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Abstract

This thesis analyzes the problem of localizing sensors in wireless ad hoc networks.
Wireless ad hoc networks can be found in several practical applications, among
which the most known is the climatic monitoring. Every sensor in such a network
has the ability to register specific factors. These can be forwarded (if necessary)
to other sensors within the network until reaching a so-called anchorpoint. Due
to this special form, these networks are applied for example to predict forest fires,
earthquakes or climatic changes.

The Sensor Network Localization Problem (SNLP) is a NP-hard problem and
is solved by the approximate solution of a non-linear least squares problem in
practice.

Leaning on the work of Ye et al. [5] a semidefinite program (SDP) formulation
is proposed:
min{C ¢ X | A(X) =0, X € S},

where the variable is X € §", the space of real symmetric matrices of dimension
n. The vector b € R™, the linear mapping A : 8" — R™ and the matrix C' € S"
are given. The cone S is the set of all real symmetric positive semidefinite
matrices of dimension n, i.e. S} := {M € 8" | S = 0}. The notation C' e X
denotes the inner product of the symmetric matrices C' and X and is given by

i=1 j=1

This SDP formulation is a relaxation of the original problem (in the model pro-
posed in this thesis, the exact solution of the original problem has to fulfil ad-
ditionally a rank 1 condition). The great advantage of employing SDPs is their
good numerical treatment via interior point methods.

For special cases (so-called “uniquely” localizable networks) is shown, that the
presented SDP provides the exact solution for the SNLP.

The interesting problem variant, which is common in practice, incorporates mea-
surement errors due to interferences between the sensors in a network. This yields
a disturbed localization problem. In this context a local error bound for the dis-
turbed solution is presented.

To improve the solution of the relaxed problem, several heuristics are presented
and compared numerically. The so-called Curvature Descent method achieves
global and local quadratic convergence.






Zusammenfassung

In dieser Arbeit wird das Problem der Lokalisierung von Sensoren in drahtlosen
(Ad Hoc) Netzwerken untersucht.

Drahtlose Ad Hoc Netzwerke finden sich in sehr vielen Anwendungen. Die bekann-
testen sind die klimatischen Beobachtungen. Dabei hat jeder Sensor die Moglich-
keit bestimmte Bedingungen zu registrieren und diese bei Bedarf an weitere Sen-
soren (bis zum Erreichen eines sog. Ankerpunktes) weiterzugeben. So werden
solche Netzwerke z.B. zur Vorhersagung von Waldbréinden, Erdbeben oder zur
allgemeinen Registrierung klimatischer Verdnderungen eingesetzt.

Das SNLP (Sensor Network Localization Problem) ist NP-vollstéindig und wird
in der Praxis iiber die Anndherung an die Losung des zugehdrigen nicht-linearen
least squares Problems gelost.

Anlehnend an die Arbeit von Ye [5] wird eine Modellierung als Semidefinites
Programm (SDP) der Form

min{C e X | A(X) =0, X € S}},

beschrieben. Hierbei ist die Variable X € &§", dem Raum der reellen sym-
metrischen Matrizen der Dimension n. Der Vektor b € R™, die lineare Abbildung
A 8" — R™ und die Matrix C' € 8™ sind gegebene Parameter. Der Kegel
S ist der Raum aller reellen symmetrischen positiv semidefiniten Matrizen der
Dimension n, d.h. 8} := {M € 8" | S = 0}. Die Notation C'e X bezieht sich auf
das innere Produkt von den symmetrischen Matrizen C' und X und ist gegeben
durch

i=1 j=1
Diese SDP Formulierung ist eine Relaxierung des urspriinglichen Problems, dessen
exakte Losung (bei der in dieser Arbeit vorgeschlagenene Modellierung) noch
zusitzlich eine Rang 1 Bedingung erfiillen mufl. Der Vorteil von Semidefiniten
Programmen ist ihre gute Losbarkeit mit Innere-Punkte-Verfahren.

Fiir spezielle Fille (sog. "uniquely" lokalisierbare Netzwerke) wird gezeigt, daf
das vorgeschlagene SDP die exakte Losung des SNLP liefert.

Die interessantere Problemvariante resultiert durch die Miteinbeziehung von Mef-
fehlern, was zu einem gestorten Lokalisierungsproblem fiihrt und dem Fall ent-
spricht, der in der Praxis normalerweise eintritt (z.B. durch Stérungen des Sig-
nals zwischen den Sensoren durch evtl. topographische Gegebenheiten). In
diesem Zusammenhang wird eine lokale Fehlerschranke fiir die gestorte Losung
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hergeleitet.

Um die Losung des relaxierten Problems zu verbessern, werden mehrere Heuris-
tiken vorgestellt und numerisch verglichen. Fiir die sog. Curvature Descent Meth-
ode wird globale und lokal quadratische Konvergenz erreicht.
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Introduction

Nowadays, wireless communication is one of the most important aspects in mod-
ern life.

Microstructure and semiconductor technology has become every day life, and
thus a tiny device is able to intercommunicate over hundreds of kilometers with
other receivers even without the need of constant electricity nor cables.

Mobile phones are just the eye-catching example for the extraordinary devel-
opment in communication technologies during the past decades. The field of
research of wireless communication is huge.

The purpose of this thesis is to analyze the problem of localizing sensors inside a
(wireless ad hoc) network from a mathematical point of view.

Ad hoc wireless networks are used e.g. for environmental observation. They con-
sist of several very small devices which have the ability to communicate among
each other and register specific factors (e.g. temperature, humidity, gas con-
centration of atmosphere, seismic activity, etc.). Normally, these sensors are
randomly distributed over a certain area (e.g. by an airplane, or they move with
sea currents). The goal is therefore to find the (exact) position of each sensor
within the network, using the distance information (say for example sensor z(;
is 2,5 m away from sensor z(;), etc.)

Of course, with the use of GPS technology, the localization problem would dis-
appear. Still, using GPS would imply that the technology of each sensor is more
sophisticated and the energy consumption is higher, which would increase the
entire costs of the network.

Therefore, the employment of anchor points is very common in practice. This
means, that only a few sensors of the network are equipped with GPS (or simply
located a priori).

Mathematically, the Sensor Network Localization Problem results in a sustain-
ability problem, namely find vectors (sensors) z(; to fulfil the given distance
information.

It can be modeled as an unconstrained non-convex optimization problem (least
squares formulation for error minimization, cp. (2.3)).
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In general, unconstrained, non-convex optimization problems are very difficult
to solve as they may have several critical points and any solving algorithm may
get stuck in a neighbourhood of such a stationary point. Finding a solver that
converges to the global minimum (if existent) has not yet been successful. To
overcome this gap, the use of heuristics developed for special problem classes is
very common.

For the solution of the Sensor Network Localization Problem we propose a rank
1 semidefinite relaxation of the non-convex problem formulation.

We prove that for uniquely localizable networks this relaxation, which can be
solved efficiently by interior point algorithms, provides the exact solution of the
localization problem.

In practice, the given distance information is full of measurement errors (due to
technical details, e.g. topographical situation, etc.). The localization problem
can therefore be solved only approximately.

We obtain a good initial approximation to the SNLP solution by solving the rank 1
SDP relaxation, and present different heuristics to solve the general unconstrained
non-convex problem starting from this initial point.

As only descent methods are proposed, global convergence is easily shown. For
the proposed Curvature Descent approach also local quadratic convergence is ob-
tained.

Completing the work, numerical examples are presented and the solution of the
different approaches are compared.

I thank Prof. Dr. Florian Jarre for the at all times constructive supervision of this
thesis. Especially I thank his goodwill to make it possible to find an equilibrium
between working and having a little child at home.



Chapter 1

Theory of Semidefinite Programs

As Semidefinite Programs are studied, this chapter provides a short summary of
basic properties. The following general notation is used

- 8™ denotes the space of real symmetric matrices of dimension n,
ie. S":={M e R | M = MT}.
- 8% denotes the cone of positive semidefinite matrices,

le. St :={M eS8 |[2"Mz >0 VeeR"}={MecS"|M*=0}.

- A e B denotes the inner trace product between two symmetric matrices A
and B of same dimension,

ie. Ao B=tr(ATB) = tr (AB) =33 A, By,
i=1j=1

1.1 Basic Properties and Notation

Semidefinite problems can be seen as a special case of conic problems, namely
minimization over the self-dual cone of semidefinite matrices.
The primal problem formulation is given by

min CeX
st. ADeX =b fori=1,..,m (PSDP)
X eS&Y

for some real n-dimensional symmetric matrices A® and C and a given vector
b= (bl, ce bm)T € R™,
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The corresponding dual formulation is

max by

m , (DSDP)
st. C — ZyiA(’) = 0.
i=1

As can be seen from the latter, there is a strong analogy between linear and
semidefinite programs. In fact, most of the theoretical behaviour of linear prob-
lems can be transferred to semidefinite programs. For example, it is easily shown
that weak duality holds, i.e.

CeX >y

for any feasible X € §™ and y € R™.

Furthermore, if (PSDP) and (DSDP) satisfy Slater’s condition, i.e. there exists a
strictly feasible matrix X = 0, A" ¢ X =b; for i = 1,..,m, resp. C' = > 9, A®,

i=1
then a matrix X and a vector y are optimal for (PSDP) and (DSDP) if and only if
there exists a matrix S € §™ and the following optimality conditions are satisfied

Sy A+ s =0, (0C1)
=1

AX)=b X =0,S=0, (0C2)

XS =0, (0C3)

where A : 8" — R™ is a linear mapping defined as

AN o X
Ax) = |
Alm) ¢ X

see e.g. [11].

The last optimality condition (OC3) is stronger than the "natural" one X eS =0
and leads to a different formulation of the complementary slackness theorem for
SDP (see [1], Corollary 2.11):

Proposition 1.1
Let X be a feasible matriz for (PSDP) with eigenvalues A1, ..., A, and

S = C -3 Y; AW be feasible for the dual problem (DSDP) with eigenvalues
i=1
W1y eeey Wn -
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Then X and S are primal and dual optimal solutions, respectively, if and only if
they commute and there is a permutation m of eigenvalues of S such that

Aiwr, =0 for 1=1,...,n.

