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1 Introduction

Since their invention in the 1960s, lasers are of continuously growing importance in phys-
ical research. Almost 50 years later the technology has been vastly improved in almost
every way, from powerful lasers for industrial purposes to spectrally very narrowbanded
continuous wave lasers for precise measurements of fundamental constants. Today a
very large number of modern physical experiments would be impossible without lasers.

Nonlinear optical effects have been demonstrated shortly after the invention of lasers.
This includes multiphoton ionization, modification of the refractive index of materials
and disturbance of the Coulomb field of atoms. The first enhancements in terms of
laser intensity were by methods such as Q-switching and mode locking. Intensities up
to 1015 Wcm−2 were feasible at the end of the 1960s.

A further increase in peak power depended on the possibility to amplify laser pulses
with duration in the pico- or even the femto-second regime. In 1985 the chirped pulse
amplification (CPA) was demonstrated [83], which lead to a very strong increase in
obtainable peak power of lasers over the last 20 years.

Today peak intensities of 1021 Wcm−2 are accessable on daily experimental basis [65,
70]. The next generation of lasers will reach up to 1026 Wcm−2 [29]. This increase
of up to ten orders of magnitude in peak power since the 1980s allows to access a
great number of new nonlinear phenomena in the experiment. It is e.g. supposed that
the interaction of such strong radiation with plasmas will provide a way to reach field
intensities above 1028 Wcm−2, which would exceed the Schwinger-field and lead to pair
creation, a prediction made by QED theory [64].

One of today’s most discussed application of such intense laser pulses are laser-plasma
accelerators, which have been proposed as a new generation of particle accelerators
[19, 84]. The accelerating electrical fields may be as large as 100 GV/m and more
[27]. This is by many orders of magnitude larger than fields provided by conventional
accelerator technology, which are limited to the order of roughly MV/m because of
material breakdown. In plasma large field oscillations can be sustained, but the life-
time of the oscillations may be limited due to wave-breaking. The plasma oscillations
are driven by a relativistic laser pulse.

The interaction of high power lasers with plasma is said to be of relativistic nature.
We suppose a linearly polarized laser and define the normalized amplitude a0 of the
laser vector potential as

a0 =
eA

mec
=

√

Iλ2

1.4 · 1018 W

cm2µm2
, (1.1)

with laser peak intensity I, laser wave length λ, electron charge e, electron rest mass
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1. Introduction

me, vacuum speed of light c and amplitude of the laser pulse vector potential A. The
motion of charged particles in electromagnetic fields is determined by the Lorentz force.
An electron irradiated by a laser pulse with a0 ≪ 1 performs harmonic oscillations
transversely to the laser propagation. For a0 & 1 the force becomes nonlinear and
the particle is accelerated in laser direction. The nonlinearity in the Lorentz force is
introduced by the relativistic mass increase.

This nonlinearity is the source of many phenomena, such as laser pulse filamentation,
relativistic plasma transparency, laser pulse self focussing, high order harmonic gener-
ation, excitation of nonlinear plasma waves and the generation of relativistic solitary
structures [68].

Solitons or solitary waves are localized structures in nonlinear media. The interaction
between solitons is particle-like, they emerge unchanged from an interaction. During the
interaction however, their form may undergo considerable changes. Soliton solutions are
known from many different areas of physics, the most prominent ones are fluid dynamics
and fiber optics.

Solitons were predicted analytically in overdense plasma [42, 39, 23, 87], i.e. ω0 <
ωpe, where ω0 is the soliton frequency and ωpe = (4πne2/me)

1/2 is the electron plasma
frequency for a plasma of density n. The solitons consist of trapped radiation and an
associated plasma density variation, hence they have electromagnetic and electrostatic
fields. In overdense plasma the pressure of the electromagnetic field is balanced by the
excess pressure of the plasma from the outside.

A high power laser pulse propagating in an underdense plasma (ω0 > ωpe) will be
influenced by nonlinearity, e.g. compressed. Stimulated Raman scattering and a Raman
cascade causes a slow down of intensity spikes to ω0 ≈ ωpe, which may lead to large
amplitude relativistic electromagnetic solitons in an underdense plasma [55, 37, 56]. In
addition to the nonlinearly shaped leading pulse, a laser beam propagating in underdense
plasmas also creates slow, nearly standing narrow structures behind the leading edge.
These processes are especially present in the ultra-short pulse regime [14].

Macroscopic evidence of soliton formation in multi-terawatt laser-plasma interaction
has been reported from experiments [7, 8]. The bubble-like structures have been ob-
served in numerical simulations, too [11, 81, 69, 66, 14, 24]. Within the solitons, pon-
deromotive pressure leads to a strong depression of the electron density. It is predicted
that up to 40% of the laser energy can be trapped. The structures consisting of electron
depressions and intense electromagnetic field concentrations are called slow solitons.
Typical sizes of the spatial structures are of the order of the collisionless electron skin
depth de = c/ωpe of the surrounding plasma.

The dynamics of soliton creation consists of two stages. Pre-solitons are created
by the laser on the electron time-scale, which is in the order of t ∼ 1/ωpe. The ions
are to heavy to react to the oscillating fields on this time-scale. Pre-solitons can be
either moving or standing structures. On the longer time-scale (∼ 1/ωpi), besides the
electrons also the ions are pushed out of the density holes, and the solitons evolve into
post-solitons [69]. The ion dynamics is responsible for a slowly expanding plasma cavity
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[53]. The expansion of the post-solitons under the push of the electromagnetic radiation
(being trapped inside) has been analyzed within the snowplow approximation [69, 12].
Particle-In-Cell (PIC) simulations show merging (and not elastic interaction, as would be
expected for true solitons) of post-solitons. A quite good agreement between experiment
and PIC simulation occurs. Acceleration of solitons towards lower plasma densities has
been observed [81] in agreement with theoretical expectations.

In analytical models for relativistic solitons stationary solutions are supposed. Most of
the work on soliton solutions is for one-dimensional (1D) geometry and circular polariza-
tion [25, 42, 25]. The 1D geometry is a simplification which assumes that all quantities
only depend on one spatial coordinate along the propagation direction. Within the cold
relativistic hydrodynamic approximation the properties of solitons have been cataloged
with respect to the number p of zeros of the vector potential, the velocity V , and the
frequency ratio ω0

√

1 − V 2/c2/ωpe [≡ ω
√

1 − V 2 in non-dimensional form]. Solitons do
exist for ω2(1 − V 2) < 1. Single-humped (p = 0) solitons have been found [25], e.g. for
V = 0 when the ion response is neglected. Sub-cycle solitons (p = 1, 2, . . . ) do exist for
finite velocities V with a discrete ω-spectrum. On the ion time-scale, solitons do exist
only above a certain threshold velocity V .

Circular polarized standing solitons in warm plasma were reported in Refs. [57, 58].
The solitons are derived from solutions of the relativistic Vlasov equation under the
assumption of an isothermal plasma. The finite temperature introduces thermal pressure
which is able to balance the radiation pressure of the soliton fields. This additional
pressure is the reason for the existence of standing solitons in electron-ion plasma.

Linear polarized soliton solutions are only known on the electron time-scale and in
the limit of weak plasma density response [32, 33].

The stability properties of solitons with respect to initial perturbations allow to draw
conclusions about the life-time of such structures and the nonlinear evolution of the
perturbation. Life-time and structure of the nonlinear state are important for possi-
ble experimental observation. In various publications the 1D stability of solitons was
investigated [14, 26, 72, 73, 58, 32, 33, 63, 76].

All general stability investigations use numerical methods, since only in limiting cases
analytical expressions for the solitons are available. Usually the solitons are solutions
to a system of coupled ordinary differential equations for the potentials A and φ. All
other quantities like plasma density n and generalized plasma momentum P can then be
calculated from A and φ. Previous investigations about stability of relativistic solitons
were based on nonlinear simulations of the relativistic Maxwell-fluid equations dealing
with soliton evolution. However, it is complicated to safely distinguish between a phys-
ical and a numerical instability in results from nonlinear simulations. Determination of
the most unstable mode and the associated growth rate is usually not feasible by this
method.

The development of an efficient numerical method to determine stability properties
of different solitons is one focus of this work. It will be based on the linearization of a
perturbation with respect to the unperturbed soliton. The most unstable mode and its
growth rate will be determined by this method.
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1. Introduction

This stability analysis technique will then be applied to study the stability of solitons
in different geometries. First we will focus on longitudinal stability, checking the stabil-
ity of solitons which are perturbed by a small amount in propagation direction. We will
study pre-solitons and post-solitons in cold and in warm plasma. The transition dy-
namics of a pre-soliton into a post-soliton will be demonstrated. All this can be treated
within the 1D framework.

The nonlinear stage of an unstable 1D soliton will result in the excitation of an elec-
trostatic plasma wave behind the soliton. In general, it is possible for a high intensity
laser pulse to excite plasma waves and by this transfer energy into the plasma. The ex-
citation of plasma oscillations by relativistically intense laser pulses is a basic technique
for laser-plasma based particle accelerators [31, 19, 84]. Experiments demonstrated the
acceleration of electrons up to a few GeV energy [51], yet beam quality and energy
spread are still problematic [28, 2, 41, 13, 61, 35, 44]. The exited oscillations may be
very large, up to 100 GV/m and more [27].

The stability of the wake-field is of central interest for the laser-plasma accelerator
scheme. Wave-breaking can limit the life-time of these fields. Analytical wave-breaking
analysis of electrostatic plasma waves goes back to a paper from Dawson [19]. He stud-
ied plasma waves in the nonrelativistic case with homogeneous background density and
found a critical threshold amplitude below which oscillations are stable. When the oscil-
lation amplitude is larger, a multistream-flow sets in within the first oscillation and the
wave breaks. In Ref. [21] a nonlinear relativistic second-order differential equation for
the electron-fluid in Lagrangian coordinates was derived. This allowed to study the dy-
namics until wave-breaking in closer detail by numerical integration. By the Lagrangian
coordinates description inhomogeneities in the background density were identified to be
a possible source of wave-breaking. This result is not based on relativistic effects.

The instabilities of 1D solitons clearly show wave-breaking in a homogeneous plasma
as part of the nonlinear evolution, but the excited fields do not always match the Dawson-
criterion. Obviously the criteria for wave-breaking have to be refined.

We will make use of the Lagrangian coordinate framework to study the influence of
relativistic nonlinearities on the stability of wake-fields. We will extend the breaking-
criterion to the relativistic regime and see that breaking occurs without threshold. How-
ever, the time-scale on which breaking takes place may be very long. An estimate for
the breaking time will be given.

The derivation of the 1D solitons assumes that all quantities are constant transversely
to their propagation direction. In simulations and experiments however localized struc-
tures are found. We expect to observe a transition from plane 1D solitons into localized
pulse filaments by a transversal instability. The effect of transversal instability of soli-
tons is well known from classical solitons [46]. To analyze this scenario we have to allow
for a transversal dependence of all quantities. Since this transversal direction is arbi-
trary, we choose a system where the transversal direction is along a single transversal
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coordinate. This means we have a two-dimensional (2D) Maxwell-fluid description.
Within this 2D model we will investigate the transversal instability of circular po-

larized solitons in cold electron-ion plasma. We will employ the same stability analysis
technique for 2D geometry as we used in 1D. The rate of instability will depend on the
wave-number k⊥ of the transversal perturbation. We will quantify this dependence and
find the fastest growing perturbation.

Following the slaving principle [34], the most unstable mode may dominate the non-
linear evolution, slave all others and show up in the topology of the nonlinear end
state. To verify if this principle is at work here, we carry out nonlinear 2D simulations.
The structure of the 2D instability may already give us a hint to dynamics in higher
dimensions.

The field structure of the fastest growing perturbation will be analyzed in terms of
polarization. The results from this discussion will be compared to results from literature,
where the polarization of solitons created from linear polarized lasers is discussed [59].

The fully three-dimensional (3D) study of instabilities is not feasible yet due to lim-
itations in computing power, however we will present that it is possible to gain insight
into the weakly perturbed 3D regime from the 2D results.

The organization of this thesis is the following. In the next chapter the Maxwell-fluid
model describing the laser potential and the plasma response is derived. The numerical
methods to simulate the model equations are discussed at the end of chapter 2. In
chapter 3 a numerical technique for stability analysis is developed. This method will be
used to study stability of different relativistic 1D solitons in chapter 4. Chapter 4 will
cover stability of pre-solitons and post-solitons in 1D. Wave-breaking due to relativistic
effects will be discussed in chapter 5. Chapter 6 covers the influence of transversal
perturbations on plane relativistic solitons. The work is summarized by a conclusion in
chapter 7.
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2 Physical model

To describe the laser and the plasma response, we will use a Maxwell-fluid description.
It consists of fluid equations for the electrons and the ions, coupled to the Maxwell
equations for the vector potential A and the scalar potential φ. The fluid description of
the plasma components does not include kinetic effects such as particle acceleration and
plasma heating. The advantage of fluid models over kinetic models on the other hand
is the lower computational effort to simulate them and much less numerical noise.

First we will discuss the relativistic Maxwell-fluid equations in 3D geometry, in later
chapters we will derive reduced versions for 2D and 1D geometry.

2.1 Maxwell-fluid equations

The Maxwell-equations for the vector potential A and scalar potential φ in Coulomb
gauge are

1

c2
∂2

∂t2
A− ∆A =

4π

c
j− 1

c

∂

∂t
∇φ , (2.1)

∆φ = −4πρ. (2.2)

The fluid equations are coupled to these equations via the densities and the momenta
of the plasma species. For electrons and protons with charge qe = e and qi = −e the
current density j and charge density ρ are given by

j = e(nivi − neve), (2.3)
ρ = e(ne − ni) , (2.4)

with velocities vα and densities nα for the species α (α = e, i). Let pα be the momentum
of species α, the density and the momentum balances are given by

∂

∂t
nα + ∇ · (nαvα) = 0, (2.5)

∂

∂t
pα + (vα · ∇)pα = qα

[

−∇φ− 1

c

∂

∂t
A +

1

c
vα × (∇× A)

]

− 1

nα
∇ · Πα. (2.6)

We shall suppose an isotropic plasma, in this case all off-diagonal entries of the pressure
tensor Πα are zero and all diagonal entries are equal. Let Pα be the entry on the diagonal,
then ∇ · Πα = ∇Pα. The system (2.1)-(2.6) should be closed by an equation of state
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2. Physical model

for the scalar pressure Pα. We suppose the plasma to behave like an ideal gas, hence
Pα = nαkBTα, with temperatures Tα and Boltzmann constant kB. To close the system
of equations we consider an isothermal plasma with Tα = const.

The quiver velocities vα of particles oscillating in an electromagnetic field are related
to the kinetic momenta pα by

va =
pα

mαγα
, (2.7)

where

γα =
1

√

1 −
(

vα

c

)2
=

√

1 +

(

pα

mαc

)2

, (2.8)

with mα the rest mass of species α.
The momentum balance can be rewritten as a balance equation for the canonical

momentum Mα,

∂

∂t
Mα = −qα∇φ−mαc

2∇γα +
1

mαγα
pα × (∇×Mα) −

TαkB
nα

∇nα (2.9)

with Mα = pα − qα
c
A.

Throughout this work, all quantities are normalized. Normalization is done by x →
xωpe/c, t → t ωpe, vα → vα/c, pα → pα/(mec), φ → eφ/(mec

2), A → eA/(mec
2),

nα → nα/n0, Tα → Tα/(mec
2). Here, ωpe = (4πn0e

2/me)
1/2 is the electron plasma

frequency and n0 the unperturbed electron (and ion) density; ω = 1 defines the critical
density. We normalize the charges by the electron charge e, so qe = 1, and qi = −1. We
introduce the mass ratios εe = 1, εi = me/mi.

The dimensionless Maxwell-fluid equations in Coulomb gauge are given by

∂2

∂t2
A − ∆A = j− ∂

∂t
∇φ, (2.10)

∆φ = ne − ni, (2.11)
∂nα
∂t

+ ∇ · (nαvα) = 0, (2.12)

∂

∂t
Mα −

εα
γα

pα × (∇× Mα) = ∇
(

qαφ− γα
εα

)

− Tα
nα

∇nα, (2.13)

j = εi
nipi
γi

− nepe
γe

, (2.14)

with

γe =
√

1 + |pe|2, (2.15)

γi =
√

1 + ε2
i |pi|2. (2.16)

To reduce the numerical effort to solve equation (2.10) and provide a more robust
algorithm, we introduce the two projection operators P

cf and P
df such that a vector
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2.1. Maxwell-fluid equations

field u is decomposed into u = v + w with the properties

P
cfu = v ≡ ucf , ∇× v = 0 , but generally∇ · v not equal zero , (2.17)

P
dfu = w ≡ udf , ∇ ·w = 0 , but generally∇× w not equal zero (2.18)

with
P
df + P

cf = 1. (2.19)

The operators are represented by

P
df = 1 −∇(∆−1)∇ · and P

cf = ∇(∆−1)∇ · . (2.20)

Applying these operators to Eq. (2.10) yields expressions for the curl-free and the
divergence-free part

∂2

∂t2
A − ∆A = jdf , (2.21)

∂

∂t
∇φ = jcf . (2.22)

Writing the kinetic momenta as pα = pdfα +pcfα and splitting of the momentum balance
into curl-free and divergence-free parts leads to

∂

∂t

(

pdfα − A
)

− P
df

[

εα
γα

pα ×
(

∇×
(

pcfα − A
))

]

= 0 , (2.23)

∂

∂t
pcfα − P

cf

[

εα
γα

pα ×
(

∇×
(

pcfα − A
))

]

= ∇
(

qαφ− γα
εα

)

− Tα
nα

∇nα . (2.24)

Equation (2.24) implies that for initial conditions pcfα = A, the canonical momentum
Mα stays curl-free for all times.

To perform the calculations in the upcoming chapters more efficiently, it is usefull
to consider a co-moving frame of reference. Let x be the direction of propagation and
V the velocity of the frame. We introduce ξ = x − V t and τ = t. In this frame the
equations are

∂2

∂τ 2
A − 2V

∂2

∂ξ∂τ
A + V 2 ∂

2

∂ξ2
A − ∆A = P

df j , (2.25)

∆φ = ne − ni , (2.26)
∂

∂τ
nα − V

∂

∂ξ
nα + ∇ · j = 0 , (2.27)

∂

∂τ
Mα − V

∂

∂ξ
Mα −

εα
γα

pα × (∇× Mα) = ∇
(

qαφ− γα
εα

)

− Tα
nα

∇nα , (2.28)

j = εi
nipi
γi

− nepe
γe

, (2.29)
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2. Physical model

with ∇ = (∂ξ, ∂y, ∂z)
T .

The complexity of the equations has been reduced compared to the original Mawell-
fluid equations. Yet they are still a challenge for numerical treatment, because they
contain effects such as shock formation and wave-breaking. The nonlinearities can lead
to a crossing of the characteristics of the equations which then leads to the appearance
of unphysical negative densities within the Maxwell-fluid model.

