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Summary

In this thesis, we present a theoretical and experimental study of the equilib-
rium phase behaviour of colloidal dispersions and protein solutions. The thesis
consists of two theoretical parts on the phase diagram of lysozyme solutions,
and mixtures of charge-stabilised colloids and neutral polymers, respectively, and
an experimental part on the stability of mixtures of charged colloids and non-
adsorbing polymers, including a theoretical model of the aggregation kinetics.

In the first part, the phase behaviour of lysozyme solutions is calculated using
thermodynamic perturbation theory applied to a patchy colloidal model with an
anisotropic interaction part that incorporates screened Coulomb repulsions. The
interaction parameters in this model are obtained from experimental data sets.
The experimental phases are consistently described by our model of protein inter-
actions, and nearly quantitative agreement is found for the metastable gas-liquid
and the fluid-solid coexistence lines. We show that the phase behaviour of lyso-
zyme strongly depends on the anisotropic hydrophobic interactions. The range
of attraction obtained with our model is in excellent agreement with previous
surface force measurements. In addition, a consistent description is obtained for
the structure factor at small wave numbers.

The second part addresses the depletion interaction and the phase behaviour
of mixtures of charged spherical colloids and neutral polymer chains under good
and θ-solvent conditions. To predict the phase behaviour, we have derived a
generalised free-volume theory, which is in good agreement with computer simu-
lation data of the binodal for polymer-to-colloid size ratios q ≤ 1. For q > 1, our
theory captures the qualitative trends. We study the effect of weak electrostatic
repulsions and the influence of the solvent quality, and show that the colloid
charge stabilises the homogeneous phase against demixing. The phase stability
is enhanced with increasing q and solvent quality. Our theory predicts that the
solvent quality strongly affects the location of the gas-liquid coexistence curve
in case of weakly charged colloids. For a θ-solvent and q > 1, the gas-liquid
coexistence curve is almost unaffected by electrostatic repulsions.

In the third part, the stability and phase behaviour of an aqueous mixture of
charged, nanosized spheres and polysaccharide chains of roughly equal sizes is
investigated by visual inspection and photon correlation spectroscopy. We ex-
plore the interplay between charge-induced repulsion and polymer-induced col-
loid attraction. We find that even weak electrostatic screening, or small amounts
of polymers enhance colloid aggregation. Good agreement is observed between
the experimental cluster growth rates and the predictions of doublet formation
theory with hydrodynamic interactions, where the polymer-induced attractions
are well described by the Asakura-Oosawa-Vrij potential. We compare the non-
equilibrium phases caused by macroscopic phase separation, with predictions
from a generalised free-volume theory on equilibrium phases, and observe similar
trends regarding the salt influence.





Zusammenfassung

In dieser Arbeit werden Gleichgewichtsphasenübergänge in kolloidalen Disper-
sionen und Proteinlösungen theoretisch und experimentell untersucht. Die Dis-
sertation setzt sich zusammen aus zwei theoretischen Teilen über das Phasen-
verhalten von Lysozymlösungen und Mischungen von ladungsstabilisierten Kol-
loiden und neutralen Polymeren. In einem vorwiegend experimentellen Teil un-
tersuchen wir das Nichtgleichgewichts-Phasenverhalten und die Aggregationski-
netik von wässrigen Mischungen geladener Kolloidkügelchen, einschließlich eines
theoretischen Modells zur Beschreibung der initialen Aggregationskinetik.

Im ersten Teil wird das Phasenverhalten von Lysozym im Rahmen eines kol-
loidalen Modells mit anisotrop anziehenden sowie abgeschirmten Coulomb-Wech-
selwirkungen unter Verwendung einer thermodynamischen Störungstheorie be-
rechnet. Die in diesem Modell auftretenden Wechselwirkungsparameter werden
anhand von experimentellen Daten bestimmt. Die experimentell auftretenden
Phasen werden konsistent in unserem Modell beschrieben. Die berechneten gas-
flüssig und flüssig-fest Koexistenzkurven stimmen nahezu quantitativ mit den ex-
perimentellen Daten überein. Dies zeigt, dass das Phasenverhalten von Lysozym
wesentlich durch die anisotropen Wechselwirkungen beeinflußt wird. Die aus un-
seren Rechnungen gefundene Reichweite der anziehenden Wechselwirkung stimmt
sehr gut mit zuvorigen Messungen überein. Weiterhin liefert unser Modell eine
konsistente Beschreibung des Kolloidstrukturfaktors bei kleinen Wellenzahlen.