From this proposition follows that at least one of \; or w,, (corresponding to the
same eigenvector u') must be zero for each i = 1,...,n. Therefore it holds that

rank(X) + rank(S) < n. (1.1)

At this point the analogy to linear programs ends, in the sense that it is not clear
how to predict rank(X) or rank(S) in general. In linear programs one can say
that in absence of non-degeneracy, exactly m components of the optimal solution
are zero. For SDPs it can be stated that

rank(X) <n

as the optimum of the primal (PSDP) is attained on the boundary of the semidef-
inite cone. Pataki [21] studies facial structure of feasible sets of SDPs and shows
the stronger result
rank(X)(rank(X) + 1)
2
where 7 is the dimension of the minimal face of the feasible set of (PSDP) con-
taining X.

<m+r

In the seminal work of Nesterov and Nemirovski [19], it was shown that the SDP
problem (PSDP) can be solved in polynomial time by using the selfconcordant
barrier function

#(X) = — In(det(X1)).

There are several interior-point methods for solving SDPs in practice, a listing
can be found in [9].

For the numerical implementation of our test problems we used Sedumi [23],
which is a Matlab Toolbox that implements the self-dual embedding technique
as proposed in [17].






Chapter 2

The Sensor Network Localization
Problem

This chapter gives a formulation of the Sensor Network Localization Problem and
outlines an overview of the most known approaches.

2.1 Problem Description

Consider a (wireless) ad hoc network that consists of n sensors and m anchors.
The network can be seen as a graph with n + m nodes. The positions of the n
nodes that correspond to the sensors are not known. The positions of the nodes
that correspond to the m anchorpoints are known (e.g. via GPS). The (unknown)
sensors will be notated with the variables x(yy, ..., () € R? (in this thesis we will
restrict our observations to the case d = 2), and the anchors with the variables

A(n+1)s - A(n+m) € R4

In real world problems it is unusual that all sensors/anchors are able to inter-
communicate. Therefore, a so-called radio range is defined. This is a magnitude
that provides information of the furthest distance where two sensors/anchors are
still able to communicate with each other. In other words, if the given radiorange
(which normally is the same for all nodes in the graph) is r € R, sensor z(;
can communicate with sensor x(; if and only if ||zy) — x(||; < r. With this
assumption a (typically incomplete) subgraph is obtained.

The radio range defines subsets N, & {1,...,n} x {1,...,n} and N, & {1,...,n} x
{1,...,m} in the following way:
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(i,7) € Ny <= |lzgy — 2l <r Vi,j=1,..,n and
(I,k) € N, < Hx(l) - a/(nJrk)HQ <r Vi=1,.,n, k=1..m.

With this, only certain distance information is given, namely the values d;; and
di, € R for (i,j) € N, and (I,k) € N, which represent ||z — ;|2 and
lz@) — am+r)l|, respectively. In chapter 4 the problem will be discussed when
the given distance measurements are not exact.

The aim is to find the (eventually) exact position of the n unknown sensors using
the distance information given. A mathematical formulation of the Sensor Net-
work Localization Problem (in the following abbreviated as (SNLP)) is given as
follows:

Given m anchor locations a4 € R? for k = 1,2,...,m and some distance

measurements d;;, dy. for (i,7) € N, C {1,...,n}?, and (I,k) € N, C {1,...,n} x

{1,...,m}, find z;) € R%, i = 1,2, ...,n, the locations of n sensors, such that
||$(i) — a:(j)Hg = d? V(i,j) € N, and

ij)

— 2_ 2 YK eEN 21
”x(l) a(n+k)H2— k> (7 )E a-

This problem can be seen as an optimization or more precisely as a satisfiability
problem in the following sense:

min 0
St Ty, T(n) € R?
2 2 .o (2'2)
|z =zl =d; for (i,5) € N,
24y = agnimlly = dij, for (I, k) € N,

This problem is a non-convex optimization problem and moreover, it is NP-hard
(for details see appendix A).

2.2 Known Approaches

There have been several approaches to solve (2.2). The most common technique
in practice is the so called multilateration which arises from the least squares
solution of the given nonlinear equations of (2.1):

min e —2zpls —dgl5+ > Mo = awwlls = dil3 (23)

rERIn
(4,7)ENg (I,k)ENg
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It is clear, that the latter is an unconstrained non-convex optimization problem.
It therefore can have several minima and usually its solution is computed by
heuristics.

2.2.1 SDP relaxation by Ye et al.

A more elegant interpretation of the SNLP was proposed by Biswas & Ye [5],
which has been driven much attention during the last couple of years. In their
work, a rank 2 SDP model was proposed in the following way. Let

X = [.Z‘(l), ...,x(n)] € R#*n

be the matrix containing the desired sensors listed as column vectors. Let e;; € R"
be the vector with 1 at the i-th, —1 at the j-th position and zero elsewhere and
e; € R™ the vector of all zeros except an —1 at the [-th position. The conditions
(2.1) can then be stated as

2@ — x(j)”% = eiTjXTXez‘j for (i,j) € N, and

||a:(l) — a(n+k)||g = (a(n+k); el)T[]d;X]T[Id;X](a(n+k); e) for (k)€ N,.
(2.4)

Thus, problem (2.1) evolves into finding a symmetric matrix ¥ € R™"™ and a
matrix X € R**" such that

eyYeiy=djy for  (i,j) € Ny

Iy X
(a(n+k); el)T (Xcéﬂ Y) (a(n+k); 61) = dl2k for (l, k’) €N, (2.5)

Y =X"X.
Relaxing the last condition to Y > X7 X, which is equivalent to require

I, X
= -
Z (XT Y) =0

(by Shur’s complement), transforms the SNLP into a standard SDP problem,
namely
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min 0
s.t. Zidgn:a = g
(05e;)(0;¢5)" @ Z=d; ¥ (i,j) € N, (2.6)
(i) €)(agninyse))” @ Z =djy, ¥ (I,k) € N,
Z =0,

where Z;.41.4 denotes the block of the matrix Z consisting of the first d rows and
columns.

So & Ye showed in [25] that for uniquely localizable networks the solution of (2.6)
is equivalent to the solution of the original problem.

2.2.2 FEuclidean Distance Matrix Formulation

In [6] Wolkowicz et al. generalize the SDP relaxation of Ye et al. (2004) by
connecting it to the theory of Euclidean Distance Matrices.

A n xn symmetric matrix D = (d;;) with nonnegative elements and zero diagonal
is called pre-distance matriz (or dissimilarity matrix).

In addition, if there exist points (1), ..., Z(n) in R? such that

& = ey —xplls .5 =1,...n,

then D is called an Fuclidean Distance Matriz (EDM). Note, that in an EDM
the entire distance information between all sensors ;) is given.
For a given matrix B € 8" the linear operators D, and I are then introduced by

D, := diag(B) ¢ + e diag(B)", K(B) :=D.(B) — 2B,

where e is the vector of ones and diag(B) is the vector containing the diagonal
elements of the matrix B. The adjoint operators are

D:(D) = 2Diag(De), K*(D) =2(Diag(De)— D),

where Diag(De) is the diagonal matrix whose (diagonal) entries are the compo-
nents of the vector De.

It can be shown that K maps the cone of positive semidefinite matrices onto the
cone of Euclidean distance matrices. This fact establishes a relation between the
Euclidean distance matrix formulation and the SDP formulation of the problem.

The anchors are treated as variables, setting
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v ._ ppT _ [XXT XATl

AXT  AAT

with A = [a(ni1), o Qnpmy) T € R™*4, PT = [XT AT|T,
An EDM problem equivalent to the SNLP is obtained with

min (V) = LW o (K(V) ~ E)[};

st g.(Y) <0
a(Y)=>0

Y — PPT =0

where E € R"tm*(m+m) denotes the matrix of the given distances e;; = d;; for
(i,7) € N, and ey, = dy, for (I, k) € N,, the matrix W € RM+mx(+m) ig o weight
matrix (with higher weight entries when anchor points or exact known data are
considered) and the functions g, and g, fulfil upper and lower bounds for the
sensors/anchors which are not connected.

The last constraint is then relaxed to Y = PPT which is equivalent to the simpler
condition Y > 0.

The problem (SN Lgpys) can be reduced to a smaller dimensional one by using
the fact that the block of Y which corresponds to the anchorpoints information
is a priori known and therefore stands for a clique in the underlying graph. Any
other set of nodes which are highly connected to the network or where it is known,
that there exists exact distance information can be used to reduce the problem
even more (for details see [6]).

Further in 6], a primal-dual interior /exterior-point algorithm based on the Gauss-
Newton search direction is proposed for solving (SN Lgpys). Particularly, this
search direction (described in [13]) does not restrict the iterates to the interior
of the feasible set, and thus usually lower rank optimal solutions are obtained.
These solutions are a better approximation to the exact solution than solutions
with higher rank. In [6] different approaches for solving the SNLP are compared
numerically and the SDP relaxation of the EDM problem performs very well with
the proposed interior/exterior-point algorithm.

2.2.3 SOC relaxation

In [27] and [7] a Second Order Cone (SOC) relaxation of the SNLP is proposed.
The SNLP is equivalent to the problem:
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min Z |y — di | + Z |y — diy, |

(4,7)ENz (1,k)EN,
sty = llze —2pllz YV (i,5) € Ny
v =z — a@em s V(1 k) € N,.

This can be relaxed into a SOC problem in the following way:

min Z |y — iy | + Z |y — diy, |

(4,4)ENz (1,k)EN,
.- (SN Lgsoc)
sty > e —2plls V(i,5) € Ny

e > @) — apimlls ¥ (1, k) € N,

It is shown in [27] that the SOC relaxation contains the SDP relaxation (pro-
posed in [5]) and is therefore weaker. It has the great advantage that the problem
dimension is much smaller than the SDP relaxation and a solution via interior
point methods is faster. A smoothing and coordinate gradient descent method is
proposed in 27| which has the feature to easily distribute over many processors
in parallel.

The main disadvantage of the SOC relaxation of the SNLP is, that it is only
possible to find good approximations of the localization of the sensors inside the
convex hull of the anchors. This means, that only problems with anchorpoints
at the boundary of the network make sense for this problem formulation. Un-
fortunately, this fact restricts the formulation to a very specific range of SNLPs.
Nevertheless, the SOC relaxation can be seen as a pre-location method when
handling large scale problems.

