
Development and Implementation of Techniques
for Ontology Engineering and an Ontology-based

Search for Bioinformatics Tools and Methods

I n a u g u r a l - D i s s e r t a t i o n

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Indra Mainz
aus Krefeld

Dezember 2008

Aus dem Institut für Physikalische Biologie

der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der

Mathematisch-Naturwissenschaftlichen Fakultät der

Heinrich-Heine-Universität Düsseldorf

Referent: apl. Prof. Dr. G. Steger

Korreferent: Univ.-Prof. Dr. M. Lercher

Tag der mündlichen Prüfung: 21. Januar 2009

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe angefertigt.

Die Dissertation wurde in der vorgelegten oder in ähnlicher Form noch bei keiner anderen

Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche unternommen.

Düsseldorf, den 12.12.2008

(Indra Mainz)

"Everything should be made as simple as possible–but no simpler!"
- Albert Einstein

Meinen Eltern.

Acknowledgements

First of all I would like to thank my supervisor apl. Prof. Dr. Gerhard Steger for the freedom in

doing research and the confidence he had shown me. Thank you, Gerhard, for facing the world

of ontologies.

Additionally, I wish to thank Prof. Dr. Martin Lercher for accepting the task to read this thesis

as a second reviewer.

Special thanks are addressed to my colleagues Dominic, Ingo and Katrin for always fruitful and

constructive discussions and a close collaboration. Additional thanks to all other ONTOVERSE

project partners.

Furthermore, I like to thank all my colleagues in the Institute of Biophysics for a great atmo-

sphere, especially the bioinformatics guys and Natalie. I had a great time.

Of course I whish to thank my dear family and friends just for being you. Becci & Jeremia,

Domi, Nahal, Evgin and Timo, this is for you. Special thanks to Deniz, who read and challenged

this thesis and beared me in good and bad times.

I am very grateful to my parents for paving this way for me and supporting me all the time. You

are wonderful!

Financial support from the German Federal Ministry of Education and Research is gratefully

acknowledged.

Contents

1. Introduction . 1

1.1 Data Situation in the Life Sciences . 1

1.1.1 Bio-ontologies . 3

1.2 Thesis outline . 5

2. Background . 7

2.1 Ontologies . 7

2.1.1 Application of Ontologies . 8

2.1.2 Formal Ontology . 8

2.1.3 RDF, RDFS & OWL . 10

2.1.4 Ontology Engineering Process . 13

2.2 ONTOVERSE . 15

2.3 PROTÉGÉ . 17

2.4 PELLET & JENA . 17

2.5 RUBY . 18

2.5.1 RUBY ON RAILS . 18

2.6 DEEP SEMANTICS . 19

2.7 Tuple Spaces . 20

2.8 Wiki . 21

2.9 Tagging . 23

3. Bioinformatics Ontology For Tools and Methods (BIO2ME) 25

3.1 Fundamentals and Preliminary Work . 25

3.1.1 Scenario . 27

3.2 Refinement of BIO2ME . 29

3.2.1 Integration of External Domain Experts . 34

ii Contents

3.3 Discussion . 34

3.3.1 Integration of External Domain Experts . 35

3.3.2 Conclusions . 35

4. Wiki – Support of the Protoontological Phase and More 37

4.1 Basic Wiki Features . 39

4.1.1 Text Formatting . 39

4.1.2 Attachments . 42

4.1.3 Version Management . 43

4.1.4 Search . 44

4.2 Segments . 44

4.2.1 Implementation . 46

4.3 Connection to the Formal Ontology . 46

4.3.1 Frontend . 47

4.3.2 Implementation . 47

4.4 Discussion & Conclusions . 50

4.4.1 Special ONTOVERSE Wiki Features . 51

4.4.2 Utilized Plugins . 53

5. Machine-supported Ontology Extension by Tagging . 55

5.1 Idea . 55

5.2 Process of Tagging . 56

5.3 Ontology Extension – A Case Study . 57

5.3.1 Publication Selection . 58

5.3.2 Initial Tagging . 58

5.3.3 Extension 1: Analysis of the Most Tagged Abstracts 62

5.3.4 Analysis of Chang et al., 2008b . 64

5.3.5 Overall results . 67

5.4 Discussion . 68

5.4.1 Implementation of tagging . 68

5.4.2 Ontology Labels . 70

5.4.3 Ontology Extension . 71

5.4.4 Conclusions . 72

6. BIO2ME Information System . 73

6.1 Knowledge Base . 73

6.1.1 Requirements . 74

6.1.2 Ontology Preparation . 75

6.2 Search . 78

6.2.1 Example . 85

6.3 Browse & Fill . 87

6.3.1 Extension of BIO2ME . 88

6.4 Forums . 90

6.5 Discussion . 90

6.5.1 Search . 91

6.5.2 Browse & Fill . 91

6.5.3 DEEP SEMANTICS vs. SQLSpaces . 92

6.5.4 Conclusions . 92

7. Summary . 95

8. Zusammenfassung . 97

Bibliography . 99

iv Contents

List of Figures

1.1 GENBANK entry increase over time 2

1.2 Ontology relevant publications in PUBMED 3

1.3 Bio-ontology timeline . 4

2.1 Ontology Spectrum . 8

2.2 Ontology schema . 9

2.3 RDF graph . 11

2.4 Ontology engineering process 14

2.5 ONTOVERSE workflow . 16

2.6 Architecture of DEEP SEMANTICS 20

2.7 Architecture of SQLSpaces 21

3.1 Modeling of STRAL 0.5.4 . 28

3.2 BIO2ME scenario . 29

3.3 New Modeling of STRAL 0.5.4 31

3.4 BIO2ME Overview . 32

4.1 Ontology engineering process supported by the ONTOVERSE wiki 38

4.2 Wiki main page . 39

4.3 Entity Relationship Model of the Wiki 40

4.4 Wiki Edit Page . 42

4.5 Wiki Attachment . 42

4.6 Lock dialogue of an ORSD segment 45

4.7 Locked segment . 45

4.8 Wiki article “Ontology Classes” 48

4.9 Wiki article of class StrAl 48

4.10 Wiki article of instance StrAl0.5.4 49

4.11 Source code example . 50

5.1 Machine-supported ontology extension 56

5.2 Exact Matching . 57

5.3 Publications Histogram . 60

5.4 Keywords Histogram . 61

5.5 Insertion of NASequence 64

5.6 Tagged Title and Abstract of Chang et al., 2008b 65

6.1 Startpage of BIS . 74

6.2 BIO2ME Preparation . 76

6.3 Reasoning with PELLET . 77

6.4 Search procedure . 79

6.5 Search field with help . 81

6.6 Attribute search . 81

6.7 Ontology subgraph for Program and BioinformaticsTool 82

6.8 Search of Object Properties 83

6.9 Result View . 84

6.10 Detailed View . 85

6.11 Example Search . 85

6.12 Example Result . 86

6.13 Example detailed view . 86

6.14 Ontology browser . 87

6.15 Ontology browser focused on StrAl0.5.4 88

6.16 Extending of Instances and Program subclasses 89

6.17 Extending of relationships . 89

6.18 Forums . 90

List of Tables

3.1 BIO2ME data . 30

4.1 Wiki Formatting . 41

5.1 Database Table: keywords 56

5.2 Most tagged Publications of the Initial Tagging Process 59

5.3 Most occurring Keywords . 60

5.4 Ontology Data during the Extension Process 61

5.5 Occurrence of Ontology Labels after Ontology Extension by all most tagged

titles and abstracts . 68

5.6 Most tagged Publications after tagging based ontology extension 69

1

Introduction

Today in many fields the amount of available information and data increases exponentially.

Since this growth does not entail a just as large quality increase of the available knowledge,

methods and tools are needed to filter and process this mass of information. For this purpose

ontologies, which represent data and their interrelations in a computer “interpretable” form, get

more and more established. Ontologies are introduced in detail in Section 2.1.

The exponential increase of knowledge in particular is observable in the internet, to which the

data explosion mainly can be ascribed. To make the available information easier trackable in

the World Wide Web (WWW, Web), ontologies serve as foundation of the Semantic Web. That

is, a semantic layer is being built on top of the WWW, which adds meaning to Web contents

and data. By this means, the information in the internet gets understandable by computers.

Machines operating on semantic annotated data are able to intelligently search the Web. Thus,

for example the number of results of a google search can be decreased by listing only those hits

the user really is interested in. Furthermore, these results can be clustered according to their

context.

This thesis deals with the creation and machine-supported extension of ontologies (ontology
engineering), describes the extension of an ontology in the field of life sciences and introduces

an information system using this ontology as knowledge base.

1.1 Data Situation in the Life Sciences

Today, technical improvements give rise to high-throughput screenings (HTS) in experimental

biomedical research. That means robotics, sensitive detector and highly specialized computer

software for controlling and data processing are applied in laboratories to enable the automatic

execution of millions of biomedical tests. This method in particular is adopted in pharmaceutics

for example to fastly detect a reagent that modifies or inhibits a pathogenic target in drug dis-

covery. Furthermore, high-throughput sequencing facilitates the fast sequencing even of whole

2 Introduction

Figure 1.1: GENBANK entry increase over time. The diagram shows the inrease of sequence entries

in GENBANK over time (included are October values of each year). The shown data are taken from

the release notes of GENBANK from the NCBI (National Center for Biotechnology Information of the

United States of America).

genomes. This results in a vast increase in the size of sequence databases, exemplified in Fig. 1.1

by one of the most prominent nucleotide databases, GENBANK
R© (Benson et al., 2008). This

high-throughput methods yield an enormous data increase, which cannot be handled manually,

but have to be adequately worked up and made searchable.

Additionally, unlike in physics, in biology knowledge predominantly cannot be described in

mathematical formulas. Similarity comparisons of biosequences, for example, can be made

automatically based on mathematics, but the interpretation of the results is accomplished by the

knowledge of scientists (Bodenreider & Stevens, 2006). This knowledge often is collected in

natural language. These data are highly heterogeneous and cannot be interpreted and compared

automatically. The problem of heterogeneous data is already described in 1995 by Davidson

et al. and Karp.

In biology often inconsistent terminologies are utilized. On the one hand these emerge from

historical reasons as for example genes were described in different organisms. Based on this

genes serving the same function got different names, which extremely complicates the infor-

mation retrieval about those sequences. On the other hand there exist no definitions even of

fundamental biological terms (Stevens et al., 2000). A prominent example is the term “gene”,

which can constitute a DNA region that codes for a protein or a segment of genomic information

that specifies a trait. Such ambiguous terminologies make discussions and knowledge retrieving

tremendously difficult.

Data Situation in the Life Sciences 3

Figure 1.2: Ontology relevant publications in PUBMED. The plot visualizes the increase of publi-

cations in PUBMED that deal with ontologies. Presented are the results of the keyword search with

“ontology OR ontologies”. Data are gathered at December 5th, 2008. Thus the 2008 bar is not complete.

Based on the just described challenges, the inconsistent terminologies, the vast amount and

heterogeneity of data, adequate knowledge representations and effective information integration

had to be adapted.

1.1.1 Bio-ontologies

The life sciences have proved themselves as particularly interested in the use of ontologies.

Fig. 1.2 shows this by plotting the number of ontology relevant publications in PUBMED. In bi-

ology observations and organisms were always categorized (McCray, 2006). In extending this

classification into complex knowledge representations like ontologies, there exist a chance in

overcoming the problems (e. g. Baclawski & Niu, 2006; Bodenreider & Stevens, 2006). Differ-

ences between ontologies and classifications are described in Section 2.1.

Fig. 1.3 shows the historical appearance of biological knowledge representations in different

complexities. The scale begins in 1992 with ECOCYC (Keseler et al., 2005). This is a database

of Escherichia coli K-12 genes and metabolism and semantically less complex. The most promi-

nent bio-ontology is the GENE ONTOLOGY (GO) (Ashburner et al., 2000; Consortium, 2001,

2006, 2008), which was started in 1998 by three model organism databases (Flybase, Saccha-

romyces Genome Database, Mouse Genome Database) and aims at collaboratively describing

4 Introduction

Figure 1.3: Bio-ontology timeline. Early Bio-ontologies show less complexity and semantics than new

data models. (Source: Bodenreider & Stevens, 2006).

gene products in different databases in a consistent way. Today, the GO consortium increased to

16 members and four associates. Furthermore, the ontology currently1 includes 27,769 terms,

which can be linked by five types of relationships: is_a, part_of, regulates, positively_regulates

and negatively_regulates. Actually GO consists of three ontologies that characterize biological

processes, cellular components and molecular functions of gene products. These controlled vo-

cabularies are cross-linked with databases. Meanwhile, there exist a variety of tools utilizing

GO. GOPubMed for example is a search engine for biomedical texts from PUBMED that struc-

tures its results according to the gene ontology. For this reason the millions of publications in

PUBMED can be searched much faster.

In the same year of the beginning of GO, the first Bio-ontologies meeting was held and the

TAMBIS project (Transparent Access to Multiple Bioinformatics Information Sources; Baker

et al., 1998) started its efforts in providing an information retrieval service based on the unifi-

cation of different data sources. For the reason of unifying, an ontology (TAMBIS Ontology,

TaO) of molecular biological and bioinformatics concepts was built.

These days, the number of bio-ontologies has considerably increased. That is why an umbrella

community for a range of ontologies designed for biomedical domains has been established, the

Open Biomedical Ontologies (OBO, Smith et al., 2007). This community aims at reducing the

redundancies in ontology developments. Ontologies of this collection have to meet the follow-

ing citeria: openness, common representation, independance, identifiers and natural language

definitions.

1 Release of December 1st, 2008

Thesis outline 5

1.2 Thesis outline

The exponential growth of data for example from high-throughput methods has to be handled

by a plenty of specific software tools. Thus, there exists a vast amount of bioinformatics tools

and methods, which can hardly be surveyed even by bioinformaticians. That is why this thesis

continues with the development of an ontology that characterizes such tools and methods and

introduces an information system that enables searching of bioinformatics tools and methods

for specific tasks.

First, the next chapter provides background information, which helps to follow the results of

this thesis. Ontologies will be introduced, which form the backbone of the work in this thesis.

Furthermore, some tools and frameworks are presented, which has been utilized.

After that the results of this thesis are presented and discussed. The ontology that is described

in this thesis was started in my Bachelor thesis in computer science. Mainz (2006a) summarises

the design of the ontology for bioinformatics tools and methods (BIO2ME). Chapter 3 de-

scribes this preliminary work and the extension of the ontology. A lot of experiences could be

gained and challenges had been discovered, which point out the need of an ontology engineer-

ing support. There exist a lot of formal ontology editors (e. g. ONTOSTUDIO2, SWOOP3 and

PROTÉGÉ; see Section 2.3), but rare support of the preliminary ontology engineering phases,

e. g. the informal knowledge aquisition. Furthermore, the need for a semi-automatic ontology

extension method was detected. The realization of these new strategies is introduced in Chap-

ters 4 and 5.

To harness the ontology, an information system was implemented to query the ontology and

facilitate the insertion of additional knowledge. This application is described in Chapter 6.

The results presented in this thesis emerged from the work within the research project

ONTOVERSE (see Section 2.2). Several partners participated in the project, which in part closely

collaborated; so in this thesis some work of colleagues was utilized. All those parts that I did

not do by myself, are marked in the text.

2 http://www.ontoprise.de/index.php?id=34
3 http://www.mindswap.org/2004/SWOOP/

2

Background

This chapter introduces basic tools and principles that are relevant to follow the results of this

thesis. First, ontologies are introduced including their formal shape, engineering and usability.

After that, the project ONTOVERSE is described wherein this work emerged. Then sections on

utilized ontology tools and some programming utilities follow. Finally, general principles on

the wiki and tagging ideas are provided that are introduced in Chapters 4 and 5 as new tools for

ontology extension.

2.1 Ontologies

The notion ontology is not clearly defined. It originated in philosophy at least in the 18th century

and is transfered to knowledge representations at least in the early 20th century in information

sciences and since approximately 20 years in computer sciences and artificial intelligence, re-

spectively. Figure 2.1 shows the deployment spectrum of the notion “ontology” as described

in Lassila & McGuinness (2001). The complexity axis starts with simple controlled vocabu-

laries like catalogs, which tie terms of equal interpretation by assigning the same identifier to

those concepts, and glossaries, which specify the meaning of a notion by attaching a natural

language definition. These interpretations of the terms are not processible by computers and do

not comprehend any interrelations between the specified notions. Thesauri are the next more

complex step for they can be made interpretable by computers and comprise synonym relation-

ships. Thesauri as regarded in the schema and in its general meaning do not imply hierarchical

relations, in contrast to the more strict DIN-standardized definition of “thesaurus” in the in-

formation sciences that postulates is-a relationships. By simple is-a knowledge representations

comprising inheritance, the transfer between informal and formal specification is accomplished.

These formal models are then extended by logics and properties of concepts.

This thesis regards ontologies as formal and more complex knowledge representations that are

written in specialized, machine-interpretable languages. The language of choice in this thesis is

the currently most prominent and widely supported ontology language OWL (see Section 2.1.3).

8 Background

Figure 2.1: Ontology Spectrum. The figure shows the degrees of complexity of ontologies. The com-

plexity increases from left to right. Informal and formal specifications are seperated by the red slash. The

notion “ontology” in this dissertation is applied for the more complex models, appearing on the right

side. (Source: Lassila & McGuinness, 2001)

In the sense of this paper ontologies are knowledge representation systems, which are defined as

formal conceptualizations of a domain of knowledge (Gruber, 1993). That is, ontologies model

knowledge in an unambiguous and computer “understandable” way. They are therefore suitable

for knowledge bases and serve as fundament of a common view on a domain.

2.1.1 Application of Ontologies

Ontologies serve different purposes. They provide knowledge bases for intelligent search with

which they particularly facilitate the reuse of knowledge. More than that, the machine-readable

form of ontologies enables knowledge inference basing on pre- and self-defined rules. For large

models this is difficult to realize manually.

Based on these features ontologies are increasingly applied in a diverse set of knowledge based

applications in areas like biology (see Section 1.1.1). They provide global information infras-

tructures in terms of e-Science (Goble et al., 2006; Hey & Trefethen, 2005), the Semantic Web

(Berners-Lee et al., 2001) and the Semantic Grid (De Roure et al., 2003). The Semantic Web

aims at making the meaning of information utilizable for computers. The mass of information

can then automatically be interpreted, processed and related to each other. In contrast to infor-

mation retrieval based on computer linguistics, which operate on unstructured, natural language

data, the information is provided explicitly in form of ontologies.

Furthermore, ontologies are also often intended to be a shared conceptualization of a domain of

interest in terms of a consensual knowledge base for a community (Gruber, 2005, 1993).

2.1.2 Formal Ontology

Ontologies, as considered here, consist of three different constructs: Classes (concepts), indi-

viduals and properties (relations). See Fig. 2.2 for an illustration of the following definitions

and examples.

Classes define a set of individuals with common properties. In an ontology of bioinformatics

tools the class Program comprises computer programs, and the class StrAl compre-

Ontologies 9

Figure 2.2: Ontology schema. The figure illustrates the various elements of an ontology. Classes are

visualized in boxes, individuals in cycles and datatype values are depicted in rhombi. Arrows start from

an instance (“instance of” relation), a subclass (“is a” relation) or a property domain (object or datatype

property). The arrowhead points to the type class of an instance, a superclass or the property range,

respectively. Detailed information can be found in the text.

hends versions of the program STRAL. The class owl:Thing is the superclass of all

classes. owl:Nothing is the negation of owl:Thing.

Properties relate classes to other classes (object properties) or bind a class to a datatype value

(datatype property). Simple properties are “is a” relations which model hierarchical re-

lations between classes. This means that the subclass inherits all properties of its super-

class. In figure 2.2, a self-defined object property is readsFormat which relates the

class Program, called domain of the property, with the range class DataFormat and

models possible input formats of a computer program. The datatype property hasGUI

relates a rdfs:BOOLEAN (values: true, false) to the class Program and declares

if a program has a graphical user interface (GUI).

Individuals are entities that model a specific thing in the world. They are called instance of

a class if they are asserted to it. As mentioned above, the class StrAl is the set of all

program versions of the program STRAL. So StrAl0.5.2 and StrAl0.5.4 are in-

stances of StrAl.

Additionally, rules can be attached to ontology constructs that help to model the knowledge

more accurately. For example “heterogeneous transitivity” (involving different relations) can be

modeled for self-defined object properties such as:

10 Background

(program readsFormat format) ∧ (format serializes data)

⇒ (program readsData data)

Uniform Resource Identifier

Each ontology element is unambiguously identifiable by a character string called Uniform Re-

source Identifier1 (URI). Tim Berners-Lee introduced the Universal Resource Identifier in 19942

which then became the Uniform Resource Identifier. The simplified syntax of an URI is:

<namespace>#<local_name>.

For the bioinformatics ontology BIO2ME the namespace is:

http://www.ontoverse.org/BIO2Me.owl#.

The URI for the resource StrAl is then:

http://www.ontoverse.org/BIO2Me.owl#StrAl.

So in simple terms, “StrAl” is the local name of the resource StrAl.

Class Level

The level of an ontology class is the distance of the class to the overall superclass owl:Thing.

In figure 2.2 the class StrAl has level 3. In this thesis the term “top level concept” is used

which means classes with level 1. Additionally, “direct subclasses” or “direct instances” are

classes or instances, respectively, which are directly assigned to a class. In figure 2.2 individual

StrAl0.5.4 is the direct instance of class StrAl. Because of the subclass dependency and

its inheritance, StrAl0.5.4 is also instance of Program, Tool and owl:Thing. Conse-

quently, all individuals are instances of owl:Thing.

2.1.3 RDF, RDFS & OWL

The formalization of ontologies is carried out by standardized ontology languages.

1 http://www.ietf.org/rfc/rfc2396.txt
2 http://tools.ietf.org/html/rfc1630

Ontologies 11

Figure 2.3: RDF graph. RDF graph of two statements.

RDF

The first Semantic Web language was the Resource Description Framework3 designed by the

World Wide Web Consortium4 (W3C), which was launched in 1994 by the founder of the Web,

Tim Berners-Lee, and is a committee for the standardization of WWW techniques, to provide

metadata in the World Wide Web (WWW, Web). Thus the properties of Web resources are

described in machine-readable form. Those RDF models can be retained in form of a graph or

by using RDF syntax in a XML document.

RDF expresses information in form of triples, which make statements about specific resources.

Each triple is composed of a subject, a predicate and an object. Subjects are resources that are

unambiguously identified for example by a URI (see Section 2.1.2). A subject can be a Web

page or even a thing, which is not available in the internet. The predicate characterizes the

subject by relating objects (attributes). So objects specify the value of the predicate, which form

a statement about the subject. Fig. 2.3 illustrates the two triples

<http://www.biophys.uni-duesseldorf.de/~mainzi/>,

creator, "Indra Mainz".

<http://www.biophys.uni-duesseldorf.de/~mainzi/>,

publisher, "Institute of Biophysics".

in form of a RDF graph.

RDFS

RDF enables expression of simple statements about resources by relating attributes. These as-

sertions are written in form of triples. To use those statements more specifically by defining

specific kinds (classes) of resources and properties, the definition of vocabularies that are used

in statements is necessary. The RDF Vocabulary Description Language 1.0 (RDF Schema5,

RDFS) defines such vocabularies for RDF by providing information about the interpretation of

3 http://www.w3.org/RDF/
4 http://www.w3.org/
5 http://www.w3.org/TR/rdf-schema/

12 Background

RDF statements. In contrast, RDFS does not say anything about the syntactical appearance of

the RDF description.

RDFS introduces classes (rdfs:Class), subclasses (rdfs:subClassOf) and instances

(rdf:type). It allows the representation of classes, class hierarchies and properties and there-

with is not very expressive. OWL is a richer vocabulary enabling the representation of more

complex statements.

OWL

The Web Ontology Language6 (OWL) is the currently most widely prevalent ontology language

and was used for the formalization in this thesis. It is also standardized by the W3C Web On-

tology Working Group7 (WebOnt) of the W3C. OWL mainly serves the publication, provision

and re-use of information in the internet. It extends RDF and RDFS by complex relations and

rules to map the semantics of information more expressive. OWL was developed for computer

applications that not only display information but also interpret its contents. This enables an

extended interpretation of the Web content by machines and is presumed to be a significant

technology for the implementation of the Semantic Web.