Der zweite Teil befaßt sich mit Depletionswechselwirkungen und dem Gleich-
gewichts-Phasenverhalten von Mischungen aus geladenen Kolloiden und Poly-
meren in guten und θ-Lösungsmitteln. Das Phasenverhalten wird bestimmt mit-
tels einer generalisierten freien Volumentheorie, die für kleine Polymer-Kolloid
Größenverhältnisse q < 1 Ergebnisse liefert in guter Übereinstimmung mit früher-
en Computersimulationen. Für q > 1 beschreibt die Theorie das Phasenverhal-
ten nur qualitativ richtig. Wir untersuchen insbesondere den Einfluß schwacher
elektrostatischer Abstoßungen und den Einfluß der Lösungsmittelqualität und
zeigen, daß die Kolloidladungen die homogene Phase gegen Entmischung sta-
biliseren. Die Phasenstabilität nimmt mit anwachsendem q und anwachsender
Lösungsmittelqualität zu. Die Lösungsmittelqualität beeinflußt auch stark die
Lage der gas-flüssig Koexistenzkurve für schwach geladene Kolloide. Für ein θ-
Lösungsmittel und für q > 1 bleibt die Binodale nahezu unbeeinflußt von der
Coulombabstoßung.

Im dritten Teil wird die Stabilität und das Phasenverhalten einer Mischung
von geladenen, nanometrischen Kolloiden und Polymeren von etwa gleicher Größe
mittels Photonenkorrelationsspektroskopie untersucht, um das Wechselspiel zwi-
schen ladungsinduzierter Abstoßung und polymerinduzierter Anziehung der Kol-
loide zu studieren. Wir finden, daß bereits eine geringe elektrostatische Ab-
schirmung bzw. eine geringe Polymerkonzentration die Aggregation der Kolloide
beschleunigt. Die experimentellen Aggregationszeiten stimmen gut mit der Ag-



gregationstheorie von kolloidalen Dimeren überein, wobei darin hydrodynamische
Wechselwirkungen berücksichtigt sind und die polymerinduzierte Anziehung mit
dem Asakura-Oosawa-Vrij Potential beschrieben wird. Wir vergleichen die exper-
imentellen Nichtgleichgewichts-Phasen mit den Vorhersagen der generalisierten
freien Volumentheorie für die Spinodale und Binodale, und finden analoge Trends
für den Einfluß der Salzkonzentration.
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1 Introduction

We come across phase transitions in everyday life whenever we boil or freeze
water, while we are ice-skating or, for another example, when we dissolve table
salt. Common to all these phenomena is that we recognise an abrupt change
in the materials constitution, which enables us to distinguish unequivocally the
states of matter, i.e., the thermodynamic phases. For atomistic systems, it is
usually not possible to tune the location of a coexistence curves in a first-order
phase transition by changing the interaction strength on atomistic or molecu-
lar length scales, since these are ruled by quantum mechanics. Each molecular
system exhibits a specific phase behaviour and no systematic, gradual variations
of the molecular interactions can be made to study the accompanied changes
of the phase diagram [1]. This is quite different in colloidal systems. Colloidal
dispersions consist of particles of nanometre-to-micrometre-size, dispersed in a
low-molecular weight solvent [2]. The particles can be solid, e.g., made of glass
or plastic, or soft objects like vesicles or liquid droplets stabilised by surfactants
(micelles). Such systems of colloidal particles of varying length scales are prime
examples of soft matter. For example, paints, ink, glue, milk, or in a wider sense
blood and the cytoplasm within cells belong to this class of condensed matter.
As these examples illustrate, colloids are part of our everyday experience. They
are thus of industrial, medical and biological interest.