2.3 Our Approach

For networks with exact distance data d;; and dy, for (i,j) € N, and (I,k) € N,
the known approaches from literature offer satisfactory results. Furthermore, net-
works that are uniquely localizable can be solved exactly via the SDP relaxation
as proposed in [5].

SNLPs with disturbed distance data are still difficult to solve. We therefore see
the necessity to develop other approaches that perform well at disturbed prob-
lems but still provide exact solutions for uniquely localizable problems.
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We propose a SDP relaxation of the SNLP by modelling it with a rank 1 matrix.
This formulation has the advantage that the resulting matrix of the relaxed prob-
lem provides a good initial starting point for the general least squares formulation
of the original problem (2.2). This means, the solving procedure splits into two
parts.

Firstly, the SDP problem is solved and an initial approximation vector x to the
problem solution is obtained.

Secondly, a solution refinement is made using descent heuristics for the uncon-
strained non-convex least squares problem formulation (2.3). These heuristics
are presented in chapter 5 and can be applied to any unconstrained optimization
problem.

We show that our proposed relaxation provides exact solution to the original
problem if the underlying network is uniquely localizable.

From a numerical point of view, we obtain good accuracy of the approximate
solution for disturbed problems. Our results are presented in chapter 7 and are
compared to those of Ye et al.






Chapter 3

A Rank 1 SDP Approach

In this chapter a rank 1 SDP approach is presented, which gives an approximate
solution to the SNLP. Moreover, its theoretical behaviour is analyzed.

3.1 Construction of a Rank 1 Model

In order to have a better overview, the problem formulation of (2.2) is repeated
for the case d = 2:

min 0
St X(1)y s Tn) € R?
2 2 .o (31)
2@ —xpll; = d;  for (4,7) € N,
lza) = amenlly = di, for (I, k) € N,.

This problem can be reformulated in the following way.

Let x = (x{l), ...,xa))T € R?" be the vector containing all the sensors listed one

below the other. By setting

T
Y = [1 o ] € RO’
X rr

it holds that
Hx(i) — x(j)”; =Ye Bij for all (Z,j) € N, and
(3.2)
|20 — auin |2 =V @ BL  forall (1K) € N,,

where B;; denotes the matrix containing I5 at the (24 : 20 + 1)-th and the
(27 : 2j + 1)-th block and containing —/I at the (2 : 2i + 1,25 : 2j + 1)-th and

15
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the (27 : 25 + 1,2i : 2 4+ 1)-th block, elsewhere zeros; i.e.

o ... ... ... 0
o, 5,

. —[2 [2 :
o ... ... ... 0

and By, denotes the matrix containing ||a(,+x |3 at the (1, 1)-th position, —ag,4x)
at the (21 : 2] + 1)-position of the first column and row (or transposed, respec-
tively), and I at the (21 : 20 + 1)-th block, elsewhere zeros, i.e.

||a(n+k)||§ 0O ... 0 —CL%;H_k) 0O ... 0
0
: 0 0
0
By =
Ik — (k) [2
0
: 0 0
0

Problem (3.1) results in:
min 0
st. YeBj=d, forall (i,j)eN,
YeBl =d; forall (I,k)€N,
Y(1,1) =1 33
Y e St
rank(Y) =1,
where Si”“ denotes the space of symmetric positive definite matrices of dimen-
sion (2n + 1).

By dropping the rank 1 constraint a relaxation of the original problem (3.1) is
obtained. This leads to the standard SDP formulation:
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min 0

st. YeBj=d, forall (i,j)eN,

YeB =d; foral (k)€ N, (3.4)
Y(1,1) =1
Y e &

Any feasible matrix Y for (3.4) has the shape

y — @ ?f;) (3.5)

with Z = yy?.

As there is no objective function, it can be formulated as a maximize-problem.
By introducing the(2n + 1)-dimensional slack matrix/variable S the dual SDP
has the shape:

min v+ Z dzy Yij + Z i, ik

(4,J)ENg (I,k)eN,
st S= ( ) S Byt Y wB; (3.6)
(4,7)ENg (L,k)ENG
S e 82n+1), veR, y; €R, yi €R,

for given (i,j) € N, and (I, k) € N,.

From the theoretical point of view the dual problem has always a feasible solution
(sc. v=1y;; =y = 0 for all (¢,j) € N, and (I, k) € N,). If the primal problem
(3.4) has a feasible solution, the optimal value of it (and of the dual) must be
zero. The following relation holds

Lemma 3.1 R
Let Y be a solution of (3.4) S a solution of (3.6). It holds

1.YS =0,
rank(Y )+rank(S) < 2n+1,
rank(Y) >1,

rank(S) < 2n.
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Proof:
See the duality theorem for SDP problems [1]. 0

This means that if an optimal solution matrix from the dual has rank 2n, then
every solution of the primal (3.4) has rank 1 and both problems are equivalent.
Therefore, the SNLP can be solved in polynomial time.

3.2 Solution of the relaxed problem vs. exact so-
lution of the SNLP

It follows from theorem (?7) below that if exact (and enough) distance informa-
tion is given, the dual problem has a solution of rank 2n. Therefore, using a
standard interior point algorithm (in our case we worked with Sedumi [23]) it is
easy to find a rank 1 solution of (3.4).

For a better understanding when "enough" distance information is given, we will
take over the terminus uniquely localizable as stated for the first time in [25]. We
transfer the notation and the important statements and adapt the concept to our
rank 1 formulation.

Definition 3.2

Problem (2.1) is called uniquely localizable if there is an unique localization & =
(Z@1ys oy Emy)T € R*™ and there are no xy € R" for i = 1,...,n, where h > 2,
such that

lz@ —xpll3 = di;  for (i,j) € N,
|z — (agewy, 0)" |5 =di,  for (L k) € N,

() # <xg)> for some j € {1,..,n}.

This implies that when a network is uniquely localizable, the problem can not
have a non-trivial localization in some higher dimension (i.e. a localization dif-
ferent from the one obtained by setting () = (&), 0)¥ € R" for i = 1,...,n),
where anchor points are augmented to (agir), 0) € R" for k =1,...,m.

The following proposition is interesting in its own right.

Proposition 3.3

If every sensor point is connected, directly or indirectly to an anchor point in
(3.1), then any solution of (3.4) is bounded, i.e. Z,, in 3.5 is bounded for all
p,g=1,....2n.
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In this case, the network is called connected.

Proof:
From positive definiteness follows, that the determinant of every minor of Z must
be positive, i.e.

Zplgq — Zny >0 (3.7)

for every p,q = 1,...,2n. It is therefore sufficient to show, that every diagonal
element of Z is bounded. It is clear, that the diagonal elements are bounded
below by 0, because of positive definiteness.

Assume now that a sensor w(; is connected to an anchor a(, ), for any | €

{1,...,n} and k € {1,...,m}; it holds

||x(l) - a(n+k)||§ = ||$(Z)H§ - 2x5)a(n+k) + ||a(n+k:)H§

< Zoy1o1-1+ Lo — 2$6)a(n+k) + llagrr I3
This implies that ||z [ in (3.5) is bounded. Using Cauchy-Schwarz, we get
Zyrai1 + Zoar < diy, + 2] x| ankll = llamnll3-

Again, because the diagonal elements of Z are positive, each of the former sum-
mands is bounded.

Furthermore, if a sensor ;) is in turn connected to a sensor ;) (which is a sensor
connected directly to an anchor point), using (3.7) we have

(\/221—1,27;—1 + Za; 9 — \/221—1,21—1 + Z2z,2l)2
< Zsi12i-1 + Zaioi — 2(Zai—1,2-1 + Zoaior) + Zor—1,921-1 + Lo
= d?,l

and therefore Zy;_1 9,1 and Zj; 9; are bounded.

Theorem 3.4
The following statements are equivalent:

1. Problem (2.1) is uniquely localizable.
2. The maz-rank solution matriz Y of (3.4) has rank 1.

3. The solution matriz Y of (3.4) satisfies Z = yy” (cp. (3.5)).
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Remark 3.5
A primal (dual) max-rank solution is a solution that has the highest rank among
all solutions for the primal problem (3.4) (dual (3.6)).

Proof:

The equivalence between 2. and 3. is straightforward. We proof the equivalence
between 1. and 2.

For the direction from 2. to 1. we will only have to prove, that if the max-rank
solution has rank 1 then it is unique.

Suppose therefore, that there are two different feasible rank 1 solutions

- (1 T (1 T
Y= (:c @@T> and Y = (:z: ;f;:zT>

of (3.4) with & # 2. From convexity it arises that the matrix Y = oY + Y for
a+ (3 =1and a,F > 0 is a feasible solution and its rank must be 1 (since the
max-rank is assumed to be 1). The matrix Y is given by

:< 1 angmgsT)

af + Bz azzi’ + pza’
As Y has rank 1
aii’ + i’ = (ax’ + B21)(a + B1)

must hold. This implies that ||Z — Z|| = 0, which is a contradiction.

For the direction from 1. to 2. we suppose that there is a feasible solution Y of
(3.4) with rank r > 1. It follows that Z = za” and Z # zz”. Thus, there exists
a matrix X € R™*?" such that

Z—zT = X" X

Let x; be the j-th column vector of X' of dimension r. Consider the point

L2i—1

To; .
pn =1 7% | eR*™ for i=1,..n.
() Thi
i

Lo;

It holds, that:

Hpmllg = Z2i—12i-1 + Z2i2 and pz;)P(j) = Zoi—12j—1 + Z2ij
| # llzll-

for all i,j = 1,...,n and there exists at least one p(;) such that ||pg
Hence, we have that
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Py — pmH% = Zoic12i-1 + Zoipi — 2(Zoi—1,2j-1 + Zoipj) + Zoj-12j-1 + Z2j2j

2
and

1p@) = (@@sry; 0)7113 = llaganlls — 2aa+k)$(1) + Zoy—121-1 + Za
= dek

for all (I,k) € N, and (i,j) € N,.

In other words, p = (pay, ..., pem))” is a (non trivial) localization of problem (3.1)
in R?*", which is a contradiction.

O

Summing up, the SDP method in addition to a standard interior point algo-
rithm guarantees to find the solution to the SNLP if the input graph (network)
is uniquely localizable.

