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1

Introduction

Many scientific and industrial areas today face a tremendous increase in the amount of pro-
duced data and information. In recent years this development created a large demand for new
knowledge management strategies. One very promising approach in particular is the model-
ing of formal knowledge representation called ontologies (Gruber & Gruber, 1993). Ontologies
provide means for incorporating some degree of information about the context and semantics of
processed content in computer programs. Furthermore, ontologies represent one of the central
components of the Semantic Web (Hendler, 2001). The Semantic Web primarily differs from
the current World Wide Web by extending it with a semantic layer of machine-processable
metadata, which enables computers and people to interact with each other and exchange data in
a meaningful way. The concepts and technologies constituting the Semantic Web are described
in more detail in Section 2.1.

This thesis deals with the development of a novel Semantic Web framework. The design of
an ontology in the field of image management and a Web application using this ontology as
knowledge base are introduced in this work.

1.1 Data Explosion in the Life Sciences and Multimedia
Content Management

The advancement of life sciences disciplines is strongly related to the efficient management
and retrieval of already collected knowledge, information and data (Sahoo et al., 2006). Since
the advent of modern high-throughput and laboratory automation technologies, data production
about living systems has exploded. Figure 1.1 shows for example the exponential growth of the
number of nucleotide sequence entries in GENBANK (Benson et al., 2004). GENBANK offers an
open access, an annotated collection of all publicly available nucleotide and protein sequences.
From December 1994 to August 2008, which means in less than 14 years, the number of stored
sequences increased 390 times from 237,775 to 92,740,599, doubling approximately every 18
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Figure 1.1: Growth of GENBANK sequence entries. The figure shows the chronological development
of the number of stored sequence entries in the GENBANK databse. The graphic is based on GENBANK
statistic reports that are periodically published by the National Center for Biotechnology Information of
the United States of America.

month. The development of even faster and cheaper sequencing techniques will continue this
exponetial growth in the foreseeable future.

A consequence of the explosion of stored nucleotide sequences and other experimentally pro-
duced biomedical data (e.g. molecular structures and gene expression data) is the need for an-
alyzing these data in order to enable the extension of the biomedical knowledge and scientific
insight into the configurations and processes of living systems. These analysis activities in turn
result among other things in the growth of primary and secondary databases as shown in Fig-
ure 1.2. The figure shows the chronological development of the number of entries in a collection
of biomedical databases, the Nucleic Acids Research online Molecular Biology Database Col-
lection. This collection is a public repository, which currently lists more than 1,000 freely avail-
able databases with contents ranging from molecular structures to human genes and diseases,
just to name a few. While this collection does not exhaust the number of available databases, it
still is an indicator for a general development: a growth that yielded a fivefold increase of the
number of available databases from 2000 to 2008.

The data explosion driven increase of biomedical databases lead to a new problems in life sci-
ences: the appropriate management, interchange and indexing of the stored content. Scientists
today face three main problems when using biomedical databases:
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Figure 1.2: Chronological development of the number of databases listed by the Nucleic Acids Re-
search online Molecular Biology Database Collection. The used values for the figure where published
in Baxevanis (2000, 2001, 2002, 2003) and Galperin (2004, 2005, 2006, 2007, 2008).

• Different use of terminology: the lack of a standardized terminology complicates discus-
sion and reproducibility of scientific data. This leads to the use of synonyms and mis-
spelling of concepts, organism or gene names in the diverse databases, which makes it
even more difficult to retrieve all information about a certain knowledge entity, like for
example a gene or protein.

• Inconsistent terminologies: the existing scientific terminologies are based on natural lan-
guage and can therefore be interpreted differently. As an example, the fundamental bi-
ological term ’gene’ is not clearly defined and still discussed within different biological
meanings (Pesole, 2008; Stevens et al., 2000). A gene may be defined as ’the coding

region of DNA’, as a ’DNA fragment that can be transcribed and translated into a pro-

tein’ or ’DNA region of biological interest with a name and that carries a genetic trait or

phenotype’ as a third.

• Navigation in knowledge space: a third challenge is the navigation in the knowledge space
spanned by the diverse databases and scientific publications. The sequence of a particular
gene may have been stored in one database while additional corresponding information of
the expression characteristics may be stored in a second one and additional details about
functionalities of the encoded protein even in a third database. It is extremely difficult for
biologists to deal with all this scattered information. The continuous growing amount of
data, databases and biological knowledge only compounds the situation.

Another important field that benefits from the application of semantic technologies is the broad
area of multimedia content management. Similar to the situation in the life sciences, the amount
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of digital multimedia information that is accessible via the Internet is growing every day. New
devices like digital still cameras, multimedia cellphones and digital video cameras have hit the
mass market in recent years and lead to an explosion of multimedia content shared in the In-
ternet. Popular examples of social multimedia sharing Web applications are YOUTUBE (Cheng
et al., 2007) for short video broadcasting, and the image exchange platform FLICKR (van Zwol,
2007). In these applications only insufficient search functionalities are provided. A semantic-
based search for the keyword “animal” on the other hand could for example return pictures
showing a dog based on the knowledge model, which consists the relation that a dog is an
animal.

Like scientists in the life sciences have a growing demand for knowledge management support
as a consequence of the biological data explosion, the acquisition, processing and distribution
of multimedia content has raised a demand of diverse user groups, ranging from private users,
over medical professionals to employees in the media industry, for more sophisticated semantic
multimedia content management solutions (Ahmad, 2007). One of the currently most promising
approaches is the bridging of the semantic gap (Hare et al., 2006) through the use of ontologies.
The semantic gap between the set of facts a human can identify in a picture, for example, and
the quality of the corresponding annotation data can be improved by moving from a mere term
based indexing of content to content annotations based on a supporting ontology (Hollink et al.,
2003).

As a result of these developments and challenges, bioinformaticians and life sciences’ re-
searchers as well as professionals working with multimedia content identified the need to create
systems that add and apply the knowledge in the minds of domain experts to the processed
content. This knowledge is nowadays in both fields captured and made accessable to both, com-
puters and humans with the use of ontologies.

1.2 Ontologies and Semantic Applications

Ontologies are represented using specialized ontology languages that provide inference and
integrity rules, which means rules that are used to make implicit knowledge in an ontology
explicit as well as to guarantee an ontology’s logical validity. Currently, the most important and
mostly used ontology language is theWeb Ontology Language (OWL; Bechhofer et al., 2004).
Ontologies are usable in a wide range of applications.

In Jasper & Uschold (1999) a description of a typical ontology application scenario is made that
comprises:

1. Ontology as Specification: An ontology is used as a formal basis for software specifi-
cation and documentation in order to improve the specification quality, reliability and to
foster knowledge reuse.

2. Common Access to Information: In this scenario the ontology primarily functions as a
means to provide a shared understanding of the terms and their interrelations in a certain
domain, a controlled vocabulary. This vocabulary is then used to support collaborations
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between persons and computer applications, respectively. A prominent example for this
kind of ontology application scenario is the GENE ONTOLOGY (Ashburner et al., 2000).

3. Ontology-Based Search: An ontology is used for searching a repository for desired con-
tent, e. g. publications (Delfs et al., 2004), websites (Esmaili & Abolhassani, 2006), im-
ages (Ahmad, 2007) or sequence entries (Lu et al., 2006). This semantic information re-
trieval approach offers faster access to relevant information resources (Finin et al., 2005).

Additional to these ontology application scenarios, further examples for specific application
types are semantic-based database integration (Cheung et al., 2007) and ontology-based infor-
mation extraction (Hu et al., 2004).

1.2.1 Deep Integration

The widespread adoption of the Semantic Web largely depends on the support of logic rea-
soners like RACERPRO (Haarslev & Móller, 2003), FACT++ (Tsarkov & Horrocks, 2006) and
PELLET (Parsia & Sirin, 2004), and specialized frameworks like OWL API (Horridge & Bech-
hofer, 2007), JENA2 (Carroll et al., 2004) and ACTIVERDF (Oren & Delbru, 2006), to name
some prominent ones. Developers of Semantic Web applications use these specialized frame-
works to convert, retrieve and edit ontology entities. Semantic Web frameworks make ontolo-
gies accessible to software applications. However, current frameworks implemented in JAVA
like OWL API and JENA2 provide quite complex application programming interfaces (API),
which constitute an important obstacle with respect to their adoption in the general Web appli-
cation development community.

Vrandecic (2005) discusses scripting languages and dynamic programming languages, respec-
tively, as a promising approach to address the aforementioned API complexity challenges of
JAVA-based frameworks. Dynamic programming languages like RUBY (Thomas et al., 2004)
or PYTHON (Van Rossum, 2003) use implicit declared data types, automatic memory man-
agement (garbage collection; Soman & Krintz, 2007) and metaprogramming capabilities to
achieve a higher level of programming and more rapid application development (Ousterhout,
1998). Babik & Hluchy (2006) introduce an approach for the deep integration of PYTHON with
OWL, offering a more intuitive mapping of OWL into the programming context than classic
API’s. The deep integration paradigm, which states the reproducing the semantics of OWL in a
dynamic programming language, has introduced the idea of importing an ontology directly into
the programming context in a way that its classes can be used directly like other classes of the
language and therefore avoiding a complicated API.

Oren & Delbru (2006) describe the above mentioned Semantic Web framework ACTIVERDF
which is based on the deep integration of RUBY with the Resource Description Framework

Schema (RDFS; RDF, 2004). While ACTIVERDF provides an object-oriented access to Re-

source Description Framework (RDF) data (Klyne & Carroll, 2004) including its modification,
and considerably reduces programming complexity (see also the corresponding comparisons in
Section 3.8), it is not sufficient for its utilization in editing OWL ontologies. OWL extends
RDFS (Lacy, 2005) with new language constructs of which logical constraints are of particular
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importance with respect to ACTIVERDF’s current shortcomings. For example, logical con-
straints can be used to restrict the number (cardinality restriction) and type of entities (universal
quantification and existential quantification) that can be interrelated in an ontology. Disregard-
ing logical constraints leads to inconsistencies in the ontology which in turn has the effect that
this ontology cannot further be processed using a Semantic Web reasoner. As ACTIVERDF
does not enforce any OWL constraints, processed ontologies might become inconsistent.

1.3 Thesis Outline

The tremendous increase in the amount of accessible data and information in the life sciences
and the multimedia content management has further increased the demand for semantic tech-
nologies. Current Semantic Web frameworks offer complex APIs that need significantly more
lines of code to accomplish the same functionality as frameworks based on dynamic program-
ming languages.

The dynamic programming language RUBY has gained a large distribution among World Wide

Web developers. Especially since the release of the rapid World Wide Web development frame-
work RUBY ON RAILS (Thomas et al., 2005), an increasing number of Semantic Web appli-
cations (Oren et al., 2007) and life sciences related websites (Goble & Roure, 2007; Roure &
Goble, 2007) have been developed in this language.

As described before, ACTIVERDF constitutes a first generation of Semantic Web frameworks
for RUBY ON RAILS and RUBY developers, which however is not sufficient when used for
editing ontologies in the most prominent ontology language OWL. To further foster the broad
use of semantic technologies, especially those making use of OWL, this thesis introduces
DEEP SEMANTICS, a second generation of Semantic Web frameworks, that enables the use
of logical constraints and which can be used to safely modify OWL ontologies.

Chapter 2 contains background information about technologies and areas of research that are
needed to follow the discussion of the results of this thesis. The Semantic Web and its con-
cepts will be described as well as Semantic Web frameworks and tools that were used. Further-
more, does this chapter introduce two relevant application domains of semantic technologies:
Section 2.4 The Semantic Web for Life Sciences and Section 2.5 Multimedia Content and the

Semantic Web. Chapter 2 ends with an introduction into the dynamic programming language
RUBY, whose metaprogramming capabilities are crucial for the realization of this work.

The ensuing two chapters present and discuss the results of this thesis. Chapter 3, deals with
a detailed description of the newly developed Semantic Web framework DEEP SEMANTICS.
This is the most important chapter, especially with respect to new scientific insights on how to
utilize metaprogramming for deep integration of OWL into RUBY. Section 3.2 of this chap-
ter describes the overall architecture of the framework while Sections 3.4, 3.5 and 3.6 cover
implementation details including solutions for specific challenges, which were solved in this
work. To give the reader a detailed impression of the particular benefits of the framework, Sec-
tion 3.7 describes how to program with ontologies converted by DEEP SEMANTICS in RUBY.
Section 3.8 contains a comparison of DEEP SEMANTICS with other Semantic Web frameworks
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with respect to programmatic complexity and runtime characteristics. The chapter ends with a
discussion of the experiences, challenges and various features of DEEP SEMANTICS.

Chapter 4 describes the development of a web-based semantic image management application
called IKEN. This application is a self-developed proof-of-concept, showing the practical ben-
efits of DEEP SEMANTICS. This chapter presents the developed ontology, designed architecture
and a new kind of semantic user interface. Additionally, Section 4.2 describes the BIO2ME on-
tology and information system, which was developed by Mainz (2008) utilizing the framework
introduced in this dissertation.

This dissertation is related to two research projects:ONTOVERSE and IKEN. While the original
idea for the development of DEEP SEMANTICS originated in the work for the ONTOVERSE

project (for details see Section 2.3), the results presented in Chapters 3 and 4 can be considered
independent of this project.

In summary, the work contains the following subjects:

• DEEP SEMANTICS (introduced in Chapter 3): Is the main part of this dissertation and was
completely designed and implemented by myself – including the XPERIMENTR example
(see Subsection 3.7.3).

• IKEN (introduced in Chapter 4): A proof-of-concept for the DEEP SEMANTICS frame-
work. While conceptual work, especially regarding overall requirement specifications,
marketing and business model elaboration, was done in collaboration with VARION
GmbH, the actual implementation, the design of semantic application as well as the under-
lying ontology was solely developed by myself during work on this thesis. The implemen-
tation of OWL DL support was delayed up to a later date in favour of the development
of IKEN. This decision is well-grounded in the focus on best possible usability features
that could be tested and improved during IKEN’s development.

• BIO2ME information system (described in Section 4.2.2): DEEP SEMANTICS was used
by Mainz (2008) for the developed of this system. In the context of this dissertation the
BIO2ME information system functions as an external reference application which pro-
vided experience reports are discussed in Section 4.3.
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Background

2.1 The Semantic Web and its Concepts

The idea of the Semantic Web (Kanellopoulos & Kotsiantis, 2007) was first coined in 2001
by Tim Berners-Lee (Hendler, 2001), the inventor of the World Wide Web (in the following
abbreviated asWWW,Web or Internet) and current director of theWorld Wide Web Consortium

(W3C). The main idea of the Semantic Web is to enhance the currentWeb with a semantic layer
of machine-processable metadata that enables computers to interact and exchange data in a
meaningful way. This metadata is organized in formal models of concepts and their relations
called ontologies.

The Semantic Web is frequently described as being a web of data while the current Web can
be seen as a web of documents which are linked to other related web pages. In contrast, a web
of data is characterized by the additional availability of metadata that describes and connects
certain kinds of data (like address data, document descriptions or image content annotations).
This metadata layer can then be used to foster the exchange of data between applications as well
as to record how the data relates to real world objects.

From a user related point of view, the Semantic Web enables a new kind of navigation in knowl-
edge spaces accessible via the Internet. Figure 2.1 shows a typical search process using current
Internet navigation possibilities. A user enters a query into a search engine. She gets a list of
hyperlinks with some additional information about the linked resources, for example websites,
web-interfaces of biomedical databases or publication databases, as well as possible Intranet
resources as response. From that point on she has to click through this list of links until one of
the visited websites contains the needed information. Instead of just looking at the results listed
by the search engine she can also follow additional links she encounters on the visited websites.
In this respect, the Internet is like an information maze where the user has to search through
different paths of hyperlinks, often returning back to a previous visited websites, until the user
finds more or less by chance the desired information.
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Figure 2.1: Internet as a maze 1. TheWeb until version 2.0 is characterized by keyword-based searching
that often resembles an attempt to find the right path through a maze – in this case the path to the searched
information.

In comparison to the current Web search processes, semantic technologies can offer some im-
provements. Figure 2.2 schematically shows how the semantic technologies can convert the
search process into a knowledge navigation process. Every information source in this example
is semantically annotated and provides metadata about its content. Based upon this metadata
it is possible to develop applications that deliver context-sensitive interfaces which enable the
users to navigate over different knowledge sources. In Figure 2.2 these kind of knowledge navi-
gation applications is coined a Semantic Web Guide. The interaction with a Semantic Web Guide
starts once again with a search query of the user and the response is typically a list of possible
sources of interest, too. The big difference of the semantics based approach is, that the Semantic
Web Guide can use the metadata of the connected resources to provide the user with informa-
tion about the relation of the presented search result with the initial search query. The Semantic
Web Guide offers the user the same results as in Figure 2.1. But this time the user can directly
see the semantic nature of the relation (indicated by the Relation Type labels) and hyperlink,
respectively.

The Semantic Web is composed of layers of increasingly specialized technologies. Figure 2.3
shows this layered approach including the following technologies: the Resource Description

Framework (described in Subsection 2.1.2), the Resource Description Framework Schema
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Figure 2.2: Internet as a maze 2. The Semantic Web as an enabling technology to get from a searchable
Web to a naviagble knowledge space.

(described in Subsection 2.1.3), the Web Ontology Language (described in detail in Subsec-
tion 2.1.4), and the Rules (described in Subsection 2.1.4).

2.1.1 Ontologies

The philosophical discipline ontology is the study or concern about what kinds of things exist
- what entities or ’things’ there are in the universe (Blackburn, 2007). Computer science has
borrowed the term where it is now used in the more narrow sense of special kinds of knowledge
representation models in the subsection artificial intelligence. Ontologies consist of concepts,
the relations between them and instances of concepts. Additionally they can make use of logical
axioms and restrictions. Ontology languages provide inference and integrity rules for ontolo-
gies, that means rules that are used to make implicit knowledge stored in the ontology explicit
as well as for the guarantee of their logical validity. The most cited defintion of ontology in
computer science is the following one by Gruber: ’the specification of conceptualisations, used
to help programs and humans share knowledge’ (Guarino et al., 1993).

Figure 2.4 schematically shows the most important building blocks of an ontology.

Ontologies are used for different purposes. Some of the most important application cases are:
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Figure 2.3: The Semantic Web layers. A layered approach to the Semantic Web. The included tech-
nologies are: URI: an URI is a compact string of characters to identify an entity, accessible on the
Internet. The Uniform Resource Locator (URL) to a website is an example of an URI. Unicode: an
industry standard which provides a unified system for representing textual data. XML: the Extensible
Markup Language is a general-purpose specification for creating custom markup languages. XML is
recommended by the World Wide Web Consortium. Regarding to the Semantic Web, XML is used for
the serialization of RDF, RDFS, OWL and SWRL for example. Namespaces: an abstract container
that is used for the grouping of URI’s. RDF core: the Resource Description Framework (see Subsec-
tion 2.1.2). RDF Schema: the Resource Description Framework Schema (see Subsection 2.1.3). DLP:
the Description Logic Programs or Description Logic Programming.OWL: theWeb Ontology Language
(see Subsection 2.1.4). Rules: While an ontology describes a set of objects in a machine-readable way,
Rules describe how to infer new information from an ontology (see Subsection 2.1.5). SPARQL: a query
language for RDF. SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions,
and optional patterns. Logic framework: for example OWL API (see Subsection 2.7.2), JENA2 (see
Subsection 2.7.1) and DEEP SEMANTICS (see Chapter 3). Proof: the valid derivation of the correctness
(verification) or incorrectness (falsification) of a statement out of true premises. Signature: an elec-
tronic signature links data with electronic information, which enables the identification of the signer
and allows to check the integrity of the signed electronic information. Encryption: the process, with
which a readable text (or other kind of information that is typically converted into a string of 0’s and
1’s) is converted with the help of an encoding procedure into an "illegible" (not simply interpretable
character sequence). Trust: Trust in the semantic applications, in the Semantic Web and in all of its
actors is the last and most abstract layer. Source: Tim Berners-Lee. Web for real people, 2005. URL:
http://www.w3.org/2005/Talks/0511-keynote-tbl/

• A knowledge base for a community - context and definitions in an ontology make a mean-
ing explicit and support knowledge sharing.

• A controlled vocabulary for indexing/annotating data, enabling semantic search, data in-
tegration and knowledge access.

• A knowledge base for a computer program (an expert system for example).
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Figure 2.4: Schematic representation of the constructs of an ontology. The example is based on the
BIO2ME ontology which is further described in Subsection 4.2 (page 120). Rectangles symbolize ontol-
ogy classes and concepts, respectively. Green circles represent instances of the classes they are connected
with. Solid arrows between classes indicate their hierarchical relations, pointing to the subclasses. The
dotted arrows represent custom defined object property relations between classes.

2.1.2 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a general-purpose language for representing
information or metadata (data about data) aboutWeb resources. It is based on the Semantic Web
effort of the World Wide Web Consortium and allows multiple metadata schemes to be read
by humans as well as to be parsed by machines. The RDF data model is constructed out of
statements in the form of subject-predicate-object expressions, called triples in RDF terminol-
ogy. An example for one of such triple is the following: <bio2me:StructureVisualizationTool>
<rdfs:subClassOf> <bio2me:StructureAnalysisTool>. It offers a simple but useful semantic
model based on directed acyclic graph structures. Both, nodes and edges are marked with
unique designators. RDF exists in two common serialization formats: one XML format and
the so called Notation 3 (N3).

A resource in the sense of RDF is everything that can be identified by an Uniform Resource
Identifier (URI). URI’s for example can be used to name web pages, images or abstract concepts.
RDF is a modeling language for defining statements about these resources and the interrelations
among them.

2.1.3 The Resource Description Framework Schema RDFS

RDF Schema (RDFS) is the RDF’s vocabulary description language, according to the W3C
Semantic Web Activity Statement: "RDF’s vocabulary description language, RDF Schema, is a
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semantic extension of RDF. It provides mechanisms for describing groups of related resources

and the relationships between these resources. RDF Schema vocabulary descriptions are written

in RDF using the terms described in this document. These resources are used to determine

characteristics of other resources, such as the domains and ranges of properties."

From the "view" of a computer system, the URI designators introduced by the user are simply
character strings without a meaning beyond that. Additional semantic assertions therefore have
to be added, in order to bring computer systems to draw conclusions which are based on this
type of human background knowledge. By means of RDFS it is possible to specify such schema
knowledge with the terms used in a vocabulary. RDFS thereby helps users to define the proper
use of a vocabulary composed in RDF. Although an RDF Schema isn’t required for valid, RDF
it does help to prevent confusion when sharing a vocabulary.

The possibility of modeling schematic knowledge constitutes RDFS as an ontology language,
with which it is possible to describe a whole number of semantic dependencies occurring in a
domain. RDFS has also its boundaries, thus it is also called a lightweight ontology language.
For more demanding use cases, more expressive ontology languages like OWL are necessary
that, however come along with longer inference runtimes.

RDFS consists of definitions about what classes and properties are and how they can be further
described. RDFS classes can be considered as groups of RDF resources. The members of a
class are known as instances of this class. Although being groups of resources, classes are
themselves resources, too.

2.1.4 Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a set of knowledge representation languages, admin-
istrated by the W3C. OWL has been specifically designed to be used for Semantic Web appli-
cations that need support for sharing knowledge and meaning between machines and humans.
OWL is built on RDF and RDFS and adds more vocabulary for describing properties and
classes like cardinality constraints (for example "at least one"), disjointness between classes
or characteristics of properties (for example transitivity). OWL is available in three different
expressiveness levels: OWL LITE, OWL DL and OWL LITE.

OWL FULL

OWL FULL is the most expressive sub-language of OWL. OWL FULL accomplishes all re-
strictions of OWL DL and OWL LITE but ignores decidability issues. It permits classes to be
treated simultaneously as both, collections of instances and individuals. In addition, a given
datatype property can be specified as being inverse-functional, thus enabling for example, the
specification of a string as an unique key.

OWL DL

OWL DL puts certain restrictions on the available OWL constructs:
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Figure 2.5: Screenshot of the RDF/XML serialization of a simple RDF Schema for the description
of resources related to animals and plants.

• OWL DL requires a pairwise separation between classes, datatypes, datatype properties,
object properties, annotation properties, ontology properties, individuals, data values and
the built-in vocabulary. This means that, for example, a class cannot be at the same time
an individual or a property.

• Because of the disjointness of datatype properties and object properties the property
characteristics "inverse of", "inverse functional", "symmetric", and "transitive" cannot be
specified for datatype properties.

• Cardinality constraints cannot be asserted to transitiv properties, their inverse properties
or any of their superproperties.
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• As the sets of object properties, datatype properties, annotation properties, and ontology
properties have to be mutually disjoint an annotation property cannot be at the same time
a datatype or object property.

OWL LITE

OWL LITE has the weakest expressivity of the three sublanguages of OWL. It primarily sup-
ports the construction of hierarchies of classes and properties as well as simple constraints. For
example, while it supports cardinality constraints, it only permits cardinality values of 0 or 1.
OWL Lite imposes additional restrictions on the available OWL constructs:

• OWL LITE requires a pairwise separation between classes, datatypes, datatype proper-
ties, object properties, annotation properties, ontology properties, individuals, data values
and the built-in vocabulary. This means that, for example, a class cannot be at the same
time an individual or a property.

• Because of the disjointness of datatype properties and object properties the property char-
acteristics inverse of, inverse functional, symmetric and transitive cannot be specified for
datatype properties.

• Cardinality constraints cannot be asserted to transitiv properties, their inverse properties
or any of their superproperties.

• As the sets of object properties, datatype properties, annotation properties and ontology
properties have to be mutually disjoint an annotation property cannot be at the same time
a datatype or object property.

• OWL LITE forbids the use of enumerations (owl:oneOf), unions (owl:unionOf), com-
plements (owl:complementOf), default values (owl:hasValue) and disjointness between
classes (owl:disjointWith).

2.1.5 Rules

Rules play an important role in artificial intelligence expert system shells and in knowledge
based systems, respectively, as a means to infer new facts out of a set of known facts. On-
tology languages, such as RDFS and OWL, are primarily designed to describe concepts in a
knowledge domain. They offer language constructs to describe classes (concepts), properties
(attributes and relationships, respectively) as well as constructs to capture certain restrictions on
the use of properties and to define complex classes using set operators for example. Although
ontology languages have some built-in inference rules to deduce new facts on the basis of hier-
archical is-a relations ("If A is a B and B is a C, then A is a C."), they do not allow the explicit
definition of custom rules in order to synthesize new facts from those stored in the knowledge
base. To overcome this shortage of ontology languages rule languages like SWRL are designed
to specify data transformation rules.
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SWRL

The Semantic Web Rule Language (SWRL) is a W3C proposal for a rule language that is
based on a combination of the OWL (DL and Lite) with the Unary/Binary Datalog RuleML
sublanguages of the Rule Markup Language (Horrocks et al., 2003b). SWRL rules can express
knowledge, which is not expressible in OWL and extends the set of OWL axioms to include
Horn-like rules. SWRL rules are of the form of an implication between an antecedent (body)
and consequent (head). An example of SWRL is the following:

hasParent(?x, ?y) AND hasBrother(?y, ?z)

⇒ hasUncle(?x, ?z)

Explanation: If x has parent y and y has brother z then x has uncle z.

2.2 Description Logic

Description logics (Baader et al., 2003) are a family of knowledge representation languages.
Most description logics are a subset of first order logics, however contrary to these, description
logics are decidable. This allows to reason over a description logic to infer new knowledge from
available knowledge. Usually a description logic is formally divided into a terminological box
(TBox) and an assertional box (ABox). The TBox contains the knowledge about the concepts of
a domain, including the possible relations between the concepts, the terminological knowledge.

The ABox in contrast, contains the knowledge about the entities or instances of these concepts,
as well as their relations among themselves, and represents the status of the modeled world.
Description logic is of great importance for ontology languages like OWL DL and therefore
the Semantic Web.

2.3 The ONTOVERSE Project

The ONTOVERSE consortium consists of several scientific and economical project partners.
These partners jointly develop a web-based platform for collaborative ontology engineering
and management in life sciences. The ONTOVERSE project aims to establish a platform to
provide tools for designing ontologies, which helps scientists to build social networks. It there-
fore comprises support for collaborative ontology engineering (a collaborative ontology editor),
an ontology based publication management system and solutions for knowledge exchange in
scientific communities.

The idea for DEEP SEMANTICS originated within the development of ONTOVERSE, a co-
operative project within the promotional focus of the German Federal Ministry of Educa-
tion and Research on eScience and knowledge management. While being one of the ini-
tiators of ONTOVERSE, the central objective of that project is the development of a new,
internet-based application for cooperative and interdisciplinary ontology building. Originally,
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DEEP SEMANTICS was intended to be used in cooperation with the rapid web development
framework RUBY ON RAILS for the implementation of an ontology editing interface support-
ing insertion of automatically extracted concepts and instances into the ontology. During the
project duration new requirements and technical results arose, that gave a new direction in the
development of DEEP SEMANTICS: instead of supporting schema and facts processing (more
precisely TBox and ABox editing – see Section 2.2 on page 17) DEEP SEMANTICS’s design
priority was to put solely on facts manipulation. Reasons for that decision were:

1. While used design principles (deep integration and meta-programming) are ideal for the
development of systems based on static concept schemata and intended for facts manipu-
lation additional schema editing capabilities cannot benefit.

2. Concept schemata manipulations require a fundamentally different implementation ap-
proach than support for facts manipulation does. Therefore, two different types of imple-
mentation would have been required counteracting the idea of an easy to use framework.

3. The version of DEEP SEMANTICS realized in this work supports facts editing and gained
the highest priority in order to realize the development of IKEN and another application
called BIO2ME which exemplifies the advantages of DEEP SEMANTICS for application
development in bioinformatics.

2.4 Bio-ontologies

Soldatova & King (2007) discuss the formalization of scientific knowledge, particularly on-
tology engineering for biological applications. Bodenreider & Stevens (2006) review current
trends and future directions of bio-ontologies and their applications within biomedicine. Sum-
marizing key points of the aforementioned publication are the following:

• Use of ontologies within biomedical domains is already mainstream.

• Necessity of ontologies in order to be able to compute with the knowledge components
in biology and medical research is recognized. This becomes also apparent regarding to
the growing list of specialized bio-ontology centers like the German Institute for For-

mal Ontology and Medical Information Science (IFOMIS) 1 or The National Center for
Biomedical Computing 2 which is one of the National Centers for Biomedical Computing
in the United States of America.

• While particularly in biology, ontologies are often used as controlled vocabularies for
describing data (Avraham et al., 2008), there is a tendency to use increasingly complex
formalities (Stevens et al., 2007).

1 http://www.ifomis.org
2 http://bioontology.org
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2.4.1 Open Biomedical Ontologies (OBO)

The Open Biomedical Ontologies (OBO) (Smith et al., 2007) are an umbrella consortium that
provides ontologies for shared use across different biomedical domains. In November 2008, 54
ontologies were available via the OBO website. The OBO Foundry has the goal to create a suite
of orthogonal – that means complemental – interoperable reference ontologies in the biomedical
domain. OBO ontologies are serialized in OBO format or in OWL with OBO ontologies being
map-able to OWL (Golbreich et al., 2007).

One of the most important ontologies listed by OBO is the GENE ONTOLOGY (Ashburner
et al., 2000). GENE ONTOLOGY currently3 contains over 27,769 terms ordered in the three
sub-ontologies: biological processes, molecular functions, and cellular components for gene
products. As a controlled annotation vocabulary the GENE ONTOLOGY has become a de facto
standard for many biomedical databases. However, it has to be mentioned that beside its great
success story and huge merit for bioinformatics and Life Sciences, the logical complexity of
GENE ONTOLOGY is rather weak. GENE ONTOLOGY uses only is-a, part-of, regulates, posi-
tively_regulates and negatively_regulates to connect concepts. It makes no use of sophisticated
logical constructs (for example constraints on properties or set operators and axioms, respec-
tively) provided by state-of-the-art ontology languages like OWL.

