 A(B).

If condition (a) is satisfied, then L,(F)* as a quotient of A4,(C™); has (2). By
Lemma 4. 8 3) £,,(F)* has (DN). Hence dim I,,,(F)*< co by 4. 2 d), which contradicts
L (Fy* = A(B).

If condition (b) is satisfied, then L,,(F)" has (2). By Lemma 4. 8 b) I,.(F)* has

(DN). Hence dim f,,(F)* < oo by 4. 2¢), which is again a contradiction, Thus, I,,(F) is
not complemented in 4, (C").

4.10 Corollary. Let P be a radial weighi system on C with
P(22)=0(p(2)) forall keN.

Assume that condition 4,9 (a) or 4.9 (v) is satisfied. Then every proper closed infinite
codimensional ideal in A,(C) is not complemented,

Proof. Let I be an arbitrary proper closed ideal in A4,(C) which has infinite
codimension. By 3.5g) we have I=1I,(F,, F,). Since / has infinite codimension,
V(F, F,) is an infinite set. Hence we may assume that F, 0 and that F, has infinitely
many zeros. By 3, 2a) Fy is slowly decreasing in 4,(C), and consequently (F,, F,) is
slowly decreasing. By Proposition 4.9, I is not complemented in 4,(C).

4,11 Corollary, Let the weight system /P=((p(]z|"‘))ke,, be as in 2.7(2) and

i
assume that for each k e N there exists me N with x]% z((j:,m; =0. Then every proper
closed infinite codimensional ideal in A,(C) is not complemented,
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Proof. From Meise and Taylor [Zf], 1,10, it follows that A,(C);=A(4),
where 4=(q;,); .~ is given by a; ;= €exp (—w -r]: for some increasing and convex
function ¢ on [0, w[. To prove that A(4) has (£2) let pe N be given and choose
q=p-+1 and d> 0 with ! = ——d—;l— Then the properties of  imply that for every

ro1+d T,
Jj& N we have

FAPTY SN A\ PR S AV T )
¢<r,)='/’(1+d(r,, +r,‘>)=1+d'/’ )T 5 )
which implies a; ,af ,< a}*¢ for all je N. By Vogt and Wagner [36], 2. 3, this proves
that A(4) has (2). Hence the result follows from Corollary 4. 10.

4.12 Examples. We give some examples of weight systems P on € which satisfy
the hypotheses of Corollary 4.10. Hence every proper closed infinite codimensional
ideal in 4,(C) is not complemented.

(1) P=(k(log( +1z1)) )en» r>1. 4,(C); has () by 2. 13(2).

(2 P=(z™)ey, Where (r)pcn i a strictly increasing sequence in ]0, cof,
4,(C); has (Q) by 2.13(1).

3 P=(pulz™)ey, where (M));cn, satisfies (M1), (M2) and 2. 6 (2) (i) and
where (7). is a strictly increasing sequence in [1, oof. A, (C)y has (2) by Corollary
2,12,

() P=(py)en, Where (M*)., is defined as in 2.13(4). Then condition
4.9 (b) is satisfied by 2. 13 (4).

() P=((log(1+]z|*))*)cns Where (r )y is a strictly increasing sequence in
14, o[ The following considerations show that A, (C); has () and hence .

By 2.13(3) we have 4,(C);2A(A), where A= (exp(—j*)), soy With si== Tk T

—
Hence it follows from Vogt [34], 4. 3, that A(4) and consequently 4,(C); has (Q) if we
show: '

1) for every p € N, every k e N and every d> 0 there exists
C>Q with g;a! ;< Cal}d, forall jeN.

Since (s,); is strictly decreasing in J1, co[, we have for all but finitely many je N:
1+d

j\'p* 1"3p§ 1.
This implies the existence of C21 such that for all je N

(1 +d) j*1 2 dj* + )% + log C.

Obviously, this implies (1).