This is a great achievement for problems with exact distance data. Unfortunately,
in real applications the distance information is often linked to error measurements,
which arise e.g. from topographical occurrence or general interference. We will
therefore concentrate our efforts on non uniquely localizable problems and on the
disturbed SNLP (which will be described in the next section).






Chapter 4

Error Measurements and Noisy
Data

In real world problems it is usual to get noisy data due to errors in distance
measurements. This chapter describes the SNLP with noisy data.

4.1 Problem Description with Noisy Data

In practice it is very common to deal with measurement errors due to topograph-
ical (or other) factors.

We therefore introduce to our model the variables Jij and dy, for (1,7) € N, and
(I,k) € N,. The measurement errors d;; and J;;, are assumed to be small real
numbers:

Jij :=d;j +9;; with 6;; €¢ R and
dyy, := dyy, + &y with &, € R.

The disturbed SNLP can be relaxed to:
min 0

Blk oY = Cilk for (l, k/’) S Na (41)
Y(1,1) =1
Y = 0.

Any feasible solution of (4.1) will have the shape

V= (; yZT) (4.2)

23
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with Z = 37

To evade notation difficulties we will call # € R*" the vector containing the exact
positions of the original network, i.e. z fulfils (2.1). With z € R*" we will denote
a solution of the disturbed SNLP. Note, that Z does not have to exist. Finally,
i € R?" will be a vector obtained from the solution matrix Y of (4.1).

Suppose, that from a solution matrix Y a vector Z is formed (e.g. by setting
T = ). We assume, that 7 is a "good" approximation to z. We cannot state
that 7 is a good approximation to x, as the relation between z and x is not clear
nor easy to understand (a local error bound for ||z — Z|| is given in the next
section).

We then turn to the least squares problem formulation of (2.1):

min (lzw = zll3 = d5)° + Y (lzw — apnls — di)*.  (43)
’ (4,4)ENa (I,k)EN,

This problem is an unconstrained, non-convex problem which therefore may have
many different local minimizers.

No algorithm is known which guarantees convergence to a global solution of
problems of this type. By the second order optimality conditions it is clear, that
there exists a neighbourhood of z where the problem is convex. Within this
neighbourhood the Hessian of the function to be minimized is positive definite.
Of course, this region of positive definiteness is impossible to find in practice.
Starting at an arbitrary point, any algorithm could "stuck in" a local minimizer
which may be very far away from the global, and could have a much bigger
function value.

We developed several heuristic approaches which are presented in detail in the
next chapter. This methods can be applied to any kind of unconstrained, non-
convex problems. We will call the procedure of solving the least squares problem
of (4.3) rounding technique.

4.2 A Local Error Bound

Trying to obtain an error bound between the exact solution x of the SNLP and
a solution Z of the disturbed SNLP, a local error bound for a single sensor is
developed.
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We start with a reduced problem. Let x* = (0,0)” be the exact sensor position
which shall be found. There are three anchors a(),aeq),a@) € R? given with
(exact) distances d; = |lag)||2, respectively. The aim is to give an upper bound
for the error that occurs in localizing the position of z* if the distances are
disturbed to dy, d, ds. The following assumptions are needed:

1. Assume that the given values d = (dy, ds,ds)? are consistent, that means,
that the mapping ¢ : d — x is well defined.

2. We disturb the distances at most ¢ € R, that means ||d — d|| < e.

3. Assume that € # ||a;)|| for i =1,2,3.
The problem can be expressed by the solution of

max {[lzlz | [|d - dl| < e} (4.4)

Using the infinity norm, condition ch— d|loo < € yields
[ d=llapl2 [< e
for all 1 = 1,2, 3 and therefore
—e <d—llagll2 < e

that corresponds to
—e < lag) — zlla = flagll. < e

In order to obtain differentiable solutions, the inequalities are squared and the
feasible set of problem (4.4) results in

M = {z € R*| lzp)—2ll; < (2 ll2te)* lzw =25 = (l@l2—e)* for i = 1,2,3}.
Problem (4.4) turns into finding the solution of the following problem:
max{||z|| | z € M}. (4.5)

Problem (4.5) is an optimization problem with convex and concave restrictions.
It is easily shown that its solution Z can only be an extreme point of M.

Proof:

We show that always more than one restriction of problem (4.5) is active. For
this purpose we show a contradiction if we assume that exactly one restriction is
active.

1. For the case that the only active restriction is concave, the contradiction
is evident, as the Hessian of the corresponding Lagrange function is negative
semidefinite along this restriction.
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2. For the case that the only active restriction is convex, assume without loss of
generality that

lagy — /I3 = (lawlle +)*.
Regularity holds, so the KKT-conditions must be fulfilled. Let

f(z)=27+2; and
91(z) = llagy = 2[5 = (la* +€)* = 0
be the function and active restriction. It follows that
Vf(x) =2z and
Vi (z) = =2(ap) — ). (4.6)
The KKT-conditions imply

22 = 2u(a) — )

u#-1 U
= T = 1 + ua(l)
in (4.6) 1
(1+u)? HCL(1)H§ = (lawll2 + £)?
It must therefore hold that
! >0
(14 u)?
< u(u+2) <0

which is a contradiction to the KKT-condition for the Lagrange multipliers, i.e.
u > 0. O

A way to solve problem (4.5) is to compare the norm of all extreme points of
the feasible set M. These are at most six. We calculated them analytically by
comparing the intersections of the respective circumferences. At this point we
introduce the possibility that the disturbed problem may have different mea-
surement errors in each distance measure. This means that ||d; — d;||, < &; for
i = 1,2,3. As the formulas are quite long, one restriction (for example the one
corresponding to as)) of M is omitted. This causes only an enlargement of M. For
a single unknown sensor z* the local error bound to every pair of anchors within
the radio range can then be calculated. Of those values, the smallest will be taken.

For a better understanding, consider the following example. Let

1
aqy = (1, §)Ta apy = (-1, )", di=-=, di=2.
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For &1 = 0.1 and €5 = 0.15 the feasible set M of (4.4) is plotted in figure 4.1
(dashed area). Any point x in M fulfils the disturbed restriction

lag — ||z = d;, for i=1,2.

The (extreme) point of M that is most far away from the original true sensor
position (z* = (0,0)7) is the point I3.

15 ! ! ! ! !
A5 -1 -05 0 05 1 1.5

Figure 4.1: Local error bound for the point (0, 0) for two adjacent anchors a; and
as.

The procedure is explained next.

Suppose that the point z* is connected to several anchors. For every pair of an-
chors p = (p1,p2)! and ¢ = (q1,¢2)" to which the sensor z* is connected, follow
the next steps.



ERROR MEASUREMENTS AND NOISY DATA 28

1. The exact distances d; = ||p||2 and dy = ||g||> and positive values &1 and &9
are given. The following circumferences are of interest:

2. These circumferences are intersected and the following points of intersection
are obtained:

(a) (i(1,2),%2,1)) result from GLy NG Ly,
(

) (i) i)
b) (i(2,3),7(3,2)) result from GLy N GLs.
(¢) (i(3,4),7(a,3)) result from G Ly N GLs.
(d) (i(1,4),7(a,1)) result from GLy N GLy.

3. As the values ¢; represent small disturbation in measurements we find the
extreme points of M by

(a) Iy = min{[|iq I3, iy 13}
(b) I = min{|[iq23)|13, [lia 15}
(¢) I3 = min{[[iz)l3, [liasl5}-
(d) Iy = min{|[iq1,0)13, i@ 15}

4. Then, the solution of (4.5) is obtained by comparing the edges :
pq = max{ VIV, \/1_4} (4.7)

After having found an error bound concerning each pair of anchors p and ¢, all
error bounds are compared and the smallest value gives the local error bound for
the solution z of (4.5):

v =min{zy | p, ¢ €R® : [|p]| <7l <r}}. (4.8)

where r denotes the given radio range.

The single formulas of the step 3. are given next:

Iy = C(A1 + 2s(p, ) lpll|lg|l sin(p, )/ B1),
I, = C(Ay + 2s(p, @)|Ipllllqll sin(p, ¢)/ Ba),
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where s(p,q) = sign(sin(p, q)) denotes the signum of the sinus of the angle be-
tween the vectors p and ¢ and

1
~Ipll? + Nlall? = 2lpllllgll cos(p, )

Ay = eaflpll(e2 + 2} (lIpll = llgll cos(p, q)) + exllqli (e + 2llpD ([lall — [l cos(p, q))
+2[Ipll*lqll* sin®(p, 9).
By := ealpll(e2 + 2l[al) (lIpll = llall cos(p, ) + exllqli (e + 2llplD ([lall — [l cos(p, ¢))

. 1
— (allpll = &llgll)* + llpl*lall* sin*(p, a) — (61 = 3) (7 (=1 = 3) + aullpll — lqll),

Ay = eo||pl| (g2 + 2|l (Pl = llq|| cos(p, q)) + e1llqll (e = 2||p[)) ([l — |[p|l cos(p, q))
+ 2[|p[1*llq||* sin*(p, q),

By := ea|pll(e2 + 2llal)(lIpll = llgll cos(p, ¢)) + exligli(ex = 2llplD([lall — [l cos(p, a))

. 1
— (allpll + e2llal)* + lIpPllgl* sin®(p, @) — (7 — £5)(F (€1 — 3) + anllpll + 22 llal)),

Similar expressions are given for I3 and I,.
For the above example, the values of Iy, ..., I are given as follows:

I =0.04

I, = 0.0261
I = 0.0604
I, = 0.0251.

This results in a local error bound value of 0.2458.

Unfortunately, this local error bound is a very pessimistic upper bound. In prac-
tice, the extreme points of the feasible set M seem to be never attained. Moreover,
this local error bound is very restrictive. It handles the adjacent vectors as fixed
anchors, neglecting the very presumably case that these vectors may be sensors
whose positions are as well disturbed.