2.2 Conserved quantities

The system of equations (2.25) - (2.29) has several conserved quantities. These quantities
can be used to verify the accuracy of numerical simulations. We consider a given volume
V, the total energy W in this volume is conserved and given by

W =
1

8π

∫
{

E2 +B2 + 2ne(γe − 1) + 2
ni
εi

(γi − 1)

}

dV (2.30)

=
1

8π

∫

{

[

−∇φ−
(

∂

∂τ
− V

∂

∂ξ

)

A

]2

+ (∇× A)2 (2.31)

+ 2ne(γe − 1) + 2
ni
εi

(γi − 1)

}

dV . (2.32)

The momentum contained in the volume V is proportional to

P =

∫

{nepe + nipi + E ×B} dV , (2.33)

where each component is conserved on its own for P. The total particle number

Nα =

∫

nαdV (2.34)

has to be conserved for each species α = e, i.

2.3 Numerical Algorithms

Let us discuss the numerical methods used in the following chapters to solve the non-
linear and the linearized equations. We will have to solve the equations in different
geometries (1D and 2D), which will be introduced in the next chapters. Common to all
applications is that the equations are coupled partial differential equations in time and
space. All used codes are based on a second-order finite-difference scheme in time. The
advancement in time is determined by a Leap-Frog step. Let u = u(t), then

∂

∂t
u(t) → u(t+ ∆t) − 2u(t) + u(t− ∆t)

(∆t)2
. (2.35)
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2.3. Numerical Algorithms

For spatial derivatives and integration spectral methods are used. Spatial derivatives of
a function f(x) can be calculated by multiplying the Fourier-transformation (FT) f̂ of
f by −ik and performing the backward Fourier-transformation, i.e.

∂

∂x
f(x) → FT−1 (−ikx FT(f(x)) . (2.36)

We deal with discrete distributions in our simulations, hence the discretized version of
Eq. (2.36) is implemented. It uses the discrete Fourier-transformation (DFT). Compared
to finite difference schemes, the spectral scheme produces vastly lower numerical errors
when differentiating discrete distributions. The distribution to be differentiated has to
fulfill some assumptions like e.g. quasi-periodicy for the discrete Fourier transformation
(DFT).

Spatial integration of distributions can be done with spectral methods, too. This is
for example required to recover the potential φ or the electric field E = −∇φ from
the densities ne and ni via the Laplace equation ∆φ = ne − ni. In order to integrate a
function f(x), we perform a discrete Fourier-transformation of the distribution, multiply
every mode by i/kx and perform the inverse discrete Fourier-transformation, i.e.

∫

f(x) dx→ DFT−1

(

i
kx

DFT(f(x)

)

. (2.37)

The treatment of the kx = 0 mode requires additional assumptions about boundary
conditions.

For the 2D simulations we need to implement the operator P
df = 1−∇(∆−1)∇· which

gives the divergence-free part of a vector field. We choose the two spatial coordinates
to be x and y. Let ûj be the DFT of the j component of the vector field u. The j
component of divergence-free part of the vector field u is given by

(Pdfu)j = DFT−1

(

ûj − ikj
1

−k2
x − k2

y

(−ikxûx − ikyûy)
)

. (2.38)

Again the k = 0 mode has to be treated by making assumptions about the resulting
distributions. In our case we assume the amplitude of this mode to be 0 in order to
meet the boundary conditions.

The discrete Fourier transformation used in the implementation is provided by the
Intel MKL library. Simulations in 2D benefit by its multithreaded implementation of
the DFT, which makes use of multiple CPU cores to execute a 2D transformation.

When using spectral methods we have to anticipate aliasing effects [30]. To keep
aliasing errors as small as possible and still retain a large as possible correctly treated
maximum wave number we apply a filter function in Fourier space that cuts 10 % of the
highest modes. This cutting is only done for the densities ne and ni, which proved to
be sufficient to avoid numerical instabilities due to aliasing.

In literature codes are described that use finite difference schemes in space, too. These
codes are much more limited in their numerical stability. The numerical errors due to
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2. Physical model

finite differences in space may serve as initial conditions for a numerical or physical
instability [75].

For all nonlinear simulations, it is possible to check their stability by the conservation
of the conserved quantities listed in Sec. 2.2. All presented nonlinear simulations have
been checked for the conservation of these quantities to a sensible accuracy.

For the linearized Maxwell-fluid equations (3.14)-(2.29) the quantities from Sec. 2.2 do
not have to be stationary. In this case we have to find solutions which are stationary in
order to check the correctness of the code. Let us suppose we know a stationary solution
for the system (2.25)-(2.29) which is given by A0, nα0 and pα0. A stationary solution
to the linearized Maxwell-fluid equations (3.14)-(2.29) is given by ∂A0/∂ξ, ∂nα0/∂ξ
and ∂pα0/∂ξ. By using the derivatives as initial conditions, it is possible to check the
correctness of the simulation of the linearized Maxwell-fluid equations.
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3 Techniques in stability analysis

3.1 Idea of stability analysis

To exemplify the basic idea of stability analysis let us treat a simple system. We assume
a perturbation p, which will evolve in time as

d
dt

p = Mp (3.1)

with constant coefficients Mjk. Let us assume that the matrix M is well behaved and that
the system of eigenvectors is complete. Let ei be the eigenvectors and λi the eigenvalues
of M, i.e.

M ei = λi ei . (3.2)

Then
φ = α ei e

λit , α = const. (3.3)

is a special solution of Eq. (3.1).
As the eigenfunction system of M is complete, we may express any perturbation as

p =
∑

i

αiei . (3.4)

The eigenvalues λi will determine the evolution of each eigenvector. In general they
are complex, i.e. λi = Γ + iω. If all λi have negative real parts, p will vanish after
some time, therefore the system which is perturbed is stable. If any one of the λi has a
positive real part, the perturbation will grow without bounds in time, hence the system
is unstable. In case of all λi having a zero real part, but a non-zero imaginary part we
will call the system marginally stable.

Physically it is in general not necessary to know all eigenvalues and eigenvectors of
M. It is sufficient to know the eigenvector for the eigenvalue with the largest real part
Γ. If this Γ is positive, the system is unstable for perturbations in the direction of this
eigenvector.

For low-dimensional problems it is possible to analytically derive the eigenvalues and
the eigenvectors. For many physical problems the analytical treatment is not feasible due
to the size of the matrix M. In this case numerical methods have to be applied. There
are many possible numerical methods to determine the eigenvalues and eigenvectors;
many of these rely on assumptions about the eigenvalues or the eigenvectors.
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3. Techniques in stability analysis

One possible and very general way to determine the most unstable mode is to solve
the system (3.1). Assuming initial conditions

p(t = 0) =
∑

i

αiei (3.5)

we will get at time t the solution

p(t) =
∑

i

αie
λit ei . (3.6)

This means that after simulating the system for a sufficiently long time, the most unsta-
ble mode will eventually dominate all others and we are left with just this mode. The
time evolution of this mode determines the growth rate Γ.

For time-dependent coefficients the treatment of the linear system is in general much
more complicated. Time-dependence of these coefficients may be introduced by a pos-
sible time-dependence of the unperturbed state. We are only interested in two special
cases here. The first one is where the time-dependence of the coefficients can be trans-
formed out analytically. In this case we can employ the method outlined above for the
resulting system. The second one is where there is a periodic dependency of the coef-
ficients. In this case we may use the same method as described above, but in order to
calculate the growth rate, we only may measure the magnitude of the perturbation at
fixed times that are separated by the period T of the unperturbed state [62].

For nonlinear problems the linear system describing the evolution of a small pertur-
bation is given by linearizing the nonlinear problem about the unperturbed solution.

In case that the system that governs the evolution of the perturbation is not a system
of ordinary differential equations (ODEs) like (3.1), but a system of partial differential
equations (PDEs) in time and space, we have to transfer it into a system of ODEs. This
is done by discretizing all quantities in space.

3.1.1 Numerical linear stability analysis

The system that describes the linear evolution of the perturbation is solved by numerical
methods described in Sec. 2.3. If there is a part along the most unstable mode contained
within the initial conditions, the amplitude of the distribution will grow in time. As the
system is linear, we can divide the distribution by any factor we like at times tn = tn+nT .
In general we reduce the magnitude of the distribution to the order of 1 at these times.
This is advantageous for numerics because the accumulated numerical errors will be
reduced in size by this method, too. If the coefficients for the linear system are periodic
with time time Tp, due to a periodic behavior of the unperturbed solution, we choose
T = Tp.

3.2 Problems of linear stability analysis

Linear stability analysis implicitly assumes that the perturbation and its spatial deriva-
tives are small compared to the unperturbed solution at every point in the spatial

18



3.2. Problems of linear stability analysis

domain.
Not all growing modes found by linear stability analysis are instabilities. An example

for this are solitons of the cubic Schrödinger equation

i∂tψ + ∂xxψ + |ψ|2ψ = 0 , (3.7)

for which the solitons with velocity V are given by

ψ(x, t; η, V ) =
√

2 η sech(η(x− V t)) ei
V x
2

+i(η2−V 2

2
)t . (3.8)

Introducing a perturbation ψ1 and linearizing Eq. (3.7) about the unperturbed solution
ψ0 we get

i ∂tψ1 + ∂xxψ1 + 2|ψ0|2ψ1 + ψ2
0ψ

∗
1 = 0 . (3.9)

Let φP be a perturbation of the form

φP = ψ(x, t; η + δη, V ) − ψ(x, t; η, V ) . (3.10)

Expanding φP in powers of δη and stopping with the linear term, we get the so called
phasor-mode, which results in

φP = sech(η(x− V t))
(

1 + η2 {2i t− tanh(η(x− V t))}
)

ei
V x
2

+i(η2−V 2

2
)t . (3.11)

The phasor-mode is a solution of Eq. (3.9) and grows proportional to t. The perturba-
tion of the second parameter V

φT = ψ(x, t; η, V + δV ) − ψ(x, t; η, V ) (3.12)

is the so called translation-mode, which is a solution of Eq. (3.9) and growing with t,
too. It is given by

φT = sech (η(x− V t))

(

η t tanh(η(x− V t)) + i
(

V

2
− V t

))

ei
V x
2

+i(η2−V 2

2
)t . (3.13)

The phasor-mode and the translation-mode are solutions of the linearized Eq. (3.9)
for an infinitesimal perturbation in phase or speed. They grow without bounds in
time proportional to t. Even though these modes are growing, their growth is not
to be understood as an instability. Over time these modes only separate in terms of
phase or position from the unperturbed state. It is the method of linearization that
implicitly carries an unphysical concept of stability. The more physical concept which
is appropriate in this place is the stability of invariant sets, see Appendix A.1.

In the following chapters we are going to investigate for stability of solitons which de-
pend on parameters like frequency, velocity or temperature. The parameter dependence
of the solitons is a possible source for growing modes that are analogous to the phasor-
and the translation-mode in the example above. In most cases such modes grow accord-
ing to a power-law and not exponentially. In order to be sure that the most unstable
mode we get from the linear system is an instability, we check our findings by nonlinear
simulations. The initial conditions used for these simulations are the unperturbed state
plus a small amount of the mode we found in the linear case. As long as the perturbation
is only a small part of the whole numerical solution, it has to grow according to eΓt to
be an instability.
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3. Techniques in stability analysis

3.3 Linearized Maxwell-fluid equations

To follow the linear evolution of a perturbation of relativistic solitons we have to linearize
the Maxwell-fluid equations (2.25) - (2.29) about an unperturbed solution. Let the
unperturbed solution consist of A0, pα0, nα0. We introduce perturbations A1, pα1, nα1

such that A = A0 + ǫA1, pα = pα0 + ǫpα1, nα = nα0 + ǫnα1, where ǫ is a smallness
parameter.

We will perform linear stability calculations only in cold plasmas T = 0. Subsequent
linearization of the model equations leads to

∂2

∂τ 2
A1 − 2V

∂2

∂ξ∂τ
A1 + V 2 ∂

2

∂ξ2
A1 − ∆A1 = P

df (ji1 − je1) , (3.14)

∆φ1 = ne1 − ni1 , (3.15)
∂

∂τ
nα1 − V

∂

∂ξ
nα1 + ∇ · jα1 = 0 , (3.16)

jα1 =
ǫα
γα0

[

nα1
pα0 + nα0pα1

− 1

γα0
nα0γα1pα0

]

,

(3.17)

∂

∂t
Mα1 − V

∂

∂x
Mα1

− ǫα
γα0

[

− 1

γα0

γα1pα0 × (∇× Mα0) + pα1 × (∇×Mα0) + pα0 × (∇×Mα1)

]

= ∇
(

qαφ1 −
1

ǫα
γα1

)

, (3.18)

with

γα1 = ǫ2α
pα0 · pα1

γα0
. (3.19)

The set of equations (3.14)-(3.18) is the basis for the numerical stability analysis of
different soliton solutions in the upcoming chapters. It will be applied in different
geometries and on different time-scales (e.g. neglecting variation of ion density and
assuming zero parallel ion momentum for pre-solitons).
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4 Stability and dynamics of

relativistic 1D solitons

In the introduction we discussed the physical processes that lead to the formation of
solitary structures during relativistic laser-plasma interaction. Besides simulations that
show the creation process of solitary structures and the later evolution, a number of
analytical approaches has been taken to get to an analytical understanding of relativistic
solitons [42, 26, 25, 66, 32, 57, 72, 73, 58].

In this chapter, we will discuss the longitudinal stability of known stationary solutions
of the Maxwell-fluid equations. This will include circular polarized soliton solutions
on the electron- and on the ion-timescale [42, 25, 23], linear polarized solitons on the
electron-timescale [32] and circular polarized solitons in warm electron-ion-plasma [58].
Our numerical stability analysis will provide us the structure of the fastest growing mode
and its growth rate Γ. The growth rate will determine the physical importance of the
instability. Fully nonlinear simulations allow us to make prediction for the nonlinear
end state that we would expect.

Let us assume a laser pulse propagating in x direction. If the focal spot size, i.e.
the transversal dimension of the laser pulse, is much larger than the length of the pulse
in propagation direction, we can assume to a good approximation that all quantities
depend just on the coordinate x in propagation direction and time, but not on the
transversal coordinates y and z.

4.1 1D model equations

The assumption of transversely constant quantities reduces the general 3D model (2.25)
- (2.29) to the standard 1D model. We arrive at this model by neglecting derivatives
along the transversal directions y and z, so that ∇ = (∂ξ, 0, 0)T in (2.25) - (2.29). The
Coulomb gauge ∇·A = 0 now requires Ax = 0. The vector potential is therefore purely
transversal

A = (0, Ay, Az)
T . (4.1)

We introduce a complex notation of the transversal components

A⊥ = Ay + iAz . (4.2)

The momenta are split into a parallel and a transversal part pα = pαex + pα⊥. For
the derivation of all 1D soliton solutions pα⊥ = qαA⊥ is supposed, thus Mα⊥ = 0.

All together the relativistic model equations in 1D geometry are
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4. Stability and dynamics of relativistic 1D solitons

∂2

∂τ 2
A⊥ − 2V

∂2

∂ξ∂τ
A⊥ −

(

1 − V 2
) ∂2

∂ξ2
A⊥ = −

(

εi
ni
γi

+
ne
γe

)

A⊥ , (4.3)

∂2

∂ξ2
φ = ne − ni , (4.4)

∂

∂τ
nα − V

∂

∂ξ
nα +

∂

∂ξ
jαx = 0 , (4.5)

∂

∂τ
pα − V

∂

∂ξ
pα =

∂

∂ξ

(

qαφ− γα
εα

)

− Tα
nα

∂

∂ξ
nα , (4.6)

where

γα =
√

1 + ε2
α (|A⊥|2 + p2

α) , (4.7)

jαξ = εαnα
pα
γα
. (4.8)

Besides to discuss the interplay between backward and forward Raman scattering,
modulation of broad light pulses, down-cascade in the frequency spectrum, photon con-
densation, and break-up of the original laser beam [66], this model is also suitable to
investigate 1D slow solitons on the electron time-scale.

The linearized equations (same notation as in Sec.3.3) in 1D are

∂2

∂τ 2
A⊥1 − 2V

∂2

∂ξ∂τ
A⊥1 −

(

1 − V 2
) ∂2

∂ξ2
A⊥1 =

∑

α

qα

{

εα
γα0

(

nα1 −
γα1

γα0
nα0

)

A⊥0 + nα0A⊥1

}

,

(4.9)

∂2

∂ξ2
φ1 = ne1 − ni1 , (4.10)

∂

∂τ
nα1 − V

∂

∂ξ
nα1 = − ∂

∂ξ
εα

(

nα1
pα0

γα0
+ pα1

nα0

γα0
+

ε2
α

γα0
pα0 · pα1

)

, (4.11)

∂

∂τ
pα1 − V

∂

∂ξ
pα1 =

∂

∂ξ

(

qαφ1 − εα
pα0 · pα1

γα0

)

. (4.12)

For linear polarization we derive a reduced description of the system (4.3) - (4.6), valid
for only a weak electron density response and weakly relativistic laser pulse amplitudes.
We will treat only standing solitons in this case, hence V = 0. Variations of ni and pi‖
are neglected, hence the model is only valid on the electron time-scale. We introduce
the electron density variation δne as ne = 1 + δne and suppose |A⊥| ≪ 1.

The wave equation (4.3) reduces to

∂2

∂ξ2
A⊥ − ∂2

∂τ 2
A⊥ = (1 + δne)

A⊥

γe
. (4.13)
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4.2. Solitons on the electron time scale

The plasma response is determined by the equations

∂2

∂ξ2
φ = δne , (4.14)

∂

∂τ
δne = − ∂

∂ξ

(1 + δne)pe‖
γe

, (4.15)

∂

∂τ
pe‖ =

∂

∂ξ
(φ− γe) . (4.16)

Let ǫ characterize the amplitude of A⊥. Equation (4.16) suggests the ordering δne ∼
pe‖ ∼ a2 ∼ O(ǫ2). We take the time derivative of (4.15) and insert expressions (4.14)
and (4.16). We keep only terms of the order of ǫ2, all higher terms are neglected. The
result is

∂2

∂τ 2
δne + δne =

∂2

∂ξ2
γe , (4.17)

where γe ≈
√

1 + |A⊥|2 (since pe‖ ≪ A⊥).
A further simplification of the equations (4.13) and (4.17) is possible by expanding γe

appropriately. To lowest order we get from (4.13) and (4.17)
(

∂2

∂ξ2
− ∂2

∂τ 2

)

A⊥ = −
(

1 + δne −
A2

⊥

2
+

1

8
A4

⊥

)

A⊥ , (4.18)

∂2

∂τ 2
δne + δne =

1

2

∂2

∂ξ2
A2

⊥. (4.19)

The latter model has been used in [32] to derive linear polarized soliton solutions,
which we are going to study in Sec. 4.2.2 of this chapter.