2.5 Multimedia Content and the Semantic Web

Production and consumption of multimedia content is steadily growing, which makes
semantics-based multimedia content indexing and retrieval essential for effective multimedia
management. The next two subsections introduce ontology-based multimedia content indexing
and retrieval to give some background information for Chapter 4.

2.5.1 Ontology-Based Multimedia Content Indexing

Semantic content annotation is the basis for semantic content retrieval (Halaschek-wiener et al.,
2005). Annotating (or indexing) is the process of adding content-descriptive keywords to multi-
media content (for example pictures, videos, music or documents). If no underlying vocabulary
is provided (as in social tagging systems), the semantics of keywords, their meanings and con-
nections, are not represented. An ontology can capture these semantics, for example words
that have the same meaning (synonyms), concepts that are parts of others (meronymy, part-of-
relation), sub-concepts (hyponymy, is-a-relation) or various self-defined relations (for example
isLocatedIn, hasColour).

3 Release of December 1st, 2008
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2.5.2 Ontology-Based Multimedia Content Retrieval

Semantic Image Retrieval promises a more precise search for documents than retrieval based on
non-semantic keywords or full texts. Traditional keyword based system search for "blue car",
would retrieve all images which are labeled with "blue" as well as with "car". The result would
include a picture of a blue bicycle next to a red car). Yet, an underlying ontology can capture
the fact that blue is a color which may be a property for several objects such as cars.

2.6 The PELLET Reasoner

PELLET (Parsia & Sirin, 2004) is an open source JAVA OWL DL inference engine that can
be used standalone or combined with frameworks like JENA2 and OWL API. PELLET imple-
ments tableau algorithms that manipulate description logic expressions. Inference engines are
primarily used to determine if an ontology is logical consistent and/or to infer all implicit facts
included in a consistent ontology. PELLET was used in this thesis for the realization of the
semantic image management application IKEN described in Chapter 4 to check consistency
before used with DEEP SEMANTICS. Other OWL reasoners that could have been used are for
example FACT++ (Tsarkov & Horrocks, 2006) and (Haarslev & Moller, 2001).

2.7 Semantic Web Frameworks

The three Semantic Web frameworks described in the following subsections are used as refer-
ences for a comparison with DEEP SEMANTICS in Chapter 3 (see Section 3.8).

2.7.1 JENA2

JENA2 is a JAVA framework (Carroll et al., 2004) for the development of Semantic Web ap-
plications. JENA2 is an open source project, originally developed at the HP Labs Semantic
Web Programme (for further details of this program see: http://www.hpl.hp.com/semweb/). It
supports a wide range of Semantic Web technologies like RDF, RDFS, SPARQL and OWL.
JENA2 offers inference functionalities and can be easily used together with external reasoners
like PELLET for example. JENA2 transforms an OWL/RDF ontology into an object-oriented
abstract data model that enables the programmatic access of ontology constructs via an API –
lowering its usability for developers who are not experts in ontologies and semantic technolo-
gies. To get a superficial insight into the API, the following list comprises some of its most
important classes and JAVA interfaces, respectively:

• ModelFactory: Provides methods for reading ontology data and creating InfModel and
OntModel objects.

• InfModel: JENA2 representation object for an RDF/RDFS model including inferred
triples (implicit facts are made explicit using inference mechanisms).
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• OntModel: This JAVA interface provides simplification methods for the access of OWL
language constructs. OntModel can be used together with base or inferred models.

• OntClass: Ontology classes are converted into instances of OntClass.

• OntProperty: OWL datatype properties and object properties translated into instances
of OntProperty.

2.7.2 OWL API

The OWL API (Bechhofer et al., 2003; Horridge & Bechhofer, 2007) is an open source JAVA
framework for the processing of OWL. Similar to the JENA2 framework, ontology constructs
are accessible via an API. This in turn – also analogous to JENA2– has the disadvantage that
software developers have to deal with this API additionally to OWL. One of the main dis-
tinguishing factors between OWL API and JENA2 are their conceptual processing paradigms.
While JENA2 manages the ontology as RDF graphs, OWL API is oriented towards OWL ab-
stract syntax (Peter et al., 2004).

OWL API is found at the core of many Semantic Web tools for example in version 4.0 of
the ontology editor PROTÉGÉ(Knublauch et al., 2004) and the Semantic Web editor SWOOP
(Kalyanpur et al., 2006) and supports fundamental tasks such as reading, saving, and manipu-
lating ontologies. For inference support, OWL API currently offers access to reasoners PELLET
and FACT++. Important classes and JAVA interfaces are:

• OWLOntologyManager: This interface is the central access point of the API and is used
to load, create and access ontologies.

• OWLOntology: Comprises a set of axioms making up the ontology. These axioms then
reference the ontological building blocks: classes, properties and instances.

• OWLClassAxiom: Represents an OWL class axiom like defined in the abstract syntax
(Peter et al., 2004) – see also Section 3.3 for details about the structure of OWL abstract
syntax.

• OWLClass: While the previous interface models class axioms, OWLClass represents ac-
tual OWL ontology classes. It can be used for example, to access a subclass of a class,
instances and disjoint classes.

2.7.3 ACTIVERDF

Oren & Delbru (2006) describe the Semantic Web framework ACTIVERDF which is imple-
mented in RUBY. This framework utilizes RUBY’s metaprogramming capabilities in order to
avoid the implementation of an abstract and – with respect to software development – com-
plicating API. Instead, ontology’s classes, properties and instances are transformed into RUBY
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classes, RUBY instance methods and RUBY instances. Thereby, this framework provides an
object-oriented access to RDF data, considerably reducing programming complexity.

Although being processable as RDF data, specific OWL language features, like logical con-
straints, are not supported. This restricts its possible application areas significantly.

2.8 The Dynamic Programming Language RUBY

DEEP SEMANTICS as well as large parts of IKEN project were developed in the dynamic pro-
gramming language RUBY. In contrast to pure programming languages, dynamic programming
languages are not compiled into machine code, but interpreted during runtime. This offers pos-
sibilities to modify the code base during runtime, enabling reflection and metaprogramming.
RUBY is multi-paradigm programming language allowing procedural, as well as object-oriented
or functional programming.

The creator of the programming language RUBY, Yukihiro Matsumoto, stated4 that RUBY is
designed for programmer productivity and ease-of-use, making it perfectly suitable for the
implementation of the easy to apply Semantic Web framework developed in this dissertation.
RUBY includes aspects of the languages PERL (Christiansen & Torkington, 2003), SMALLTALK
(Goldberg & Robson, 1989), EIFFEL (Meyer, 1992), ADA (International, 1995) and LISP (Gra-
ham, 1995). RUBY’s characteristic, that everything is an object for example, is inherited from
SMALLTALK while its syntax largely resembles that of PERL.

Further language features, amongst others, are automatic garbage collecting, a large standard li-
brary and operator overloading. Operators like "+", "=", or "==" have different implementations
depending on the types of their arguments. The following subsections give some background
information for the implementation details of DEEP SEMANTICS covered in the next chapter.

2.8.1 RUBY Classes, Objects, and Variables

RUBY is a completely object-oriented language. Everything is an object: instances of a particu-
lar class are objects as well as these classes are objects of type Class. RUBY classes can always
be extended by adding new methods or modifying existing ones – even at runtime, which is
described in Subsection 2.8.3.

Variables hold references to objects, not the objects themselves. This was useful for the imple-
mentation of DEEP SEMANTICS because it reduces the amount of required main memory which
otherwise could have an exponential growth, depending on the relations defined in a particular
ontology. Variables can be defined belonging to different scopes ranging from local variables –
having most limited scope – to instance variables, class variables and global variables (which
are accessible form everywhere in the program).

4 http://www.artima.com/intv/ruby4.html
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2.8.2 RUBY Modules

In object-oriented languages, inheritance allows programmers to create a class that is a spe-
cialization of another class. Though RUBY does not support multiple inheritance, classes can
import modules, so called mixins. Modules have been important for the consideration of multi-
ple inheritance as provided by OWL LITE into DEEP SEMANTICS (see Chapter 3).

Modules can be used to group methods, classes and constants. They provide a namespace which
is helpful for avoiding name clashes. Modules cannot be instantiated directly but have to be
inherited by a class first.

2.8.3 Reflection and Metaprogramming

Metaprogramming means that the program code is produced by other program code. RUBY
offers mechanisms for metaprogramming for it by providing for example methods module_eval
and define_method. The weakened form of metaprogramming is reflection. Reflection means
that a program knows its own structure and can modify it, if necessary, whereby values can be
modified, but the program structure remains fixed. Without metaprogramming, deep integration
of OWL into RUBY, or similar dynamic programming languages, is not possible. Therefore,
metaprogramming is one of the central concepts of the next chapter.

2.9 Deep Integration

The process of converting an OWL ontology into functional code is called deep integration. In
the context of the Semantic Web the term deep integration was coined by Obie Fernandez (Fer-
nandez, 2005). It represents the idea of an integration of OWL with a dynamic typed language
like RUBY or PYTHON that goes beyond conventional OWL libraries like OWL API or JENA2
for the JAVA programming language. The main idea of deep integration is to integrate OWL
ontologies into a RUBY library (in the case of DEEP SEMANTICS) in a way that the integrated
ontology exists at the same level of implementation as other functional libraries.

Instead of using a library like JENA2 to deal with OWL via an dedicated API the deep inte-
gration process of DEEP SEMANTICS extends RUBY’s set of available libraries by making the
ontology including its logic available as natural RUBY objects. This approach enables RUBY
developers the use of the logic programming paradigm (Grosof, 2003) by the utilization of De-
scription Logics. Thus, developers are able to use OWL constructs additionally to normally
defined classes.
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DEEP SEMANTICS

The development of the DEEP SEMANTICS framework constitutes the main part of this the-
sis and is described in detail in this chapter. DEEP SEMANTICS has been designed to foster
the use of semantic technologies by providing a framework that converts a given OWL on-
tology into a functional RUBY code representation. The architecture of the DEEP SEMANTICS
framework has been prepared to support conversion of the OWL expressivity levels OWL LITE
and OWL DL. The current version 0.9 of DEEP SEMANTICS however works exclusively with
OWL LITE ontologies as the implementation of OWL DL support is still in alpha state.

The deep integration approach as it is integrated in DEEP SEMANTICS is exemplified by Fig-
ure 3.1. This schematizes the conversion of an OWL class Program into a deep-integrated
RUBY representation of this class. The local name of the OWL class is used as name of the
corresponding RUBY class. In the case of class Program a subClassOf relation to OWL class
Tool is stated. For the deep integration process this superclass-subclass relation has to be con-
sidered in such a way that all attributes as well as their associated setter and getter methods are
inherited by the subclass. Program inherits the getter methods isPredecessorOf, isSuccessorOf
and isUsedInProgram from Tool.

3.1 Consistency Safeness

DEEP SEMANTICS is consistency safe. In this thesis consistency safeness is defined as follows:
an OWL ontology processing software is consistency safe, if it is not able to generate logical
inconsistencies during runtime. Consistency safeness is an important feature for ontology-based
applications, which are utilized to modifiy facts of an ontology, e. g. systems that use ontologies
for semantic annotation (like IKEN described in Chapter 4) or semantic decision support.

DEEP SEMANTICS is the first consistency safe Semantic Web framework for OWL LITE using
deep integration. The currently primarily used frameworks JENA2 and OWL API avoid the
problem of consistency safeness by providing reasoning capabilities that detect inconsistencies.
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Figure 3.1: Conversion of an OWL class Program into a RUBY class. Schematic illustration of the
conversion of an OWL class (1) into an object-oriented RUBY representation (2). The RUBY class is
shown here in UML notation. The URI definition of the OWL class as well as its superclass dependency
is marked by a blue border. The corresponding conversion is indicated by a blue arrow. Attributes and
instance methods that have been inherited by superclass Tool are shown in bold letters. OWL and UML
components marked in orange relate to OWL properties, for which class Program is defined as OWL
domain.

No consistency safe framework was published yet. Frameworks like JENA2 and OWL API aim
at supporting any kind of TBox modification, therefore they cannot be consistency safe per
definition.
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Figure 3.2: Top-level architectural diagram of DEEP SEMANTICS including input and output val-
ues. The director controls the deep integration process, in which ontology triples consisting of subjects
(S), predicates (P) and objects (O) are mapped to RUBY code. Source adapter are used to access the
ontology triples form a specified resource while triple parser is responsible for the correct translation of
the triples into RUBY objects. Deep integration builder integrates these RUBY objects into a functional
ontology model.

3.2 Architecture

DEEP SEMANTICS’ architecture is based on the Builder design pattern (Freeman et al., 2004).
Using this pattern one separates the construction of a complex object from its representation
so that the same construction process can create different representations. The decision to use
this pattern was motivated by the initial intention to use DEEP SEMANTICS for both the de-
velopment of an ontology editor (as part of the ONTOVERSE project) and as a framework for
rapid Semantic Web development (i. e. its current use case). While its application for the on-
tology editor in ONTOVERSE was not followed up DEEP SEMANTICS has been extended up
to a point where it can be successfully applied for Semantic Web development projects like
BIO2ME or IKEN. The Builder pattern based architecture is in this context important for
its future maintenance and enhancement, especially with regard to a potential transition of the
DEEP SEMANTICS project from a one man development project to an open source project (see
the discussion chapter on the future of DEEP SEMANTICS).
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Figure 3.2 gives an overview of the architecture of DEEP SEMANTICS. It comprises the main
building blocks of the framework: the Source Adapter, the Director, the Triple Parser and the
Deep Integration Builder. As indicated by the rounded numbers in the figure the processing
pipeline basically comprises five steps that are shortly described in the following (for a more
detailed description see Section 3.4 to Section 3.6):

1. Input for DEEP SEMANTICS is always an OWL ontology in N-Triples format. This on-
tology can be stored in a file or a database table.

2. Director coordinates data flow in the processing pipeline. At first it instructs Source

Adapter to read in the ontology triples, depending on the type of source (file or database).
Source Adapter returns an object triples_set of class TripleSet containing normalized se-
rializations of the read triples.

3. Then Director passes the set of triples to the Triple Parser module. Triple Parser converts
the triples into objects of type TemplateValues. These template value objects are collected
and returned to the Director according to their affiliation to the TBox or ABox of the
ontology.

4. In the next step Director pipes these template values into the selected Deep Integration

Builder – Figure 3.2 shows Deep Integration Builder for OWL LITE . Deep Integration

Builder takes the template values and converts the corresponding ontology definition, on-
tology classes, properties and instances – at first all TBox constructs (classes and property
axioms) and then the ABox instances. After every ontology construct is converted the fi-
nal deep integration step is triggered: the assembly of the functional ontology model in
RUBY.

5. A functional ontology model in RUBY is the final result of the DEEP SEMANTICS pro-
cessing pipeline. This functional ontology model can then be applied in RUBY programs
to access and operate on integrated ontologies.

As mentioned above this architecture was designed to build different implementations of its
subparts without having to re-implement the whole system and to be able to provide alterna-
tive versions for every subpart. For the current version of DEEP SEMANTICS this means that
two different Source Adapter implementations are available – for N-Triples files and N-Triples
stored in a database table. A potentially additional version of the Source Adapter could be for
example an adapter for RDF/XML serialized ontologies.

Concerning theDeep Integration Builder a version for OWL DL ontologies is already prepared
up to the parsing of the corresponding triple sets. What is missing is the conversion of ontology
classes and properties into RUBY classes and objects, respectively. The final implementation
of a Deep Integration Builder for OWL DL however is not subject of this thesis, but will be
discussed in Section 3.9.
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Figure 3.3: UML class diagram of the DEEP SEMANTICS main classes. Green rectangles indicate
RUBY classes while blue ones represent RUBY modules. The central class in DEEP SEMANTICS is
Director. This class is related to SourceAdapter, TripleParser, OntologyInformation and DeepIntegra-

tionBuilderOWLLite as well as DeepSemantics.

3.2.1 Implemented RUBY classes and modules

While Figure 3.2 shows a top-level view of the architecture this subsection covers the de-
tails on the RUBY classes and modules DEEP SEMANTICS is consisting of. Figure 3.3 is an
UML class diagram of the main classes of DEEP SEMANTICS. The pivotal class is Deep-

Semantics. Its main function is to generate an object of type Director using the method
set_director(director_options). Setting up Director one can specify which kind of ontology
adapter should be used, what the access path to the ontology is and which kind of builder should
be used. As indicated by the arrow connecting Director and DeepSemantics class Director is
compositionally integrated into class DeepSemantics – the term "compositionally" refers to a
composition relation in UML class diagrams between a container class and a contained class.

As it is the main functionality of Director to coordinate the flow and processing steps
of ontology data this class compositionally integrates exactly one of the following classes
SourceAdapter, TripleParser, OntologyInformation and DeepIntegrationBuilderOWLLite. As
described before instances of SourceAdapter are used to access the respective ontology data
source. It currently has two subclasses FileAdapter and DBAdapter. OntologyInformation is re-
quired to save the corresponding adapter, builder, source path and triple parser for one ontology.
It supports the application of DEEP SEMANTICS together with two or more ontologies.

The task of TripleParser is to transform ontology triples into template values. To accomplish
this task it uses the modules AvailableOntologyProperties and AvailableAnnotationProperties
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Figure 3.4: UML class diagram of the DEEP SEMANTICS helper classes. Classes Thing, Ghost, Re-
striction, DatatypeProperty and ObjectProperty directly relate to corresponding ontology constructs.
Green rectangles indicate RUBY classes while blue ones represent RUBY modules.

that provide lists of the ontology and annotation properties that have to be considered. DeepIn-
tegrationBuilderOWLLite is a subclass of Builder. Its task is to use the template values to build
up a functional model of the ontology in RUBY. The module OntologyTemplate is utilized by
DeepIntegrationBuilderOWLLite to assemble the ontology model.

The class diagram in Figure 3.4 models the helper classes I designed for DEEP SEMANTICS. Be-
side the classes AvailableOntologyProperties and AvailableAnnotationProperties already men-
tioned before the helper classes and modules are directly related to the converted ontology
classes, datatype properties and object properties as well as namespaces. Converted ontology
classes all inherit class Thing. This allows to easily check if a RUBY object belongs to the on-
tology or not. Module ClassTemplate used to generate the ontology RUBY classes makes use of
Thing. Likewise module GhostTemplate generates so called Ghost classes. Class Ghost is used
for classes that are not explicitly defined in the ontology but have to be created for the deep
integration of instances that belong to more than one type of class and which additionally are
not in a hierarchical relation to each other. Class Ghost is logically equal to the intersection of
these classes concerning constraints and inheritance.

Module OntologyTemplate is of special importance as it is directly used to generate the
RUBY module that represents both the namespace and the enclosing construct of the func-
tional ontology model. Unlike ontology classes, datatype properties and object properties
are converted into RUBY objects of type DatatypeProperty and ObjectProperty, respectively.
These conversions are controlled by the module PropertyTemplate. One crucial processing
step during deep integration is the consideration of restrictions and constraints, respectively,
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Figure 3.5: UML class diagram of DEEP SEMANTICS custom datatypes. Of special importance are
all classes that inherit the module TemplateValues. They are used to save the specific values for the diverse
ontology constructs. Green rectangles indicate RUBY classes while blue ones represent RUBY modules.

for the generation of appropriate ontology RUBY classes. Module RestrictionTemplate coor-
dinates the generation of RUBY instances of Restriction that are used as base material for
the corresponding code generation (in particular for the generation of instance setter meth-
ods). The last module shown in Figure 3.4 that has not yet been described here is Name-

spaces. Namespaces stores every namespace that is used in the processed ontology. While a new
namespace can be added to the framework using the method add_namespace, per default the
namespaces "http://www.w3.org/1999/02/22-rdf-syntax-ns#", "http://www.w3.org/2000/01/rdf-
schema#", "http://www.w3.org/2001/XMLSchema#" and "http://www.w3.org/2002/07/owl#"

are stored in Namespaces.

Like similar sophisticated software frameworks DEEP SEMANTICS requires a variety of cus-
tom datatypes. Figure 3.5 shows the UML class diagram of these custom datatypes. Of special
importance are all classes that inherit the module TemplateValues. They are used to save the
specific values for the diverse ontology constructs. These values are used together with corre-
sponding templates like PropertyTemplate or ClassTemplate to produce their deep-integrated
counterparts (ontology classes and properties in RUBY). In the following classes that inherit
TemplateValues are listed:

• OntologyValues: Predominantly stores information about the URI of the ontology as well
as its annotations.
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• ClassValues: Objects of this type store information about the corresponding classes’ URI,
annotations and superclasses as well as a boolean value TRUE if the class is deprecated.

• EquivalentClassesValues: This class includes information about a set of equivalent
classes.

• DisjointClassesValues: Analogous to EquivalentClassesValues but storing a set of disjoint
classes.

• SubClassOfValues: Besides directly storing subclass-superclass relation information as
part of ClassValues objects, OWL allows the definition of stand-alone subclass-of state-
ments. These are considered in DEEP SEMANTICS using SubClassOfValues.

• RestrictionValues: This class records information about a restriction like the type of the
restriction (for example "all-values-from") and the property the restriction acts on.

• DatatypeValues: Primarily stores information about the URI of the datatype as well as its
annotations.

• DatatypePropertyValues: Objects of this type store information about the corresponding
properties’ URI, annotations, ranges, domains and super-properties as well as boolean
values TRUE if the class is deprecated or functional.

• ObjectPropertyValues: Similar to DatatypePropertyValues above ObjectPropertyValues
additionally records whether the object property is inverse functional, transitive, symmet-
ric or has an inverse property.

• EquivalentPropertiesValues: Analogous to EquivalentClassesValues but storing a set of
equivalent datatype properties or object properties.

• SubPropertyOfValues: Like SubClassOfValues but for sub-property/super-property rela-
tions.

• IndividualValues: IndividualValues is the first ABox related class in this list. It stores the
URI of the described instance or individual, respectively, as well as its related annotations,
type affiliations and property/value pairs (attributes).

• DifferentIndividualsValues: Also part of the ABox DifferentIndividualsValues stores a set
of individuals that are explicitly stated as being different.

• SameIndividualsValues: Analogous to DifferentIndividualsValues but stores a set of equal
individuals.

Furthermore, Figure 3.5 comprises the module SPOTriple as well as class Triple which inher-
its this module. SPOTriple includes regular expressions for the identification of blank nodes,
literals and URI nodes as well as the methods hasBNodeSubject? and hasBNodeObject?. The
more specialized class Triple adds the methods hasLiteralObject? and normalize. Objects of
type Triple are related to TripleSet. TripleSet contains methods to retrieve certain triples (for
example find_by_S(subject) to fetch triples that include the subject passes as parameter).
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3.3 The Abstract Syntax of OWL LITE and its contribution
to DEEP SEMANTICS

Theoretical foundations of OWL comprise definitions of its abstract syntax and a mapping of
RDF triples to this abstract syntax (Peter et al., 2004). In my thesis I used this abstract syntax
in combination with the mentioned mappings as a theoretical fundament for the development of
DEEP SEMANTICS. Figure 6.1 on page 140 in the appendix shows the complete abstract syntax
of OWL LITE. A list of the corresponding mapping rules can be found in Peter et al. (2004).

Figure 3.6 illustrates the relations of OWL LITE constructs in Extended Backus-Naur Form
(EBNF) as defined in the official abstract syntax to the static and dynamically generated classes
and modules I have designed for DEEP SEMANTICS (a not simplified version of Figure 3.6 can
be found on page 141 in the appendix as Figure 6.2). ’Ontology()’ is the enclosing construct
of every OWL LITE ontology. Correspondingly is its DEEP SEMANTICS counterpart a RUBY
module that comprises all class, property and instance ontology constructs. As indicated in
Figure 3.6 by a blue rectangle and the symbol "?OntologyLocalName?" the RUBY module rep-
resenting the ontology construct is dynamically generated by DEEP SEMANTICS. One can see
that the EBNF construct ’Ontology(’ [ ontologyID ] directive ’)’ is modeled including zero or
more so called "directives" (that means ontology annotations, class axioms, property axioms or
instances). Analogously the module "?OntologyLocalName?" comprises zero or more objects
of type Restriction, DatatypeProperty and ObjectProperty.

Additionally, "?OntologyLocalName?" includes, and acts as the namespace of, zero or more
dynamically generated classes indicated by symbols ?ClassLocalName? and ?GhostName?

in Figure 6.2. ?ClassLocalName? indicates that the corresponding meta-programmed RUBY
classes are named like the local name of the equivalent ontology class (that means like the local
name part of classes URI – indicated in related EBNF fragment as classID). While ?ClassLo-
calName? RUBY classes directly relate to their equivalent ontology classes ?GhostName? don’t
have such direct mappings. I have added ?GhostName? classes – I call this type of classesGhost
classes – to DEEP SEMANTICS to be able to generate instances that belong directly to more than
one ontology class (i.e. multiple inheritance). In RUBY each object is instance of exactly one
RUBY class. While this RUBY class can itself inherit one superclass and zero or more RUBY
modules, a RUBY class instance object cannot be declared to be instance of more than one
RUBY class. Therefore every ontology instance that belongs to a set of more than one distinct
ontology class belongs to a Ghost class specifically meta-programmed by DEEP SEMANTICS.

Figure 3.7 shows the relations between the abstract syntax of the ’Ontology()’ construct and its
realization in DEEP SEMANTICS. The ’Ontology()’ construct can have an optional identifier in
the form of an URI reference and zero or more directive extensions. The local name part of the
ontology’s URI is used by DEEP SEMANTICS as name of the automatically generated RUBY
module (indicated by the symbol "?OntologyLocalName?").

A directive can be an ontology annotation (for example ontology properties owl:imports,
owl:priorVersion, owl:backwardCompatibleWith and owl:incompatibleWith), an axiom or a
fact. Facts are ontology individuals as well as statements about instance equality or disjoint-
ness. In DEEP SEMANTICS I consider facts during the generation of ontology instances by
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Figure 3.7: Simplified UML class diagram for the Ontology construct extended with meta-
programming symbols. EBNF of OWL LITE ontology construct in relation to its DEEP SEMANTICS
classes and modules counterparts.

instantiating the corresponding ?ClassLocalName? classes or Ghost classes after the deep in-
tegration process. As all the figures (e. g. Figure 6.2 and Figure 3.7) containing the mappings
between the abstract syntax and DEEP SEMANTICS relate to RUBY classes or modules, and a
fact basically relate to a RUBY instance, facts are not covered in more detail in this section but
later in Subsection 3.6.5 on page 64.

’Annotation()’ directives in EBNF are considered in DEEP SEMANTICS using the
modules AvailableOntologyProperties and AvailableAnnotationProperties. By calling
add_annotation_property(property_id) or add_ontology_property(property_id) one can add
custom annotation properties to the functional ontology model.

The EBNF nonterminal axiom represents either class axioms or property axioms. Figure 3.7
indicates the modality of the relation between an "?OntologyLocalName?" module and ax-
iom related ?ClassLocalName?, ?GhostName?, ObjectProperty, DatatypeProperty and Re-

striction RUBY classes by displaying the corresponding module variables ("@@classes",
"@@ghost_classes", "@@object_properties", "@@datatype_properties" and "@@restric-

tions").

The following list recapitulates the focussed DEEP SEMANTICS modules and classes included
in Figure 3.7:

• «module» ?OntologyLocalName?: Directly maps to the EBNF nonterminal ontology in
the abstract syntax. The module is dynamically generated via meta-programming by
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DEEP SEMANTICS. The modules variables are @@uri_value (saves the URI of the on-
tology),@@ontologies_annotations (the annotations concerning the ontology),@@ini-

tial_instances (an array comprising all instances that have been initially generated during
start-up),@@instances (all instances in the ontology including initial instances and newly
generated ones),@@classes (an array recording all ontology classes),@@ghost_classes

(an array recording all Ghost classes), @@object_properties (an array recording all ob-
ject properties),@@datatype_properties (an array recording all datatype properties) and
@@restrictions (all objects of type Restriction). Additionally the module includes a va-
riety of module methods of which some are representatively described here:

– listClasses: The method returns all ontology classes. Similar methods exist for prop-
erties and instances.

– find_classes_by_label(label): Returns classes that have a certain rdfs:label which is
passed as argument.

– listObjectPropertiesByLevel: This method returns a hash which keys indicate the
object property hierarchy level. The hash values are arrays recording the ontology
classes belonging to the current hierarchy level.

• «module» AvailableOntologyProperties: This module includes a list of all valid on-
tology annotation properties in the module variable @@ontology_properties_list. This
list can be extended using add_ontology_property(property_id) or retrieved using ontol-
ogy_properties.

• «module» AvailableAnnotationProperties: Analogous to AvailableOntologyProperties

this module include a list of all valid annotation properties (except ontology anno-
tation properties) in the module variable @@annotation_properties_list. This list can
be extended using add_annotation_property(property_id) or retrieved using annota-

tion_properties().

Figure 3.8 contains the simplified UML class diagram (extended with meta-programming sym-
bols) for OWL class constructs in DEEP SEMANTICS as well as the EBNF of OWL LITE class
constructs. ?ClassLocalName? ontology classes are dynamically generated during the deep in-
tegration process. The EBNF building block ’Class()’ defines a named OWL class and consists
of an URI reference as its ID, an optional flag ’Deprecated’ defining if this definition is depre-
cated, a nonterminal modality statement, zero or more annotation constructs as well as zero or
more superclass relations (indicated by the nonterminal super). As indicated by "?ClassLocal-
Name?" the name of the ontology class representing RUBY class is derived from the local name
part of the class URI.

In OWL LITE class axioms are used to state that a class is exactly equivalent to, for the modal-
ity ’complete’, or a subclass of for the modality ’partial’, of a collection of superclasses and
OWL LITE restrictions. Both, URI identifiable OWL classes as well as OWL LITE restric-
tions, can be used as superclasses in OWL LITE.

The abstract syntax of class axioms is conceptional incorporated into the DEEP SEMANTICS
implementation as follows: Concerning the mapping of OWL abstract syntax onto RUBY code
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Figure 3.8: Simplified UML class diagram for OWL class constructs extended with meta-
programming symbols. EBNF of OWL LITE class constructs in relation to its DEEP SEMANTICS class
counterpart.

themodality of a class axiom has no effect whatsoever. In the case of the superclass being URI-
identifiable OWL classes, a reference to the corresponding class object is saved in a RUBY
class variable (indicated by the@@super_classes relation in Figure 3.8). If the superclass is a
restriction (valid restrictions in OWL LITE are: all-values-from, some-values-from, minimum
cardinality, maximum cardinality and cardinality) then DEEP SEMANTICS alters the property
associated setter methods for this restriction. If for example an object property has a maximum
cardinality of one then the implementation of the corresponding instance setter method has to
be extended in way that it is guaranteed that at no time more than one value for this property is
stored. Restrictions are also called B-Node classes in OWL with "B" being an abbreviation for
"blank". B-Node classes are classes without an URI. Therefore, superclass relations to B-Nodes
are saved in the class variable@@bnode_super_classes of "?ClassLocalName?".

’EquivalentClasses()’ axioms in EBNF state that two or more URI-identifiable OWL classes
are equivalent. Concerning the implementation of DEEP SEMANTICS ’EquivalentClasses()’ ax-
ioms are used in order to generate exactly one RUBY module that represents the functional
extension of all stated equivalent classes. This module is then inherited in every RUBY class
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representation part of the equivalent classes set. In the deep-integrated model of the ontology
these equivalent classes relate to each other using @@equivalent_classes as indicated in Fig-
ure 3.8. Equivalent B-Node classes constitute a special case. Although the EBNF of the abstract
syntax does imply that only named ontology classes can be elements of ’EquivalentClasses()’
sets, restrictions are actually allowed as equivalent classes (in Figure 3.8 this is indicated by the
@@equivalent_bnode_classes class variable).

OWL LITE does not support the definition of disjointness between ontology classes. However,
DEEP SEMANTICS does because firstly, the inferred models produced by reasoners like PELLET
(Parsia & Sirin, 2004) (which are used as input for DEEP SEMANTICS) include explicit class
disjointness statements and secondly, because disjoint class information is crucial to enable
DEEP SEMANTICS to be consistency safe. I define "consistency safeness" as the following par-
ticular property ontology editing framework: an ontology editing framework is "consistency
safe" if it is not possible to produce any logical inconsistencies as defined by the correspond-
ing ontology language. "?ClassLocalName?" classes provide information about and relations
to, respectively, disjoint classes using@@disjoint_classes and@@bnode_disjoint_classes (see
Figure 3.8).