Another approach to detect in the obtained approximation to the SNLP of those
sensors that may be far away from the original true sensors is to analyze how big
the trace of the obtained matrix Y of (4.2) is. This was first pointed out in [5].
The basic idea behind this is that if the matrix Y is a rank 1 matrix

Z=qy"
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holds (cp. (4.2)). In the other cases
Z = gy"
holds. This inequality constitutes error analysis for position estimation. For

example
n

tr(Z —g5") = > (Zojr25-1+ Zajo; — i) (4.9)
j=1
the total trace of the difference matrix measures the efficiency and quality of
distance data dw and dkl In particular, the individual trace ZQJ 1,2j-1+ ZQLQJ
|9)|I* helps to estimate the position estimation g;) for sensor j. For smaller
values of the trace, a higher accuracy of the estimation can be osberved.

4.3 Finding a Starting Point for the Rounding
Technique

It is interesting how to choose a good starting point for the rounding technique
using the information given from the matrix Y resulting from (4.1). Until now,
the literature has not paid much attention to this question (only Wolcowicz et al.
in |6] compared numerically different choices of starting points derived from the
relaxation of (SN Lgpy)). The most common choice in practice is to set the first
column (starting from the second element) from Y, ie. 7= y. But of course,
there is much more information in the matrix which is neglected with this choice.

The question that arises is, how to interpret the given solution matrix Y. In the
exact case and when the network is uniquely localizable, Z = yy” holds. Here, it
is clear that a solution (vector) to the SNLP is for example either given by the
first row (starting from the 2nd entry) of Y or by the square root entries of the
diagonal of Z. In the not uniquely localizable case or in the inexact case, it is not
clear which entries of the matrix Y represent the searched vector z. Normally it

holds y/diag(Z) # §. It is not clear which choice for the solution vector is better.

We derived an approximation vector to x from the given matrix Y by using its
eigenvalue decomposition in the following way:

Choose the starting point = as the solution of the minimization problem:

min  |ss” — Y||g
(4.10)
st. seR2
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Therefore Y is projected onto the set of rank 1 matrices. As Y is symmetric (and
real) the objective function can be reduced to

f(s) = |Islls — 257Y s + trace(Y)
and the gradient to

g(s) = 4(llsll2s — Y's).
The stationary points are subsequently given by the equality

Vs = ||s2s. (4.11)

This means, the vector s is an eigenvector of Y to the corresponding eigenvalue
Is13-
As the Hessian is given by

H(s) = 4(25$T + HsH%I — }7)

it is easily shown that the solution vector s is constructed by

Sopt = UmaXAmax (412)

where \,.c denotes the largest eigenvalue of Y and Umax the corresponding nor-
malized eigenvector.

As we propose to improve the obtained approximation from the relaxed problem
by a rounding technique, we compared numerically the choice of (4.12) with the
standard choice of the corresponding entries in the matrix Y in (4.1) and respec-
tively in the matrix Z in the disturbed (2.6). The choice of (4.12) provided the
most accurate solutions.

However, finding an exact solution matrix Y (whose first column contains the
exact solution vector x) is equivalent to finding the minimal rank matrix in the
intersection of the semidefinite cone and an affine space. This problem is still to
be adressed. Recently, [16] [26] proposed randomization methods for SDP rank
reduction. These methods can generate a low rank positive semidefinite matrix
in an approximate affine space.






Chapter 5

Descent Heuristics for
Unconstrained Minimization

In this chapter we present three different heuristics for solving general uncon-
strained non-convex minimization problems. These results were presented in
[10].

The increased gradient descent method is a first-order method which tries to min-
imize a function f and contemporarily maximize the norm of the gradient of f.
The curvature descent is a second-order method which can be seen as a mixture
of Newton’s and Trust Region Methods. Its general idea is to emphasize the
attention on to the space of the negative eigenvalues of the Hessian at a given
iterate, and not only on the smallest (as it would be in Trust Region Methods).
This approach produced the best numerical results for the SNLP as shown in
chapter 7. Therefore, we will describe this approach more accurately in the next
chapter.

Finally, the decreasing curvature tries to use third-order information. It antic-
ipates points with more negative curvature in the Hessian, in order to provide
more descent at the next iteration step.

5.1 General Assumptions

Let f: IR" — IR be three times continuously differentiable. The problem under
consideration is to find — among several local minimizers of f — a local minimizer
x* with a small value f(z*). We compare several heuristics that do not guarantee
to find a global minimizer but that aim to find a local minimizer with “rather
small value of f”.

The goal is to find “good” local minimizers within a certain domain of attraction
given by the initial point. We emphasize that this can only be a heuristics. Nev-
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ertheless, numerical examples indicate that the new approaches proposed here
often lead to better local solutions than the steepest descent path.

For smooth strictly convex functions f and under standard conditions (regarding
the descent) all descent paths eventually lead to the same optimal solution, and
Newton’s method generally performs very well. Our aim is not to compete with
Newton’s method but to provide a cheap first order method that is “efficient” far
away from a local solution when the Hessian of f is not positive definite. Close
to a solution, first order methods — such as the ones proposed here — are poor
and generally need to be replaced with other approaches.

The following principles for minimizing f starting at a given point 2° € IR"
motivate the new approaches:

1. In order to remain within a domain of attraction given by 2°, only descent
steps are considered.

2. As the global behaviour — far from a local minimizer — is of interest, only
short steps derived from first order approximations are considered.

3. The first order predictions used in this paper are based on the following
naive motivation for non-conver minimization:

(a) Aim towards points where the gradient gets larger (and f gets smaller)
because large gradients give a hint that a large descent may be possible
from there.

(b) Aim towards points where the negative curvature is amplified (and f
gets smaller) because negative curvature might result in long descent
steps from there.

Again, we emphasize that both motivations make little sense for convex
minimization.

The following notation is used:

e We will call g = V f(x) the gradient and H = V?f(x) the Hessian of f at
the point .

e The orthogonal eigenvalue decomposition of H is given by H = UDUT,
i.e. U is a unitary matrix whose columns u’ are eigenvectors to the eigen-
values Dy = N, (H) = A;. Without loss of generality we assume that the
eigenvalues are sorted in decreasing order and the first ¢ are positive (i.e.
M>>2N>20> M1 > .. >\, t =0and ¢t = n is, of course, possible).
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5.2 Increasing gradient descent

Given an iterate z¥, the progress of a short step along the steepest descent direc-
tion is proportional to the norm of V f(z*). To be able to have a large descent in
the next step, it may therefore be of advantage not only to minimize f but also
to maximize |V f| at the same time. This idea leads to a descent step for the
function

p(z,0) = f(z) — a|Vf(@)] (5.1)
where o« > (0 is a parameter that balances the reduction of f versus the increase

of [V £].

The steepest descent direction for ¢ is given by

Ax = =V f(aF) + 2aV?2 f(2*)V f(2*). (5.2)

We point out that matrix vector products such as V2f(z%)v can typically be
computed (for example by automatic differentiation) cheaply without forming

V2 f(2).

The proposed search step is given by the partial derivative Az = —V,p(z,«) in
(5.2) where the choice of o = «a(z) depends on .
Let

ViEY)
V7]

s VUV _ VAV i)
TRV T IV R ]

be the normalized steepest descent directions for f and for —||V f]|3.

d' = and (5.3)

d (5.4)

Any Az with AzTd' < 0 and Az7d? < 0 is a descent direction for both, f and
—[IV £1I3-

The normalized descent direction Az := Az/||Az|| is chosen as a nonnegative
combination of the vectors d' and d?, i.e.

Az = Bd" + ~vd® (5.5)
where > 0 and v > 0 depend on «a.

—~T

A normalized measure of descent for f is given by Az d' and ranges from 1 (for
—~T

B=1,~v=0)to (d")Td?* (for 3 =0, v = 1), a negative value of Az d' indicating
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ascent.

To find a meaningful choice of «, or, equivalently of 3 and v subject to the
condition

1= [|Az]? = 52 + 26~(d")Td® + 7 (5.6)
we require that
Az d' = p+ (1= p)(d") (5.7)

for some p € (0, 1].
The value p indicates the amount of descent of f compared to the steepest descent.

Lemma 5.1 -
Depending on the choice of p, the search direction Ax is

o the steepest descent direction for f if p=1,

e the steepest descent direction for ||V f|| if p = 0. In the worst case, Az
could be opposite to —V f.

If p > 0.5 then Az is a descent direction for the minimization of f.

Proof:

Straightforward from (5.7). O
From the equations (5.6) and (5.7) we can set the values of § and v in dependence
of p.

Let

Vf(z*)"D*f(z")V f(*)
IV f(@R)ID f (@*)V f ()]
be the cosine of the angle <t(d",d?). The numbers (3,7 then solve the system of
equations

c:=(dV'd* = -

B4 2Bvc+42 =1 (5.8)
B4+~yc=1r:=p+(1—p)c. (5.9)
The solution is given by
e \/1 - 7; - \/<1 - p)(11++pc+ D (5.10)
B=p+tcl—p—7).
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For the interesting case that the increase of ||V f]| is given high priority and
the descent property is barely guaranteed, i.e. for p = 0.5 the expression for ~
simplifies to

3+c

4+ 4c

The choice of 3,7 can be translated back to the choice of a: Multiplying the
equation

’y:

Ar =V f(@F)+2aD?f(a")V f(2F)
[Az]| || = Vf(zh) + 20D f (%) V f (%)
from left with (8d' + vd?)?, using the definitions of d*,d? from (5.3) and (5.4),
and squaring the result we obtain

(VS @B + ve) + 20| D2f (M) V £ (2*) | (v + Be))?
| = Vf(@*) + 2D f () V f (2*)]|? '

Solving this quadratic equation for « yields

2 IVSED]
20 || D2 f(a*)V f ()| (5.11)

G v =

1=

o= a(z®) =

Remark 5.2
A descent method for ¢ based on this choice of « for a given parameter p € (0, 1]
is called “increasing gradient descent method with parameter p” (briefly “igd(p)”).

For further notation we will denote the given search direction for the iterate z*
by Az, (= Bd' +~d?) as it depends only on p (and z*).

Algorithm 5.3 (Increasing Gradient Descent)
Initialization : Let 2° € R™ and p € (0.5, 1] be given.

For k=0,1,2,... repeat until a stopping criterion is reached

N Vf<a: 2 V2f(aF)Vi(h)
() d" = — 5 pemy and d IIVQf(w’“)Vf(w’“)II

.. T — c—pc
(i) c=d" @, =\ U 5= pto(1—p—7),
(iii) Azl = Bd" + d?