Meise, (DFN)-algebras of entive functions 87

Remark. a) Example 4.12(1) shows that even for radial weight functions p

satisfying p(2z) = O (p(z)) the complementation of ideals can change very drastically, if
4,(C) does not have (DN).

b) For a nuclear Fréchet space E condition () is considered as rather weak in
the sense, that “almost all” nuclear Fréchet space which occur in connection with
problems in analysis, have property (). Hence Corollary 4. 10 might indicate that for

most of the weight systems P =(p,),,, satisfying | 1im 1-71)"—(2()25: 0 for all ke N, every
20 Pryy
proper closed infinite codimensional ideal in 4,(€); is not complemented. However,

the following example shows that there exist algebras A4,(C) for which 4,(C); does not
have (). Consequently, Corollary 4.10 does not apply to these algebras,

4.13Example. For keN put p,:zie |zjexp ((loglog(e+|z])}) and Ilet
P:=(pien- By 2.13(5) we have A3(C)=4,(C), where P =(ppp)ien 18 the weight
system defined in 2. 13 (5). Moreover, we have Az(C),A(B), where

B=(exp(j(loglog(j+&)f)); en:

From this it follows by standard arguments that 43(C); has property (DN). Hence
4. 2¢) implies that 4(C); does not have ().

Without proof we remark that the following can be shown: The pair (A(B), A(B))
satisfies condition (S¥) of Vogt [35] and hence Ext'(1(B), A(B))=0. By Vogt [35],
1.6, 1.7" and 1. 8, this implies that for each quotient space E of 1(B), each subspace G
of A(B) and each Fréchet space F each exact sequence

0—2E—-F—-G-—0

splits. Hence the splitting theorem which we have used in the proof of Proposition 4. 3
also holds for A(B),

4.14 Lemma, Let P=(p,),., be a radial weight system on C with
7(22)=0(p,(2)) forall keN,

Define the matrix A=(ay,); xen by a4:=exp(p,(e))), j, ke N, and assume that every
continuous linear map from A,(C), into A(A) is compact. Then every proper closed
infinite codimensional ideal 1 in A,(C) is not complemented in 4. (C).

Proof. As in the proof of 4,10 we have I=1,(F,, F,). An application of the
minimum modules theorem implies (by the argument used in the proof of Kelleher and
Taylor [14], Proposition 5. 2) that there exist >0, me N, nye N and a sequence
(rwhen With e"<r,<e"*! for all nZngy such that

Sy (e, Fy, Fy) nny’m {zeC | lzl=r,} =0.
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This shows that, up to finitely many exceptions, for each component § of S,.(8 Fy, )
there exists ne N with ScR,:={zeC | 7a< 12| < 7441} And without loss of generality
we may assume that n,=1 and that this holds for all components S of S, (e, F,, F,).
By Theorem 3.7 we can choose a sequence W)y in S,(e Fi, F,) with
(4-(©)/1); = A(B) where by, =exp(p,(w;). Of course, we may assume that (w)yen is

increasing, Define b, ,:=exp (p, (")) if 7, < |w;| < rpys. Then the properties of P imply
that 2(B)=A(B). Let

M:={neN | there exists je N with r,< |w]|<r,.}

and let (n,),., be the increasing arrangement of M. If we define C=(cy,i)a kens

€,k = eXp (py (exp (1)), then A(C) is a complemented subspace of A(B)=A(B) as well
as of A(4).

Now assume that 7 is a complemented subspace of 4,(C). Then there exists a
continuous linear surjective map T from A,(C); onto (4, (C)/I )y A(B). Hence there
exists a continuous linear surjective map § from 4, (C), onto A(C). By the preceding
considerations this implies that not every continuous linear map from A4,(C); into A(4)
is compact, in contradiction to the hypothesis. Since 7 was arbitrary, this completes the
proof,

4. 15 Proposition. Let P=(p,),., be a radial weight system with

nQR22)=0 (Pk (Z))

Jor all k € N and let A,(C); 2 A(B), where b 5,k =CXD (= p; 1), If the following condition is
satisfied ;

Jor every (K(N))yoy€ N" there exists ke N such that for all ne N
(%) there exists Me N and C20 such that for all v,je N

Po€) S Iax (Pa(€) +tyam) +C,

then every proper closed infinite codimensional ideal in A,(C) is not complemented.

Proof. Define the matrix 4=(a; 4); xen by @;4:=cxp(p,(¢/). Then () implics
by Vogt [34], 1. 5, that every continuous linear map from A, (C); into A(A4) is compact.
Hence the result follows from Lemma 4, 14,

Condition 4,15 (%) looks somewhat complicated. However, it can be used to
decide what happens in case of the Example 4. 13,

4.16 Example. For r>0 put P=(|z|"exp((max(1, log log |z|"))*))}scp, Where

("hen is @ strictly increasing sequence in 0, o[. Then every proper closed infinite
codimensional ideal in 4,(C) is not complemented.

To show this, we argue in a more general situation which can be used also for other
examples. We assume the following:

(1) ple))=p,(j) where @, (x)=p(x) e®*™ for x2x,.