Recapitulating UML class "?ClassLocalName?":

• Instance variables:

– @instance_annotations: Is an array storing the valid annotation properties.
Per default these are at least "rdfs_label", "rdfs_comment" and for IKEN

"iken_primaryLabel", "iken_isInitialIndividual".

– @local_name: Saves the local name of the instance.

• Class variables:

– @@classes_annotations: Variable holding all used annotation properties for the cur-
rent OWL Class.

– @@local_name: Saves the local name of the class.

– @@namespace: The namespace the class belongs to.

– @@direct_instances: An array, which contains only those instances that have been
created with the initialize() method of this class.

– @@initial_instances: An array which contains the initial instances of this class –
that are those instances that were in the ontology before deep integration and the
start of DEEP SEMANTICS, respectively.

– @@instances: An array which contains all instances of the class.

– @@level: Indicates the classes’ hierarchy level (direct subclasses of owl:Thing are
of level zero).

– @@sub_classes: An array containing all subclasses of the class.

– @@super_classes: An array containing all superclasses of the class.
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– @@equivalent_classes: An array containing all classes that are equivalent to the
current class.

– @@disjoint_classes: An array containing all classes that are disjoint with the cur-
rent class.

– @@bnode_disjoint_classes: An array containing all B-Node classes that are disjoint
with the current class.

– @@equivalent_bnode_classes: An array containing all B-Node classes that are
equivalent to the current class.

– @@bnode_super_classes: An array containing all B-Node superclasses of this
class.

• Instance methods:

– local_name: Returns the value of@local_name.

– types: Returns an array with one element (self.class) to be consistent with theGhost-
Template types method.

• An abstract of the most important class methods:

– self.is_ghost?: Returns FALSE for "?ClassLocalName?" classes.

– self.instances: Returns@@instances – that is all instances of the class.

– self.add_instance(new_instance): A setter method that can be used to add a new
instance to@@instances.

– self.local_name: Returns the value of@@local_name.

– self.super_classes: getter method that returns@@super_classes.

– self.sub_classes: getter method that returns@@sub_classes.

– self.find_instances_by_label(label): A convenient method that determines all in-
stances of class that have the passed label as stored rdfs:label.

A ’Datatype()’ axiom defines how to describe custom data types in OWL. However, as
DEEP SEMANTICS currently does not support the definition of new data types this construct
is not further described in this context.

While the abstract syntax of restrictions as shown in Figure 3.9 in EBNF is quite complex the
related DEEP SEMANTICS class is not. It simply contains the RUBY instance variables @lo-

cal_name,@on_property and@restriction_type. Like it was the case for the already described
ontology constructs (e.g. ?ClassLocalName?) the @local_name variable of Restriction relates
to the local name part of the class URI, too.

The variable @on_property saves the reference to the datatype property or object prop-
erty on which the restriction is defined. In the related EBNF description datavaluedProp-

ertyID and individualvaluedPropertyID model the value stored in @on_property. Variable
@restriction_type is a hash which keys can be one of these strings "all_values_from",
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Figure 3.9: Simplified UML class diagram for the OWL restriction constructs extended with meta-
programming symbols. EBNF of OWL LITE restriction constructs in relation to its DEEP SEMANTICS
class counterpart.

"some_values_from", "min_cardinality", "max_cardinality" and "cardinality". Like defined in
the abstract syntax the values of "all_values_from" and "some_values_from", respectively,
can be either a named ontology class (in the case of object properties) or a datatype (in
the case of datatype properties). The valid values for the keys respectively restriction types
"min_cardinality", "max_cardinality" and "cardinality" are only zero and one.

EBNF property axioms define one of the following constructs: ’DatatypeProperty()’, ’Object-
Property()’, ’AnnotationProperty()’, ’OntologyProperty()’, ’EquivalentProperties()’ or ’Sub-
PropertyOf()’. Figure 3.10 shows the relation of ’DatatypeProperty()’, ’EquivalentProperties()’
and ’SubPropertyOf()’ abstract syntax with DEEP SEMANTICS DatatypeProperty class. Each
OWL datatype property (and object property) is converted into an instance ofDatatypeProperty
(respectively ObjectProperty).

’EquivalentProperties()’ define sets of equivalent properties – in this case datatype properties.
These equivalent properties sets are considered in DEEP SEMANTICS using instance variable
@equivalent_properties in RUBY class DatatypeProperty. Akin is the set ’SubPropertyOf()’ of
super-properties incorporated into DatatypeProperty with@super_properties.

The instance variable@sub_properties stores all sub-properties of the current datatype property.
It serves as a convenient instance variable and is computed byDeepIntegrationBuilderOWLLite.
Details about DatatypeProperty:
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Figure 3.10: Simplified UML class diagram for the OWL datatype property constructs extended
with meta-programming symbols. EBNF of OWL LITE datatype property constructs in relation to its
DEEP SEMANTICS class counterpart.

• Instance variables:

– @property_id: A DEEP SEMANTICS internal integer value uniquely identifying ev-
ery instance of DatatypeProperty.

– @local_name: Saves the local name of the instance.

– @deprecated: Boolean value that indicates whether the property is deprecated.

– @functional: Boolean value that indicates if the property is functional.

– @annotations: Is either boolean false if there are no annotations defined for the
current property or an array holding all used annotation properties for the current
OWL datatype property.

– @level: Indicates the property’s hierarchy level.

– @super_properties: An array containing all super-properties.

– @sub_properties: An array containing all sub-properties.

– @equivalent_properties: An array containing all equivalent properties.

– @domain: All ontology classes that can be used as domain of this property stored
in an array.
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– @range: All ontology classes that can be used as range of this property stored in an
array.

• Instance methods:
– local_name: Returns the local name of the property.

– level: Returns the value of@level.

– deprecated?: Returns TRUE if the property is defined as deprecated.

– functional?: Return value is boolean@functional.

– super_properties: Gives the array@super_properties back.

– sub_properties: Returns@sub_properties.

– equivalent_properties: Return value is@equivalent_properties.

– domain: Gives the array@domain back.

– range: Gives the array@range back.

– add_sub_property(new_sub_property): A setter method that can be used to add a
new datatype properties to@sub_properties.

Similar to the just described datatype properties modeling Figure 3.11 shows the influence of
OWL LITE abstract syntax onto DEEP SEMANTICS ObjectProperty class implementation. Like
the other ontology constructs ’ObjectProperty()’ instances can be stated as being ’Deprecated’
and can have zero or more annotations (symbolized by nonterminal annotation in EBNF and
by@annotations in the class diagram, respectively).

Multiple relations can exist to super-properties (@super_properties), sub-properties
(@sub_properties), equivalent properties (@equivalent_properties), domain (@domain) and
range (@range) classes. In comparison to Figure 3.10 Figure 3.11 differ primarily in re-
spect of additional global constraints that can be defined on object properties. These are in
EBNF notation [’inverseOf(’ individualvaluedPropertyID ’)’], ’Symmetric’, ’InverseFunc-
tional’, ’Functional’ ’InverseFunctional’ and ’Transitive’. As defined in the abstract syntax
of OWL LITE object properties can have at maximum one inverse property [’inverseOf(’

individualvaluedPropertyID ’)’]. An example for an inverse property is: persons own cars,
cars are owned by persons (i.e. "own" is the inverse property of "owned by"). A ’Symmetric’

property P is a property for which holds that if an instance X is related to an instance Y over P
than Y is related over P to X, too. For example: If "isBrotherOf" is a symmetric object property
and the statement "Jacob" "isBrotherOf" "Wilhelm" then it holds that "Wilhelm" "isBrotherOf"

"Jacob".

Additionally object properties can be defined as being ’InverseFunctional’ or both ’Functional’
and ’InverseFunctional’. If an object property is declared to be inverse-functional, then the
object of a property statement uniquely determines the subject individual. As indicated by
the EBNF definition in Figure 3.11 an object property can only be either functional, inverse-
functional, both functional and inverse-functional or transitive. An object property cannot be
for example functional and transitive as this could lead to logical inconsistencies.

Details about ObjectProperty:
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Figure 3.11: Simplified UML class diagram for the OWL object property constructs extended
with meta-programming symbols. EBNF of OWL LITE object property constructs in relation to its
DEEP SEMANTICS class counterpart.

• Instance variables:
– @property_id: A DEEP SEMANTICS internal integer value uniquely identifying ev-
ery instance of DatatypeProperty.

– @local_name: Saves the local name of the instance.

– @deprecated: Boolean value that indicates whether the property is deprecated.

– @functional: Boolean value that indicates if the property is functional.

– @inverse_functional: Boolean value that indicates if the property is inverse-
functional.

– @transitive: If the corresponding OWL object property is defined transitive than the
value of@transitive is TRUE.

– @symmetric: Boolean value that indicates if the property is symmetric.

– @inverse_of : Stores either no or exactly one inverse property of the current prop-
erty.
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– @annotations: Is either boolean false if there are no annotations defined for the
current property or an array holding all used annotation properties for the current
OWL datatype property.

– @level: Indicates the property’s hierarchy level.

– @super_properties: An array containing all super-properties.

– @sub_properties: An array containing all sub-properties.

– @equivalent_properties: An array containing all equivalent properties.

– @domain: All ontology classes that can be used as domain of this property stored
in an array.

– @range: All ontology classes that can be used as range of this property stored in an
array.

• Instance methods:

– local_name: Returns the local name of the property.

– level: Returns the value of@level.

– deprecated?: Returns TRUE if the property is defined as deprecated.

– functional?: Return value is boolean@functional.

– inverse_functional?: Gives back boolean@inverse_functional.

– transitive?: Returns TRUE if the property is defined as transitive.

– symmetric?: Returns the boolean value of@symmetric.

– super_properties: Gives the array@super_properties back.

– sub_properties: Returns@sub_properties.

– equivalent_properties: Return value is@equivalent_properties.

– domain: Gives the array@domain back.

– range: Gives the array@range back.

– add_sub_property(new_sub_property): A setter method that can be used to add new
object properties to@sub_properties.

This section gave a detailed overview about the OWL LITE abstract syntax being the founda-
tion of the DEEP SEMANTICS class architecture. It was shown how ontology definitions are
converted to RUBY modules, ontology classes to RUBY classes, OWL properties and property
restrictions to RUBY objects. The next three sections describe the DEEP SEMANTICS workflows
involved in the deep integrating ontology conversion process.
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Figure 3.12: Activity diagram 1: overview. Creating a deep-integrated RUBY model of an input
OWL LITE ontology (actions are indicated as rounded rectangles in blue; variables as not rounded ones
in green).

3.4 Director: Coordinating Data Workflow and Deep
Integration Process

To coordinate flow and processing steps of ontology data is the main functionality of the
DEEP SEMANTICS Director. Figure 3.12 illustrates the process of Director instance genera-
tion. Before the Director is instantiated one can add zero or more namespaces as well as their
abbreviations to the DEEP SEMANTICS Namespacemodule. In a next step an instance of Deep-
Semantics (in Figure 3.12 indicated as deep_semantics) is created that functions primarily as
an interface for setting up of Director. Using deep_semantics.set_director and passing param-
eters defining the used source adapter, ontology path and ontology model builder one can then
instantiate variable@director.

Figure 3.13 details that @director creates instances of TripleParser and Builder using the pa-
rameters passed. This step is further described in Figure 3.14 showing that first@triple_parser

is instantiated. Then @director creates an instance of OntologyInformation named @ontol-

ogy_information storing information about the current ontology. The next processing step in
Figure 3.14 is then depending on whether the chosen builder is for OWL LITE or OWL DL.
For the following activity diagrams we assume that@director creates an instance of DeepInte-
grationBuilderOWLLite saved in builder. Next@director registers the used builder in@ontol-

ogy_information.

After processing activity 3 the next director action shown in Figure 3.13 is the creation of an
instance of Adapter and the import of the ontology triples using this adapter. Activity diagram
4 in Figure 3.15 illustrates that@ontology_information is used by@director to decide whether
an instance of DBAdapter or an instance of FileAdapter has to be created and saved in variable
adapter. Next @director registers the used adapter using @ontology_information. After that
@director invokes the get_triples()method of adapter and returns the variable triples_set which
contains a record of all ontology triples.
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Figure 3.13: Activity diagram 2: Director. Creation of a Director instance that triggers the parsing and
the deep integration process (actions are indicated as rounded rectangles in blue; variables as not rounded
ones in green).

Figure 3.14: Activity diagram 3: TripleParser. Creation of a TripleParser and a Builder instances
(actions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

We get back to activity diagram 2 (Figure 3.13) and see that the next action is @director trig-
gering the parsing of the triples and the deep integration process. Activity diagram 5 in Fig-
ure 3.16 comprises the details of this action: If triples_set contains no triple then this pro-
cessing step is finished – as well as the complete ontology conversion process. Otherwise
@director invokes the parse_triples_set() method of @triple_parser passing triples_set as in-
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Figure 3.15: Activity diagram 4: Adapter. Creation of an Adapter and import of the ontology triples
(actions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

Figure 3.16: Activity diagram 5: triple parsing and ontology conversion. Parsing the ontology triples
and deep integration (actions are indicated as rounded rectangles in blue; variables as not rounded ones
in green).

put – the corresponding activity diagram describing the parsing process is further described
in Section 3.5 starting with activity diagram 6. Method parse_triples_set() returns two arrays
new_abox_template_values and new_tbox_template_values.
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Figure 3.17: Activity diagram 6: parsing details. Details of the ontology triples parsing process (ac-
tions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

After the ontology triples are parsed into pre-processed template values first the TBox is deep-
integrated. If at least one TBox template value is existing@director invokes the processTBox()
method of builder passing the new TBox template values as input (see activity diagram 14 in
Section 3.6 starting page 55). With the TBox being converted and if at least one ABox template
value exists @director invokes the processABox() method of builder passing the new ABox
template values as input (see activity diagram 19 in Section 3.6). These deep integration actions
are described in detail in Section 3.6.

3.5 Triple Parser: Mapping OWL Triples to an Abstract
Syntax Based Representation in RUBY

DEEP SEMANTICS’ class TripleParser, respectively a RUBY instance of it, is responsible for
mapping OWL triples to an abstract syntax based representation in RUBY. Figure 3.17 shows
the two top-level steps of the ontology triples parsing process: a) @triple_parser invokes the
method parse_tbox() to pre-process the TBox triples (activity diagram 7) and b)@triple_parser

invokes then the method parse_abox() to pre-process the ABox triples (activity diagram 12). To
sum up TripleParser reads the ontology triples in triples_set, parses them and returns the two
variables new_tbox_template_values and new_abox_template_values storing the pre-processed
values for the later deep integration. The details of the triple parsing process are described in
the next subsection.

3.5.1 The Triple Parsing Process

The triple parsing process comprises all processing steps that are needed to convert a set of input
ontology triples into a set of pre-processed template values. These template values can then be
used to deep integrate the functional ontology model. The parsing process itself is complex.
Activity diagram 7 (as shown in Figure 3.18) which constitutes the pipeline of the primary
parsing step comprises eleven actions alone – with two of these actions (action 4 and 8) being
further described in activity diagram 8 (Figure 3.19) and 11 (Figure 3.22). In the following list
all eleven actions are described in order of their invocation:
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Figure 3.18: Activity diagram 7: TBox parsing. Details for the TBox parsing process (actions are
indicated as rounded rectangles in blue; variables as not rounded ones in green).

1. @triple_parser invokes the delete_swrl_triples() method of triples_set. This action is
required to delete possible SWRL related triples in the ontology as they are not needed
for DEEP SEMANTICS but would extend the computing time of triple parsing.

2. @triple_parser deletes all triples with owl:Nothing as subject and/or object using
the methods find_by_S() and find_by_O() of triples_set. Comment: triples including
owl:Nothing do not encode any utilizable information with regard to the functional RUBY
ontology model. As the case for SWRL triples in the previous action do these triples
only extend the required computing time without having any functional relevance for
DEEP SEMANTICS. The methods find_by_S() and find_by_O() are convenient methods
that all exploit the fundamental method findTriple(). findTriple() implements the func-
tionality to fetch all triples from triples_set that match to an arbitrary combination of
subject, predicate and object patterns. For example find_by_S() in turn can be used to
pass a subject pattern with predicate and object values being irrelevant.

3. @triple_parser deletes all triples with owl:Thing as subject using the method
find_by_S() of triples_set. Triples with owl:Thing in the subject are not utilizable
for DEEP SEMANTICS and therefore omitted.

4. @triple_parser invokes the method parse_all_properties(). This method is used to parse
all datatype property and object property triples. Details are shown in activity diagram 8
in Figure 3.19
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Figure 3.19: Activity diagram 8: property parsing. The property parsing process (actions are indicated
as rounded rectangles in blue; variables as not rounded ones in green).

5. @triple_parser invokes the method parse_equivalent_properties_triples(). Triples defin-
ing equivalence between datatype properties and triples defining equivalence between
object properties are parsed and integrated into the corresponding template value objects.

6. @triple_parser invokes the method parse_sub_property_triples(). Sub-property relations
defining triples are parsed and integrated into the corresponding template value objects.

7. @triple_parser invokes the method parse_ontology_triples(). This method fetches and
parses all ontology construct related triples using find_by_PO(’rdf:type’, ’owl:Ontology’)
– that means all triples with predicate rdf:type and object owl:Ontology are considered
for this step.

8. @triple_parser invokes the method parse_all_classes(). This method parses all OWL
URI classes, all OWL classes with blank nodes as subject as well as all restrictions (which
are also ontology classes). Details are shown in activity diagram 11 as illustrated in Fig-
ure 3.22.

9. @triple_parser invokes the method parse_disjoint_classes_triples(). Triples defining dis-
jointness between ontology classes are parsed and integrated into the corresponding class
template value objects.

10. @triple_parser invokes the method parse_equivalent_classes_triples(). Analogous to the
previous action triples defining equivalence between ontology classes are parsed and in-
tegrated into the corresponding class template value objects.

11. @triple_parser invokes the method parse_sub_class_of_triples(). Subclass relations
defining triples are parsed and integrated into the corresponding template value objects.

Property parsing as shown in Figure 3.19 includes two distinct actions. Firstly,@triple_parser

invokes its method parse_all_datatype_property_triples() to parse all datatype property related
triples. Secondly, does @triple_parser invoke the method parse_all_object_property_triples()
to parse analogously all object property related triples.

Activity diagram 9 in Figure 3.20 illustrates the detailed datatype property parsing process. The
first action in this activity diagram states the following: @triple_parser fetches all triples that
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Figure 3.20: Activity diagram 9: datatype property parsing. The datatype property parsing process
(actions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

have a predicate rdf:type and an object owl:DatatypeProperty using the method find_by_PO()
of triples_set.

The found triples are temporary stored in the variable all_found_triples and further
processed as described in the next action: @triple_parser takes and deletes the first
triple from all_found_triples and invokes the method parse_datatype_property_triples()

with this triple as parameter – parse_datatype_property_triples() for example identifies
triples defining whether the particular datatype property is a functional property calling
find_by_SPO(datatype_property.block_id, ’rdf:type’, ’owl:FunctionalProperty’). The returned
datatype_property variable contains the parsed datatype property template value object that is
then added to array@new_tbox_template_values by@triple_parser. If no more triples are left
in all_found_triples datatype property parsing is completed. Otherwise @triple_parser takes
and deletes the next triple from all_found_triples.

Figure 3.21 shows the details of the object property parsing process which resembles datatype
property ones:

• @triple_parser fetches all triples that have a predicate rdf:type and an object
owl:ObjectProperty using the method find_by_PO() of triples_set and returns the found
triples recorded in all_found_triples.
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Figure 3.21: Activity diagram 10: object property parsing. The object property parsing process (ac-
tions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

• @triple_parser takes and deletes the first triple from all_found_triples and invokes the
method parse_object_property_triples() with this triple as parameter. The returned ob-

ject_property variable contains the parsed object property template value object.

• @triple_parser adds object_property to the array@new_tbox_template_values.

• If no more triples are left in all_found_triples object property parsing is completed. Other-
wise@triple_parser takes and deletes the next triple from all_found_triples as illustrated
in Figure 3.21.

The details of ontology class parsing are illustrated in Figure 3.22. The shown activity diagram
starts with @triple_parser fetching all triples that have a predicate rdf:type and an object
owl:Class using the method find_by_PO() of triples_set returning all_found_triples. The next
action displays@triple_parser taking and deleting the first triple from all_found_triples. If the
triple has a B-Node as subject @triple_parser invokes the method parse_restriction_triples()

with this triple as parameter. The parsing output value restriction – an instance of
DEEP SEMANTICS class RestrictionValues – is then added by @triple_parser to the
@new_tbox_template_values array.

If the triple on the other hand has not a B-Node as subject@triple_parser invokes the method
parse_class_triples() with this triple as parameter. In this case the output is stored in klass. Like
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Figure 3.22: Activity diagram 11: class parsing. The class parsing process (actions are indicated as
rounded rectangles in blue; variables as not rounded ones in green).

Figure 3.23: Activity diagram 12: ABox parsing. The ABox parsing process (actions are indicated as
rounded rectangles in blue; variables as not rounded ones in green).

restriction above variable klass is added to @new_tbox_template_values, also. In either case
– whether a URI class or a restriction has just been parsed – the process is re-iterated until
all_found_triples is empty.
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Figure 3.24: Activity diagram 13: instance parsing. The OWL individuals parsing process (actions
are indicated as rounded rectangles in blue; variables as not rounded ones in green).

After considering class triples TBox parsing is complete. Taking a look back on Figure 3.17
we see that the next process action states that @triple_parser now invokes the method
parse_abox(). The ABox parsing is covered by activity diagram 12. This activity diagram is
illustrated in Figure 3.23. It contains three primary actions:

1. @triple_parser invokes the method parse_same_individual_triples(). The built-in OWL
property owl:sameAs links an individual to an individual indicating that both individuals
are identical. This method parses the corresponding triples and generates RUBY instances
of SameIndividualValues with each of these instances representing a set of mutual identi-
cal instances.

2. @triple_parser invokes the method parse_different_individuals_triples(). An
owl:differentFrom statement indicates that two URI references refer to different in-
dividuals. Analogous to the previous processing of identical individuals this method
parses triples defining sets of mutual exclusive individuals. The method generates RUBY
instances of DifferentIndividualsValues with each of these instances representing a set of
mutual exclusive instances.

3. @triple_parser invokes the method parse_individual_triples(). An individual has to be
an rdf:type of either OWL class or OWL restriction. Method parse_individual_triples()
parses all individual related triples in triples_set – except the ones already considered in
the two actions before. Because this parsing step is quite complex it is illustrated in its
own activity diagram in Figure 3.24 which is described in the following:
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(a) At this point of the parsing process only type definitions for OWL instances are
still left in triples_set.@triple_parser fetches all remaining triples that have a pred-
icate rdf:type using the method find_by_P() of triples_set and stores them in a new
instance of TripleSet named instance_types_triple_set.

(b) @triple_parser takes an object values of typeClassValues or RestrictionValues from
@new_tbox_template_values.

(c) @triple_parser fetches all triples that have rdf:type as predicate and the URI of
values as object using the method find_by_PO() of triples_set. The fetched triples
are stored in all_found_triples.

(d) @triple_parser processes each triple of all_found_triples and generates the corre-
sponding IndividualValues objects including annotations of these individuals as well
as property and value pairs (facts about the individual and instance, respectively).

At this point of the DEEP SEMANTICS processing pipeline the ontology triples have been read
in using an instance of SourceAdapter and parsed into ABox and TBox related instances of
TemplateValues using an instance of TripleParser. The next and last major conversion step is
the deep integration of the OWL ontology into the RUBY functional ontology model described
in detail in the following Section 3.6.

3.6 Deep Integration Builder

Deep Integration Builder takes the parsed template values of the corresponding ontology defini-
tion, ontology classes, properties and instances, and converts these into a consistent functional
ontology model in RUBY. The currently available implementation of Deep Integration Builder

is the RUBY class DeepIntegrationBuilderOWLLite. DeepIntegrationBuilderOWLLite first con-
verts the TBox ontology classes and property axioms, deep integrates these into a functional
model and then generates the ABox instances.

Figure 3.25 illustrates the activity diagram of the ontology TBox deep integration. This activity
diagram reads in variable template_values, comprises thirteen sophisticated actions and after
the execution of these actions returns the functional TBox @ontology_model. The following
list details the thirteen actions:

1. The builder takes the ontology_values object being part of template_values and invokes
the method newOntology() with this object as parameter. The details for this action are
described in Subsection 3.6.1.

2. The builder takes all DatatypePropertyValues and ObjectPropertyValues objects from
template_values and for every object iteratively invokes either the method newDatatype-
Property() or newObjectProperty() with the respective object as parameter. The details
for this action are described in Subsection 3.6.2.
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Figure 3.25: Activity diagram 14: TBox deep integration. The deep integration of the ontology TBox
activity (actions are indicated as rounded rectangles in blue; variables as not rounded ones in green).

3. Next builder takes all EquivalentPropertyValues objects from template_values and for
every object it iteratively invokes either the method alterDatatypeProperties() or alter-
ObjectProperties() with the respective object as parameter. As the ontology properties
have been already converted into RUBY objects in the previous action this action extends
the@equivalent_properties (see Figure 3.10 for RUBY class DatatypeProperty and Fig-
ure 3.11 for RUBY class ObjectProperty) variable in case the corresponding property is
stored in an EquivalentPropertyValues set.

4. In the fourth action builder takes all ClassValues objects from template_values and for
every object iteratively invokes the method newClass() with the object as parameter. The
details for this action are described in Subsection 3.6.3 (including the consideration of
Restriction objects).

5. Next builder takes all RestrictionValues objects from template_values and iteratively in-
vokes the method newRestriction()with the object as parameter for every object. The gen-
erated Restriction objects (see also Figure 3.8) are important for the meta-programming
of the RUBY ontology classes described in subsequent action.

6. Here builder takes all IntersectionValues objects from template_values and iteratively
invokes the method newIntersection() with the object as parameter for every object. In
OWL LITE multiple domain and range assertions for a property constitute intersections
of the included ontology classes.
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7. In the seventh action builder takes all SequenceValues objects from template_values and
for every object iteratively invokes the method newSequence() with the object as param-
eter. In OWL LITE sequences can be part of DifferentIndividuals constructs.

8. Now builder takes all EquivalentClassesValues and DisjointClassesValues objects from
template_values and for every object iteratively invokes the method alterClasses() with
object as parameter. alterClasses() extends as the case may be the@@equivalent_classes,
@@equivalent_bnode_classes, @@disjoint_classes and/or @@bnode_disjoint_classes

variables (see also Figure 3.8 for details of dynamically generated ?ClassLocalName?

RUBY classes).

9. Next builder invokes the method determine_level_of_classes(). This method computes
for each ontology class its level in the class hierarchy – starting at zero for root classes.
The level value of a class can be of use for example for printing out all ontology classes
by level.

10. builder invokes the method determine_level_of_properties(). Analogous to deter-

mine_level_of_classes() does this method compute for each property the level in its
hierarchy – starting at zero for root properties.

11. Next builder invokes the method transformClassHierarchyReferencesForDILite(). Trans-
form sub-class-of and equivalent-class reference strings into their corresponding RUBY
constructs.

12. In the twelfth action builder invokes the method transformPropertyDomainAndRan-

geReferences(). Like the previous method this one transforms the representations of ref-
erences to domain and range values from strings to corresponding RUBY constructs.

13. At last builder invokes the method deep_integrate(). This method assembles the previ-
ously converted RUBY ontology classes and properties, and produces an integrated func-
tional ontology model. The details for this action are described in Subsection 3.6.4.

3.6.1 Conversion of the OWL Ontology Definition into a RUBY Module

Figure 3.26 shows the activity diagram that illustrates the conversion of the ontology definition
into a RUBY module. This RUBY module is thereby dynamically generated and has the struc-
ture shown in Figure 3.7. The first action of Figure 3.26 comprises builder invoking the method
buildOntology() of the module OntologyTemplate (see also Figure 3.3) with the object ontol-
ogy_values as parameter. OntologyTemplate then takes the ontology construct parameters saved
in ontology_values and generates a string named ontology_model_string representing the code
for the ontology model RUBY module. builder invokes the RUBY method module_eval() with
the string ontology_model_string as parameter to convert the string into a RUBY module having
the structure shown as ?OntologyLocalName? in Figure 3.7. The return value of module_eval()
is@ontology_model saving the not yet completely integrated ontology model.
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Figure 3.26: Activity diagram 15: ontology module creation. Conversion of the OWL ontology defi-
nitions into a RUBY module (actions are indicated as rounded rectangles in blue; variables as not rounded
ones in green).

3.6.2 Conversion of OWL Properties into RUBY Objects

Figure 3.27 shows the conversion of ontology properties – both datatype properties and ob-
ject properties – into RUBY objects. Illustrated is activity diagram 16 starting with a condition
branching the process flow dependent on the type of property.

Conversion of Datatype Properties

For datatype properties, builder invokes the method newDatatypeProperty() of @ontol-

ogy_model with the object datatype_property_values as parameter. Inside of newDatatype-
Property() the method PropertyTemplate.buildDatatypeProperty() is called which produces
a RUBY instance of DatatypeProperty temporally stored in variable new_datatype_property

(see also Figure 3.10). Next @ontology_model adds new_datatype_property to its array
@@datatype_properties.

At the end of datatype property conversion, the corresponding DatatypeProperty instance in-
cludes variables and methods handling the local name of the property, the level of the property
in the hierarchy, functionality to check if the property is deprecated or functional. Additional
variables save super-properties, sub-properties and equivalent-properties of the described prop-
erty. The domains and ranges can be retrieved as well by using the provided methods domain
and range.
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Figure 3.27: Activity diagram 16: property object creation. Conversion of the OWL properties into
RUBY objects (actions are indicated as rounded rectangles in blue; variables as not rounded ones in
green).

Conversion of Object Properties

If the processed template values correspond to an object property builder invokes the method
newObjectProperty() of @ontology_model with the object object_property_values as param-
eter. Next @ontology_model invokes the method buildObjectProperty() of PropertyTemplate
with object_property_values as parameter. The generated new_object_property object is added
by@ontology_model to its array@@object_properties.

Similar to the result of datatype property conversion does the corresponding ObjectProperty in-
stance include the same variables and methods. However,ObjectProperty instances additionally
include the variables @inverse_functional, @transitive, @symmetric and @inverse_of. Values
of these variables can be retrieved with related setter methods (see also Figure 3.11).

3.6.3 Conversion of OWL Classes into RUBY Classes

Activity diagram 17 illustrated in Figure 3.28 describes the conversion of named OWL classes
into RUBY classes. Firstly, builder invokes the method newClass() of @ontology_model with
the object class_values as parameter. Secondly, @ontology_model invokes the method build-

Class() of ClassTemplate with class_values as parameter. Thirdly, the newly created class
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Figure 3.28: Activity diagram 17: RUBY ontology class creation. Conversion of the OWL classes
into RUBY classes (actions are indicated as rounded rectangles in blue; variables as not rounded ones in
green).

is stored in new_class and added by @ontology_model to the array @@classes of @ontol-

ogy_model.

This conversion produces a meta-programmed RUBY class representing an ontology class. In
Figure 3.8 such a class is modeled with the extended UML class diagram ?ClassLocalName?.
The RUBY ontology class comprises at this point of processing for example class and instance
variables for local names as well as class variable @@instances which – in combination with
getter and setter methods – allows the access of all instances of the ontology class.

3.6.4 TBox Deep Integration – Assembling of the Deep Integrated RUBY

Properties and Classes into a consistent RUBY Representation of the
Ontology

Figure 3.29 illustrates the processing steps for the assembling and deep integration of ontology
classes and properties into functional ontology model in RUBY. This last step of the TBox deep
integration is relatively complex including twelve actions as well as four conditions and one
fork and join pair. The following list describes the sequence of actions in activity diagram 18:

1. builder invokes the method process_datatype_properties_inheritance(). @ontol-

ogy_model uses its method listDatatypePropertiesByLevel() to iterate over datatype
properties by hierarchy level. For each datatype property the following three methods are
called:

(a) process_domain_inheritance(datatype_property): The sub-property inherits all do-
mains of the parent property. If a domain of a parent property is a superclass of an
existing domain of sub-property this class has not to be added to the sub-property’s
domain. Domain inheritance works identical for datatype and object properties.