(iv) ot =g 4 )\kAxng where A\, ~ ar/g;irélnf(x + )\szgd p))

Remark 5.4
The finding of \j, in step (iv) of algorithm 5.3 results in a global minimization of
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a 1-dimensional unconstrained minimization problem. This problem, also known
as linesearch is discussed in detail for the Curvature Descent approach in the last
section. For the numerical comparison of all methods presented in this chapter
we used only constant short steps A.

5.2.1 First Example

The behaviour of the descent path igd(p) with p = 1 (steepest descent) and
p = 0.6 is illustrated with a simple example: For z € IR? let

2

f(z) =102 + 29 + 27(4 + %)

The function f is unbounded below (it tends to —oo along the line x; = 0, 25 < 0)

and has a local minimizer at 1 = —1, 2o = —2. Figures 5.1 and 5.2 below in-

dicate the starting points for which the steepest descent method (igd(1)) and

1gd(0.6) converge to the local minimizer. For all other starting points the meth-
ods converge to the infimum of f (i.e. to —o0).
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N
T

|
N

T
T |

Figure 5.2: Area indicating starting points that converge to the local minimizer

for igd(0.6).

5.2.2 Second Example

For illustration we also display the plot of a steepest descent path and the
igd(0.6)-path for a convex quadratic function f, f(z) = 2} + 3.
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35—

25—

15—

1=

05—

-0.5
-35

Figure 5.3: Red, dashed: path of igd(0.6), black: path of steepest descent

In this example, the norm of the gradient is increased at first while f is reduced.
For a function f that is bounded below, the decrease of both, —||Vf|* and f
must stop at some point y. When reaching the point y, the direction of increasing
gradient points opposite to the descent direction and is thus ignored.

5.3 Curvature descent

In the following two section the descent path is modified based on the use of
second and third order derivatives.

Proposition 5.5

eigenvalue decomposition of the Hessian H = UDUT) .
For small € > 0 it holds that

flx+eu) = fx) +eg’u’ = f(z) +eg" U = f(x) + g,
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and

IV f(x+eu)|? = [V f(2)|* + 269" Hu' = |V f(2)[|* + 229: Dy
Proof:
Without loss of generality we assume that the components g; of g satisfy

g: < 0.

(Else multiply the corresponding column u’ of U by —1). Next, apply Taylor’s
Theorem. O
Remark 5.6

From proposition 5.5 follows, that when D;; < 0 (and g; # 0) a selection of w; > 0
effects that both, f is locally reduced along z +w;u’, and ||V f]? is increased. On
the other hand, for D;; > 0, an increase of ||V f||? along w;u’ is only possible at
the expense of increasing f at the same time.

The concept below avoids such search directions u’ as far as possible.
Any search direction Az € IR" can be written as Az =" | w;u’ with w; € R.

We set

Dii = max{s, D”} (512)

for a small value € > 0 so that the obtained positive definite matrix

H=UDU" (5.13)

defines a descent direction

AZpqg = —]:]_lg (5.14)
for f.

The search step Ax.q depends on the choice of € > 0 as long as H is not positive
definite. If H is positive definite Ax.4 is the Newton step and converges locally
quadratically.

Lemma 5.7
Let H be not positive definite. As e — 0 it follows that Ax.q/||Axeq|| converges
to the space

Q := span{u’ | D;y; < 0}.
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Proof:
As the u® are an orthogonal basis of eigenvectors, we find values 7; € R such that

g= inui =Ur
i=1

with 7 = (7, .., 7)7.

It then holds

Axeg . —UD Uy T —UD™ 7
E_’OHA"EcdH e—0 ”Axcd” e—0 ”chdH

Without loss of generality, let the first ¢ eigenvalues of D be positive. It follows
that

ALECd:Z uk+ZTll

I=t+1

= —{EZ uk—{— Z nu'} and

I=t+1

|Azal = Z Z + 3 S0P

Using the latter and taking the limes results in

Aoy _ Yo ul
e—0 || Azey| S, ml]?

which corresponds to a vector in the space Q. 0

For small ¢ > 0 the descent step Ax. lies in some sense near the space () of
negative curvature. Therefore, it is called Curvature Descent step.

In numerical examples small positive values of ¢ produced slightly better local
minimizers than the limiting direction Ax.y/||Az.q|| obtained for e — 0.

Algorithm 5.8 (Curvature Descent)
Initialization : Let 2° € R and ¢ > 0 be given.

For k=0,1,2,... repeat until a stopping criterion is reached
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= Vf(a"), H=V2f(a*)=UDUT.

Q

)
(i1) D; = max{e, D;;}, H=UDUT.
(i17) Azk, = —H g
(iv) 2" = 1 + MeAz®, where A\, ~ argmin f(zF + AAzF)).

A>0

5.4 Decreasing Curvature Descent

The approach in sections 5.2 and 5.3 was motivated by aiming towards points
from which a large descent can be anticipated since the norm of the gradient is
increasing. This approach can be generalized aiming at areas with “more negative
curvature”. At points with negative curvature another big descent to the next
minimizer can be anticipated. Both anticipations are purely heuristically, but
nevertheless numerical experiments indicate a good performance.

Let

p(x, k) = f(z) — kx(V*f(z))

where
Y(H) := me{o, Xi(H)}?

and \;(H) denotes the i-th eigenvalue of the symmetric matrix H. Hence, y is
the sum of squares of the negative eigenvalues of H.
Let 0 : IR" — IR be the symmetric (in the sense of permutation) function

o(x):= Z 3
iy <0

Denoting A : S,, — R" the function which assigns to every symmetric matrix
H the vector of its eigenvalues, i.e. A\(H) = (A (H), ..., \,(H))T, we can set the
symmetric spectral function corresponding to x to

c(ANH))=x(H)= Y N(H)
X\ (H)<0

By Theorem 1.1. in [14] the function y(H) is differentiable, and its derivative is
given by

od od
6_HX(H> = 8_H<

where A_(H) = (0,...0, \py1(H), ..., \n(H))T (denoting the vector containing only
the negative eigenvalues of H, elsewhere 0). We also write shortly

0 0 A\)(H) = U(Diag(c’(\(H)))U" = U(Diag(2A-(H)))U",

H_ = U(Diag(A_(H)))U™.
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In consequence, the i-th component of the derivative of ¢(x, k) is given by
(Df(x))i = 26(V*f(x))- o AH,.

where AH; := %VQf(x).

Let d3 be the vector with components
42 = (V2f(x))_ e AH,

and d® = d3/||d®||. As in Section 5.2 we construct a search direction Az having
positive scalar products with d' and d3. In contrast to Section 5.2 we do not
choose a nonnegative combination of d' and d® but restrict the search direction
to the space Q).

Therefore, we obtain a search direction Ax.4. = s as a solution of
min {—t | sTd® >t,s7d"' >t,s7s < 1,5 €Q} (5.15)
(s,t)eRnHL

maximizing the cosine of the angles <((Az,d") and <(Az,d?*) over Q.

Note that this problem is a convex problem, and Slater’s condition is satisfied for
(s,t) = 0 € R™. Thus, any point satisfying the KKT-conditions is a local (and
global) solution. In our numerical tests, we simply used Sedumi (|23|) for solving
this subproblem. By exploiting the structure of the subproblem, there certainly
exist more efficient solutions.

Algorithm 5.9 (Decreasing Curvature Descent)
Initialization : Let 2° € R™ and ¢ > 0 be given.

For k=0,1,2,... repeat until a stopping criterion is reached

(i) d' = =V f(a), d} = (V2f(a%)) - e (2 V2 f(a")), d* = 1o
(77) Set (s,t) by solving (5.15).

(ii1) If t < c, set Azt , = Az¥, from algorithm 5.8.
Else set Azl , = s.

(iv) 2" =z + \pAzk, where A\, & argmin f(z* + \AzE ).
A>0

5.4.1 Example plot

Figure 5.4 refers to the same example as Figures 5.1 and 5.2. The dark shaded
area in Figure 5.4 is the set of starting points from which the Curvature Descent
method converges to the local minimizer (—1, —2)7 while missing the points with
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lower objective value along the negative x,-axis. Comparing this plot with Figure
5.2 seems to indicate that the Curvature Descent approach is inferior to igd(0.6).
However, more difficult test problems indicate otherwise.

We point out that the dcd-method does not make sense for two-dimensional
examples, and it is therefore not plotted here.

4

2

0

2ot g
-4+

-6+

Figure 5.4: Area indicating starting points that convergence to the local mini-
mizer for cd.

Remark 5.10
We implemented the three methods for the rounding technique for the SNLP,
choosing the starting point as stated in section 4.3. Details of the numerical
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results are shown in the next chapter. As mentioned before, the search direction
Ax.4 leads in general to the most accurate results. We will therefore explain some
more details regarding the application to the SNLP in the next section.






Chapter 6

Curvature Descent for the SNLP

This chapter describes in more details how the Curvature Descent method pro-
posed in chapter 5 was employed for solving the SNLP. The steps of algorithm
5.8 are discussed more extensively and some details to the implementation are
given.

It is important to repeat, that the Curvature Descent is a second order method,
where at each iterate an eigenvalue decomposition of the Hessian is inevitable.
Although, the great advantage for the SNLP is, that using the fact that the
Hessian is sparse, much computation time can be saved.

6.1 Exploiting Sparsity of the Hessian

The numerical results showed that the Curvature Descent in section 5.3 was the
most effective method when looking for precision in the solution. In this section
we will focus on the fact, that the sparsity of the Hessian in (4.3) can be used
to save computation time. We will therefore describe in detail the function, the
gradient and the Hessian.

If we rename some variables, the function to minimize would be the following:

p
f)=>_[|AY e zz” — b3
i=1
(6.1)

p
=3 a7 A~ O
=1

where p denotes the number of given distance information, meanly | N, | + | N, |,
A® the corresponding matrix for the linear constraint and b the corresponding
(squared) disturbed distance information. Note that the matrices A® are 2n-
dimensional, because they are derived from the matrices B;; and Bjj neglecting

49
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the first row and column (cp. (4.1) and (4.3)).

The number of summands p depends on the radio range, and therefore on the
given distance information, it always holds

p§n2—|—nm,

where n is the number of (unknown) sensors and m the number of anchors.