4.2 Solitons on the electron time scale

4.2.1 Circular polarization

One of the first approaches to derive soliton solutions in 1D geometry was by Esirkepov et
al. [23]. To simplify the equations a static ion background was supposed. Starting from
(4.3)-(4.6) and neglecting the ion density variation, standing (V=0) circular polarized
solutions where found in the form of ordinary partial differential equations for the vector
potential and the momentum. For standing solitons an analytic expression was derived

A⊥ =
2
√

1 − ω2
0 cosh(ξ

√

1 − ω2
0)

cosh2(ξ
√

1 − ω2
0) + ω2

0 − 1
eiω0τ . (4.20)

The maximum amplitude A0 and the frequency ω0 are related by

A0 =
2
√

1 − ω2
0

ω2
0

. (4.21)
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4. Stability and dynamics of relativistic 1D solitons

The frequency ω0 has to be lower than the electron plasma frequency to keep the
radiation trapped, i.e. ω0 < 1. The maximum amplitude these solitons can achieve is
A0 =

√
3, Fig. 4.1 displays this solution.

By simulation of the linearized equations (4.9)-(4.12) we found that these solitons are
stable with respect to small initial perturbations.
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Figure 4.1: Circular polarized soliton with V = 0 described by (4.20) with ω =
√

2/3. The blue
line corresponds to the intensity |A⊥|2, the green line to the longitudinal electric field
and the red line to the density variation n − n0 by the soliton, respectively.

4.2.2 Linear polarization

For linear polarization it is much more difficult to solve the fully relativistic 1D model
due to the generation of higher harmonics of the incident wave. A simplified approach is
to solve, instead of the fully relativistic system (4.3)-(4.6), the weakly nonlinear system
(4.18)-(4.19). Introducing a slowly-varying complex envelope in the form

A⊥ =
1

2

(

αe−iEτ + α∗eiEτ
)

, (4.22)

δne = N0 +
1

2

(

N2e
−2iEτ +N∗

2 e
2iEτ

)

, (4.23)

and substituting (4.22) and (4.23) into (4.19) leads to

N0 =
1

4
|αξξ|2 , N2 = − 1

12
(α2)ξξ . (4.24)
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4.2. Solitons on the electron time scale

With η2 = 1 − E2 we get an equation for α(ξ) in the form

(αξ)
2 =

η2α2
(

1 − 3
16
α2

η2
+ 5

192
α4

η2

)

1 − 5
12
α2

. (4.25)

This equation can be solved numerically and leads to solutions for A⊥ and δne.
Depending on the η-value, the solutions are stable or not (on the electron time-scale).

Previous investigations [32, 63] predicted stability over a broad range of η-values. The
predictions were made by using the Vakitov-Kolokolov criterion [88], see Appendix B.1.
The Vakitov-Kolokolov criterion states that solutions are stable with respect to small
perturbations as long as dP/dη2 > 0, where P is given by

P =

∫

|α(ξ)|2dξ. (4.26)

Our numerical simulations of the system (4.18)-(4.19) show that the range of η in which
stability prevails is much smaller than as previously predicted on basis of the Vakitov-
Kolokolov criterion [32].

Figure 4.2: Time evolution of the maximum of A⊥ due to numerical integration of the linearized
equations, for a linear polarized soliton with A⊥0 = 0.2.

Let A⊥0 be the maximum amplitude of the linear polarized soliton. Previous inves-
tigations [32] predicted instability only for high intensities A⊥0 ≥ 1.44. Here, we find
that the instability sets in already for A⊥0 ≈ 0.2, i.e. well below the ultra-relativistic
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4. Stability and dynamics of relativistic 1D solitons

regime. The just mentioned threshold amplitude follows within the model (4.18)-(4.19).
It is also found in the simulations of the fully relativistic Eqs. (4.3)-(4.6).

The “numerical proof of instability” for amplitudes of the order of, or larger than,
A⊥0 ≈ 0.2 will now be demonstrated on the following graphs. Figure 4.2 shows the time
evolution of the maximum of A⊥ due to numerical integration of the linearized versions of
equations (4.18)-(4.19), for a linear polarized soliton with A⊥0 = 0.2. The most unstable
mode can be identified. Figure 4.3 shows the corresponding fastest growing mode. The
exponential growth rate Γ for this mode is approximately 0.001. When a significant
part of this mode is put as an initial perturbation into the nonlinear integrator, the
instability can be clearly seen. Figure 4.4 shows results from the nonlinear integration of
an unperturbed and a perturbed linear polarized initial condition, respectively, for A⊥0 =
0.2 after the time t = 1500. During the time of integration the unperturbed distribution
is practically unchanged while a perturbation of one percent leads to significant unstable
behavior.

Figure 4.3: Fastest growing mode of the perturbation for a linear polarized soliton with A⊥0 = 0.2.
The exponential growth rate Γ for this mode is 0.001.

4.3 Solitons on the ion time-scale

4.3.1 From pre-soliton to post-soliton

The dimensionless nonrelativistic dispersion relation for an electron plasma wave with
frequency ω0 and wave-number k is given by

ω0 =
√

1 + k2 . (4.27)
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4.3. Solitons on the ion time-scale

Figure 4.4: Left: Evolution of an unperturbed linear polarized soliton with A⊥0 = 0.2. Right:
Evolution of a perturbed linear polarized soliton with A⊥0 = 0.2. The initial perturbation
was 1% of the fastest growing mode.

A laser pulse with frequency ω0 > ωpe is moving with the group velocity in the under-
dense plasma which is given by

vgr(k, ω0) =
∂ω0

∂k
=

k

ω0

=

√

1 − 1

ω2
0

. (4.28)

The time T it takes the pulse to cover the distance of one wavelength λ = 2π/k is

T =
λ

vgr
=

2π

1 − 1
ω2

0

. (4.29)

For a laser frequency of ω0 = 2 (this corresponds to n/ncr = 1/4) a laser pulse would
roughly cover one laser wavelength within a time of 12 in normalized units. The typical
time-scales on which the species are able to respond to external forces are given by the
inverse of their plasma frequency. Hence the time-scale for ions is about 40 times longer
than the time-scale for the electrons (if we a assume e.g. an ionized hydrogen plasma).
So for a pulse with just a few laser cycles or even sub-cycle pulses, we can assume the
ions to be a static background. For short pulses with frequency ω0 close to ωpe which are
moving at lower speed or are even standing, ions can not be considered static anymore.

To demonstrate the transition from a pre-soliton to a post-soliton, we performed sim-
ulations of pre-soliton solutions in a plasma with mobile ions, that are initially uniformly
distributed. We demonstrate the transition for a standing circular polarized pre-soliton
given by Eq. (4.20) with initial amplitude A0 = 0.2. Figure 4.5 shows the evolution of
the electron and ion density. After a time of approximately 1/ωpi the ions react to the
field of the soliton and move towards the electrons. The system intents to evolve into
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4. Stability and dynamics of relativistic 1D solitons

a quasi-neutral state. As the ions become pushed out of the center of the soliton, the
electrons become even more evacuated. This leads to an almost complete evacuation of
density in the middle. At the same time the trapped vector potential gets narrower and
steeper. With larger initial amplitudes A0 the whole process becomes faster.

The electrons, being pushed outwards, pile up at the border of the depression. Very
large density gradients are achieved. Then, of course, finite pressure (temperature)
effects may come into play. We have shown that finite electron temperatures will ulti-
mately stop the density steepening. With finite electron temperature no more a complete
density evacuation takes place. The required temperatures are quite large, e.g. of order
50 keV. Figure 4.6 shows a typical example. The transition from a pre-soliton to a post-
soliton on the ion time-scale was observed experimentally and has already been shown
by multi-dimensional PIC simulations [69].

4.3.2 Stationary solitons on the ion time-scale

In general, we have to include ion movement into our system to describe slow solitons.
Stationary soliton solutions of (4.3)-(4.6) have been found numerically in Ref. [26] for
circular polarization on the basis of the formulation in Ref. [42].

The idea is to express all plasma quantities as functions of the vector potential A and
the scalar potential φ. A system of two coupled ordinary differential equations for the
two potentials results, which has to be solved numerically.

We start by deriving expressions for pα, γα and nα which only depend on φ and
A. The vector potential is purely transversal, hence we will combine its two non-
vanishing components into one complex quantity A⊥ = Ay + iAz. We introduce ̺α =
−qeme/(qαmα). The boundary conditions are A⊥|±∞ = 0, φ|±∞ = 0, pα|±∞ = 0 and
nα|±∞ = 1. We integrate (4.5) and (4.6) and assume stationary states, hence ∂

∂τ
→ 0,

and get

−V
∫ x

−∞

∂

∂ξ
nαdξ +

∫ x

−∞

∂

∂ξ
nαvαdξ = 0 , (4.30)

−V
∫ x

−∞

∂

∂ξ
pαdξ = −

∫ x

−∞

∂

∂ξ
qαφdξ −

∫ x

−∞

∂

∂ξ

γα
εα

dξ , (4.31)

which leads to

nα (vα − V ) = −V, note vα = εα
pα
γα

, (4.32)

−V pα = −qαφ− γα
εα

+ 1 . (4.33)

The relativistic γα factors can be expressed in two ways

γ2
α = 1 + ε2

α

(

A2
⊥ + p2

α

)

, (4.34)
γα = εα (V pα + 1 − qαφ) . (4.35)
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Figure 4.5: Top: Density of ions (red line) and electrons (blue line) at different times t = 0, t = 50,
t = 500, and t = 1000, respectively, when starting with an initial circular polarized
pre-soliton with A0 = 0.2 given by Eq. 4.20.
Bottom: Electron density at t = 1100 from the same simulation as top figures. Post-
soliton created from pre-soltion.
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Figure 4.6: Left: Electron density distribution without (solid line) and with (dash-dotted line) elec-
tron temperature Te= 50 keV at times t = 370 and t = 800, respectively. Right:
Evolution of the minimum density in time.

We introduce ψα and Rα as

ψα = εα(1 − qαφ) , (4.36)

Rα =
√

ψ2
α − (1 − V 2) (1 + ε2

αA
2
⊥) . (4.37)

Squaring (4.35) and equating it with the right hand side of Eq. (4.34) gives after some
algebraic manipulations

pα =
V ψα ± Rα

1 − V 2
. (4.38)

To decide which sign is correct, we have to take the asymptotic behavior into account.
The momentum pα has to vanish for ξ → ∞ since we are looking for localized solutions.
As Rα|±∞ = V we identify the correct expression for the momentum as

pα =
1

εα

V ψα − Rα

1 − V 2
. (4.39)

In order to express γα in terms of φ and A⊥ we start again with the two expressions for
the γα factor (4.34) and (4.35). First we square (4.35), equate it with the right hand
side of (4.34) and then insert (4.39). We get

−R
2
α + ψ2

α

1 − V 2
= 1 + ε2

αa
2 . (4.40)
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4.3. Solitons on the ion time-scale

Inserting this into Eq. (4.35) results in

γ2
α =

ψ2
α −R2

α

1 − V 2
+

(V ψα −Rα)
2

(1 − V 2)2

=
ψ2
α + V R2

α − 2V Rαψα

(1 − V 2)2 . (4.41)

We get an expression for the γα factor which is a function of φ and A⊥

γα =
ψα − V Rα

1 − V 2
. (4.42)

To obtain an expression for the densities nα, start with vα = εα
pα

γα
and insert (4.39) and

(4.42), which results in

vα =
V ψα/Rα − 1

ψα/Rα − V
. (4.43)

We insert this into the expression for nα which we got by integration of the continuity
equation

nαεα

(

pα
γα

− V

)

= −V , (4.44)

and we get

nα =
V 2 − V ψα/Rα

V 2 − 1
. (4.45)

We now have expressions for pα, γα and nα in terms of φ and A⊥. Inserting (4.45) into
the 1D Laplace equation

∂2φ

∂ξ2
= ne − ni , (4.46)

leads to

∂2φ

∂ξ2
=

V

1 − V 2

(

ψe
Re

− ψi
Ri

)

. (4.47)

The 1D wave equation for the potential A⊥ reads

(

1 − V 2
) ∂2

∂ξ2
A⊥ + 2V

∂2

∂ξ∂τ
A⊥ − ∂2

∂τ 2
A⊥ =

(

εi
ni
γi

+
ne
γe

)

A⊥

= A⊥V

(

1

Re
+ εi

1

Ri

)

. (4.48)

We make the ansatz A⊥(ξ, θ) = a(ξ)eiωθ for the solitons, where θ = t− V x. Afterwards
we transform the equations into the co-moving frame which is defined by τ = t and
ξ = x − V t. Inserting into Eq. (4.48) gives us the ordinary differential equation for the
amplitude of the vector potential

∂2a

∂ξ2
+ ω2

0a =
aV

1 − V 2

(

1

Re
+ εi

1

Ri

)

. (4.49)
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4. Stability and dynamics of relativistic 1D solitons

Equations (4.47) and (4.49) describe coupled Langmuir and circular polarized transverse
electromagnetic waves. These coupled equations can be solved numerically by standard
integration methods like Runge-Kutta-Fehlberg methods.

These equations are reversible under the transformation ξ → −ξ, since a → ±a and
φ → φ. This means that we expect the solutions to be symmetric in φ and either
symmetric or antisymmetric in a. We restrict ourself to solutions which are single
humped in φ. To solve the system we choose a fixed value for V and integrate Eq.
(4.49) and (4.47) with the initial conditions at ξ = ξ1, φ = φ′ = 0, a′1 = λa1 for small a1

and λ =
√

(1 + εi)/(1 − V 2) − ω2
0. We will adjust ω0 until there is a position at which

φ′ = 0 and a′1 = 0 (for even p) or φ′ = 0 and a1 = 0 (for odd p). After having found such
a combination of ω0 and V the calculation will be repeated on a shifted grid in such a
way that the maximum of φ is located at ξ = 0. Once the vector and the scalar potential
have been obtained, the other quantities pα, nα and γα can be calculated from these
potentials by Eq. (4.39), (4.45) and (4.42). Figure 4.7 shows three different solitons.
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Figure 4.7: Amplitude a of the vector potential (green line) and electrostatic potential φ (blue line)
for solitons with node numbers p = 0, p = 1 and p = 2 (left to right). All solitons have
the velocity V = 0.4, the frequencies are ω0 = 1.08912, ω0 = 0.8533 and ω0 = 0.75766,
respectively.

The solitons are categorized by the number p = 0, 1, 2, . . . of nodes in the vector
potential. With mobile ions there is a minimum velocity above which these solitons
exist. The p = 0 solitons have a continuum in ω0 for which they exist for a fixed velocity
V , this distinguishes them from all other solitons p = 1, 2, ... for which there is only a
discrete spectrum for every velocity V , see Fig. 4.8.

To check the stability of the Bulanov-Farina solitons, we carried out simulations of
the system (4.9)-(4.12). For linear stability analysis it is more accurate and conve-
nient to deal with time-independent time-evolution operators (see chapter 3). Hence we
transformed out the time dependence of the vector potential due to the phase factor
exp(iω0(1 − V 2)t) of the soliton. The associated eigenvalue to the most unstable mode
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4.3. Solitons on the ion time-scale

Figure 4.8: Regions of existence for circular polarized bright solitons without (left) and with included
(right) ion motion for node numbers p = 0, 1, 2, . . . as function of the velocity V . Figure
taken from Ref. [25].

in the linear regime may in general be complex, so this mode might evolve in time as
eΓt cos(ω̃t).

For solitons with p = 0 we did not find any physically relevant growth rates, so we
conclude that these solitons are stable. Solitons with node numbers p = 1, 2, ... are
unstable and show two different types of instabilities. The linear growth rate Γ for these
solitons is shown in Fig. 4.9 for different soliton velocities V . In general the growth rate
increases as the soliton velocity decreases. For p = 1 there is a local minimum of the
growth rate at V ≈ 0.7. This point separates two kinds of instabilities. Perturbations for
solitons above this velocity are purely growing by eΓt, those below exhibit an additional
oscillatory evolution and grow like eΓt cos(ω̃t). This separation between the two types of
perturbations can be seen for solitons with higher node numbers p too, but takes place
at higher velocities.

Let us discuss the meaning of ω̃ for the evolution of the perturbation in the laboratory
frame. If ω̃ is zero, the evolution of the perturbation in the laboratory frame at a
fixed position is only due to the spatial distribution of the mode in the co-moving
frame. For the vector potential the additional phase factor has to be included since
to grow this mode we transformed out the explicit time dependence due to this factor.
The oscillations of the vector potential of the perturbation at a fixed position in the
laboratory frame are therefore determinded by the soliton frequency ω0 and the spatial
distribution in the co-moving frame.

In the case ω̃ different from zero the unstable mode oscillates in the co-moving frame
and this oscillation introduces additional oscillations in the laboratory frame. This leads
to the generation of frequency side bands in the vector potential. Let us again consider
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Figure 4.9: Linear growth rate Γ for longitudinal instability of p = 1 solitons depending on the soliton
velocity V . The minimum at V ≈ 0.7 separates oscillatory growing perturbations from
purely growing ones.

the vector potential. First, the spatial distribution in the co-moving frame leads to a
temporal evolution in the laboratory frame at a fixed position, these oscillations are
then shifted by ω0 due to the phase factor. Second, the frequency ω̃ in the co-moving
frame leads to side bands ω0 ± ω̃. These side bands are considered to be an indication
of forward Raman scattering by Saxena et al. [76].

In order to verify the linear results and to examine the nonlinear regime of the evolu-
tion a nonlinear simulation is done. The initial conditions are the unperturbed soliton
plus small amount ǫ of the linear fastest growing perturbation for the soliton. As long
as the amount of the perturbation is small, the growth of the perturbation has to be
proportional to eΓt. The nonlinear terms become important when the perturbation has
grown to some reasonable amount or they have been acting for a long time. In the
nonlinear regime it might be possible for the perturbation to become saturated.

Figure 4.10 shows the nonlinear evolution of a p = 1 soliton with V = 0.8 and an
added small initial perturbation . Initially the perturbation was 1 % of the soliton.
The perturbation excites a growing electrostatic plasma wave behind the soliton. The
amplitude of the excited wave is not constant. Figure 4.11 shows the further evolution
of the perturbed soliton. At approximately t = 600 the excited plasma wave is strong
enough to split up the vector potential. A new stable structure is created which is slower
than the original soliton. This structure seems to drive the wave-field excitation much
more efficiently and very large density gradients are achieved. Between these spikes the
electron density becomes more and more depleted and some small part of the vector
potential eventually becomes trapped inside these cavities. The steeper the gradients
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4.3. Solitons on the ion time-scale

become, the shorter the typical time-scale for the growth of these spikes becomes.
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Figure 4.10: Electron density ne (blue line) and intensity |a|2 (red line) of a perturbed p = 1 soliton
with V = 0.8 at times t = 0, t = 226, t = 545 and and t = 566 (blue line),
respectively. A growing plasma wave is excited behind the soliton, while the vector
potential of the soliton does not suffer any major deformation up to t = 566. The
amount of the initial perturbation is 1% of the unperturbed soliton, the linear growth
rate Γ = 0.0104.