(D ACR=AB) with b=exp(~py,), Whee  p,=pf() for
1) =P () = 2, (x) for xZx,.

(3) For every ke N there exists ¢, such that gy, , — ¢, is strictly increasing on

[fb OO[.
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(4) For every ke N we have

80 _o  pm A®) o o expogi()
e I e U o0

and the functions g,, f; and ¢ are positive and continuous.

=0, lm £,09= lim £,(9=co,

To show that 4. 15 () holds, let (K(N))y., be given. Without restriction we can
assume that (K(N))y., is strictly increasing. Choose k=K(1)+1 and let ne N be
given. Then choose M>n+1 and ¢ € [0, o[ by (3) such that @y —@, and g, — @, are
strictly increasing on [¢, oo[. Next fix s, where 5 will be determined by the
following considerations, and define T(s) (resp. 7(s)) as the solution of the following
equation (T) (resp. (1)):

M 08 () — 0kan () = 0 (1) — 0(9),
@ Pk () — o () =0, — 0, (1)
Assume for a moment that we can show the following;

() There exists 5o € [0, co[ with T(s)S () for all 52,

Then we have for all 52s,:
™ 0% )~ 0k )= ou(D~ @, (1) forall 2T(s),
] Pk () —of )2 @a()~01(1) forall te[&y, ()],
where £, 2¢ is chosen appropriately. Hence ‘
@u(?) + ¥ (s) S max (g, (1) + %0 () oa(8) + 0kan ()

for all 525, and all 12¢&,. By (1) and (2) this implies the existence of Jo and vy such
that

Pa(€)+pp= max (pn(€)+pyxpm) for all JZin V20

1SNEM

This implies that we can find C20 such that 4.15(%) holds. Hence every proper
closed infinite codimensional ideal in 4,(C) is not complemented by Proposition 4. 15
if we can show that (5) holds.

To prove that (5) holds it suffices to show that for all s which are sufficiently
large we have

© 2u(T©) = 1 (TH)S 0¥ (1) (9) - 02 (0).
To show this, we note that by (1), (2) and (T) T'(s) satisfies the identity
D s(ren@=46)=0(T ) (exp (g4 (T())~ exp (&, (T())).
We eliminate ¢(T(s)) from (7) and remark that slin}o T(s)=o0. Hence K(M)>k
implies by (4) for large s
®) 0u(T ) =01 (TE)= 0,(T$))=0(T(s)) exp (g, (T()))
=5 (fx(u) ORI (S)) €Xp (gn (T(S))) (exp (gM (T(S))) —¢Xp (gn (T(S))))_ !
= 8fxon () 2¢xp (8, (T(9) — gu (T ))).
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From k> K(1) and (4) we get for s large enough

) Ot~ 0t ) =3(AO fe 9) 2546).
Since lim T(s)=oco we get from M>n and (4) for large s

(10 e £2(T9) S 30 (e (T9)-5,(70).
Then (9), (10) and (8) show that (6) is implied by the inequality

(11 fﬂfk—"(’sgi)éi-exp (% gM(T(S))> :

To prove that (11) holds for all large 5, one has to estimate T'(s) from below. This we
shall do only for the functions which are given by the example. By 2.13 (5) we have in
this example

ou(x)=exp (rx+(logrx)*), ie. @(x)=e”, g,(x)=(logrxy
and

or(x) =-JrE logx —% (loglogx)™, ie. fi(x) =—i« (loglogx)™.

Then we get from (7)
exp (rT(5))=s{fx0 ()~ () (exp (£ (T(9))) — exp (g, (T(5))))*

and hence
(A2 rT(s)=logs+10g (fiqe(s) ~/i(s)) —~log (exp (gy (T(5))) - exp (2,(T(5)))).
This implies

13 rT ()= logs+1og fyun ()= 2logs

and hence
-(14) rT(s) 2 logs— gy (T'(s)) 21ogs ~ gy (2logs)

for all large s.

Now we can show that (14) implies (11) in the special case:

% exp (-12- gM(T(s))> g-:: exp (—15 (log (logs — (log (2r logs)pm ))'M>

g% exp (% (log (-;— log s>) M) 2 exp ((rxqn — 1) loglog logs)

__fxguz(s)
=70 forall s2s,.

Remark, We want to remark that also the Corollaries 4.10 and 4.11 can
essentially be derived from Proposition 4, 15, However, the proof is more involved than
those which we have given above. :
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Remark. If 7is a closed ideal in 4,(C") then 4,(C")/I can also be interpreted as
a space of functions 4,(¥,(I)) on the multiplicity variety V(D) (see Berenstein and
Taylor [1], [2] for details). We want to mention that the resuits of this section on the
(non-)complemention of 1 in 4, (C") of course are equivalent to the (non-)existence of
continuous linear extension operators

E: 4,(V, (1) — 4,(C").