The large separation of time and length scales between the large colloidal par-
ticles and the smaller solvent molecules allows in many cases to disregard the
molecular nature of the solvent [3]. Therefor, colloidal suspensions are commonly
described as systems that interact via an effective potential, which accounts in
a coarse-grained way for the effect of the embedding solvent and additional con-
stituents (such as, e.g., ions and polymers) on the colloid interactions. This
simplifying description is formally obtained by integrating out the degrees of
freedom of the surrounding small solvent molecules and additives. Usually, there
is a price to pay for this coarse-graining in that the effective interactions include
many-body contributions [4]. The colloid-colloid interactions, and thereby the
phase behaviour, can be tuned by variation of the salt concentration in case of
charged colloids, by adding polymers, mixing solvents, and so forth.

Due to the many possibilities of modifying the solvent and colloid properties,
the interactions between mesoscopic particles can be tuned in many different ways
giving rise to an unprecedented richness in the phase behaviour [5]. Repulsive
particle interactions are, for example, caused by surface charges, whereas attrac-
tive interactions can be imposed by adding non-adsorbing polymer chains [6]. In
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1 Introduction

addition, globular particles with hard-sphere-like interactions can be produced by
covering the colloid surface with short polymer brushes [7], and by dispersing the
particles in a non-polar solvent with similar dielectric properties to avoid signifi-
cant dispersion attractions. It is even possible to reverse the effective interactions
from purely repulsive to attractive by modifying the solvent properties. Due to
their large size and their slow dynamics, one can relatively easily observe, as com-
pared to atomic fluids, the structure and dynamics of colloidal suspensions with
scattering methods (light, x-ray, neutrons) and, for larger particles, with optical
imaging techniques such as light microscopy and confocal microscopy. Since, by
definition, colloidal particles exhibit thermal motion, colloidal dispersions can be
quantitatively described using classical statistical mechanics [8, 9]. This link has
led to a mutual inspiration between theory and experiments in the past. To this
day, colloid science is a very active field of research. In particular, the study of
colloid model systems has led to an increased knowledge on the influence of the
strength and range of interactions on the stability of equilibrium phases. If the
range of the attractive interaction part is sufficiently short, the gas-liquid coexis-
tence region becomes metastable with respect to a fluid-crystal phase separation.
Such a situation is often observed in protein solutions, which can be considered
as a colloidal dispersion. In fact, concepts developed in colloid physics have been
successfully applied more recently to biological systems.

In chapter 2, we propose and analyse a simple model to describe the phase be-
haviour of lysozyme protein solutions. We devise a patchy colloidal model with
anisotropic attractive interactions. The phase behaviour of lysozyme solutions is
calculated using second-order thermodynamic perturbation theory. As our cal-
culations demonstrate, the gas-liquid coexistence curve of lysozyme can only be
consistently described by incorporating a long-ranged patchy attractive and a
charge-induced repulsive pair interaction. In particular, we use previously ob-
tained experimental data on the phase behaviour at the critical point to quantify
the range and strength of the unknown attractions. Using these critical parame-
ters, we can predict the crystallisation curve. The overall good agreement between
the experimental data and our predictions for the phase coexistence curves, and
the excellent compliance of the estimated attraction range with former surface
force measurements on hydrophobic plates found in the literature, allow us to
conclude that the anisotropic attractive interactions are due to the hydrophobic
patches on the protein surfaces.

In Chapter 3, we investigate the combined influence of polymer-depletion-
induced colloid attractions and charge-induced repulsions on the phase behaviour
of colloid-polymer mixtures. For this purpose, we apply the so-called free-volume
approximation to study the topology of the phase diagram. That is, we ex-
plore the influence of the polymer-to-colloid size ratio, which defines the range of
colloid attraction, as well as the salt concentration, which determines the elec-
trostatic range of repulsion of two colloidal particles due to the screening of the
colloid charges. By interpolating between the limit of dilute polymer concen-
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trations, where the polymer solution can be described by an ideal gas law, and
approximate scaling relations known for semi-dilute polymer concentrations, our
calculations capture qualitatively the phase behaviour of colloid-polymer mix-
tures under good- and θ-solvent conditions. Interestingly, for polymer-to-colloid
size ratios larger than one, our calculations predict a strong effect of the solvent
quality on the phase behaviour of mixtures of polymer chains and weakly charged
colloids.