OWL is organized into three sublanguages of different expressiveness:

• OWL Lite is least expressive. It provides class hierarchies and simple contraints. For

example, it supports cardinality contraints, but only for values 0 and 1.

• OWL DL is the most expressive sublanguage that can be reasoned in finite time. “DL”

abbreviates Description Logics8, which is the subset of first-order logic on that OWL

bases. OWL DL for example allows an unrestricted cardinality constraint.

• OWL Full has no restrictions and therefore is able to express assertions of higher order

predicate logic. For example a class can be instance of another class. From this it follows

that this sublanguage has not to be determinable and reasoning might be endless com-

putable. OWL Full extends OWL DL by constructs that intend to provide compatibility

with RDF Schema.

These sublanguages are built upon each other, which means that a valid OWL Lite ontology

also is a valid OWL DL ontology and a valid OWL DL ontology is a valid OWL Full ontology.

OWL as well as RDF and RDFS makes the open world assumption. This means that the cor-

rectness of any statement is independent of whether someone knows it to be true or not. For

example if “Indra would like to have her doctor’s degree.” is stated. The question “Does Indra

have a doctor’s degree?” would be negated in the closed world assumption (e. g. SQL) and the

response of the open world assumption would be “Unknown.”, because no statement about her

doctor’s degree was made. Indra possibly could already have one.

6 http://www.w3.org/TR/owl-semantics/#ref-overview
7 http://www.w3.org/2001/sw/WebOnt/
8 http://dl.kr.org/

Ontologies 13

Serialization

There exist several forms of serialization of OWL, making OWL applications independent from

programming languages and operating systems. Here the RDF/XML9 format, which is based

on XML, and the N-triple format10 is presented by the following example.

N-Triples file:

<http://www.ontoverse.org/example.owl>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Ontology> .

<http://www.ontoverse.org/example.owl#Program>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.w3.org/2002/07/owl#Class> .

<http://www.ontoverse.org/example.owl#StrAl>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.ontoverse.org/example.owl#Program> .

RDF/XML file:

<rdf:RDF xmlns="http://www.ontoverse.org/example.owl#"

xml:base="http://www.ontoverse.org/example.owl"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:example="http://www.ontoverse.org/example.owl#">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:about="#Program">

<rdfs:subClassOf rdf:resource="&owl;Thing"/>

</owl:Class>

<owl:Class rdf:about="&owl;Thing"/>

<Program rdf:about="#StrAl"/>

</rdf:RDF>

Both files represent a simple ontology, which models a class Program (subclass of

owl:Thing) and its instance StrAl in the namespace “http://www.ontoverse.org/example.owl”.

2.1.4 Ontology Engineering Process

There coexist many different published and unpublished methods for ontology building. But

there is no standard. Fernández López (2001), for expample, gives an overview of different

methods with regard to a formulation of a standard so far. Some of the approaches base on

practical experiences and some seem to be resulting from theoretical considerations which ideas

are reasonable but to some extend less practical. For the purpose of gaining experiences in

9 http://www.w3.org/TR/rdf-syntax-grammar/
10 http://www.w3.org/TR/rdf-testcases/#ntriples

14 Background

Figure 2.4: Ontology engineering process. The schema visualizes the four different ontology engineer-

ing phases. Green colored cycles depict the resulting documents of a design step.

ontology design, which then should influence the realization of the ONTOVERSE intention, I

studied some approaches in my Bachelor thesis (Mainz, 2006a) and combined them to a new

“ONTOVERSE” approach with special attention on collaborative ontology building.

The resulting engineering process finally comprises in particular elements from the KOWIEN11

project (Apke & Dittmann, 2004) which was extended and modified by other methods. In the

following the different phases of the approach are described (see figure 2.4):

ORSD The Ontology Requirement Specification Document (modified from Sure, 2002) serves

as starting point for ontology design. The document captures the motivation, domain and

goal of the ontology. Furthermore, it specifies the application and addressed users. The

use of the ontology should clearly be defined before the ontology engineering is started

because the actual modeling/structure of the ontology is highly depending on this. Very

helpful to clarify the intention of the planned knowledge model is a Competency Ques-
tionnaire, which is suggested in Grüninger & Fox (1995) and which was included into

the ORSD. The questionnaire comprises questions which should be answered by the on-

tology. It is also useful to make a collection of knowledge sources of the domain which

then will help in the conceptualization phase of ontology building. Additionally, the de-

sign criteria should be defined. Important is the choice of the ontology language, but

also other guidelines like naming conventions of classes, properties and individuals are

desired. Some of them are depending on the intended application of the ontology.

11 http://www.kowien.uni-essen.de/

ONTOVERSE 15

Especially for collaborative ontology building it is important that engineers share a com-

mon view on the domain and purpose of the ontology. The ORSD should finalize that and

particularly helps ontology engineers joining later to become acquainted with the project.

Conceptualization This phase comprises the unformal gathering of domain relevant concepts,

finding properties and establishing relations between them. Concept graphs can for ex-

ample be created, which illustrate relations. Some utilities are taken from (Gómez-Pérez

et al., 2004).

Formalization In this step the protoontological data are translated into a formal ontology in

a machine-understandable ontology language like OWL. This process is supported by

formal ontology editors like PROTÉGÉ (see Section 2.3).

Evaluation The validation (content check) of the ontology can be made on the basis of the

ORSD and with the aid of domain experts. The verification like syntax and consistency

checking can be made by (e. g.) the OWL reasoner PELLET.

The whole ontology design, however, is rather an iterative than a sequential process.

2.2 ONTOVERSE

This dissertation emerged within the research project ONTOVERSE12,13 (e. g. Mainz et al., 2008)

which aims at building a Web-based platform for collaborative ontology engineering and man-

agement (Paulsen et al., 2007). Beneath the formal cooperative ontology editor (Bai & El Jer-

roudi, 2008), which is built by a research group at the university of Duisburg-Essen led by

Professor Jürgen Ziegler, the platform should serve as social networking and communication

tool for life scientists, too. Users are able to search co-operation partners with special expertise

for their ontology project.

Figure 2.5 not only summarizes the different modules of ONTOVERSE but also illustrates the

supported ontology engineering workflow. On the ONTOVERSE platform each ontology is built

within an ontology project. At the beginning of each project the initiator becomes project ad-
min. This role has specific privileges in the project, among these are rights for activating and

deactivating memberships of the project. After defining the domain of the ontology the next

step in ontology building is gathering assistants. In the scope of ONTOVERSE two types (roles)

of project members in addition to the project admin are introduced which differ in their field of

interest and skill: Domain experts have expertise in parts or even the entire domain of the ontol-

ogy. They contribute their knowledge into the conceptualization and evalutation of the ontology.

Ontology designers in contrast have skills in knowledge representation and the formulization

of ontologies for example in OWL. The roles are thus divided according to the protoontologi-

cal and the actual ontology formalization phase of the ontology building process. An ontology

engineer of course may hold both roles. The distinction and denotation of domain experts and

12 http://ontoverse.cs.uni-duesseldorf.de
13 http://ontoverse.org/

16 Background

Figure 2.5: ONTOVERSE workflow. The schema shows the collaborative ontology engineering cycle

in the ONTOVERSE system. You can see the different functions of domain experts (DE) and ontology

designers (OD). The project admin (PA) coordinates the ontology process in one ontology project.

ontology designers are employed throughout this dissertation. With the aid of project members,

the entire scope of the ontology is captured in the ORSD (see Section 2.1.4) under the guidance

of the admin. By the experiences collected during the BIO2ME creation a special importance

is attached to the support of the protoontological phases, for this reason a wiki is integrated (de-

tailed information in Chapter 4) to facilitate the collaboration of project members. Within this

wiki the collaborative acquisition of knowledge (conceptualization) follows. Domain experts

provide their knowledge in an unstructured as well as semi-structured way. Ontology design-

ers are than able to formalize this information and discuss it with the domain experts. For this

formalization each ontology project has its own cooperative ontology editor, which comprises

a formular based editor and ontology visualization frame. The editor provides collaboration

support by marking modifications, offering locking and highlighting functions. A chat function

in the editor window additionally facilitates direct arrangements and discussion. The editor is

connected to the wiki and vice versa, respectively. Thus the user is able to jump to the wiki page

of a selected ontology element and back. The data management and modification recording is

handled by a so called tuple space server (see Section 2.7) developed by the group of Professor

Hoppe of the University of Duisburg-Essen.

The extension of the ontology can be accomplished either by the sole brainpower of domain ex-

perts or supported by different mechanisms on the basis of PubDB, the ONTOVERSE publication

PROTÉGÉ 17

database. PubDB has an PubMed search interface, which enables the easy loading of biomedi-

cal publications into the database. additionally, users are invited to upload other articles. Based

on the publications in PubDB, users are able to perform an information extraction (Jurafsky &

Martin, 2008), which automatically receives ontology triples by extracting predefined relations

from a publication. The triples then have to be surveyed and accepted by domain experts and

afterwards inserted into the ontology by ontology designers. The information extraction back-

end was developed by the department of Computer Linguistics of the Institute for Language

and Information (Heinrich-Heine-University Düsseldorf). Another less machine-supported ap-

proach is the ontology extension by tagging. The idea, implementation and some case studies

are elucidated in Chapter 5.

The ONTOVERSE formal editor additionally supports ontology merging and mapping to facil-

itate the reuse and integration of already existing ontologies. The evaluation finally is carried

out by the semi-structured presentation of the ontology data in the projects wiki. This feature

provides domain experts not familiar with formal ontologies to evaluate the ontologies struc-

ture and content. Additionally, the modification suggestions can be discussed directly in the

wiki article of the ontology element and with the connection between wiki and editor, ontology

designers easily can switch to the right places in the wiki and the ontology, respectively.

2.3 PROTÉGÉ

BIO2ME was built and extended with the aid of PROTÉGÉ14. PROTÉGÉ is a widely used on-

tology editor. It is JAVA based and freely available under the Open Source License. PROTÉGÉ

is elaborated and highly supports the formal ontology modeling process for one single ontol-

ogy designer. In this thesis PROTÉGÉ-OWL was utilized in version 3.2.1, 3.4 beta and 4 alpha.

The implementation of the OWL specification was inaccurate in the former two versions (see

Section 3.2). PROTÉGÉ does not offer any support of the vitally important informal ontology

editing (see Section 2.1.4), which was realized during the work on this thesis.

2.4 PELLET & JENA

PELLET15 is an open-source JAVA OWL DL reasoner, which was used in this thesis to check

the consistency (logical correctness) of the ontology and infer implicit information (see Sec-

tion 6.1.2). It was used in version 1.5.1 with JENA16.

JENA is an open source Semantic Web framework also implemented in JAVA. It reads ontology

models from files, databases and URLs, abstracts it and provides an API for operating on the

contained data. Furthermore, JENA supports divers ontology formats like RDF/XML and N-

Triple.

14 http://protege.stanford.edu/index.html
15 http://pellet.owldl.com/
16 http://jena.sourceforge.net/ontology/

18 Background

2.5 RUBY

The ONTOVERSE platform and the BIO2ME application are both implemented in RUBY17.

This belongs to the class of scripting languages, which are in contrast to pure programming

languages not compiled into machine code, but interpreted during runtime.

RUBY unifies parts of the languages PERL18, SMALLTALK19, EIFFEL20, ADA21 and LISP22.

Yukihiro Matsumoto, the creator of RUBY, once said in a mailing list: “Ruby is simple in ap-

pearance, but is very complex inside, just like our human body.”23. This for instance becomes

clear in the simplification that everything is an object in RUBY. This characteristic is adopted

from SMALLTALK. So unlike to other object-oriented programming languages, in which prim-

itive types like boolean are not objects, in RUBY each type has its own attributes (instance

variables) and methods.

Due to the freedom in terms of using, copying and particularly modifying the source code

of RUBY24, the language is very flexible to use. Standard objects can easily be extended and

adapted at will.

In RUBY one can use metaprogramming, which means that the source code is not written by a

human, but by another computer program. In RUBY code can be created, changed and added

during runtime.

2.5.1 RUBY ON RAILS

RUBY ON RAILS25 (short RAILS) is an open source RUBY framework for an easy development

of Web applications. RAILS incorporates a MVC (Model View Controller) architecture, which

divides the framework up into three main parts:

Models are RUBY classes that defines data types used in the application. They specify the logic

to manipulate and access data. Models build the interface between the controller and the

data.

Views consist of template and HTML files, which are rendered by Web browsers. View code

can also be composed of JAVASCRIPT etc. So called RJS templates (RUBY JAVASCRIPT

can be used to simply add AJAX (Asynchronous JavaScript and XML; Garrett, 2005)

functionalities, which modify an already rendered page. AJAX requests are called in the

background and updates the page the request origined from.

17 http://www.ruby-lang.org/
18 http://www.perl.org/
19 e. g. http://directory.fsf.org/project/smalltalk/
20 http://www.ecma-international.org/publications/standards/Ecma-367.htm
21 http://www.open-std.org/jtc1/sc22/wg9/
22 http://www-formal.stanford.edu/jmc/recursive.html
23 http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/2773
24 http://www.ruby-lang.org/de/about/license.txt
25 http://rubyonrails.org/

DEEP SEMANTICS 19

Controllers build the logic layer in RAILS applications. They process input data and pass them

on to the view. Controllers are able to call methods of models. Controller methods (ac-

tions) per default correspond one file in the view.

RUBY ON RAILS is composed of several libraries, ActionRecord for example serves as object-

oriented mapper (ORM) that ties database tables to models by naming conventions. The fact

that RAILS is open source resulted in a plenty of available plugins that serve different purposes

like the ACTS_AS_VERSIONED plugin, which facilitates the versioning of database entries (see

Chapter 4.1.3).

RAILS provides by default URL mappings of controller actions. This makes URL simple and

straightforward. For example:

http://localhost/forum/show/1

Is the URL of the “forum” controller, action “show” and object “1”. This means that the forum

object with database id 1 is shown in the web browser.

2.6 DEEP SEMANTICS

The BIO2ME information system uses the Semantic Web framework DEEP SEMANTICS to

realize the integration of the knowledge base and operate on it. The framework was devel-

oped by Mainz (2008) and converts OWL ontologies in fuctional RUBY code. In the process

DEEP SEMANTICS takes advantage of the metaprogramming feature of RUBY. In contrast to

other Semantic Web libraries like JENA 2, which provides an API for ontology handling,

DEEP SEMANTICS dynamically generates a functional RUBY program that comprehends RUBY

classes and objects, which can be used as any other RUBY object. The ontology is mapped to a

object-oriented, functional RUBY model including all its logical and structural properties. This

process is called deep integration and is in this context introduced by Fernandez (2005). In

a deep-integrated ontology, OWL classes are modeled as RUBY classes, OWL instances are

RUBY class instances and ontology properties build class and instance methods, respectively.

Fig. 2.6 illustrates the architecture of DEEP SEMANTICS with its main components: Source

Adapter, Director, Triple Parser and Deep Integration Builder. The deep integration process as

implemented in DEEP SEMANTICS consists of five steps (see numeration in the figure):

1. Input of the OWL ontology in N-Triple format (file or database).

2. The Source Adapter reads in the ontology triples, preprocesses them and returns an object

of class TripleSet to the Director.

3. Then the Director invokes the Triple Parser, which transfers the ontology triples in

TripleSet to RUBY objects and returns instances of class TemplateValues.

20 Background

Figure 2.6: Architecture of DEEP SEMANTICS. The director controls the deep integration process, in

which ontology triples consisting of subjects (S), predicates (P) and objects (O) are mapped to RUBY

code. (Source: Mainz, 2008)

4. The template objects are passed to the Deep Integration Builder and the ontology classes,

properties and instances are converted resulting the deep-integrated ontology in functional

RUBY code.

5. The dynamically built RUBY ontology model can then be applied for handling the ontol-

ogy in RUBY programs.

The latest version of DEEP SEMANTICS is 0.9. The development of the BIO2ME applica-

tion was a live test of the framework and provided further impulses of the implementation

of DEEP SEMANTICS particularly regarding the access methods to the ontology data.

2.7 Tuple Spaces

In the ONTOVERSE system the management and storage of the ontology data is handled by a so-

called tuple space server. The idea of tuple spaces can be ascribed to Prof. David Gelernter and

Dr. Nicholas Carriero of the University of Yale (Gelernter, 1985) and describes an architecture

(so-called blackboard architecture) for distributed systems, in which a tuple space server is the

agent and data container. These data persist in form of tuples that are ordered sets of objects or

values. Diverse clients exchange data across this central component, the tuple space server, and

synchronize processes on the spaces. These clients operate autonomously; so the advantage of

this modular and flexible structure is that it easily can be extended and it is robust against fail-

ure of single subcomponents. Queries on tuple spaces are not index-oriented, but associatively

Wiki 21

Figure 2.7: Architecture of SQLSpaces. The figure schematizes the position of the SQLSpaces server

in the data flow from database to client, vice versa.

formulated; this means queries are not expressed by an ID like in databses, but by using the

content of a template tuple in which some (tuple) fields are or are not allocated (see Section 4.3

for an example).

There exist diverse implementations of the tuple space idea, well-established realizations are

TSpaces by IBM (Wyckoff et al., 1998) and JavaSpaces by Sun (Freeman et al., 1999).

ONTOVERSE utilizes the tuple space implementation of Prof. Hoppe’s research group from

the University of Duisburg-Essen who maintain and extended it by the needs of the project

(Malzahn et al., 2007). This implementation is called SQLSpaces and provides versioning of

tuples and the administration of users and their rights. Figure 2.7 shows the architecture of

SQLSpaces. The Relational databases, like MySQL in ONTOVERSE, are used as persistence

layer. The basic function of the SQLSpaces server is the conversion of tuple space operations

into SQL queries to the underlying relational database which forms the persistence layer.

Ontological data is stored in form of RDF triples (subject, predicate, object). Each triple with

its creation and modification time forms a tuple in a space whereas each ontology has its own

space. The mapping of OWL data in simple RDF statements is performed by SWAT (Semantic

Web Application Toolkit), which builds on the SQLspaces. SWATClients provide functions to

access ontology data. There exist methods to list all classes, instances and properties of an

ontology. Additionally to the ontology spaces, the ONTOVERSE SQLSpaces server also holds

the so-called session space, in which all modifications on the ontology data are recorded.

In this thesis, a RUBY-based SWATClient was used to realize the connection between the

ONTOVERSE wiki and the formal ontology data stored in the SQLspaces (see Chapter 4).

2.8 Wiki

A wiki is a collection of internet pages that are interlinked to each other by hyperlinks. The key

concept of a wiki is its feature, that these web pages cannot only be read by its visitors, but

mostly can be edited directly. Therefore, wikis enable a collaborative collection of the users’

knowledge in form of (hyper-) texts by simply using a web browser. Wikis do also provide a

simple markup language, which is then translated to html for text display; and by offering wiki

22 Background

editors writing text is just as easily performed as in text editors like WORD of MICROSOFT

OFFICE. More than that, the work on a wiki forms a self regulatory system, because each user

is able to add his knowledge which is than in turn checked on correctness by other users. That

is why it is hard for vandalism to be inserted in a wiki. This self regulatory process is directly

depending on the number of visitors. A further aspect in a wiki is the above mentioned inter-

connectedness of wiki pages. Users are able to add hyperlinks in their texts in an easy way. This

enables unrestricted navigations between web pages. Editors can create wiki articles only for

navigation purposes as table of contents (e. g. the wiki main page in the ONTOVERSE wiki, see

Section 4).

The first system called wiki was the WikiWikiWeb26 which was developed by Howard Cunning-

ham and got online in 1995. Leuf & Cunningham (2001) describes this wiki’s features as well

as the collaborative editing processes in a wiki in principle. Today, the most famous example

of a wiki is Wikipedia27, an internet encyclopedia. But there exist also a lot of wikis, which are

utilized in companies’ intranets for collaborative work.

The wiki is a software of the Web 2.0 initiative where internet users offer there knowledge to

form the world wide web themselves. More than that, the wiki principle realizes the actual idea

of Tim Berners-Lee which he had in mind for the www itself. But there exist also wikis that are

not open for everyone, that for example have access rights for certain user groups or provide

special admin pages.

Key component of the most wiki software is a version management. Each save of a wiki article

is recorded under its own version number. So it is possible to revert articles to an older version

or to compare different versions of a wiki page to easily retrace modifications. The version

management facilitates the elimination of vandalism or the correcting of mistakes, for there is

no review before the modification are saved, in general. The philosophy of wikis is the ease of

correcting mistakes, instead of tightening input controls.

The disadvantage of wikis is that there are practically no rules, which can and do in practice

result to messy article collections. The search function is to counteract this linking chaos. The

minimum of restrictions philosophy results in less revision before saving, so content of wiki

articles should be handeled with care in particular in wikis with an open community. That is

why the german Wikipedia introduced a revision control system28, the Flagged Revisions, in

May 2008 (test status). Users now are able to label single article versions to report the quality

of an article.

The information of this section adequately origined, beneath a lot of wiki experience by myself,

from the Wikipedia article about “Wiki” and associated articles (as of August 3rd, 2008).

26 http://c2.com/cgi/wiki
27 http://www.wikipedia.com
28 http://de.wikipedia.org/wiki/Hilfe:Gesichtete_und_geprüfte_Versionen

Tagging 23

2.9 Tagging

Tagging is the mechanism in which keywords (tags) are assigned to items such as publications

or digital images. This is a useful way of categorizing items making it easy to search and browse

objects. Tagging provides information about information, thus tags are classified as metadata.

Although tagging is already in use for a long time, it became famous on the internet. In 2003

DELICIOUS29, a social bookmarking platform, went online making internet bookmarks better

searchable by available tags. Each user can assign tags to bookmarks without having to stick to

any rules. In early 2004 FLICKR30 followed by providing a website in which a community is able

to publish their images and videos, which can be tagged in a DELICIOUS-like manner (Mathes,

2004; Peters & Stock, 2007). That was the beginning of the Social Web (e. g. Ebersbach et al.,
2008). Tag clouds display the most common tags in the largest font size, which form starting

points to allow people to discover objects on a website. Another usage for tags is to find related

objects that share most of the same tags.

On the one hand uncontrolled vocabularies in these tagging mechanisms do not limit the free-

dom of users in tagging with their personal terms, but on the other hand has messy side effects

for the searching for tagged items. There is no information about the semantics of a keyword. So

for example synonyms, which are different words expressing (nearly) identical meanings like

“abstract” and “summary”, cannot be related. Additionally, homonyms cannot be separated,

these are words that have different meanings like “mint” (“coin” and e. g. “spearmint”).

Several tagging systems antagonize these problems by using controlled vocabularies. The pub-

lication database PUBMED31, for example, tags its publications with the MEDICAL SUBJECT

HEADINGS32 (MeSH R©), a controlled vocabulary of more than 22,000 terms. These terms are

linked to each other mostly by simple hierarchical relations. To tag publications with those no-

tions, a lot of indexers at the National Library of Medicine (NLM) are engaged with analyzing

the journals’ and publications’ contents. To ensure the most specific MESH term is used, authors

are not allowed to assign their own keywords in PUBMED. Additionally, NLM employs many

information specialists, who develop and maintain the retrieval system. All these information is

derived from the NLM Frequently Asked Questions about Indexing33.

29 http://delicious.com/
30 http://www.flickr.com/
31 http://www.ncbi.nlm.nih.gov/pubmed/
32 http://www.nlm.nih.gov/mesh/
33 http://www.nlm.nih.gov/bsd/indexfaq.html#keywords

3

Bioinformatics Ontology For Tools and
Methods (BIO2ME)

This chapter gives an introduction into the ontology of bioinformatics tools and methods

(BIO2ME). First, fundamentals and the preliminary work are described which is outlined in

Mainz (2006a). After that, some general ontology extensions in the scope of the investigations

for this dissertation are delineated as well as some efforts to encourage external domain experts

to offer their knowledge to extend the ontology. Additional modifications on the ontology are

commented in the according Chapters 4, 5 and 6. In the discussion and conclusion section of this

chapter challenges in building BIO2ME are deduced which motivated the next investigations

of this thesis.