(b) process_range_inheritance(datatype_property): The sub-property inherits all
ranges of the parent property. As ranges for datatype properties are datatypes
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Figure 3.29: Activity diagram 18: deep integration details 1. Assembling and deep integration of the
classes and properties into an ontology model in RUBY (actions are indicated as rounded rectangles in
blue; variables as not rounded ones in green).

and the definition of multiple ranges for datatype properties can very easily lead
to problems (e. g. "What is the intersection of datatypes integer and boolean?"),
ontology designers should be very careful about what ranges they define.

(c) process_global_restriction_inheritance(datatype_property): The sub-property in-
herits functional property membership of its super-property. Note that if a super-
property is not defined to be functional but the sub-property is, than there is no
inheritance – i. e. the child does not inherit the missing of a feature from its parent.

2. builder invokes the method process_object_properties_inheritance(). This method does
basically the same on object properties as process_datatype_properties_inheritance() on
datatype properties. However, there are two important differences:

(a) process_range_inheritance(object_property): For object properties range inheri-
tance is important. The sub-property inherits all ranges of the parent property. If
a range of a parent property is a superclass of an existing range of the sub-property
this class has not to be added to the range of the sub-property.

(b) process_global_restriction_inheritance(object_property): For object properties
global restriction inheritance additionally comprises consideration of inverse-
functional statements.
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3. builder invokes the method process_bnode_superclass_inheritance(). While inherited
URI superclasses are made explicit by the PELLET reasoner the same is not the case
for B-Node superclass inheritance. This method therefore determines all B-Node super-
classes – that is restrictions – of every URI superclass of a class and adds them to@@bn-

ode_super_classes_values of this particular class.

4. In the fourth action builder invokes the method listClassesByLevel() of@ontology_model

and assigns it to a temporary hash variable classes_by_level_hash.

5. Next builder takes and deletes the first entry from classes_by_level_hash. The return
values are level (the key of the hash) indicated the level of the classes stored in array
classes_array (the value of the hash).

6. In the sixth action builder takes and deletes the first entry klass from classes_array.
Which action is carried out next dependents on whether modeled ontology class in klass
has recorded equivalent classes or not.

7. If klass does not contain equivalent classes statements then builder sets module_name to
"Module#klass.local_name". The successive processing step is action 9.

8. Otherwise builder generates the module_name string of the module that represents the
equivalent classes set in RUBY. If a constant named like the string saved in module_name
is not already existing in module @ontology_model then the successive processing step
is action 9 otherwise 12.

9. builder creates a new constant pointing to the newly generated model new_module in
@ontology_model named module_name.

10. Further progressing builder invokes the method deep_integrate_datatype_properties_for_class()
passing parameters klass and new_module. This processing step is described in detail in
"Deep integration of properties into related ontology classes in RUBY " below.

11. Progressing from previous action builder now invokes its method deep_integrate_object_properties_for_c
passing klass and new_module as parameters. This processing step is also described in
detail in "Deep integration of properties into related ontology classes in RUBY " below.

12. If a constant named like the string saved inmodule_name exists after action 8 then builder
adds the module that represents the classes set as an RUBY include to klass.

In summary describing the actions in Figure 3.29 one can put on record how assembling and
deep integration of converted classes and properties into a consistent and functional ontology
model in RUBY functions. However, as consideration of property domain statements – regarding
source code implementation – requires meta-programming of the corresponding ontology class
implementations, the details of this deep integration of properties is described in detail next.
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Figure 3.30: Schematic illustration of the deep integration of an example property.
The namespace abbreviations are: xmls := http://www.w3.org/2001/XMLSchema#; rdf :=
http://www.w3.org/1999/02/22-rdf-syntax-ns#; rdfs := http://www.w3.org/2000/01/rdf-schema#;
owl := http://www.w3.org/2002/07/owl#

Deep integration of properties into related ontology classes in RUBY

Property deep integration into relevant ontology classes involves the generation of property
related instance variables, setter and getter methods. Figure 3.30 shows an example from
BIO2ME of such a deep integration process. On the left side (1) the class (Program) and
property (hasLicenseType) defining triples are shown – the relevant namespaces are described
in the caption. As displayed by a blue arrow these triples are mapped to RUBY implementation
of ontology class Program – here shown as its UML class diagram representation (2). The next
blue arrow indicates mapping of this UML class diagram on its complying RUBY source code,
dynamically generated using meta-programming by DEEP SEMANTICS. This implementation
comprises the related instance variable @hasLicenseType_values, setter method hasLicense-

Type=(new_value) and getter method hasLicenseType().

Implementation of getter methods is simple. They only return the value of the corresponding
attribute variable. For isUsedInProgram from BIO2ME– as an additional example to the one
shown in Figure 3.30 – the generated code by DEEP SEMANTICS is the following:
def isUsedInProgram

return @isUsedInProgram_values
end

In contrast setter methods can be considerably more complex as cardinality and type constraints
can be involved (compare the example in Figure 3.30 with a maximum cardinality on prop-
erty hasLicenseType contained for instance). However, this complexity is required to ensure
that DEEP SEMANTICS ABox operations do not lead to logical inconsistencies (that means
DEEP SEMANTICS is consistency safe).

It is important to mention that some additional implementation complexity is omitted because
DEEP SEMANTICS does not support additional inference functionality. Instead it should be used
in tandem with a specialized OWL reasoner like PELLET. Chapter 4 describes the IKEN se-
mantic application, which is an example for cooperative application of DEEP SEMANTICS with
PELLET.
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DEEP SEMANTICS considers any maximum or absolute cardinality and some-values-from as
well as all-values-from restrictions. Minimum cardinality restrictions lead to the fact that the
corresponding property cannot be used with the restriction-related ontology class anymore. Ad-
ditionally, it integrates the global cardinality induced by functional property declarations and in-
verse functional restrictions. The described adjustment to the practical needs of Semantic Web
developers – no inference support and consistency safeness – lead to the inclusion of OWL
logic constraints as specified in Table 3.1 and Table 3.2 on page 88 and 89, respectively.

Concluding this subsection the following listing shows an example meta-programmed source
code of a settermethod for a functional and inverse functional object property with an additional
local all-values-from restriction:

Listing 3.1: An concluding setter method example
1 def isMarriedTo=(new_value)
2 if new_value.kind_of?(Thing)
3 if !new_value.used_already_as_value?("isMarriedTo")
4 if (new_value.types.include?(Person) || new_value.class.super_classes.include?(Person))

&& (new_value.types.include?(Adult) || new_value.class.super_classes.include?(Adult)
)

5 if @isMarriedTo_values
6 if (@isMarriedTo_values.size < 1)
7 @isMarriedTo_values_values << new_value
8 new_value.used_already_as_value("isMarriedTo")
9 else
10 @isMarriedTo_values[0] = new_value
11 @isMarriedTo_values[0].used_not_already_as_value("isMarriedTo")
12 new_value.used_already_as_value("isMarriedTo")
13 end
14 else
15 @isMarriedTo_values_values = Array.new
16 @isMarriedTo_values_values << new_value
17 new_value.used_already_as_value("isMarriedTo")
18 end
19 else
20 puts "#{new_value.local_name} cannot be used as value of isMarriedTo!"
21 end
22 else
23 puts "#{new_value.local_name} has already been used and cannot be used again with an

inverse functional property!"
24 end
25 end
26 end

3.6.5 ABox Deep Integration – Conversion of Instances into RUBY Ob-
jects

Figure 3.31 illustrates the conversion of all ontology instances into RUBY objects and in-
stances of the RUBY classes, dynamically generated during TBox deep integration. Conver-
sion of the ABox constitutes the last step of DEEP SEMANTICS’ meta-programming-based
deep integration pipeline. Activity diagram 19 in Figure 3.31 starts with builder invoking the
method remove_superclass_types_and_transform_references() with template_values as param-
eter and overwriting template_values with the method’s return value. This method call re-
move_superclass_types_and_transform_references() reduces the number of type definitions in
IndividualValues objects to include only direct types – not inherited superclasses.
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Figure 3.31: Activity diagram 19: deep integration details 2. Conversion of the OWL instances into
RUBY objects (actions are indicated as rounded rectangles in blue; variables as not rounded ones in
green).

The next action describes builder invoking method transform_values_references() with tem-

plate_values as parameter. Next builder takes and deletes the first IndividualValues object from
template_values and stores it in individual_value. If IndividualValues object stored in individ-
ual_value has more than one related ontology class in its types variable, and all of this classes
are different, then the related instance belongs to a Ghost class. If IndividualValues object does
only belong to one ontology class (or has multiple but mutually equal type-classes) then builder
creates a new OWL instance object using the method new() of the first type-class – the corre-
sponding ontology instance is therewith deep-integrated.

If an instance has multiple types builder determines RUBY modules and names of all distinct
type-classes as well as the classes themselves. The return variables are intersected_names, inter-
sected_modules and intersected_classes. Further progressing from the previous action builder
creates names for the required module (module_name) and the corresponding required Ghost

class (ghost_name). If a constant called module_name exists in@ontology_model then builder
fetches the corresponding Ghost class (described in activity diagram 21 shown in Figure 3.33
on page 67), otherwise builder creates a new Ghost class (this is described in activity diagram
20 shown in Figure 3.32).

Figure 3.32 illustrates the creation of a new Ghost class and an instance of it. The six actions
building up activity diagram 20 are:
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Figure 3.32: Activity diagram 20: Ghost creation. Creation of a new Ghost class followed by the
initialization of an instance of it (actions are indicated as rounded rectangles in blue; variables as not
rounded ones in green).

1. builder invokes method newGhostClass() of @ontology_model with ghost_name as pa-
rameter. The return value new_ghost references a meta-programmed RUBY class.

2. builder saves references to each intersected class in new_ghost.intersected_classes.

3. Next builder creates a new RUBY module in@ontology_model using the built-in method
const_set() – the new module is temporarily stored in new_module.

4. Following up builder deep integrates the intersected modules into new_module using
deep_integrate_ghost_class().

5. Then builder adds new_module to new_ghost using RUBY’s built-in include.

6. In a last step builder creates the new ontology instance RUBY object using method new()
of new_ghost.

Fetching an existing Ghost class and then creating an instance of it is shown in Figure 3.33. The
builder invokes method getGhostClass() of @ontology_model with ghost_name as parameter.
The result is stored in ghost which is used next by builder to create the new OWL instance
object using its new method.

In this chapter we have so far learned about DEEP SEMANTICS architecture, its conceptual re-
lation to OWL LITE abstract syntax, and the complex details of how a set of RDF triples is
read, parsed, converted and finally assembled into a functional ontology model. The remaining
sections describe how a deep-integrated ontology can be utilized (Section 3.7) – including an
example semantic application implemented from scratch – and how DEEP SEMANTICS com-
pares to other Semantic Web frameworks.
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Figure 3.33: Activity diagram 21: using an existing Ghost class. Fetching of an existing Ghost class
followed by the creation of an instance of this Ghost (actions are indicated as rounded rectangles in blue;
variables as not rounded ones in green).

3.7 Utilization of the Deep Integrated Ontology

3.7.1 Using DEEP SEMANTICS to convert an Ontology into a RUBY Rep-
resentation

Exploiting the benefits of DEEP SEMANTICS is straightforward. Assuming that an ontology is
available the programmer in charge can incorporate a functional representation of this ontology
using DEEP SEMANTICS with the following lines of RUBY code:

Listing 3.2: Using DEEP SEMANTICS to create a functional model of IKEN

1 require File.join(/DeepSemantics/active_semantics.rb’)
2 require File.join(/DeepSemantics/Helper/namespaces.rb’)
3
4 Namespaces.add_namespace(’http://www.i-ken.de/iken3.owl#’, ’iken:’)
5
6 $deep_semantics = DeepSemantics.instance
7 $iken = $deep_semantics.set_director({’adapter’ => ’FileAdapter’, ’ontology_source’ => ’/

iken_inferred3.nt’, ’builder’ => ’DeepIntegrationBuilderOWLLite’})

3.7.2 Working with OWL Classes, Properties and Instances in
DEEP SEMANTICS

At first we have to include the required DEEP SEMANTICS files into our example script:

Listing 3.3: Including DEEP SEMANTICS into custom RUBY code
1 require File.join(/DeepSemantics/active_semantics.rb’)
2 require File.join(/DeepSemantics/Helper/namespaces.rb’)

Then we add the namespace of our example ontology in line 4 to the module Namespaces

and create an instance of DeepSemantics that we pass to a variable $deep_semantics. Fur-
thermore, we specify with set_director() the used director settings as follows (line 7): 1)
use a file adapter to read the ontology triples from an N-Triple file that 2) can be accessed
by the DEEP SEMANTICS director over the declared path and 3) choose the DeepIntegra-

tionBuilderOWLLite builder to be used for the creation of the ontology. We get back the con-
verted functional ontology representation in RUBY and save this model in variable example:
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Listing 3.4: Adding the namespace of the ontology and creating an functional ontology model
1 Namespaces.add_namespace(’http://www.ontoverse.org/example.owl#’, ’example:’)
2
3 deep_semantics = DeepSemantics.instance
4 example = $deep_semantics.set_director({’adapter’ => ’FileAdapter’, ’ontology_source’ => ’/

example_inferred3.nt’, ’builder’ => ’DeepIntegrationBuilderOWLLite’})

Now that we can use the functional ontology model we access the ontology concept Protein
and print out its rdfs:label assertions. What is of special interest here is that we can access the
concept Protein just like any other RUBY class – ontology classes and RUBY classes are at this
point functionally equal. First we print out the labels array and then using this array in a loop
construct every single label on its own line:

Listing 3.5: Printing out the labels of class Protein
1 puts "1. Print out all rdfs:label values for Protein as array:"
2 puts example::Protein.rdfs_label
3 puts # This produces just an empty line in the output.
4 puts "2. Get the rdfs:label values array of Protein and print out each rdfs:label element

separately:"
5 example::Protein.rdfs_label.each do |label|
6 puts label
7 end

We get the following output:

> 1. Print out all rdfs:label values for Protein as array:

> ["protein", "Protein", "albumine"]

>
> 2. Get the rdfs:label values array of Protein and print out each rdfs:label element sepa-

rately:

> protein

> Protein

> albumine

Next we want to see all labels of every instance of Protein. For this kind of tasks
DEEP SEMANTICS offers the convenient method instances() for every ontology class. The cor-
responding listing is very straight forward:

Listing 3.6: Printing out the labels of every Protein instance
1 puts "Print for every protein instance all labels:"
2 example::Protein.instances.each do |protein_instance|
3 protein_instance.rdfs_label.each do |label|
4 puts label
5 end
6 puts
7 puts "--next protein--"
8 puts
9 end

The output we get looks like this:
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> Print for every protein instance all labels:

> hemoglobin

> haemoglobin

>
> –next protein–
>
> myoglobin

>
> –next protein–
>
> DNA polymerase

>
> –next protein–
>
> collagen

>
> –next protein–
>
> actin

>

Now what about extending the ABox? Using DEEP SEMANTICS this is quite easy and does
not require any workarounds. Like with any other RUBY class we use the constructor method
new() of Protein and BiologicalFunction to create new instances of these classes. The ontology
class Protein is the domain of the datatype property hasMolecularWeight(). DEEP SEMANTICS
has incorporated this property into the code of Protein as RUBY instance method. We use this
instance method to add the relevant molecular data to our new instance insulin. The code looks
like this:

Listing 3.7: Creating a Protein and a BiologicalFunction
1 insulin = example::Protein.new("insulin")
2 insulin.hasMolecularWeight("5808") #in Dalton
3
4 glucoseRegulation = example::BiologicalFunction.new("GlucoseRegulation")

With the following statements we fetch the instance with the name "insulin" that we have just
created and add to it the instance glucoseRegulation as biological function of insulin using the
method hasBiologicalFunction().

Listing 3.8: Adding information about its molecular function to insulin
1 insulin = iken.get_instance("insulin")
2
3 insulin.hasBiologicalFunction = glucoseRegulation

The next listing shows how to access information about molecular function of insulin and what
happens if we want to add another molecular function to insulin assuming that hasBiological-
Function is a functional property:
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Listing 3.9: Trying to add a second molecular function to the instance insulin
1 puts "1. Insulin has the biological function:"
2 puts insulin.hasBiologicalFunction
3
4 puts # This produces just an empty line in the output.
5
6 glucoseTransportation = example::BiologicalFunction.new("GlucoseTransportation")
7 insulin.hasBiologicalFunction = glucoseTransportation
8
9 puts "2. Insulin has the biological function:"
10 puts insulin.hasBiologicalFunction

The output of listing 3.9:

> 1. Insulin has the biological function:
> #<DeepIntegrationBuilderOWLLite::Example::BiologicalFunction:0x137fff4 @lo-
cal_name="GlucoseRegulation", @rdfs_comment_values=[] . . . >
>
> 2. Insulin has the biological function:
> #<DeepIntegrationBuilderOWLLite::Example::BiologicalFunction:0x1354318 @lo-
cal_name="GlucoseTransportation", @rdfs_comment_values=[] . . . >

DEEP SEMANTICS has overridden the saved value of hasBiologicalFunction for insulin because
hasBiologicalFunction is a functional object property and can therefore have only one value –
in DEEP SEMANTICS this is always the latest added one. An interesting side note: the example
of listing 3.9 demonstrates that using ontology languages does not avoid the emerging of se-
mantic failures with respect to human interpretation capabilities. That insulin has the biological
function to regulate the concentration of glucose in the blood and not to transport glucose has
not been explicitly modeled in this example and therefore cannot be known by the system. A
solution could be for example to create the BiologicalFunction subclasses GlucoseTransporta-
tion and GlucoseRegulation, the Protein subclass InsulinFamily and to constrain the range of
hasBiologicalFunction with all-values-from to instances of the class GlucoseRegulation if used
with instances of InsulinFamily. Then we could create an instance of GlucoseRegulation mod-
eling glucoseRegulation and an instance of InsulinFamily modeling insulin. The assertion of
glucoseTransportation as being the biological function of insulin would then not be allowed by
DEEP SEMANTICS as it would lead to an inconsistency (the value of hasBiologicalFunction has
to be an instance of GlucoseRegulation).

Ontology properties are stored in DEEP SEMANTICS as object types of the DEEP SEMANTICS
classes DatatypeProperty or ObjectProperty. One can access these properties at runtime for
example as shown in listing 3.10:

Listing 3.10: Access of a property RUBY object in DEEP SEMANTICS
1 hasBiologicalFunction_property = example.send("hasBiologicalFunction")
2
3 puts "Domain of the hasBiologicalFunction_property property is:"
4 puts hasBiologicalFunction_property.domain

The following is the output of listing 3.10:
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> Domain of the hasBiologicalFunction property is:
> DeepIntegrationBuilderOWLLite::Example::Protein

3.7.3 XPERIMENTR– A Simple Semantic Application using DEEP SEMANTICS

In this section we will get an impression on how to use DEEP SEMANTICS to build a simple
semantic application. This application called XPERIMENTR can be operated via the command
line. The domain of the ontology we use as knowledge basis of the application is field of lab-
oratory experiment planning. More precisely the domain ontology covers protocols, laboratory
materials and equipment. The XPERIMENTR application can be applied to retrieve informa-
tion about concepts and instances in the domain as well as to determine which protocols can
be executed with a given set of laboratory materials. The XPERIMENTR ontology as well as
the corresponding application were developed during this thesis. Information about protocols,
laboratory equipment etc. were taken from the Science 2.0 (Yoder & Shneiderman, 2008) web-
site OpenWetWare 1. Stated execution times for protocols are approximate estimates and do not
origin from OpenWetWare.

The XPERIMENTR ontology

The detailed list of classes, local restrictions, properties and instances of the XPERIMENTR
ontology are listed up in the appendix in Section 6.1 on page 135. The central concept of
the XPERIMENTR ontology is Protocol. Covered types of protocols are currently restricted to
buffers, growth media, in vivo and in vitro experiments. Included laboratory material concepts
are Antibiotic, Buffer, Chemical, Enzyme, Medium (growth media like for example for bacte-
rial cell cultures) and Organism. Furthermore, the classes Person and LaboratoryEquipment

are included. For a future version one could extend the classes for example with the concept
bioinformatics protocol or further subclass specifications protocol types already covered.

XPERIMENTR ontology includes the OWL LITE possibility to define inverse properties quite
often. The benefits of this is that a reasoner can use these statements to deduce relations that
therefore do not have to be stated explicitly. An example for an inverse property inference is:

isExpertOf(Indra,KnightColonyPCR)

⇒ relatedExpert(KnightColonyPCR, Indra)

The used datatype properties are all constrained by the global restriction "functional property"
as it would just lead to more complexity without a substantial quality gain to add for example
more than one lists of procedures (property "hasProcedure").

The ontology contains 57 instances. Included instances comprise laboratory equipment like
Bunsen burner, micropipettes, incubators or PCR machines. Additionally, the ontology con-
tains instances of class LaboratoryMaterial – for example acrylamide, TAE buffer, EDTA and

1 http://openwetware.org/wiki/Main_Page
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proteinase K. The instances are related to each other using defined object and datatype prop-
erties. The in vitro protocol for SDS-PAGE, for example, is related to the laboratory material
acrylamide using the object property hasRequiredMaterial.

The XPERIMENTR Application

The implementation of the XPERIMENTR example is intended to give an introduction into cod-
ing with deep-integrated ontologies as provided by DEEP SEMANTICS. Furthermore, will the
described source code be used as reference material for framework comparison in Section 3.8
on page 81. The implemented functionalities include the retrieval of information about a con-
cept or instance in the ontology, the search for protocols which include a list of user defined
laboratory materials, and the search for protocols that can be executed in a given space of time.
The implementation is described in detail in the following.

Listing 3.11: Using DEEP SEMANTICS to prepare the ontology knowledge base of XPERIMENTR
1 require File.join(File.dirname(__FILE__), ’active_semantics.rb’)
2 require File.join(File.dirname(__FILE__), ’Helper/namespaces.rb’)
3
4 Namespaces.add_namespace(’http://www.ontovers.org/xperimentr.owl#’, ’xperimentr:’)
5
6 $deep_semantics = DeepSemantics.instance
7 xperimentr = $deep_semantics.set_director({’adapter’ => ’FileAdapter’, ’ontology_source’ => ’

xperimentr_inferred.nt’, ’builder’ => ’DeepIntegrationBuilderOWLLite’})
8
9 puts "Welcome to Xperimentr your wetlab advisor. You may:"
10 puts "1. Enter \"?\" to retrieve information about a certain term."
11 puts "2. Enter \"find\" to find an experiment protocol for the materials you have available."
12 puts "3. Enter \"time\" to find an experiment protocol by execution time."
13 puts "4. Enter \"quit\" to exit."

Listing 3.11 shows the code for the preparation of the ontology knowledge base using
DEEP SEMANTICS as well as our welcome message for the user which is the following
one:

> "Welcome to Xperimentr your wetlab advisor. You may:"
> 1. Enter "?" to retrieve information about a certain term.
> 2. Enter "find" to find an experiment protocol for the laboratory materials you have
available.
> 3. Enter "time" to find an experiment protocol by execution time.
> 4. Enter "quit" to exit.

The following listing 3.12 shows the basic control of the user input processing workflow. With
the function gets one can get the latest user input from the command line. This input is then
passed to the variable line. Depending on the user input being "?", "find", "time" or "quit" the
corresponding code block is executed. If line does not match any of the compare strings an error
message is prompted.

Listing 3.12: Accepting and processing user input
1 while line = gets
2 case line
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3 when "?\n"
4 # Call method for concept and instance information retrieval
5 retrieveInformation()
6 when "find\n"
7 # Call method to determine materials fitting protocols
8 findProtocolsByExperimentMaterials()
9 when "time\n"
10 # Call method to fetch protocols by execution time threshold
11 findProtocolsByExecTime()
12 when "quit\n"
13 break
14 else
15 puts
16 puts
17 puts "We are sorry but your input could not be processed. Please, try again:"
18 puts "1. Enter \"?\" to retrieve information about a certain term."
19 puts "2. Enter \"find\" to find an experiment protocol for the materials you have available.

"
20 puts "3. Enter \"time\" to find an experiment protocol by execution time."
21 puts "4. Enter \"quit\" to exit."
22 puts
23 end

If the user selects "?\n" the controller calls the method retrieveInformation() that implements
the functionality to search the ontology for information about a user requested search term.
Listings 3.13, 3.14, 3.15 and 3.16 contain the implementation code of retrieveInformation().

Listing 3.13: Implementation of the information retrieval method retrieveInformation(): search for
matching classes segment

1 puts "Please enter the term you what to get information about:"
2
3 term = gets.chop # Cut off the next line character
4
5 # First we do look up any existing classes with the search term as label.
6 class_hits = xperimentr.find_classes_by_label(term)
7
8 if class_hits.size > 0
9 puts "Some information about #{term}:"
10 class_hits.each do |klass_hit|
11 puts klass_hit.rdfs_comment[0]
12 klass_hit.super_classes.each do |super_klass|
13 puts "#{term} is a #{super_klass.rdfs_label[0]}."
14 end
15 end
16 end

Listing 3.13 shows the implementation of the user input request as well as the searching
for a class that has a rdfs:label matching the search term. To find these classes we use the
DEEP SEMANTICS method find_classes_by_label(term) (line 6 in listing 3.13) provided by
the functional ontology model xperimentr passing the current search term. The return value
of find_classes_by_label(term) is an array (class_hits) of classes which satisfy the query.

If the size of this array is greater than 0 (line 8 in listing 3.13) the application prints out some
information about each of these classes hits using the first rdfs:comment (line 11 in listing 3.13)
and possibly available superclass names (lines 12 to 14 in the listing).

Listing 3.14: Implementation of the information retrieval method retrieveInformation(): search for
matching laboratory material instances
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1 # Then we do look up any existing instances with the search term as label. As we have three
root classes in our ontology we can search the term in the labels of the instances for
each of these root classes.

2
3 laboratory_material_hits = xperimentr::LaboratoryMaterial.find_instances_by_label(term)
4
5 if laboratory_material_hits.size > 0
6 puts "Some information about the laboratory material #{term}:"
7 laboratory_material_hits.each do |laboratory_material_hit|
8 if laboratory_material_hit.rdfs_comment.size > 0
9 puts laboratory_material_hit.rdfs_comment[0]
10 end
11 laboratory_material_hit.types.each do |type|
12 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{type.rdfs_label[0]}."
13 if type.super_classes.size > 0
14 type.super_classes.each do |superclass|
15 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{superclass.

rdfs_label[0]}."
16 end
17 end
18 end
19 puts "#{term[0,1].capitalize+term[1,term.length]} is used for the following protocols:"
20 laboratory_material_hit.isUsedForProtocol.each do |protocol|
21 puts protocol.rdfs_label[0]
22 end
23 end
24 end

Implementing the code of listing 3.14 XPERIMENTR provides the functionality to search
for instances of the class LaboratoryMaterial. This is accomplished by calling the method
find_instances_by_label(term) of the DEEP SEMANTICS integrated representation of the on-
tology class. The RUBY implementation of LaboratoryMaterial is accessible via the ontology’s
namespace xperimentr (line 3 in the listing). The return value is then passed to the variable
laboratory_material_hits.

In the case that the size of the array laboratory_material_hits is greater than 0 the system prints
out detailed information stored in the ontology about the found laboratory materials (lines 5
to 25). With method call laboratory_material_hits.types in line 11 one can fetch all the corre-
sponding classes the instance belongs to. For the instance ProteinaseK for example the return
value of types is an array containing the ontology classes Enzyme and LaboratoryMaterial. With
type.super_classes (line 14) the superclasses of each type are retrieved and then printed out (line
15). The method call laboratory_material_hit.isUsedForProtocol() in line 21 returns an array
of instances of class Protocol for which the laboratory material is required. Each of this returned
protocols, respectively their first rdfs:label entries, is then printed out (line 22).

Listing 3.15: Implementation of the information retrieval method retrieveInformation(): search for
matching laboratory equipment instances

1 laboratory_equipment_hits = xperimentr::LaboratoryEquipment.find_instances_by_label(term)
2
3 if laboratory_equipment_hits.size > 0
4 puts "Some information about the laboratory equipment #{term}:"
5 laboratory_equipment_hits.each do |laboratory_equipment_hit|
6 if laboratory_equipment_hit.rdfs_comment.size > 0
7 puts laboratory_equipment_hit.rdfs_comment[0]
8 end
9 laboratory_equipment_hit.types.each do |type|
10 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{type.rdfs_label[0]}."
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11 if type.super_classes.size > 0
12 type.super_classes.each do |superclass|
13 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{superclass.

rdfs_label[0]}."
14 end
15 end
16 end
17 puts "#{term[0,1].capitalize+term[1,term.length]} is required for protocols:"
18 laboratory_equipment_hit.isRequiredForProtocol.each do |protocol|
19 puts protocol.rdfs_label[0]
20 end
21 end
22 end

The code of listing 3.15 implements the information retrieval workflow for lab-
oratory equipment instances. This code is largely similar to the implementa-
tion shown in listing 3.14. Enabled through the transformations performed by
DEEP SEMANTICS the searched instances of laboratory equipment are retrieved with xper-

imentr::LaboratoryEquipment.find_instances_by_label(term) (line 1). Further direct utilization
of DEEP SEMANTICS can be seen for example in line 9 where the class types of the retrieved
laboratory equipment instances are fetched using laboratory_equipment_hit.types() and in
line 18 where protocols are retrieved that require the corresponding laboratory equipment
(laboratory_equipment_hit.isRequiredForProtocol()).

Listing 3.16: Implementation of the information retrieval method retrieveInformation(): search for
matching Protocol instances

1 protocol_hits = xperimentr::Protocol.find_instances_by_label(term)
2
3 if protocol_hits.size > 0
4 puts "Some information about the protocol #{term}:"
5 protocol_hits.each do |protocol_hit|
6 if protocol_hit.rdfs_comment.size > 0
7 puts protocol_hit.rdfs_comment[0]
8 end
9 protocol_hit.types.each do |type|
10 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{type.rdfs_label[0]}."
11 if type.super_classes.size > 0
12 type.super_classes.each do |superclass|
13 puts "#{term[0,1].capitalize+term[1,term.length]} is a kind of #{superclass.

rdfs_label[0]}."
14 end
15 end
16 end
17 if protocol_hit.hasRequiredLaboratoryEquipment && (protocol_hit.

hasRequiredLaboratoryEquipment.size > 0)
18 puts "#{term[0,1].capitalize+term[1,term.length]} has required laboratory equipment:"
19 protocol_hit.hasRequiredLaboratoryEquipment.each do |equipment|
20 puts equipment.rdfs_label[0]
21 end
22 end
23 puts "#{term[0,1].capitalize+term[1,term.length]} requires material:"
24 if protocol_hit.hasRequiredMaterial && (protocol_hit.hasRequiredMaterial.size > 0)
25 protocol_hit.hasRequiredMaterial.each do |material|
26 puts material.rdfs_label[0]
27 end
28 end
29 puts "#{term[0,1].capitalize+term[1,term.length]} has the following procedure:"
30 puts protocol_hit.hasProcedure[0]
31 if protocol_hit.hasRequiredExecutionTime && (protocol_hit.hasRequiredExecutionTime.size >

0)
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32 puts "#{term[0,1].capitalize+term[1,term.length]} has required execution time in minutes
: #{protocol_hit.hasRequiredExecutionTime}"

33 end
34 puts "The following experts are related to #{term[0,1].capitalize+term[1,term.length]}:"
35 protocol_hit.relatedExpert.each do |expert|
36 puts expert.rdfs_label[0]
37 end
38 end
39 end

The last code segment of the information retrieval method implementation is shown in listing
3.16. Analogous to listings 3.14 and 3.15 the DEEP SEMANTICS transformed methods xper-
imentr::Protocol.find_instances_by_label(term) (in line 1) and protocol_hit.types() (in line 9)
are used to process the related ontology constructs. Additional uses of DEEP SEMANTICS in
this listing are:

• Line 17: The method protocol_hit.hasRequiredLaboratoryEquipment() is used to fetch
all required laboratory equipment instances for the selected protocol from the ontology.

