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The equations describing the coupling of high-requency electrostatic waves with fon fluctuations allow
stationary one-dimensional localized solutions which have not been reported previusly, It is shown that
these solutions follow from scaling laws different from those known for sonic Langmuir solitons, but
similar to those used for static ion response. The present treatment generalizes the theory for subsonic
Langmuir. solitons by consistently including the second harmonic contribution in the low-frequency

response, The physical importance of the new solutions is discussed,

1. INTRODUCTION

The problem of stationary propagation of waves and
related questions of eléctric field localization have been
intensively investigated in the past. For electron plas-~
ma waves in the nonrelativistic limit, the basic non-
linear mechanism involved is the ponderomotive force
which induces an ion density perturbation (density cav-
ity) which can trap the electron wave, ™7 In the relati-
vistic limit, electron-mass variations hecome impor-
tant and cause a similar field localization, ™® Soliton
formation is thus a prevailing nonlinear phenomenon
in laser interaction with plasmas,

In this paper, we reconsider the dynamies of Lang-
muir envelope solitons in the nonrelativistic limit,
Many authors®®7 have already considered this problem
in detail and found different types of stationary rare-
fraction solitons, The differences in the various theo-
ries lie in the description of the ion response: Rudakov®
investigated the static case whereas Nishikawa et al.®
and Karpman' looked for ion perturbations moving with
ion-acoustic speed, Physically, the various results
differ in the Mach number and the scaling of the rele-
vant parameters, i,e,, maximum field amplitade and
density dip, Here, we generalize the result of Rudakoy®
for subsonic Langmuir solitons by re-investigating the
interaction of a long-wavelength, slowly modulated ion-
acoustic wave with the high-frequency field, The order-
ing is chosen such that the high-frequency field pro-
duces no modification of the carrier ion-acoustic wave;
it only modifies the equation for the modulation envelope,
The reaction back of this on the high-frequency field
equation is retained, We show that in the small ampli-
tude limit the corresponding second harmonic contribu-
tion can become important and a new soliton with a
weakly oscillating density depression exists,

1l. BASIC EQUATIONS AND SCALING

In general, Langmuir solitons can be derived from the
following equations for the high-~frequency electron
plasma wave:

me °E , 0E _
m a_tf'aﬁf +(1+0n,)E =0, (1)

and the low-frequency electron and ion response,
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Here, we have nondimensionalized the time ¢ by the
inverse ion plasma frequency w;}, the space coordinate
x by the electron Debye length A, the ion velocity v, by
the sound velocity ¢, =(T,/m,)!/%, the low-frequency
potential ¢ by T,/e, and the high-frequency electric
field E by (n,T/m,)*/%, where n, is the (constant) aver-
age particle density,

Decomposing the electric field E into a slowly vary-
ing amplitude and a fast varying phase factor,' one ob-
tains, from Eq. (1) in the long-wavelength limit,

1/2 2
(e 2E o OF -
Zz(mi) 22 1325 i, B0 (6)

Equations (2)-(6) form the basic set which can be
solved for different scalings.

Rudakov? found a localized solution which one can
derive from Eqs, (2)-(6) by assuming 8x,, ony, z,, and
@ being of order €%, whereas E is of order ¢, Here,
&~(my/m)''® is an order parameter, Introducing the
stretched coordinates

E=e(x=-2rf), T=¢%, n

and assuming a nonoscillatory low-frequency response,
the density depression is given by

On, =~ |E[/(1-2%), (8)

Since A « 1, Eq. (8) together with Eq. (6) describe a
subsonic Langmuir soliton. The density depression is
proportional to the square of the electric field amplitude
as prescribed by the scaling given here,

Nishikawa et al,® were the first to generalize this re-
sult for ion perturbations moving with the ion-acoustic
speed, The ion response became of first order in the
pump amplitude and hence nonlinear, The appropriate
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scaling, known from the derivation of the Kortevgeg-de
Vries equation for ion-acoustic waves, is bn,, 3z, o,
vy, £~0(¢) and the stretched variables are

g2ty ), 7Y%, {9)

Then, the density depression is determined by

ng B g 8 R
257 +a£(6ne) "5‘5’5”6%5 |EE=0, (10)

which has to be solved in connection with Eq. (6). The
solutions show a node of the electric field at the density
minimum,