5. Translation invariant subspaces of some.weighted Fréchet spaces
of entire functions

Since the work of Ritt [27] on differential equations of infinite order on A©)
and since the work of Schwartz [28] it has been an interesting question to determine
the structure of the kernel of a convolution operator on A(C) or more generally, of the
translation invariant subspaces of 4(C) (see Dickson [5], Ehrenpreis [8], Gelfond
[10], Leont’ev [16]). In this section we indicate that the main results of section 3 and
section 4 also give a new answer to this question for various weighted Fréchet spaces of
entire functions. We concentrate on some classical examples and refer to Meise,
Schwerdtfeger and Taylor [20] for a systematic study.

We begin by introducing the Fréchet spaces which we will work with,

5.1 Definition. Let Q= (g;),,, be a decreasing sequence of weight functions on
C. We put .

A :={fec AC)| sup | f(2)| exp(~gy(z))< o0 forall keN}

and endow A3(C) with its natural Fréchet space topology. We are interested in the
following two particular cases;

o o=(gm)..;

where N=(N));.,, satisfies (M2) and the hypotheses of 2. 6 (2). Moreover, we assume
that there exists a sequence M = (M, jen, satisfying the same conditions as N such that
for some C>1 and S>1 we have

(S SHUSCS! forall jeN,

Then we put Py:= (kpy)icy- By abuse of notation also A(C) is considered as a space
“of this type. In this case we put Py:= (k|z[)c .

(2) 0= (ka)kEN’

where N*=(N}),.y, satisfies 2.6 (2), N¥<N¥*! for all je N, and

k
(—%) €A, (j) forall keN.
NP Jseno
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Moreover, we assume that for each ke N there exists M*= (M), satisfying
M}z M}* for all je Ny, 2.6 (2) and (M2) such that for each ke N there exist C> 1
and $>1 with
k Atk
(cshig Mj%v-’é CS/ forall je N,
Then we put Py:=(pppdien-

$.2 Example. (1) For s>1 put

1 1
N@:=(U))jens and MS):= (i) )iens
1

where ;+%=1. Then all the conditions of 5.1(1) are satisfied for

1
()= <7c' PN(s)> .
ken
By 2.6 (3) we have

45y(©)= {fe 4©)

sl op( -5 ) <o forail ke].
Z€C

We remark that 49, (C) is identical with the spa'ce Ej of Martineau [18]. Obviously
A(C) can be regarded as EY.

(3 For 0<o<1 and teR put
N=(G) (log+A))en, and Mi= (D' (log(j+4)) ™) cns:
where 4= A(o, t) is large enough, Then all the conditions of 5. { (1) are satisfied for

Q:= <%pn)keN.

(3) Let () be a strictly decreasing sequence in 11, oo[. For ke N put

RS mel
NE=((I)*)jen, 8nd ME:=((j1) * )iene:
Then Q:=(py)ycn Satisfies all the conditions of 5.1(2), and 2. 6 (3) implies

AZC)={fe AC) | sup | f(2)| exp(—|z|*)< oo forall ke N}.

. —Sk,
Then we remark that 4, (C)=45(C), where B = (|z[%-7)

keN®

(4) For ke N choose N¥=(N})jep, and M*=(MH),.,. and je N such that

N¥=exp (j (%.log(j) +k1/13};7)) and M}=exp (j (-;- 1og(j)—k1/@)>

for all j2 i, and that all the conditions of 5. 1 (2) are satisfied if we put @=(Dy)ken
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The following proposition is an easy consequence of Komatsu [15], 4. 5.
5.3 Proposition. Let Q and Py be as in 5.1 (1) or 5.1(2). Then the Fourier-Borel
transform F : AY(CY, — 4,,(C), defined by
F(T) [{1:=<T, exp(z{)),

is a linear topological isomorphism. Moreover, we have
> T/

Fm=3Ty
Jj=0 J H

5.4 Definition, A linear subspace W of AY(C) is called translation invariant if
for every fe W and every aeC the function zi—f(a+z) belongs to W.