Following this evolution over an even longer time is prohibited due to the fixed finite
resolution of the computational grid. Including kinetic effects like a finite temperature
might stop the growth of these peaks when the pressure term balances the ponderomotive
and the electorstatic force. Since the pressure term is proportional to Tα∇nα (see Eq.
(2.28)), we still would have to resolve large gradients in the density for this term to
become large enough to balance the radiation pressure, since Tα is for example only 0.1
for a 50keV plasma. Resolving such a gradient would require a vastly finer computational
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Figure 4.11: Electron density ne (blue line) and intensity |a|2 (red line) of a perturbed p = 1 soliton
with V = 0.8 at times t = 611, t = 657, t = 702 and and t = 747 (blue line),
respectively. The excited plasma wave becomes strong enough to split up the vector
potential. A slower, stable structure is created. Eventually wave-breaking sets in. The
amount of the initial perturbation is 1% of the unperturbed soliton, the linear growth
rate Γ = 0.0104.
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grid, which in return would require too much computational effort to solve the equations
on this grid. Methods like adaptive mesh refinement or Godunov methods adapted to
Maxwell-fluid models might allow following this process for longer time.

For cold plasma eventually wave-breaking sets in, which results in electric field gra-
dients that become infinite. Figure 4.12 displays the electron density and the electric
field for a point in time where wave-breaking is close. The density peaks are already
very high and the electric field shows strong gradients.

In the physical picture wave breaking means that particles out of the wave overtake
the wave, that is that the peak fluid velocity equals the phase speed of the plasma
wave [1, 19]. Wave-breaking is a process where trajectories of adjacent fluid elements
would cross; this crossing is associated with a microscopic change of the distribution
function. Such effects are not covered by the fluid description, hence this description is
no more adequate. Using fluid equations and simulating beyond the point where wave-
breaking takes place results in unphysical negative densities. The appearance of these
unphysical results from Maxwell-fluid simulations in this situation can be understood
by an analytical model that is developed in the next chapter.
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Figure 4.12: Electric field E and electron density ne at time t = 747 of a perturbed p = 1 soliton
with V = 0.8. The amount of the initial perturbation is 1% of the unperturbed soliton.
The peaks in the electron density are associated with strong electric field gradients.
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4. Stability and dynamics of relativistic 1D solitons

4.4 Solitons in warm electron-ion plasma

In some scenarios the effects of a finite temperature can no longer be neglected. The
balance between electrostatic and electromagnetic fields inside a soliton can now be
altered by the plasma pressure. To study the effects of finite plasma temperature we
distinguish two approaches that have been taken so far.

Both approaches are based on a hydrodynamic description for a hot plasma coupled
to Maxwell’s equations from first principles, namely the conservation laws for particle
number and the energy-momentum tensor [57]. Within the first approach the particle
distribution function is supposed to be isotropic [57]. The adiabatic closure of the fluid
equations leads to a entropy conservation for each species. This model has then been em-
ployed to study 1D circular polarized non-drifting solitons in overdense electron-positron
(α = e, p) plasma for arbitrary temperatures Te,p. It is found that a finite temperature
allows for soliton solutions that would not exist in cold plasma. In the ultrarelativistic
regime extremely large concentrations of electromagnetic energy are possible while the
temperature profile of the background plasma becomes strongly nonuniform. In the
limit of vanishing temperatures the adiabatic model predicts that even a modest field
|A⊥| ≪ 1 is able to deplete the plasma density inside the center of the soliton up to
full expulsion. It is due to the same mass of electrons and positrons that no charge
separation is expected, hence a stationary solution has no electrostatic potential. Since
there is no charge separation, even solitons with very low amplitudes are able to expel
all density from their inside. A similar analysis has been done in Ref. [6] using the
slowly varying envelope approximation in an underdense electron-positron plasma.

Treatment of an electron-ion plasma is more complicated than for an electron-positron
plasma, since in general electrostatic potentials are present. In situations where the
particle thermal spread in transverse direction( to the radiation direction) is small com-
pared to the spread in longitudinal direction the particle distribution function is highly
anisotropic. The anisotropic case is the more physically relevant one in terms of laser-
plasma interaction. In Ref. [58] a two-fluid electron-ion plasma model is derived un-
der the assumption of such an anisotropic distribution function for both species. The
plasma is supposed to have a constant parallel temperature due to fast quasithermal-
ization in longitudinal direction. In transversal direction the distribution function is
highly anisotropic due to the motion of the particles in the laser fields. The transver-
sal thermal spread will be negligible compared to the motion under the influence of
the electromagnetic fields. Thus, the particle distribution function fα is assumed to be
beam-like

fα(Wα,Pα⊥) =
n0α

2K1(T−1
α )

δ(Pα⊥) exp

(

− Wα

εαTα

)

, (4.50)

where nα0 is the background density of species α, Wα is the total energy of a particle,
Tα the ratio of thermal energy to the rest energy and K1 the modified Bessel function
of first order.

The δ-function assures the conservation of the transversal component of the general-
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4.4. Solitons in warm electron-ion plasma

ized momentum. The total particle energy at position r is given by

Wα(r, t, pα) = γs + qsφ(r, t) , (4.51)

where the dependence of the parallel momentum pα is introduced by the relativistic
factor

γα =
(

1 + ε2
αp

2
α

)1/2
. (4.52)

The generalized momentum is determined by

Pα(r, t) = pα + qαA(r, t) . (4.53)

The distribution function (4.50) is an exact solution of the relativistic Vlasov equation

∂

∂t
fα +

pα

γα
· ∇fα + qα

[

E(r, t) +
pα

γα
× B(r, t)

]

· ∂fα
∂pα

= 0 . (4.54)

Inserting (4.50) into (4.54) results in

1

Tα
δ (Pα⊥)

(

∂

∂t
φ− ∂

∂t
A · pα

γα

)

+

[

∇φ− (∇A) · pα
γα

]

· ∂

∂Pα⊥
[δ(Pα⊥)] = 0 . (4.55)

If we suppose one-dimensional geometry, where all quantities only depend on one spatial
coordinate (assume x), assume circular polarization and use the the conservation of Pα⊥,
Eq. (4.55) and therefore (4.54) are exactly satisfied by an electromagnetic distribution
with stationary energy. Therefore (4.50) is an exact solution of the 1D kinetic equation
and can be used to calculate the consistent charge and current density distributions.
These distributions are the field sources in Maxwell’s equations and are given by

nα(r, t) = nα0
K1[γα⊥(εαTα)

−1]

K1[(εαTα)−1]
γα⊥ exp

(

− qαφ

εαTα

)

, (4.56)

jα⊥(r, t) = −qαnα0
K0[γα⊥(εαTα)

−1]

K1[(εαTα)−1]
A⊥ exp

(

− qαφ

εαTα

)

, (4.57)

where we introduced γα⊥ =
√

1 + ε2
αA

2
⊥ and Kn(x) is the modified Bessel function of

order n. As in previous chapters we combine the two transversal components of the
vector potential into one complex quantity A⊥ = Ay + iAx. Due to 1D geometry and
Coulomb-gauge we have Ax = 0. By inserting the current densities into the 1D wave
equation for vector potential we get

∂2

∂x2
A⊥ − ∂2

∂t2
A⊥ = A⊥

{

K0(
√

1 + A2
⊥T

−1
e )

K1(T−1
e )

exp

(

φ

Te

)

+εiZ
K0

[

√

1 + ε2
iZ

2A2
⊥(εiTi)

−1
]

K1[(εiTi)−1]
exp

(

−Zφ
Ti

)







(4.58)
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with ion charge state Z.
We are looking for nondrifting localized solutions of the form A⊥(x, t) = a(x)eiω0t,

with frequency ω0. By inserting this ansatz into Eq. (4.58) we get

∂2

∂x2
a+ ω2

0a = a

{

K0(
√

1 + A2
⊥T

−1
e )

K1(T−1
e )

exp

(

φ

Te

)

+εiZ
K0

[

√

1 + ε2
iZ

2A2
⊥(εiTi)

−1
]

K1[(εiTi)−1]
exp

(

−Zφ
Ti

)







. (4.59)

The equation for the electrostatic potential reads

∂2

∂x2
φ =

√
1 + a2

K1(
√

1 + a2T−1
e )

K1(T−1
e )

exp

(

φ

Te

)

−
√

1 + ε2
iZ

2a2
K1

[

√

1 + ε2
iZ

2a2(εiTi)
−1
]

K1[(εiTi)−1]
exp

(

−Zφ
Ti

)

. (4.60)

Equations (4.59) and (4.60) are a closed set of 1D equations for relativistic electromag-
netic fields interacting in a warm, two-component plasma. The macroscopic state has
been derived from a solution of the kinetic Vlasov equation.

Let us study solutions to Eq. (4.59) and (4.59) by assuming quasi-neutrality, i.e.
(ne − ni)/n0 << 1, where n0 is the background density (assuming Z = 1). In this case
Eq. (4.60) can be put to zero and the right hand side gives us an expression for the
electrostatic potential in terms of the vector potential amplitude, i.e.

φ(a2; εi, Te, Ti) =

(

1

Te
+

1

Ti

)−1
{

1

2
ln

1 + ε2
ia

2

1 + a2
+ ln

K1(T
−1
e )K1[

√

1 + ε2
ia

2(εiTi)
−1]

K1[(εiTi)−1]K1[
√

1 + a2(Te)−1]

}

.

(4.61)

Expression (4.61) can be inserted into the right hand side of (4.59) to eliminate φ. The
result is a second-order ordinary differential equation for a(x),

∂2

∂x2
a+ ω2

0a = G(a) (4.62)

where

G(a) = a

{

K0(γe⊥/Te)

K1(1/Te)

[

γi⊥K1(1/Te)K1(γi⊥/εiTi)

γe⊥K1(1/εiTi)K1(γe⊥/Te)

]λ

+εi
K0(γi⊥/εiTi)

K1(1/εiTi)

[

γi⊥K1(1/Te)K1(γi⊥/εiTi)

γe⊥K1(1/εiTi)K1(γe⊥/Te)

]λ−1
}

, (4.63)

with λ = Ti/(Ti + Te).
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For various values of the parameters ω, Te, and Ti we have determined the soliton
solutions, in agreement with Ref. [58]. In Figure 4.13 a soliton is depicted for the
parameters Te = Ti = 30 and ω0 = 0.1. Eventhough the electrostatic potential has
a large amplitude, the second derivative of φ is still small, hence the assumption of
quasi-neutrality is still met to a good approximation.
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Figure 4.13: Amplitude of vector potential a (blue line) and electrostatic potential φ (green line)
for Te = Ti = 30 and ω0 = 0.1. The solutions where obtained by numerical solution
of Eq. (4.62) and (4.61)

The stability of solitons in warm plasma is of importance since kinetic effects may
be of importance for the balance between ponderomotive and electrostatic force. The
evolution of possible perturbations is affected by additional pressure terms, which could
dampen oscillations in the electrostatic potential.

In order to perform a stability analysis in terms of small perturbations in the am-
plitude of the vector potential we have to linearize Eq. (4.62) about an unperturbed
solution. The right hand side of the linearized equation is given by

G′ =
λBλ−1K0(γe⊥/Te)B

′

K1(1/Te)
+

(λ− 1)εiB
λ−2K0(γi⊥/εiTi)B

′

K1(1/εiTi)

− BλK1(γe⊥/Te)

K1(1/Te)Teγe⊥
− Bλ−1K1(γi⊥εiTi)ε

2

K1(1/εiTi)γi⊥Ti
, (4.64)
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where

B′ =
{

K1(1/Te)

[

− εi
γe⊥

K1(γi⊥/εiTi)Tiγi⊥

(

K1(γe⊥/Te)Te −
γe⊥
2

(K0(γe⊥/Te) +K2(γe⊥/Te))
)

]

+
K1(γe⊥/Te)ε

2
i

γi⊥
γe⊥Te

[

εiK1(γi⊥/εiTi)Ti −
γi⊥
2

(K0(γi⊥/εiTi) +K2(γi⊥/εiTi))
]

}

/

(

εiK1(1/εiTi)K1(γe⊥/Te)
2Te Ti γ

2
e⊥

)

. (4.65)

The linear evolution of a perturbation a1 in the amplitude of the vector potential a = a0+
ǫa1 (ǫ is a smallness parameter, a0 is the unperturbed solution ) is therefore determined
by the equation

∂2

∂t2
a1 + ω2

0a1 = G′(a0) . (4.66)

Figure 4.14 shows the time-evolution of the maximum of the perturbation ampli-

Figure 4.14: Time-evolution of the maximum |a|max of the perturbation amplitude from numeri-
cal integration of the linearized version of equation (4.62) with ω = 0.1. The lines
corresponds to Te = Ti = 0.002 (blue solid), Te = Ti = 0.1 (green dotted), and
Te = Ti = 10 (red dash–dotted), respectively.

tude. We recognize a linear growth of the perturbation. It corresponds to a solution
i δω t as(x) e

iωt (the so called phasor-mode, see Sec. 3.2) of Eq. (4.66). The interpretation
as a phasor mode, and not as an exponential instability, is supported by the following
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comparison. The structure of the linearly growing mode follows from numerics. When
compared to |i as(x) eiωt|, see Fig. 4.15, we recognize perfect agreement. The stability
of the solitons in warm plasmas also follows from the Q-theorem [60, 49], see Appendix
B.1. The solution a(x, t) = as(x)e

iωt is stable provided

Q = i

∫

dx

(

a
∂a∗

∂t
− a∗

∂a

∂t

)

(4.67)

is a monotonically decreasing function of ω. Figure 4.16 demonstrates that behavior.

Figure 4.15: Form of the linearly growing perturbation (red solid line) for a soliton with Te = Ti =
0.1 and ω = 0.1 compared to |i as(x) eiωt| (crosses). Note that the amplitudes have
been adjusted to demonstrate the complete agreement.
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Figure 4.16: Evaluation of the Q-theorem according to Refs. [49]. Shown is Q versus ω, demon-
strating stability of the solitons in warm plasmas for Te = Ti = 10.
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plasma

In the preceding chapter we observed wave-breaking processes as part of the unstable dy-
namics of 1D solitons. The nonlinear evolution of the perturbed solitons showed density
modulations that are left behind the soliton and begin to form very sharp density peaks.
This leads to strong gradients in the electrostatic field. To gain further understanding
of this process and allow to distinguish physical from numerical effects, an appropriate
model for this scenario has to be formulated.

Wake-fields are electrostatic waves that may be created by the vector potential of a
laser pulse. In cold plasma the wake-field stays at a fixed position and has only a phase
velocity (which is determined by the group velocity of the laser). In this chapter we
will discuss the creation and the stability of wake-fields in cold plasma. We will derive
a condition that describes the wake-field generation and afterwards apply a Lagrangian
coordinate description of the plasma to generalize known wave-breaking criteria to the
relativistic regime.

5.1 Laser wakefields for particle acceleration

Before we start to study the physics of the wake-excitation process and the dynamics of
the wake-field, let us discuss the importance of wake-fields for particle accelerators and
some results form literature.

The stability of wake-fields is of very general interest, since they are a basic constituent
of laser-plasma accelerators for charged particles. Conventional particle accelerators are
limited to accelerating fields of the order of roughly 100 MV/m , partly because of the
breakdown occurring on the walls of the structure. Ionized plasmas on the other hand
can sustain electric fields up to several 100 GV/m. If these fields could be used efficiently
it would give access to small-scale high-energy accelerators.

A laser pulse propagating through an underdense plasma excites a plasma wave os-
cillating at the plasma frequency ωpe. The phase velocity of this oscillation is set by

the group velocity of the laser vwakeph = vlaserg = c
√

1 − ω2
pe/ω

2
0, where ω0 is the laser

frequency. This longitudinal field may exceed the cold nonrelativistic wave breaking
field [19] E0 = cmeωp/e or

E0(V/m) ≃ 96
√

n0(cm−3). (5.1)

For example, a plasma density of n0 = 1018cm−3 yields E0 ≃ 100 GV/m. This is a
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5. Relativistic wave-breaking in cold plasma

factor of three orders of magnitude in comparison to conventional accelerators, and so
should allow for much shorter acceleration distances.

Besides very large acceleration gradients, wake-field-based accelerators might produce
very short electron bunches. The acceleration length is approximately the plasma wave-
length λpe = 2πc/ωpe = 2π/kp or

λp(µm) ≃ 3.3 × 1010/
√

n0(cm−3) . (5.2)

A high-quality electron bunch would have a bunch duration of τb < λp/c, i.e. a duration
τb < 100 fs for n0 = 1018cm−3 [4, 52].

The laser wake-field acceleration (LWFA) scheme was first proposed by Tajima and
Dawson [84]. Ten years later, when the laser power made huge step towards higher
intensities by the invention of the chirped pulse amplification method [83], it was refined
and extended [31, 82].

As an intense laser pulse propagates through an underdense plasma, ω0/ωpe ≫ 1,
the ponderomotive force associated with the laser pulse envelope, Fp ∼ ∇A2

⊥, expels
electrons from the region of the laser pulse. Let the direction of propagation be x. If
the length scale Lx of the axial gradient of the the laser potential is roughly equal to the
plasma wave length, Lx ∼ λp, the ponderomotive force excites large amplitude plasma
waves which are called wake-field. So the wake-field is driven most efficiently when
L ≈ λp. The precise amplitude of the wake depends on the axial profile of the pulse,
analytical models are available for sine and Gaussian pulses only.

In the linear regime the electrical field is of the form Ex = Emax sin[ωpe(x/vp−t)] with
phase velocity vp ≃ c. The maximum wake amplitude can be estimated from the Poisson
equation ∇ · E = 4πe(n0 − ne). The most simple estimate is that all electrons oscillate
with a wave number kp = ωpe/c. This gives (ωpe/c)Emax = 4πen0, or Emax = E0, where
E0 = cmeωpe/e is the cold nonrelativistic wave-breaking field [19].

For nonlinear plasma waves it is possible to exceed the value E0. Using a nonlinear,
relativistic, cold fluid approximation in 1D, it was shown [1] that the maximum electrical
field is given by

EWB =
√

2(γp − 1)1/2E0 , (5.3)

which is referred to as the cold relativistic wave-breaking field. The relativistic Lorentz
factor is given by γp =

√

1 − β2
p with βp = vp/c. Thus it is possible to exceed the

nonrelativistic maximum value by orders of magnitude. A typical value for γp would be
100 for a 1 µm laser, if we consider a plasma with n0 = 1017 this leads to EWB = 24E0.

Using a 1D cold relativistic fluid model [5] (which applies for broad laser pulses where
kpr⊥ ≫ 1, with r⊥ as characteristic radial dimension), the Poisson equation can be
rewritten as

d2φ

dx2
= γ2

p

(

βp

[

1 − 1 + A2
⊥

γ2
p(1 + φ)2

]−1/2

− 1

)

. (5.4)

The maximum and minimum values of the scalar potential, denoted by φm, are deter-
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5.1. Laser wakefields for particle acceleration

mined by [22]

φm =

(

1

2

Emax
E0

)2

± βp

[

(1 +

(

1

2

Emax
E0

)2

− 1

]−1/2

. (5.5)

When the electric field approaches the breaking field EWB Eq. (5.5) implies 1+φ→ 1/γp,
which in combination with the Poisson equation (5.4) leads to n→ ∞. This is the point
where the cold fluid description breaks down. It is only valid for wave-breaking in the
limit γpβp ≪ 1, with cβp as the thermal velocity spread of the electrons. Thermal effects
will broaden the velocity distribution in a warm plasma and reduce the maximum plasma
wave amplitude.