Another sonic soliton has been found by Karpman,”
One can derive it from Eqs, (2)~(6) by using the scaling
bngy Oy, vy, ¢~0(€); E~0{e**) and by introducing the
stretched coordinates

E=elfP(x—t), r=et, (11)

Then, under the additional assumption (8/82) o, = (8/
8¢)v; ~ O(€"/%) for sonic solitons, the density response
is determined by
90n, _ 191ER

ar 2 a8t (12)

which has to be used in connection with Eq, (6), The
soliton solutions are similar in shape to those found by
Rudakov, 2

In this paper we show by scaling the appropriate
equations (2)-(6) that in addition to the known Langmuir
solitons a new subsonic Langmuir soliton exists, The
difference from previous treatments results from a
more detailed description of the subsonic ion response,
We demonstrate that within the scaling of the subsonic
Langmuir soliton [62,~O(€?)] the second harmonic con-
tribution from the low-frequency response should be
included. One finally gets two coupled nonlinear Schris-
dinger equations for the electron wave amplitude and the
(oscillatory) ion response, This description generalizes

the previous? treatment of static Langmuir solitons, In -

addition to that purpose it might be important with re-
spect to practical applications since it could explain the
appearance of oscillations seen in localized wave struc-
tures, 1

{0, SECOND HARMONIC CONTRIBUTION

We solve Egs. (2)~(6) by introduéing the stretched
coordinates!!

E=¢(x - 04), T=eb, (13)
and expanding U= (bn,, 5n,, 39 /x, v, E) in'the form
U=, € 20 U, ) explit(r - i), (14)
o=l lmwoo

By choosing this ansatz we allow for oscillatory solu~
tions for the electric field amplitude E, The consistent
caleulation shows that besides the first-order zeroth
harmonic part E{" a second-order first harmonic (side-
band) E{® appears,

The main procedure may be summarized as follows:
First, we consider the (oscillatory) ion response, Up
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to order €% we ‘do not get any change compared with the
results known for the auto-modulation of ion oscillation
modes,' i,e,, we recover the linear dispersion rela-
tion

W?=R/(1+ 1Y), (15)
and the compatibility condition
A=(14p2802, (18)

Furthermore, within this ordering, on{}) =on( = onfd
shows 1o £ dependence and thus does not cause 2 modu-
lation of the plasma wave, [One can set 6u{® to zero
provided A#1,]

The main effect appears in the equations of third or-
der ine, For the zeroth harmonic (=0) we obtain
6 =803 = 6052, with

el o oo, o

and
it D) s
(18)
e

1t should be mentioned that for the present ordering
the resonance occurring at A =1 in Eqs, (17) and (18)
has to be avoided, i,e,, we cannot describe sonic en-
velope solitons. In the latter case, ion nonlinearities
have to be included, ¢

Thus, we recover the previous result of Rudakov® for
6ni" =0, i.e., by neglecting the first harmonic part of
the density reaction, In that case, the density depres-
sion is given by

bug? =(A - 1)"|E P, (20)

in agreement with Eq. (8), The complete density de-
pression can only be determined from a closed equa-
tion governing On{", which is obtained for [ =1 within
the order €%,
;2 ol 4 p kM o 4 | B omg?
aT 5 ga 1 1 1

rr| B0 %5 =g, (21)

Here, p=~3w*/2k%, r=k/(\2-1)+1/8u(1 +#), and ¢ is
given by ¢=1/3k within the long~wavelength approxima-
tion,- For the reason of simplicity, in the following

we discuss only that limit,

Next, we consistently order Eq, (8) for the high-fre-
quency electric field envelope E, To order ¢ we find
E;" =0 for 12 1; in the next order (¢2) we obtain E{?
=~ 6n{"B{V/3k%, E{® =0 for = 2, whereas the zeroth
harmonic contribution of cubic order in € yields

1/2 4 82 '
2;'(%:) P E{M 43 e BV - pdpyy
2
v LoniP B <0, (22)
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After simplifying the rotation by introducing the ab-~
breviations a,=E{, a,=20n{", £ =£/3k, Ty=6k%m,/
m)V8, Ty==6k, and 2=(1-2)V243 we obtain from
Egs, {17), (21), and (22)

. da; 8%

lea—1_1+§Z§1-=—(la2|2+]aL|a)al. (232)
- daz 3% lapl?