5.5 Proposition. A closed linear subspace W of AY(C) is translation invariant if
and only if F(W*) is a closed ideal in 4,,(C).

Proof. It is easy to check that D: fi f' defines a continuous linear endomor-
phism of 43(C). Hence we have for every Te 4(C)

O  FOM)K= <Tz zd-z- eXP(ZO> ={(F(T)[{] forall {eC.

Now, if W is a closed translation invariant subspace of A(C), then fe W implies

S'e W since f’=’}ijx})f(L}?1_f—(')- in the topology of 43(C). Hence (1) implies

{-F (W F (WY Since the polynomials are dense in A,;Q (C) and since F(W*) is
closed, this implies that & (W) is an ideal in 4,,(C).

On the other hand, if #(W*) is an ideal in 4,,(C), then (1) together with
Wt =W implies that f* € W for every fe W. Hence f< W implies f™ & W for every
ne Ny. Now remark that in the topology of 43(C) we have for every aeC

o LN,
fera=3 E0q
n=0 N
Hence W is translation invariant.

5.6 Theorem. Let Q be as in 5. 1(1). Then every proper closed infinite dimensio-
nal translation invariant linear subspace W of AJ(C) is complemented and is isomorphic
to a power series space of infinite type.

Proof. From Proposition 5.3 and classical duality theory it follows that
W= W x(4,,(CYF (WH);.

By Proposition 5.5, # (W) is a proper closed ideal in A4, (C). Since 4,,(C)=4,, (C),
where M satisfies the hypotheses of Example 2, 10, it follows from 2, 10 and Theorem
4.7 that & (W*) is complemented in 4,,(C) and hence W is complemented in 43(C).
By 3.5g) and 3.24a) it follows from Corollary 3,8 that W is isomorphic to a power
series space of infinite type.

The following corollary is an immediate consequence of Theorem 5.6 and
Example 5. 2 (1),
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S. 7 Corollary. For s> 1 put

a:={feA(C)

sup | f(2)| exp(-—%lzl‘)«o forall ke N}.
ZEC

Then every proper closed infinite dimensional translation invariant linear subspace W of
A(C) resp. Eg, s> 1, is complemented and isomorphic to a power series space of infinite
type,

5.8 Theorem, Let Q be as in 5.1 (2) and assume that AY(C) has (R). Then every
proper closed infinite dimensional translation invariant linear subspace W of AYC) has a
Schauder basis, but is not complemented in A3(C).

Proof. As in the proof of Theorem 5. 6 we have
W (A (CYF (W)

By Proposition 5.5, #(W*) is a proper closed infinite codimensional ideal in 4,,(C).
From 5.1(2) it follows that (M*),., satisfies the hypotheses of Proposition 2. 11 (b).
By 3.5¢) we have F(W')=I(F,, F,) is slowly decreasing in 4,,(C). Hence
W= A(B) by Theorem 3.7. By Proposition 2. 11 (b) it follows from Lemma 4. 8 that W
has (DN). Since AJ(C)= 4. »(C); has (@) by hypothesis, it follows from Corollary 4. 10
that # (W*) is not complemented in 4,,(C). Hence W is not complemented in 49(C).

5.9 Corollary. Let o:=(s,),cy be a strictly decreasing sequence in 1, oo and put
A(0):={fe A(C) | sup |f(2)| exp(~|z|*)< 0 forall ke N}
ZEC

Then every proper closed infinite dimensional translation invariant linear subspace W of
A(0) has a regular Schauder basis, but is not complemented in A(0). '

Proof. By Example 5.2(3) we have A(0) = 45,)(C), where Q(6)=(Pydicn
A N Sk
with N¥:= ((j1)**);ep,, and we have 4, (C)=Ap(C) where P=(|z/* T Jene Hence
Proposition 5. 3 and the proof of Coroll%ry 4.11 show that 49, (C) has (2). More-
over, it follows from Lemma 3.3, 3.5g) and Theorem 3.7 that W= (ds(C)/F (W),
has a regular basis, From Theorem 5.8 it follows that W is not complemented.

5. 10 Example. Let Q =(pyd), be defined as in Example 5. 4 (4). Then 45(©)
has (£2) since it follows from Example 2.13(4) and Proposition 5, 3 that 43(C) is
isomorphic to a power series space of infinite type. Hence it follows from Theorem 5. 8
that every proper closed infinite dimensional translation invariant linear subspace of
A43(C) is not complemented.
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