3.1 Fundamentals and Preliminary Work

The ontology emerged from the ONTOVERSE project (see section 2.2). It was very important

to build an ontology within this project, for this aims at developing a Web-based, collabora-

tive ontology engineering platform. By doing so, a lot of experiences was gained in ontology

engineering, advantages and disadvantages of available ontology editors was exposed, and nec-

essary features for the support of the whole ontology engineering process collected. Moreover,

the ontology served as a well-known ontology for evaluating and testing purposes on the evolv-

ing ONTOVERSE platform. I created BIO2ME, gained relevant concepts, modeled the domain,

consulted external domain experts, preprocessed their informal contributions and formalized

the ontology in OWL. However, additionally I enlisted the assistance of colleagues with back-

ground in bioinformatics, information science and linguistics. We discussed the ontology in

form and content and I refined the formal BIO2ME where appropriate regarding their advises

(see section 3.2 for an example).

BIO2ME was motivated by earlier research I did during my diplom thesis in biology (Mainz,

2006b) and with some colleagues (Wilm et al., 2006) of the Institute of Biophysics in Düssel-

26 Bioinformatics Ontology For Tools and Methods (BIO2ME)

dorf. Both studies compare several alignment tools1 with respect to the composition of the input

data. This research yielded, amongst others, that the most popular and mostly employed pro-

gram of this field, CLUSTALW (Thompson et al., 1994), provided not necessarily the best results

for each input data set. This pointed out a big challenge in biology and bioinformatics in par-

ticular: There is a variety of programs, packages, databases etc. dealing with various problems

like the efficient processing of experimental data, sequence analysis and structure prediction

and visualization. The major problem is that these resources can currently not be surveyed with

reasonable effort. Sometimes even for experts in a specific domain of bioinformatics it is hard to

decide which tool fits the given requirements best. Moreover, there are lots of programs dealing

with the same problems but using miscellaneous computational, mathematical and biological

approaches. The specific challenges of bioinformatics entail the development of new computa-

tional methods, some copied from natural processes like genetic algorithms, others are common

approaches in mathematics.

In BIO2ME detailed information about bioinformatics tools and methods is collected in a struc-

tured way. The practical aim to make these tools easily accessible via a web interface highly

influences the actual structure of the ontology. The whole ontology conceptualization was fo-

cused on this practical aspect, sometimes dominating over strictly logical representations (e. g.

see the modeling of programs in section 3.2). Tools are categorized according to their applica-

tion ranges (with bioinformatics perspective), supported biological application fields, utilized

computational methods, processed data formats and information about the tools. Figure 3.1 ex-

emplifies the filing of a program. BIO2ME is being built to serve as a basis for tool retrieval

that meet the user requirements and to examine application ranges of computational methods.

Therefore a competency questionnaire was created in Mainz (2006a), which comprehends ques-

tions the ontology should be able to answer. Such questions are: “Which tools and methods exist

that deal with given problems?” and “Which data output do they provide?”. The realization of

the search tool is described in Chapter 6.

A bioinformatician’s motivation to use the BIO2ME ontology is very diverse. It is auxiliary

to become acquainted with a new research task in the field of bioinformatics. The search over

this ontology quickly reveals relevant references and presents information about tools and how

other scientists addressed a certain biological and bioinformatics problem. Moreover, a lot of

tools developed in diplom, bachelor, master or PhD theses are not published although they

provide good approaches to pursue. The provision of the access to such unpublished tools and

their methods is considered as worthwhile for the scientific community. In addition to searching

functionalities the web application described in Chapter 6 therefore provides the possibility to

easily supply tools to the ontology. Moreover, bioinformaticians benefit by getting an overview

of available tools and by having a quick reference to differences between versions and tools, to

publications and additional features. The information about input and output formats of a tool

facilitates the workflow of tools. In contrast, the additional benefit for experimental biologists

is obvious. They can use BIO2ME to find adequate tools for their data analyses and for the

planning phase of experiments.

1 In this context, alignment tools are programs which perform comparative analyses of bio-molecules (RNA,

DNA, proteins). The in this way identified similarities of the molecules’ sequences serve as basis for the

analysis of the relationship and/or common functions.

Fundamentals and Preliminary Work 27

At the end of my bachelor thesis mainly the core structure of BIO2ME was designed. Figure 3.1

illustrates the structure of the former ontology by an example tool called “StrAl”. For the sake of

clarity the values of datatype properties are added into the instance box and not formally correct

via arrows. One can see the structure of the ontology which models the tool and its properties.

In this figure four top level concepts exist which describe the program STRAL (other branches

of the ontological hierarchy are omitted like DataFormat and OperatingSystem):

Tool subsumes all tool classes like Program in the figure. Program tied all

types of bioinformatics programs (here: StructureAlignmentProgram and

SequenceAlignmentProgram). The program class StrAl finally was sorted

as subclass of some program types. StrAl0.5.4 is an instance of StrAl.

Task relates the instance StrAl0.5.4 to its BioinformaticsTask and

BiologicalTask via the object properties hasBioinformaticsTask and

hasBiologicalTask.

Data describes different types of data. There exists the object properties readsData,

writesData and utilizesScoringMatrix to relate Data instances to the tool’s

instance.

ComputationalMethod classifies algorithms and computational techniques which are

used (with object property usesComputationalMethod) in programs.

The datatype properties for example assigns information about publications

(isPublishedIn), help pages (hasOnlineSupport), runtime and memory complex-

ity (hasRuntimeComplexity, hasMemoryComplexity), available user interfaces

(hasGUI) and download pages (hasDownloadLocation).

3.1.1 Scenario

In the following a scenario is described which deals with the protein structure determination

of an unknown virus and the development of a therapeutic agent. This scenario illustrates the

usability of the ontology and its Web-based application. The procedure of the scenario is yet not

fully supported by BIO2ME, for it does not comprise all relevant bioinformatics fields entirely.

See figure 3.2 for an illustration of the following investigative steps:

1. Isolation and sequencing of the nucleic acid of the virus. Based on technical limitations,

only short sequence pieces of about 1.000 base pairs are sequenced at once. Viruses can

have up to 350.000 base pairs and therefore have to be separated into smaller parts prior

to sequencing. Based on overlapping sequences the resulting fragments are finally auto-

matically reassembled with the indispensable aid of sequence analysis programs.

2. Characterization of the virus by screening special virus databases with local alignment
search tools. Similar nucleic acid sequences allow conclusions to be drawn to the rela-

tionship to known viruses.

28 Bioinformatics Ontology For Tools and Methods (BIO2ME)

Figure
3.1:M

odeling
ofS

T
RA

L
0.5.4.

T
h

e
sch

em
a

ex
em

p
lifi

es
th

e
ch

aracterizatio
n

o
f

th
e

alig
n

m
en

t
p

ro
g

ram
S

T
R

A
L

0
.5

.4
in

th
e

stru
ctu

re
o

f
B

IO
2

M
E

at
th

e

b
eg

in
n

in
g

o
f

th
e

research
fo

r
th

is
th

esis.
T

h
e

fi
g

u
re

o
n

ly
sh

o
w

s
a

cu
to

u
t

o
f

th
e

actu
al

m
o

d
elin

g
o

f
S

T
R

A
L

0
.5

.4
.
T

o
p

lev
el

co
n

cep
ts

are
sh

o
w

n
in

b
lu

e
b

o
x
es

an
d

in
stan

ces
in

p
in

k
.
H

ierarch
ical

relatio
n

s
are

b
lack

arro
w

s,
o

b
ject

p
ro

p
erties

b
lu

e
an

d
“in

stan
ce

o
f”

relatio
n

s
red

co
lo

red
.
T

h
e

b
o

x
o

f
th

e
in

stan
ce
S
t
r
A
l
0
.
5
.
4

co
n

tain
s

a
cu

to
u

t
o

f
assig

n
ed

d
ataty

p
e

p
ro

p
erties.

S
o

m
e

in
term

ed
iate

classes
are

o
m

itted
.

(Source:
M

ain
z,

2
0

0
6

a)

Refinement of BIO2ME 29

Figure 3.2: BIO2ME scenario. Laboratory techniques and bioinformatics tools which are utilized in

the development of a drug against an unknown virus.

3. Translation of the nucleic acid into the amino acid sequence of virus proteins facilitated by

programs using the according genetic code. This enables the detection of target sequences

and structures on the protein’s surface for the development of virus-inhibitive agents.

4. Simulation of protein structures by special protein structure prediction programs. For

that purpose specific databases are searched for related proteins with known structure.

If a protein with similar sequence is found, homology modeling programs can determine

the protein structure. Otherwise ab initio methods can be utilized to compute the three

dimensional structure.

5. Development of a virus-inhibitive agent based on the determined structure.

6. Some regions on the surface of proteins are essential for its function and can be blocked.

For example a molecule might be identified which is complementary to such a sequence

and therefore inhibits this virus.

This scenario reveals the context-dependent use of certain types of databases and programs, for

example the distinction of sequence, structure and organism databases.

3.2 Refinement of BIO2ME

Based on the results of the bachelor thesis, BIO2ME was extented and refined during the re-

search for this thesis. The class structure of the ontology was reorganized to some extent. Fig-

ure 3.3 shows the same information of the program STRAL as shown in figure 3.1 but modeled

in the current ontology version. It is recognizable that the modeling of the top level concepts

ComputationalMethod and Data did not change. There are additional subclasses and

some refinements in their structure, but in this narrow context no changes are visible. The main

30 Bioinformatics Ontology For Tools and Methods (BIO2ME)

Table 3.1: BIO2ME data. The table shows the ontology metrics of the state at the end of the bache-

lor thesis (BIO2ME BA) and now (BIO2ME NOW). “Object property assignments” are interrelations

between individuals and “Datatype roperty assignments” subsume mappings of datatype values to indi-

viduals. Relation counts only consider direct relationships.

BIO2ME BA BIO2ME NOW
Classes 100 212

Individuals 139 348

Object properties 16 42

Datatype properties 12 29

Instance of relations 155 473

Object property assignments 449 1139

Datatype property assignments 78 405

Annotations 99 1100

modification in BIO2ME is the movement of the class BioinformaticsTask to Tool

and its renaming to BioinformaticsTool. Although the same information of tools are

modeled, the shifting and renaming of the class completely changes the formal logic of the

concept. Subclasses of BioinformaticsTool are no longer meant as bioinformatics re-

search fields and problem solving strategies, but map specific types of tools. So by now a

tool’s bioinformatics tasks are no longer modeled in BIO2ME, but the bioinformatics type

of a tool. A bioinformatics type of STRAL 0.5.4 for example is sequence alignment tool in

contrast to its classification as program. The result in the sense of the information that can be

extracted from the ontology is the same, however logically these have totally different mean-

ings. The instances of tools are no longer related to bioinformatics tasks by the object prop-

erty hasBioinformaticsTask, but are now instances of BioinformaticsTool, too.

Program retained, although logically meaningless, because it immensely facilitates the retriev-

ing and insertion of tools (see Chapter 6). The top level concept Task was no longer needed

and BiologicalTask ascended to a direct subclass of Thing.

Figure 3.4 illustrates an overview of the current structure of BIO2ME. The figure in particular

shows the modeling of the concept program. For the reason of clarity only low level classes are

shown and just a subset of properties. For the most object properties inverses are omitted. The

actual counts of ontology elements and assignments are summarized in Table 3.1. Figure 3.4

emphasizes the interwoven structure of an ontology. Each class is related to at least one other

through subclass relationships and object properties, respectively. In the following the process

of BIO2ME refinement is described in more detail for three aspects.

Domains & Ranges

For some datatype and object properties the domain and/or range specification had to be refined,

because the initially used ontology editor PROTÉGÉ version 3.2.1 contains a bug in the domain

and range implementation. If more than one domain or range is specified, the editor stores the

Refinement of BIO2ME 31

Fi
gu

re
3.

3:
N

ew
M

od
el

in
g

of
ST

R
A

L
0.

5.
4.

T
h
e

sc
h
em

a
v
is

u
al

iz
es

th
e

sa
m

e
cu

to
u
t

o
f

th
e

o
n
to

lo
g
y

as
fi

g
u
re

3
.1

d
o
es

,
b
u

t
m

o
d
ifi

es
it

w
it

h
re

g
ar

d
to

th
e

re
fi

n
em

en
ts

o
f

B
IO

2
M

E
.

32 Bioinformatics Ontology For Tools and Methods (BIO2ME)

Figure3.4:B
IO

2M
E

O
verview

.T
h

e
fi

g
u

re
sh

o
w

s
ex

tracts
o

f
B

IO
2

M
E

.B
lack

arro
w

s
illu

strate
su

b
class

relatio
n

sh
ip

s
an

d
b

lu
e

p
o

in
ters

m
ean

o
b

ject
p

ro
p

erties.

S
o

m
e

d
ataty

p
e

p
ro

p
erties

are
in

serted
in

th
e

co
n

cep
t

b
o

x
es.

D
irect

su
b

classes
o

f
o
w
l
:
T
h
i
n
g

are
b

lu
e

co
lo

red
.

N
o

in
stan

ces
are

sh
o
w

n
.

Refinement of BIO2ME 33

union of them, this is not conform to the OWL specification of the W3C. Its section about

abstract syntax2 in paragraph 2.3.1.3. “OWL Lite Property Axioms” says:

“There can be multiple domains, in which case only individuals that belong to all

of the domains are potential subjects. [...] Again, there can be multiple ranges,

in which case only individuals or data values that belong to all of the ranges are

potential objects.”

This means that multiple domains and ranges are the intersection of all domain and range

classes of a property, respectively. On logical level these are two completely different mod-

elings. PROTÉGÉ version 4 fixes this bug.

For the implementation of the BIO2ME application (see Chapter 6) the DEEP SEMANTICS

framework (see Chapter 2.6) was utilized. DEEP SEMANTICS by now handles OWL lite, but

is already extended by some additional OWL DL features (see Section 2.1.3). Such fea-

tures are unions; intersections are not supported yet; so multiple domains and ranges had to

be removed from BIO2ME. For example, object property gainsAccessTo with domain

WebServer currently has Tool as range. This is not quite correct, because for example

web servers do not gain access to the functions of packages. Since Package is modeled as

subclass of Tool, it inherits the range axiom of Tool. That is why two subproperties are

modeled, gainsAccesToDatabase and gainsAccessToProgram, which have range

Database and Program, respectively.

Object Property: usesVariantOfComputationalMethod

The object property usesVariantOfComputationalMethod resulted from a

discussion with a linguist. The old version of BIO2ME included an instance of

ComputationalMethod named VariationOfSankoffAlgorithm. The linguist

stressed that this is linguistically incorrect, because an instance models a specific entity of

the domain, but a variant of something is only a blurred describtion of a thing. From the

bioinformatician’s perspective, it is yet useful to have the information that a program uses not

exactly the Sankoff algorithm, but a variant of it. This method even is called “variant of Sankoff

algorithm” in bioinformatics publications (e. g. Hofacker et al., 2004). The alternative way in

modeling this information linguistically correct without any loss of facts was the insertion of

the new object property usesVariantOfComputationalMethods. This clearly defines

the relationship between a tool and its computational method.

Language of Datatype Values

OWL allows the declaration of the language of datatype values. Thus one can include sev-

eral languages in one’s ontology to enable its utilization in different language areas. However,

PROTÉGÉ stores this information in the RDF/XML file in a not OWL DL conform way. By

2 http://www.w3.org/TR/owl-semantics/syntax.html

34 Bioinformatics Ontology For Tools and Methods (BIO2ME)

reading ontologies including such constructs, the OWL reasoner PELLET warns that an extra

OWL description has to be inserted into the OWL file to trnasfer the ontology into OWL DL.

3.2.1 Integration of External Domain Experts

The collection of bioinformatics programs and the guarantee of a common agreement of the

mapping of biological and bioinformatics domains brought me to consult external domain ex-

perts. For that purpose a document containing a short introduction to ontologies and the moti-

vation of BIO2ME was created, together with a questionnaire which made a survey of bioin-

formatics tools and their domains. This document was sent to some bioinformaticians. The

response was rather poor. Nevertheless I captured some new tools in the ontology and got feed-

back on the questionnaire itself. Based on that I implemented a Web form, which is much more

comfortable in usage. The link was sent to some bioinformatics groups in Germany and Aus-

tria, but again the response was not worth to mention. After these attempts I decided to stop

the recruiting of external domain experts for the moment and concentrated on semi-automated

extension techniques and the implementation of the search application of BIO2ME to show its

benefits.

The result of one discussion with domain experts, for example, was the integration of the new

datatype property hasUserComment (see Fig. 3.4) into the ontology that gathers users’ ex-

periences with the tool.

3.3 Discussion

This chapter dealed with the bioinformatics ontology for tools and methods. It points out the

permanently unfinished state of an ontology for this application. During the work the class

structure and property definition of BIO2ME was reorganized. Additional changes were done

due to application purposes. Now it serves as a semantic basis of a search application, more-

over the search application was designed around this knowledge base. Further modifications

on the ontology would now entail a reimplementation of the application. That is why the class

modeling task has to be well thought before the application is built around it. That was the

reason to rethink about BIO2ME after the bachelor thesis. The described modifications were

discussed and approved by several (internal) domain experts. BIO2ME does not claim to be

complete, but the core structure is modeled sufficiently and expanded in some bioinformatics

domains. Additional extensions with regard to the ontology design guidelines can now be done

without suspecting any trouble with the web application. BIO2ME will always grow with its

application.

Table 3.1 shows the data of BIO2ME. Obviously, the number of classes doubled since the

final version of the bachelor thesis. The individual count increased even more by two and a

half. The most investigations can be ascribed to the BIO2ME extension and the more precisely

modeling of the domain by inserting new types of relations (object and datatype properties).

The new structure of the ontology is described above and illustrated in figure 3.4 as well. The

Discussion 35

triplication of “instance of” relations is caused by insertion of new individuals and the new

modeling of the bioinformatics task of a tool. Program versions are now instances of Program

and the actual program’s class, respectively, and of BioinformaticsTool which replaced

BioinformaticsTask and the object property hasBioinformaticsTask (more de-

tails above). Based on the new modeled properties the connections of instances among each

other and instances with values are increased by two and a half and more than five, respectively.

The drastically increased number of annotations by 11-times in particular is caused by the in-

sertion of rdfs:labels which add natural language identifiers and synonyms to the artificial,

rule-based local names of ontology objects.

3.3.1 Integration of External Domain Experts

The less successful integration of external domain experts is ascribed to various reasons. First,

the ontology was not published in a biological journal. So the domain experts did not know the

benefits it will offer for them. Moreover, for the characterization of tools a lot of information has

to be gained. The experts did not have to answer each question but the size of the questionnaire

might have alienated them. At the time of consulting external experts the web tool was not

available, so the Word document and the simple web form might also not have attracted.

The challenge in recruiting domain experts in combination with the wide domain induced the

support of the knowledge acquisition phase by semi-automatic methods (see Chapter 5). Ad-

ditionally, the feedback, I got from some experts, was considered in the implementation of the

BIO2ME application (see Section 6.3). Additionally, Chapter 6 provides a new approach of

attracting domain experts by offering more information about the structure of BIO2ME and

invloving them into the extension of the ontology.

3.3.2 Conclusions

During the design and extension of BIO2ME a lot of experiences were gained. Obviously the

benefit of the BIO2ME application relies on the quantity and quality of the underlying ontology.

That is why it has to be constantly enlarged and updated. This is certainly not manageable by

a single person, and even a (small) group of knowledge engineers is reliant on the support of

the tools’ developers and users, the domain experts, in extending and evaluating the ontology.

Currently available ontology engineering tools are insufficient for these purposes, that is why a

common internet technique, a wiki, has been adapted that supports the collaboration of domain

experts. Investigations on this wiki are outlined in Chapter 4.

Furthermore, Section 3.2.1 showed that the acquisition of domain experts is a challenge. Hence,

a machine-supported ontology extension approach was introduced, which is described and eval-

uated in Chapter 5. This approach utilizes tagging of publications basing on the concepts of the

ontology and adverts to possible new ontology relevant notions and relations. The user gets

hints of text passages that could be relevant for the ontology.

The construction of BIO2ME teached the following lessons and motivated the research de-

scribed in the next sections:

36 Bioinformatics Ontology For Tools and Methods (BIO2ME)

• The domain of BIO2ME eminently points out the need for collaborative ontology engi-

neering. To represent bioinformatics tools with their applications, the whole bioinformat-

ics research field and biological areas utilizing bioinformatics tools have to be mapped

adequately in a structured way. Various kinds of expert knowledge are needed to char-

acterize different functions and application areas of bioinformatics tools. Furthermore, a

vital community is needed to add information on the different tools that should be repre-

sented.

⇒ To support this, a wiki was implemented into the ONTOVERSE platform (see Chap-

ter 4).

• In long term, the major challenge with BIO2ME will be to keep it up-to-date. It will be

necessary to keep track of new developments in bioinformatics, e. g. as new tools and new

versions of existing tools may be published.

⇒ To support this informally, a wiki was implemented into the ONTOVERSE platform

(see Chapter 4) and the information system that uses BIO2ME as knowledge base also

integrates a simple interface to insert tools and methods directly into the ontology (see

Chapter 6).

• The problem with recruiting domain experts who are willing to share their knowledge was

detected, so an alternative way of collecting relevant background knowledge (in form of

publications) for extending the ontology was developed. Though this approach will never

be able to replace the intervention and mental power of a domain expert.

⇒ This approach is based on tagging and is described in Chapter 5.

• The fundamental challenge of this particular ontology was to define its basic structure.

This is where the highest quality control is needed, because it is most difficult to change

underlying structures at a later time point. It is also the part of the ontology engineering

process that requires the most discussion and planning. Less fundamental aspects, like

adding new instances to existing concepts, can however easily and freely be handled by

domain experts.

4

Wiki – Support of the Protoontological
Phase and More

The informal phases of the ontology engineering process, the acquisition of domain, motivation

and goal in the ORSD (see Section 2.1.4) and the conceptualization are fundamental particu-

larly for collaborative ontology development. As my colleagues and I experienced during the

collaborative extension of BIO2ME, these steps are hardly supported in published ontology

editors. I am aware of one editor, ONTOEDIT (Sure et al., 2002), that provides support for the

creation of competency questionnaires (ONTOKICK plugin) and of mind maps (MIND2ONTO

plugin). That is why a locally installed MEDIAWIKI1 was utilized for BIO2ME design. The

wiki idea and its functions (see Background 2.8) are perfectly fitting this informal knowledge

capturing process. For these reasons and because its intuitive handling, a wiki was included into

the ONTOVERSE system, which facilitates such protoontological phases. Domain experts, who

will primarily take part in the informal ontology development steps and who are not necessarily

familiar with formal ontology aspects, might be overstrained by a formal editor. Additionally,

content-specific evaluation of the formal ontology, periodical checks for consistency, accuracy

and correctness by domain experts should also be supported. For this reason the ONTOVERSE

wiki has a connection to the formal ontology (see Section 4.3). Due to this wiki-editor conjunc-

tion, no traditional software package (like MEDIAWIKI) was integrated into the system, but I

implemented a wiki in the programming language RUBY. This implementation was much eas-

ier to extend with required ONTOVERSE-specific wiki features. Furthermore, the ONTOVERSE

platform itself is realized with RUBY and RUBY ON RAILS, that is why this solution fits much

better into the whole system.

Section 2.1.4 describes the ontology engineering process developed in my Bachelor thesis. Fig-

ure 4.1 shows modifications of Figure 2.4 by using the wiki as collaborative document editor

and repository. Now (meta-)results of informal phases can be cooperatively worked out in wiki

1 http://www.mediawiki.org/wiki/MediaWiki

38 Wiki – Support of the Protoontological Phase and More

Figure 4.1: Ontology engineering process supported by the ONTOVERSE wiki. The schema modifies

Figure 2.4. All protoontological documents (e. g. ORSD, concept lists, etc.) are now created, versioned

and collected in the wiki.

articles. This supersedes the use of revision control systems like Subversion2 (SVN) or the

Concurrent Versions System3 (CVS).

In the ONTOVERSE system each ontology project has its own wiki with a main page. Only

project members are able to see articles in the project wiki. The ONTOVERSE wiki exploits the

unrestrictive navigation possibility, so the main page serves as starting point of article linking.

New wiki articles are created by inserting internal wiki links to a new article.