The gradient and the Hessian are then:

P
g(x) =4 Z(xTA(i)x — D) (ADg) and
i=1

» (6.2)
H(x) = 42{2A(i)x(A(i)x)T + (2T AD g — by 40y,
i=1
To exploit sparsity of the matrices A%, we introduce 2 vectors
a; = (1,0,—1,0)"
(6.3)

a2 = (07 17 07 _1)T

When a matrix A corresponds to a condition ||z, — 2,3 for some (p, q) € N,,
the term 27 A®z can be rewritten as

2T AV = (alTqu)2 + (ag%q)Z (6.4)

_ T
where x,, = (9p_1, Tap, Tog—1, Tag)" -

6.2 Line Search

At step (iv) in algorithm 5.8 we did not determine the step size \; exactly, as
the 1-dimensional function f(z* 4+ AAz¥,) is not convex (for simplicity we will set
d* = Az*, throughout this section). Instead we approximated the value

M\ & argmin f(2" + \d¥),
x>0

claiming that the Wolfe conditions hold:
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F@* 4+ \d®) < (%) + ehd® V() (W1)
AV f(2F 4 Md®) > eod™ Y f(a) (W2)
for fixed values 0 < ¢; < ¢9 < 1.

Condition W1 is known as Armijo rule and ensures that A, decreases f "suffi-
ciently". Condition (W2) is the so-called curvature condition, which forces that
the slope of the function ¢(\) = f(z% + Ad¥) at A\, is ¢2 times greater than at
A=0.

In practice, one can choose the value \; with a backtracking procedure to guar-
antee the Wolfe conditions. This means, a start value \ is set and a bisection
method is executed until the desired conditions are fulfilled.

Using the Wolfe conditions in the line search, the Curvature Descent Method
converges to a stationary point of f. For details see e.g. proposition 6.2.4 in [11].

Getting close to a local minimum, Curvature Descent is exactly Newton’s Method
and converges therefore quadratically.






Chapter 7

Numerical Examples

To complete the analysis of the SNLP with the proposed Rank 1 Approach we
present some numerical examples.

For our test problems we randomly generated sensors and anchors in [—0.5,0.5]%.
We then computed the distance information according to a given radio range and
added a measurement error in the following way:

dpe = dy(1 + randn(1) s nf) ¥ (I,k) e N,

where nf denotes the noise factor (in most problems nf = 0.1, which represents
up to 10% measurement error) and randn is a Matlab function, whose output
is a pseudo-random value drawn from a normal distribution with mean 0 and
standard deviation.

We then treated the sensors as unknown, solved the resulting SDP problem given
by (4.1) with Sedumi and derived from the resulting matrix a good initial ap-
proximation to the 2n dimensional vector of unknown sensors (1), ..., T(n).

The following notation will be used through this chapter:
e 7 denotes the vector obtained from Y in (4.2) by (4.12).
e 1 is exactly the vector 7 in (4.2).

e rsppy denotes the vector obtained from X in the matrix Z from (2.6) used
in [5].

n denotes the number of unknown sensors.

m denotes the number of anchors.

53
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e 77 denotes the radio range.

e nf denotes the noise factor.

7.1 Example of the whole procedure

To give an overview of the procedure of solving the SNLP we will discuss a ran-
dom problem in each single step. Consider the following network consisting of 50
sensors, 3 anchors and a radio range of 0.45.

Network of 50 sensors, 3 anchors, radiorange=0.45, noise=0.1

05H \ \ \ % \ H [y sensorsx,

g anchorsa

04

gl i

02

02

04

-05d | | | | | | | | | H

Figure 7.1: Example network.

Up to 10% of measurement errors were added. The solution of the SDP of (4.1)
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leads to a matrix Y & R101x101

Let Z be an approximation to the exact solution as described in (4.12). Figure
7.2 shows the approximated sensors Z(; of & marked with a green circle.

They are connected with a blue line to the respective true sensor x(;y which is
marked with a blue star.

Network of 50 sensors, 3 anchors, radiorange=0.45, noise=0.1
05H I I I I

\ H [ & sensorsx
I

g anchorsa

O ranki-location

Figure 7.2: Solution of the rank 1 relaxation.
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The vector 7 is then taken as the starting point for the unconstrained least squares
problem (4.3). Using the procedure Curvature Descent leads to a solution vector
Z, whose (2 dimensional) components are plotted in figure 7.3 and marked again
by a green circle. To see the improvement of the approximation every vector
is connected by a blue line to the respective true solution ;.

Network of 50 sensors, 3 anchors, radiorange=0.45, noise=0.1

050 T T T T % T H 4 sensorsx,
|
| anchors a
X | f o «
© Py \‘ . O cd-location
04— \ ) =
—>o
03— =
» d ki
\ JX ‘ \
P | |
0 [0}
02 ) =
- 1 /
- o o
0.1 B
K
V)
¥
¢ =} e *l‘*
o _
¥ ¥ /
. [
01— “ . / . _
[}
=02~ ) = -
° #
¥
g ¥
-03f- o B
v e
G
—0.4F \ X(* /\ 4
®
' X o
Sk
-0.50 | | | | | | | | | Il
-05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05

Figure 7.3: Solution refinement using curvature descent.

We repeat that it makes no sense to expect to find the true solution, as the prob-
lem is disturbed. In fact, as a measure of accuracy of our numerical tests we
took a “normalized final accuracy”. This is computed as follows: First, the data
of the exact problem is used as a starting point for the steepest descent method
for minimizing the sum of squares of the (perturbed) residuals (4.3). The result
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yields an (typically very good) upper bound for the global minimizer of (4.3).
The normalized final accuracy then lists how far the final accuracy deviates from
this upper bound, negative values indicating that a solution was found which is
better than the upper bound.

0.45
O real error
* individual trace
0
041 ]
035 ]
03 0 5 I
0
0.25~ N
o
02 0 N
0 %
* s ¥ ¥
015 * 0 P
o 0 N
. %
01+ * * * -
b 0 " TN $ £
% 4
t ! 5 :
0051 0 * * ¥ ¥ % 0 7
* ¢ *
! ¥k oy ¥ x X *3 0 ' 0 8
. 0 " * O % % ¥y *
0 A ! L o800 ! ! ! 13

0 5 10 5 20 25 30 35 40 45 50
50

Figure 7.4: Individual trace compared to real error.

For this example, the normalized final accuracy was 0.3156 x 1075, To complete
the analysis we show the individual trace test, as mentioned in section 4.2. Figure
7.4 shows at the horizontal axe the number of the sensors. The blue stars represent
the individual trace of (4.9). The red diamonds represent the true error of the
respective sensor approximation (the first column/row of the matrix Y obtained
by the relaxation) to the true sensor.
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7.2 Comparing the different Descent Heuristics

In this section the approaches described in the last chapter on random disturbed
SNLP test problems are compared.

Normally, the problem has many local minimizers. We present our computa-
tional results comparing the steepest descent method (Aw;zq(1)), with the other
approaches: Ax;q(,) (p=10.6), Ax.g and Azxgy. We used a linesearch with short
steps and compared the quality of the solution to the rounding technique pre-
sented in [15]| (abbreviated here as SDP2). The table lists the “normalized final
accuracy” obtained for each of the five approaches.

All approaches were stopped when a local minimizer was reached. The final error
therefore does not depend on the local behaviour of the method but on its global
performance.

For the search direction Axg.q we used the fact that the Hessian is sparse. The
computation of the third derivative was very cheap in this case. The Axg.4-step
was changed to Ax.q when the optimal value ¢ in (5.15) was less than 0.1.

Table 7.1 shows the results for 20 random problems in different dimensions start-
ing from the point xspps. To allow a better representation, all showed values
were first multiplied with 102



NUMERICAL EXAMPLES 59
n,m, rr, nf SDP2 ‘ Aog ‘ AT geq ‘ Azigq) ‘ AT;g4(0.6)
50, 5, 0.3, 0.15 1.2048 0.7212 0.7212 0.9399 0.7409
20, 3, 0.35, 0.1 0.1031 -1.36e-05 0.0585 0.0883 0.0593
30, 3, 0.2, 0.1 0.0964 0.0799 0.3884 0.0931 0.0888
30, 3, 0.25, 0.1 0.1066 0.0839 0.0930 0.1079 0.0657
30, 3, 0.3, 0.1 0.0140 0.7261 0.0575 0.0096 0.0087
30, 3, 0.3, 0.15 0.6029 0.4813 0.0093 0.5070 0.4813
45, 4, 0.35, 0.1 -1.59e-05 | -1.59e-05 | -1.59e-05 | -1.59e-05 | -1.59e-05
45, 5, 0.3, 0.1 0.0598 0.0598 0.0563 0.0781 0.0598
45, 5, 0.4, 0.15 | -1.13e-07 | -1.13e-07 | -1.13e-07 | -1.13e-07 | -1.13e-07
50, 3, 0.2, 0.1 0.0663 0.0379 0.1412 0.0737 0.0380
50, 5, 0.25, 0.15 1.1010 0.4588 0.0510 0.6390 0.4987
50, 5, 0.3, 0.1 -5.12e-05 | -5.12e-05 | -5.12e-05 | -5.12e-05 | -5.12e-05
50, 5, 0.3, 0.15 0.8397 -0.0018 0.1710 0.3444 1.0803
60, 6, 0.2, 0.15 0.0075 -0.0029 0.0147 0.0800 0.0117
60, 6, 0.3, 0.1 -1.08e-07 | -1.08e-07 0.4051 -1.08e-07 | -1.08e-07
80, 5, 0.25, 0.1 0.0374 0.0059 0.0085 0.2181 0.0330
80, 8, 0.25, 0.1 0.0843 0.0843 0.3648 0.0843 0.0843
120, 10, 0.3, 0.1 | -4.10e-05 | -4.10e-05 | -4.10e-05 | -4.10e-05 | -4.10e-05
120, 10, 0.1, 0.2 0.0045 0.0120 0.0667 0.0133 0.0085

Table 7.1: Normalized final accuracy multiplied with 102. Starting point: zgpps

Table 7.1 is representative for most of the problems we tested with other combi-
nations of noise factor, radio range and dimension. As our approaches are just
heuristically it is clear, that we cannot expect that cd will always yield better (in
the sense of a smaller residuum) solutions. Nevertheless we can see a trend to

more accurate results.