• Line 24: In the ontology every protocol is related to zero or more laboratory materials
using the object property hasRequiredMaterial.

• Line 30: With protocol_hit.hasProcedure[0] a string representing the experiments proce-
dure is accessed. The return value is an array and because we have defined hasProcedure
as being a functional property (that means it has at maximum one value) one can retrieve
the unique property value with "hasProcedure[0]".

• Line 31: The datatype property hasRequiredExecutionTime is used to save the experi-
ment’s execution time in minutes. Using the DEEP SEMANTICS generated method proto-
col_hit.hasRequiredExecutionTime() one can retrieve this execution time.

Listing 3.17: Implementation of the XPERIMENTR method findProtocolsByExperimentMaterials()

1 materials = Array.new
2 found_protocols = xperimentr::Protocol.instances
3
4 puts "Please enter the next laboratory material or \"end\" to stop:"
5
6 while material_input = gets
7 case material_input
8 when "end\n"
9 break
10 else
11 material_input = material_input.chop
12 if xperimentr::LaboratoryMaterial.find_instances_by_label(material_input).size > 0 #If a

matching material exists in the ontology
13 materials << material_input
14 new_found_protocols = Array.new
15 found_protocols.each do |found_protocol|
16 if found_protocol.hasRequiredMaterial && (found_protocol.hasRequiredMaterial.size > 0)
17 found_protocol.hasRequiredMaterial.each do |material|
18 if material.rdfs_label.include?(material_input)
19 new_found_protocols << found_protocol
20 end
21 end
22 end
23 end
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24 found_protocols = new_found_protocols
25 puts "You have entered the following materials:"
26 materials.each do |material|
27 puts material
28 end
29 puts "The following protocols include these materials:"
30 found_protocols.each do |found_protocol|
31 puts found_protocol.rdfs_label[0]
32 end
33 else
34 puts "#{material_input} is not a known laboratory material."
35 end
36 puts "Please enter the next material or \"end\" to stop:"
37 end
38 end

The second interaction mode offers the possibility to search for protocols that include a set
of inputed laboratory materials. Listing 3.17 shows the code of method findProtocolsByEx-

perimentMaterials() that implements this function. The array materials (line 1) saves the ma-
terials entered by the user during a search session. The statement "found_protocols = xperi-

mentr::Protocol.instances" in the next line utilizes DEEP SEMANTICS to retrieve all instances
of the class Protocol and stores the return values in found_protocols.

From lines 6 to 38 a while loop is used to capture user entered laboratory materials that are then
used to determine appropriate protocols. The user command "end" tells the application to leave
the current while loop. If the word that was entered by the user is not equal to "end" then the
application tests whether or not this word can be associated to a known LaboratoryMaterial in-
stance using "if xperimentr::LaboratoryMaterial.find_instances_by_label(material_input).size

> 0" in line 12. If the input term can be mapped to at least one instance of LaboratoryMaterial

then a) we save this term in the array materials (line 13), b) we look up if any protocol meets
the required material conditions (lines 14 to 24) and c) we print out the set of entered laboratory
materials (lines 25 to 28) as well as all matching protocols or their first rdfs:label entries (line
29 to 32), respectively.

Listing 3.18: Implementation of the XPERIMENTR method findProtocolsByExecTime()
1 puts "Please enter the maximum execution time in minutes acceptable for you:"
2
3 time = gets.chop
4
5 puts "Protocols that can be executed in #{time} minutes:"
6 xperimentr::Protocol.instances.each do |protocol|
7 if protocol.hasRequiredExecutionTime && (protocol.hasRequiredExecutionTime.size > 0)
8 if protocol.hasRequiredExecutionTime[0].to_i < time.to_i
9 puts "#{protocol.rdfs_label[0]} can be prepared in #{protocol.hasRequiredExecutionTime

[0].to_i} minutes."
10 end
11 end
12 end

If the user enters the command "time" in the main program control loop, the method findProto-
colsByExecTime() is called. The code of this method can be seen in listing 3.18. The processing
steps of this method are:

• Line 3: Capturing the maximum execution time in minutes entered by a user.
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• Lines 6 to 12: Iterate over all instances of class Protocol in order to . . .

– Line 7: . . . to check with "protocol.hasRequiredExecutionTime && (proto-

col.hasRequiredExecutionTime.size > 0)" if the protocol has an execution time
value and . . .

– Line 8: . . . to test if an existing execution time value is less or equal to the user given
threshold (if this test returns "TRUE" the protocol and its execution time is printed
out).

Summing up, this subsection DEEP SEMANTICS has been successfully applied for a vari-
ety of ontology processing tasks. Deep-integrated RUBY representations of ontology classes
were generated using DEEP SEMANTICS (see listing 3.11). These transformed ontology classes
were then applied to access their corresponding instances (like for example using labora-

tory_material_hits = xperimentr::LaboratoryMaterial.find_instances_by_label(term) at line 3
of listing 3.14).

Beside applying deep-integrated classes, working with ontology instances was important for
the realization of listings 3.14 to 3.18. DEEP SEMANTICS enables ontology instance objects
that provide methods to access related object and datatype properties (for example the access
of the deep-integrated datatype property protocol.hasRequiredExecutionTime at line 6 of listing
3.18 or the use of the integrated object property found_protocol.hasRequiredMaterial at line 16
of listing 3.17).

Additionally, DEEP SEMANTICS provides convenient methods to access ontology constructs
using label matching. The method call xperimentr::Protocol.instances (line 2 in listing 3.17)
for example returns all instances of the ontology class Protocol. Likewise ontology classes
themselves were retrieved by matching a given search string with the class rdfs:label values
(such as xperimentr.find_classes_by_label(term) in line 6 of listing 3.13).

XPERIMENTR in action

In the previous subsection we learned about how XPERIMENTR has been implemented using
DEEP SEMANTICS together with its required ontology knowledge base. In this subsection a
typical user session with the XPERIMENTR application is described. Each session starts with a
welcome message of the application:

> Welcome to Xperimentr your wetlab advisor. You may:
> 1. Enter "?" to retrieve information about a certain term.
> 2. Enter "find" to find an experiment protocol for the materials you have available.
> 3. Enter "time" to find an experiment protocol by execution time.
> 4. Enter "quit" to exit.

We choose to retrieve some information about the term "SDS-PAGE" and enter "?". The next
message of the system is:
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> Please enter the term you what to get information about:

We enter "SDS-PAGE" and the system responses information stored in the ontology about the
corresponding instance SDSPAGE:

> Some information about the protocol SDS-PAGE:
> "The pH of the separating gel in standard SDS-PAGE (a.k.a. Laemmli buffer system)
is roughly 8-9 which is conducive to the deamination and alkylation of proteins, as well
as reoxidation of reduced cysteines during electrophoresis. What this means is that your
protein will form disulfide crosslinks during the stacking event because the protein migrates
into the gel away from the reducing reagent in the sample buffer, and gets focused to a high
concentration."
>
> SDS-PAGE is a kind of in vitro protocol.
> SDS-PAGE is a kind of protocol.
>
> SDS-PAGE requires material:
> sodium bisulfite
> 5x high-MW running buffer
> 5x low-MW running buffer
> acrylamide
> 3.5X bis-Tris gel buffer
>
> SDS-PAGE has the following procedure:
> Resolving:
Mix: 1/3.5 vol. of 3.5X bis-Tris gel buffer, acrylamide to 8% (30:2.0) or 12-15% (30:0.8),
and water to final volume. I make 3.75 mLs for each Bio-Rad Protein gel, and use 3.5 mLs
per gel. . . .
> SDS-PAGE has required execution time in minutes: 333
> The following experts are related to SDS-PAGE: Ilija Nahal Deniz Tim Indra

This informational response is followed by a reminder what the user can do next:

> What do you want to do next? You may:
> 1. Enter "?" to retrieve information about a certain term.
> 2. Enter "find" to find an experiment protocol for the materials you have available.
> 3. Enter "time" to find an experiment protocol by execution time.
> 4. Enter "quit" to exit.

We enter the command "find" and read the response:

> Please enter the next laboratory material or "end" to stop:
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We enter the term "sodium bisulfite" and get the response:

> You have entered the following materials:
> sodium bisulfite
>
> The following protocols include these materials:
> 5X low-MW running buffer protocol
> 5X high-MW running buffer protocol
> SDS-PAGE
>
> Please enter the next material or "end" to stop:

Next we enter the term "acrylamide" and get the response:

> You have entered the following materials:
> sodium bisulfite
> acrylamide
>
> The following protocols include these materials:
> SDS-PAGE
>
> Please enter the next material or "end" to stop:

We enter "end" to stop this session and see once again the four basic selection possibilities of
XPERIMENTR. This time we enter the "time" command to find protocols by their execution
time. The system prompts:

> Please enter the maximum execution time in minutes acceptable for you:

After entering "240" (this could be useful for example if a biologist wants to know which
protocols he can still execute in the residual labour time) we get the information:

> Protocols that can be executed in 240 minutes:
> Blackburn yeast colony PCR can be prepared in 70 minutes.
> mouse tissue lysis for genotyping can be prepared in 88 minutes.
> Knight Colony PCR can be prepared in 200 minutes.
> Affymetrix DNA labelling for gene expression arrays can be prepared in 50 minutes.
> PCR supermix protocol can be prepared in 20 minutes.

Now, that we have discussed every functionality of the system we enter "quit" to leave the
program. The following section compares the most commonly used Semantic Web frameworks
JENA2, OWL API and ACTIVERDF with DEEP SEMANTICS.
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3.8 Comparison of DEEP SEMANTICS with other Semantic
Web Frameworks

Specialized ontology processing frameworks build the foundation of the upcoming Seman-
tic Web. Therefore, in recent years several frameworks have been published. Three of them
are compared with DEEP SEMANTICS in this section. Two of these frameworks, JENA2 and
OWL API, are implemented in JAVA, while the third one (ACTIVERDF) is developed using
RUBY.

The JENA2 framework is open source and conceptionally centered on the RDF graph (see
Subsection 2.7.1 on page 20). While offering similar functionalities, OWL API’s architecture
follows an axiomatic approach (introduced in Subsection 2.7.2 on page 21) regarding access and
modification of ontology constructs. The third framework, ACTIVERDF (described in Subsec-
tion 2.7.3 on page 21), is most similar to DEEP SEMANTICS of the three compared frameworks.
DEEP SEMANTICS and ACTIVERDF are developed in RUBY using the scripting language’s
metaprogramming features and do not offer support for TBox modification.

The comparisons are based on the XPERIMENTR implementations (for programming complex-
ity comparison) and on two different reference tests, for which solutions were programmed
for each framework. Each of these implemented solutions was then executed twice: firstly, us-
ing an inferred version of the IKEN ontology (described on page 102) and secondly, using an
also inferred version of the BIO2ME ontology (Mainz, 2008). Ontology metrics are: 1) IKEN

ontology comprising 366 named classes, 86 object properties, 23 datatype properties and 859
individuals. 2) BIO2ME ontology consisting of 213 named classes, 41 object properties, 29
datatype properties and 343 individuals.

The first reference test requires the corresponding solutions to list all classes of the ontology
by their hierarchy level. Programming solutions for this type of test were realized for JENA2,
OWL API and DEEP SEMANTICS, while ACTIVERDF does not provide necessary function-
alities to determine the class hierarchy and therefore could not be used in this test. The second
reference test is described as: "find all instances that match one of ten given search terms by
using RDFS labels of instances". This test was performed in all four frameworks.

DEEP SEMANTICS was compared to the three other frameworks regarding programming as
well as runtime and memory complexity. Programming complexity in this context refers to the
amount of required code lines needed for an implementation. The different test implementations
can be found in the appendix in Section 6.2. All tests were carried out on an Apple MacBook
Pro c© (Mac OS X c© version 10.5.5) using a 2.33 GHz Intel Core 2 Duo c© and 2 GB 667 MHz
DDR2 SDRAM and RUBY in version 1.8.6.

3.8.1 DEEP SEMANTICS versus OWL API

While DEEP SEMANTICS is implemented in RUBY, and OWL API in JAVA, both frame-
works are oriented to OWL’s abstract syntax. A principal difference is the focusing of
DEEP SEMANTICS on the editing of the ABox in contrast to ABox and TBox modifications in
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OWL API. Summing up, the OWL API cannot be consistency safe in principal as this would
not allow TBox modifications, which are necessary to further extend the set of classes and their
interrelations.

Programming Complexity Comparison

In this subsection DEEP SEMANTICS is compared to OWL API with respect to the program-
ming complexity or coding complexity, respectively. The comparison was performed using
framework specific implementations of the XPERIMENTR example introduced in Section 3.7.3
on page 71.

Listing 3.21 shows the required source code to print out the ontology class hierarchy to stan-
dard out using DEEP SEMANTICS. Listings 3.19 and 3.20 contain the corresponding imple-
mentation based on OWL API. The most obvious difference is the lack of convenient meth-
ods like DEEP SEMANTICS’s listClassesByLevel in OWL API. This method returns a RUBY
hash containing hierarchy levels as keys and corresponding classes of these levels as key re-
lated values. Lines 43 to 48 in listing 3.20 display the source code for traversing the class
hierarchy using OWL API. As method getSubClasses(this.ontology) returns all subclasses (di-
rect and indirect) including B-Nodes (restrictions), programmers have to implement the fol-
lowing checks: A) if the subclass is not equal to the calling class (!child.equals(clazz)), B)
if the subclass is not a B-Node !child.isAnonymous() and C) if subclass is not equal to OWL

Nothing (!child.isOWLNothing()). In contrast, in DEEP SEMANTICS only the class method di-
rect_sub_classes has to be called, which returns all direct subclasses excluding any B-Nodes.

Another frequently required task is the computation of all direct instances of an ontology
class as shown in lines 22 to 37 of listing 3.20. This is also significantly more complicated
by using OWL API. This framework’s class OWLClass provides the method getIndividu-

als(this.ontology), which returns all instances of the corresponding ontology class. However,
calling this method returns instances of possibly existing subclasses, too. Consequently, filter-
ing out only direct instances becomes quite complicated and involves processing of subclasses
(starting line 26). Using DEEP SEMANTICS the retrieving of all direct instances is provided via
the convenient method direct_instances as shown in line 11 of listing 3.21.

Listing 3.19: XPERIMENTR implementation using OWL API: Print out the class hierarchy of the ontol-
ogy.

1 // Print out all of the classes which are referenced in the
2 // ontology by hierarchy level
3 System.out.println("Known classes:");
4
5 Set<OWLClass> klasses = ontology.getReferencedClasses();
6 for (OWLClass klass : klasses) {
7 try {
8 xperimentr.printHierarchy(ontology, klass);
9 } catch (OWLException e) {
10 System.out.println("The class hierarchy could not be printed: " + e.getMessage

());
11 }
12 }
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Listing 3.20: XPERIMENTR implementation using OWL API: printHierarchy() methods.
1 /**
2 * Print the class hierarchy for the given ontology from this class
3 * down, assuming this class is at the given level.
4 * Makes no attempt to deal sensibly with multiple inheritance.
5 */
6 public void printHierarchy(OWLOntology ontology, OWLClass clazz) throws OWLException {
7 this.ontology = ontology;
8 printHierarchy( clazz, 0 );
9 }
10
11 /**
12 * Print the class hierarchy from this class down, assuming this class is at
13 * the given level. Makes no attempt to deal sensibly with multiple
14 * inheritance.
15 */
16 public void printHierarchy(OWLClass clazz, int level) throws OWLException {
17 System.out.println("Level: "+level);
18 System.out.println(" "+clazz);
19
20 /* Find this classes instances*/
21 System.out.println(" This classes direct instances:");
22 Set<OWLIndividual> instances = clazz.getIndividuals(this.ontology);
23 for (OWLIndividual instance : instances) {
24 Boolean is_direct_instance = true;
25
26 Set<OWLDescription> subclasses = clazz.getSubClasses(this.ontology);
27 for (OWLDescription subclass : subclasses) {
28 if (!subclass.isAnonymous() && !subclass.equals(clazz) && !subclass.

isOWLNothing()) {
29 if (instance.getTypes(this.ontology).contains(subclass)) {
30 is_direct_instance = false;
31 }
32 }
33 }
34 if (is_direct_instance) {
35 System.out.println(" "+instance);
36 }
37 }
38 System.out.println();
39 System.out.println();
40 System.out.println("--------------------------");
41
42 /* Find the children and recurse */
43 Set<OWLDescription> children = clazz.getSubClasses(this.ontology);
44 for (OWLDescription child : children) {
45 if (!child.equals(clazz) && !child.isAnonymous() && !child.isOWLNothing() ) {
46 printHierarchy(child.asOWLClass(), level + 1);
47 }
48 }
49 }

Listing 3.21: XPERIMENTR implementation using DEEP SEMANTICS: Print out the class hierarchy of
the ontology.

1 # Print out all of the classes which are referenced in the
2 # ontology by hierarchy level
3 puts "Known classes:"
4
5 xperimentr.listClassesByLevel.each_pair do |level, classes|
6 puts "Level: #{level}"
7 classes.each do |klass|
8 puts " "+klass.local_name
9 puts
10 puts " This classes direct instances:"
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11 klass.direct_instances.each do |instance|
12 puts " "+instance.local_name
13 end
14 puts "--------------------------"
15 puts
16 end
17 end

Listing 3.16 on page 75 shows the implementation of the information retrieval method re-

trieveInformation() in the DEEP SEMANTICS implementation of XPERIMENTR. Method
find_instances_by_label(term) returns, analogous to the above mentioned method
find_classes_by_label(term) (line 6 of listing 3.13), all instances that contain a RDFS la-
bel, which matches the provided search term. Listing 3.23 in contrast contains the realization
with the OWL API, which is more complicated due to the lack of a convenient method.
Method getIndividuals(ontology) in line 3 returns all instances of the corresponding class
in the passed ontology and assigns these to variable instances. For each OWL individual
stored in instances (line 5) all RDFS labels are iterated (line 6). If the method call anno-
tation.isAnnotationByConstant() (line 7) returns the boolean value TRUE that means the
annotation value is not an entity (class, property or individual), method getAnnotationVal-

ueAsConstant() of the annotation is invoked (line 8). Additionally, the literal value of variable
value is compared with the passed search label (line 9) and, if this comparison returns TRUE,
variable instance is added to the OWLIndividual containing set instance_hits (at line 10).

Lines 6 to 8 of listing 3.23 for example can be substituted by one line in DEEP SEMANTICS
by calling method instance.rdfs_label. This method call returns all strings stored as la-
bels of the instance. Additionally, the complete listing can be substituted by calling
klass.find_instances_by_label.

OWL API-based listing 3.22 comprises the implementation of information retrieval function-
ality related to the discovery of instances of the XPERIMENTR class Protocol. An particularly
mentionable programming issue is the access of property values of OWL individuals. Lines 19
to 27 for example realize the fetching of values of the object property hasRequiredLaborato-

ryEquipment for the current instance of Protocol which is stored in variable protocolHit.

Listing 3.22: XPERIMENTR implementation using OWL API: information retrieval implementation for
instances of ontology class Protocol.

1 OWLClass protocolKlass = factory.getOWLClass(URI.create(base + "#Protocol"));
2
3 Set<OWLIndividual> protocolHits = findInstancesByLabel(ontology, protocolKlass, searchTerm);
4
5 if (protocolHits.size() > 0) {
6 System.out.println( "Some information about the protocol "+searchTerm+":" );
7 for (OWLIndividual protocolHit : protocolHits) {
8 if (protocolHit.getAnnotations(ontology, OWLRDFVocabulary.RDFS_COMMENT.getURI

()).size() > 0) {
9 OWLAnnotation comment = (OWLAnnotation) protocolHit.getAnnotations(

ontology, OWLRDFVocabulary.RDFS_COMMENT.getURI()).toArray()[0];
10 System.out.println( comment.getAnnotationValueAsConstant().getLiteral

() );
11 }
12
13 for (OWLDescription type :protocolHit.getTypes(ontology) ) {
14 if (!type.isAnonymous() && !type.isOWLThing() ) {
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15 OWLAnnotation label = (OWLAnnotation) type.asOWLClass().
getAnnotations( ontology, OWLRDFVocabulary.RDFS_LABEL.
getURI() ).toArray()[0];

16 System.out.println( searchTerm+" is a kind of "+label.
getAnnotationValueAsConstant().getLiteral() );

17 }
18 }
19
20 Map<OWLObjectPropertyExpression,java.util.Set<OWLIndividual>>

protocolHitObjectPropertyMap = protocolHit.getObjectPropertyValues(
ontology);

21 OWLObjectPropertyExpression requiredLaboratoryEquipment = factory.
getOWLObjectProperty(URI.create(base + "#hasRequiredLaboratoryEquipment"))
;

22 if ( protocolHitObjectPropertyMap.containsKey(requiredLaboratoryEquipment) ) {
23 System.out.println(searchTerm+" has required laboratory equipment:");
24 for (OWLIndividual equipment :protocolHitObjectPropertyMap.get(

requiredLaboratoryEquipment) ) {
25 OWLAnnotation equipmentLabel = (OWLAnnotation) equipment.

getAnnotations( ontology, OWLRDFVocabulary.RDFS_LABEL.
getURI() ).toArray()[0];

26 System.out.println( equipmentLabel.
getAnnotationValueAsConstant().getLiteral() );

27 }
28 }
29
30 OWLObjectPropertyExpression requiredMaterial= factory.getOWLObjectProperty(URI

.create(base + "#hasRequiredMaterial"));
31 if ( protocolHitObjectPropertyMap.containsKey(requiredMaterial) ) {
32 System.out.println(searchTerm+" has required material:");
33 for (OWLIndividual material :protocolHitObjectPropertyMap.get(

requiredMaterial) ) {
34 OWLAnnotation materialLabel = (OWLAnnotation) material.

getAnnotations( ontology, OWLRDFVocabulary.RDFS_LABEL.
getURI() ).toArray()[0];

35 System.out.println( materialLabel.
getAnnotationValueAsConstant().getLiteral() );

36 }
37 }
38
39 Map<OWLDataPropertyExpression, Set<OWLConstant>>

protocolHitDatatypePropertyMap = protocolHit.getDataPropertyValues(
ontology);

40 OWLDataPropertyExpression procedure = factory.getOWLDataProperty(URI.create(
base + "#hasProcedure"));

41 if ( protocolHitDatatypePropertyMap.containsKey(procedure) ) {
42 System.out.println(searchTerm+" has the following procedure:");
43 OWLConstant procedureString = (OWLConstant)

protocolHitDatatypePropertyMap.get(procedure).toArray()[0];
44 System.out.println( procedureString.getLiteral() );
45 }
46
47 OWLDataPropertyExpression hasRequiredExecutionTime = factory.

getOWLDataProperty(URI.create(base + "#hasRequiredExecutionTime"));
48 if ( protocolHitDatatypePropertyMap.containsKey(hasRequiredExecutionTime) ) {
49 OWLConstant executionTime = (OWLConstant)

protocolHitDatatypePropertyMap.get(hasRequiredExecutionTime).
toArray()[0];

50 System.out.println( searchTerm+" has required execution time in
minutes: "+executionTime.getLiteral() );

51 }
52
53 OWLObjectPropertyExpression relatedExpert= factory.getOWLObjectProperty(URI.

create(base + "#relatedExpert"));
54 if ( protocolHitObjectPropertyMap.containsKey(relatedExpert) ) {
55 System.out.println();
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56 System.out.println("The following experts are related to "+searchTerm+
":");

57 for (OWLIndividual expert :protocolHitObjectPropertyMap.get(
relatedExpert) ) {

58 OWLAnnotation expertLabel = (OWLAnnotation) expert.
getAnnotations( ontology, OWLRDFVocabulary.RDFS_LABEL.
getURI() ).toArray()[0];

59 System.out.println( expertLabel.getAnnotationValueAsConstant
().getLiteral() );

60 }
61 }
62 }
63 }

Listing 3.23: XPERIMENTR implementation using OWL API: findInstancesByLabel() method.
1 public static Set<OWLIndividual> findInstancesByLabel(OWLOntology ontology, OWLClass klass,

String searchLabel) {
2 Set<OWLIndividual> instance_hits = new HashSet<OWLIndividual>();
3 Set<OWLIndividual> instances = klass.getIndividuals(ontology);
4
5 for (OWLIndividual instance : instances) {
6 for (OWLAnnotation annotation : instance.getAnnotations(ontology,

OWLRDFVocabulary.RDFS_LABEL.getURI())) {
7 if (annotation.isAnnotationByConstant()) {
8 OWLConstant value = annotation.getAnnotationValueAsConstant();
9 if ( value.getLiteral().equals(searchLabel) ) {
10 instance_hits.add( instance );
11 }
12 }
13 }
14 }
15
16 return instance_hits;
17 }

Listing 3.24: DEEP SEMANTICS intern implementation of method find_instances_by_label(label).
1 def self.find_instances_by_label(label)
2 results = Array.new
3 self.instances.each do |instance|
4 if instance.rdfs_label.include?(label)
5 results << instance
6 end
7 end
8 return results
9 end

In summary, comparing the programming complexity of both frameworks reveals that imple-
mentations based on DEEP SEMANTICS need considerably less lines of code. Counting only
the functional lines (not comments or empty lines) comparison metrics are: findInstances-
ByLabel functionality 15 lines for OWL API (listing 3.23) compared to nine lines for the
DEEP SEMANTICS intern realization of find_instances_by_label(label) (see listing 3.24) and
one line when using find_instances_by_label(label) in a DEEP SEMANTICS based semantic ap-
plication.

Likewise, the OWL API based implementation of listing 3.22 requires 51 lines in contrast to 32
lines for the DEEP SEMANTICS-based listing 3.16. The difference in the number of needed lines
is even higher when considering the 15 lines of findInstancesByLabel implementation shown in
listing 3.23.
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Runtime and Memory Complexity Comparison

The results of the runtime and memory complexity comparison between DEEP SEMANTICS
and OWL API are shown in Table 3.3. Noticeable for DEEP SEMANTICS, is the immense dif-
ference between the complete runtime and the required time for the corresponding operations.
For example, the test "List classes by level: IKEN ontology" has a complete runtime of 47.080
seconds, while the list operation runtime is 0.021 seconds, meaning that the list operation is
more than a 1,000 times faster than the complete runtime. This large difference in runtime is
explained by the required deep integration processing steps.

In a direct comparison between DEEP SEMANTICS and OWL API, the complete runtimes are
approximately 5 to 10 times longer for DEEP SEMANTICS. However, computing of the opera-
tions alone is around 20 to 200 times faster for DEEP SEMANTICS. This is especially interesting
as in benchmarks2 JAVA is still significantly faster than RUBY. Concerning peek main memory
requirements DEEP SEMANTICS needs around three times more memory. In contrast the aver-
age main memory usage of DEEP SEMANTICS is almost equal to OWL API’s peak memory
consumption.

3.8.2 DEEP SEMANTICS versus JENA2

JENA2 also is developed in JAVA. Analogous to OWL API JENA2 supports ABox and TBox
modifications. As strict consistency safeness would not allow TBox editing, JENA2 is therefore
also not consistency safe.

Programming Complexity Comparison

Listing 3.21 on page 83 shows the source code for an output of the class hierarchy of the
XPERIMENTR ontology. The easy access of the class hierarchy by calling the method listClass-
esByLevel in line five is characteristical for the DEEP SEMANTICS framework. A similar exam-
ple of DEEP SEMANTICS’ simplicity is the method direct_instances in line eleven. This method
returns all direct instances of the calling ontology class.

Listings 3.25 and 3.26 show the implementation of an analogous functionality with JENA2.
Listing 3.25 contains the source code for the iteration through all classes of the ontol-
ogy. As JENA2 does not offer a direct way to determine the level of a class one has
to check: 1) if the current class is a root class using klass.isHierarchyRoot() and 2) with
(klass.listSuperClasses(true).toSet().size() > 0) that the current class is not equal to owl:Thing.
Listing 3.26 comprises the required code for method printHierarchy(OntClass klass, int level).
This method prints out the class hierarchy from the passed class down.

Comparing the DEEP SEMANTICS implementation with JENA2-based listings 3.25 and 3.26,
the major difference is JENA2’s lack of the useful convenient function listClassesByLevel. Ad-
ditionally, implementing printHierarchy(OntClass klass, int level) is comparatively complex

2 http://shootout.alioth.debian.org/
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Table 3.1: Types of global property constraints that have to be considered by DEEP SEMANTICS

Type of Constraint Comments and Corresponding RUBY Code generated by DEEP SEMANTICS

Functional Property Comment: A functional property can have only one unique value y for each in-
stance x that uses this property. If e. g. the functional property p() is used with in-
stance x as subject of the statements, and there are instances y1 and y2 used in the
statements p(x, y1) and p(x, y2) then y1 and y2 have to be equal or the ontology
is inconsistent. To avoid such inconsistencies during runtime DEEP SEMANTICS
checks in the deep integration process if a property or one of its super-properties
is functional and if so sets the temporary variable max to 1. Afterwards max is
used for generating the particular setter method.
Meta-Programming Code: Please read the maximum cardinality description in
Table 3.2 for details.

Inverse Functional
Property

Comment: An inverse functional property is a property where the object of a
property statement uniquely determines the subject’s individual. If one states e. g.
that p() is an inverse functional property, then this asserts that y can only be the
value in a statement using p() for a single instance x. That means that if there
would exist instances x1 and x2 and statements p(x1, y) and p(x2, y) under the
given conditions then either x1 and x2 have to be equal instances or the ontology
is inconsistent.
Meta-Programming Code:
Setter source code extension:
"def #{object_property_object.local_name}=(new_value)

if new_value.kind_of?(Thing)
if !new_value.used_already_as_value?("#{object_property_object.

local_name}")
...
new_value.used_already_as_value("#{object_property_object.

local_name}")
...

else
puts ’#{new_value.local_name} has already been used and cannot be

used again with an inverse functional property!’
end

end
end"

Deletion setter method source code extension:
"value.used_not_already_as_value(#{object_property_object.local_name})"

Symmetric Property Comment: Object properties defined as "symmetric" cannot lead to inconsis-
tency problems during the application of a functional ontology model produced
by DEEP SEMANTICS.
Meta-Programming Code: Therefore there are no specific code fragments gen-
erated considering symmetry of an object property.

Transitive Comment: Like "symmetric" constraints the "transitive" restriction cannot lead
to inconsistencies during the application of a functional ontology model produced
by DEEP SEMANTICS.
Meta-Programming Code: Therefore there are no specific code fragments gen-
erated considering transitivity of an object property.
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Table 3.2: Types of local property constraints that have to be consider by DEEP SEMANTICS

Type of Constraint Comments and Corresponding RUBY Code generated by DEEP SEMANTICS

All-Values-From
Restriction

Comment: An all-values-from restriction constraints the range of allowed values
for a property to a particular ontology class or datatype.
Meta-Programming Code (shown only for object properties):
"def #{object_property_object.local_name}=(new_value)

if new_value.kind_of?(Thing)
if (new_value.types.include?(#{all_values_from_class1}) || new_value.

class.super_classes.include?(#{all_values_from_class1})) && ...
...

else
puts ’#{new_value.local_name} cannot be used as value of #{

object_property_object.local_name}!’
end

end
end"

Some-Values-From
Restriction

Comment: Some-Values-From restrictions on properties state that at least one
value of the considered property is an instance of a given ontology class (for
object properties) or datatype (for datatype properties).
Meta-Programming Code (shown only for object properties):
"def #{object_property_object.local_name}=(new_value)

if new_value.kind_of?(Thing)
if ... || (new_value.types.include?(#{some_value_class1}) ||

new_value.class.super_classes.include?(#{some_value_class1})) ||
...

...
else

puts ’#{new_value.local_name} cannot be used as value of #{
object_property_object.local_name}!’

end
end

end"

Minimum Cardinal-
ity Restriction

Comment:Aminimum cardinality has no effect on DEEP SEMANTICS generated
functional models.
Meta-Programming Code: No meta-programming is needed.