Chapter 4 contains an experimental study on the properties of such a mix-
ture of charged colloids with non-adsorbing added polymers. We explore an
aqueous suspension of charge-stabilised and nanometre-sized silica spheres, and
a water-soluble and non-adsorbing polysaccharide (dextran) used as depletion
agent. A feature that was not considered in the thermodynamics treatment of
the previous chapter is colloid aggregation. As we will discuss in Chapter 4, for
unstable colloid-polymer mixtures demixing and aggregation can occur simulta-
neously. In regions of the phase space where no aggregation occurs, or where
aggregation is slow as compared to phase separation, a comparison of the ex-
perimental phase diagram with the free-volume theory of Chapter 3 is made.
The existence of non-equilibrium clusters is an example of a state which is usu-
ally not found in molecular systems, giving rise to specific and new phenomena
in colloidal suspensions. If the colloidal particles have steep and short-ranged
attractive interactions at near-contact inter-particle distances, they can stick to-
gether after a collision and form open-structured clusters which grow in time. In
the first part of this chapter, we investigate the influence of the salt concentra-
tion on the cluster-aggregation process in dispersions of silica spheres in water
without added polymers. To gain quantitative insight, the cluster growth rate
is monitored using photon correlation spectroscopy. In a next step, polymers of
varying molecular weight and concentration are added to the dispersion. Due
to the polymer-induced, long-ranged attractive depletion forces, cluster aggre-
gation is accelerated with increasing polymer concentration. Furthermore, we
find from our experiments that the cluster growth rate decreases with increas-
ing polymer-to-colloid size ratio. Following previous work on cluster-aggregation
processes, the experimental observations are explained by the doublet formation
theory [6] with an account of hydrodynamic interactions. In addition to the elec-
trostatic repulsion and the short-range van der Waals attraction, we account for
the effect of the polymer chains, which cause an additional attraction due to the
depletion mechanism, described by the Asakura-Oosawa-Vrij depletion potential.
The interplay between non-equilibrium cluster-aggregation and a faster progress-
ing demixing process, are discussed on the basis of a series of experimentally
observed non-equilibrium state points determined for varying colloidal volume
fractions and polymer concentrations, and for different salt concentrations.

In the final chapter 5, a summary is given of all three topics included in the
thesis, and an outlook of possible future research is presented.
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2 A simple patchy colloid model for
the phase behaviour of lysozyme
dispersions

In this chapter, we propose a minimal model for spherical proteins
with aeolotopic pair interactions to describe the equilibrium phase be-
haviour of lysozyme. Within our model, the repulsive screened Coul-
omb interactions between the particles are taken into account on as-
suming that the net charges are smeared out homogeneously over the
spherical protein surfaces. We incorporate attractive surface patches,
with the interactions between patches on different spheres modelled by
an attractive Yukawa potential. The parameters entering the attrac-
tive Yukawa potential part are determined using information on the
experimentally accessed gas-liquid-like critical point. The Helmholtz
free-energy of the fluid and solid phases are calculated using second-
order thermodynamic perturbation theory. Our predictions for the sol-
ubility curve are in overall good agreement with the experimental data.
By means of a set of experimental data for the gas-liquid coexistence
curves measured at various salt concentrations, we demonstrate that
our model is able to describe theoretically the influence of added salt on
the phase behaviour of lysozyme solutions. In agreement with earlier
findings, we observe that the strength and the range of the attractive
potential part only weakly depends on the salt content. Our approach
thus gives a consistent description of the experimental findings on the
phase behaviour of lysozyme solutions.

2.1 Introduction

The exploration of crystallisation processes of proteins is a the subject of very ac-
tive research, since obtaining regular crystals is indispensable for the structural
analysis using, e.g., X-ray scattering tools [10]. In practice, crystallographers
need to screen many batches by varying the solution properties until the proper
conditions are found where regular crystals are formed [11]. Obviously, this ap-
proach is time-consuming and tedious, and one would like to have a rule of thumb
to know in advance for what conditions a successful crystallisation route may be
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2 A patchy model for the phase behaviour of lysozyme dispersions

Figure 2.1: The crystal structure of lysozyme (ID 133l) taken from the Protein Data
Bank [20,21]. The arrow marks the active centre where the hydrolysis of specific kinds
of polysaccharides comprising the cell walls of bacteria is catalysed.

achieved. Several ways to accelerate structural analysis have been discussed, e.g.,
transferring the proteins to solvent conditions far away from their native envi-
ronment by increasing the salt concentration (salting-out effect), adding di- and
multivalent ions (Hofmeister series), and varying the pH-value, the temperature,
or adding depletion agents [10].