Several works dealt with the problem of correcting the cold nonrelativistic field E0

by using warm fluid models in different limits [18, 74, 38]. The extension to warm
relativistic plasmas is discussed in Refs. [78, 80, 86, 79].

All the above mentioned results are derived from 1D models. In 3D only results
from numerical simulations are available and analytical expressions for maximum field
amplitudes are still missing. Some 2D Particle-In-Cell (PIC) simulations have shown
fields of the order of E0 [15, 20], and 2D axisymmetric nonlinear fluid simulations [43]
showed wave amplitudes larger that E0.

For the wake-field, it is not only possible to break in longitudinal direction, but in
transversal direction, too. This 2D wave-breaking is due to the curvature of the phase
fronts of the plasma wave [16].

Trapping of particles in plasma waves, which are then accelerated by the wave is a
very important question for LWFA. Wave-breaking is of central interest, since it provides
a mechanism for particle injection into the wake. Particles from the background will
become trapped in the wave and accelerated. The predicted conversion efficiency from
laser energy into electron beam energy is quite high in this scenario. In experiments
where the wave was driven beyond the breaking threshold, large numbers of accelerated
electrons have been observed [67, 17, 85]. Particle injection done with external beams
and subsequent acceleration has been demonstrated experimentally [3].

To examine the dynamics of wave-breaking and not only give a maximum sustainable
electric field amplitude a one-dimensional nonlinear relativistic second-order differential
equation for the electron fluid velocity was derived in Ref. [21] in Lagrangian coordinates.
This formulation allows to analyze the dynamics until wave-breaking. The Lagrangian
analysis, combined with an appropriate numerical integration of the second-order differ-
ential equation, gave further insight into the wave-breaking process. We will take up the
Lagrangian description to derive analytical criteria for wave-breaking. The analysis is
based on Dawson’s picture [19] that longitudinal wave-breaking in a cold plasma occurs
when elements of the plasma electron fluid that started out in different positions overtake
each other. From literature [86] we cite that for both, non-relativistic and relativistic
plasmas, this overtaking happens when the peak fluid velocity equals the phase speed of
the plasma wave [1, 19]. The existing wave-breaking criteria and thresholds have to be
generalized with special emphasis on relativistic and inhomogeneous effects. In addition
we shall not restrict ourselves to wave-breaking on the first oscillation. Everything in

47



5. Relativistic wave-breaking in cold plasma

this chapter will be treated in 1D geometry, that is all quantities only depend on one
spatial coordinate x.

5.2 Wake-field excitation

The electrostatic wake-field is driven by the vector potential of the laser pulse [31]. For
relatively small amplitudes we may use the Poisson equation for the scalar potential φ,

∂2φ

∂x2
= δne , (5.6)

together with the linearized particle density conservation law

∂δne
∂t

+
∂

∂x

(

n0v‖
)

≈ 0 . (5.7)

Here, n0 is the zeroth order background particle density. We have assumed a 1D model
with fixed ions. The electron density deviation is δne = ne − n0. In the non-relativistic
limit, the parallel (to the laser propagation direction) electron velocity component v‖ is,
to lowest order, determined by

∂v‖
∂t

≈ ∂φ

∂x
− v⊥B . (5.8)

The perpendicular component of the electron momentum leads to zeroth order (i.e. in
the non-relativistic limit) to the quiver momentum p⊥ ≈ A⊥, where A⊥ is the transver-
sal laser vector potential. The space dependence of p⊥ follows (in the perpendicular
momentum equation) from the balance of the inertia term with the Lorentz force, i.e.

∂p⊥
∂x

≈ B , (5.9)

where p⊥ = γv⊥ ≈ v⊥ in the weakly relativistic case for γ ≡ γe =
√

1 + p2
⊥ ≈ 1.

Combining these equations and neglecting higher nonlinearities leads to

∂2δne
∂t2

+ δn ≈ n0

2

∂2v2
⊥

∂x2
. (5.10)

Equation (5.10) is the equation for the driven density response.
Assuming

v⊥ =
1

2

[

A⊥(ξ)e−iωt+ikx + A∗
⊥(ξ)eiωt−ikx

]

, (5.11)

we recognize that different harmonics appear on the right-hand-side. For the lowest
harmonic density reaction, the solution is

δne
n0

=
1

4v2
g

{

|A⊥|2 − kp

∫ ξ

∞

dξ′ |A⊥(ξ′)|2 sin[kp(ξ − ξ′)]

}

, (5.12)
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5.2. Wake-field excitation

where ξ = x− vgt and kp = ωpe/vg . The group velocity vg is that of the laser pulse.
Different limits can be derived from this solution. First, for narrow laser pulses, e.g.

in the simple approximation (pulse width l → 0 )

|A⊥(ξ′)|2 = A2δ(ξ′) , (5.13)

we obtain for finite wave-numbers kp the constant envelope wake-field

δne
n0

= − kp
4v2

g

A2 sin(kpx− ωpet) . (5.14)

In general, the wake-field generation vanishes when kpl ≫ 1, where l is the width of the
driver. Significant contributions occur for

kpl ∼ O(1) . (5.15)

This is the case we will consider in more detail in the following Section.
On the other hand, in the limit kp → 0, vg finite, we obtain

δne
n0

=
1

4v2
g

|A⊥|2 , (5.16)

i.e. a density hump instead of the ponderomotive driven density depression.
Finally, for vg ≈ k

ω
→ 0, ωpe finite, kp → ∞ we can recover from (5.12) the pon-

deromotive density depression of a moving laser pulse [63, 32]. In this limit, a first
integration by parts in (5.12) leads to

δne
n0

=
1

4v2
g

∫ ξ

∞

dξ′
d|A⊥(ξ′)|2

dξ′
cos[kp(ξ − ξ′)] . (5.17)

Continuing with an additional integration by parts, we obtain from here

δne
n0

=
1

4v2
g

1

kp

∫ ξ

∞

dξ′
d2|A⊥(ξ′)|2

dξ′2
sin[kp(ξ − ξ′)] . (5.18)

The next integration by parts gives

δne
n0

=
1

4v2
gk

2
p

{

d2|A⊥|2
dξ2

−
∫ ξ

∞

dξ′
d3|A⊥(ξ′)|2

dξ′3
cos[kp(ξ − ξ′)]

}

≈ 1

4v2
gk

2
p

d2|A⊥|2
dξ2

+ O
(

1

kp

)

. (5.19)

This is the result [32, 53] which has been used for soliton investigations.
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5.2.1 Numerical simulations and breaking of wake-fields

We first simulated laser pulse propagation in an underdense plasma by solving the set of
equations for a plasma with fixed ion background density. The equations result from Eq.
(4.3)-(4.6), for a frame of reference with V = 0 and constant ion density. We will again
combine the transversal components of the vector potential into one complex quantity
A⊥ = Ay + iAz. The equations read

∂2

∂x2
A⊥ − 1

∂2

∂t2
A⊥ =

ne
γe
A⊥ , (5.20)

∂2

∂x2
φ = ne − 1 , (5.21)

∂

∂t
ne +

∂

∂x
ne
pe
γe

= 0 , (5.22)

∂

∂t
pe =

∂

∂x
(φ− γe) (5.23)

where

γe =
√

1 + |A⊥|2 + p2
e . (5.24)

So far, ion dynamics is neglected here, but will be included later.
Fig. 5.1 shows a snapshot of a simulation of Eq. (5.20)-(5.23). The initial pulse shape

of the circular polarized laser pulse is Gaussian with an amplitude of A⊥0 = 0.15, the
laser frequency is ω0 = 1.4 and FWHM=40.

The numerical results show the following behavior. The electromagnetic pulse changes
periodically its shape. When its width decreases, a significant wake-field can be gener-
ated. On the other hand, when the pulse is broad, no wake-field appears. The wake-field
has a finite wave-number k = kp, a frequency ω = ωpe, and a phase velocity

ω

k
≈ ωpe

kp
≈ vg . (5.25)

The group velocity vg of the laser pulse is close to the speed of light. The numerical
results are in accordance with the analytical predictions. Especially, the estimate of the
wake-field localization via the wake-field excitation threshold (5.15), determining the
width of the wake-field envelope in terms of the time-dependent pulse width, is quite
good. We would like to emphasize that, due to the cold plasma approximation, the
decoupled, localized wake-field is not propagating in space.

We now analyze in more detail the dynamics of the wake-field being left behind the
laser pulse. Figure 5.2 presents a typical example. The numerical simulations show the
breaking of the wake-field.

A small amplitude localized wake-field shows breaking after many plasma periods.
The breaking of the wave is easily diagnosed by the rapid growth of the local electron
density. In the next section we shall analyze the breaking phenomenon analytically.
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Figure 5.1: The magnitude of the normalized vector potential of an initially Gaussian shaped laser
pulse with circular polarization is shown in the top graph at different times when propa-
gating in an under-dense plasma. Equations (5.20) - (5.21) have been solved numerically.
The maximum initial amplitude is A⊥0 = 0.15, the laser frequency is ω0 = 1.4, and
FWHM = 40 for the initial Gaussian. From left to right profiles are plotted at times
t = 700, t = 1525, t = 2440, t = 3200, t = 4000, t = 4880 and t = 5800. Bottom:
Wake-field for t = 6400 created by the pulse, corresponding to the different shapes of
the laser pulse shown at the top. The spots are created at times where the compression
of the laser pulse is at maximum.

5.3 Wave-breaking calculations in Lagrangian

coordinates

In this section we analyze the observed wave-breaking and derive analytical criteria
using a Lagrangian formulation.

We start with a cold fluid description and Lagrange coordinates in one space dimen-
sion. The fluid element was at x0 at t = 0 and is at xL at t, i.e. the Lagrange coordinate
is xL = xL(x0, t) with xL(x0, t = 0) = x0. Defining also Lagrangian electron momentum
pL = pL(x0, t) = p(xL, t), the Lagrange electrostatic field EL = EL(x0, t) = E(xL, t),
and electron density nL = nL(x0, t) = n(xL, t), the ion density N is assumed to be fixed.

Maxwell’s equations (we consider electrostatic wake-fields and neglect the magnetic
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Figure 5.2: Electron density ne [at t = 1050 (upper graph) and t = 6300 (middle)] and electric
field E at t = 6300 (bottom), respectively, from numerical simulation of (5.20) - (5.23).
The initial values correspond to an initially Gaussian shaped laser pulse with circular
polarization. The maximum initial amplitude is A⊥0 = 0.32, the laser frequency is
ω0=1.9, the wave-number is k=1.62, and FWHM = 20 for the initial Gaussian.

fields) lead to
∂EL
∂t

= nLvL . (5.26)

The total time-derivative of EL is

dEL
dt

=
∂E

∂xL

dxL
dt

+
∂E

∂t
. (5.27)

The Poisson equation
∂E

∂xL
= (N − nL) (5.28)

and the definition
dxL
dt

= vL =
pL
γ

(5.29)

lead together with (5.26) to
dEL
dt

= NvL . (5.30)

We treat the case of homogeneous ion density N first. After integration we have

EL = NxL + E0(x0) −Nx0 , (5.31)
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where we have defined E0(x0) = EL(x0, t = 0). Equation (5.31) is a basic relation which
we shall use below.

The (longitudinal) momentum balance reads

dpL
dt

= −EL = −NxL − E0(x0) +Nx0 . (5.32)

Together with Eq. (5.29) this forms the basic dynamical equations for constant ion
density. Here,

γ =
√

1 + p2
L . (5.33)

When the ion density distribution is not homogeneous (but the ion dynamics is still
neglected) we have NL = NL(x0, t) = N(xL). The generalization of Eq. (5.30) is

dEL
dt

= NL
dxL
dt

. (5.34)

Introducing the function Yi(ξ) such that

N(xL) =
dYi
dξ

∣

∣

∣

∣

ξ=xL

(5.35)

we find
EL = [Yi(xL) − Yi(x0)] + E0(x0) , (5.36)

which replaces the previous equation (5.31).
Now equation (5.32) can be generalized to

dpL
dt

= − [Yi(xL) − Yi(x0)] − E0(x0) , (5.37)

which, together with (5.29) forms the basic system of equations for inhomogeneous
plasmas.

5.3.1 Wave-breaking analysis

We now exemplify wave-breaking for N=const; the conclusions and calculations are the
same for inhomogeneous situations N(x).

Using Poisson’s equation we have

∂EL
∂x0

=
∂E

∂xL

∂xL
∂x0

= (N − nL)
∂xL
∂x0

. (5.38)

On the other hand
∂EL
∂x0

=
∂

∂x0

(NxL + E0(x0) −Nx0) . (5.39)

A short calculation leads to

∂EL
∂x0

=

(

∂xL
∂x0

N − n0

)

(5.40)
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where we have used
∂E0

∂x0

= (N − n0) (5.41)

with n0 = nL(x0, t = 0). Comparing the right-hand-sides of (5.38) and (5.40) we find

nL =
n0

∂xL

∂x0

. (5.42)

The condition
∂xL
∂x0

= 0 (5.43)

defines wave-breaking. Relation (5.42) shows that infinite density corresponds to wave-
breaking.

For the case N=const, we insert into (5.32) the definition

yL := NxL + E0 − x0N . (5.44)

We then can write the basic dynamical equations as

dyL
dt

= N
pL
γ
, (5.45)

dpL
dt

= −yL . (5.46)

Because of the appearance of γ this is a nonlinear oscillator (let us assume N = 1)

d2pL
dt2

= − pL
√

1 + p2
L

. (5.47)

Instead of ωpe0 in general an amplitude-dependent frequency appears.
The amplitude-dependent frequency can be determined by perturbation analysis.

First we expand the square-root for small amplitudes, to obtain for the oscillator (with
linear frequency ω = 1)

d2p

dt2
+ ω2p = −(1 − ω2)p− 1

2
p3 (5.48)

Multiplication of both sides with cos(ωt) and integration over t from −π/ω to +π/ω,
and approximating p(t) ≈ Ã cos(ωt) within the integrals, leads to the approximate result
for the frequency at small amplitudes

ω2 ≈ 1 − 3

8
Ã2 (5.49)

This is the result shown in Eq. (5.70). It is depicted in Fig. 5.3 by the blue curve.
We can even obtain a better approximation, being valid for larger amplitudes, when

not expanding the square-root. By performing the same steps as before, we arrive at

ω2 ≈ 1

π

∫ π

−π

dτ
cos2(τ)

√

1 + Ã2 cos2(τ)
(5.50)
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Figure 5.3: Amplitude dependence of the frequency of the nonlinear oscillator (5.47). The exact
result (red line) is compared with the small amplitude approximation (5.49) (blue line)
and (5.50) (black curve).

This result is also shown in Fig. 5.3 by the red curve. When compared to the exact
numerical result, we recognize excellent agreement up to large amplitudes.

For inhomogeneous N = N(x) an approximate calculation is possible, e.g. when
|xL − x0| ≪ 1. Then we start from the equations

dpL
dt

= −N(x0) [xL − x0] − E0(x0) ≡ −ỹL , (5.51)

dỹL
dt

=
N(x0)

γ
pL . (5.52)

Now, the frequency is not only amplitude-, but also space-dependent. The solutions for
ỹL and xL − x0 are straightforward to obtain.

Non-relativistic limit γ = 1, N=const

Let us assume N = 1, i.e. the ion density is constant and equal to the electron back-
ground density (this is not a necessary restriction of the model, although it simplifies
the expressions). If we start with an harmonic field at t = 0

E0 = A(x0) sin(kx0 + ϕ) (5.53)

and momentum
p0 = −A(x0) cos(kx0 + ϕ) , (5.54)
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where ϕ is an arbitrary phase, we can write the wave-solution as

EL = A(x0) sin(kx0 − ωpe0t+ ϕ) . (5.55)

The reason is that in the present case Eqs. (5.45) and (5.46) simplify to

d2EL
dt2

= −ω2
pe0EL . (5.56)

Then the basic relation (5.31) leads to

xL = x0 + A(x0) [sin(kx0 − ωpe0t+ ϕ) − sin(kx0 + ϕ)] , (5.57)

and we have for constant amplitudes A(x0) = A

∂xL
∂x0

= 1 + kA [cos(kx0 − ωpe0t+ ϕ) − cos(kx0 + ϕ)] . (5.58)

A necessary condition for wave-breaking is

kA ≥ 1

2
, (5.59)

which corresponds to the previous finding [19] (note the factor 2). Wave-breaking occurs
when the peak fluid velocity change is larger than the phase velocity, i.e.

∆vL|max = 2A >
1

k
. (5.60)

Dawson [19] has obtained the result A ≥ 1/k for specific initial conditions. For plasma
waves with kp = 2π/λp this condition is equivalent to the result of E0 = cmeωp/e (in
dimensional quantities) as maximum electrical field E0 that a nonrelativistic cold plasma
can sustain.

Let us make the following remarks on the famous result (5.59). First, we may use
(5.59) for determining the wave-breaking onset in dependence of, e.g., the amplitude A.
Introducing T = ω−1

pe0, V = ∆vL|max, and L = k−1 we find from

V T ≈ L (5.61)

the threshold amplitude for fixed k. When approximating for wake-fields
ωpe0

k
≈ 1 and

using the maximum momentum amplitude A, the criterion (5.59) reads

A ≥ 1

2
. (5.62)

Thus, according to (5.59) small amplitudes do not lead to wake-field breaking. On the
other hand, (5.62) for wake-fields requires a relativistic treatment.

In the homogeneous non-relativistic limit (not necessarily wake-fields) we have com-
pared the threshold prediction (5.59) for wave-breaking in finite time with numerical
simulations and found excellent agreement.
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Relativistic case

In the fully relativistic description we obtain instead of (5.57) a nonlinear oscillator
solution which we abbreviate in the form

xL = x0 + A sin(kx0) [F (ωt, x0) − 1] , (5.63)

where ω is the nonlinear frequency which in the weakly relativistic limit is ω ≈ ωpe0.
The function F is still finite and 2π-periodic, i.e. F (y ≡ ωt+ 2π, x0) = F (y ≡ ωt, x0).
When we start with E0 = A sin(kx0), differentiation now leads to

∂xL
∂x0

= 1 +

{

∂E0

∂x0

[F (y ≡ ωt, x0) − 1] + E0
∂F (y ≡ ωt, x0)

∂y

∂ω

∂x0

t+ E0
∂F (y ≡ ωt, x0)

∂x0

}

(5.64)
The right-hand-side contains, in addition to the Dawson criterion (5.59), a second source
for wave-breaking. In any case, for t→ ∞ the term being linear in t will dominate. For
a given

∂ω

∂x0

≶ 0 (5.65)

we can always find a series of intervals such that

E0
∂F (y ≡ ωt, x0)

∂y

∂ω

∂x0
< 0 (5.66)

and wave-breaking can occur without threshold. This modifies the statement [86] that
“for both non-relativistic and relativistic plasmas, this overtaking happens when the
peak fluid velocity equals the phase speed”. The breaking considered here may not
occur on the first oscillation, but quite later, i.e. after many electron plasma periods.
In general, (5.66) allows to estimate the time for breaking. We would like to emphasize
that now the time for wave-breaking follows from

V T ≈ L , (5.67)

[see (5.61) which was used there for the amplitude threshold] where, however, now the
inhomogeneity length

L ≈
∣

∣

∣

∣

∣

[

∂ lnω

∂x0

]−1
∣

∣

∣

∣

∣

(5.68)

should be used. Quantitative predictions require the detailed knowledge of the nonlinear
oscillation.