Maximum Cardinal-
ity Restriction

Comment: A property having a maximum cardinality restriction of 1 can have
only one unique value y for each instance x that uses this property. If a property
is functional and/or has maximum cardinality of 1 the helper max is also set to 1.
Meta-Programming Code (for max equals 1):
"def #{object_property_object.local_name}=(new_value)

if new_value.kind_of?(Thing)
if (@#{object_property_object.local_name}_values.size < #{max})

@#{object_property_object.local_name}_values << new_value
else

@#{object_property_object.local_name}_values[0] = new_value
end

end
end"

Cardinality Restric-
tion

Comment:A cardinality restriction statement implies that the minimum andmax-
imum cardinality values are equal.
Meta-Programming Code: Please read "maximum cardinality" above.
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Table 3.3: Runtime and main memory complexity comparison between DEEP SEMANTICS and
OWL API

Test DEEP SEMANTICS OWL API
List classes by level: Runtime list operation: 0.021

seconds
Runtime list operation: 4.088
seconds

IKEN ontology Runtime complete: 47.080 sec-
onds

Runtime complete: 9.271 sec-
onds

Peak main memory complexity
(average): 77 (23) megabyte

Peak main memory complex-
ity: 28 megabyte

List classes by level: Runtime list operation: 0.016
seconds

Runtime list operation: 2.604
seconds

BIO2ME ontology Runtime complete: 15.391 sec-
onds

Runtime complete: 3.480 sec-
onds

Peak main memory complexity
(average): 63 (21) megabyte

Peak main memory complex-
ity: 24 megabyte

Find all instances by their Runtime find operation: 0.007
seconds

Runtime find operation: 0.235
seconds

RDFS labels: IKEN ontology Runtime complete: 47.066 sec-
onds

Runtime complete: 4.930 sec-
onds

Peak main memory complexity
(average): 77 megabyte (23)

Peak main memory complex-
ity: 28 megabyte

Find all instances by their Runtime find operation: 0.004
seconds

Runtime find operation: 0.109
seconds

RDFS labels: BIO2ME ontol-
ogy

Runtime complete: 15.372 sec-
onds

Runtime complete: 0.962 sec-
onds

Peak main memory complexity
(average): 63 megabyte (21)

Peak main memory complex-
ity: 23 megabyte
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as for example iterating named subclasses requires six lines of code (lines 23 to 28) while a
functional analogous implementation with DEEP SEMANTICS would require only three lines.

Listing 3.25: XPERIMENTR implementation using JENA2: Print out the class hierarchy of the ontology.
1 // Print out all of the classes which are referenced in the ontology by hierarchy level
2 System.out.println("Known classes:");
3 for (ExtendedIterator i = ontology.listNamedClasses(); i.hasNext(); ) {
4 OntClass klass = (OntClass) i.next();
5 if ( klass.isHierarchyRoot() && (klass.listSuperClasses(true).toSet().size() > 0) ) {
6 //System.out.println( klass.getURI() );
7 xperimentr.printHierarchy(klass, 0);
8 }
9 }

Listing 3.26: XPERIMENTR implementation using JENA2: printHierarchy() methods.
1 /**
2 * Print the class hierarchy from this class down, assuming this class is at
3 * the given level. Makes no attempt to deal sensibly with multiple
4 * inheritance.
5 */
6 public void printHierarchy(OntClass klass, int level) {
7
8 System.out.println("Level: "+level);
9 System.out.println(" "+klass.getLocalName());
10
11 /* Find this classes instances*/
12 System.out.println(" This classes direct instances:");
13 for (ExtendedIterator i = klass.listInstances(true); i.hasNext(); ) {
14 Individual instance = (Individual) i.next();
15 System.out.println(" "+instance.getLocalName());
16 }
17
18 System.out.println();
19 System.out.println();
20 System.out.println("--------------------------");
21
22 /* Find the children and recurse */
23 for (ExtendedIterator i = klass.listSubClasses(true); i.hasNext(); ) {
24 OntClass subClass = (OntClass) i.next();
25 if ( subClass.isURIResource() && (subClass.listSuperClasses(true).toSet().size() >

0) && (subClass.listSubClasses(true).toSet().size() > 0) ) {
26 printHierarchy(subClass, level + 1);
27 }
28 }
29 }

The DEEP SEMANTICS source code of listing 3.18 on page 77 is comparable in its functionality
to the JENA2 code of listing 3.27. While listing 3.18 comprises eight lines of code, the JENA2
version requires 13 lines. Comparing both listings reveals one of the most significant differ-
ing features between the deep integration approach of DEEP SEMANTICS and the JAVA-based
frameworks: the programatic handling of ontology classes (for example line six in listing 3.18
in contrast to lines seven to nine in listing 3.27).

Listing 3.27: XPERIMENTR implementation using JENA2: source code for the retrieval of protocols that
can be executed in a specified duration.

1 String time = console.readLine();
2 Integer timeInteger = Integer.valueOf( time ).intValue();
3
4 System.out.println();
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5 System.out.println("Protocols that can be executed in "+time+" minutes:");
6
7 OntClass protocolKlass = ontology.getOntClass("http://www.ontoverse.org/ontologies/2008/11/

xperimentr.owl#Protocol");
8 for (ExtendedIterator i = protocolKlass.listInstances(); i.hasNext(); ) {
9 Individual protocol = (Individual) i.next();
10 if ( protocol.getPropertyValue( ontology.getDatatypeProperty("http://www.ontoverse.org

/ontologies/2008/11/xperimentr.owl#hasRequiredExecutionTime") ) != null ) {
11 Literal executionTime = (Literal) protocol.getPropertyValue( ontology.

getDatatypeProperty("http://www.ontovers.org/recipes.owl#
hasRequiredExecutionTime"));

12 Integer executionTimeInteger = Integer.valueOf( (String) executionTime.
getValue() ).intValue();

13 if (executionTimeInteger <= timeInteger) {
14 System.out.println( protocol.getLabel(null)+" can be prepared in "+

executionTimeInteger+" minutes.");
15 }
16 }
17 }

Runtime and Memory Complexity Comparison

Runtime and memory complexity comparisons between DEEP SEMANTICS and JENA2 were
carried out for both tests and both ontologies. Table 3.4 shows the corresponding results. As
JENA2 is developed based on JAVA, the total runtimes are significantly, that means approxi-
mately 5 to 10 times, shorter for this framework. However, computing of the operations alone
is around 100 to 600 times faster for DEEP SEMANTICS.

The highest main memory requirements for JENA2 are higher than for OWL API (around 43
megabytes in contrast to approximately 26 megabytes), but still less than the 77 megabytes
(both IKEN ontology application tests) and 63 megabytes (both BIO2ME ontology appli-
cation tests). In contrast the average main memory usage of DEEP SEMANTICS is less than
OWL API’s peak memory consumption.

3.8.3 DEEP SEMANTICS versus ACTIVERDF

In this subsection both compared frameworks (DEEP SEMANTICS and ACTIVERDF) are
based on RUBY and its metaprogramming features. While ACTIVERDF focuses on RDF,
DEEP SEMANTICS additionally supports OWL language constructs (currently in particular
OWL LITE). Most important, ACTIVERDF is not consistency safe for RDFS and OWL.

Programming Complexity Comparison

The determination of the ontology’s class and property hierarchies is not practicable in
ACTIVERDF, because no subclass (sub-property) to superclass (super-property) relations are
stored. Hence, an output of the class hierarchy by level could not be implemented.

Listing 3.17 (DEEP SEMANTICS code) on page 76 can be functionally and programatically
compared to listing 3.28 (ACTIVERDF code). Measuring programming complexity using the
number of code lines to implement equivalent functionality, 33 lines of functional code are
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Table 3.4: Runtime and main memory complexity comparison between DEEP SEMANTICS and
JENA2

Test DEEP SEMANTICS JENA2
List classes by level: Runtime list operation: 0.021

seconds
Runtime list operation: 2.661
seconds

IKEN ontology Runtime complete: 47.080 sec-
onds

Runtime complete: 4.296 sec-
onds

Peak main memory complexity
(average): 77 (23) megabyte

Peak main memory complex-
ity: 44 megabyte

List classes by level: Runtime list operation: 0.016
seconds

Runtime list operation: 1.876
seconds

BIO2ME ontology Runtime complete: 15.391 sec-
onds

Runtime complete: 3.754 sec-
onds

Peak main memory complexity
(average): 63 (21) megabyte

Peak main memory complex-
ity: 43 megabyte

Find all instances by their Runtime find operation: 0.007
seconds

Runtime find operation: 2.425
seconds

RDFS labels: IKEN ontology Runtime complete: 47.066 sec-
onds

Runtime complete: 4.176 sec-
onds

Peak main memory complexity
(average): 77 (23) megabyte

Peak main memory complex-
ity: 41 megabyte

Find all instances by their Runtime find operation: 0.004
seconds

Runtime find operation: 2.639
seconds

RDFS labels: BIO2ME ontol-
ogy

Runtime complete: 15.372 sec-
onds

Runtime complete: 4.519 sec-
onds

Peak main memory complexity
(average): 63 (21) megabyte

Peak main memory complex-
ity: 43 megabyte

required using DEEP SEMANTICS in constrast to 58 lines when using ACTIVERDF. This dif-
ference is a consequence of method find_instances_by_label (line twelve of listing 3.17), which
is provided by DEEP SEMANTICS. In ACTIVERDF a similar functionality has to be additionally
implemented as shown in listing 3.28 (lines 13 to 29).

Listing 3.28: KITCHEN MENTOR implementation using ACTIVERDF: retrieving a recipe for a set of
included materials.

1 materials = Array.new
2 found_protocols = XPERIMENTR::Protocol.find_all
3
4 puts "Please enter the next laboratory material or \"end\" to stop:"
5
6 while material_input = gets
7 case material_input
8 when "end\n"
9 break
10 else
11 material_input = material_input.chop
12
13 material_in_ontology = false
14
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15 XPERIMENTR::LaboratoryMaterial.find_all.each do |material|
16 if material.label.class != Array
17 if material.label.eql?(material_input)
18 material_in_ontology = true
19 break
20 end
21 else
22 material.label.each do |label|
23 if label.eql?(material_input)
24 material_in_ontology = true
25 break
26 end
27 end
28 end
29 end
30
31 if material_in_ontology
32 materials << material_input
33 new_found_protocols = Array.new
34 found_protocols.each do |found_protocol|
35 if found_protocol.hasRequiredMaterial
36 found_protocol.hasRequiredMaterial.each do |required_material|
37 if required_material.label.class != Array
38 if required_material.label.eql?(material_input)
39 new_found_protocols << found_protocol
40 end
41 else
42 required_material.label.each do |label|
43 if label.eql?(material_input)
44 new_found_protocols << found_protocol
45 break
46 end
47 end
48 end
49 end
50 end
51 end
52
53 found_protocols = new_found_protocols
54
55 puts "You have entered the following materials:"
56 materials.each do |material|
57 puts material
58 end
59
60 puts "The following protocols include these materials:"
61 found_protocols.each do |found_protocol|
62 puts found_protocol.label
63 end
64
65 else
66 puts "#{material_input} is not a known laboratory material."
67 end
68 puts "Please enter the next material you have or \"end\" to stop:"
69 end
70 end

Considerably more important than the missing of certain convenient functions is the fact that
ACTIVERDF is not consistency safe. Listing 3.29 shows a short example of how the usage
of ACTIVERDF can produce inconsistencies. This example is based on the XPERIMENTR
ontology (see Section 6.1 in the appendix) and involves the protocol SDS-Page as well as
this instance’s properties relatedExpert (an object property) and hasRequiredExecutionTime (a
datatype property). Of primary importance are lines seven and eight, respectively, in which the
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corresponding property value assignments are stated stated. The OWL property range of relat-
edExpert is the class Person. Therefore, the assignment in line seven should not be allowed.
Likewise, the range of hasRequiredExecutionTime is the data type String, which in turn causes
line eight to produce an inconsistency.

However, executing listing 3.29 produces the following output:

> sds_page.relatedExpert [<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Ilija>,
<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Nahal>,
. . . <http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Indra>
> sds_page.hasRequiredExecutionTime 333
>
> sds_page.relatedExpert [<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Ilija>,
<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Nahal>,
. . . <http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#Indra>,
<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#SDSPAGE>
> sds_page.hasRequiredExecutionTime
<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#SDSPAGE>

As one can see, in ACTIVERDF the ontology instance

<http://www.ontoverse.org/ontologies/2008/11/xperimentr.owl#SDSPAGE>

is assigned to both, the object property relatedExpert and the dataype property hasRequiredEx-
ecutionTime.

Reasoning on this ACTIVERDF modified version of the ontology would now generate an
error message as instance SDSPAGE is inconsistent. Using DEEP SEMANTICS such kinds
of modifications are not allowed, if they would result in logical inconsistencies. Instead,
DEEP SEMANTICS provides warnings that state that the intended operations cannot be con-
ducted to avoid inconsistencies. The statement sds_page.relatedExpert « sds_page in line seven
for example would produce the warning "An instance of ’Protocol’ cannot be added as value to
object property ’relatedExpert’ because: the global range of ’relatedExpert’ is ’Person’!".

Listing 3.29: Consistency problems using setter in ACTIVERDF.
1 XPERIMENTR::Protocol.find_all.each do |protocol|
2 if protocol.localname.eql?("SDSPAGE")
3 sds_page = protocol
4 puts "sds_page.relatedExpert "+sds_page.relatedExpert
5 puts "sds_page.hasRequiredExecutionTime "+sds_page.hasRequiredExecutionTime
6
7 sds_page.relatedExpert << sds_page
8 sds_page.hasRequiredExecutionTime = sds_page
9
10 puts
11 puts "sds_page.relatedExpert "+sds_page.relatedExpert
12 puts "sds_page.hasRequiredExecutionTime "+sds_page.hasRequiredExecutionTime
13 end
14 end
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Table 3.5: Runtime and main memory complexity comparison between DEEP SEMANTICS and
ACTIVERDF

Test DEEP SEMANTICS ACTIVERDF
Find all instances by their Runtime find operation: 0.007

seconds
Runtime: 60.849 seconds

RDFS labels: IKEN ontology Runtime complete: 47.066 sec-
onds

Runtime: 66.770 seconds

Peak main memory complexity
(average): 77 (23) megabyte

Peak main memory complex-
ity: 103 megabyte

Find all instances by their Runtime find operation: 0.004
seconds

Runtime find operation: 33.630
seconds

RDFS labels: BIO2ME ontol-
ogy

Runtime complete: 15.372 sec-
onds

Runtime complete: 34.734 sec-
onds

Peak main memory complexity
(average): 63 (21) megabyte

Peak main memory complex-
ity: 31 megabyte

Runtime and Main Memory Complexity Comparison

As mentioned above, the determination of the ontology’s class hierarchy is not possible using
ACTIVERDF. Therefore, test "List classes by level" could not be implemented for this frame-
work. Table 3.5 shows results of the runtime and memory complexity comparison between
DEEP SEMANTICS and ACTIVERDF for the remaining test.

Runtime differences for complete test runs are considerably smaller. DEEP SEMANTICS is ap-
proximately 0.5 to 2 times faster. However, computing of the operation alone is around 1000 to
8000 times faster for DEEP SEMANTICS.

The highest main memory usage is higher in ACTIVERDF for the IKEN ontology (around 77
megabytes for DEEP SEMANTICS ion contrast to approximately 103 megabytes) and lower for
the smaller BIO2ME ontology (approximately 63 megabytes for DEEP SEMANTICS in contrast
to 31 megabytes). The average main memory usage of DEEP SEMANTICS is in both cases less
than ACTIVERDF’s peek main memory requirement.

3.9 Discussion

The decision to implement DEEP SEMANTICS in the dynamic programming language RUBY
has proved to be effective for the deep integration of OWL ontologies. All aspects and con-
structs, respectively, of an OWL LITE ontology have been successfully converted into deep
integrated RUBY counterparts. The presented version of DEEP SEMANTICS has the following
deep integration features:

1. Conversion of named OWL classes into RUBY classes.

2. Conversion of datatype and object properties into:
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(a) RUBY objects of type DatatypeProperty and ObjectProperty, respectively, and

(b) getter and setter instance methods of the deep integrated ontology classes.

3. Consideration of global and local property restrictions:

(a) The local cardinality restrictions, as well as the global restriction functional, are deep
integrated into the corresponding setter instance method implementations. These
setter check if the maximum amount of allowed values is already used for the re-
ferred property.

(b) The globally acting domain constraint causes the corresponding property to be inte-
grated only into those ontology classes that have been stated in the domain assertion.

(c) The globally acting range constraint and the local allValuesFrom restriction are deep
integrated into the corresponding setter instance method implementations as type
checks. The type checks lead to the setter’s behavior that only those passed values
are excepted that belong to the stated ontology classes or data types.

(d) Locally defined someValuesFrom restrictions extend the set of allowed value types.

4. Conversion of ontology individuals into RUBY instances of the converted ontology
classes.

These integration features of DEEP SEMANTICS, and in particular those related to global or
local property restrictions, make the framework the first consistency safe one for OWL LITE
ontologies. Additionally, DEEP SEMANTICS even prevents the generation of inconsistencies
whose potential occurrence is hidden in ontology’s structure. One example is the declaration of
a local restriction concerning a property P in the context of a class C1. If now C1 is not part of
the set of classes stated as domain for P and if C1 is disjoint with at least one domain class C,
than using P for an instance i of C1 would generate an inconsistency because of the following
inference rules (?i, ?j are variables concerning OWL individuals; C1 and C2 are OWL classes;
P represents and object property):

1. type(?i, C1) AND P (?i, ?j)AND domain(P, C2)

⇒ type(?i, C2)

2. type(?i, C1) AND type(?i, C2) AND disjointWith(C1, C2))

⇒ ”The ontology is inconsistent as indivual ?i cannot be of type C1 and its disjoint C2.”

DEEP SEMANTICS detects such potential causes for inconsistencies during the deep integration
process and makes sure that these inconsistencies cannot be generated using deep integrated on-
tology models. In stated example object property P would not be integrated as instance method
into the source code of C1.

Another important topic to discuss is DEEP SEMANTICS current focus on OWL LITE and there-
fore lacking of OWL DL support. While OWL LITE is the least expressive sublanguage of
OWL it is still expressive enough to capture – using syntactical tricks – all of OWL DL ex-
cept of descriptions containing either individuals (for example hasValue) or cardinalities greater
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than 1 (Bechhofer et al., 2004; Horrocks et al., 2003a). From this it follows that the exclusive
support for OWL LITE is not critical for practical implementations using DEEP SEMANTICS.
However, for the development of semantic applications that utilize existing OWL DL ontolo-
gies a conversion of these into OWL LITE is at least impractical and in worst cases not possible
(for example if cardinalities higher than 1 are required).

To sum up, DEEP SEMANTICS’s support for OWL LITE already makes it useful for a wide
range of possible Semantic Web projects – even ones with higher semantic complexity require-
ments – while development of semantic applications based on existing OWL DL ontologies
require an extension of DEEP SEMANTICS towards description logic support (this issue is fur-
ther discussed in the conclusion in Subsection 3.9.4 below).

3.9.1 Programming Complexity

Section 3.8 contains comparisons between DEEP SEMANTICS and three other Semantic Web
frameworks - OWL API, JENA2 and ACTIVERDF. Although there is no applicable formal
definition of programming complexity as basis for these comparisons, the used example im-
plementations show DEEP SEMANTICS to require significantly less lines of code for the same
functionality than the other frameworks.

While RUBY is described as being an efficient way to achieve solutions with smaller amounts
of code (Geer, 2006) than in most other programming languages, part of DEEP SEMANTICS’s
source code efficiency is due to its systems design emphasize on programmer, rather than
computer, needs. Instead of solely focussing on runtime and main memory requirements,
I designed DEEP SEMANTICS with a focus on usability concerning the requirements of
semantic application developers. Related features of DEEP SEMANTICS are the provided
convenient methods like find_instances_by_label (line 12 of listing 3.17 page 76) and
find_instance_by_local_name(local_name).

3.9.2 Runtime and Main Memory Complexity

While DEEP SEMANTICS is very efficient relating its source code complexity, the required ini-
tial deep integration process makes it the longest running framework compared in Section 3.8. In
all mutual comparisons – for which the results are shown in Table 3.3, Table 3.4 and Table 3.5
– the completed runtime is always higher for DEEP SEMANTICS. Beginning from a twofold
longer runtime compared to ACTIVERDF up to a considerable 600 times longer runtime when
comparing with JENA2. Although these runtime comparisons suggest that DEEP SEMANTICS is
slow in general, a closer look reveals that it was actually faster than all other frameworks when
considering the tested operations only. In the extremest, test 2 – find all instances matching one
of ten given search terms – runs 8000 times faster for DEEP SEMANTICS than for ACTIVERDF.
The operational slowness of ACTIVERDF can easily be explained by its so-called lazy load-
ing access of the underlying ontology data from the used triple store. Lazy loading means that
the required ontology data is fetched from the triple store just in time when a search query on
this triples is carried out. In contrast, explaining that DEEP SEMANTICS is faster than the JAVA
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based frameworks JENA2 and OWL API is more difficult. A straightforward explanation is the
computing overhead that results from the more abstract architecture of these frameworks. In
other words: the computational cost of the initial deep integration results in a speed gain when
using the integrated ontology model compared to processing the ontology data using an abstract
model as in JENA2 and OWL API.

Considering DEEP SEMANTICS’s memory complexity an interesting point is the difference
between the average and peak memory usage. For the IKEN ontology the difference is 54
megabyte (77 megabyte peak and 23 megabyte average memory consumption) and for the
BIO2ME ontology 42 megabyte (63 megabyte peak and 21 megabyte average memory us-
age). The peak memory demand is related to the deep integration process, while the resulting
functional ontology model requires significantly less memory – about the amount of the average
memory consumption.

3.9.3 Handling Multiple Ontologies in DEEP SEMANTICS

DEEP SEMANTICS has fundamental support for usage with multiple ontologies. However, to
realize this support it requires appropriate reasoners during pre-processing. Principle problems
of current ontology tools with respect to ontology import and referencing have been discussed
in the literature (Liebig et al., 2005). Although the vision of the Semantic Web heavily builds on
sharing and re-using ontologies, both OWL provided corresponding functionalities – ontology
import and referencing – are not perceived as being appropriate for this task.

While importing requires to include also all transitively imported ontologies into reasoning
referencing of ontologies does not come with any semantic implications whatsoever. In con-
sequence the import process can easily lead to computation and memory complexities during
reasoning that render application of import functionality impractical while referencing does not
change the ontology semantically (Grau et al., 2004). From this it follows that the application
of multiple ontologies is currently primarily dependent on the used reasoner.

However, future enhancement of OWL’s multiple ontology support will certainly have to be
considered in order to enable DEEP SEMANTICS to become a key technology of the Semantic
Web. Furthermore, a straightforward possible pro-active solution could be the extension of the
DEEP SEMANTICS framework towards an integrated network of DEEP SEMANTICS modules
each covering exactly one ontology. Interconnections between these ontologies – for example
mutual concept equivalence across ontology boundaries – could then be used to retrieve ad-
ditional information stored in an other ontology and DEEP SEMANTICS module, respectively,
whenever needed.

3.9.4 Conclusions and Outlook

DEEP SEMANTICS has proved to be efficient with respect to its programming complexity and
operational runtime performance. Its architecture delivers an open approach that supports fur-
ther extensions in future versions. One such an extension will be the implementation of a deep
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integrating model builder supporting OWL DL in order to assist developers implementing ap-
plications that make use of description logic ontologies. Other useful extensions could be ad-
ditional adapters like one to access ontologies stored in specialized triples stores like SESAME
(Broekstra et al., 2002) and BOCA (Feigenbaum et al., 2007).

As described in Section 3.8 on page 81, is the current deep integration process computational
complex. Starting points for improvements are:

• Optimization of the used triple parsing algorithm. For example by initially sorting the set
of input triples into ABox and TBox related triples and not till then starting the parsing
process.

• A straightforward approach would be breaking up the deep integration process from the
actual application implementation. In particular the TBox – as long as it is not altered
– can be pre-processed (that means previously deep integrated) and included into the
application when needed.

The first recommendation of OWL is already more than four years old. At the moment of
this writing initiatives for the definition of OWL 2 (Grau et al., 2008) are underway. In order
to support DEEP SEMANTICS’s sustainability new model builder implementations for OWL 2
should be provided for future versions. Relating to matters of sustainability I currently intend
to continue DEEP SEMANTICS’s further development as an Open Source project.
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DEEP SEMANTICS in Action: IKEN and
the BIO2ME

This chapter covers two reference applications based on DEEP SEMANTICS. The first one,
IKEN, provides a novel type of semantics enabled web-interface developed during this doc-
toral thesis. Figure 4.1 shows a screenshot of two snippets of this web-interface. The second
semantic application using DEEP SEMANTICS for ontology processing is the BIO2ME Infor-
mation System developed by (Mainz, 2008). This application is described in section 4.2 on page
120.

4.1 IKEN

The project IKEN1 is an applied research project lead-managed by VARION GmbH, an Ger-
many based communication design agency. My area of responsibility was the design and imple-
mentation of the prototype application as well as the supporting ontology. A German description
can be found on the project’s website including a screencast showing the prototype of the IKEN

system.

IKEN is at the moment of this writing a prototype platform for image retrieval enhanced by
semantic annotations. IKEN is a proof-of-concept on how ontologies can support annotation
and search in a photo collection. Recently, folksonomies have established themselves as popular
means for indexing large document collections, with FLICKR2 being the most popular example
for social tagging in photo collections. Yet, user-generated annotations cause some problems
regarding inconsistent vocabularies, varieties of synonyms, spelling variants, misspellings and
language variants. In the long run, the user centric approach of social tagging will have to be
combined with richer semantics of ontologies.

1 http://www.i-ken.de
2 http://www.flickr.com/
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In summary the main aims of IKEN are:

• to provide a usable application which makes benefits of ontologies visible for internet
users;

• to enable easily usable functionalities for ontology-based photo annotations;
• to allow browsing a document collection based on domain semantics.

IKEN’s novel type of semantics enabled web-interface has the following distinguishing features
(numbers relate to the numbering used in Figure 4.1):

1. Terms and their related ontology instances are visualized in an innovative and user-
friendly style: ontology instances are represented as blue rectangles and relations between
two instances as larger and more grayish blue rectangles. The small green rectangles at
the right side of an ontology instance named "Verfeinern" (Refine) are buttons that opens
a refinement interface for the respective instance – the refinement interaction is described
in the next bullet point. Below the small green button there is also an orange one. This
button named "Details" invokes a pop-up window, showing details about the referenced
instance utilizing the related knowledge from the ontology.

2. IKEN semantic interface offers a first of its kind context sensitive annotation and search
refinement interface based on the semantics modeled in the IKEN ontology. If the user
for example clicks on "Verfeinern" (Refine) for the search term "Frau" (Woman) he will
see the interface shown in Figure 4.1. Based on the semantics about "Frau" (Woman)

modeled in the IKEN ontology, the application offers a list of refinement choices. The
user can then choose for example the hair color or the age of the woman. Beside offering
helpful support during search, this interface also optimizes annotation tasks as it helps the
annotator to identify relevant term refinements.

3. The "Details" interface displays information about the search term "T-Shirt". IKEN uses
the modeled semantic context to generate a view containing term specific information.
For the term "T-Shirt" these are information about synonyms and is-a relations ("T-Shirt
is an outerwear. T-Shirt is an apparel.").

The IKEN system is designed to enable users, who are not experts in knowledge engineering
and ontology modeling, to apply semantic annotations and to use semantic information retrieval
in image collections. As a first use case it focuses on applications in the tourism sector. This
mainly effects the choice of the images included in the database and the ontology in use; the
underlying principles can be applied to other and less-specified domains as well.

4.1.1 The IKEN ontology

The IKEN ontology is modeled in OWL LITE. It was developed from scratch to exactly fit into
the new system. The ontology comprises three main types of concepts: a) geographical concepts
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Figure 4.1: Screenshot of the novel semantics enabled web-interface of the IKEN application. As
IKEN is completely in German, interface snippets in this screenshot are in German, also. 1) The smaller
rectangles highlighted in blue represent ontology instances and the bigger ones represent relations be-
tween two instances. 2)

like "Country", "City" and "District" as well as "Street", "Building" and "Park"; b) concepts
that directly relate to objects visible in the pictures like "Building", "Vehicle", "Clothing" or
"Animal"; c) others are used to capture the sets of individuals that can be used as values of
property axioms that themselves define attributes of the visual objects – examples are: "Colour"
and "FacialExpression".

The annotations of a photo are stored using instances of the concept "Photo" (see part 2) of
Figure 4.2 for an example). For each photo one instance of "Photo" is created. Annotations
belonging to a photo are asserted using the object property "hatAnnotation" (has annotation)

with its sub properties "hatGeographischerRaumAnnotation" (has geographical area anno-

tation), "hatEmotionAnnotation" (hasEmotionAnnotation) and "hatTourismuskategorieAnnota-
tion" (has tourism category annotation) which all have "Photo" as their domain. The property
"hatGeographischerRaumAnnotation" (has geographical area annotation) is functional and has
the concept "GeographischerRaum" (Geographic Area) as its range. It is used to unambigu-
ously identify where a certain photo has been taken. With "hatEmotionAnnotation" (hasEmo-
tionAnnotation) general emotional features of a photo – like "Friede" (Peace) or "Einsamkeit"
(Loneliness) - can be added to the description. Likewise "hatTourismuskategorieAnnotation"
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(has tourism category annotation) is used to assert the photo to certain related categories like
"Natur" (Nature), "Sports" or "Erholung" (Recreation).

Metrics of the IKEN ontology (25nd of July): 360 concepts/classes, 70 object properties, 6
datatype properties, 222 initial instances and additionally 8 SWRL rules.

The Class Hierarchy

This is a list of the top-level classes of the IKEN ontology:

• Alter (Age): This concept is used to enable the annotation of the age of people visible in
a photo.

• Bauteil (Structural Element): Subclasses of "Bauteil" (Structural Element) are for ex-
ample "Wand" (Wall), "Tuer" (Door) and "Treppe" (Staircase). This class is used for the
specification of buildings.

• Bauwerk (Building): This concept is used to support the annotation of a "Bauwerk"

(Building) that can be seen in a photo. Subclasses are for example "Burg" (Castle), "Turm"
(Tower) and "Wohnhaus" (Apartment Building).

• Bewoelkung (Cloudiness): "Bewoelkung" (Cloudiness) is used to enable the annotation
of the cloudiness of the visible sky in a photo.

• Emotion: Subclasses of "Emotion" are "NegativeEmotion", "PositiveEmotion" and "Neu-
traleEmotion" (Neutral Emotion). This concept is used to model the subjective impression
a photo has on the person that annotates it.

• Fahrzeug (Vehicle): The concept "Fahrzeug" (Vehicle) is the root class for all kinds of
vehicles that can occur in photos related to the tourism domain of IKEN like for example
"Auto" (Car), "Bus", "Strassenbahn" (Tram) and "Fahrrad" (Bicycle).

• Farbe (Colour): The declaration of colours of objects that can be seen in photos is very
important. Therefore the class "Farbe" (Colour) is used as the root class for more spe-
cialized concepts like "Kleidungsfarbe" (Colour of Clothing), "Hautfarbe" (Skin Colour),
and "Haarfarbe" (Hair Colour).

• Fortbewegungsart (Type of Movement): This concept currently comprises four in-
stances: "gehen" (walking), "joggend" (walking), "laufend" (running) and "rennend"

(sprinting). It is used as range for the property "bewegtSichFort" (moves).