The application of concepts from colloidal science to proteins has led to progress
in understanding their interactions and phase behaviour. By applying the Derja-
guin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability [12] to pro-
teins, and by adjusting the van der Waals interaction to match the experimental
data, it had been concluded that proteins interact essentially by long-ranged
screened electrostatic repulsion due to their effective surface charges, and by
short-ranged attractive forces responsible for a metastable gas-liquid coexistence
curve [13–15]. In addition, the adhesive hard-sphere model, as exemplified by the
sticky-sphere model, has been applied to protein solutions [16–18]. However, in
the presence of such extremely deep (∼ 8kBT ) and short-range attractions (∼ 10%
of the protein diameter) obtained from models with isotropic interactions using
the DLVO-theory, one might expect that the proteins coagulate, whereas non-
coagulated stable phases are observed [19]. Experiments on the phase behaviour
have been focused so far mainly on solutions of lysozyme proteins. Lysozyme is
an enzyme which damages bacterias by hydrolysing cell-wall-attached polysac-
charides. In Fig. 2.1, the crystal structure of lysozyme is shown, indicating also
the active centre where the hydrolysis takes place. Due to its antibacterial ef-
fect, lysozyme is abundant in several of secretions, such as saliva, mucus and
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2.1 Introduction

tears. Large concentrations of lysozyme are found in the white component of
hen-eggs. Therefore, lysozyme proteins used in experiments to investigate the
phase behaviour have often been extracted from hen-eggs. For these systems, a
large amount of data and insight has been accumulated during the past: Taratuta
et al. [22] have discovered the existence of a gas-liquid coexistence curve, which
was subsequently shown to be metastable with respect to the fluid-crystal phase
separation by Broide et al. [19]. George and Wilson [23] have found that there
is a narrow band of negative values for the second virial coefficient for which
crystallisation occurs. Thereafter, ten Wolde and Frenkel [24] demonstrated that
the nucleation barrier is lowered in the region close to the critical point. As a
consequence, the understanding and prediction of the fluid phase behaviour has
turned out to be a prerequisite to describe nucleation kinetics. For a more de-
tailed general discussion of protein crystallisation, we refer to the two reviews by
Piazza in [17] and [25].

Further progress in explaining the experimental gas-liquid phase separation
was made by considering anisotropic protein interactions. To investigate the
influence of attractive patches on the protein surfaces, Benedek and co-workers
[26, 27] have used an orientation-dependent square-well potential, which allows
for a remarkably good description of the gas-liquid phase coexistence as well as
for the solubility curve. Moreover, they demonstrated that whether one is allowed
to orientationally average the angular-dependent pair potential depends strongly
on the number of nearest neighbours, and on the number and size of patches.
Thus, taking into account the anisotropic interactions is crucial in describing
crystallisation in lysozyme solutions.

Kern and Frenkel [28] have discussed the phase behaviour by accounting for the
relative orientation of two interacting molecules. Different from them, Lomakin
et al. [26,27] disregarded in their computer simulation study the anisotropy of all
surrounding particles in the total interaction pair potential. From their computer
simulations, Kern and Frenkel conclude that the critical temperature decreases as
the surface area of the attractive patches decreases. Moreover it follows from their
simulations that the critical volume fraction depends only weakly on the patch
area, and that for constant surface coverage, the critical temperature decreases
with decreasing number of patches. According to Kern and Frenkel, the critical
point is no longer characterised by a unique value of the second virial coefficient,
but rather depends on the number and area of patches.