With a project start the wiki main page (see Fig. 4.2) is automatically created and filled with a

link to the project’s ORSD, its conceptualization and articles that list actual ontology classes and

individuals (see Section 4.3). In this process the ORSD article is automatically prefilled with

the subdivision that was developed in Mainz (2006a) for the ONTOVERSE project. Moreover, it

contains descriptions for each section that explain what should be worked in. The “Conceptu-

alization” link refers to an empty wiki article as hint for ontology engineers to add articles e. g.

collections of relevant terms and concept graphs. Users are not limited, in which articles they

want to integrate here, because each project and team has its own necessities. In the BIO2ME

wiki, articles for unstructured lists of concepts and properties were created and concepts graphs

were added to facilitate the modeling in OWL.

In the backend only one wiki exists, which simulates all project wikis. Fig. 4.3 shows the

database schema of the wiki. Every wiki page is saved in table articles including title, body

text, version number, creator, creation and update time. The assignment to a project is realized

for each article by defining the foreign key project_id. In the opposite direction each project

can possess any number of articles. The other database tables in this figure are explicated in fol-

2 http://subversion.tigris.org/
3 http://www.nongnu.org/cvs/

Basic Wiki Features 39

Figure 4.2: Wiki main page. Screenshot of the wiki main page of the BIO2ME project.

lowing sections (4.1.2, 4.1.3 and 4.2). The ONTOVERSE system utilizes the AUTHORIZATION4

plugin, which facilitates the implementation of access restrictions in RUBY ON RAILS applica-

tions. See Paulsen (2007; pages 79ff) for the description of the role-based access model. This

implementation also controls the project-specific access to the project affiliated wiki. Internal

links between wiki pages are also only allowed between articles of the same project as other

articles are not visible in the current project.

4.1 Basic Wiki Features

Section 2.8 describes common wiki features. These features proved themselves as very use-

ful in the design phase of BIO2ME, so they were integrated into the ONTOVERSE wiki. The

following sections briefly describe these functions and their implementation with the aid of

RUBY ON RAILS plugins.

4.1.1 Text Formatting

Users are able to insert simple wiki-specific text formattings into articles. The utilized markup

language is TEXTILE5,6, which enables easy text formatting in hypertexts for users who are

unfamiliar with html. In contrast to html this markup language was developed to be readable

for humans and easy to learn. Table 4.1 lists some textile syntax. More information is given on

the ONTOVERSE wiki help page7. TEXTILE also allows the input of html syntax.

4 http://github.com/DocSavage/rails-authorization-plugin/tree/master/
5 http://textism.com/tools/textile/

40 Wiki – Support of the Protoontological Phase and More

Figure 4.3: Entity Relationship Model of the Wiki. The schema shows the database tables storing the

data of the wiki. The green color of the projects table indicates that this table is also linked to other

tables for it is involved in other platform modules. Foreign keys are marked with FK. (Source: Extended

after Paulsen, 2007).

The implementation of the ONTOVERSE wiki utilizes the RAILS plugin ACTS_AS_TEXTILED8.

This facilitates a simple integration of REDCLOTH9, a RUBY realization of TEXTILE. In the

wiki the article’s body attribute is set to be textiled. The plugin stores textile in the database and

translates it into html on default, because html is displayed more often than textiled text in web

pages. Given an article, the simple output of the body attribute delivers html text:

>> article.body

=> "<h2>Mind Map</h2> "

If textile formatting is to be rendered, for example on the wiki edit page, it has to be declared

like this:

>> article.body_source

=> "h2. Mind Map !Program.png!"

TEXTILE was customized to meet the ONTOVERSE requirements. For this purpose the markup

was extended by some functions for the integration of internal links, attachments and segments.

6 http://hobix.com/textile/
7 http://ontoverse.cs.uni-duesseldorf.de/wiki/help
8 http://errtheblog.com/posts/12-actsastextiled
9 http://whytheluckystiff.net/ruby/redcloth/

Basic Wiki Features 41

Table 4.1: Wiki Formatting. The table shows some common textile formatting rules for the

ONTOVERSE wiki.

Captions

h1. Caption 1

h2. Caption 2

h3. Caption 3

Font Styles and Phrase Modifiers

bold bold
italics italics
+underlined+ underlined

-deleted- deleted

%{color:red}red colored text% red colored text

Bulleted Lists

* First. • First.

* Second. • Second.

* Third. • Third.

Enumerations

First. 1. First.

Second. 2. Second.

Third. 3. Third.

External and internal links

"Ontoverse":http://www.ontoverse.org Ontoverse

"Article":intern Article

Footnotes

This text has a footnote[1]. This text has a footnote1

fn1. This is footnote number 1. 1This is footnote number 1.

These extensions are implemented in a wiki helper method in RAILS (see Section 2.5.1) called

to_html. The markup of external links, which direct to the provided internet address, is han-

dled by TEXTILE. The translating of links that cause the loading of other project-assigned wiki

articles is facilitated for users. The declaration of the article name suffices as article titles are

unique for one project. The articles table is then searched through with the aid of the article

title, to which the link directs, and the project id, which is associated with the current article. If

an article satisfies this information, the html image tag is composed and inserted into the current

article’s body. In this process URL mapping of RAILS is exploited (see Section 2.5.1). More

information about customizations for the integration of attachments and segments are given in

sections 4.1.2 and 4.2.

The wiki edit page (see Fig. 4.4) provides a summary text field, in which modification comments

can be pasted (see Version Management 4.1.3), and a help site where the formatting syntax is

42 Wiki – Support of the Protoontological Phase and More

Figure 4.4: Wiki Edit Page. The screenshot shows the rich text editor of the ONTOVERSE wiki.

Figure 4.5: Wiki Attachment. Screenshot of the conceptualization of the concept “program”. A mind

map is inserted into the article.

presented. Moreover, Dr. Ingo Paulsen added javascript functions that facilitate the correct text

formatting by providing some buttons for inserting headings, bullets etc.

4.1.2 Attachments

Additionally to wiki articles, the system offers the possibility to attach project-specific files like

images or pdf documents. By uploading a file with clicking the “Upload Attachment” button in

the project-specific navigation sidebar, the attachment is tied to the project and a special wiki

page for the attachment is created. Attachment files can then easily integrate into a project’s

article by inserting:

!file_name!

Basic Wiki Features 43

Images are displayed and serve as link to the image’s wiki article (see Fig. 4.5). Other file types

are textually linked to their wiki pages. On these attachment wiki pages users can view and

download the files. Links to pdf documents are additionally marked by a symbol.

Attachments are particularly helpful in articles dealing with the conceptualization. For example,

mind maps can be uploaded to visualize an overview of the domain and concept graphs can point

out the connections between domain relevant terms. A listing of all attachments of a project is

provided which is helpful to get an overview of available files. The list directly links to the

according attachment article in the wiki.

In the backend, the RUBY ON RAILS plugin ATTACHMENT_FU10 manages the upload and stor-

age of files. By uploading an image file, a thumbnail is created automatically. The plugin pro-

vides three storage options, whereof ONTOVERSE uses the file system storage. Metadata of

each file is saved in the database, too. Figure 4.3 visualizes the corresponding database table

attachments. The file name, the content type (e. g. image/png or application/pdf),

the metrics, the name of the thumbnail file, if the attachment is an image, and the id of the par-

ent file of the thumbnail are stored in this table. Each attachment has assigned exactly one

attachment wiki article, which is automatically created at upload time. The opposite direction

models the relation of the special attachment wiki articles to attachments. The article affiliation

of attachments which are inserted into wiki articles are not managed in the database, but by

the text markup. TEXTILE substitutes the above wiki syntax into html for images. By regular

expressions in a RAILS wiki helper method, these tags are extended by hyperlinks to

the attachment wiki article or substituted by textual hyperlinks in case of non-image file types,

respectively. Each attachment belongs exactly to one project, however a project may possess

any number of attachments (see Fig. 4.3).

4.1.3 Version Management

Each article saving triggers a versioning process of the article. This change log enables certain

common wiki functions. The “Recent Changes” web page lists all articles sorted in descending

order by update time. In the ONTOVERSE system this list is of course restricted to project affilia-

tions. Beside the editor’s user name it holds information about the modification type denoted by

a single character coding (N - New, M - Modified, R - Reverted, D - Deleted) and an additional

modification comment. This comment is either automatically filled in for system generated ar-

ticles or added by the editor. Therefore the wiki edit page offers a textfield to enter a comment

on the modification (see Fig. 4.4). More than the “Recent Changes” section, the wiki provides

a history for each article, in which the user is able to revert to previous article versions and a

differences function which highlights the changes between two revisions. This helps to retrace

modifications.

In the course of versioning, the RUBY ON RAILS plugin ACTS_AS_VERSIONED11 is utilized.

This library adds simple versioning and revision functions for RUBY ON RAILS models. In this

case, a copy of an article entry in the database is automatically saved in a versioned table by

10 http://svn.techno-weenie.net/projects/plugins/attachment_fu/
11 http://ar-versioned.rubyforge.org/

44 Wiki – Support of the Protoontological Phase and More

saving a wiki article. This requires the versioned table, article_versions (see Fig. 4.3),

and the “version” attribute in the “article” RUBY model. The versioned table needs to contain a

field for those article columns that should be versioned, the article’s title and body in this case,

a “version” field and the article id as foreign key to the articles table. Each entry belongs

to exactly one article and one project.

For the purpose of meaningful recent changes listings, the changes table was created in the

database (see Fig. 4.3). The relevant fields are “mode” and “summary”, which store modification

type and a comment as described above.

4.1.4 Search

The wiki offers its own search functionality. Therefore a wiki search field is visible in the

project-specific sidebar if the user is on a wiki page. After entering a search pattern, all project

related article titles and bodies are searched through. The search is realized as phonetic search.

This means that search patterns are broken down into its phonemes to build the phonetic rep-

resentation of the pattern. In this process similar phonemes are united. After that, this pho-

netic representation is compared to the phonetic presentation of the wiki texts. In this way

misspellings are ignored.

This phonetic full text search is implemented with the RUBY ON RAILS plugin

ACTS_AS_FERRET12. This extension builds on FERRET13, which is a RUBY version of APACHE

LUCENE14. ACTS_AS_FERRET supports high speed full text search in defined RUBY model

attributes. It automatically and imperceptibly manages the update of the search index in the

operating wiki.

4.2 Segments

In comparison to regular wikis, one special feature in the ONTOVERSE wiki is the introduction

of so called segments. They are sections in an article with their own history and version man-

agement. The characteristic of these sections is the ability to be separately locked. This locking

is feasible for each combination of user roles (project admin, domain expert and ontology de-

signer; see Section 2.2). If a segment is locked, users holding a disabled role(s) are no longer

able to edit or revert this segment (see Fig. 4.7). Project admins nevertheless are able to edit

and revert segments as they can still change the permissions on the segment and unlock project

admins themselves. Locking of project admins first seems to be preposterous or contradictory

but it is implemented because of two reasons. First, special wiki articles contain information

extracted from the formal ontology. This data is enclosed in segments because no user should

modify them and changes will be overwritten by another article load anyhow (see Section 4.3).

The second reason is to prevent segment modifications even for project admins, if a segment

12 http://projects.jkraemer.net/acts_as_ferret/
13 http://ferret.davebalmain.com/trac/wiki
14 http://lucene.apache.org/java/docs/

Segments 45

Figure 4.6: Lock dialogue of an ORSD segment. After clicking on “Permissions” a popup window

provides the opportunity to choose the roles, for which this segment should be locked. On the right side

of the image one can still see the segment menu: “Edit”, “History” and “Permissions”.

Figure 4.7: Locked segment. The screenshot shows the locked wiki segment after locking illustrated in

Figure 4.6. The segment menu is now replaced by a red “Locked” label.

should not be changed anymore. If a project admin wants to modify a locked segment anyway,

this should first be discussed among the project members.

The initial idea for segments origined in the realization strategy for the collaborative creation

of the ORSD. ORSD sections like motivation, domain and goal should be defined before other

ontology engineering processes are started. These sections should not be modified afterwards

because the structure of the ontology and the modeling process highly depend on this view on

the ontology. Changing these basic properties of an ontology might effect the remodelling of

the whole ontology. Single ORSD sections are prefilled as segments in the ORSD article, so

46 Wiki – Support of the Protoontological Phase and More

a project admin can decide when these sections are finished and lock them to start the next

engineering phases.

A new segment can easily be inserted by clicking on the “New Segment” link of the editor (see

Fig. 4.4) or by typing:

\segment(Segment title)

Here is the text of the segment.

\end

4.2.1 Implementation

In the backend, a segment is realized in the same way as a wiki article using the

ACTS_AS_VERSIONED plugin. Therefore the database comprises a segments and a

segment_versions table. Though, segments are not assigned to projects but to articles,

into which they are integrated (see Fig. 4.3).

The segment code block extends TEXTILE. The method in the RUBY article model parses these

blocks beginning with \segment and ending with \end. The segment title is between the

parentheses (see example) and it is made sure that each segment has a unique title within one

article. The segment is then stored in the segments table by inserting the extracted title, the

body from within the segment tags and the ID of the current article. The version plugin auto-

matically keeps track of this modification in the segment_versions table. Afterwards, the

code block is substituted by a segment placeholder which contains the segment id and its cur-

rent version. The version information facilitates the revision of single segments in an article. As

soon as the entire article with all its segments is successfully stored, the changes table is filled

with the modification and optionally with the user comment. These placeholders are markuped

by the RAILS helper method to_html. On the basis of the segment id and the version, the

accurate segment title and body are fetched from the segments table and formatted in html as

shown in Figures 4.6 and 4.7.

The locking mechanism utilizes the ONTOVERSE system’s authorization solution which is

realized by the AUTHORIZATION plugin. This provides the permit method for checking

authorization in a simple way. The plugin uses the roles database table (see Fig. 4.3), which

stores the role name, a description, the authorizable type and the authorizable id. The authoriz-

able type defines the RUBY class (model) to which the role is applied. The authorizable id sets

specific objects of the authorized model. In the ONTOVERSE wiki the project model and the

project id configure a user role. The roles_users table stores the mapping of roles to users.

Those project-related user roles that have granted access to manipulate a segment are saved in

the roles_segments table.

4.3 Connection to the Formal Ontology

Ontology engineering is not practicable without evaluating the formal ontology and thereupon

refining and extending it. The realization of user roles in the ONTOVERSE system (see Sec-

Connection to the Formal Ontology 47

tion 2.2) allows domain experts not having to be familiar with formal ontology features. To

assure the verification by the domain experts anyhow, I implemented a connection between

wiki and formal ontology that displays the ontology structure in a more convenient and familiar

way.

4.3.1 Frontend

The connection to the formal ontology is completely integrated into the wiki structure. That

means the information of the ontology is provided in wiki syntax within special wiki pages. By

project creation on the ONTOVERSE platform two wiki articles, a list of ontology classes and

of ontology individuals are automatically linked on the main page of this new project’s wiki

(see Fig. 4.2). By following the link to the special wiki page “Ontology Classes”, a connection

to the tuple space server is established by the SWATClient (see Section 2.7) and the wiki page

is filled with a locked segment listing links to special wiki pages for all ontology classes (see

Fig. 4.8). Each class has its own wiki page. Figure 4.9 exemplifies such an article. Titles of

those articles are prefixed with “Class:” followed by the local name of the ontology class. The

article body is filled with the information from the ontology each time the wiki page is loaded.

A segment is created containing links to wiki articles of all direct subclasses of the current class.

Similarly there exist segments listing links to direct superclasses and instances. These segments

are locked automatically by the system for each project member and are overwritten each time

the article is reloaded. The implementation of this reloading was indispensable because there

was no possibility to get information about modification times from the tuple space server. That

is why no time specific queries on the data were possible and no update of the already fetched

information was realized. More than these automatically filled segments, the user is able to

add content to the article. Here new super-, subclasses and instances can be proposed or new

descriptions added. The modeling of the class might be discussed and ontology designers are

able to ask questions about the class. That means an evaluation and refinement is facilitated on

these articles. Additionally, these ontology-connected wiki articles provide a direct link to the

formal editor. By clicking on this “Show in editor” link, either a new browser window appears

loading the editor with the just viewed class in the focus, or the already opened editor changes

its focus to this class. The formal editor also has links to the wiki and vice versa.

Similar wiki pages are created for each individual in the ontology. Links to these articles are

all embraced in the special wiki page “Ontology Individuals” and are prefixed by “Individual:”

(see Fig. 4.10). The segments of these articles differ slightly from those contained in the class’

pages. They comprise information about the type of the individual and list relations to other

individuals.

4.3.2 Implementation

In the backend of this connection to the formal ontology are SQLSpaces (see Section 2.7), which

are provided by the group of Prof. Hoppe of the University of Duisburg-Essen. Ontologies are

composed of triples (subject, predicate, object), which in ONTOVERSE are stored as tuples in a

48 Wiki – Support of the Protoontological Phase and More

Figure 4.8: Wiki article “Ontology Classes”. Screenshot of the special wiki article “Ontology Classes”.

It consists of a link list to all classes the ontology currently comprehends.

Figure 4.9: Wiki article of class StrAl. The screenshot shows the automatically filled “Class: StrAl”

wiki page.

tuple space. In addition to subject, predicate and object, the creation and modification time is

attached to each tuple. Each ontology project has its own tuple space. Stefan Weinbrenner from

the University of Duisburg-Essen provided a RUBY-based SWATClient for the communication

Connection to the Formal Ontology 49

Figure 4.10: Wiki article of instance StrAl0.5.4. The screenshot exemplifies an automatically filled

instance article in the ONTOVERSE wiki.

between the JAVA-based SQLSpaces and the RAILS platform. This web service was utilized for

the implementation of the connection between wiki and ontology.

To unambiguously identify the tuple space belonging to a certain ontology project in the

ONTOVERSE system, the namespace of the ontology is used as identifier of the ontology space.

So by loading an ontology-linked wiki article, the namespace of the known, article-associated

project is loaded from the database and the connection to the identically labeled tuple space

is established. Queries can then associatively be formulated in templates. All tuples in the on-

tology spaces have eight fields. The first four, ID, creation time, modification time and ex-

piration, are not searchable and contain information about the tuple. The others are of type

SQLType::String and specify the type of the tuple, which in ontology spaces always is

“fact” because each tuple represents a fact of the ontology. The last three fields specify the URI

of the RDF triple’s subject, predicate and object of that fact.

Figure 4.11 shows a code snippet that illustrates the query of ontology data associated

with the class StrAl. Line one creates a new instance of the RUBY client. In the

next line the tuple space is set, from which the information is required, by providing

the namespace of the according ontology. The example uses the namespace of BIO2ME,

http://www.ontoverse.org/BIO2Me.owl#. In lines three to seven the template is

constructed by creating a new instance of the RUBY class Tuple. As described above,

the tuple has to be composed of four fields. These fields are all purported to be of type

SQLType::String. All tuples in the specified space comprise “fact” as value of the first

field, so no further specification is made. The example shows the information search for the

50 Wiki – Support of the Protoontological Phase and More

1 $client = OntoverseClient.new()

2 $space = $client.set_space("http://www.ontoverse.org/BIO2Me.owl#")

3 template = Tuple.new([Field.new(SQLType::String),

4 Field.new(SQLType::String,

5 "http://www.ontoverse.org/BIO2Me.owl#StrAl"),

6 Field.new(SQLType::String),

7 Field.new(SQLType::String)])

8 @tuples = $space.readAll(template)

9 $client.close

Figure 4.11: Source code example. The source code exemplifies the usage of the SWATClient web

service. One can see the gaining of information about the class StrAl of the BIO2ME project for

rendering the article “Class: StrAl” (see Fig. 4.9).

wiki article “Class: StrAl” (see Fig. 4.9) that is why the second field is forced to be of value

“http://www.ontoverse.org/BIO2Me.owl#StrAl”. The predicate and object fields are variable

and thus not further specified. Line eight shows the search command readAll, which passes

all tuples that satisfy the template to the array @tuples. After getting the resulting tuples, the

connection to the client has to be closed (line nine).

The resulting array @tuples comprises arrays of tuples with exactly four indices each. This

can then be processed. The tuple:

("fact", "http://www.ontoverse.org/BIO2Me.owl#StrAl",

"http://www.w3.org/2000/01/rdf-schema#subClassOf",

"http://www.ontoverse.org/BIO2Me.owl#Program")

for example defines the subclass relationship between class StrAl and its superclass

Program. In this manner all relevant data for the wiki article are extracted.

The coordination between the JAVA-based editor and the RUBY-based wiki is managed with the

aid of the session space. For this purpose the wiki and the editor get a callback to a special tuple

that informs about the ontology element that is to be focused in the editor or shown in the wiki,

respectively.

4.4 Discussion & Conclusions

Current ontology editors barely support the acquisition and informal structuring of ontology rel-

evant knowledge. Moreover, depending on the domain, motivation and application, the ontology

has to be built collaboratively. Only this will guarantee a common view and shared definitions

of terms and their interconnections. A domain like the BIO2ME domain for example needs a

group of engineers to cover the necessary amount of knowledge in bioinformatics and biology.

This makes it very difficult and unpractical to create documents like the ORSD and conceptual-

ization lists in a simple document and sharing them via file transfer. The utilization of a wiki is

Discussion & Conclusions 51

obvious because it is already established, not only in the internet, to serve exactly this purpose:

the support of a collaborative work on documents to share information. That means users are

familiar with the concept of wikis, consequently the inhibition level is reduced and the training

period is shortened. Changes are directly saved in the current document version and have not to

be committed into a repository, so other project members directly can see them. Additionally, it

is more useful to work on the same document and to save all documents altogether, accessible

for all project members. Modifications can easily be retraced and reverted within the wiki. Most

of these functions are offered by revision control systems either, but they are by far less intuitive

to handle.

MEDIAWIKI was used for the BIO2ME design phase and proved itself as very helpful. As a

consequence, a self-written wiki was integrated into the architecture of the ONTOVERSE system.

A group of students tested the common wiki functions of the ONTOVERSE wiki for one semester

during a course. They evaluated it to be as good as the MEDIAWIKI from this perspective.

ONTOEDIT (Sure et al., 2002) is a collaborative ontology engineering environment. Its ON-

TOKICK plugin undertakes the support of users in the creation of requirement specification

documents and the extraction of relevant structures for a semi-formal ontology. The plu-

gin also promises the management of competency questions. Another ONTOEDIT plugin,

MIND2ONTO, is supposed to integrate brainstorming processes about the semi-formal descrip-

tion of terms and their interconnections. The editor could not be tested, because it was object of

a spin-off from the university of Karlsruhe and is now marketed by the ONTOPRISE GMBH15

as ONTOSTUDIO, which is not freely available. However, the idea of ONTOKICK and the de-

scribed plugins sounds plausible and its principle is similar to the ONTOVERSE wiki. Though,

the popularity and acceptance of wikis provide shorter training periods.

4.4.1 Special ONTOVERSE Wiki Features

To guide new ontology engineers, the ONTOVERSE wiki gives starting points for ontology build-

ing. Users are adviced to start an ontology project by the creation of a requirement specification

(ORSD). They can find an ORSD template in the project wiki linked in the project’s wiki main

page. This template is automatically prefilled with an advisable segmentation and descriptions

to each section explaining its possible content and aim. This feature of the ONTOVERSE wiki

already effected positive feedback from users. These users also wished for more support in the

conceptualization phase of ontology engineering. However, in discussion with a colleague from

the information sciences, we decided not to insert any guidelines, because this step strongly

depends on the domain of the planned ontology and the engineers’ preferences. During the con-

ceptualization of BIO2ME I also tried all kinds of possibilities like lists, tables and illustrations.

Those utilities were selected that were most helpful for a special task and that were appreciated

by the other domain experts, too. The ONTOVERSE FAQs nevertheless include some sugges-

tions, which can be tryed out by the users.

15 http://www.ontoprise.de/

52 Wiki – Support of the Protoontological Phase and More

Segments

Segments provide a locking mechanism of text sections in a wiki page, which is an additional

advantage in the ONTOVERSE wiki. This is useful to save own knowledge statements in a dis-

cussion and to mark a section as accepted by the majority. Also already modeled knowledge

can be locked to advise users of that this should not be modified except one wants to remodel it.