• Frisur (Hairstyle): This concept currently comprises seven instances: "Glatze" (Bald

Head) , "Kurzhaarschnitt" (Short Haircut) , "Langhaarschnitt" (Long Haircut), "Locken"
(Curls), "Pferdeschwanz" (Ponytail), "Pony" (Fringe), and "Zopf" (Pigtail). It is used as
range for the property "hatFrisur" (has hairstyle).
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• Gegenstand (Artefact): The concept "Gegenstand" (Artefact) comprises all kinds of ar-
tificial objects, potentially visible in photo that are not part of either "Bauteil" (Structural
Element), "Bauwerk" (Building), "Fahrzeug" (Vehicle), "Kleidung" (Clothing) and/or
"Moebel" (Piece of Furniture). In particular, it is the superclass of "InDerHandHaltbar-
erGegenstand" (In the Hand holdable Artefact) and "SchiebbarerGegenstand" (Pushable
Artefact) which are important classes for the detailed description of people (e.g. A man

that holds an umbrella.). Examples for "InDerHandHaltbarerGegenstand" (In the Hand

holdable Artefact) are: "Buch" (Book), "Regenschirm" (Umbrella) and "Glas". Examples
for "SchiebbarerGegenstand" (Pushable Artefact) are: "Kinderwagen" (Perambulator),
"Einkaufswagen" (Shopping Trolley) and "Gepaeckwagen" (Baggage Cart).

• GeographischerRaum (Geographic Area): This concept is used as a root for all geo-
graphical annotations that can be used to identify the location where a photo has been
taken, excluding buildings that are modeled separately. Subclasses of "Geographischer-
Raum" (Geographic Area) are for example "Stadt" (Town), "Stadtteil" (District) and
"Strasse" (Street). For the annotation process only initial instances of these classes are
allowed. The initial instances for "Stadt" (Town) in the current proof-of-concept ontology
version are for example: Duesseldorf and Krefeld (other city names have to be added in
order to be applicable for annotation). Terms like an unspecified "Gruenflaeche" (Green
Area) are not included in the definition of "GeographischerRaum" (Geographic Area)).

• Gesichtsausdruck (Facial Expression): This concept currently comprises six instances:
"Aengstlich" (Anxious) , "Grinsen" (Grining) , "Lachen" (Laughing), "Laecheln" (Smil-
ing), "Weinen" (Crying) and "Wuetend" (Angry). It is used as range for the property "hat-
Gesichtsausdruck" (has facial expression).

• Gruenflaeche (Green Area): This concept is used a root for all green area annotations
that can not be used to identify the location where a photo has been taken – the subclasses
are: "Rasen" (Lawn), "Weide" (Grazing Land) and "Wiese" (Grassland).

• Himmel (Sky): This concept is used to enable the annotation of the sky visible in a
photo. Annotation instances of this concept can be used as subject for "hatBewoelkung"
(has cloudiness) statements.

• Kleidung (Clothing): Subclasses of "Kleidung" (Clothing) are for example "Hose"

(Trousers), "Mantel" (Coat) and "Herrenanzug" (Gentleman Suit). This class is used for
the annotation of the clothing of people visible in a photo.

• Lebewesen (Creature): The concept "Lebewesen" (Creature) comprises all kinds of
creatures, potentially visible in photos like for example: "Mensch" (Human), "Pflanze"
(Plant) and the more specific "Hund" (Dog).

• Moebel (Piece of Furniture): "Moebel" (Piece of Furniture) is used to enable the anno-
tation of furniture visible in a photo.

• Monat (Month): Is used to define the month when an event takes place – "Monat"

(Month) is the range of "findetStattImMonat" (takes place in month).
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• Photo: Instances of the concept "Photo" are generated whenever a photo is annotated.
Annotation statements are then related to these instances using for example the properties
"hatAnnotation" (has annotation), "hatTag" (has tag) and "createdAt".

• Sehenswuerdigkeit (Tourist Feature): This class is used for the specification of points of
interest in a geographical area. Subclasses of "Sehenswuerdigkeit" (Tourist Feature) are
for example "Baudenkmal" (Monument), "BotanischerGarten" (Botanical Garden) and
"Museum". For the annotations process only initial instances of these classes are allowed.
The initial instances for "Baudenkmal" (Monument) in the current proof-of-concept on-
tology version are for example: "KaiserWilhelmStandbild" (a statue), "Reiterstandbild-
JanWellems" (an equestrian sculpture) and "SeidenweberDenkmal" (a statue).

• Sitzgelegenheit (Seating): "Sitzgelegenheit" (Seating) is used to model all kinds of in-
stances that can be used as values for the "sitztAuf" (sits on) relation (for example "Woman
sits on a picnic blanket.").

• Spiel (Game): "Spiel" (Game) covers all kinds of games that can be played by hu-
mans like: "Ballspiel" (Ball Game), "Brettspiel" (Board Game) and "Kartenspiel" (Card
Game).

• Tourismuskategorie (Tourism Category): This concept currently comprises six in-
stances: "Erholung" (Recreation), "Freizeit" (Leisure Time), "Gastronomie" (Gastron-

omy), "Kulturtourismus" (Cultural Tourism), "Natur" (Nature) and "Sport". It is used
to assort the annotated photos into certain categories that are related with the tourism
domain.

• Unternehmen (Company): This is the superclass for all kinds of companies and busi-
ness related terms that can occur as part of the semantic annotations. For the proof-
of-concept data set there have only two instances of "Unternehmen" (Company) been
used: the restaurant "StadtwaldhausKrefeld" and its beer garden "BiergartenStadtwald-

hausKrefeld".

• Veranstaltung (Event): This class is used for the specification of special events in a ge-
ographical area. Subclasses of "Veranstaltung" (Event) are for example "Kirmes" (Fun

Fair), "Messe" (Trade Fair) and "Weihnachtsmarkt" (Christmas Market). For the annota-
tions process only initial instances of these classes are allowed. The initial instances for
"Weihnachtsmarkt" (Christmas Market)) in the current proof-of-concept ontology version
are for example: "WeihnachtsmarktDuesseldorf" (the christmas market in Düsseldorf city)
and "WeihnachtsmarktKrefeld" (the christmas market in Krefeld city).

The Annotation Properties

During the implementation process of the IKEN prototype new requirements were encountered
concerning the annotation capabilities of the IKEN ontology. This lead to the definition of four
new custom annotation properties:
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Figure 4.2: Extract of the IKEN class hierarchy and a sample photo annotation. 1) A screenshot
of a part of the IKEN class hierarchy in PROTÉGÉ. 2) Screenshot of the PROTÉGÉ individuals view of a
photo instance. It becomes apparent here that the corresponding photo is for example annotated with the
instances "DefaultHund2008720171429" (a dog) and "DefaultFrau2008720171423" (a woman).

• primaryLabel: The property "primaryLabel" is an extension for the built-in rdfs:label

annotation property. It is used to store the label of a concept, instance or property that
should be used by default for graphical user interface.

• isInitialIndividual: This annotation property is used on individuals only with value
TRUE to indicate that the individual has been in the initial ontology model as defined
by the ontology designer and can be used for the annotation of multiple photos.

• isUsableForSpecificationGUI: "isUsableForSpecificationGUI" is applied for the anno-
tation of object and data type properties. The value of this annotation property can either
be TRUE or FALSE. If the value is TRUE then the annotated property can be utilised to
further specify an already added annotation term. In Figure 4.6 for example one can see
only those specification options in the refine view for which the corresponding properties
have the "isUsableForSpecificationGUI" value TRUE.

• hasSearchSpecificationMode: If "isUsableForSpecificationGUI" has the value TRUE
in the annotation of a given object or data type property then possible type or mode of
the specification has to be indicated with "hasSearchSpecificationMode". Allowed values
of "hasSearchSpecificationMode" are "Update" and "Substitution". If the specification
mode is "Update" then the specification process leads to an additional statement about
the specified term - for example: 1. An user searches for "a man with blond hair." 2. She
clicks on "Verfeinern" (Refine) for the search term "man". 3. She gets a list of properties
that are usable for this specification interface and clicks on "Man drives car". 4. The
search term "man" has now been updated and the new query is "a man with blond hair

and that drives a car.". If in contrast the specification mode is "Substitution" then the
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specification process leads to an exchange of the old term with a new one - for example:
1. An user searches for "a man with blond hair". 2. She clicks on "Verfeinern" (Refine) for
the search term "man". 3. She gets a list of properties that are usable for this specification
interface and clicks on "woman" in the context of Other terms that are sub-categories of
the concept "Human" 4. The search term "man" has now been substituted by "woman"

and the new query is a woman with blond hair.".

The Object Property Hierarchy

The object properties in the IKEN ontology are predominantly used for the specification of
content objects like "traegtKleidung" (wears clothing) which can be used in the system to an-
notate the type of clothing of a person in the photo. Besides object properties are for example
applied to relate photo instances to annotation terms with "hatAnnotation" (has annotation)

and to describe part-of relations between geographical areas with "liegtIn" (is situated in). The
following list of top-level IKEN object properties gives an overview about their purpose and
formal realization.

• hatRegelmaessigeVeranstaltung (has regular event): This property connects locations
with events (for example "Düsseldorf has regular event Japanese Day."). Its inverse prop-
erty is "findetStattIn" (takes place in).

– Domain: "Ort" (Location)

– Range: "Veranstaltung" (Event)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Substitution

• liegtIn (is situated in): This property connects smaller geographical areas with larger
ones (for example "Düsseldorf is situated in Germany."). Its inverse property is "umfasst"
(comprises).

– Domain: "GeographischerRaum" (Geographic Area)

– Range: "GeographischerRaum" (Geographic Area)

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• umfasst (comprises): This property connects larger geographical areas with smaller ones
(for example "Germany comprises Düsseldorf."). Its inverse property is "liegtIn" (is situ-
ated in).

– Domain: "GeographischerRaum" (Geographic Area)

– Range: "GeographischerRaum" (Geographic Area)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Substitution
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• istFarbeVon (is colour of): This property connects a certain colour with some instance
that is of this colour (for example "Yellow is the colour of a banana.").

– Domain:"Farbe" (Colour)

– Range: OWL Thing

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• traegtKleidung (wears clothing): "traegtKleidung" (wears clothing) connects a person
to the clothing he is wearing in the photo (for example "The man wears blue trousers.").

– Domain: "Mensch" (Human)

– Range: "Kleidung" (Clothing)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• hatFarbe (has colour): This property connects some instance with a certain colour this
instance has (for example "The banana is yellow.").

– Domain: OWL Thing

– Range: "Farbe" (Colour)

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• findetStattImMonat (takes place in month): "findetStattImMonat" (takes place in

month) connects an event with month this event takes place.

– Domain: "Veranstaltung" (Event)

– Range: "Monat" (Month)

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• wirdGefahrenVon (is driven by): This property connects a vehicle with its driver (for
example "The black car is driven by a woman with wearing a blue T-shirt."). Its inverse
property is "faehrt" (drives).

– Domain: "Fahrzeug" (Vehicle)

– Range: "Mensch" (Human)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• faehrt (drives): "faehrt" (drives) connects a driver with the vehicle she drives (for ex-
ample "The woman wearing a blue T-shirt drives a motorbike."). Its inverse property is
"wirdGefahrenVon" (is driven by).
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– Domain: "Mensch" (Human)

– Range: "Fahrzeug" (Vehicle)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• hatAnnotation (has annotation): Is the most important property as it connects the photo
instances with the annotations describing the visible content. "hatAnnotation" (has anno-
tation) comprises three sub-properties "hatTourismuskategorieAnnotation" (has tourism
category annotation), "hatGeographischerRaumAnnotation" (has geographical area an-

notation) and "hatEmotionAnnotation" (hasEmotionAnnotation).

– Domain:"Photo"

– Range: OWL Thing

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• stehtNeben (stands beside of): A person can be specified as standing beside of a visible
object in the photo (for example "The woman stands beside of a motorbike.").

– Domain: "Mensch" (Human)

– Range: OWL Thing

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• haeltInderHand (holds in hand): "haeltInderHand" (holds in hand) connects a person
with an in the hand holdable artefact (for example "The woman holds in hand a glas.").

– Domain: "Mensch" (Human)

– Range: "InDerHandHaltbarerGegenstand" (In the Hand holdable Artefact)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• hatFrisur (has hairstyle): A person can be specified as having a certain hairstyle (for
example "The man has the hairstyle curls.").

– Domain: "Mensch" (Human)

– Range: "Frisur" (Hairstyle)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• spielt (plays): A person can be specified as playing a certain game (for example "The boy
plays soccer.").
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– Domain: "Mensch" (Human)

– Range: "Spiel" (Game)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• findetStattIn (takes place in): This property connects events with locations (for example
The Japanese Day takes place in "Düsseldorf."). Its inverse property is "hatRegelmaes-
sigeVeranstaltung (has regular event).

– Domain: "Veranstaltung" (Event)

– Range: "Ort" (Location)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Substitution

• sitztAuf (sits on): "sitztAuf" (sits on) connects a person with an object this person is
sitting on (for example "The woman sits on a couch.").

– Domain: "Mensch" (Human)

– Range: "Sitzgelegenheit" (Seating)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• stehtVor (stands in front of): "stehtVor" (stands in front of) connects a person with an
object this person is standing in front of (for example "The man stands in front of a

house.").

– Domain: "Mensch" (Human)

– Range: OWL Thing

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• schiebt (pushes): A person can be specified as pushing an object (for example "The girl
pushes a perambulator.").

– Domain: "Mensch" (Human)

– Range: "SchiebbarerGegenstand" (Pushable Artefact)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• hatBewoelkung (has cloudiness): The cloudiness of the sky can be described with "hat-
Bewoelkung" (has cloudiness).

– Domain: "Himmel" (Sky)
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– Range: "Bewoelkung" (Cloudiness)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• bewegtSichFort (moves): "bewegtSichFort" (moves) connects a person to her type of
movement (for example "The woman is running.").

– Domain: "Mensch" (Human)

– Range: "Fortbewegungsart" (Type of Movement)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

• hatAlter (has age): A person can be annotated as having a certain age (for example "The
man has the age 42.").

– Domain: "Mensch" (Human)

– Range: "Alter" (Age)

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• hatGesichtsausdruck (has facial expression): "hatGesichtsausdruck" (has facial ex-

pression) connects a person with her facial expression (for example "The woman has

facial expression smiling.").

– Domain: "Mensch" (Human)

– Range: "Gesichtsausdruck" (Facial Expression)

– isUsableForSpecificationGUI: True

– hasSearchSpecificationMode: Update

The Data Type Property Hierarchy

Data type properties are applied in the IKEN ontology when the possible values for these prop-
erties do not have to be further specified. hatTag (has tag) for example relates photo instances to
non semantic tags. According their nature nNon semantic tags are not modeled in the ontology
and are therefore connected via a data type property. Top-level IKEN data type properties are:

• hatTag (has tag): hatTag (has tag) is applied to all annotations terms, that can not be
mapped to the ontology. An example would be "the photo has the tag Barack Obama" as
the IKEN ontology does not comprise the term "Barack Obama".

– Domain:"Photo"

– Range: String
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– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• istNachtaufnahme (is night photograph): This data type property prepares the possibil-
ity to annotate if a photo has been taken at night. However, this property is not supported
by the prototype at the moment.

– Domain:"Photo"

– Range: Boolean

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• createdAt: "createdAt" is applied to all photo instances and saves the exact time when
the related photo has been uploaded into the system.

– Domain:"Photo"

– Range: String

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• belongsToImageFileName: Like "createdAt" "belongsToImageFileName" is applied to
all photo instances as well. Using this property the name of the photo file is related to its
photo annotation instance.

– Domain:"Photo"

– Range: String

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• istAussenaufnahme (is location shot): The data type property "istAussenaufnahme" (is
location shot) prepares the possibility to annotate if a photo has been taken outside. It is
not supported by the IKEN prototype at the moment.

– Domain:"Photo"

– Range: Boolean

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• belongsToThumbImageFilePath: This data type property links every photo annotation
instance to the file path of the thumb image of the corresponding photo.

– Domain:"Photo"

– Range: String
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– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• istTagaufnahme (is day photograph)): Like "istNachtaufnahme" (is night photograph)
this data type property is not supported by the prototype at the moment. It will be used in
future versions to annotate if a photo has been taken by day.

– Domain:"Photo"

– Range: Boolean

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• belongsToImageFilePath: "belongsToImageFilePath" links every photo annotation in-
stance to the path of the corresponding photo file.

– Domain:"Photo"

– Range: String

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

• belongsToAnnotationImageFilePath: The annotation image file is a copy of the orig-
inal photo with reduced resolution which is used in the graphical user interface. "be-
longsToAnnotationImageFilePath" links every photo annotation instance to the path of
this annotation image file.

– Domain:"Photo"

– Range: String

– isUsableForSpecificationGUI: False

– hasSearchSpecificationMode: None

The used SWRL Rules

A series of annotation assertions are automatically added to the photos using PELLET with the
following SWRL rules:

• Rule 1 – Colour annotation

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ hatFarbe(?y, ?z)

⇒ hatAnnotation(?x, ?z)

Explanation: If an instance x of "Photo" is annotated with an individual y which has a
has colour ("hatFarbe") attribute with colour z as value then x is also annotated with this
colour z.
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• Rule 2 – Is situated in annotation 1

Photo(?x) ∧ hatGeographischerRaumAnnotation(?x, ?y) ∧ liegtIn(?y, ?z)

⇒ hatAnnotation(?x, ?z)

Explanation: If an instance x of "Photo" is annotated with an instance y of Geographic
Area ("GeographischerRaum") and if y is situated in ("liegtIn") z then x is also annotated
with z.

• Rule 3 – Is situated in annotation 2

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ liegtIn(?y, ?z)

⇒ hatAnnotation(?x, ?z)

Explanation: If an instance x of "Photo" is annotated with an individual y and if y is

situated in ("liegtIn") z then x is also annotated with z.

• Rule 4 – Tourism category annotation 1

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ Sehenswuerdigkeit(?y)

⇒ hatTourismuskategorieAnnotation(?x, Freizeit)

Explanation: If an instance x of "Photo" is annotated with an instance y of Tourist Feature
("Sehenswuerdigkeit") then x is annotated ("hatTourismuskategorieAnnotation") with the
tourism category Leisure ("Freizeit").

• Rule 5 – Tourism category annotation 2

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ Gewaesser(?y)

⇒ hatTourismuskategorieAnnotation(?x, Natur)

Explanation: If an instance x of "Photo" is annotated with an instance y of Body of Water
("Gewaesser") then x is annotated ("hatTourismuskategorieAnnotation") with the tourism
category Nature ("Natur").

• Rule 6 – Tourism category annotation 3

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ Gruenanlage(?y)

⇒ hatTourismuskategorieAnnotation(?x, Natur)

Explanation: If an instance x of "Photo" is annotated with an instance y of Recreation
Area ("Gruenanlage") then x is annotated ("hatTourismuskategorieAnnotation") with the
tourism category Nature ("Natur").
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• Rule 7 – Tourism category annotation 4

Photo(?x) ∧ hatAnnotation(?x, ?y) ∧ Pflanze(?y)

⇒ hatTourismuskategorieAnnotation(?x, Natur)

Explanation: If an instance x of "Photo" is annotated with an instance y of Plant

("Pflanze") then x is annotated ("hatTourismuskategorieAnnotation") with the tourism
category Nature ("Natur").

• Rule 8 – Event annotation

Photo(?x)∧ V eranstaltung(?y)∧ findetStattImMonat(?y, ?z)∧ hatAnnotation(?x, ?y)

⇒ hatAnnotation(?x, ?z)

Explanation: If an instance x of "Photo" is annotated with an instance y of Event ("Ve-
ranstaltung") which has a takes place in month ("findetStattImMonat") attribute with
month z as value then x is also annotated with this month z.

4.1.2 The IKEN Architecture

The IKEN architecture can be divided into two main parts: 1.) the ontology data pre-processing
and 2.) the architecture of the functional web-application. Figure 4.3 shows the ontology data
pre-processing workflow that can be divided into four major steps:

1. Consistency check: During the development of the IKEN prototype the reasoner PELLET
(version 1.5.1) was used for consistency checks and inference. This consistency check of
the IKEN ontology has to be executed after every extension or alteration of the ontology
– especially the TBox.

2. Inference: The consistent IKEN ontology base model is then further processed with
PELLET to infer the implicit constructs in the ontology and thus making them explicit.
The result of this pre-processing step is the inferred IKEN ontology model.

3. Serialization: This consistent and inferred ontology version is then serialized into N-
Triples format using JENA2 that can be used as input format for the next processing step.

4. Deep integration: In the last pre-processing step the OWL model is then transfered from
N-Triple into a deep integrated Ruby representation.

I used the RUBY ON RAILS web development framework for the implementation of the IKEN

prototype. RUBY ON RAILS supports the MVC architectural pattern that I further extended with
semantic web capabilities using DEEP SEMANTICS. The MVC pattern consists of three units
Model, View and Controller. The main parts of the semantic extended IKEN architecture as
shown in Figure 4.4 are:
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Figure 4.3: Ontology data pre-processing for IKEN. Ontology data pre-processing workflow divided
into four major steps: 1) consistency check, 2) inference, 3) serialization and 4) deep integration.

1. Client request: The IKEN application running in the users web-browser as a FLEX3
process sends a request to the IKEN web server.

2. Database access: The controller which is responsible for this kind of request fetches the
required data for the intended response from the database. It fetches all required data from
the database except of the functional ontology data. The database is thereby running on a
database server.

3. DEEP SEMANTICS access: If necessary the same controller retrieves the required onto-
logical data saved in the IKEN ontology using DEEP SEMANTICS– required ontological
data and constructs, respectively, can be for example certain classes or instances. The
DEEP SEMANTICS process runs on the application server.

4. Response preparation: The fetched and processed data is passed from the controller to
the respective view.

5. Server response: The view in turn combines this dynamic data with the page template
that together constitute the visual appearance of the response that is send from the web
server to the client.

6. Ontology data processing: Initially – that means at the start up of the IKEN application –
the used ontology data is read by the DEEP SEMANTICS process either from the database
or from an OWL file. Likewise is new annotation data in the ABox saved in the database
when triggered by the administrator.
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Figure 4.4: IKEN architecture and implementation set-up. The architecture of IKEN is basically a
semantic extension of the Mode-View-Controller architectural pattern. Besides the web server the im-
plementation set-up consist of an application server running the DEEP SEMANTICS process which is
responsible for the ontology processing and the database server.

Figure 4.5: IKEN details view in the annotation interface. The details view of the term "Burg Linn".
The details about where this castle is situated are: "Krefeld Linn", "Krefeld", "North Rhine-Westphalia"

and "Germany".
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Figure 4.6: IKEN refinement view in the annotation interface. This screenshot of the systems refine-
ment view shows the specification possibilities for the semantic tag "Frau" (woman). Currently selected
is the possibility to indicate the colour of the woman’s hair.

4.1.3 The IKEN Graphical User Interface

In IKEN the concept interrelations defined in the underlying ontology can be exploited through
the annotation user interface. Separated fields have been created for the annotation of the lo-
cation where the image has been taken and for emotional impressions. The main field captures
the content-descriptive annotations. In a first step, concepts can be added to a photo by entering
a word – the system will look for a matching ontology concept and add this to the photo. This
matching process uses the rdfs:label assertions in the ontology which also include synonyms
and spelling variants. If no matching concept is found, the annotation term is added as a sim-
ple tag (in a future version these unrelated tags can be used as suggestions for new ontology
concepts). In a next step, details for this concept can be displayed and the annotation may be
refined. For example, the concept "Burg Linn" (a castle) has been entered. One may now choose
the "Details" button to see how this concept is related to other aspects in the ontology, for exam-
ple that it is situated in: Deutschland (Germany), Nordrhein-Westfalen (a german state), Krefeld
(a city), Krefeld Linn (a district of Krefeld) (see Figure 4.5). Clicking on "Verfeinern (refine)"

opens the option to directly specify the nature of a concept – in the case shown in Figure 4.6 for
example one may choose to specify the "hair colour" of a woman as being "dark brown".

An ontology-based retrieval system like IKEN can select only those pictures, for which the
annotation concepts have been specified to have certain property values. Figure 4.7 for exam-
ple shows the search for "a woman (Frau) that wears the piece of clothing (trägt das Klei-
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Figure 4.7: IKEN search interface. The screenshot shows the search results for the following query: "A
woman who wears a red T-shirt".

dungsstück) T-shirt which has the colour red (Rot)" using the IKEN prototype. To make use
of the semantic annotations for precise document retrieval in the IKEN user interface, search
terms can be added in the same way as annotation concepts. The user may enter several search
terms which will again by replaced by corresponding ontology concepts and may refine each
of them with the available properties. Details regarding the interrelations to other aspects can
be shown for every concept. This may offer suggestions for manual query reformulation and
refinement as well as it constitutes a navigation tool in the domain knowledge space.

4.2 The BIO2ME Ontology and Information System

4.2.1 BIO2ME Ontology

The BioInformatics Ontology for Tools and Methods (BIO2ME) is an ontology about the do-
main of bioinformatics tools and methods (Mainz, 2006). It was motivated by a work ((Wilm
et al., 2006)) which was done by members of the ONTOVERSE project. In this work, several
multiple sequence alignment tools were compared regarding selected input data. One conclusion
of this work was that the most popular and mostly employed program in this field, CLUSTALW,
provided not necessarily the best results for each data set. The example of CLUSTALW (Chenna
et al., 2003) exemplifies the current situation in bioinformatics: There exist a variety of pro-
grams, packages, databases etc. dealing with various problems like the efficient processing of
experimental data, sequence analysis and protein structure prediction and visualization. The
problem for biologists currently is, that the domain of bioinformatics methods cannot be sur-
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veyed with reasonable effort. Even for experts in a specific domain of bioinformatics it is some-
times difficult to decide which tool fits the given requirements best. Moreover, there is a plethora
of programs which incorporate miscellaneous computational, mathematical, and biological ap-
proaches, respectively, solving the same problems.

The BIO2ME ontology is a detailed collection of information about bioinformatics tools,
which are categorized according to their application ranges. Supported biological tasks, utilized
computational methods, processed data formats and support information of tools are captured,
too. The ontology provides a basis of a search for tools that meet an users needs and also pro-
vides information about certain tools and computational methods. It will answer questions as
for example: Which tools and methods exist, that deal with given problems? Which data output
do they provide? etc.

4.2.2 BIO2ME Information System

Based on the BIO2ME ontology, and using DEEP SEMANTICS for ontology processing, an
information system has been implemented by Mainz (2008). The BIO2ME information sys-
tem provides functionalities to search for required bioinformatic tools and methods using the
ontology defined semantics for query extension as well as query formulation.

Beside semantic information retrieval, the BIO2ME application also supports the extension of
the ontology ABox. While this level of functionality does not comprise schema modification, as
for example the ontology editors SWOOP (Kalyanpur et al., 2005), PROTÉGÉ (Knublauch et al.,
2004) or ONTOVERSE, it does provide fast and consistency safe ontology instance extension
and editing.

4.3 Discussion

In this chapter two semantic applications were described that both use DEEP SEMANTICS as
ontology processing framework. The first one, the IKEN semantic image management applica-
tion (Mainz et al., 2008), provides functionalities to annotate images based on an underlying
ontology. These ontology-based annotations can then be used to offer a semantical search en-
gine over the images. The IKEN system was designed to enable users, who are not experts
in knowledge engineering and ontology modelling, to apply semantic annotations and make
use of semantic information retrieval in image collections. In the context of this application
DEEP SEMANTICS was successfully applied to access the TBox of the ontology (as well as
initially stored instances) to implement the semantic image annotation and retrieval functional-
ities.

The second described semantic application is called the BIO2ME information system. While
this application was not developed during this thesis, it is discussed here as a further reference
application using DEEP SEMANTICS for ontology access and manipulation.
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4.3.1 Semantic Image Management with IKEN

Besides being a test implementation for DEEP SEMANTICS, the initial aims of IKEN were: A)
to provide a usable application which makes benefits of ontologies visible for internet users;
B) to enable easily usable functionalities for ontology-based photo annotations; C) to allow
browsing a document collection based on domain semantics. First test runs with a small set of
reference users showed that ontology supported image annotation and retrieval with IKEN can
significantly improve user experience. To empirically support these first results, tests to pro-
vide the evaluation of precision, recall and usability are currently prepared. However, present
user responses indicate that IKEN’s user interface highlights advantages of semantic interfaces
and therefore successfully accomplish aim A). Additionally, users reported DEEP SEMANTICS
to have easier usable functionalities for ontology-based photo annotations as compared to
PHOTOSTUFF (Halaschek-Wiener et al., 2005).

During the first test runs it turned out that trying to describe every visual object in the picture in
detail is neither a feasible nor a desirable approach. For the presented version the concept Person
was identified as being most important for the IKEN application. Consequently, a large part of
used properties is related to class Person like wearsClothing, hasHairColour and holdsInHand.
Furthermore, the applied SWRL rules proved to be beneficial for automatically determining ad-
ditional facts and annotations, respectively. However, the use of reasoner PELLET with SWRL
rules turned out to be ineffective regarding its runtime as it extended the required inference
runtime fiftyfold from approximately 30 minutes to more than 24 hours.

An important result was the finding that terms used for photo annotations which cannot be
mapped to the ontology constitute a valuable resource for ontology extension. Using these tags
I was able to extend for example the subclasses for the concept Clothing with classes Coat and
Gentleman Suit. Future work on the IKEN system will include functionalities to incorporate
unrelated tags into the used ontology.

4.3.2 Experiences applying DEEP SEMANTICS

The primary purpose of the implementation of the semantic image annotation system IKEN,
with respect to this thesis, was to build a reference application based on DEEP SEMANTICS.
Experiences during the development of IKEN support the results discussed in Subsection 3.9.1
of Chapter 3. Deep integrated classes and instances were easily accessible and modifiable. For
example the following getter methods for a class’s set of instances were useful in a wide range
of implemented functionalities: direct_instances, initial_instances and instances. Similar expe-
riences were reported by the developer of the BIO2ME information system.

The usage of DEEP SEMANTICS for the conversion of an OWL LITE ontology into RUBY
classes and objects turned out to require the consideration of some special rules. Ontology
class names for example have to begin with an uppercase character. This rule accounts for
RUBY’s naming conventions for classes. Additionally, RUBY classes and therefore ontology
classes processed with DEEP SEMANTICS may consist of any combination of letters, numbers
and underscores.
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Furthermore, the following three best-practices were defined during the development of IKEN

and BIO2ME regarding ontology preparation for DEEP SEMANTICS:

1. Every class, individual and property in the ontology should provide at least one natu-
ral language label – this recommendation among other things fosters the usefulness of
convenient methods like find_instance_by_label(label).

2. Each property should provide a short description that can be displayed in the search form
to help the user understanding the search field.

3. rdfs:comments should be defined HTML conform when used to display in a browser.

Before the development of both reference applications convenient methods like
find_instance_by_label(label) were not part of DEEP SEMANTICS. These convenient methods
were added considering gathered experiences regarding commonly used ontology processing
functionalities. The current version of DEEP SEMANTICS comprises convenient methods like:

• find_instance_by_label(label): returns all instances of a class matching the passed label.

• find_instance_by_local_name(local_name): returns all instances of a class matching the
passed local name.

• find_subclasses_by_label(label): returns all subclasses of a class matching the passed la-
bel.

• incompleted_object_properties: returns those object properties that can still be used to
state additional facts about an instance without overwriting existing values.

• find_classes_by_superclass(superclass): returns those classes in the ontology that have
the defined superclass.

• listClassesByLevel respectively list_classes_by_level: lists classes by their highest levels
(for example if a class occurs on the levels 2 and 3 in the hierarchy it is saved for level 3).

The discussed convenient methods support DEEP SEMANTICS focus on developer requirements
and provide a sophisticated usability layer on top of the deep integrated ontology model. Addi-
tional types of convenient or helper methods are discussed next in the conclusions and outlook
section.

4.3.3 Conclusions and Outlook

The implementations of both reference applications proofed DEEP SEMANTICS to be an easy
to use Semantic Web framework. Additional helper and convenient methods, respectively, were
identified that further extended DEEP SEMANTICS potential to become the framework of choice
for rapid Semantic Web development within the next few years.
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Runtime and memory complexity were unproblematic and did not provide any practical ob-
stacles at all. However, handling of the deep integration process should be optimized in future
version. For example by enabling the deep integration of the TBox to be performed once in-
cluding storing of the resulting functional model. Thus, allowing this model to be included into
an application source code without having to convert the related ontology yet another time.