Recently, Liu et al. [29] have extended Kern and Frenkel’s approach on using
a sum of a patchy and an isotropic square-well attractive pair potential. They
find good agreement between the experimental gas-liquid coexistence curve and
their theoretical binodal. In their model calculations a heuristic set of interaction
parameters determining the range and strength of the isotropic and anisotropic
interaction potential part is selected by scaling the temperature and the particle
density with the experimental values at the critical point. Additionally, they
observe that the location of the critical point is only slightly affected by the
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2 A patchy model for the phase behaviour of lysozyme dispersions

surface distribution of patches.
In an alternative approach Sear [30] has addressed the problem of protein crys-

tallisation by applying Wertheim’s perturbation theory [31,32] for self-associating
fluids. He obtains a qualitative description of the phase behaviour. In Wertheim’s
theory, the interactions are assumed as point-like, so only site-site bounds can
be formed. Clusters and percolated gels are described here by assuming non-
vanishing probabilities for the formation of monomers, dimers, and so on, leading
to a statistical description of the associating fluid. This approach has afterwards
been used by Warren [33] to explore the influence of added salt on the phase
behaviour of lysozyme. In addition, Sear’s model has been used by Zukoski and
co-workers, to address the problem of the nucleation kinetics in protein solutions
(see [34] and references therein). They have also compared their results to the
experimental data on crystal nucleation kinetics [34, 35].

Despite this success and the valuable insight gained by using Wertheim’s per-
turbation theory, the Sear model lacks the incorporation of patches. Fantoni et
al. [36] pointed to this shortcoming, and developed an analytical description for
patchy hard spheres using Baxter’s adhesive sphere model. They compared the
results of their analytical description for the structure in the anisotropic liquid
and the equilibrium phase behaviour with their computer simulations.

An anisotropic interaction-site lattice model was proposed by Talanquer [37].
In this work, the occurrence of non-spherical critical nuclei is predicted whose
specific geometry depends on the strength of the anisotropic interactions.

The influence of the number of patches on the crystal lattice structure has
been investigated by Chang et al. [38] using computer simulation methods. In-
terestingly, in case of a model with six patches, they observed a phase transition
from a simple cubic (sc) to an orientationally disordered face-centred cubic lattice
(fcc) above room temperature. In addition they observed a metastable transition
between the orientationally disordered and ordered face-centred cubic lattice at
lower temperature. This study demonstrates that anisotropic interactions can
lead to manifold crystal structures that depend crucially on the geometry and
strength of the patchy interactions.

Quite recently, theoretical work on dispersions of patchy colloid particles has
caused much attraction due to the progress made by Bianchi et al. [39]. On
varying the patchiness, they demonstrated that patchy colloids can offer the
possibility to generate a beforehand inaccessible liquid state, with a possible
percolation threshold at temperatures below the critical point without a preceding
gas-liquid phase separation.

Common to all previous studies incorporating anisotropic interactions is that
they use a square-well potential to describe the attractive interaction part be-
tween the proteins. A square-well form, however, is only realistic in case of a
very short-ranged attraction and negligible non-excluded volume repulsions such
as in high-salt systems. On decreasing the salinity, the range of the screened elec-
trostatic repulsion increases. Hence, the fluid phase becomes stabilised against
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2.1 Introduction

gas-liquid phase separation on lowering the salt content, and one can expect
that the critical point is shifted to lower temperatures. For zero added salt,
one expects in lieu of a gas-liquid coexistence a microphase separation to take
place [40–42], which actually has been seen experimentally [43]. Such equilib-
rium clusters form if, first, the range of repulsion is large enough to stabilise
the conglomerates against further growth, and second, if the attractive forces are
sufficiently short-ranged to hinder particles from escaping the cluster.

To investigate the influence of discrete charge patterns on the protein sur-
faces regarding many-body interactions, Allahyarov et al. [44] have performed
Molecular Dynamic simulations where, in addition, the finite size of the mi-
croions has been accounted for. In lysozyme solutions they observe deviations
in the angular-averaged pair potential from the monotonic decaying behaviour
predicted by DLVO theory only for large ionic strengths.

The thermodynamic properties of lysozyme crystals have been investigated in
detail by Chang et al. [45]. These authors have combined atomistic Monte Carlo
simulation to account for the anisotropic shape and van der Waals attractions
with a boundary element method as a solver of the Poisson-Boltzmann equation
to account for the discrete charge distribution close to the lysozyme surface, and
the effect of salt-induced screening. Whereas the predicted van der Waals energy
and the electrostatic energy are in good agreement with experimental data for a
tetragonal lattice structure, the agreement is less good found for an orthorhombic
lattice structure. This discrepancy can be attributed to both a change in the
solvation structure, which has been observed experimentally, and to the general
difficulties in describing van der Waals interactions quantitatively.