When does ∂ω
∂x0

≶ 0 occur?

Obviously, the frequency becomes x0-dependent when the plasma is inhomogeneous.
Similarly, a nonlinearity can also introduce a space-dependent frequency. We demon-
strate this analytically when, e.g., solving the (expanded) equation

d2pL
dt2

= −
ω2
pe0

γ
pL ≈ −ω2

pe0

(

1 − 1

2
p2
L

)

pL (5.69)
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for small amplitudes. For an initial momentum p0 ∼ Ã, we have approximately

ω2 ≈ ω2
pe0

(

1 − 3

8
Ã2

)

. (5.70)

For example, with Ã = Ã(x0) = A(x0) cos(kx0), we can determine the explicit space-
dependence of the frequency.

Applying this to the wake-field being excited by a pulsating laser beam, we recognize
that the initially excited wake-field has a space-dependent frequency. Thus the wake-
field will break (sooner or later, depending on the strength of the exited field) even if
(5.59) is not satisfied. For γ → 1 the time for breaking tends to infinity. Using wake-field
relations, we can find the scaling

T ∼ E−3
0 (5.71)

in the small amplitude limit. Here E0 is the maximum amplitude of the electrostatic
wave. The result (5.59) can be understood as the (non-relativistic) prediction of breaking
of (general) electrostatic oscillations in finite time. When we choose relativistic wake-
fields, our numerical simulations always show wave-breaking in accordance with the
analytical predictions.

Effect of finite field width

Dawson [19] considered a non-relativistic field of infinite length. To study the effect of
finite field length, we start with an electric field at t = 0 in the form

EL = A∞e
−x2

0
/σ2

cos(kx0) sin(ωpe0t) . (5.72)

The basic relation (5.31) leads to

xL = x0 + A∞ cos(kx0) sin(ωpe0t)e
−x2

0
/σ2

, (5.73)

which after differentiation gives

∂xL
∂x0

= 1 −A∞

(

k sin(kx0) + 2
x0

σ2
cos(kx0)

)

sin(ωpe0t)e
−x2

0
/σ2

. (5.74)

Therefore we expect breaking if

A∞

(

k sin(kx0) + 2
x0

σ2
cos(kx0)

)

e−x
2

0
/σ2 ≥ 1 . (5.75)

For σ → ∞ we recover Dawson’s criterion [19] for breaking, namely A∞k ≥ 1. In
the limit σ → 0 the field is expected to break even for arbitrarily small field ampli-
tudes. Between these two limits it is most convenient to evaluate the inequality (5.75)
numerically. We define

Φ ≡ Φ(σ; k) =
1

max f̃
x0

, with f̃ ≡ f̃(x0; k, σ) =
(

sin(kx0) + 2
x0

kσ2
cos(kx0)

)

e−x
2

0
/σ2

.

(5.76)
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Figure 5.4: Numerical evaluation of the inequality (5.75) for k = 2. Fields with A∞k ≥ φ are
supposed to break.
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5. Relativistic wave-breaking in cold plasma

In Fig. 5.4 the evaluation is shown for k = 2. The breaking criterion reads

A∞k ≥ Φ , (5.77)

where, for simplicity, we treat k as a parameter. For very broad fields, i.e. large σ, the
criterion resembles Dawson’s result [19]. If σ gets smaller, some fields with amplitudes
A∞ fulfilling the breaking condition for infinite length, will break no more in the non-
relativistic limit. For very small σ, even in the non-relativistic case, fields with very
small amplitudes may suffer from breaking.

5.3.2 Numerical results for wave-breaking

We have checked most of the analytical predictions by numerical simulations. In the
following, we present two typical examples.

Wave-breaking with fixed ion background

First, within a fully relativistic treatment, we solved the wave-breaking problem (5.45)
and (5.46), i.e.

dEL
dt

=
pL
γ
, (5.78)

dpL
dt

= −EL (5.79)

for the special inhomogeneous initial conditions

EL(x0, t = 0) = A∞e
−x2

0
/σ2

cos(kx0) , pL(x0, t = 0) = 0 . (5.80)

From Eqs. (5.78) and (5.79) we obtain EL(x0, t) and pL(x0, t). When using (5.31) and
(5.42), we can determine ne ≡ n(xL) and E(xL). The nonrelativistic theory restricts
breaking to A∞k >

1
2

(for σ → ∞). Choosing k = 0.8, according to that prediction
breaking should only occur for A∞ ≥ 0.625. The simulation of the nonlinear oscillator
equation already shows breaking for smaller amplitudes, e.g. for A∞ = 0.5 as can be
seen in Fig. 5.5. Breaking below the threshold (5.59) supports our conclusions. The
breaking time t ≈ 55 occurs within the validity of the electron fluid model. The reason
is that we are still close to the threshold (5.59).

Wave-breaking including ion dynamics

Next, we re-consider the wave-breaking of wake-fields which so far was investigated
only within a purely electron fluid model. We have checked whether the ion (index i)
dynamics will change the main conclusions. When ions are included, instead of Eqs.
(5.20)–(5.23) the system of equations (4.3)–(4.6) can be used. A typical numerical result
is shown in Fig. 5.6.

All simulations show faster breaking when ion motion is included. Thus, the breaking
criterion based on electron dynamics gives a proper upper limit for breaking.
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Figure 5.5: Electron density and electric field short before breaking at t = 55 when solving
Eqs. (5.78) and (5.79). The initial electrical field is given by (5.80). The normalized
parameters are A∞ = 0.5, k = 0.8, and σ = 50.
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Figure 5.6: Same as Fig. 5.2, but now including the ions. The simulations are based on Eqs.
(4.3) - (4.6). Electron and ion density of a wake-field are shown at t = 1050 at top
and in the middle, respectively, shortly before breaking. The bottom graph shows for
comparison the electron density at the same time, but now from Fig. 5.2 when ion
motion is neglected.
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Wave-breaking in warm plasmas

In warm plasma the equation for the parallel electron plasma momentum p reads

∂

∂t
p = −∇φ−∇γ − 1

n
∇P , (5.81)

where P is the scalar pressure in an isotropic plasma. To close the system, an equation
of state has to be introduced. This could be for example P = nT for an isothermal or
P = (n/γ)3T [80] for an adiabatic plasma. Equation (5.81) is obtained from warm fluid
theories and therefore is only valid for systems in which the particle thermal velocities
are not of the order of the speed of light. Very high temperatures are therefore not
treated correctly by this description, hence a fully relativistic would be necessary to
treat such problems.

As shown in the last sections, very steep gradients are formed in the density when
wave-breaking occurs in cold plasma. The scalar pressure term is proportional to ∇n in
the isothermal plasma model, hence it can become very large and strongly influence the
behavior near wave-breaking. In case of an adiabatic plasma model, the pressure should
be even more beneficial, since it is proportional to ∇n3 = 3n2∇n.

In both plasma models the term for the pressure is proportional to 1/n∇n = 1/n ∂
∂x
n,

expressing this in in Lagrangian coordinates leads to

1

n
∇P ∼ 1

nL

∂nL
∂xL

=
1

nL

∂nL
∂x0

∂x0

∂xL

=
1

nL

∂nL
∂x0

1
∂xL

∂x0

=
1

n0

∂nL
∂x0

, (5.82)

where Eq. (5.42) has been used.
For a fixed ion background the oscillators which make up the wake-field in the La-

grangian description are governed by the equations

dEL
dt

=
pL
γ
, (5.83)

dpL
dt

= −EL − 1

n0

∂nL
∂x0

. (5.84)

The additional pressure term now spatially couples the oscillators that have been
independent of each other so far.

The evaluation of the spatial derivative of nL imposes severe restrictions on the spa-
tial resolution of the grid, since ∂nL/∂x0 will eventually become very large. In fact
for reasonable temperatures, this term has to become so large that for any feasible dis-
cretization, it is always numerically unstable to use a spectral method to calculate the
derivative. Only an adaptive method that switches between first-order derivatives in
regions of steep gradient and a higher-order derivative in smooth regions could prevent
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5. Relativistic wave-breaking in cold plasma

oscillations that appear next to the strong gradient. Thus the question whether an addi-
tional pressure contribution may eventually stop the wave from breaking for arbitrarily
(small) temperatures could not be answered numerically by the employed algorithms.
Basically a two-scale problem arises here.
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6 Two-dimensional dynamics of

relativistic solitons

In chapter 4 the stability properties of a variety of 1D solitons were discussed. An
important result was that solitons on the ion time-scale with a node number p ≥ 1 are
unstable with respect to small perturbations in a cold plasma. The typical time-scale
for the growth of the instability is of the order of a few hundred 1/ωpe. We found two
different types of longitudinal instabilities whereof one was associated to a Raman like
process [76].

To gain insight into the multidimensional evolution of solitons and possible instabil-
ities, we will now extend the geometry to 2D. A fully nonlinear 3D description is not
yet feasible for practical computing reasons, but a 2D model may already show impor-
tant new features such as transversal instability, which may eventually result in pulse
filamentation [77, 40, 9].

It is important to note that by 2D we mean that the variables depend only on two
spatial coordinates. The fields themself are, of course, three-dimensional. The 2D
models are two-dimensional in the mathematical sense, but physically they may even
be three-dimensional if a certain symmetry, e.g. cylindrical symmetry, is assumed.

For sufficiently low laser intensities the system (4.3)-(4.6) can be reduced to a non-
linear Schrödinger equation (NLSE) for the laser pulse amplitude. The NLSE is the
generic amplitude equation for many nonlinear physical systems, including water waves
in deep water, optical fiber transmission lines, quantum systems and laser propagation.
For some of these systems longitudinally stable plane solitons are known and an analyt-
ical understanding of their transversal instability is available [46, 40]. From this analogy
we may expect that the relativistic 1D solitons suffer from transversal instability, too.

In case of a transversal instability competing with a longitudinal instability, it is
interresting to compare the growth rates of both instabilities in order to determine which
one will prevail in the linear regime. As the nonlinear evolution does not necessarily
resemble the linear regime we will have to confirm findings from the linear regime by
full nonlinear 2D simulations.

6.1 Linearized 2D equations

Like in the 1D case we will perform a numerical linear stability analysis for the 2D sys-
tem. We consider a laser pulse propagating along x and allow for transversal dependency
of all quantities along y. We are free to chose an arbitrary transversal direction for the
perturbation, so we choose one along a single transversal coordinate y. For practical
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6. Two-dimensional dynamics of relativistic solitons

reasons we introduce a co-moving frame by ξ = x− V t, τ = t. Then the 2D relativistic
fluid-Maxwell equations are

∂2

∂τ 2
A − 2V

∂2

∂ξ∂τ
A−

(

1 − V 2
) ∂2

∂ξ2
A − ∂2

∂y2
A = P

df j , (6.1)
(

∂2

∂ξ2
+

∂2

∂y2

)

φ = ne − ni , (6.2)

∂

∂τ
nα − V

∂

∂ξ
nα +

∂

∂ξ
jx +

∂

∂y
jy = 0 , (6.3)

∂

∂τ





Mαx

Mαy

Mαz



− V
∂

∂ξ





Mαx

Mαy

Mαz



− ǫα
γα





pαy (∂ξMαy − ∂yMαx) + pαz∂ξMαz

pαz∂yMαz − pαx (∂ξMαy − ∂yMαx)
−pαx∂ξMαz − pαy∂yMαz





=





∂ξ
∂y
0





(

qαφ− γα
ǫα

)

, (6.4)

j = εi
nipi
γi

− nepe
γe

. (6.5)

P
df = 1 − ∇ (∇2)

−1 ∇· is a projector which gives the divergence-free part of a given
vector field. In this notation ∇ = (∂ξ, ∂y, 0)T .

Linearization about the unperturbed solution and subsequent Fourier-transformation
in y direction (i.e. ∂y → ky, if we assume only a oscillation in y direction with wave-
number ky) gives (indices according to Sec. 3.3)

∂2

∂τ 2
A1 − 2V

∂2

∂ξ∂τ
A1 −

(

1 − V 2
) ∂2

∂ξ2
A1 + k2

yA1 = P
df (ji1 − je1) , (6.6)

(

∂2

∂ξ2
− k2

y

)

φ1 = ne1 − ni1 , (6.7)

∂

∂τ
nα1 − V

∂

∂ξ
nα1 +

∂

∂ξ
jα1x + ikyjα1y = 0 , (6.8)

∂

∂t
Mα1 − V

∂

∂x
Mα1

− ǫα
γα0

[

− 1

γα0
γα1pα0 × (∇× Mα0) + pα1 × (∇×Mα0) + pα0 × (∇×Mα1)

]

=





∂ξ
iky
0





(

qαφ1 −
1

ǫα
γα1

)

, (6.9)
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where

jα1 =
ǫα
γα0

[

nα1
pα0 + nα0pα1

− 1

γα0
nα0γα1pα0

]

, (6.10)

γα1 = ǫ2α
pα0 · pα1

γα0

. (6.11)

Since the solitons which we were examining as unperturbed states all have a zero gen-
eralized transversal momentum, Mα0⊥ = 0, the entries of the vector products are

pα0 × (∇×Mα1) =





pα0y (∂ξMα1y − ikyMα1x) + pα0z∂ξMα1z

ikypα0zMα1z − pα0x (∂ξMα1y − ikyMα1x)
−pα0x∂ξMα1z − ikypα0yMα1z



 , (6.12)

pα0 × (∇×Mα0) =





−ikypα0yMα0x

ikypα0xMα0x

0



 , (6.13)

pα1 × (∇×Mα0) =





−ikypα1yMα0x

ikypα1xMα0x

0



 . (6.14)

For any fixed ky we end up with a stability problem formulated in form of a system of
one-dimensional partial differential equations. This reduction in dimensionality vastly
decreases the computational effort and allows to determine the growth rate for transver-
sal instabilities with different ky in a reasonable time.

The algorithms to numerically solve the nonlinear and the linearized 2D equations
are the same as described in Sec. 2.3.

6.2 Transversal instability

For the 1D set of equations (4.3) - (4.6) circular polarized soliton solutions (with and
without included ion motion) are known [39, 26]. We studied the influence of transversal
(to the propagation direction) perturbations on the Bulanov-Farina solitons, which were
derived in Sec. 4.3.2.

The longitudinal stability properties have been examined for these solitons with a
fixed ion background in Ref. [76] and for mobile ions in Section 4.3.2 and Ref. [54].

In Sec. 4.3.2 we analyzed the longitudinal stability properties of Bulanov-Farina soli-
tons, depending on the number of nodes p. For solitons with p = 0 we did not find
any physically relevant longitudinal instability, whereas for p ≥ 1 we were able to find
exponentially growing modes with notable growth rates. Depending on the velocity we
were able to distinguish two types of longitudinal instabilities, purely growing ones and
oscillatory growing ones.

Within the linearized 2D model we were looking for exponentially growing modes,
growing proportional to exp(Γt).
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6. Two-dimensional dynamics of relativistic solitons

6.2.1 Transversal instability of p = 0 solitons

It was presented in Sec. 4.3.2 that p = 0 solitons show no longitudinal instability. From
the simulation of the linearized system (6.6)-(6.9) we can derive transversely unstable
modes for all velocities V that are possible.

To study the transversal stability of a soliton we performed simulations of Eq. (6.6) -
(6.9) for different wave-numbers k⊥ of the transversal perturbation. We got the structure
for the most unstable mode for this particular wave-number k⊥ and its growth rate Γ.
In general, the growth rate is a function of the wave-number. By performing a series of
simulations with increasing k⊥, starting from k⊥ = 0 , we were able to determine the
dependence of Γ from k⊥. Figure 6.1 depicts typical results for p = 0 solitons. Results
are presented for two different velocities and three different ω0 values for each velocity.
In the limit of infinite wavelength for the perturbation, we expect the growth rate to be
zero. Going to smaller wavelengths, increasing k⊥, we first see a linear increase in the
growth rate Γ. Eventually the profile of Γ(k⊥) deviates from linear characteristics and
forms a global maximum. For even larger k⊥ the growth rates become rapidly smaller,
until the cut-off wave-number k⊥c is reached. For wave-numbers larger than k⊥c (hence
wavelengths smaller than λ⊥c = 2π/k⊥c), no exponentially growing instabilities within
the linear regime are found. However perturbations with wave-numbers above the cut-
off can grow in the nonlinear regime, where energy may be transferred to these modes
by a wave-vector cascade. Finding the exact value of the cut-off wave-number from
simulations is difficult, because ∂Γ/∂k⊥ is very large in the proximity of this point.
To us the exact position of the cut-off is of minor importance, our focus will be on
the transversal wave-number for which we obtained the mode with the largest growth
rate Γ. The mode with the largest growth rate will play the dominating role in the
dynamics of a general perturbation in the linear regime. This will be demonstrated in
Sec. 6.3.3. All Γ are real numbers for the transversal instability (which is different to
the longitudinal case), hence the perturbation is purely growing in time and shows no
additional oscillations over time.

This kind of profile for Γ varying with k⊥ is known from other solitons, e.g. solitons of
the 1D nonlinear Schrödinger equation [46]. In fact for very fast solitons the amplitude
of the Bulanov-Farina solitons is very small, the ion response can be neglected and we
can reduce the 1D equations (4.3)-(4.6) (for which the solitons are stationary solutions)
to a 1D nonlinear Schrödinger equation. As stationary solutions we recover known
bright soliton solutions for which an analytical description of the transversal instability
is available [46].

For p = 0 we have the special circumstance that for every possible soliton velocity V
there is a range in the frequency ω0 for which the solitons exist. We investigated solitons
with different frequencies at fixed velocity and found that the maximum growth rate
increases as the frequency decreases, which can also be seen from Figure 6.1. In general
the maximum growth rate of all perturbations is becoming larger the slower the solitons
are. The value of k⊥ for which this maximum growth rate is attained decreases as the
velocity increases.

The maximum growth rates are quite significant, since a growth rate of about Γ =
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Figure 6.1: Linear growth rates Γ for two p = 0 solitons with velocities V = 0.1 (top) and V = 0.3
(bottom). For each velocity the growth rates for the transversal instability with wave
numbers k⊥ are shown for three solitons which differ in their frequencies ω0.
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0.035 (for a soliton with V = 0.1, ω0 = 0.97 and k⊥ = 0.27) would allow a 1% pertur-
bation of this wavelength to grow to the order of one in a time of only t ∼ 135.

Summarizing, the longitudinal stable p = 0 Bulanov-Farina solitons are unstable for
transversal perturbations. The growth rate allows significant growth of the perturbation
within physically relevant times, which are in the order of a few to several 1/ωpi.