4 (- 120)n, 30

i.e,, two coupled nonlinear Schrodinger equations,
We look for (stationary) solutions in the form
& =X(E) expli(@/T )T +6,(0)], (24)
a,=Y(¢) expli( B/T2)7 +16,(2)]. (25)

Inserting Eqs. (24) and (25) into Egs. (22) and (23),
we obtain

X%, =M, ¥*9,=N, (26)
X=-av/jox, ¥=—avfey, @7)
where
1/M% N¥\ 1
VX, ¥)= 3 (? + ?)— E(UXZH-?YE)
+ %(X‘ s2xp- 1 Y‘) . (28)

One can easily get the integral
(k2,78 4 V(X, 7)=C, (29)

A particularly simple nonlinear solution can be found
for @=8, M=AN, and X=AY, Introducing R =2Y%,
where 2 =(A%+1)/(24'+44%~ 1), Eq, (20) yields

RE=—(R*+b,R24b,R +by) (30)
where b, =~ 4@, b, =-4C/(A* +24* = 3), by=427N¢,

The solution of Eq, (30) has been discussed by Inoue'®
in connection with the nonlinear coupling of polarized
plasma waves, For b, =0 and b,<0, or b;<0, and »,°
+7,2 =0, where 7, =3b, -} 5,2 and 7, =} (b;b, - 3b,)

- &b, the solution is

R(EY =Ry +(By~Ry) en®(8/g), (31)

Here, R, =R, = R, are the three real roots of R®+,R’
+b R 4by=0, and g =2(R, ~ R;)"/?, In the limiting case
R,=R,=0, which occurs for N=C =0, Eq, (31) repre-
sents the solitary wave solution

R(£) =Ry sech*(t/g) . {82)

Thus, we have found a stationary solution of the
coupled equations (23a) and (23b), Calculating from that
the fotal field envelope

E=E{™1 - on}? expli(ke ~ wt)}/34%,
and the density depression

n=~on{" expli(kx - wt)] +6n2 ,
we find a localization of the field envelope £, which is
slowly modulated by the low-frequency response, The
density reaction consists of a first order localized den-
sity ogcillation and a second order density dip, The

1034 Phys. Fluids, Vol, 21, No. 6, June 1978

absolute height of the envelope oz, " is here simply
proportional to that of the envelope EY, whereas the
nonoscillatory density dip 51 is (roughly) propor-
tional to 1BV 12,

IV. DISCUSSION

We have found a nonlinear solution which shows a
localization of the zeroth harmonic electric field ampli-
tude similar to that reported by Rudakov® and Karpman®;
but, in addition to the (nonoscillatory) part E{Y, a lo-
calized first harmonic contribution E{? expli(kx - wt)]
being of second order in € exists, The total low-fre-
quency density response consists of an oscillatory part,
6n{*? explé (kx — wt)] +c.c., and a nonoscillatory part
éng. Thus, this theory predicts the appearance of
slow oscillations of a depression in density produced by
a large amplitude Langmuir wave, The wavenumber &
s related to the Mach number A through Eq, (16), and
thereby the frequency w is also a function of the Mach
number, The density depression 5z arises due to
ponderomotive force effects as well as the second har-
monic contribution, Within the present scaling the mag=
nitude of the latter is of the same order as the pondero-
motive force contribution and therefore, this theory
gives a more correct relation between the zeroth har-
monic density depression and the maximum of the elec-
tric field amplitude than found previously,®

However, within the present scaling we get an upper
limit for the maximum amplitude E{" in terms of the
modulation wavenumber k. In the small & limit, we
obtain from Eq, (21)

ont® [~ |V P, (33)
from Eq. (17)
|6ng? |~ | B (22 +1)/382, (34)

and therefore, the balancing of nonlinearity and disper-
sion in Eq, (28), yields

Kin |Eél)|z/ka: (35)

where K~3/3k, Thus, our analysis restricts the am-
plitude to

|E§”|z“K2kz<< kl .

Finally, we want to mention that the solution of the
nonlinear Schrodinger equation (23b) is related to the
oscillatory solution of the Korteweg-~de Vries equation
(10) in the small-wavenumber region,'? and thus, fol-
lowing the idea of Nishikawa ef al,  oscillatory sonic
Langmuir envelope solitons can also be expected,
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