In the present work, we include the screened electrostatic repulsion explicitly
in the pair potential to separate the influence of the screened Coulomb repulsions
from the attractive forces in lysozyme solutions, which are presumably induced
by hydrophobic interactions and dispersion forces [46,47]. In Fig. 2.2(a) we have
coloured the hydrophobic segments by red and all non-hydrophobic polypeptide
segments by blue. As can be seen in this colour map, the surface of lysozyme is
covered by several hydrophobic regions (or patches). In our model calculations,
the patchy attractive forces are assumed to be of a Yukawa-like form. This enables
us to characterise and quantify the strength and range of the radial attractive
pair potential part from data on the experimental critical point and the measured
binodals, as well as to investigate the competing effects of repulsive and attractive
pair forces on the phase behaviour as a function of salinity.

The chapter is organised as follows: in section 2.2 we explain in detail the
model describing the attractive patchy and repulsive screened electrostatic pair
interactions. The Helmholtz free energy of the fluid and solid phases is calculated
using second-order perturbation theory, as described in section 2.3. In section
2.4, we explain how we determine the range and strength of the attractive po-
tential part, as well as the patchiness of the proteins, by using information on
the experimentally observed critical point. For this purpose, we take advan-
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2 A patchy model for the phase behaviour of lysozyme dispersions

Figure 2.2: Left hand side (char (a)): Tertiary crystal structure of lysozyme. The
hydrophobic segments have been coloured red and all remaining non hydrophobic
segments blue. Right-hand side (char (b)): Two-dimensional sketch of the spherical
patchy model of lysozyme. The hard-sphere colloidal particle carries two attractive
patches (red areas) characterised by an opening angle δ and normal direction eα

(α = 1, 2).

tage of an earlier finding of Warren [33] on the second osmotic virial coefficient
of lysozyme solutions, and an extended corresponding state argument of Noro
and Frenkel [48]. This simplifying strategy enables us to quantify the range and
strength of attraction, and the surface area fraction covered by attractive pat-
ches. In section 2.5 we present the calculated phase diagrams. To compare the
theoretical coexistence curves with the experimental data, we include the tem-
perature dependence of the attractions. In section 2.7 we discuss the so-obtained
physical parameters in comparison to previous findings. The capability of our
model to describe the influence of added salt on the gas-liquid coexistence curve
is demonstrated through a comparison with existing [49] and new experimental
data on lysozyme solutions at various salinities. We also predict the fluid-solid
coexistence curve for the experimentally given salt concentrations. Finally, in
section 2.8, we present our conclusions.

2.2 The model

We assume that the total pair potential, u(r, Ω1, Ω2), between two spherical pro-
teins at a centre-to-centre distance r, can be described by a known repulsive
isotropic interaction potential part, urep(r), due to the effective charges on the
protein surfaces and an attractive, patchy interaction part, uattr(r, Ω1, Ω2), with
yet unspecified interaction parameters. The finite size of the spherical protein is
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2.2 The model

accounted for using a hard-sphere potential, u0(r), by mapping the ellipsoidal-like
shape [50] of a lysozyme protein onto an effective sphere as explained at the end
of this section. In total,

u(r, Ω1, Ω2) = u0(r) + urep(r) + uattr(r, Ω1, Ω2) . (2.1)

Here, Ωi is the solid angle of a sphere i, and the hard-sphere potential part is

u0(r) =

{ ∞ , r ≤ σ
0 , r > σ ,

(2.2)

where σ denotes the protein diameter.
The repulsive pair interaction part is described by the electrostatic part of the

one-component macroion-fluid potential [51],

βurep(r) =

{
Z2 lB Y 2 exp [−zrep(r/σ−1)]

r
, r > σ

0 , r ≤ σ ,
(2.3)

Here, Z is the protein charge number, and lB = e2/ (4πε0εkBT ) is the Bjerrum
length with the dielectric constant in vacuo, ε0, the dielectric solvent constant,
ε, the elementary charge e and the temperature T .