6.2.2 Linear transversal instability of p=1,2,... solitons

We have shown in Sec. 4.3.2 that Bulanov-Farina solitons with node number p ≥ 1 in
the vector potential suffer from longitudinal instability. For p = 1 solitons the growth
rates for the 1D instability range from Γ ≈ 0.01 to Γ ≈ 0.09, depending on the soliton
velocity. Perturbations of solitons with higher node numbers have growth rates with the
same order of magnitude.

From simulations of Eq. (6.6) - (6.9) performed for p = 1, 2, ... solitons as unperturbed
solutions , we found that they show a transversal instability, too. To determine the
transversal wave-number for which the growth rate Γ is maximal we used the same
method as for the p = 0 solitons. All growth rates Γ have no imaginary part.
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Figure 6.2: Linear growth rates Γ for p = 1 solitons with different velocities V versus the perturba-
tion wave-number k⊥.

The qualitative findings are the same as for the p = 0 case, see Fig. 6.2. The growth
rates for the transversal instability are between Γ ≈ 0.01 and Γ ≈ 0.15 for p = 1 solitons,
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depending on the velocity V . The slower the soliton, the larger is the maximum growth
rate Γ and the larger is k⊥ for which this growth rate is attained. When we compare
solitons with different p number but the same velocity, we find that the maximum
growth rate increases with increasing node number p. Note that since these solitons
are longitudinally unstable, we expect to recover the growth rate for the longitudinal
instability in the limit of k⊥ → 0. This behavior can be observed from Fig. 6.2.

In order to compare the importance of the transversal versus the longitudinal insta-
bility in the linear regime, we calculated the ratio of the growth rates. The maximum
transversal growth rate is always larger than the longitudinal growth rate by a factor
of at least 2 (up to a factor of 14). Figure 6.3 shows the ratio of the (transversal over
longitudinal) growth rates in dependency of the soliton velocity V .

The peak in Figure 6.3 is due to a minimum in the longitudinal growth rate, which
separates two regions of different unstable behaviors in the 1D case. For velocities
smaller than V ≈ 0.7 the 1D unstable mode shows frequency sidebands. On the other
hand solitons faster than V ≈ 0.7 the instability shows no frequency sidebands.

From the comparison of the linear growth rates for longitudinal and transversal insta-
bility we can state, that in the linear regime the transversal instability always dominates
the dynamics. This however has not to hold for the nonlinear regime, where nonlinear-
ities can influence this behavior.
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Figure 6.3: Ratio of the maximum transversal growth rate and the longitudinal growth rate for p = 1

(solid line) and p = 2 (dashed line) solitons with different velocities V . The peak for
p = 0 is associated with a minimum in the longitudinal growth rate which separates
solitons suffering from different types of longitudinal instability.
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6.3 Nonlinear simulations

To verify our findings from the linear simulation, we carried out nonlinear 2D simula-
tions. As initial conditions a 1D soliton is used which is constant along y. A small
amount of a few percent of the most unstable mode (for a given k⊥) is then added to
this distribution. In the following sections we will demonstrate this for cases when the
wave numbers k⊥ has been chosen such that the growth rate has a maximum.
The comparison with the linear integrator leads to an independent verification of the
linear result. As long as the perturbation is small, linear and nonlinear evolution have to
be the same. All our linear results have been verified by this method and gave excellent
agreement with the nonlinear results.
Eventually the perturbation will become large and the nonlinear evolution will set in.
Because of their different stability properties in the purely longitudinal case, we distin-
guish in this section between nodeless solitons and solitons with nodes.

6.3.1 Nodeless solitons

We show in the following the nonlinear evolution of a perturbation for a p = 0 soliton
with velocity V = 0.1. The norm of the perturbation added to the unperturbed soliton
was 2% of the norm of the soliton. The initial evolution of the longitudinal perturbation
is in excellent agreement with our linear prediction. When the nonlinear development
prevails, a complete transversal filamentation of the perturbed soliton appears. The
electrons start being expelled from the regions where the intensity |A|2 is large and
begin to bunch sideways of the pulse. The ion density forms peaks at the front and is
depleted inside the filaments , see Fig. 6.4.

6.3.2 Solitons with nodes

Since solitons with p = 1, 2... are transversely as well as longitudinally unstable, it is
important to check the nonlinear evolution of these instabilities. This evolution of the
two instabilities could be different from the linear one, which is described by the ratio
of the linear growth rates from Sec. 6.2.2.

The simulations show that the transversal perturbation always prevails over the lon-
gitudinal one in the nonlinear regime. We demonstrate this for a p = 1 soliton with
V = 0.8. The initial perturbations were constructed in such a way that they contain each
of the most unstable modes for every direction, as determined by our linear simulations.
The norm of the perturbations in each direction were 1% of the norm of the soliton.
The longitudinal growth rate is Γl = 0.010393 and the transversal Γt = 0.06890. From
Figure 6.5 can be seen that after a time of 56 the pulse already shows clear transversal
filamentation, but almost no longitudinal deformation.
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6.3. Nonlinear simulations

Figure 6.4: Densities ne, ni and intensity |A|2 of a transversal perturbed p = 0 soliton with V = 0.1
at time t = 105. The perturbation is 2% of the transversal most unstable mode which
has a wave number k⊥ = 0.27 and a growth rate γ = 0.034.
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6. Two-dimensional dynamics of relativistic solitons

Figure 6.5: Densities ne, ni and intensity |A|2 of a perturbed p = 1 soliton with V = 0.8 at time
t = 56. The perturbation consists of a longitudinal and a transversal mode. Each mode
is the most unstable for its direction and the amount was 1% of the soliton for each.
The dominance of the transversal instability can be seen.
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6.3. Nonlinear simulations

6.3.3 Transversal instability from noise

So far we always assumed knowledge of the most unstable modes from the linearized
systems. To demonstrate the development of the transversal instability for systems
without correct initial excitation of these modes, we simulate a soliton with random
noise added to the initial vector potential A. The noise Anoise is Gaussian distributed
about a mean value. Besides fulfilling the Coulomb gauge ∇·Anoise = 0 the amplitudes
of the Fourier modes contained are such that the average magnitude of the corresponding
magnetic field Bnoise is the same for every wave number k⊥ = (kξ, ky). Thus there is no
preferred direction within the noise, and all Fourier modes of Bnoise are equally strong.
The energy of the added noise is about one permill of that of the total energy of the
soliton. The highest frequency contained in the initial noise is in the order of a few
percent of the highest frequency the computational grid can resolve. Initial excitation
of larger frequencies would lead to strong aliasing errors from the numerical integration.

The simulations of such perturbed solitons show that within a time of the order of a
few tens of 1/ωpe a transversal perturbation with a distinct k⊥ dominates. The value of
the transversal wave number k⊥ corresponds to the maximum transversal growth rate
that has been determined from the linear analysis. After the transversal instability has
evolved for some time, wave-breaking sets in. This breaking is not due to a longitudinal
instability, but is part of the transversal dynamics. Longitudinal instabilities can be
excluded as source of this early breaking because of the different time scale on which
the breaking sets in. The longitudinal growth rates are to small to allow noteworthy
growing of these modes within the time considered here.
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6. Two-dimensional dynamics of relativistic solitons

Figure 6.6: Intensity |A|2 of a transversal instability grown from noise for a p = 1 soliton with
V = 0.9 at time t = 290. The energy of the noise was less than 1 permille of the energy
of the soliton. The highest frequency of the initial noise was 5% of the maximum
frequency the computational grid could resolve.
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Figure 6.7: Magnitude of electric field E and magnetic field B at t = 290 for the instability shown
in Fig. 6.6.

6.4 Field structure

In this section we will discuss the field structure of the perturbation and examine the
nonlinear evolution of these structures.

Let us first recall the fields of the unperturbed soliton. The direction of propagation
is x, the soliton is circular polarized and has vector potential components along y and
z direction. The magnetic field B = ∇ × A = (0, By, Bz) of the soliton has only
components perpendicular to the propagation direction. The electric field consists of
an electrostatic part and an electromagnetic part. The electrostatic field is purely in
x direction, whereas the electromagnetic contribution is solely in transversal direction.
The magnetic and the electromagnetic fields oscillate with frequency ω0.

The fields of the soliton depend only on one spatial coordinate, this is why we call
it 1D soliton. The fields of the perturbation on the other hand depend on two spatial
coordinates (but are of course three-dimensional themself). In two-dimensional geom-
etry two kinds of polarization can be distinguished. Our simulation domain covers
the x, y plane, which we call plane of incidence. The component of the electric field
perpendicular to this plane is called s-polarized and the field components within this
plane are called p-polarized (note that this p is a different letter than p, which we
use to quantify the node number of a Farina-Bulanov soliton). By Maxwell’s equation
∂B/∂t = −∇ × E we find the according magnetic field components. In Figure 6.8 this
is shown schematically. There the fields Bx, By are combined into Bφ and Ex, Ey into
Eφ. In the three-dimensional case the analog to the s-polarized (p-polarized) part is a
TE-mode (TM-mode).

We decomposed the fields of transversal perturbations into s- and p-polarized parts
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6. Two-dimensional dynamics of relativistic solitons

Figure 6.8: Schematic electromagnetic field configuration for a s-polarized (left) and a p-polarized
(right) field. We assume the x, y plane as plane of incidence. The propagation direction
is x.

to study the structure of the perturbations. The distribution of the electromagnetic
energy between these two parts is of interest to us.

The energy W in these fields is proportional to

W ∼
∫

(

E2 + B2
)

dxdy , (6.15)

where we inserted the according field components for the different polarizations.

6.4.1 Fields of the linear perturbation

The two-dimensional perturbation has non-vanishing magnetic field components Bpert =
(Bx, By, Bz). Due to an inhomogeneous distribution of electron and ion density the
perturbation has an electrostatic field Ees = −∇φ, which has components along x and
y direction. We define Eem = −∂A/∂t, which is the electric field of the laser. The fields
Ees and Eem of the perturbation oscillate with the frequency ω0 of the soliton.

The field Ees is not constant, but shows spatial variations over one soliton period,
because of fluctuations in the electron density, see Fig. 6.9. The ion density shows no
spatial fluctuation due to their much larger mass.

We split the electric field Eem and the magnetic field B = ∇×A of the perturbation
into p- and s-polarized parts.

Let us first discuss the s-polarized part. It consists of the fields Bx, By and Ez.
In the x, y plane the components Bx and By form vortices, see Fig. 6.10 left side.
These magnetic vortices are connected to an electric field by the Maxwell equation
∇× B = ∂Eem/∂t. The electromagnetic field Eem,z is depicted in the right side of Fig.
6.10. The field Eem,z oscillates with the frequency ω0, hence the curl direction oscillates
with the same frequency. The phase difference of the oscillations in the electric and the
magnetic field components is exactly π/2.
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Figure 6.9: Contour plot of the magnitude of the electrostatic field Ees for a perturbation of a
soliton with p = 0 and V = 0.1 for different times t = 0, t = 1.72, t = 3.31 and
t = 5.04, respectively. The period of the oscillation is equal to the period of the soliton,
which is T = 6.57. The wave-number of the perturbation is k⊥ = 0.27.
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Figure 6.10: s-polarized field components of a perturbation of a soliton with p = 0 and V = 0.1.
The wave-number of the perturbation is k⊥ = 0.27. Left: Field line plot of the Bξ and
By components of the magnetic field. Right: Contour plot of the z component of the
electromagnetic part of the electric field.
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6.4. Field structure

The field components Eem,x, Eem,y and Bz constitute the p-polarized part of the per-
turbation. The magnetic field Bz has alternating signs in y direction which oscillate in
time with ω0. This oscillation is coupled to vortices in the electromagnetic field com-
ponents Eem,x and Eem,y via ∇ × E = ∂B/∂t, see Fig. 6.11. As for the s-polarized
part there is a phase difference of π/2 between the electric field and the magnetic field
components.
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Figure 6.11: p-polarized field components of a perturbation for a soliton with p = 0 and V = 0.1.
The wave-number of the perturbation is k⊥ = 0.27. Left: Field line plot of the Ex

and Ey components of the electric field Eem. Right: Contour plot of the Bz.

We compute the electromagnetic energy stored in the s-polarized and the p-polarized
part by Eq. 6.15. Figure 6.12 displays the evolution of energy in the s- and the p-
polarized part.

We find that the energy of the s-polarized part of the perturbation is about one order
of magnitude larger than that of the p-polarized part. Hence we state that the fastest
growing perturbation for the circular polarized Bulanov-Farina solitons is dominantly
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Figure 6.12: Energy W in the s-polarized (blue line) and the p-polarized (red line) part of the
electromagnetic fields of the fastest growing perturbation for a p = 0 soliton with
V=0.1 in arbitrary units. The evolution is shown for one period of the soliton.
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6.4.2 Nonlinear field structure

To determine the field structure of the nonlinear end state, we examine the fields that
result from a nonlinear simulation of a perturbed soliton. We demonstrate the behavior
for a p = 0 soliton with velocity V = 0.1. The soliton was perturbed by the linear mode
that has been discussed in the previous section. The wave-number of the perturbation
is k⊥ = 0.27. The initial amount of perturbation was 2%. Fig. 6.13 displays the s-
polarized field components at t=104. At this point the transversal filamentation is
completely developed, we see filaments separated by λ⊥ = 2π/k⊥. The fields inside the
filaments show periodic behavior and are quasi-stationary. The slow expansion of the
density cavity due to the ponderomotive pressure of the trapped radiation would follow.
Following the evolution for even longer time in the simulation is not yet feasible due to
limitation of computational power.

When comparing the field structure to that of the linear mode we see that the geome-
try of the nonlinear fields are in very good accordance to those of the linear mode. The
distance between the filaments matches the predictions from the linear regime.

What has changed in the nonlinear stage is the distribution of the electromagnetic
energy. In the perturbation the s-polarized part carried the most energy of the elec-
tromagnetic fields. When we compute the electromagnetic energy in the nonlinear end
state, we observe that this state is mostly p-polarized, see Fig. 6.14.

6.4.3 Relation to results from literature

The formation of solitons in relativistic laser-plasma interaction has been described in
many places in literature [7, 8, 10, 36, 59, 71]. We want to relate the results for the
nonlinear end state to those from experiments or PIC simulations.

Diagnostics for detection of solitons in experiments is able to probe the electric space
charge fields which belong to a soliton [7, 8]. From these fields the spatial extension of
the solitary structures can be determined. Radially symmetric structures are detected
with sizes in the order of the collisionless electron skin depth de = c/ωpe. The radial
size of the structures we observe in nonlinear 2D simulations matches these observations
from the experiment. The polarization measurement of the soliton fields is a very recent
development. It is found that the solitons created by a linear polarized laser have a
dominant field component with the same polarization as the laser has. [36].

This finding is coherent with 2D PIC simulations, which show that solitons created by
a s-polarized laser pulse have the same polarization as the driving laser [59, 71]. In these
simulations, solitons are created by propagation of a laser pulse in an underdense plasma
with varying density. At the top of a density profile the plasma is still underdense, but
parts of the pulse become trapped due to frequency-downshift. Solitons are created and
begin to expand very slowly.

In Ref. [10] the interaction of a circular polarized laser beam moving in an inhomo-
geneous plasma is discussed by a 2D PIC simulation. The pulse moves towards higher
background density and creates a soliton. The field structure of the soliton is discussed
and found to be of s-polarization. This prediction matches the results from our ob-
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Figure 6.13: Magnetic and electric field of the s-polarized part of the nonlinear end state of a
perturbed p = 0 soliton. For parameter details see text.
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Figure 6.14: Energy W in the s- (blue line) and the p-polarized (red line) part of the electromagnetic
fields of the nonlinear end state of perturbed p = 0 soliton with V=0.1 in arbitrary
units. The initial perturbation was 2% of the fastest growing mode. The evolution is
shown for one period of the soliton.
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6. Two-dimensional dynamics of relativistic solitons

servations. From the transversal instability we obtain a solitary structure of the same
dimensions and with a dominant polarization, too. The kind of polarization, p- or s-
polarization, is different, but this may however depend on plasma parameters like for
example the background density of the plasma. In our case the background density was
homogeneous, whereas in Ref. [14] the density distribution was inhomogeneous.

Observation of the expanding behavior of the density cavity is beyond the computa-
tional possibilities of the Maxwell-fluid simulation at the current moment. Hence we are
not able to confirm the rate of expansion of the cavity predicted by a snowplow model
[69].
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6.5 Instabilities in 3D

The study of soliton stability by nonlinear Maxwell-fluid simulations in 3D geometry is
not yet feasible due to limitations of todays computers. Nevertheless the linear regime
in 3D is accessible by the 2D formalism we developed in the previous sections.

The direction of propagation is x, so in general a perturbation in transversal direction
has a wave-number k⊥ = (ky, kz) in the y, z-plane. In the previous sections where we
discussed linear 2D stability we supposed k̄⊥ = (k̄y, 0), since we were allowed to choose
an arbitrary perpendicular direction.

To extend these results into 3D, we have to calculate transversal unstable modes for
every angle φ, where φ is the angle between k⊥ and the y axis in the y, z-plane, i.e.
φ = arctan(kz/ky). Since the linear 2D simulation always demands k̄z = 0, we have to
transform the results from this special system to systems that are rotated by φ to get
perturbations that have a general wavenumber k⊥ = (ky, kz).

In order to see how the results from the system where k⊥ is purely in y direction
connect to the system where k⊥ is an arbitrary vector in the y, z-plane, we have to
rotate the 3D linearized equations (3.14)-(3.18) about the x direction by the angle φ.
The rotation is such that k⊥ = (ky, kz) → k̄⊥ = (k̄y, 0). All quantities have to be
formulated in terms of the quantities in the rotated system, which are indicated by
bars. Thus the rotation is given by

y = ȳ cosφ− z̄ sinφ , (6.16)
z = ȳ sinφ+ z̄ cosφ . (6.17)

The perpendicular components of the vector quantities are transformed by the same
scheme, for example the components of vector potential A

Ay = Āy cosφ− Āz sinφ , (6.18)
Az = Āy sinφ+ Āz cosφ . (6.19)

Transformation of the system (3.14)-(3.18) by this rotation and rewriting all equations
for the rotated quantities leads to a description that is equivalent to the 2D linearized
system (6.6)-(6.9), but where the unperturbed state is now rotated by the angle φ. Thus
we have to add a constant phase eiφ to the unperturbed state to grow the most unstable
mode with the existing 2D linear code for a system that is rotated by φ in the y, z plane.
All simulations show that the growth rate of the most unstable mode does not depend
on the initial phase of the unperturbed state, hence the growth rate does not depend
on the direction of k⊥, but only on the magnitude of k⊥. As the whole system behaves
linear, it is now possible to superpose modes with different k⊥ to construct a 3D mode
that grows exponentially within the linear regime.