In the formal ontology-connected wiki articles, locking protects the user to edit segments that

are filled by the system and in which modifications would get lost. Additionally, some ORSD

sections should not be modified inconsiderately, because this might change the domain and the

modeling of the ontology. The segment locking mechanism effects reconsiderations. Locking is

in fact contrary to the common wiki idea that is most important for an open community, the free

access to edit texts. In the ONTOVERSE wiki open community advantages are not demanded.

Only selected experts in a knowledge domain should have access. Furthermore, project admin-

istrators are able to modify access rights anytime. The segment locking mechanism is optional,

which has not to be used in a project.

Connection to the Formal Ontology

Another main feature of the ONTOVERSE wiki is the connection to the formal ontology. Special

wiki articles are created that contain ontological data in a compact way, facilitating verification

of the modeling for domain experts. These ontology-connected wiki articles include information

about superclasses, subclasses of ontology classes, “type of” relations, object property related

individuals and datatype property related values for ontology individuals. These articles provide

a good overview and enable discussions about the modeling on the very spot. Direct linking to

ontology concepts in the formal editor and vice versa in particular facilitates the collaboration

of domain experts and ontology designers.

An additional section in these special ontology-connected articles is still under development.

This integrates information about the concept’s history. It will contain modifications of the

class or individual, respectively, such as renaming and deleting operations. This will enable

retracing of ontology changes. For this implementation the session space of the tuple spaces is

read out to gain access to all operations on the ontology data. By now it is possible to fetch

all modifications of a resource but the RUBY interface to the tuple space server so far does not

support the query after creation times of the tuple in the session space nor the simple return of

this time. The tuple space already includes the information to create this history section and to

update those wiki articles, so that they have not to be rebuilt each time the page is loaded, but

the RUBY SWATClient has to be extended by the group of the University of Duisburg-Essen.

These special wiki pages of classes and individuals are interlinked. Nonetheless, the

ONTOVERSE wiki is not a semantic wiki like the ONTOWIKI16. Semantic wikis include dif-

ferent kinds of internal links, which add meaning to relations between two wiki articles. In

ONTOVERSE only the two traditional linkings exist: internal and external links. Though, in the

16 http://ontowiki.net/Projects/OntoWiki

Discussion & Conclusions 53

special ontology-connected articles, users are able to distinguish relations to other ontology-

connected articles, because the linking lists to other class or individual articles are titled with

respective relationship. This relation type is automatically extracted from the formal ontology.

Thus, users are able to differentiate between wiki linkings in ONTOVERSE, but the computer is

not. In context of the intention of the wiki, the support of users in the protoontological phase,

the interpretability for the computer is not required. Semantic wikis enable the automatical

extraction of ontologies out of the wiki, but in my opinion in the current research status, the

complexity and hence the expressiveness of ontologies might suffer from this. So this approach

is only feasible for some domains.

Ontology evaluation by domain experts further can be facilitated by providing simple graphs

created out of the ontology. ONTOVERSE comprises some ontology visualizations in the formal

editor implemented by the group of Prof. Ziegler from the University of Duisburg-Essen. But

these are not suitable for this purpose as they are too complex for domain experts and can hardly

be incorporated in the wiki structure. One solution would be the generation of a simple concept

graph stored in an image file, which then could easily be integrated via the wiki syntax. The

image serves as illustration of the current ontology state and should not be modified directly.

This extension is yet not being tackled in ONTOVERSE.

4.4.2 Utilized Plugins

The utilization of RUBY ON RAILS plugins notably simplified the implementation of the wiki.

These plugins fully exploit features of RUBY ON RAILS and thus are especially effective. With-

out their employment the implementation of an own wiki would have been too time consuming.

Though with the aid of these helpers it was possible to build a wiki especially adjusted to per-

fectly fitting the ONTOVERSE platform. It would have been more complicated by the use of

available wiki frameworks.

The table changes, which is relevant for the “Recent Changes” listing of wiki, to some

extent contains information that is redundant to the article_versions table. The table

article_versions is needed by the plugin acts_as_versioned, so additional ver-

sion information like modification mode and comment is included into a new table. This table

meets the requirements for an unobstructed implementation of the modifications listing.

For the BIO2ME application implementation the framework DEEP SEMANTICS was chosen

instead of the tuple space solution. Section 6.5 discusses the differences between their usages.

5

Machine-supported Ontology Extension
by Tagging

Ontology extension is a crucial point in ontology engineering (see Section 2.1.4). In the case

of BIO2ME, a wide knowledge field is covered that has to be considered and kept up-to-date.

Furthermore, it turned out to be difficult to recruit domain experts for ontology extension, since

the ontology has not been published yet and its benefit was rather unknown for external experts

(see Section 3.2.1). As one consequence, I implemented an automatic tagging mechanism for

publications into the ONTOVERSE system, which uses the classes’, individuals’ and properties’

labels of the ontology.

5.1 Idea

The underlying idea of ontology extension by publication tagging is that articles that include

ontology relevant notions, the very ontology labels, also might include information about as-

sociated concepts, which is not modeled in the ontology yet. The ontology labels form the

keywords, because the local names of ontology classes, individuals and properties are subject

to restrictions (e. g. no whitespace characters are allowed) and with the aid of labels any num-

ber of synonyms and different spellings can be added. That is one reason why BIO2ME was

extended by at least one label for each class, individual and property.

Fig. 5.1 schematizes the procedure of tagging-based ontology extension. At first, a collec-

tion of relevant publications is selected from a scientific publication database. Additionally,

ONTOVERSE provides the possibility of uploading own texts into its publication database

PUBDB (see Section 2.2). These scientific articles can be automatically scanned for ontology

relevant terms. On the basis of these tagged papers, domain experts can have a close look to

those publications, extract new information and insert them manually into the ontology.

56 Machine-supported Ontology Extension by Tagging

Figure 5.1: Machine-supported ontology extension. The scheme illustrates the ontology extension on

the basis of ontology-based tagging.

Table 5.1: Database Table: keywords. Listed are the database columns with a short description.

Field Description
ID primary key

NAME keyword name

DESCRIPTION additional information on the keyword

SOURCE One of:

PubMed, if the keyword is extracted from PUBMED

free, if the keyword is freely assigned by a user

ontology: <ontology_name>, if the keyword is fetched from an ontology.

CONCEPT URI of the concept, if the keyword was extracted from an ontology.

5.2 Process of Tagging

Before the actual tagging process takes place the labels of ontology classes, individuals and

properties have to be extracted from the formal ontology, which is persistent in the BIO2ME

project space of the SQLSpaces (see Section 2.7) on the ONTOVERSE platform. Therefore the

RUBY SWATClient methods to list all ontology concepts, individuals and properties as well

as methods to get their labels were utilized. These accessed labels are saved in the database

keywords table declared with BIO2ME as their source and their actual concept in the concept

field. See Table 5.1 for the table description.

On the basis of these keywords the actual tagging process can be started either for one publica-

tion or for a selection of them selected in the project’s publication collection in ONTOVERSE.

The tagging mechanism utilizes regular expressions and is processed as follows (see Fig. 5.2):

In each publication (loop: lines 1 to 15) each ontology label (loop: lines 2 to 14) is searched. The

keywords are selected from the database table keywords by searching after the “source” field.

In the process the keywords are distinguished by whether they contain whitespace characters

(\s) or not (if-clause lines 3 to 13). If a keyword includes at least one whitespace character

(lines 4 to 7) an exact matching of the keyword in the title or abstract is required (lines 4 and

5). The slashes restrict the pattern which is searched for. The i behind these slashes causes a

case insensitive search. #{variable} is special RUBY syntax and means that the content of

variable is included into the string or in this case into the regular expression. Ontology labels

Ontology Extension – A Case Study 57

1 papers.each do |paper|

2 keywords.each do |keyword|

3 if keyword =~ /\s/

4 if paper[title] =~ /#{Regexp.escape(keyword)}/i

5 || paper[abstract] =~ /#{Regexp.escape(keyword)}/i

6 hits[paper[id]] << keyword

7 end

8 else

9 if (paper[title] =~ /\b#{Regexp.escape(keyword)}[s\b\s]/i)

10 || paper[abstract] =~ /\b#{Regexp.escape(keyword)}[s\b\s]/i)

11 hits[paper[id]] << keyword

12 end

13 end

14 end

15 end

Figure 5.2: Exact Matching. The source code is an extract from the RUBY code implemented in

ONTOVERSE.

are in natural language, so the method escape() for the RUBY class of regular expressions,

Regexp, is utilized, which escapes characters with special meanings in regular expressions.

The match can emerge in any textual environment. Matching keywords are saved according to

the publication in which they were found (line 6).

If there is no whitespace character in the keyword string (lines 9 to 12), a more restrict regular

expression is used (lines 9 and 10). This enables the search of whole words only. The expression

begins with metacharacter \b matching word boundaries. Word boundaries appear:

1. before the first and the last character in a string, if the first and the last character are word

characters,

2. between a word character and a non-word character following right after the word char-

acter and

3. between a non-word character and a word character following right after the non-word

character.

A to Z, a to z, 0 to 9 and _ are word characters. After the keyword the regular expression allows

the single character s, a word boundary \b or a whitespace character \s to match singular and

plural occurrences.

5.3 Ontology Extension – A Case Study

To analyze the usability of this tagging mechanism with regard to ontology extension, a collec-

tion of relevant publications in bioinformatics was tagged with BIO2ME labels. First, an initial

58 Machine-supported Ontology Extension by Tagging

ontology was used for tagging, then the most tagged publications were selected, analyzed and

the extracted information was incorporated into BIO2ME. To demonstrate ontology extension

by tagging in more detail the most tagged publication was examined separately.

5.3.1 Publication Selection

The publication tagging regarding ontology extension was tested with the aid of a collection of

211 publications. These papers introduce tools the ontology already contained. Moreover, ad-

ditional papers were extracted from the biomedical publication database PUBMED by keyword

search, e. g. for “alignment”, “bioinformatics” and “modeling”. All of these publications deal

with bioinformatics tools, methods and studies. After inserting them into the BIO2ME’s publi-

cation collection on the ONTOVERSE system, they were tagged with BIO2ME labels, extracted

from the formal ontology before.

5.3.2 Initial Tagging

In a first tagging study the ontology offered 523 unique labels. Labels might appear repeatedly

in the ontology, but duplicates are not considered in this analysis. 109 (approximately 21 %) of

these keywords were found in 201 publications. This means ten paper were not tagged at all.

Fig. 5.3 shows the frequency distribution of publications that are tagged with a certain number

of keywords. Ten publications were not tagged at all and the maximum number of keywords

which are found in publications is 17. The numbers of papers that include two to six keywords

are the largest. From twelve keywords per publication on, the number of papers decrease and is

under the arithmetic mean of 5.70 (including not tagged papers). Publications with more than

ten keywords are listed in Table 5.2.

Fig. 5.4 plots the numbers of keywords that occur in a certain number of papers. 414 keywords

are not found in any publication. This information was omitted in the histogram to shorten the

y-axis. 33 % of the keywords that are found in a publication at all, appear in only one paper.

Keywords that appear in more that 14 publications occur infrequently. Table 5.3 lists those

ontology labels that are found in at least ten publications. The keyword “sequence” is by far the

most occurring as it appears in approximately 64 % of the tagged publications. The other labels

listed mainly are terms that deal with alignment programs and RNA structure prediction. The

tag “Feature” is artificially found in 36 publications, as it actually labels a chemical file format.

There is no correct hit of this keyword in the papers. This label was renamed to “Feature format”

afterwards.

The first column of Table 5.4 itemizes the initial number of ontology labels, classes, properties

and individuals. Additionally, it provides information about the crosslinking between classes

and instances of the ontology, respectively, by listing the numbers of different types of relation-

ships (Instance of relations, Object Property assignments and Datatype Property assignments).

The quality of the revealed tags can be shown by comparison of the assigned BIO2ME la-

bels with PUBMED keywords. PUBMED tags publications with the MESH thesaurus (see Sec-

tion 2.9). These keywords yet are mostly too general for finding BIO2ME relevant papers. The

Ontology Extension – A Case Study 59

Table 5.2: Most tagged Publications of the Initial Tagging Process. Listed are all ontology tagged

publications in which more than ten ontology labels were found.

Publication #Keywords
SARSA: a web tool for structural alignment of RNA using a structural alphabet. (Chang

et al., 2008b)

17

R-Coffee: a web server for accurately aligning noncoding RNA sequences. (Moretti

et al., 2008)

16

ProfDistS: (Profile-) Distance based phylogeny on sequence - structure alignments.

(Wolf et al., 2008)

15

STRAL: progressive alignment of non-coding RNA using base pairing probability vec-

tors in quadratic time. (Dalli et al., 2006)

15

MARNA: multiple alignment and consensus structure prediction of RNAs based on

sequence structure comparisons. (Siebert & Backofen, 2005)

14

Multiple sequence alignments of partially coding nucleic acid sequences. (Stocsits

et al., 2005)

14

TOPS++FATCAT: fast flexible structural alignment using constraints derived from

TOPS+ Strings Model. (Veeramalai et al., 2008)

14

Accelerated probabilistic inference of RNA structure evolution. (Holmes, 2005) 13

Alignment of RNA base pairing probability matrices. (Hofacker et al., 2004) 13

An enhanced RNA alignment benchmark for sequence alignment programs. (Wilm

et al., 2006)

13

Progressive multiple sequence alignments from triplets. (Kruspe & Stadler, 2007) 13

R-Coffee: a method for multiple alignment of non-coding RNA. (Wilm et al., 2008) 13

BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark.

(Thompson et al., 2005)

12

DNA reference alignment benchmarks based on tertiary structure of encoded proteins.

(Carroll et al., 2007)

12

PREDICT-2ND: a tool for generalized protein local structure prediction. (Katzman

et al., 2008)

12

RADAR: a web server for RNA data analysis and research. (Khaladkar et al., 2007) 12

Sigma: multiple alignment of weakly-conserved non-coding DNA sequence. (Sid-

dharthan, 2006)

12

Accurate multiple sequence-structure alignment of RNA sequences using combinato-

rial optimization. (Bauer et al., 2007)

11

Colorstock, SScolor, Ratón: RNA alignment visualization tools. (Bendaña & Holmes,

2008)

11

INFO-RNA–a fast approach to inverse RNA folding. (Busch & Backofen, 2006) 11

MACSIMS: multiple alignment of complete sequences information management sys-

tem. (Thompson et al., 2006)

11

MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier

transform. (Katoh et al., 2002)

11

MASTR: multiple alignment and structure prediction of non-coding RNAs using sim-

ulated annealing. (Lindgreen et al., 2007)

11

PRALINE: a multiple sequence alignment toolbox that integrates homology-extended

and secondary structure information. (Simossis & Heringa, 2005)

11

PROMALS: towards accurate multiple sequence alignments of distantly related pro-

teins. (Pei & Grishin, 2007)

11

RNALogo: a new approach to display structural RNA alignment. (Chang et al., 2008a) 11

Semiautomated improvement of RNA alignments. (Andersen et al., 2007) 11

SimulFold: simultaneously inferring RNA structures including pseudoknots, align-

ments, and trees using a Bayesian MCMC framework. (Meyer & Miklós, 2007)

11

60 Machine-supported Ontology Extension by Tagging

Figure 5.3: Publications Histogram. This diagram displays the frequency of publications, in which a

certain number of keywords appear.

Table 5.3: Most occurring Keywords. Ontology keywords which are found in at least ten publications.

Keyword # Papers Keyword # Papers
sequence 129 molecule 25

data 86 structure prediction 19

tool 81 DNA 17

alignment 75 alignment method 14

protein 73 benchmark 14

RNA 58 computational method 14

program 51 package 14

database 50 tree 13

sequence alignment 43 genomics 12

secondary structure 40 RNA molecule 12

Feature 36 progressive 11

RNA sequence 27 DNA sequence 10

multiple alignment 25 structure alignment 10

comparison is exemplified for the most tagged publication for that PUBMED keywords were

available, “STRAL: progressive alignment of non-coding RNA using base pairing probability

vectors in quadratic time.” (Dalli et al., 2006), came with the following PUBMED tags:

Ontology Extension – A Case Study 61

Figure 5.4: Keywords Histogram. The figure shows the frequency of keywords that are found in a

certain number of publications.

Table 5.4: Ontology Data during the Extension Process. The table shows the numbers of ontology

elements in five different ontology versions described in the text. All versions from left to right are build

in succession. Note, that Extension 1 (Ext. 1) is based on 27 publications and Ext. 2 to Ext. 4 include

diverse knowledge sources of only one paper.

Initial Ext. 1 Ext. 2 Ext. 3 Ext. 4
Labels 523 682 698 703 703

Classes 158 206 209 209 209

Object Properties 19 38 42 42 42

Datatype Properties 23 29 29 29 29

Individuals 254 329 334 339 339

Instance of relations 326 445 454 458 458

Object Property assignments 823 1056 1081 1093 1095

Datatype Property assignments 298 374 380 383 390

“Algorithms”, “Base Pairing”, “Base Sequence”, “Computational Biology”, “Mod-

els, Statistical”, “Molecular Sequence Data”, “Nucleic Acid Conformation”, “Phy-

logeny”, “Probability”, “RNA”, “RNA, Untranslated”, “Sequence Alignment”,

“Software”, “Time”.

Tagging with BIO2ME labels in contrast delivered the following keywords before ontology

extension:

62 Machine-supported Ontology Extension by Tagging

“alignment”, “base pairing probability vector”, “pairwise alignment”, “program”,

“progressive”, “RNA”, “RNA sequence”, “RNA structure prediction”, “Sankoff

algorithm”, “sequence”, “sequence alignment”, “sequence-structure alignment”,

“StrAl”, “structure alignment”, “structure prediction”.

The PUBMED keywords “Algorithms”, “Computational Biology”, “Software” and “Time” are

too general for BIO2ME, since the whole ontology deals with computational biology and al-

gorithms. These keywords only yield a rough classification, which can be used to fetch papers

from PUBMED. It is rather a prefilter for ontology-based tagging. The keywords “RNA” and

“sequence alignment” are located in both tag collections. However, the PUBMED tags do not

provide the information that STRAL is a program, which takes structure information into ac-

count for the computation of the sequence alignment. Moreover, the BIO2ME tags join the two

PUBMED keywords “Base Pairing” and “Probability” into the more precise “base pairing prob-

ability vector”, because the published algorithm uses a certain kind of probability. Furthermore,

the ontology-based tagging offers the name of the tool and the utilized computational method

“sankoff algorithm” and the information that the program can be used for structure prediction.

The publication collection also subsumed papers about bioinformatics tools that were already

modeled in the ontology. As expected all tools were found by name. Additionally found key-

words in these titles and abstracts were indeed reasonable, too. Those publications revealed new

relations, labels and instances as well. For example Holmes (2005) provides the local alignment

method “Waterman-Eggert algorithm”, which was not modeled in the ontology before. Thus

WatermanEggert was inserted as new instance of AlignmentMethod and related to the

described program STEMLOC through the hasComputationalMethod property. Further

ontology extensions based on publication tagging are described in the next sections.

5.3.3 Extension 1: Analysis of the Most Tagged Abstracts

At first, 27 titles and abstracts from the 28 publications listed in Table 5.2 were analyzed. With

the aid of the most tagged paper, Chang et al. (Chang et al., 2008b) the analysis process is

demonstrated in more detail in Section 5.3.4, that is why it is omitted as a start.

The information provided in the abstract, amongst others, depends on the journal, which pub-

lished it, as they use different abstract templates. Generally, a publication’s title and abstract

comprise different information for the ontology. On the one hand the ontology labels can be an-

alyzed and extented by synonyms. On the other hand new ontology concepts and properties can

be extracted. The use of BIO2ME as knowledge base in a web application in combination with

the artificial syntax of concept’s local names stipulate that each ontology element at least has to

possess one label. That is the reason why the extension with concepts also yields an addition of

ontology labels. The last interesting information retrieved from a paper’s title and abstract is the

knowledge, in this study in particular the knowledge about bioinformatics tools. Extracting this

knowledge results in inter- and intrarelations between ontology classes, individuals and literals.

These relationships are formalized by using hierarchical and self-defined ontology properties.

The following sections describe these divers extensions.

Ontology Extension – A Case Study 63

Synonyms

In going through the titles and abstracts a lot of notions were detected that were already modeled

in the ontology, but has not been labeled by these phrases. Due to the freedom of the natural

language, it is important to add synonyms of the concept as rdfs:label to enable improved

tagging and search over the ontology. Such a term found in the titles and abstracts is for example

“protein sequence”, which is synonymous with the already modeled “amino acid sequence”.

Ontology Elements

The analysis of the most tagged abstracts delivered 25 new tools for the ontology. Three of

them were databases, which are specialized for benchmarks of alignment tools. The remaining

22 tools were programs and web tools that use new computational methods.

The analyzed publications in general provided no version information of the introduced tools.

But the structure of BIO2ME requires the declaration of a program version as individual to en-

able the automatic comparison of different program versions. If no program version was avail-

able, an integer was appended to the programs’ name to build the local name of the individual

in the ontology. For example R-COFFEE has no published version number, so the instance of

the class RCoffee is RCoffee1. If a new version gets published, the ontology can easily be

extended.

Additionally to the detection of new tools, new data types, computational methods and other

ontology relevant concepts can be found in the titles and abstracts. The analyses even in-

spired to remodel some parts of the ontology. An example is shown in Figure 5.5. The notions

“nucleic acid sequence” and “NA sequence”, respectively, adverted to a missing concept, the

initial ontology comprehended the class Sequence with its instances RNASequence and

DNASequence. Now it is manually extended by the new subclass NASequence with labels

“NA sequence” and “nucleic acid sequence”, modeled inbetween Sequence and the instances.

Information

As already mentioned, the analyses of the most tagged publications yielded several new bioin-

formatics tools. Ontology relevant information, which can be retrieved out of the titles and

abstracts, is the name of the tool, the bioinformatics application and sometimes the biological

relevance. Often there are also statements about input and output data. Tool publishing papers

naturally include short descriptions of the tool, which can be used to add a characterization via a

rdfs:comment attribute into the ontology. This information often can be retrieved even from

the publication’s title. Another interesting information provided by the most abstracts and even

titles is the implemented computational method. This can be for example a mathematical model

or a newly developed algorithm.

A really useful information is the declaration of the availabilty of the tool. Home-

pages of tools are often denoted, which provide the download URL (datatype property:

hasDownloadLocation) or an available web frontend.

64 Machine-supported Ontology Extension by Tagging

Figure 5.5: Insertion of NASequence. This illustration exemplifies the extension of the ontology sup-

ported by tagging. The upper schema displays the relevant ontology elements of the initial ontology. The

bottom graph shows the current modeling of the ontology.

Sometimes more than one tool can be found in an abstract. For example Wilm et al. (2008)

and Moretti et al. (2008), which publish the tool R-COFFEE, contain the notion “R-Coffee” and

additionally the already in the ontology modeled alignment program T-COFFEE. In this case

R-COFFEE is an extension of T-COFFEE. Moreover, the program MAFFT was found in there,

which was compared with the new tool in the included benchmark. Thus R-COFFEE is modeled

in the ontology with the usesProgram relation to T-COFFEE and with a hasBenchmark

reference to the paper. However, most benchmarks are not considered in the abstract so this

information cannot always be extracted simply by tagging.

Results

The extension after analyzing the titles and abstracts of 27 most tagged publications (not con-

sidering the most-tagged paper, Chang et al., 2008b) results in an ontology with 682 labels (see

Table 5.4, 2nd column). Also listed is the count of ontology labels, classes, properties, individu-

als and interrelations. The most numbers increased by a factor around 1.3; the number of object

properties even doubles.

Section 5.3.4 provides an exemplified detailed description of what can be retrieved from a pub-

lication.

5.3.4 Analysis of Chang et al., 2008b

To exemplify the process of the tagging-based ontology extension, the publication “SARSA: a

web tool for structural alignment of RNA using a structural alphabet.” (Chang et al., 2008b)

Ontology Extension – A Case Study 65

SARSA : a web tool for structural alignment of RNA using a structural alphabet

SARSA is a web tool that can be used to align two or more RNA tertiary structure s .