Besides improvements of the DEEP SEMANTICS’s core functionalities (as discussed in Sec-
tion 3.9 of the previous chapter), the implementation experiences described suggest a future
extension of the provided set of convenient methods. Relevant candidates are new methods for
fetching instances by their property values.
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Summary

The arising Semantic Web is an important component of the Internet of the future. Semantic
applications provide encouraging possibilities to control the exponentially growing data and in-
formation amount. Despite its considerable application potential, the idea of the Semantic Web
is not enforced on a broad range yet. Thereby there are two problems of particular relevance:
existing Semantic Web frameworks are either difficult to learn or cause problems because they
do not avoid the generation of logical inconsistencies.

The in this work developed, fundamentally new Semantic Web framework DEEP SEMANTICS
first provides an efficient and quickly to learn approach to edit ontologies, second integrated
consistency checks and third a fast processing of the data. Through the algorithmic realization
of the so called deep integration approach, with DEEP SEMANTICS it is possible to convert
OWL LITE ontologies in RUBY code. As a result a functional model of the ontology is gen-
erated in RUBY. The editing of ontologies is more efficient because less lines of source code
achieve the same functionality as source code of conventional API-based Semantic Web frame-
works. Moreover, the access to ontologies using DEEP SEMANTICS is much more intuitive and
therefore easier to learn. The integrated consistency check corresponds to an important fea-
ture of DEEP SEMANTICS: consistency safeness. DEEP SEMANTICS is the first Semantic Web
framework of its kind, which guarantees the logic consistency of the modified ontology. As
the framework processes only those operations which cannot cause logical inconsistencies, it
provides the developer of semantic applications a security in handling semantic data whose
importance should not be underestimated. Thereby, DEEP SEMANTICS reveals an excellent op-
eration time within the ontology editing.

Further on, DEEP SEMANTICS was successfully applied for the implementation of the seman-
tic image management application IKEN. Using IKEN, images can be annotated and searched
on the basis of an ontology. Thereby, the application offers a novel approach for the utiliza-
tion of semantic context information in graphical user interfaces. Depending on the entered
term, IKEN presents the user additional information stored in the ontology. During the im-
plementation of IKEN all three above mentioned advantages could be affirmed with respect
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to DEEP SEMANTICS. Additionally, new suggestions for the extension of DEEP SEMANTICS
have been motivated, that lead to the implementation of novel, efficiency improving convenient
functions.

Furthermore, DEEP SEMANTICS promises to become a valuable building block for semantic
applications in bioinformatics. In this thesis it was possible to discuss this on the basis of the
results of the BIO2ME project. In summary of the presented work results it appears to be
possible that DEEP SEMANTICS could become an important part of the Semantic Web.
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Zusammenfassung

Das entstehende Semantic Web ist ein wichtiger Bestandteil des Internet der Zukunft. Seman-
tische Anwendungen bieten vielversprechende Möglichkeiten um die exponentiell wachsenden
Daten- und Informationsbestände zu beherrschen. Trotz seines bedeutenden Anwendungspoten-
zials hat sich die Idee des Semantic Web allerdings bis heute nicht auf breiter Basis durchset-
zen können. Dabei sind zwei Probleme von besonderer Relevanz: bestehende Semantic Web
Frameworks sind entweder für Entwickler schwer zu erlernen, oder bereiten Probleme da sie
die Erzeugung von logischen Inkonsistenzen nicht verhindern.

Das in dieser Arbeit entwickelte, fundamental neue Semantic Web Framework
DEEP SEMANTICS bietet erstens einen effizienten und schnell zu erlernende Ansatz Ontolo-
gien zu bearbeiten, zweitens integrierte Konsistenzüberprüfungen und drittens eine schnelle
Datenprozessierung. Durch die algorithmische Umsetzung des sogenannte Deep Integration
Ansatzes ist es mit DEEP SEMANTICS möglich, OWL LITE Ontologien in RUBY Programm-
code zu übersetzen. Als Resultat entsteht ein funktionales Modell der Ontologie in RUBY.
Die Ontologiebearbeitung gestaltet sich damit wesentlich effizienter, da weniger Zeilen
Programmcode die gleichen Funktionalitäten erreichen als Programmcode herkömmlicher
API-basierter Semantic Web Frameworks. Zudem ist der Zugriff auf die Ontologiedaten
über DEEP SEMANTICS wesentlich intuitiver und damit leichter zu erlernen. Die integrierte
Konsistenzüberprüfung bezieht sich auf ein wichtiges Merkmal von DEEP SEMANTICS: Kon-
sistenzsicherheit. DEEP SEMANTICS ist das erste Semantic Web Framework seiner Art, das die
logische Konsistenz der bearbeiteten Ontologie sicherstellt. Indem das Framework nur solche
Operationen ausführt, die keine logischen Inkonsistenzen hervorrufen können, gibt es den En-
twicklern von semantischen Applikationen eine nicht zu unterschätzendes neue Sicherheit im
Umgang mit semantischen Daten. Dabei zeigt DEEP SEMANTICS zudem ein hervorragendes
Laufzeitverhalten bei der Ontologiedatenbearbeitung.

Weiterhin wurde DEEP SEMANTICS in dieser Arbeit erfolgreich für die Implementierung
der semantischen Bildverwaltungsanwendung IKEN eingesetzt. Bilder können über IKEN

anhand einer Ontologie annotiert und gesucht werden. Dabei bietet die Anwendung einen
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neuartigen Ansatz für die Verwendung semantischer Kontextinformationen in graphischen Be-
nutzerschnittstellen. Je nachdem welches Schlagwort in das System eingegeben wird, präsen-
tiert IKEN dem Anwender in der Ontologie hinterlegte Zusatzinformationen. In Bezug auf
DEEP SEMANTICS bestätigten sich bei der Umsetzung von IKEN die drei oben aufgeführten
Vorteile. Zusätzlich konnten neue Anregungen für die Erweiterung von DEEP SEMANTICS
gewonnen werden, die zur Implementierung von neuen, effizienzsteigernden Hilfsfunktionen
führten.

DEEP SEMANTICS verspricht zudem ein wertvoller Baustein für semantische Anwendungen in
der Bioinformatik zu werden. Dies konnte in dieser Arbeit anhand der Ergebnisse des BIO2ME

Projektes diskuttiert werden. Zusammenfassend lassen es die in dieser Arbeit präsentierten
Ergebnisse möglich erscheinen, dass DEEP SEMANTICS zu einem wichtigen Bestandteil des
Semantic Web werden wird.
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Appendix

6.1 XPERIMENTR Ontology: Classes, Properties and
Instances

The XPERIMENTR classes:

LaboratoryEquipment � Thing

LaboratoryElectronicEquipment � LaboratoryEquipment

LaboratoryGlassware � LaboratoryEquipment

LaboratoryP lasticEquipment � LaboratoryEquipment

LaboratoryMaterial � Thing

Antibiotic � LaboratoryMaterial

Buffer � LaboratoryMaterial

Chemical � LaboratoryMaterial

Enzyme � LaboratoryMaterial

Medium � LaboratoryMaterial

Organism � LaboratoryMaterial

Person � Thing

Protocol � Thing

BufferProtocol � Protocol

InV itroProtocol � Protocol

InV ivoProtocol � Protocol

MediumProtocol � Protocol

The XPERIMENTR local restrictions:

Buffer � ∀ hasProtocol.BufferProtocol

Medium � ∀ hasProtocol.MediumProtocol
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The XPERIMENTR object properties:

hasRequiredLaboratoryEquipment � ObjectProperty

∃hasRequiredLaboratoryEquipment.Thing � δ(Protocol)

Thing � ∀δ(hasRequiredLaboratoryEquipment.LaboratoryEquipment)

hasProtocol � ObjectProperty

∃hasProtocol.Thing � δ(LaboratoryMaterial)

Thing � ∀δ(hasProtocol.Protocol)

hasMediumProtocol � hasProtocol

∃hasMediumProtocol.Thing � δ(Medium)

Thing � ∀δ(hasMediumProtocol.MediumProtocol)

hasBufferProtocol � hasProtocol

∃hasBufferProtocol.Thing � δ(Buffer)

Thing � ∀δ(hasBufferProtocol.BufferProtocol)

hasRequiredMaterial � ObjectProperty

∃hasRequiredMaterial.Thing � δ(Protocol)

Thing � ∀δ(hasRequiredMaterial.LaboratoryMaterial)

hasBeenUploadedBy � ObjectProperty

∃hasBeenUploadedBy.Thing � δ(Protocol)

Thing � ∀δ(hasBeenUploadedBy.Person)

isExpertOf � ObjectProperty

∃isExpertOf.Thing � δ(Person)

Thing � ∀δ(isExpertOf.Protocol)

hasUploaded � isExpertOf

∃hasUploaded.Thing � δ(Person)

Thing � ∀δ(hasUploaded.Protocol)

isProtocolOfBuffer � ObjectProperty

∃isProtocolOfBuffer.Thing � δ(BufferProtocol)

Thing � ∀δ(isProtocolOfBuffer.Buffer)

isProtocolOfMedium � ObjectProperty

∃isProtocolOfMedium.Thing � δ(MediumProtocol)

Thing � ∀δ(isProtocolOfMedium.Medium)

isRequiredForProtocol � ObjectProperty

∃isRequiredForProtocol.Thing � δ(LaboratoryEquipment)

Thing � ∀δ(isRequiredForProtocol.Protocol)

isUsedForProtocol � ObjectProperty

∃isUsedForProtocol.Thing � δ(LaboratoryMaterial)

Thing � ∀δ(isUsedForProtocol.Protocol)
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relatedExpert � ObjectProperty

∃relatedExpert.Thing � δ(Protocol)

Thing � ∀δ(relatedExpert.Person)

hasRequiredLaboratoryEquipment ≡ isRequiredForProtocol−

hasRequiredMaterial ≡ isUsedForProtocol−

isExpertOf ≡ relatedExpert−

hasUploaded ≡ hasBeenUploadedBy−

The XPERIMENTR datatype properties:

hasProcedure � DatatypeProperty

∃hasProcedure.Thing � δ(Protocol)

Thing �≤ 1 hasProcedure

hasRequiredExecutionT ime � DatatypeProperty

∃hasRequiredExecutionT ime.Thing � δ(Protocol)

Thing �≤ 1 hasRequiredExecutionT ime

The XPERIMENTR instances:

Details about instances like property values and annotations have been omitted because the
related list would have been to large.

Instances of LaboratoryEquipment:

BunsenBurner : LaboratoryEquipment

LoadingDye6x : LaboratoryEquipment

Micropipette : LaboratoryEquipment

SterileT ip : LaboratoryEquipment

Incubator : LaboratoryElectronicEquipment

MicrowaveOven : LaboratoryElectronicEquipment

MotorizedP ipette : LaboratoryElectronicEquipment

PCRMachine : LaboratoryElectronicEquipment

UV Box : LaboratoryElectronicEquipment

V ortexer : LaboratoryElectronicEquipment

GlassCultureTubes : LaboratoryGlassware

GlassP ipetteTubes : LaboratoryGlassware

P lasticTube : LaboratoryP lasticEquipment

Sterile06mLPlasticTube : LaboratoryP lasticEquipment
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Instances of LaboratoryMaterial:

Acrylamide : LaboratoryMaterial

BioPrimeRandomGenomicDNALabelingKit : LaboratoryMaterial

Parafilm : LaboratoryMaterial

PCRSupermix : LaboratoryMaterial

Primer : LaboratoryMaterial

QiagenTaqPolymeraseKit : LaboratoryMaterial

HighMWRunningBuffer5x : Buffer

LowMWRunningBuffer5x : Buffer

TAEBuffer : Buffer

Taq10xbuffer : Buffer

GelBuffer3P5X : Buffer

Acetate : Chemical

EDTA : Chemical

EthidiumBromide : Chemical

NaOH02M : Chemical

SDS : Chemical

SodiumBisulfite : Chemical

Tris : Chemical

ProteinaseK : Enzyme

ABMedium : Medium

GrowthMedium : Medium

Y eastColony : Organism

Instances of Person:

Arndt : Person

Barry : Person

Deniz : Person

Dominic : Person

Ilija : Person

Indra : Person

Ingo : Person

Jochen : Person

Nahal : Person

T im : Person
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Instances of Protocol:

PCRSupermixProtocol : Protocol

HighMWRunningBuffer5xProtocol : BufferProtocol

LowMWRunningBuffer5xProtocol : BufferProtocol

TAEBufferProtocol : BufferProtocol

GelBuffer3P5XProtocol : BufferProtocol

AffymetrixDNALabellingForGeneExpressionArrays : InV itroProtocol

AgaroseGelElectrophoresis : InV itroProtocol

SDSPAGE : InV itroProtocol

BacterialCellCulture : InV ivoProtocol

BlackburnY eastColonyPCR : InV ivoProtocol

KnightColonyPCR : InV ivoProtocol

MouseT issueLysisForGenotyping : InV ivoProtocol

ABMediumProtocol : MediumProtocol

6.2 Abstract syntax of OWL LITE
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6.3 Reference Test Implementations

6.3.1 Test 1: list all classes of the ontology

Listing 6.1: Test 1 implementation using OWL API.
1 package dissertation.xperimentr;
2
3 import org.semanticweb.owl.apibinding.OWLManager;
4 import org.semanticweb.owl.model.OWLClass;
5 import org.semanticweb.owl.model.OWLDescription;
6 import org.semanticweb.owl.model.OWLException;
7 import org.semanticweb.owl.model.OWLIndividual;
8 import org.semanticweb.owl.model.OWLOntology;
9 import org.semanticweb.owl.model.OWLOntologyCreationException;
10 import org.semanticweb.owl.model.OWLOntologyManager;
11
12 import java.net.URI;
13 import java.util.Date;
14 import java.util.Set;
15
16 public class IKenTestNewClusteringOWLAPI {
17
18 private OWLOntology ontology;
19
20 public IKenTestNewClusteringOWLAPI() {
21 }
22
23 public static void main(String[] args) {
24 try {
25 Date date1 = new Date();
26 System.out.println(date1.toString());
27
28 // We first need to obtain a copy of an OWLOntologyManager, which

manages a set of
29 // ontologies.
30 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();
31
32 // We load an ontology from a physical URI - in this case the inferred

model of the KitchenMentor ontology.
33 URI physicalURI = URI.create("file:/Users/dominic/ontologies/iken3/

iken_infered3.owl");
34
35 // Now ask the manager to load the ontology
36 OWLOntology ontology = manager.loadOntologyFromPhysicalURI(physicalURI

);
37
38 IKenTestNewClusteringOWLAPI iken = new IKenTestNewClusteringOWLAPI();
39
40 // Print out all of the classes which are referenced in the ontology

by hierarchy level
41 Date timeA = new Date();
42 System.out.println("List classes by level for the IKen ontology start:

"+timeA.toString());
43 Set<OWLClass> klasses = ontology.getReferencedClasses();
44 for (OWLClass klass : klasses) {
45 try {
46 iken.printHierarchy(ontology, klass);
47 } catch (OWLException e) {
48 System.out.println("The class hierarchy could not be

printed: " + e.getMessage());
49 }
50 }
51 Date timeB= new Date();
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52 System.out.println("List classes by level for the IKen ontology end: "
+timeB.toString());

53 System.out.println("Required time: "+(timeB.getTime()-timeA.getTime())
);

54
55 Date date2 = new Date();
56 System.out.println(date2.toString());
57 System.out.println((date2.getTime()-date1.getTime()));
58 } catch (OWLOntologyCreationException e) {
59 // TODO Auto-generated catch block
60 e.printStackTrace();
61 }
62 }
63
64 public void printHierarchy(OWLOntology ontology, OWLClass clazz) throws OWLException {
65 this.ontology = ontology;
66 printHierarchy( clazz, 0 );
67 }
68
69 public void printHierarchy(OWLClass clazz, int level) throws OWLException {
70
71 System.out.println("Level: "+level);
72 System.out.println(" "+clazz);
73
74 /* Find this classes instances*/
75 System.out.println(" This classes direct instances:");
76 Set<OWLIndividual> instances = clazz.getIndividuals(this.ontology);
77 for (OWLIndividual instance : instances) {
78 Boolean is_direct_instance = true;
79
80 Set<OWLDescription> subclasses = clazz.getSubClasses(this.ontology);
81 for (OWLDescription subclass : subclasses) {
82 if (!subclass.isAnonymous() && !subclass.equals(clazz) && !subclass.

isOWLNothing()) {
83 if (instance.getTypes(this.ontology).contains(subclass)) {
84 is_direct_instance = false;
85 }
86 }
87 }
88
89 if (is_direct_instance) {
90 System.out.println(" "+instance);
91 }
92 }
93 System.out.println("--------------------------");
94
95 /* Find the children and recurse */
96 Set<OWLDescription> children = clazz.getSubClasses(this.ontology);
97
98 for (OWLDescription child : children) {
99 if (!child.equals(clazz) && !child.isAnonymous() && !child.isOWLNothing() ) {
100 printHierarchy(child.asOWLClass(), level + 1);
101 }
102 }
103 }
104 }

Listing 6.2: Test 1 implementation using JENA2.
1 package dissertation.xperimentr;
2
3 import java.util.Date;
4 import org.mindswap.pellet.jena.PelletReasonerFactory;
5 import com.hp.hpl.jena.ontology.Individual;
6 import com.hp.hpl.jena.ontology.OntClass;
7 import com.hp.hpl.jena.ontology.OntModel;
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8 import com.hp.hpl.jena.rdf.model.ModelFactory;
9 import com.hp.hpl.jena.util.iterator.ExtendedIterator;
10
11 public class IKenTestNewClustering {
12
13 public IKenTestNewClustering() {
14 }
15
16 public static void main(String[] args) {
17 Date date1 = new Date();
18 System.out.println(date1.toString());
19
20 String ontology = "file:/Users/dominic/ontologies/iken3/iken3_01112008.owl";
21
22 // create an empty ontology model using Pellet spec
23 OntModel model = ModelFactory.createOntologyModel( PelletReasonerFactory.THE_SPEC );
24
25 // read the file
26 model.read( ontology );
27 IKenTestNewClustering iken = new IKenTestNewClustering();
28
29 // Print out all of the classes which are referenced in the ontology by hierarchy

level
30 Date timeA = new Date();
31 System.out.println("List classes by level for the IKen ontology start: "+timeA.

toString());
32 for (ExtendedIterator i = model.listNamedClasses(); i.hasNext(); ) {
33 OntClass klass = (OntClass) i.next();
34 if ( klass.isHierarchyRoot() && (klass.listSuperClasses(true).toSet().size() >

0) ) {
35 //System.out.println( klass.getURI() );
36 iken.printHierarchy(klass, 0);
37 }
38 }
39 Date timeB= new Date();
40 System.out.println("List classes by level for the IKen ontology end: "+timeB.toString

());
41 System.out.println("Required time: "+(timeB.getTime()-timeA.getTime()));
42
43 Date date2 = new Date();
44 System.out.println(date2.toString());
45 System.out.println((date2.getTime()-date1.getTime()));
46 }
47
48 public void printHierarchy(OntClass klass, int level) {
49
50 System.out.println("Level: "+level);
51
52 System.out.println(" "+klass.getLocalName());
53
54 /* Find this classes instances*/
55 System.out.println(" This classes direct instances:");
56 for (ExtendedIterator i = klass.listInstances(true); i.hasNext(); ) {
57 Individual instance = (Individual) i.next();
58 System.out.println(" "+instance.getLocalName());
59 }
60 System.out.println("--------------------------");
61
62 /* Find the children and recurse */
63 for (ExtendedIterator i = klass.listSubClasses(true); i.hasNext(); ) {
64 OntClass subClass = (OntClass) i.next();
65 if ( subClass.isURIResource() && (subClass.listSuperClasses(true).toSet().

size() > 0) && (subClass.listSubClasses(true).toSet().size() > 0) ) {
66 printHierarchy(subClass, level + 1);
67 }
68 }
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69 }
70 }

Listing 6.3: Test 1 implementation using DEEP SEMANTICS.
1 require File.join(File.dirname(__FILE__), ’active_semantics.rb’)
2 require File.join(File.dirname(__FILE__), ’Helper/namespaces.rb’)
3
4 time1 = Time.now
5
6 puts time1
7
8 Namespaces.add_namespace(’http://www.ontoverse.org/ontologies/2008/3/iken2.owl#’, ’iken:’)
9
10 $active_semantics = ActiveSemantics.instance
11 iken = $active_semantics.set_director({’adapter’ => ’FileAdapter’, ’ontology_source’ => ’/

Users/dominic/ontologies/iken3/inferred_iken3_01112008.nt’, ’builder’ => ’
DeepIntegrationBuilderOWLLite’})

12
13 timeA = Time.now
14 puts "List classes by level for the IKen ontology start: #{timeA}"
15 iken.listClassesByLevel.each_pair do |level, classes|
16 puts "Level: #{level}"
17 classes.each do |klass|
18 puts " "+klass.local_name
19 puts " This classes direct instances:"
20 klass.direct_instances.each do |instance|
21 puts " "+instance.local_name
22 end
23 puts "--------------------------"
24 end
25 end
26 timeB = Time.now
27 puts "List classes by level for the IKen ontology end: #{timeB}"
28 puts "Required time: #{(timeB - timeA)}"
29
30 time2 = Time.now
31 puts time2
32
33 puts time2 - time1

6.3.2 Test 2: find all instances matching a certain search term

Listing 6.4: Test 2 implementation using OWL API.
1 package dissertation.xperimentr;
2
3 import org.semanticweb.owl.apibinding.OWLManager;
4 import org.semanticweb.owl.model.OWLAnnotation;
5 import org.semanticweb.owl.model.OWLClass;
6 import org.semanticweb.owl.model.OWLConstant;
7 import org.semanticweb.owl.model.OWLIndividual;
8 import org.semanticweb.owl.model.OWLOntology;
9 import org.semanticweb.owl.model.OWLOntologyCreationException;
10 import org.semanticweb.owl.model.OWLOntologyManager;
11 import org.semanticweb.owl.vocab.OWLRDFVocabulary;
12
13 import java.net.URI;
14 import java.util.Date;
15 import java.util.HashSet;
16 import java.util.Set;
17
18 public class IKenTestNewClustering2OWLAPI {
19
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20 public IKenTestNewClustering2OWLAPI() {
21 }
22
23 public static void main(String[] args) {
24 try {
25 Date date1 = new Date();
26 System.out.println(date1.toString());
27
28 // We first need to obtain a copy of an OWLOntologyManager, which

manages a set of
29 // ontologies.
30 OWLOntologyManager manager = OWLManager.createOWLOntologyManager();
31
32 // We load an ontology from a physical URI - in this case the inferred

model of the KitchenMentor ontology.
33 URI physicalURI = URI.create("file:/Users/dominic/ontologies/iken3/

iken_infered3.owl");
34
35 // Now ask the manager to load the ontology
36 OWLOntology ontology = manager.loadOntologyFromPhysicalURI(physicalURI

);
37
38 IKenTestNewClustering2OWLAPI iken = new IKenTestNewClustering2OWLAPI()

;
39
40 // Print out all of the classes which are referenced in the ontology

by hierarchy level
41 Date timeA = new Date();
42 System.out.println("Find all instances by their RDFS labels in the IKen

ontology - start: "+timeA.toString());
43 Set<String> test_search_labels = new HashSet<String>();
44
45 test_search_labels.add("bedeckt");
46 test_search_labels.add("wolkenlos");
47 test_search_labels.add("Locken");
48 test_search_labels.add("Pony");
49 test_search_labels.add("Grinsen");
50 test_search_labels.add("Lachen");
51 test_search_labels.add("Juli");
52 test_search_labels.add("Oktober");
53 test_search_labels.add("Natur");
54 test_search_labels.add("Sport");
55
56 for (String search_label : test_search_labels) {
57 Set<OWLIndividual> instanceHits = new HashSet<OWLIndividual>();
58
59 Set<OWLClass> klasses = ontology.getReferencedClasses();
60 for (OWLClass klass : klasses) {
61 instanceHits = iken.findInstancesByLabel(ontology, klass, search_label

);
62 if (instanceHits.size() > 0) {
63 for (OWLIndividual instanceHit : instanceHits) {
64 System.out.println(instanceHit);
65 }
66 }
67 }
68 }
69 Date timeB= new Date();
70 System.out.println("Find all instances by their RDFS labels in the IKen

ontology - end: "+timeB.toString());
71 System.out.println("Required time: "+(timeB.getTime()-timeA.getTime())

);
72
73 Date date2 = new Date();
74 System.out.println(date2.toString());
75 System.out.println((date2.getTime()-date1.getTime()));
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76 } catch (OWLOntologyCreationException e) {
77 // TODO Auto-generated catch block
78 e.printStackTrace();
79 }
80 }
81
82 public static Set<OWLIndividual> findInstancesByLabel(OWLOntology ontology, OWLClass klass

, String searchLabel) {
83 Set<OWLIndividual> instance_hits = new HashSet<OWLIndividual>();
84 Set<OWLIndividual> instances = klass.getIndividuals(ontology);
85
86 for (OWLIndividual instance : instances) {
87 for (OWLAnnotation annotation : instance.getAnnotations(ontology,

OWLRDFVocabulary.RDFS_LABEL.getURI())) {
88 if (annotation.isAnnotationByConstant()) {
89 OWLConstant value = annotation.getAnnotationValueAsConstant();
90 if ( value.getLiteral().equals(searchLabel) ) {
91 instance_hits.add( instance );
92 }
93 }
94 }
95 }
96 return instance_hits;
97 }
98 }

Listing 6.5: Test 2 implementation using JENA2.
1 package dissertation.xperimentr;
2
3 import java.util.Date;
4 import java.util.HashSet;
5 import java.util.Iterator;
6 import java.util.Set;
7
8 import org.mindswap.pellet.jena.PelletReasonerFactory;
9 import com.hp.hpl.jena.ontology.Individual;
10 import com.hp.hpl.jena.ontology.OntClass;
11 import com.hp.hpl.jena.ontology.OntModel;
12 import com.hp.hpl.jena.rdf.model.Literal;
13 import com.hp.hpl.jena.rdf.model.ModelFactory;
14 import com.hp.hpl.jena.rdf.model.Resource;
15 import com.hp.hpl.jena.util.iterator.ExtendedIterator;
16
17 public class IKenTestNewClustering2 {
18
19 public IKenTestNewClustering2() {
20 }
21
22 public static void main(String[] args) {
23 Date date1 = new Date();
24 System.out.println(date1.toString());
25
26 String ontology = "file:/Users/dominic/ontologies/iken3/iken3_01112008.owl";
27
28 // create an empty ontology model using Pellet spec
29 OntModel model = ModelFactory.createOntologyModel( PelletReasonerFactory.THE_SPEC );
30
31 // read the file
32 model.read( ontology );
33
34 IKenTestNewClustering2 iken = new IKenTestNewClustering2();
35
36 // Print out all of the classes which are referenced in the ontology by hierarchy

level
37 Date timeA = new Date();



148 Appendix

38 System.out.println("Find all instances by their RDFS labels in the IKen ontology -
start: "+timeA.toString());

39 Set<String> test_search_labels = new HashSet<String>();
40
41 test_search_labels.add("bedeckt");
42 test_search_labels.add("wolkenlos");
43 test_search_labels.add("Locken");
44 test_search_labels.add("Pony");
45 test_search_labels.add("Grinsen");
46 test_search_labels.add("Lachen");
47 test_search_labels.add("Juli");
48 test_search_labels.add("Oktober");
49 test_search_labels.add("Natur");
50 test_search_labels.add("Sport");
51
52 for (String search_label : test_search_labels) {
53 Set<Individual> instanceHits = new HashSet<Individual>();
54
55 for (ExtendedIterator c = model.listNamedClasses(); c.hasNext(); ) {
56 OntClass klass = (OntClass) c.next();
57 instanceHits = iken.findInstancesByLabel(klass, search_label);
58 if (instanceHits.size() > 0) {
59 for (Individual instanceHit : instanceHits) {
60 System.out.println(instanceHit);
61 }
62 }
63 }
64 }
65
66 Date timeB= new Date();
67 System.out.println("Find all instances by their RDFS labels in the IKen ontology - end

: "+timeB.toString());
68 System.out.println("Required time: "+(timeB.getTime()-timeA.getTime()));
69
70 Date date2 = new Date();
71 System.out.println(date2.toString());
72 System.out.println((date2.getTime()-date1.getTime()));
73 }
74
75 public static Set<Individual> findInstancesByLabel(OntClass klass, String searchLabel) {
76 //System.out.println("findInstancesByLabel: "+klass.toString());
77 Set<Individual> instance_hits = new HashSet<Individual>();
78 ExtendedIterator instances = klass.listInstances(true);
79
80 for (ExtendedIterator i = instances; i.hasNext(); ) {
81 Individual instance = (Individual) i.next();
82 for (ExtendedIterator j = instance.listLabels(null); j.hasNext(); ) {
83 Literal label = (Literal) j.next();
84 if ( label.getString().equals(searchLabel) ) {
85 instance_hits.add( instance );
86 }
87 }
88 }
89
90 return instance_hits;
91 }
92 }

Listing 6.6: Test 2 implementation using ACTIVERDF.
1 require ’rubygems’
2
3 require ’active_rdf’
4 require "#{File.dirname(__FILE__)}/sparql"
5 require "#{File.dirname(__FILE__)}/rdflite"
6
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7 time1 = Time.now
8 puts time1
9
10 adapter = ConnectionPool.add_data_source :type => :rdflite
11 adapter.load "iken_inferred3.nt"
12
13 # register the test namespace to the specified URI
14 Namespace.register :iken, ’http://www.ontoverse.org/ontologies/2008/3/iken2.owl#’
15
16 # and now construct the necessary Ruby Moduls and Classes
17 ObjectManager.construct_classes
18
19 timeA = Time.now
20 puts "Find all instances by their RDFS labels in IKen ontology - start: #{timeA}"
21 test_search_labels = ["bedeckt", "wolkenlos", "Locken", "Pony", "Grinsen", "Lachen", "Juli", "

Oktober", "Natur", "Sport"]
22
23 test_search_labels.each do |search_label|
24 IKEN.constants.each do |const|
25 IKEN.const_get(const).find_all.each do |instance|
26 if instance.label.class != Array
27 if instance.label.eql?(search_label)
28 puts instance
29 end
30 else
31 instance.label.each do |label|
32 if label.eql?(search_label)
33 puts instance
34 break
35 end
36 end
37 end
38 end
39 end
40 end
41 timeB = Time.now
42 puts "Find all instances by their RDFS labels in IKen ontology - end: #{timeB}"
43 puts "Required time: #{(timeB - timeA)}"
44
45 time2 = Time.now
46 puts time2
47
48 puts time2 - time1

Listing 6.7: Test 2 implementation using DEEP SEMANTICS.
1 require File.join(File.dirname(__FILE__), ’active_semantics.rb’)
2 require File.join(File.dirname(__FILE__), ’Helper/namespaces.rb’)
3
4 time1 = Time.now
5 puts time1
6
7 Namespaces.add_namespace(’http://www.ontoverse.org/ontologies/2008/3/iken2.owl#’, ’iken:’)
8
9 $active_semantics = ActiveSemantics.instance
10 iken = $active_semantics.set_director({’adapter’ => ’FileAdapter’, ’ontology_source’ => ’

iken_infered3.nt’, ’builder’ => ’DeepIntegrationBuilderOWLLite’})
11
12 timeA = Time.now
13 puts "Find all instances by their RDFS labels in IKen ontology - start: #{timeA}"
14 test_search_labels = ["bedeckt", "wolkenlos", "Locken", "Pony", "Grinsen", "Lachen", "Juli", "

Oktober", "Natur", "Sport"]
15
16 test_search_labels.each do |search_label|
17 instance_hits = Array.new
18 instance_hits = iken.find_instances_by_label(search_label)
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19
20 if instance_hits.size > 0
21 instance_hits.each do |instance_hit|
22 puts instance_hit.local_name
23 end
24 end
25 end
26 timeB = Time.now
27 puts "Find all instances by their RDFS labels in IKen ontology - end: #{timeB}"
28 puts "Required time: #{(timeB - timeA)}"
29
30 time2 = Time.now
31 puts time2
32
33 puts time2 - time1