Next, we show the results for the same problems starting from the point z.
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60

’ n, k, rr, nf SDP2 ‘ Axeq ‘ AT geq ‘ Azigqn) ‘ ATiga(0.6)
50, 5, 0.3, 0.15 0.9473 0.9417 0.7230 1.733235 0.7230
20, 3, 0.35, 0.1 0.1031 -1.35e-05 0.0585 -1.35e-05 | -1.35e-05
30, 3, 0.2, 0.1 0.0964 0.0789 0.1618 0.0876 0.0815
30, 3, 0.25, 0.1 0.1066 0.0647 0.0907 0.0647 0.0647
30, 3, 0.3, 0.1 0.0140 0.0848 0.0399 0.0848 0.0848
30, 3, 0.3, 0.15 0.4813 0.4813 0.4813 0.4813 0.4813
45, 4, 0.35, 0.1 -1.59e-05 | -1.59e-05 | -1.59e-05 | -1.59e-05 | -1.59e-05
45, 5, 0.3, 0.1 0.0598 0.0598 0.0563 0.0598 0.0598
45, 5, 0.4, 0.15 |-1.13e-07 | -1.13e-07 | -1.13e-07 | -1.13e-07 | -1.13e-07
50, 3, 0.2, 0.1 0.0663 0.0372 0.0502 0.0372 0.0372
50, 5, 025, 0.15 | 1.1009 0.1575 | 0.1575 | 0.1575 | 0.1575
50, 5, 0.3, 0.1 -6.74e-06 | -6.74e-06 | -6.74e-06 | -6.74e-06 | -6.74e-06
50, 5, 0.3, 0.15 0.83977 | - 0,0018 0.1709 0.1709 0.1709
60, 6, 0.2, 0.15 0.0075 -0.0029 0.0220 0.0003 -0.0029
60, 6, 0.3, 0.1 -1.08e-07 | -1.08e-07 0.4051 -1.08e-07 | -1.08e-07
80, 5, 0.25, 0.1 0.0374 0.0059 0.0075 0.0298 0.0059
80, 8, 0.25, 0.1 0.0843 0.0843 0.3637 0.0843 0.0843
120, 10, 0.3, 0.1 -4.10e-05 | -4.10e-05 | -4.10e-05 | -4.10e-05 | -4.10e-05
120, 10, 0.1, 0.2 0.0045 0.0021 0.0408 0.0026 0.0021

Table 7.2: Normalized final accuracy multiplied with 10%. Starting point for the
heuristics: =

The latter tables 7.1 and 7.2 are representative for most of the problems we
tested. It can be seen a trend towards more accurate solutions by taking the
starting point & derived from (4.12).

In many cases, we find not only a solution with a slightly better residuum but
also with very different local minimizers. We show the graphical interpretation
of the first example in the table above. Figures 7.5 and 7.6 show the position of
the true sensors with a star, the anchors with a square.
Sensors within radio range of each other are connected by a dashed line. The
true solutions are marked by a star, the computed solutions by a circle that is
connected to the corresponding star by a blue line.




NUMERICAL EXAMPLES

Network of 50 sensors, 5 anchors, radiorange=0.3, noise=0.15
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Figure 7.5: SDP2 approach. Approx. time of computation : 3 sec.
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Figure 7.6: Curvature Descent Ax.s. Approx. time of computation: 9 sec.



NUMERICAL EXAMPLES

7.3 Results for Curvature Descent

For completeness we will summarize the results of the Curvature Descent method.
The next table shows in every row the average result for 100 test problems for
certain combination of number of unknown sensors, number of anchors, radio
range and noise factor. An average normalized final accuracy is given as well as
an average computation time. These results are again compared to the rank 2

relaxation of [5].

SDP2 Axeq

n,m, rr, nf average acc. | average c.t. | average acc. | average c.t.
30, 3, 0.25, 0.1 0.0599 1.9 0.0269 24.3
30, 3, 0.35, 0.1 0.2844 3 0.2370 13.5
40, 10, 0.2, 0.1 0.0158 1.9 0.0065 25.9
45, 4, 0.4, 0.15 0.4383 2 0.1422 7.2
45,5, 0.3, 0.1 0.1644 1.6 0.09¢-2 10.2
50, 3, 0.3, 0.2 1.4023 2.4 0.9606 38.4
50, 5, 0.4, 0.1 0.1008 6 3.47e-4 8.2
50, 8, 0.25, 0.15 0.1207 2.59 0.0611 18.3
55, 5, 0.25, 0.05 0.0169 2 0.0085 23.8
60, 6, 0.35, 0.1 0.11e-2 4.7 0.04e-2 11.7
60, 6, 0.4, 0.15 0.34e-2 75 0.050-2 16.5
70, 7, 0.25, 0.05 0.0141 3.4 0.0068 23.9
70, 7, 0.3, 0.1 0.0640 5.8 0.0120 15
75, 8, 0.45, 0.2 1.2611 44.5 1.76e-5 67.7
80, 8, 0.3, 0.1 0.07e-2 16.4 0.01e-2 21.8
80, 15, 0.35, 0.2 0.7063 22.3 0.0069 49.1
100, 10, 0.25, 0.1 0.0566 12.2 0.0212 32.9
100, 10, 0.35, 0.15 0.3514 54.7 1.04e-5 82.7
120, 12, 0.3, 0.1 0.1058 77.8 3.22e-4 114.5

Table 7.3: Average accuracy (acc.) and computation time (c.t.) of whole proce-

dure compared to literature.




Summary and Outlook

In this work a new SDP relaxation for the SNLP was presented which provides
a good initial starting point for solution refinement techniques.

Its theoretical strength for uniquely localizable problems was shown. The beauty
of the semidefinite problem formulation of the SNLP lies in its "convexification"
of a non-convex problem. However, this ansatz still works only in theory.

For practical aspects, a descent heuristic was proposed which despite using sec-
ond order information exploits sparsity in the problem formulation. Hence, it is
competitive with known first order methods when weighting accuracy to compu-
tational time.

We restricted our numerical tests to smaller problems (~ 100 sensors) as we as-
sume that larger networks can be subdivided into smaller ones. Our main interest
was focused on finding more accurate solutions and not on handling large-scale
SDPs.

Further investigation could be performed in order to find improvements to the
proposed descent heuristics by applying different line search techniques.

Although the presented Decreasing Curvature Descent did not achieve best re-
sults for the SNLLP we believe that this third order approach is completely new
in the field of unconstrained non-convex optimization. Therefore, it could be a
good starting point for further research and it might also be possible to adapt
this approach to other classes of problems.
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Appendix A
The SNLP 1s a NP-hard problem

The SNLP can be reduced from the partition problem, as sketched out by Tseng
in [28].

The Partition problem is known as:

Given positive integers t1, s, .., t, and P = {1, ..., p}, the question is if there exists
a partition I C P with

This problem is NP-complete (see for example [12] ).

For dimension d = 1 the partition problem can be reduced to a SNLP with the
following assumptions.

Let exactly one anchor point x) = 0 be given, further let there be "cyclic"
distance information given, i.e.

d; =| L(i—1) — L(4) | for ¢=1,...,n and
(A.1)
dnt1 =] 2y — 2(0) [=| 2wy |-

At least one unknown sensor is positive and at least one unknown sensor is neg-
ative (else the problem would be trivial).

The partition problem of the set dy,...,d, 1 results in finding two disjunct sets
I, and I5 such that

> di— d;j=0. (A.2)

i€ly JjEl>

The partitions I; and I, can then be interpreted as follows:
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1€ [} < T(i—1) — T(5) > 0 and
1€ Iy <— T(i—1) — L) < 0

and specially n + 1 € I} <= x(,) > 0 or vice versa.

It can be shown that: It is possible to find a solution x(yy, ...,z of the SNLP
given by (A.1) if and only if there exists a partition problem of dy, ..., d,41.

Proof:
Let x(1), ..., () be a solution to the SNLP problem (A.1) with z,, > 0, then it
holds

Yo Jzay -zl - Y ey -z |+ | 2w — 2 |
LT (1) > (4) BT (1) <T(g)
= Z T(-1) — L)t Z T() = T(i-1) T T(n)

i:$(i,1)>1‘(i) i:m(i,1)<1’(i>
= 0.

If the indices 1,...,n + 1 are the divided in the subsets I; and I, (cp. (A.3)), it
is found a partition of the positive numbers d; such that

i - Y -0

i€ly Jjel2
Otherwise, if there exists a partition I; and I, holding (A.2), then a solution to
(A.1) can be constructed as follows:

Without loss of generality, let n + 1 € I;. Start by setting
Ty = dn+1.

If next the index n € I, set
Tp-1 = Ty + dn

(else set x, 1 = x, — d,) and so on. 0



Notations

In the following are listed and explained all the symbols and abbreviations used
in this thesis.

R
R+
Rd
T
()
A, A
Zl:d,l:d
87
A>0
diag(Z)
Diag(z)
]2

1iv3
tr(A B)
Ao B
Ae DB

(a;0)

i’j

acc.
cp.-
c.t.
e.g.
et al.
i.e.
Sc.
s.t.

Set of real numbers.
Set of real numbers > 0
Set of all real vectors of dimension d.
i-th entry of the vector x.
Vector name (in most cases z(;) € RY, d = 2).
Entry of the matrix A corresponding to the i-th row and the j-th colummn.
Matrix containing the first d rows and columns of the matrix Z.
space of symmetric positive definite matrices of dimension n x n.
A is positive semidefinite and symmetric, A € S7.
The vector containing the diagonal elements of the matrix Z.
The matrix containing at the diagonal the elements of the vector z, elsewhere 0.
Euclidean norm.
Frobenius Norm.
n n
Trace between matrix A and B, tr(A” B) = > >~ A;; Bi;.
i=1j=1
Hadamard Product of two matrices, Ao B = A;; B;j).

Inner product of two matrices of same dimension, A e B = tr(A” B) = > >~ A;; Bi;.

The vector containing the vectors a and b listed b below a.
Vector of all ones.
Vector or matrix containing only zero entries.

accuracy.
compare.
computation time.
exempli gratia.

et alii.

id est

scilicet.

subject to.
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