The basic idea behind SARSA is that we use the vector quantization approach

to derive a structural alphabet (SA) of 23 nucleotide conformations,

via which we transform RNA 3D structures into 1D sequence s of SA

letters and then utilize classical sequence alignment methods to

compare these 1D SA-encoded sequence s and determine their structural

similarities. In SARSA, we provide two RNA structural alignment tool s ,

PARTS for pairwise alignment of RNA tertiary structure s and

MARTS for multiple alignment of RNA tertiary structure s . Particularly in PARTS, we have

implemented four kinds of pairwise alignments for a variety of practical applications: (i)

global alignment for comparing whole structural similarity, (ii) semiglobal alignment

for detecting structural motifs, (iii) local alignment for finding locally similar

substructures and (iv) normalized local alignment for eliminating the mosaic effect of

local alignment . Both tool s in SARSA take as input RNA 3D structures in the PDB format

and in their outputs provide graphical display that allows the user to visually view,

rotate and enlarge the superposition of aligned RNA molecule s. SARSA is available online

at http://bioalgorithm.life.nctu.edu.tw/SARSA/ .

Figure 5.6: Tagged Title and Abstract of Chang et al., 2008b. Green highlighted text indicates matched

BIO2ME keywords. Yellow text background denotes information that is relevant for the ontology.

with the highest number of keywords found (17 hits) was selected. It is also well suited for the

detailed analysis, as it introduces a structure alignment tool and is therefore in the domain of

bioinformatics tools I investigated in my Diplom thesis (Mainz, 2006b). Note that the quality

and quantity of the extraction of information is highly depending on the knowledge of the

researcher who investigates the publication.

The 17 keywords found in the paper’s title and abstract are the following (in alphabetical order):

alignment, alignment method, global alignment, local alignment, molecule, multi-

ple alignment, normalized local alignment, pairwise alignment, PDB format, RNA,

RNA molecule, semiglobal alignment, sequence, sequence alignment, structural

alignment, tertiary structure, tool

Extension 2: Analysis of title and abstract

Figure 5.6 shows the title and abstract of Chang et al. (2008b), in which ontology labels (found

tags) are highlighted (green). Information that was manually detected by brainpower and should

be modeled in the ontology, is emphasized in yellow. As described in Section 5.3.3, title and

abstract of a publication comprise different information that is relevant for the ontology. In the

presented abstract few additional synonyms were found. “3D structure” was added for example

as label of TertiaryStructure, which till then was labeled with “tertiary structure”, and

66 Machine-supported Ontology Extension by Tagging

“structural alignment tool” as synonym of “structure alignment tool”. Title and abstract of this

publication introduce three new bioinformatics tools, the web tool SARSA is already presented

in the title, and two structural alignment tools, PARTS and MARTS, provided via SARSA.

Classes for these tools were created in BIO2ME along with their instances that model the

version of a tool. Since in the publication no version number is available, local names of these

instances are composed of the tool’s name suffixed by “1” for the first modeled version of the

tool. The published computational method of these tools was not modeled in the ontology, thus

it was inserted as new instance VectorQuantificationApproach with label “vector

quantification approach”.

In the title and abstract of Chang et al. (2008b) a lot of information about these three

tools can be extracted. To model the relationship between SARSA and PARTS as well as

between SARSA and MARTS, respectively, new object properties had to be inserted into

BIO2ME. The object property gainsAccessTo with domain WebServer and range Tool

was incorporated into BIO2ME, together with its subproperties gainsAccessToProgram

(range: Program) and gainsAccessToDatabase (range: Database) and its inverse

property canBeAccessedVia. Actually, the range of gainsAccessTo should be the

union of Database and Program, but with regard to the BIO2ME application and the

use of DEEP SEMANTICS, which currently does not handle unions, it was modeled in the

way described. Besides the relation between the tools, many attributes of the tools are in-

closed in the abstract. A description can be extracted, which is inserted in the ontology us-

ing rdfs:comment, and the URL of SARSA, which is modeled with the datatype property

isAvailableAt. Additionally, PARTS and MARTS take RNA tertiary structures as input

in the PDB format and put out structural RNA alignments. Differences between PARTS and

MARTS are also provided in the abstract. Moreover, the bioinformatics application of the tools

is clearly expressed. The newly inserted computational method could also be related to the tools

with the self-defined property usesComputationalMethod.

After inserting the information of the publication’s title and abstract, 15 new ontology labels

were created in the ontology. Eight (bold) of them were found by tagging in the paper’s title or

abstract again:

2D structure, 3D structure, can be accessed via, gains access to, gains access to

program, gains access to database, MARTS, PARTS, protein 2D structure, protein

3D structure, RNA 3D structure, RNA tertiary structure, SARSA, structural
alignment tool, vector quantization approach.

The seven additional labels, which were replenished in the ontology, derived either from similar

keywords or newly inserted properties. The latter also get labels, however property labels always

are hard to find in a paper. For example “3D structure” was found in the abstract and inserted

into the ontology. Based on his knowledge about the domain, a knowledge engineer can then

assign the keyword “2D structure” to the according ontology class SecondaryStructure

for the sake of completeness. Furthermore, protein structures were labeled in the course of

labeling RNA structures.

Ontology Extension – A Case Study 67

Extension 3: Full-text Analysis

After analyzing the paper’s title and abstract, the whole paper was searched through. Out of

the full text of this paper some ontology relevant information could be extracted. A lot of in-

formation was already provided in the abstract. New attributes for the tools SARSA, PARTS

and MARTS are in particular scoring schemes that are utilized and the information that the pro-

grams were tested on the operating system Linux. The publication also contains benchmarks of

the programs, being modeled by the hasBenchmark property. The computational method is

described in more detail, which however cannot be fully mapped into the ontology in its current

state. The full-text paper also provides detailed information about the input and output of the

web tool. The publication for example includes the information that the tool JMOL in version

11.4 is utilized to present the resulting 3D structures.

Extension 4: Analysis of Web Sources

The publication contained the URL of the web tool SARSA, so information from these web

sources was integrated in BIO2ME in a last extension study. Submit forms for the use of PARTS

and MARTS as well as a help page are linked on the given web page. A more appropriate

description for PARTS could be found there. The help page mostly conforms to the publication

and an additional usage manual. Table 5.4 shows that only some new property assertions could

be gained from these resources. Information like contact data and URLs of web interfaces for

the programs could be integrated in the ontology.

5.3.5 Overall results

Table 5.4 lists the ontology changes for all described extension steps. The extensive increase in

Extension 1 becomes apparent. The analysis of title and abstract of the most tagged publication

(Extension 2) also resulted in an addition of several ontology elements. These two text modules

already hold so much ontology relevant information, that the full-text paper did not reveal a lot

of new knowledge (Extension 3). The detailed description of the computational method for

example cannot be completely modeled in the current state of the ontology. Even data format

specifications were provided in the abstract, that is one reason why the information extraction

of the web resources did not deliver many new ontology data (Extension 4).

Table 5.5 shows the most occurring keywords that were integrated in BIO2ME on the basis of

all highly tagged publications in Table 5.2. The number of labels increased from 523 to 703

(see Table 5.4). Now 210 of them, instead of 109 in the initial tagging process, are found in 204

publications. Thus not every new ontology label was found in any paper. That means after the

ontology extension, three publications that included no ontology label before, are tagged by the

new labels. These three papers are Gevorgyan et al. (2008) and Valdivia-Granda (2008), which

both include the new keyword “algorithm”, and Alterovitz et al. (2008) which comprises the

ontology labels “algorithm”, “Java” and “open source”.

68 Machine-supported Ontology Extension by Tagging

Table 5.5: Occurrence of Ontology Labels after Ontology Extension by all most tagged titles and
abstracts. The table lists new added ontology labels that at least occur in ten publications. Keyword

“Feature” was renamed to “feature format” and delivers no artificial hits anymore.

Keyword # Papers
algorithm 58

NA sequence 38

Feature 36

C 22

protein sequence 22

web server 20

free 19

is available at 19

sequence data 13

3D structure 13

Table 5.6 lists the most tagged publications containing more than 15 keywords. Now 49 papers

include more than eleven labels. The list does not show any newly most tagged publications in

the top 20, but the order in regard of the number of contained keywords has changed.

5.4 Discussion

In this chapter the newly implemented tagging mechanism was described and tested in regard

to its usability for this purpose. Based on these studies, the idea turned out to be reasonable for

ontology extension. Figure 5.6 illustrates the matching ontology labels (highlighted green) in

the initially most tagged title and abstract. Ontology relevant information was detected by my

brainpower and highlighted yellow in the text. The location of these colored areas shows that the

environment of matching ontology labels indeed contains new, ontology relevant information.

In the following sections the tagging approach and the results are dicussed in more detail.

5.4.1 Implementation of tagging

The implementation of tagging as regular expression approach could be proven as effectual

in the depicted case study. The described tagging process is a case-insensitive, but otherwise

exact matching of ontology labels in title and abstract of a publication. The implementation of

a phonetic search is not reasonable, because the ontology labels should be found exactly and no

typing errors have to be compensated as in a manual search. A scientific domain additionally

does not include a lot of terms that have got many different spellings like surnames, which could

rather be found by a phonetic search. As the ONTOVERSE platform includes a phonetic search

function, I also tested the tagging based on a phonetic search. The results (not shown) were

inferior to the performances of the integrated pattern matching approach.

The distinction of keywords with and without whitespace characters revealed much more spe-

cific and reasonable matches in publications than without any differentiation (data not shown).

Discussion 69

Table 5.6: Most tagged Publications after tagging based ontology extension. Listed are all ontology

tagged publications that include more than 15 ontology labels.

Publication #Keywords
SARSA: a web tool for structural alignment of RNA using a structural alphabet. (Chang

et al., 2008b)

25

R-Coffee: a web server for accurately aligning noncoding RNA sequences. (Moretti

et al., 2008)

23

ProfDistS: (Profile-) Distance based phylogeny on sequence - structure alignments.

(Wolf et al., 2008)

22

Accelerated probabilistic inference of RNA structure evolution. (Holmes, 2005) 21

Alignment of RNA base pairing probability matrices. (Hofacker et al., 2004) 20

An enhanced RNA alignment benchmark for sequence alignment programs. (Wilm

et al., 2006)

20

TOPS++FATCAT: fast flexible structural alignment using constraints derived from

TOPS+ Strings Model. (Veeramalai et al., 2008)

20

PREDICT-2ND: a tool for generalized protein local structure prediction. (Katzman

et al., 2008)

20

Multiple sequence alignments of partially coding nucleic acid sequences. (Stocsits

et al., 2005)

19

PROMALS: towards accurate multiple sequence alignments of distantly related pro-

teins. (Pei & Grishin, 2007)

18

STRAL: progressive alignment of non-coding RNA using base pairing probability vec-

tors in quadratic time. (Dalli et al., 2006)

18

Colorstock, SScolor, Ratón: RNA alignment visualization tools. (Bendaña & Holmes,

2008)

17

DNA reference alignment benchmarks based on tertiary structure of encoded proteins.

(Carroll et al., 2007)

17

R-Coffee: a method for multiple alignment of non-coding RNA. (Wilm et al., 2008) 17

BAliBASE 3.0: latest developments of the multiple sequence alignment benchmark.

(Thompson et al., 2005)

16

MARNA: multiple alignment and consensus structure prediction of RNAs based on

sequence structure comparisons. (Siebert & Backofen, 2005)

16

MASTR: multiple alignment and structure prediction of non-coding RNAs using sim-

ulated annealing. (Lindgreen et al., 2007)

16

Progressive multiple sequence alignments from triplets. (Kruspe & Stadler, 2007) 16

Sigma: multiple alignment of weakly-conserved non-coding DNA sequence. (Sid-

dharthan, 2006)

16

SimulFold: simultaneously inferring RNA structures including pseudoknots, align-

ments, and trees using a Bayesian MCMC framework. (Meyer & Miklós, 2007)

16

In other approaches, a lot of irrelevant hits could be detected like matches within words by not

using word boundaries. The label for the C programming language for example was found in

each publication, because each occurring of the alphabetic character “c” was found. The regu-

lar expression for the pattern matching of composed keywords (those containing whitespaces)

is less restrictive, because these combinations are not assumed to be found artificially. How-

ever, with increasing length of one word keywords, the probability of false positive hits, apart

from ambiguities, decreases. The implementation of a tagging approach containing further dis-

70 Machine-supported Ontology Extension by Tagging

tinctions of non-whitespace keywords is a benefit-cost estimation, which means the effort of

extending regular expressions might be more time consuming than the results legitimate.

Thus the design of regular expressions is a balancing of restrictiveness, which inhibits false

positive matches, against the freedom to find new relevant labels that embrace the searched

keyword. The introduced tagging process already reveals satisfying results.

5.4.2 Ontology Labels

Section 5.3 shows the results of a tagging study for a selection of 211 publications, all of them

dealing with bioinformatics. First, these papers were tagged by the labels of an initial version

of BIO2ME. The most found labels, listed in Table 5.3, are not surprising, because all publi-

cations were selected fitting the domain of the ontology. Furthermore, BIO2ME in its former

state was in particular modeled for alignment tools. Therefore most frequently found labels

like “sequence”, “RNA”, “protein”, “alignment”, etc. appear in the ontology. Keywords like

“data”, “tool”, “program”, “database” and “computational method” can be traced back to the

core structure of BIO2ME, which models basic concepts of bioinformatics tools and methods.

The occurrence of “Feature” under the most found keywords shows that false positive matches

are not only a matter of syntax, but also of semantics. To avoid those hits, all labels of data

formats were suffixed with “format”.

Artificial matches could mostly be prevented. However ontology labels are selected meeting

two demands: 1. labels are assigned in regard to the BIO2ME information system, which needs

a preferably complete acquisition of synonyms to cover possible search patterns of the users.

This entails the labeling with abbreviations that might consist of single or few letters like the ab-

breviation of a structural alignment score “SCI”. 2. the labels are used for tagging publications.

However, assignments of few letter words are not meaningful in the majority of cases.

After the initial tagging ten publications were not tagged at all. For six of these papers no

abstract is available in PUBMED and the titles do not include any keywords. Other three pub-

lications without abstracts were tagged by one keyword each. Further three not initially tagged

papers deal with bioinformatics research fields that are not modeled in BIO2ME now. These

publications were tagged after the extensions. One last not tagged paper, which came with

an abstract, could not be tagged even after the extensions. This abstract deals with a “com-

bined transcriptomics/bioinformatics protocol that identifies cell surface glycoproteins” (Aplin

& Singh, 2008). “Protocol” is not a bioinformatics tool described in the ontology. Futhermore,

this example shows that the keyword “protein” in “glycoprotein” cannot be matched. This is

due to the restrictness of the word boundaries, which inhibits hundreds of false positive hits for

abbreviations and one letter labels.

All described tagging processes have shown that only a relative small number of ontology labels

were found in the publications. This holds for initial as well as for newly inserted labels. It can

be explained by the different grade of specificity of the ontology keywords. Some labels in

the ontology are very general and some are extremely specific. In publications both of these

labels can be found, however only a small number of specific terms are used in general. The

classes of biological tasks and data formats for example already consider domains that are not

Discussion 71

covered by those tools that are introduced in the publications of the collection. Furthermore,

labels of object and datatype properties are extremely difficult to find exactly in text. First and

foremost they serve the readability in the BIO2ME application. The label “is available at” for

datatype property isAvailableAt to specify the homepage of the modeled tool is hardly

to find in abstracts. Texts comprise phrases like “is online available at” or “are available at”

that cannot be found by the introduced tagging mechanism. Some journals insist on providing

“AVAILABILITY:” in the abstract, that is why “availability” was added as label of the property.

The problem of finding different times, number and conjugation of verbs cannot be solved with

the given approach, but has to be addressed to computer linguists and information extraction.

As expected, the comparison of ontology tags with PUBMED keywords showed that most

PUBMED tags are far too coarse for the BIO2ME domain. This is why they are used as pre-

filter to select publications from PUBMED that deal with ontology relevant topics. Additionally,

these tags have the advantage that they are manually linked to the article so no artificial tag is

assigned.

5.4.3 Ontology Extension

To show the amount of information that can be extracted due to publication tagging based on

ontology labels, an extension predicated on the 28 most tagged publications (see Table 5.2) was

performed. Subsequently the most tagged paper (Chang et al., 2008b) was analyzed in more

detail to exemplify the information found in a paper’s title and abstract. This offered that tag-

ging analysis of title and abstract provides ontology relevant information. Missing concepts,

individuals, properties and synonyms of ontology labels could be found. The overvalue of the

extension of missing synonyms became apparent for example in the new label “protein se-

quence”, described in Section 5.3, which is a synonym of “amino acid sequence”. The new

label tagged 22 publications of the collection whereas “amino acid sequence” only was found

in seven papers. This aspect of ontology extension supports the completion of some ontology

subdomains. Furthermore, new tools and knowledge about these can be found. This is a crucial

point in information retrieving. This information is very hard to find automatically and is even

depending on the expertise and experience of the knowledge researcher. For example, keywords

such as “tool”, “program”, “computational method” and “algorithm” indicate that the analyzed

publication might publish a new program or method.

Knowledge contained in title and abstract varies in a wide range. In Chang et al. (2008b) a lot of

the available knowledge was covered in title and abstract. Though, other analyzed publications

showed only fundamental information in this parts of the paper. Full-text articles mostly offer

information about the computational methods and in publications introducing a tool, bench-

marks can often be found in the results section. In the majority of cases this information is too

detailed as to be mapped in the ontology. However, if the abstract includes no statement on this

information, this means a loss of important knowledge about a tool. In those cases the knowl-

edge researcher should analyze the full text, too. Though tagging of whole articles nevertheless

is not profitable as the information that a new tool is described in the article, can be found in the

abstract. The scientist can decide if the full text has to be scanned either. For a lot of tools the

72 Machine-supported Ontology Extension by Tagging

online availability is offered in the abstract. In these resources the knowledge researcher often

finds information like the input and output type of data and their formats.

The composition of the most tagged publications (see Table 5.2) and the most tagged paper itself

was not surprising, because the ontology was particularly developed in the field of alignment

programs. The most tagged publications mainly deal with alignment programs in a broader

sense.

5.4.4 Conclusions

The case study has shown that the implemented tagging method is a sound and helpful filter,

which adverts to publications that deal with ontology relevant topics. The approach of pre-

filtering publications by keyword search in PUBMED and the subsequent sorting out, or even

weighting of ontology significance based on ontology-based tagging, delivers reasonable pub-

lication selections for a following analysis. As preliminary filter also the use of publications of

a specific journal are thinkable.

The knowledge extraction is still an intellectual effort of knowledge engineers and domain ex-

perts. Meaningful hits have to be detected and located in the ontology and modeled accurately

afterwards. The quantity and quality of knowledge extracted from publications is indisputable

depending on the extractors. Their background knowledge and experiences help to retrieve

implicit information, which is hardly to detect automatically even for intelligent information

retrieving methods, but also for humans unfamiliar in the field of knowledge. A supposable

improvement is the implementation of information extraction methods that promise to find key-

words in the text after the root of words, so-called word stemming.

The ONTOVERSE platform still misses a supporting interface for the presentation of tagging

results and the facilitation of subsequent analyses. A particularly helpful feature would be the

exploitation of ontological information in this presentation, for the tags are not just keywords

but are semantically linked via the ontology. By the inclusion of these semantics, the analysis

becomes more facilitated, because keywords get a meaning and become interpretable.

In summary, the here introduced semi-automatic approach of ontology extension on the basis of

ontology-based tagging is rather simple, but was already shown as being a successful support

for knowledge engineers. Nevertheless, the knwoledge engineer has to decide which and how

the information is to be (manually) modeled in the ontology.

6

BIO2ME Information System

The previous sections introduced BIO2ME as well as the support of collaborative and machine-

supported ontology creation and extension. In this thesis these processes served the building of

a knowledge representation of bioinformatics tools and methods. To profit from this knowledge

base, the BIO2ME information system (BIS) was developed, which in first instance should

make BIO2ME searchable for everyone who is interested. Therefore it was implemented in a

RUBY ON RAILS web application (see Fig. 6.1), which enables a facilitated utilization of BIS

and offers a potentially wide distribution. This implies a user interface that is easy to handle

and does not assume any user knowledge of the data basis in the background. Additionally, the

interface should be made as flexible as possible, so that an extended knowledge base can be

imported directly without any modification of the web application. The search is described in

Section 6.2.

After implementing the search interface, an ontology browser was integrated that facilitates the

manual browsing of BIO2ME. Interested users are able to understand the crosslinking in the

ontology. Furthermore, users are able to contribute their domain knowledge, insert new tools or

additional information about them (see Section 6.3).

Ontologies are liable to the open world assumption. This is an important aspect in the utilization

of BIS. If a piece of information is not provided by the information system, this does not mean

that it does not exist. On the other side this means that a user, who is aware of such a lack of

knowledge in BIO2ME, is invited to insert his knowledge.

6.1 Knowledge Base

The BIO2ME ontology serves as knowledge base for the information system. To satisfy this

application, in the first instance it had to be refined. Several rules were established that are

founded in the utilization of the Semantic Web framework DEEP SEMANTICS and in the user

friendliness of the Web interface.

74 BIO2ME Information System

Figure 6.1: Startpage of BIS. The navigation bar at the top enables a fast access to the diverse sections

of the information system: Search, Browse & Fill, Forums and Help.

Furthermore, the ontology has to be checked for consistency and all implicit knowledge is

infered to become searchable (see Section 6.1.2). Finally, BIO2ME has to be serialized in N-

Triple format (see Section 2.1.3) to be parsable by DEEP SEMANTICS.

6.1.1 Requirements

There are some guidelines defined to enable the use of BIO2ME within the Web application.

There are two categories of requirements: First, some requirements are based on the deep inte-

gration approach of DEEP SEMANTICS (see Setion 2.6), which transfers ontology classes into

RUBY classes. Thus, local names of ontology classes are subject of the RUBY syntax. Addition-

ally, the ontology model has to be OWL Lite conform, because DEEP SEMANTICS is predently

restricted to OWL Lite constructs and some additional OWL DL features. Second, some re-

quirements are based on usability aspects of the Web application. Taking these requirements

into account, the following rules were established:

Deep integration:

• Ontology class names begin with an uppercase character. This is due to the fact that in

RUBY class names are constants. The RUBY interpreter distinguishes these from variables

by the starting uppercase character. In fact in RUBY each class has a corresponding global

constant with the same name as the class. This means that classes are treated like any other

RUBY object; they can be copied, passed to methods and used in expressions.

• Ontology class names may consist of any combination of letters, numbers and under-

scores, just as constants in RUBY.

• The ontology includes no unions. This means amongst others that properties are not al-

lowed to possess more than one domain and one range class.

• No enumerated data ranges: OWL DL allows the definition of a set of concrete data values

for a datatype property, these can then be related to individuals through the property.

Knowledge Base 75

Usability:

• Insertion of at least one natural language label for each class, individual and property.

• Each property has a short description that can be displayed in the search form to help the

user understanding the search field.

• Classes and individuals should be commented.

• All rdfs:comments are defined HTML conform to enable a correctly formatted dis-

play in the Website.

The initial BIO2ME ontology was adapted according to these rules. Hyphens were removed

from local class names. All multiple domains and ranges were remodeled to discard unions,

see Section 3.2. Enumerated data ranges were eliminated. For example the datatype property

hasLicenseType had a selection of several license types modeled as strings in an enumer-

ated datatype range. Now the property is remodeled as object property and the license types are

remodeled as instances of the new class LicenseTypes, which is the range class of the prop-

erty. As described in Section 3.2 all classes, instances and properties of BIO2ME were labeled

to be displayable in a user friendly way in natural language. Furthermore, each comment was

reformatted to HTML.

6.1.2 Ontology Preparation

Fig. 6.2 schematizes the different steps in ontology preparation before it can be used within

BIS. BIO2ME was built and is modified with the formal ontology editor PROTÉGÉ (see Sec-

tion 2.3). The consistency check and inference processes were accomplished by the OWL rea-

soner PELLET (see Section 2.4) and the serialization with the aid of JENA 2 (see Section 2.4).

After that the ontology is deep-integrated (see Section 2.6) into RUBY and is then accessible for

the information system. The depicted preparation steps are described in more detail in the next

sections.