However, in full 3D geometry the nonlinear evolution of these modes may be com-
pletely different from the 2D case. It is therefore not possible, to strictly transfer the
observations from 2D nonlinear simulations into 3D geometry.
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7 Conclusion

In the present work the stability of solitary waves including wave-breaking criteria has
been studied. The stability of relativistic solitons is of importance as it gives insights in
the creation and evolution of relativistic plasma structures that can trap laser radiation.
Wave-breaking criteria determine the stability of plasma waves, which is of fundamental
importance for plasma-based particle accelerators.

The interaction of plasma and a laser pulse was described by Maxwell-fluid equations.
A general numerical method for linear stability analysis was developed and applied to
different soliton solutions in 1D and 2D geometry.

At first, different types of solitons were examined in a 1D model. In 1D geometry
all quantities depend spatially on just one coordinate (eventhough they may be three-
dimensional by themself). Within the approximation of a static ion background and
cold electrons standing pre-soliton solutions are known. By a numerical linear stability
analysis, we found them to be stable. Their transition from pre- to post-solitons was
demonstrated by allowing the initially homogeneous ion density to vary and react to the
presence of the soliton. The creation and further development of a density cavity was
shown for this case.

Linear polarized pre-solitons were derived in the limit of small laser amplitudes, small
plasma density variations and the assumption of a fixed ion background. We showed
that these solutions are unstable. The analytical stability criterion for these solitons
that was previously used in literature was demonstrated not to apply here.

To investigate stability of solitons on time-scales larger than ti =
√

mi/me ≈ 40,
the ions have to be included in the initial soliton solution. We performed a stability
analysis for solitons in cold and in warm plasma, both for circular polarized lasers [53].
The standing soliton solutions for a warm electron-ion plasma only show perturbations
that grow according to a power-law in time and not exponentially. These modes were
identified as phasor-modes and not as an instability, so the solitons can be considered
stable.

In cold plasma no standing soliton solutions can exist in the case of mobile ions. The
solitons always have to have a certain minimal velocity. In this regime we studied sta-
tionary Farina-Bulanov solitons. The envelope of the vector potential can have different
numbers p = 0, 1, 2, ... of nodes. We found that solitons with node number p = 0 show
no physically relevant longitudinal instabilities. All solitons with node numbers p ≥ 1
were demonstrated to suffer from instability on the ion time-scale. Two kinds of longitu-
dinal instabilities were found for p ≥ 1 solitons, a purely growing one and an oscillatory
growing one. Below a certain velocity the instability is purely growing in time, above
this velocity additional oscillations in time appear.

The nonlinear evolution of a perturbation for unstable Farina-Bulanov solitons showed
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the excitation of plasma waves in the wake of the soliton. Eventually we observed
breaking of these electrostatic waves. In order to gain insight into the stability of wake-
fields we studied general criteria for wake-field excitation and wave-breaking.

Criteria for wave-breaking in different scenarios are important, because on the one
hand they give the maximum electrical field that a plasma can sustain and on the other
hand they make predictions about the life-time of the wake-field. Both is important
for particle acceleration schemes using wake-fields. Electrostatic plasma waves with
frequency ωpe are known to break within the first oscillation if their amplitude is suffi-
ciently large. By a relativistic Lagrangian coordinate description of the electron fluid,
the possibility of breaking in the presence of an inhomogeneous background density has
already been shown. We succeeded in showing up another mechanism for wave breaking
in the relativistic regime [54]. In Lagrangian description the electrical field amplitude
EL at the place of the fluid element is governed by a nonlinear oscillator equation. The
nonlinearity is introduced by the relativistic γ factor. We showed that this nonlinearity,
however small it may be, will eventually lead to wave-breaking. The time of breaking
T is in general larger than 1/ωpe, and we derived an expression for an estimate of T .
Hence even in the case of homogeneous background density an electrostatic wave will
always break due to relativistic effects.

The Lagrangian model is only suited for electrostatic waves, it cannot give a descrip-
tion of wave breaking at positions where the laser is present. Furthermore it does not
strictly hold for times that are in the order of the ion time ti, but by supporting ad-
ditional Maxwell-fluid simulations we showed that mobile ions only reduce the time it
takes the wave to break, hence the Lagrangian model gives an appropriate upper limit.

So far we treated the stability of solitons in 1D geometry. To reduce the general 3D
Maxwell-fluid model to a 1D model, we assumed that all quantities are transversely
constant. To investigate the influence of transversal perturbations, we had to allow for
variation of all quantities in a transversal direction. This reduces the 3D model to a 2D
model, which may even be physically three-dimensional if an appropriate symmetry is
assumed. With the 2D model we studied the stability of Bulanov-Farina solitons which
are transversely (to the propagation direction) perturbed. For stability analysis we
employed the same method as for 1D stability, which includes determining the structure
of the fastest growing perturbation.

We found that the longitudinally stable p = 0 solitons are transversely unstable. The
growth rate depends on the wave-number k⊥ of the transversal perturbation and is non-
zero in an interval 0 ≤ k⊥ ≤ k⊥c. Perturbations with a wave-number above a certain
cut-off k⊥c do not grow exponentially within the linearized model. The maximum growth
rate Γ for the transversal instability is about Γ ≈ 0.1, which allows the growth of such
modes in a physically relevant time. The maximum growth rate depends on the soliton
velocity V . The faster the soliton, the lower the maximum growth rate for transversal
instability.

For the p ≥ 1 solitons we found similar effects of transversal instability as for p = 0
solitons. The qualitative dependence of the growth rate from the wave-number of the
perturbation is the same as for p = 0 solitons. In general the maximum growth rate
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increases with increasing node number (at fixed soliton velocity V ). For fixed p number,
the maximum growth rate increases as the soliton velocity decreases. Since solitons with
p ≥ 1 are longitudinally unstable, a comparison between longitudinal and transversal
instability was carried out. The transversal instability is always dominant over the
longitudinal instability. For p = 1 solitons the ratio of the growth rates (transversal
growth rate above longitudinal) is at least a factor of two, the maximum ratio is 14 in
the linear regime.

By nonlinear simulations we demonstrated, that the nonlinear evolution of the per-
turbations resulted always in strongly localized laser filaments which produce a plasma
density depression. The transversal wave-number of the nonlinear laser filament struc-
ture is still that of the linear mode. As we observed no wave-vector cascade (at least
in the wave-vector domain that the simulations allow us to follow) we conclude that
Haken’s slaving principle determines the transition into the nonlinear regime, which
says that the linear most unstable mode will slave all other modes and will show up in
the topology of the nonlinear end state.

To demonstrate the transversal instability for solitons which are not perturbed by
the exact initial distribution of the most unstable mode, we showed that it arises from
noise. Nonlinear simulations were carried out with solitons perturbed by random initial
noise. A clear transversal instability arises with a wave number matching exactly the
most unstable linear mode.

To get a more physical understanding of the 2D perturbation and the nonlinear end
state, we studied their field structure. The perturbation consists of two coupled parts
of laser radiation, a s-polarized and a p-polarized part. The s-polarized part contained
the largest part of the energy of the perturbation, about an order of magnitude more
than the p-polarized part. Hence we state that the fastest growing perturbation of
a circular polarized Bulanov-Farina soliton is always dominantly s-polarized. In the
nonlinear end state however, we see that the laser filaments that are created from the
initial perturbation are dominantly p-polarized. Due to nonlinear effects the system
distributes more energy to the p-polarized fields than to the s-polarized.

Finally we discussed how the 2D case can be generalized to construct linear 3D modes
with known growth rate. The study of the nonlinear evolution of these modes in 3D has
to be treated by upcoming projects.
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A Appendix

A.1 Stability of invariant sets

We introduce a metric d(y1, y2) to measure the distance between two states or functions
y1, y2. If the metric is induced by a norm

d(y1, y2) =
√

||y1 − y2||, (A.1)

the distance between unperturbed and perturbed state can be interpreted as the size of
the perturbance.

Let p be a perturbed state that originates from an unperturbed state u with a small
perturbation added. A time-independent unperturbed state u is stable, if there is a
δ > 0 for every ǫ > 0, such that for all times t ≥ t0, for arbitrary t0 from

||p(t0) − u|| < δ , (A.2)

follows
||p(t) − u|| < ǫ . (A.3)

This means that the distance between unperturbed and perturbed state stays small
for all times if the initial distance was sufficiently small.
If the state u is time-dependent one possible way to define stability is to allow an explicit
time dependence of u in the above definition and measure the distance instantaneously.
This definition would be too strict for the stability analysis of solitons. If we consider
two solitons with slightly different amplitudes they will separate arbitrarily far from
each other since their velocity depends on their amplitude. Nevertheless this is not
an instability as an instantaneous measure of the distance between the solitons would
suggest.

A more general approach is the stability of invariant sets, which takes account of e.g.
translations or phase differences. Therefore we consider the whole set S of unperturbed
trajectories T as an unperturbed state and measure the distance between this set of
trajectories and the perturbed state p

d(p, S) = inf
u∈S

||p− u|| . (A.4)

If for every ǫ > 0 there exists a δ > 0 such that for all times t0 with t ≥ t0

d(p(t0), S) < δ ⇒ d(p(t), S) < ǫ. (A.5)

we call the set S stable.
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B Appendix

B.1 Analytical stability criteria

The N-Theorem for the nonlinear Schrödinger equation

For localized solitary wave solutions of the nonlinear Schrödinger equation

i∂tψ + ∂2
xψ + U ′ψ − β(∂2

x|ψ|2)ψ = 0 (B.1)

where ψ is a complex envelope, U is a real valued potential and β is a positive constant,
the region of stability can be determined by the N -Theorem or Vakitov-Kolokolov cri-
terion.

Let us suppose that a localized and quasi-stationary solution exists. We write the
latter in the form

ψs = G(x, η2
s) exp(iη2

st) , (B.2)

then G is given by

−η2
sG+ ∂2

xG + U ′(G2)G− β(∂2
xG

2)G = 0 , (B.3)

the exact form of G is not important at this point.
It is possible to integrate (B.3) once, after multiplication by ∂xG, we get

(∂xG)2(1 − 2βG2) − η2
sG

2 + U(G2) = 0 . (B.4)

By integration of (B.4) G follows for a given U by integration.
The equation (B.1) has multiple constants of motion, we will discuss two here. Multi-

plication of (B.1) with ψ∗, subtracting the complex conjugate and integrate over space,
we find

∂tN = 0 , (B.5)

where the quasiparticle number

N =

∫ ∞

−∞

|ψ|2dx (B.6)

has been introduced.
Multiplication of both sides of Eq. (B.1) with ∂tψ

∗, adding the complex conjugate,
and integrating over space, we get the energy conservation

∂tE = 0 (B.7)
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where

E =

∫ ∞

−∞

(

|∂xψ|2 − U(|ψ|2 − β

2
(∂x|ψ|2)2

)

. (B.8)

We now perturb the soliton G in the form

ψ = (G+ a+ ib) exp(iη2t) (B.9)

and study the evolution of the perturbations a and b. We will restrict ourself to the
linear evolution of the perturbation. By inserting (B.9) into (B.1), we obtain

∂ta = H+b (B.10)

and
∂tb = −H−a , (B.11)

where the Schrödinger operators H+ and H− are defined as

H+ = −∂2
x + η2

s − U ′ + β(∂2
xG

2) (B.12)
H− = H+ − 2G2U” + 2βG∂2

xG . (B.13)

From (B.12) and (B.10) follows that ∂t〈a|G〉 = 0, hence it is sufficient to treat pertur-
bations with 〈a|G〉 = 0. We assume G to be a bell-shaped soliton (so G has no nodes).
Then H+ is positive semidefinite and H− has one negative eigenvalue, since ∂xG has one
node.

To determine the maximum growth rate Γ of an instability a variational principle can
be derived. We consider functions ξ which are perpendicular to the kernel of H+. In
the following the components of ξ parallel to G vanish, i.e. 〈ξ|G〉 = 0. Using the results
from Ref. [47] and [48] we get

Γ2 = sup
ξ

〈ζ|G〉=0

−〈ξ|H−|ξ〉
〈ξ|H−1

+ |ξ〉 . (B.14)

To derive a criterion for instability we construct a ξ (with 〈ξ|G〉 = 0) such that
〈ξ|H−|ξ〉 < 0. Let us consider

ξ = 〈ξ−|G〉H−1
− G− 〈G|H−1

− |G〉ξ− (B.15)

where H−1
− G is defined by

H−1
− G = − ∂G

∂η2
s

(B.16)

and ξ− is an arbitrary function with 〈ξ−|H−|ξ−〉 < 0. Such a ξ− always exists since H−

has a negative eigenvalue.
Using (B.15) we find

〈ξ|H−|ξ〉 = −〈G|H−1
− |G〉

(

〈ξ−|G〉2 − 〈G|H−1
− |G〉〈ξ−|H−|ξ−〉

)

. (B.17)
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Thus instability can occur provided

〈G|H−1
− |G〉 > 0 , (B.18)

and from Eq. (B.16) we see that this implies

∂Ns

∂η2
s

< 0 (B.19)

where Ns is the soliton quasiparticle number

Ns =

∫ ∞

−∞

G2dx . (B.20)

This is a suitable criterion for instability. We cite that in the opposite case the solitons
are stable [88, 50].

The Q-Theorem for the Klein-Gordon equation

To present and prove the Q-Theorem for stability of solutions of Klein-Gordon equations
we will make use of the notation used in Ref. [45]. We start with the Lagrangian density

L = ∂µφ∂
µφ∗ − U(|φ|2) , (B.21)

where φ is in general a complex (charge) field. The potential U is real valued and is
field dependent.

The equation of motion follow from the principle of least action

δ

∫

d4L = 0 . (B.22)

The variation leads to the Euler-Lagrange equation

∂µφ∂
µφ+

∂U

∂|φ|2φ = 0 . (B.23)

We will suppose the metric to be defined in such a way that ∂µ∂µ = ∂2
t −∇.

The system conserves energy E and charge Q which are given by

E =

∫ ∞

−∞

(

|∂tφ|2 + |∇φ|2 + U(|φ|2)
)

d3x , (B.24)

Q = −i
∫ ∞

−∞

(

φ
∂φ∗

∂t
− φ∗∂φ

∂t

)

d3x . (B.25)

We suppose the solitons to be quasi-stationary and of the form

φs = φs exp(−iµst) , (B.26)

where φs → 0 for x→ ±∞.
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The solitons have the charge

Qs = 2µs

∫ ∞

−∞

φ2
sd

3x (B.27)

and obey the equation

−∂2
xφs − µsφs +

∂U

∂φ2
s

φs = 0 . (B.28)

We will prove that the solitons are stable if

dQs

dµs
< 0 . (B.29)

The stability criterion will be proven in 1D geometry, i.e. all quantities depend only on
one spatial coordinate, say x. In order to discuss stability properties, we will construct a
Ljapunov function out of the energy functional E and the energy Esof the zeroth order
soliton solution in the following manner

L = E − Es . (B.30)

Since E is a constant of motion, dL/dt = 0 is always satisfied. It remains to show
that, in the neighborhood of the stationary point, L is positive. When L is positive it
can be estimated in terms of the norm. The norm which will be used is the Sobolev
norm

||F ||2 =

∫

(

∂xF )2 + F 2
)

dx . (B.31)

We will discuss the existence of a lower bound of L in terms of this norm.
By using Schwarz inequality

∫

(φtφ
∗
t )dx

∫

(φφ∗)dx ≥ |
∫

(φφ∗
t ) dx|2 ≥

{

Im
∫

(φφ∗
t ) dx

}2

(B.32)

it is possible to show that
E ≥ A (B.33)

where

A =
1

2

∫

(

|∂xφ|2 + U(|φ|2)
)

dx+
µ2

4
S (B.34)

S = 2

∫

φ∗φdx , (B.35)

and µ = Q/S. Note As = Es, hence we investigate the quantity

R = A− As , (B.36)

which is smaller than L.
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We take the first variation of R and assume δQ = 0 and get

δR =
1

2

∫
((

−∂2
xφs +

∂U

∂φ2
s

φ2
s − µsφs

)

δφ∗

)

dx+ c.c. (B.37)

Due to (B.28), δR = 0.
To show that R has a local minimum for the soliton state, we consider the second

variation. We get

δ2R =

∫
(

∂xδφ∂xδφ
∗ +

1

2

∂2U

∂(φ2
s)

2
[φsδφ

∗ + δφ φ∗
s]

2 +
∂U

∂φ2
s

δφδφ∗

)

dx

− µ2
s

∫

(δφδφ∗) dx+
µ3
s

2Qs
(δS)2 (B.38)

We denote the perturbed states by

φ = (φs + a+ ib) exp(−iµst) . (B.39)

Inserting into (B.38) we get

δ2R =

∫

(aH−a+ bH+b) dx+ 4µ2
s

(∫

(φsa)dx
)2

∫

φ2
sdx

(B.40)

where

H+ = −∂2
x +

∂U

∂φ2
s

− µ2
s , (B.41)

H− = −∂2
x +

∂U

∂φ2
s

− µ2
s + 2φ2

s

∂2U

∂(φ2
s)

2
. (B.42)

Using bra and ket notation, we rewrite Eq. (B.40) as

δ2R = 〈a|H−|a〉 + 〈b|H+b〉 + 4µ2
s

〈a|φs〉2
〈φs|φs〉

. (B.43)

The operator H+ is positive semidefinite for single humped solutions φs, since H+φs =
0. To discuss the definiteness properties of δ2R, we have to investigate the terms
〈a|H−|a〉 and 〈a|φs〉2/〈φs|φs〉.

We make use of Ref. [47] and calculate

sup
ψ

−〈ψ|H−|ψ〉
〈ψ|φs〉2

=
1

−〈φs|H−1
− |φs〉

(B.44)

for operators H− with one and only one negative eigenvalue, we obtain

〈a|H−|a〉 ≥
〈a|φs〉2

〈φs|H−1
− |φs〉

. (B.45)
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Furthermore we have
H−1

− φs =
1

2µs

∂

∂µs
φs (B.46)

and thereby

〈φs|H−1
− |φs〉 = − Qs

8µs
+

1

8µs

dQs

dµs
. (B.47)

Combining (B.43)-(B.47), we obtain

δ2R ≥
(

8µ3
s

Qs
− 1

(Qs/8µ3
s) − (1/8µ3

s)(dQs/dµs)

)

〈a|φs〉2 . (B.48)

This is larger than zero for
µs
Qs

dQs

dµs
< 0 , (B.49)

which is the stability criterion we wanted to prove.
Let us make some notes on the restriction that the perturbed states have the same

charge as the unperturbed ground state which is considered, i.e. δQ = 0. Introducing
perturbations which change the charge, so ∆Q = Q− Qs ≶ 0, we might come up with
a larger instability region. The definiteness of L could be recalculated without this
assumption, or we may use a more direct argument.

Physically, we are investigating the stability of form. Suppose we are examining a
state with conserved charge Q that is different from the charge of the unperturbed
soliton Qs. Then it is possible to find another soliton (s̄), having the same charge as the
perturbed state Qs̄. The perturbation under consideration is now stable with respect
to this new soliton of equal charge. Since we are investigating the stability of form, the
distance between the two solitons is constant. By employing the triangle inequality, one
can show that the perturbed state (with charge Q) is also stable with respect to the
unperturbed state s (with charge Qs).
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