Consistency Check

The BIO2ME ontology has to be checked for logical correctness each time it has been modified

before it can be applied in BIS. This assures that no inconsistent information is modeled in the

ontology, because a search over an inconsistent ontology might reveal wrong results. For exam-

ple, an internal conflict would be the declaration of individual FASTA_Pearson_format as

instance of class AlignmentDataFormat and of class SequenceDataFormat, if these

two classes are modeled to be disjoint. The conflict follows directly from the definition of dis-

joint classes to be exactly the disjunction of their instance sets. Though at first glance, alignment

data and sequence data are disjoint concepts, but in this case the formats are modeled and these

may overlap. A knowledge base cannot comprise a class distinction and a common instance

of these classes, because both statements cannot be true at the same time. The consistency

76 BIO2ME Information System

Figure 6.2: BIO2ME Preparation. The scheme shows the processing of BIO2ME from its creation and

modification, respectively, over the preparation to the point of its application in the information system.

This procedure has to be reiterated each time the OWL ontology is modified.

check helps to discover such wrong modelings and the knowledge engineer than has to de-

cide how to erase it. In the described example, the declaration of AlignmentDataFormat

and SequenceDataFormat to be disjoint is false and has to be removed from the ontology

model.

The consistency check is carried out outside of the application by a selfmade command line

program using the OWL reasoner PELLET. Fig. 6.3 shows a code snippet of the consistency

check. PELLET libraries can be used via JENA 2, a JAVA framework for handling ontologies.

Lines one to four of Fig. 6.3 read in the ontology from a file into an ontology model (PELLET

class). This OntModel class provides divers methods to operate on ontologies. In line five a

validity report is created. If the ontology is valid, meaning logically consistent (line six), “True”

is printed to standard out (line seven). If there exist warnings or errors, these are provided in the

console (line ten). The error message of the above described example would look like this:

False

Validation Results

==================

Error (KB is inconsistent!):

Individual http://www.ontoverse.org/BIO2Me.owl#FASTA_Pearson_format

is forced to belong to class

http://www.ontoverse.org/BIO2Me.owl#AlignmentDataFormat and its

complement

Inference

Ontologies possibly include information that is not explicitly formalized, but is implicitly in-

cluded. For example the distinction of direct and indirect instances results from this feature. The

Knowledge Base 77

1 String ontology_file = "file:BIO2Me.owl";

2 OntModel model =

3 ModelFactory.createOntologyModel(PelletReasonerFactory.THE_SPEC);

4 model.read(ontology_file);

5 ValidityReport report = model.validate();

6 if(report.isClean()) {

7 System.out.println("True");

8 } else {

9 System.out.println("False");

10 printIterator(report.getReports(), "Validation Results");

11 }

12 File outfile = new File("Bio2Me_infered.nt");

13 FileOutputStream fos = new FileOutputStream(outfile);

14 model.writeAll(fos, "N-TRIPLE", null);

Figure 6.3: Reasoning with PELLET.

individual StrAl0.5.4 is the direct instance of the ontology class StrAl. Because StrAl

is subclass of Program, the information that StrAl0.5.4 also is an instance of Program is

contained implicitly due to inheritance. To make all information searchable, the ontology has to

be infered before loading into the application. The ontology is automatically infered by writing

out OntModel of PELLET.

If the ontology is not valid, the inference aborts with the following error message:

ERROR [main] (RDFDefaultErrorHandler.java:40) -

Cannot do reasoning with inconsistent ontologies!

Serialization

To process the ontology in the Semantic Web framework DEEP SEMANTICS, BIO2ME has

to be serialized in N-Triple format. In Fig. 6.3 line 14 comprises the command to store the

ontology model into a N-Triple formatted file.

Deep Integration

By starting the web server, the N-Triple file is read and parsed by DEEP SEMANTICS, which is

loaded as plugin into the application. In Section 2.6 the deep integration process is described in

general. The OWL ontology is converted into a functional RUBY model, with which the ontol-

ogy can be accessed like any RUBY model. The advantage of this deep integration is the natural

(in a programming sense) handling of the ontology data in the scope of the RUBY application.

The ontology model is assigned to the global variable $bio2me, which is accessible in the

whole application. Hence, the ontology persists in the main space as long as the web server is

running. This enables a quick access to the data. The memory complexity of DEEP SEMANTICS

78 BIO2ME Information System

currently does not pose a problem. The web application loaded with the present knowledge base,

which comprises 6502 triples, uses only approximately 7 MB cache.

DEEP SEMANTICS provides a divers set of methods to operate on the ontology model. There are

methods to list all classes, instances and properties in general and under specific conditions like

listing porperties according to their range classes. Furthermore, the deep-integrated ontology

model offers dynamically created methods for classes and instances. Thus, for a given OWL

class (mapped on a RUBY class, e. g. StrAl) all instances and all instances of a certain label

(e. g. “StrAl 0.5.4”) are retrievable by:

$bio2me::StrAl.instances

$bio2me::StrAl.find_instances_by_label("StrAl 0.5.4")

Similarly, other attributes like comments, subclasses and superclasses can be retrieved. For a

given individual (e. g. StrAl0.5.4)

$bio2me::StrAl0.5.4.writesFormat

delivers an array of all instances that are related to StrAl0.5.4 with the object property

writesFormat. This is possible due to the fact that DEEP SEMANTICS declares instance

methods for each object and datatype property, which is related to every deep-integrated ontol-

ogy individual.

6.2 Search

After the creation of the ontology and its preparation the ontology is deep-integrated into a

RUBY model in the RAILS application. The search controller is then able to access the ontology

data using the methods described above. The search procedure can be divided into several steps

that are schematized in Fig. 6.4:

1. Each search process starts with the specification of a concept, for which information is

desired. The user has the choice to search programs, databases, computational methods,

types of data or data formats, which all are represented by top level concepts in the on-

tology. For this purpose the interface provides five radio buttons. The initial distinction

between these concepts maps ontology classes and facilitates the building of class specific

search forms of just these concepts, the ontology provides information about.

2. After the selection of the concept the user wants to get information about, a concept

specific search form is created dynamically based on the ontology model. Therefore all

object and datatype properties are fetched that possess the selected class as domain.

DEEP SEMANTICS provides methods of the ontology model $bio2me to directly get

properties by their domain, in the following exemplified by the class Program:

Search 79

Figure 6.4: Search procedure. The search procedure is splitted into six steps in the user interface of

BIS. Detailed descriptions of these processes are given in the text.

$bio2me.listObjectPropertiesByDomain($bio2me::Program)

$bio2me.listDatatypePropertiesByDomain($bio2me::Program)

For each property a text field is provided in the search form (see Fig. 6.5). Search fields

of datatype properties with range xsd:boolean are implemented as select boxes, in

which the user is able to select nothing, “true” or “false”. Additionally, a name field is

offered that allows the direct search for a program, database, method or data of known

name. In case a user looks for a program, a bioinformatics task field appears. This infor-

mation is not represented with the aid of properties in BIO2ME, but about instance

of relationships, that is why these two fields have to be handled separately.

Furthermore, each search field provides two radio buttons (see Fig. 6.5), which declare

whether the according property is a criterion for exclusion and has to be possessed by

every result or if it is just preferable to be included. This means, each resulting ontology

instance meets all mandatory demands and some may possess also preferable attributes.

Additionally, each search field offers a question mark linking to a popup. This displays a

help message describing which information is provided by the according property. This

text is dynamically generated out of the property’s rdfs:comment(s) in the ontology.

For this reason each property has to feature a comment formatted in a web browser inter-

pretable form.

Moreover, each text field is provided with auto completion. Thus, by typing letters in a

search field an auto completion is triggered on the basis of the labels of all ontology in-

stances that are available for the defined range of the according property. RAILS provides

a set of helper methods for creating JavaScript macros, which amongst others facilitate

80 BIO2ME Information System

the implementation of text fields with auto completion. For example the RUBY HTML

(RHTML) syntax of the search field for the object property writesFormat looks like:

text_field_with_auto_complete ’writesFormat’, nil, {:size => 40},

{:url =>{:action => ’auto_complete_for_object_property’,

:property => ’writesFormat’, :class => @search,

:results =>@results}, :method => :get, :skip_style => true}

and is translated to the following HTML code:

<input id="writesFormat" name="writesFormat[]" size="40"

type="text"/>

<div class="auto_complete" id="writesFormat_auto_complete">

</div>

<script type="text/javascript">

//<![CDATA[

var writesFormat_auto_completer =

new Ajax.Autocompleter(’writesFormat’,

’writesFormat_auto_complete’,

’/search/auto_complete_for_object_property?class=

Program&property=writesFormat’, {method:’get’})

//]]>

</script>

By typing characters, the method auto_complete_for_object_property in the

search controller is called and searches all labels of all subclasses and instances of the

range class, which begins with this character(s). If the array @results given by param-

eter result is not empty, the user performs a refinement search (see 4.). In this case

not all subclasses and instances of the range class are scanned, but only those labels of

instances and their superclasses that are related to the result instances over the specified

object property. For datatype properties, names and bioinformatics tasks the auto comple-

tion is performed appropriately.

3. After the search form was filled and committed, the search controller performs the search

depicted in Fig. 6.6 for each attribute that belongs to a filled and/or mandatory field. In

the following the procedure is described on the basis of a search for programs:

At first it is determined whether the current attribute is mandatory or preferable. If it is

mandatory, but the according field was not filled, each instance of program that possesses

this attribute is taken into the temporary result set. In case there already exists a temporary

result set, each result instance not overlapping is deleted from the set. When the result set

subsequently is empty, the search loop is aborted and the result page is rendered without

any result. If the temporary result set is not empty the search loop starts again with the

next attribute. By the time all desired attributes are processed, the temporary result set is

passed to the result view.

If a field is filled and declared as mandatory, one of the following two alternative actions

is executed:

Search 81

Figure 6.5: Search field with help. Screenshot of a search field and the help window for the according

property.

Figure 6.6: Attribute search. The scheme depicts the search for one attribute. Several if-else clauses

decide the further progress of the search. At the end of the search either a result set exists and a next

attribute is searched (green boxes) or the search is aborted (red box).

(a) If no temporary result set is available, all program versions have to be checked. For

the name and bioinformatics task search fields this means, that the provided pat-

tern is searched in labels of all subclasses and instances of the classes Program

and BioinformaticsTool, respectively. All found instances and the instances

(including indirect instances) of all found subclasses are added to the preliminary

result set. This approach exploits inheritance in the ontology. For example, if a user

looks for an alignment program, the bioinformatics tool AlignmentTool (sub-

class of BioinformaticsTool) presents a match (see Fig. 6.7). Due to the in-

heritance, all instances of (e. g.) SequenceAlignmentTool are also instances

of AlignmentTool. Thus, all instances of SequenceAlignmentTool and

of all other subclasses of AlignmentTool are alignment tools and consequently

included into the temporary result set.

For object properties (e. g. writesFormat) the range class has to be determined

first:

82 BIO2ME Information System

Figure 6.7: Ontology subgraph for Program and BioinformaticsTool. The graph de-

picts the modeling of programs. Program versions are instances of class Program as well as of

BioinformaticsTool. The latter represents bioinformatics tasks of the tool. Instances are repre-

sented by pink boxes. Black and red arrows depict “is a” and “instance of” relations, respectively.

range = $bio2me::writesFormat.range

Then the labels of all subclasses and instances of the range class are searched

through for the pattern.

range.find_subclasses_by_label(pattern)

range.find_instances_by_label(pattern)

If a label of a class matches, due to inheritance all instances of this class and all

matching instances are added to a value list. Each program version that is related

via the object property to at least one possible value instance is then inserted into

the preliminary result set (see Fig. 6.8).

In case of a datatype property each value of this property for every program version

has to be considered and compared to the search pattern. The temporary result set is

then extended by those program versions that include matching datatype values.

(b) If a temporary result set is available, it implies that the search for a previous manda-

tory attribute was successful. In this case only the program versions of the prelim-

inary results have to be checked. For the name attribute this means that either their

labels have to match the search pattern, or the labels of those classes, to which

the instances of the temporary result set are tied, and which additionally are sub-

classes of Program. For the bioinformatics task attribute also those classes that

possess the program versions as instances and that additionally are subclasses of

BioinformaticsTool are taken into account. The restriction to both specific

superclasses, Program and BioinformaticsTools, limits the set of classes

the individual is instance of to the subset that is relevant for the attribute. In case of

Search 83

Figure 6.8: Search of Object Properties. The figure schematizes the determination of a program version

(red box) that writes a format, which matches the search pattern (“hits”). The green oval depicts the subset

of data format instances, which are related to program versions. The program version, which is related

to a data format of the intersection of both subsets, is the result of the search.

the name attribute the left ontology branch of Fig. 6.7 is significant. Bioinformatics

task relies on the right side of the graph.

In case of an object and datatype properties the search is performed equally to the

above described approach except that the set of program versions is restricted to the

preliminary result set.

For both cases is essential, that if the temporary result set is empty after the described

procedure, because either no result for the current mandatory property is found or the

current result set does not overlap with the temporary result set, the search procedure is

aborted and the search returns no results.

If the search field is filled and declared preferable (see Fig. 6.6) the above described

search steps for mandatory properties are examined. Though, if a temporary result set is

available, none of these resulting instances are dismissed, because the current preferable

attribute is just an additional search criterium. In case no temporary result set is available,

the results are stored in a temporary preferable result set, which is adjusted with the

preliminary (mandatory) result set, if a mandatory property follows.

The final results are saved in datastructures that allow the comfortable access to preferable

properties, which are matched for the respective result.

4. On the basis of this datastructure, the result view comprises detailed information about

the search and its results. Fig. 6.9 provides a result list. On top of the window the user

can see the precise search criteria he defined. The results are listed underneath sorted in

a first instance according to the number of matched properties and in a subsequent level

lexicographical by the name. For each result, the number of matches are shown as well as

the possibility to display which properties matched. The according range instances that

84 BIO2ME Information System

Figure 6.9: Result View. Screenshot of the result list.

caused the match are given by label. If an instance has assigned more than one label, all

further labels are attached in parenthesis. This helps the user to recognize those instances.

Each result and range instance is linked to a detailed view of it (see 5.) and the result set

can be refined by an additional search over this instance set (see 6.).

5. In the detailed view (see Fig. 6.10) the matched attributes are colored orange as well as

the actually matching instances and values, respectively. Additionally, the view shows all

further information about the selected class or individual that is modeled in BIO2ME.

A semantical linking is integrated, which means that related instances (and program sub-

classes) are linked, so that the user can browse the information without having to know the

underlying knowledge base. Furthermore, if the ontology comprises a rdfs:comment

for the selected object, it is displayed as a short description. Program instances addi-

tionally have a version description, for the program classes’ comment serves as program

description and the comment on the instance provides the version information. The de-

tailed view of program classes allows a listing of all its program versions. All ontology

classes and instances are represented by their natural language labels.

6. The result page also comprehends a “Refine search” button (see Fig. 6.9). This enables

the refinement of a search. By clicking the button the user is redirected to the search

form. The form again is dynamically created based on the ontology information, but this

time it is composed of attribute search fields that are actually interrelated to the instances

of the current result set. The auto completion function also takes only these results into

account to display possible search patterns. The search then proceeds equally to the first

search process, with the exception that the previous result set is utilized as preliminary

(mandatory) result set.

The search procedure will be demonstrated by an example in the following section.

Search 85

Figure 6.10: Detailed View. Screenshot of a part of the detailed view of instance StrAl0.5.4. High-

lighted in orange are those properties and instances that matched search criteria.

Figure 6.11: Example Search. The search form is depicted showing the auto completion function.

6.2.1 Example

The user searches a program, so he selects “Program” at the beginning of the search and the pro-

gram specific form is loaded. Fig. 6.11 depicts the search form filled by the user; he is looking

for a structure alignment program that reads RNA sequences at the best. Thus, in the bioinfor-

matics task field “structure alignment tool” is inputted and declared as mandatory. Furthermore,

“RNA sequence” is given in field “reads data” and marked as preferable. Then he starts the

search.

The search returns 15 alignment programs, whereof nine tools fit both requirements (see

Fig. 6.12). To narrow down the number of results, the user refines his search by making in-

put data “RNA sequence” mandatory. Additionally, he prefers the input of FASTA formatted

86 BIO2ME Information System

Figure 6.12: Example Result. Cutout of the result set of the example search.

Figure 6.13: Example detailed view. The datatype property is highlighted that provides the URL of the

Web-based interface of the program.

sequences into the program, so that he has not to convert his data set. Furthermore, the user

demands a web-based graphical user interface, because he does not want to be bothered by a

local installation. Thus, he clicks onto the “Refine search” button, fills out the dynamically cre-

ated form with his additional criteria. This reduces the resulting list to programs MARNA and

STRAL 0.5.4.

To decide which of these programs he wants to use, he enters the detailed views of both. A

benchmark is referenced, which compares these programs. STRAL is tested to perform more

accurately in regard to his sequence set, so he decides to use this alignment program. The user

has now the possibility to read the referenced publication or visit the program’s homepage. If

the user wants to test the program, he is allowed to click to the provided URL, which is given

in the detailed view under the subtitle “Web-based GUI” (see Fig. 6.13) and runs the program

with his sequences.

Browse & Fill 87

Figure 6.14: Ontology browser. In the ontology tree (left) class BioinformaticsTool is selected.

The details to this class are shown on the right side.

6.3 Browse & Fill

The “Browse & Fill” section of BIS is intended to deliver interested users insight into the

knowledge base BIO2ME. This section should help to get familiar with the ontology and to

facilitate the support of the BIO2ME extension.

Fig. 6.14 shows the browser view. On the left hand side the ontology hierarchy tree is displayed

consisting of ontology classes and instances. By clicking on a tree element the corresponding

information of this concept and instance, respectively, is dynamically loaded from the RUBY

ontology model. For classes the assigned rdfs:labels and rdfs:comments are provided,

in case they are modeled in the ontology. The detailed view of instances additionally lists direct

“type of” classes, object properties and datatype properties with the instances and values that

are related (see Fig. 6.15).

The ontology tree is dynamically built based on the ontology model. The expand and collapse

functionalities are implemented using RJS (see Section 2.5.1).

The more ontology-like representation of the information distinguishes the detailed view of the

browser from the detailed view in the search section. Classes, instances and properties are con-

stituted by their local names instead of labels and properties are directly identifiable regarding

their type (object or datatype property). This presentation of ontology data facilitates the suffi-

cient familiarization with the knowledge base to enable the contribution of missing information

without the importunity of formal details.

88 BIO2ME Information System

Figure 6.15: Ontology browser focused on StrAl0.5.4. The detailed view of instance

StrAl0.5.4 provides information about its labels, description, parent classes and related instances.

Related data values are cutted.

6.3.1 Extension of BIO2ME

By browsing the ontology a user might be interested to contribute his knowledge. In contrast to

simple questionnaires (see Section 3.2.1) BIS facilitates the insertion of knowledge directly into

the ontology. Users have to signup and login first before they are allowed to extend BIO2ME

(see bottom of Fig. 6.14). This barrier helps to assure the quality of BIO2ME.

Class views offer text fields to insert new instances (see Fig. 6.16) by providing a name and

label. A new instance with local name “StrAl0.6” and label “StrAl 0.6” can be added to class

StrAl by

new_instance = $bio2me::StrAl.new("StrAl0.6")

new_instance.rdfs_label << "StrAl 0.6"

After inserting the instance the user is able to add information about it. Due to that, the individ-

ual view offers select boxes to relate the selected instance via object properties to other instances

and via datatype properties to datatype values. These select boxes are dynamically filled with

properties, whose domains are “type of” classes of the selected instance. After a property was

selected, a list of possible range instances appears or a text field for entering the datatype value,

respectively (see Fig. 6.17).

Additionally, the extension feature is adjusted to the concept “program”. Programs are specifi-

cally modeled in the ontology, as versions of programs are instances of the program class. The

extension feature is in particular offered to facilitate the contribution of new tools by exter-

nal domain experts. That is why the detailed view of class Program additionally provides text

fields to insert new subclasses. The DEEP SEMANTICS framework does not aim at manipulating

Browse & Fill 89

Figure 6.16: Extending of Instances and Program subclasses. All ontology classes can be extended

by instances. The Program class additionally can be expanded by subclasses modeling new programs.

Figure 6.17: Extending of relationships. The selection of a datatype properties is shown, whose value

can be inserted in a popup window.

the ontology scaffold consisting of class and property definitions. Thus, it had to be extended

by methods to add program classes into BIO2ME.

The extension functionality of the BIS ontology browser is not intended to supersede a formal

editor, but it supports the enlargement of BIO2ME with programs, instances and new infor-

mation about instances by domain experts. The refinement and enhancement of the ontology

scaffold consisting of classes and property declarations require much more familiarization with

ontologies in general and the structure of BIO2ME in detail.

90 BIO2ME Information System

Figure 6.18: Forums. The forums enable discussion about BIS and BIO2ME.

6.4 Forums

BIS also provides forums, which are intended for users who want to comment on the application

and the BIO2ME. The use of the ontology browser still requires a certain amount of familiar-

ization depending on the intention of a user to view or extend the ontology. Furthermore, the

extension functionality in the application is limited to the integration of new information repre-

sented by instances, programs and relating instances. Modifications on the BIO2ME structure

can be discussed in the forum and incorporated into the ontology by ontology designers with the

aid of a formal editor. Additionally, the forum helps to figure out deficiencies in the ontology

and can also be used as discussion place for the ontology extension. Fig. 6.18 shows the start

page of the “Forums” section within BIS, from which the user able to enter divers forums.

6.5 Discussion

The BIO2ME information system could also have been developed with an underlying database

instead of an ontology, but the modeling of information in form of ontologies is much more

comfortable than that of database schemata. The structure and handling of ontology data in

form of graphs is less artificial as it meets thought patterns of the human mind. Furthermore,

ontologies can be remodeled in a simpler way than database schemata of an already running

system. Additionally, the dynamical architecture of BIS restricts the design of the ontology

only to a minor degree.

The preparation of BIO2ME before it is integrated into the BIO2ME information system, is

less extensive, because it only requires one program fetch and the (re-)start of the web server.

Nevertheless, due to the ontology extension functionality of BIS the consistency check and

inference should be integrated into the web application.

In the ontology community, there are often attempts to provide Semantic Web applications that

are able to operate on any ontology. Due to the experiences gained during the development of

Discussion 91

the BIO2ME information system, in my opinion this is quite infeasible. The structure of the on-

tology and the implementation of the application have to be coordinated to build a comfortable

interface and provide as well as exploit all information modeled in the ontology adequately.

6.5.1 Search

The search functionality is mature and yet achieves well-founded results for the information

existent in the ontology. Semantics included in BIO2ME is exploited in terms of considering

inheritance by searching all individuals that are (direct or indirect) instance of a class, which

label matches the search term. Furthermore, the meaning of relations between instances as well

as between instances and datatype values are involved in the search. Additionally to the estab-

lished features, the search and result representation could be refined. For example, the result

view could be extended by a clustering of results e. g. based on bioinformatics tasks or other

user defined aspects, which are involved in the semantics of BIO2ME.

Furthermore, the current implementation of BIS yet does not use phonetic search. In a first in-

stance I concentrated on the development of a well elaborated search procedure, which exploits

advantages of the semantic aspects of ontologies. Moreover, the utilization of auto completion

text fields in combination with exact pattern matching is quite sufficient by now as it allows a

simple matching approach by simultaneous providing a user friendly search.

The search form will be extended by select boxes for enumerated datatypes as soon as the Se-

mantic Web framework DEEP SEMANTICS will provide the support of them. Then select boxes

can dynamically be created based on the ontology data. This would result in a more comfortable

user interface. At present the same result could be achieved by simple HTML coding. Datatype

properties with values limited to a well-defined set could be handled separately. Therewith the

lack of information could be compensated by the web application. Thus, this approach would

mean a loss of dynamics in BIS, for the information would then not only base on the ontology,

but additional knowledge would be statically included in the application.

On the basis of BIO2ME an automatic version comparison is realizable. For this purpose pro-

gram versions were modeled by instances of a program class. According to that, the comparison

of versions is simply the mapping of related attributes.

6.5.2 Browse & Fill

The BIS ontology browser enables the familiarization with BIO2ME for interested users. It pro-

vides a tree view of the ontology as well as detailed information about classes and individuals.

Nevertheless, the presented information does not include the ontology scaffold in a whole. Def-

initions of properties and their domain and ranges are omitted, because the browser addresses

interested domain experts and aims at attracting them to contribute their knowledge mainly on

instance level. The only exception are programs, which require the inserting of classes. This

is in contrast to the ONTOVERSE system, which addresses domain experts with increased in-

terest in ontologies. The extension functionality of BIS does not intend and cannot displace a

92 BIO2ME Information System

real formal ontology editor. It is rather considered to ease taking part in the ontology extension

process for domain experts who are not familiar with formal ontologies and are not eager for

becoming acquainted with it. The simple filling out of questionnaires like provided so far for re-

questing domain knowledge (see Section 3.2.1) does not seem to be accepted in the community,

that is why the ontology browser aims at forming a combination of offering information about

BIO2ME, which makes domain experts feel like they are involved in knowledge engineering

tasks, and nevertheless providing an interface that does not bother users with complicated onto-

logical background.

By now the BIO2ME application does not include a persistency layer to store ontology modifi-

cations. Users are able to directly operate on the ontology model in RUBY, but this changes exist

in the main space and yet expire by shutting down the web server. Mainz (2008) introduces an

approach in serializing ontology data based on DEEP SEMANTICS. By integrating persistency,

a quality check of new ontology information should be realized. Although a login is required

for extending the ontology, the system is free for every interested user.

6.5.3 DEEP SEMANTICS vs. SQLSpaces

ONTOVERSE and BIS utilize different approaches for the integration of ontological data. Both

frameworks are in development, which provide disadvantages in so far as full OWL DL sup-

port (DEEP SEMANTICS) and insufficient data handling (SQLSpaces) are concerned. Actually

the comparison of both is illegal as SQLSpaces are considered for manipulating ontological

data and DEEP SEMANTICS in first instance aims at providing a fast access to the informa-

tion in ontologies. Therefore SQLSpaces offer persistency and (JAVA) methods to add facts,

but DEEP SEMANTICS provides a intuitive and natural way of retrieving and handling onto-

logical data. When the ontolgy is deep-integrated, information can be extracted at once. Ad-

ditionally, DEEP SEMANTICS enabled me a lot of flexibility, for the source code was open to

me and a close collaboration with its author facilitated the prompt extension of new methods

like find_instances_by_label(). The use of established ontology quering languages

like SPARQL1 was not discussed in this thesis; in some tests these could be proved being less

flexible and comfortable in contrast to DEEP SEMANTICS.

6.5.4 Conclusions

In consideration of the mass of existing bioinformatics tools, the need for an detailed search is

obvious. There exist several web sites that list bioinformatics tools comprehensively. For exam-

ple, the homepage of Dr. Joe Felsenstein2 lists tools for phylogenetical analyses and the Online

Bioinformatics Resources Collection3 (OBRC) as well as BioWareDB4 extend the simple listing

1 http://www.w3.org/TR/rdf-sparql-query/
2 http://evolution.genetics.washington.edu/phylip/software.html
3 http://www.hsls.pitt.edu/guides/genetics/obrc
4 http://biowaredb.org/site/

Discussion 93

of bioinformatics tools by a search function. All of these collections have essential disadvan-

tages: for example, they are often badly structured and only provide poor search functionality.

In contrast the BIO2ME information system provides an “intelligent” search for bioinformatics

tools, methods and data, which is based on the underlying knowledge base BIO2ME. The tools

are captured in regard to their applications, methods, input and output formats as well as several

additional attributes (see Chapter 3). Thus, bioinformatics tools can be searched by specifying

any combination of these attributes.

The BIO2ME information system is still work in progress and as BIS is not yet published,

it is not evaluated by a reasonable number of users. However, the search procedure already is

“intelligent” by means of exploiting the full ontological information. The extension facility of

BIO2ME provides an auspicious attempt.

7

Summary

The amount of information increases exponentially these days. The life sciences in particular

produce masses of data by utilizing modern methods like high-throughput screenings. This vast

amount of data has to be analyzed and made accessible to enable the gain of new information

and the reuse of data. For example, the size of sequence databases soars as high-throughput

sequencing techniques facilitate the fast determination of biomolecular sequences. To access

these data in an intelligent way ontologies were established in the life sciences. Ontologies—

as considered in this thesis—represent knowledge of a domain in a structured and machine-

interpretable way.

In this thesis an ontology for bioinformatics tools and methods (BIO2ME) was extended, which

models bioinformatics programs, databases and methods according to (e. g.) their application

and data which can be processed. BIO2ME aims at providing a knowledge base for an infor-

mation system that enables an intelligent search across the plethora of bioinformatics tools,

which are developed to face the visualization, processing, archiving and search for the above

described amount of biomedical data. Moreover, there exist additional tools that support experi-

mental methods or simulate biological processes. Even for bioinformaticians it is hard to review

methods and tools serving a specific purpose. In this thesis the BIO2ME information system

was established, which enables the intelligent search based on the semantics of the BIO2ME

ontology and is unique in its field of application.

Domain experts are essential for the building of ontologies as they provide and cross-link the

knowledge that is modeled in an ontology. Even though ontologies form a well founded field

of research, during the development of BIO2ME a lack of the support of domain experts was

noticed. Due to this discovery, in this thesis the wiki idea is adapted to the requirements of

the informal ontology engineering phases, which comprehend the knowledge acquisition and

the interrelation of pieces of information. Wikis are well suited for this task, because they are

well established in the collaborative development of documents. Special characteristics of the

here implemented Wiki are: the locking function of single sections in a Wiki document, which

protects ontology definitions against vandalism, and a connection to a formal ontology model,

which in particlular facilitates content-specific evaluation of the ontology.

96 Summary

Furthermore, the enrichment of the ontology with information is a considerable task, and the

attracting of domain experts, who wants to contribute their domain knowledge, can be challeng-

ing. Based on that, a machine-supported approach for ontology extension was implemented in

this thesis, which is based on a special tagging mechanism for documents with keywords from

the ontology. This thesis comprises an extensive study, which involves a remarkable enlarge-

ment of BIO2ME.

In this thesis the benefit of ontologies could be shown on the basis of an ontology for bioinfor-

matics tools and its application. New techniques were established, which facilitate the collabo-

rative ontology design and the machine-supported extension of ontologies.

8

Zusammenfassung

Das Wissen wächst heutzutage auf vielen Gebieten exponentiell. Vor allem im Bereich der

Lebenswissenschaften spricht man von einer Datenexplosion, die mit modernen Methoden wie

High-Troughput-Screenings zu erklären ist. Eine Unmenge an Daten kann mit diesen Metho-

den gewonnen werden, die in geeigneter Weise analysiert und zugänglich gemacht werden

müssen. Die Anzahl von Einträgen in Sequenzdatenbanken steigt zum Beispiel rapide, da

High-Throughput-Sequenzierungen sogar die schnelle Sequenzbestimmung ganzer Genome er-

möglichen. Um diese Daten intelligent zugänglich zu machen, werden immer häufiger Ontolo-

gien eingesetzt. Ontologien, wie sie in dieser Arbeit verstanden werden, sind spezielle Daten-

strukturen, in denen Wissen eines abgesteckten Fachgebietes in strukturierter Form gespeichert

wird, sodass es von Computern interpretiert werden kann.

Eine Ontologie namens BIO2ME (BioInformatics Ontology for Tools and Methods) wurde

aufgebaut und in dieser Arbeit erweitert, die bioinformatische Werkzeuge und Methoden struk-

turiert abbildet. Das Ziel ihrer Erstellung ist ihr Einsatz als Wissensbasis in einem Informations-

system, das eine intelligente Suche über die Vielzahl bioinformatischer Werkzeuge ermöglicht.

Diese Werkzeuge werden zum einen für die Anzeige, Verarbeitung, Archivierung und Suche

der beschriebenen Menge biomedizinischer Daten entwickelt, aber auch für die Unterstützung

experimenteller Methoden und Simulation biologischer Vorgänge. Mittlerweile ist es daher eine

zunehmende Herausforderung, ein geeignetes Werkzeug für eine bestimmte Aufgabe zu finden.

Selbst Bioinformatikern fällt es schwer, den Überblick über Methoden und Werkzeuge ihres

Fachgebietes zu behalten. In dieser Arbeit konnte ein solches Informationssystem erfolgreich

implementiert werden, das die Semantik der Ontologie für die Suche ausnutzt und somit einzig-

artig für seine Anwendung ist.

Fachexperten spielen eine entscheidende Rolle vor allem in der informellen Phase des Onto-

logieaufbaus, in welcher das zu erfassende Wissen gesammelt und zueinander in Beziehung

gesetzt wird. Obwohl die Forschung an Ontologien etabliert ist, konnte in dieser Arbeit fest-

gestellt werden, dass für diese kritische Phase nur wenig Software-Unterstützung existiert. Um

diesen Mangel zu kompensieren, wurde in dieser Arbeit der Wiki-Ansatz angepasst, der sich

98 Zusammenfassung

bereits für die kooperative Erstellung von Dokumenten etabliert hat und sich dadurch im Beson-

deren für die gemeinschaftliche Arbeit der ersten Phasen der Ontologieerstellung qualifiziert.

Das Wiki, welches im Rahmen dieser Arbeit in die Ontologie-Plattform ONTOVERSE integriert

wurde, umfasst alle hilfreichen Wiki-Funktionen wie Versionierung und Änderungsaufzeich-

nung. Die Implementierung zeichnet sich jedoch besonders durch zwei zusätzliche Funktiona-

litäten aus: Zum einen können einzelne Abschnitte eines Wiki-Artikels gesperrt werden. Das ist

zum Beispiel hilfreich, um die nachträgliche Änderung an festgelegten Ontologie-Kriterien nur

für bestimmte Nutzergruppen zu erlauben. Zum anderen verfügt das Wiki über eine Verbindung

zu der formalen Ontologie, welche die inhaltliche Evaluierung der Ontologie enorm erleichtert.

Weiterhin ist die Auffüllung von Ontologien mit Information eine umfassende Aufgabe und die

Gewinnung von Fachexperten, die diese unterstützen, eine Herausforderung. Aus diesem Grund

wurde in dieser Arbeit zusätzlich eine Methode zur semi-automatischen Unterstützung der On-

tologieerweiterung mit Hilfe von Tagging implementiert. Die vorliegende Arbeit beinhaltet zu-

dem eine umfassende Studie dieser Vorgehensweise, aufgrund derer die BIO2ME-Ontologie

erheblich erweitert werden konnte.

Anhand einer Ontologie über bioinformatische Werkzeuge und ihrer Anwendung zeigt diese

Arbeit den Nutzen des Einsatzes von Ontologien in der Wissenschaft auf und entwickelt Metho-

den, die dem gemeinschaftlichen Aufbau einer solchen Wissensbasis dienen und deren Er-

weiterung Computer-gestützt erleichern.

Bibliography

Alterovitz, G., Jiwaji, A. & Ramoni, M. F. (2008). Automated programming for

bioinformatics algorithm deployment. Bioinformatics, 24(3), 450–451.

Andersen, E. S., Lind-Thomsen, A., Knudsen, B., Kristensen, S. E., Havgaard, J. H.,

Torarinsson, E., Larsen, N., Zwieb, C., Sestoft, P., Kjems, J. & Gorodkin, J. (2007).

Semiautomated improvement of rna alignments. RNA, 13(11), 1850–1859.

Apke, S. & Dittmann, L. (2004). Generisches Vorgehensmodell KOWIEN Version 2.0. In

KOWIEN-Projektbericht 7/2004. Institut für Produktion und Industrielles

Informationsmanagement, Universität Duisburg-Essen (Campus Essen),.

Aplin, J. D. & Singh, H. (2008). Bioinformatics and transcriptomics studies of early

implantation. Ann N Y Acad Sci, 1127, 116–120.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P.,

Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hil, D. P., Issel-Tarver, L.,

Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M. &

Sherlock, G. (2000). Gene ontology: tool for the unification of biology. the gene ontology

consortium. Nat Genet, 25(1), 25–29.

Baclawski, K. & Niu, T. (2006). Ontologies for Bioinformatics. The MIT Press.

Bai, F. & El Jerroudi, Z. (2008). Interactive and collaborative ontology developing. In

Workshop Proceedings der Tagungen Mensch & Computer 2008, DeLFI 2008 und
Cognitive Design 2008. Lucke, U. and Kindsmüller, C. and Fischer, S. and Herczeg, M.

and Seehusen, S., pp. 174–179.

Baker, P. G., Brass, A., Bechhofer, S., Goble, C., Paton, N. & Stevens, R. (1998).

Tambis–transparent access to multiple bioinformatics information sources. Proc Int Conf
Intell Syst Mol Biol, 6, 25–34.

Bauer, M., Klau, G. W. & Reinert, K. (2007). Accurate multiple sequence-structure alignment

of rna sequences using combinatorial optimization. BMC Bioinformatics, 8, 271.

Bendaña, Y. R. & Holmes, I. H. (2008). Colorstock, sscolor, ratón: Rna alignment

visualization tools. Bioinformatics, 24(4), 579–580.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. (2008).

Genbank. Nucleic Acids Res, 36(Database issue), D25–D30.

Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The semantic web: Scientific american.

Scientific American, pp. 28–37.

Bodenreider, O. & Stevens, R. (2006). Bio-ontologies: current trends and future directions.

Brief Bioinform, 7(3), 256–274.

100 Bibliography

Busch, A. & Backofen, R. (2006). Info-rna–a fast approach to inverse rna folding.

Bioinformatics, 22(15), 1823–1831.

Carroll, H., Beckstead, W., O’Connor, T., Ebbert, M., Clement, M., Snell, Q & McClellan, D.

(2007). Dna reference alignment benchmarks based on tertiary structure of encoded

proteins. Bioinformatics, 23(19), 2648–2649.

Chang, T.-H., Horng, J.-T. & Huang, H.-D. (2008). RNALogo: a new approach to display

structural RNA alignment. Nucleic Acids Res, 36(Web Server issue), W91–W96.

Chang, Y.-F., Huang, Y.-L. & Lu, C. L. (2008). SARSA: a web tool for structural alignment of

RNA using a structural alphabet. Nucleic Acids Res, 36(Web Server issue), W19–W24.

Consortium, Gene Ontology (2001). Creating the gene ontology resource: design and

implementation. Genome Res, 11(8), 1425–1433.

Consortium, Gene Ontology (2006). The gene ontology (go) project in 2006. Nucleic Acids
Res, 34(Database issue), D322–D326.

Consortium, Gene Ontology (2008). The gene ontology project in 2008. Nucleic Acids Res,

36(Database issue), D440–D444.

Dalli, D., Wilm, A., Mainz, I. & Steger, G. (2006). Stral: progressive alignment of non-coding

rna using base pairing probability vectors in quadratic time. Bioinformatics, 22(13),

1593–1599.

Davidson, S. B., Overton, C. & Buneman, P. (1995). Challenges in integrating biological data

sources. J Comput Biol, 2(4), 557–572.

De Roure, D., Jennings, N.R. & Shadbolt, N.R. (2003). Grid Computing: Making the Global
Infrastructure Reality., chapter The Semantic Grid: A future e-Science infrastructure.

Ebersbach, A., Glaser, M. & Heigl, R. (2008). Social Web. Uni-Taschenbücher.

Fernandez, O. (2005). Deep integration of ruby with semantic web ontologies.

Fernández López, M. (2001). Overview of methodologies for building ontologies. In

Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving Methods
(KRR5). Stockholm, Sweden.

Freeman, E., Hupfer, S. & Arnold, K. (1999). Javaspaces Principles, Patterns, and Practice:
Principles, Patterns and Practices. Addison-Wesley Longman, Amsterdam.

Garrett, J. J. (2005). Ajax: A new approach to web applications.

http://www.adaptivepath.com/ideas/essays/archives/000385.php.

Gelernter, D. (1985). Generative communication in linda. ACM Trans. Program. Lang. Syst.,
7(1), 80–112.

Gevorgyan, A., Poolman, M. G. & Fell, D. A. (2008). Detection of stoichiometric

inconsistencies in biomolecular models. Bioinformatics, 24(19), 2245–2251.

Goble, C., Corcho, O., Alper, P. & De Roure, D. (2006). Discovery Science, chapter e-Science

and the Semantic Web: A Symbiotic Relationship, pp. 1–12. Heidelberg: Springer.

Gómez-Pérez, A., Fernández, M. & de Vicente, A. J. (2004). Towards a method to

conceptualize domain ontologies.

Gruber, T. (2005). Ontology of folksonomy: A mash-up of apples and oranges.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge
Acquisition, 5(2), 199–220.

Bibliography 101

Grüninger, M. & Fox, M. S. (1995). Methodology for the design and evaluation of ontologies.

In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing, April 13,
1995.

Hey, T. & Trefethen, A. E. (2005). Cyberinfrastructure for e-science. Science, 308(5723),

817–821.

Hofacker, I. L., Bernhart, S. H. F. & Stadler, P. F. (2004). Alignment of rna base pairing

probability matrices. Bioinformatics, 20(14), 2222–2227.

Holmes, I. (2005). Accelerated probabilistic inference of rna structure evolution. BMC
Bioinformatics, 6, 73.

Jurafsky, D. & Martin, J. H. (2008). Speech and Language Processing: An Introduction to
Natural Language Processing, Speech Recognition, and Computational Linguistics. 2nd
edition. Prentice-Hall, 2 edition.

Karp, P. D. (1995). A strategy for database interoperation. J Comput Biol, 2(4), 573–586.

Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002). Mafft: a novel method for rapid

multiple sequence alignment based on fast fourier transform. Nucleic Acids Res, 30(14),

3059–3066.

Katzman, S., Barrett, C., Thiltgen, G., Karchin, R. & Karplus, K. (2008). Predict-2nd: a tool

for generalized protein local structure prediction. Bioinformatics.

Keseler, I. M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I. T.,

Peralta-Gil, M. & Karp, P. D. (2005). Ecocyc: a comprehensive database resource for

escherichia coli. Nucleic Acids Res, 33(Database issue), D334–D337.

Khaladkar, M., Bellofatto, V., Wang, J. T. L., Tian, B. & Shapiro, B. A. (2007). Radar: a web

server for rna data analysis and research. Nucleic Acids Res, 35(Web Server issue),

W300–W304.

Kruspe, M. & Stadler, P. F. (2007). Progressive multiple sequence alignments from triplets.

BMC Bioinformatics, 8, 254.

Lassila, O. & McGuinness, D. L. (2001). The role of frame-based representation on the

semantic web. Technical Report KSL-01-02, Knowledge Systems Laboratory, Stanford

University. Stanford, California.

Leuf, B. & Cunningham, W. (2001). The Wiki way: quick collaboration on the Web.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Lindgreen, S., Gardner, P. P. & Krogh, A. (2007). Mastr: multiple alignment and structure

prediction of non-coding rnas using simulated annealing. Bioinformatics, 23(24),

3304–3311.

Mainz, D. (2008). Deep integration of the OWL ontology language into Ruby using
metaprogramming. Dissertation, Heinrich-Heine-Universität Düsseldorf.

Mainz, I. (2006). Development of a prototype ontology for bioinformatics tools. (in german).

Bachelor thesis, Heinrich-Heine-Universität Düsseldorf.

Mainz, I. (2006). Statistik von RNA-Struktur-Alignments. Diplom thesis,

Heinrich-Heine-Universität Düsseldorf.

Mainz, I., Weller, K., Paulsen, I., Mainz, D., J. & von Haeseler, A. (2008). Ontoverse:

Collaborative ontology engineering for the life sciences. Information Wissenschaft &
Praxis, 2, 91–99.

102 Bibliography

Malzahn, N., Weinbrenner, S., Hüsken, P., Ziegler, J. & Hoppe, H. U. (2007). Collaborative

ontology development - distributed architecture and visualization. In Proceedings of the
German E-Science Conference. Max Planck Digital Library. Open-Archive-Publikation.

Mathes, A. (2004). Folksonomies: Cooperative Classification and Communication Through

Shared Metadata. http://adammathes.com/academic/computer-mediated-

communication/folksonomies.html.

McCray, A. T. (2006). Conceptualizing the world: lessons from history. J Biomed Inform,

39(3), 267–273.

Meyer, I. M. & Miklós, I. (2007). Simulfold: simultaneously inferring rna structures including

pseudoknots, alignments, and trees using a bayesian mcmc framework. PLoS Comput
Biol, 3(8), e149.

Moretti, S., A., Wilm, G., Higgins D., I., Xenarios & Notredame, C. (2008). R-Coffee: a web

server for accurately aligning noncoding RNA sequences. Nucl. Acids Res., 36 Web

Server Issue, W10–3.

Paulsen, I. (2007). Collaborative Knowledge Management in the Life Sciences Network. PhD

thesis, Heinrich-Heine-Universität Düsseldorf.

Paulsen, I., Mainz, D., Weller, K., Mainz, I., Kohl, J. & von Haeseler, A. (2007). Ontoverse:

Collaborative knowledge management in the life sciences network. In Germany eScience
Conference 2007, Max Planck Digital Library, ID 316588.0.

Pei, J. & Grishin, N. V. (2007). Promals: towards accurate multiple sequence alignments of

distantly related proteins. Bioinformatics, 23(7), 802–808.

Peters, I. & Stock, W. G. (2007). Folksonomy and information retrieval. In In Proceedings of
the 70th Annual Meeting of the American Society for Information Science and
Technology., volume 45. pp. 1510–1542. CD-ROM.

Siddharthan, R. (2006). Sigma: multiple alignment of weakly-conserved non-coding dna

sequence. BMC Bioinformatics, 7, 143.

Siebert, S. & Backofen, R. (2005). MARNA: multiple alignment and consensus structure

prediction of RNAs based on sequence structure comparisons. Bioinformatics, 21(16),

3352–3359.

Simossis, V. A. & Heringa, J. (2005). Praline: a multiple sequence alignment toolbox that

integrates homology-extended and secondary structure information. Nucleic Acids Res,

33(Web Server issue), W289–W294.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg, L. J.,

Eilbeck, K., Ireland, A., Mungall, C. J., Consortium, O. B. I., Leontis, N., Rocca-Serra, P.,

Ruttenberg, A., Sansone, S.-A., Scheuermann, R. H., Shah, N., Whetzel, P. L. & Lewis, S.

(2007). The obo foundry: coordinated evolution of ontologies to support biomedical data

integration. Nat Biotechnol, 25(11), 1251–1255.

Stevens, R., Goble, C. A. & Bechhofer, S. (2000). Ontology-based knowledge representation

for bioinformatics. Brief Bioinform, 1(4), 398–414.

Stocsits, R. R., Hofacker, I. L., Fried C. & Stadler, P. F. (2005). Multiple sequence alignments

of partially coding nucleic acid sequences. BMC Bioinformatics, (6), 160.

Sure, Y. (2002). A tool-supported methodology for ontology-based knowledge management.

Bibliography 103

Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R. & Wenke, D. (2002). Ontoedit:

Collaborative ontology engineering for the semantic web. In In Proceedings of the first
International Semantic Web Conference 2002 (ISWC 2002). Sardinia, Italy.

Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994). CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22,

4673–4680.

Thompson, J. D., Koehl, P., Ripp, R. & Poch, O. (2005). Balibase 3.0: latest developments of

the multiple sequence alignment benchmark. Proteins, 61(1), 127–136.

Thompson, J. D., Muller, A., Waterhouse, A., Procter, J., Barton, G. J., Plewniak, F. &

Poch, O. (2006). MACSIMS: multiple alignment of complete sequences information

management system. BMC Bioinformatics, 7, 318.

Valdivia-Granda, W. (2008). The next meta-challenge for Bioinformatics. Bioinformation,

2(8), 358–362.

Veeramalai, M., Ye, Y. & Godzik, A. (2008). Tops++fatcat: fast flexible structural alignment

using constraints derived from tops+ strings model. BMC Bioinformatics, 9(1), 358.

Wilm, A., Higgins, D. G. & Notredame, C. (2008). R-Coffee: a method for multiple alignment

of non-coding RNA. Nucl. Acids Res.
Wilm, A., Mainz, I. & Steger, G. (2006). An enhanced rna alignment benchmark for sequence

alignment programs. Algorithms Mol Biol, 1, 19.

Wolf, M., Ruderisch, B., Dandekar, T., Schultz, J. & Müller, T. (2008). Profdists: (profile-)

distance based phylogeny on sequence - structure alignments. Bioinformatics.

Wyckoff, P., McLaughry, S. W., Lehman, T. J. & Ford, D. A. (1998). T spaces. IBM Systems
Journal, 37(3).