The effects of the finite size and concentration of the colloidal macroions on
the interaction strength is incorporated by the factor Y = X exp(−κσ/2), where

κ2 = 4πlBNA

(
|Z| ρ0

M
η + 2cs + 2cb

)
(2.4)

is the square of the Debye screening parameter κ, NA is Avogadro’s constant,
η = πρσ3/6 is the protein volume fraction, ρ is the number density of proteins
of molar mass M , and ρ0 is the protein mass density. The molar buffer and
monovalent molar salt concentrations are denoted by cb and cs, respectively. For
the systems studied in this work, κ is determined essentially by the added salt
concentration. The explicit form of the geometric factor, X(η, κσ), as obtained in
the mean-spherical approximation (MSA) for point-like microions is quoted in the
appendix. The factor X accounts, within the linear MSA, for the reduced screen-
ing ability of the microions at non-zero concentration of proteins (macroions).
It decreases with decreasing protein concentration and approaches the standard
DLVO prefactor X0 = 1/(1 + κσ/2) for ρ → 0. Since Z is quite small, we have
disregarded here the charge renormalisation effect caused by quasi-condensed
counterions (see, e.g., [52]). The reduced screening parameter zrep = κσ quan-
tifies the electrostatic screening length in units of σ. For later discussion, we
abbreviate the non-dimensionalised contact value of urep(r) as βεrep = Z2lBY 2/σ.

In using this effective electrostatic interaction part, we neglect the discrete
surface charge pattern of lysozyme. Such effects have been investigated by Al-
lahyarov et al. in Refs. [44,53]. We will refer to their results in our discussion in
section 2.7.
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2 A patchy model for the phase behaviour of lysozyme dispersions

Commonly, the pH-value and the excess amount of salt are carefully adjusted
in a protein solution under experimental conditions. Then the salt concentration
cs, the co- and counterion concentrations, and the protein net charge number
Z are precisely known. Therefore, the repulsive electrostatic interaction part
is completely determined by the system temperature and the protein volume
fraction η.

To describe the attractive interactions between adjacent patches on two protein
surfaces, we employ the patchy model description of Kern and Frenkel [28], on
assuming that the radial and angular degrees of freedom can be factorised. The
attractive interaction potential part, ũattr(r), hereby is angularly modulated by
an angular distribution function, d(Ω1, Ω2), that depends on the solid angles Ω1

and Ω2 of two particles 1 and 2, respectively, according to

uattr(r, Ω1, Ω2) = ũattr(r) × d(Ω1, Ω2) . (2.5)

The particles are assumed to have α = 1 . . . n attractive spherical caps on each
surface, with an opening angle δ around the normal direction, eα, of each cap
(see Fig. 2.2(b)). According to Fig. 2.3, two particles, 1 and 2, attract each other
only if the centre-to-centre vector, r, intersects simultaneously the patchy cones
of particle 1 and 2. This is equivalent to demanding that for attraction the angle
θ12,α between the normal vector eα of patch α on particle 1, and the angle θ21,β

between the normal vector eβ of patch β on particle 2 are simultaneously smaller
than δ. The angular distribution function, d(Ω1, Ω2), is thus given by

d(Ω1, Ω2) =

⎧⎨
⎩ 1 , if

{
θ12,α ≤ δ for a patch α on 1
and θ21,β ≤ δ for a patch β on 2

0 , otherwise .
(2.6)

Different from the work of Kern and Frenkel, where an attractive square-well po-
tential has been used for ũattr(r), we use here an attractive Yukawa-type potential
of the form

ũattr(r) =

{ − ε̃attr(T ) σ exp [−zattr(r/σ−1)]
r

, r > σ
0 , r ≤ σ ,

(2.7)

where the temperature-dependent potential depth, ε̃attr(T ), is described as [27]

ε̃attr(T ) = εattr

(
1 + ψ

[Tc − T ]

Tc

)
. (2.8)

Here, Tc is the critical temperature at the liquid-gas coexistence, and εattr and
ψ are two physical parameters, which will be determined from the experimental
data at the critical point (see later). Since the strength of the attractive potential
part increases with decreasing T , the signs of ψ and εattr have to be positive. For
ψ = 0, the attractive potential part would be temperature-independent. The
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2.2 The model

Figure 2.3: Schematic drawing of a configuration of two model proteins, each carrying
two attractive patches (red cones). For the given configuration, the two particles repel
each other as described by the screened electrostatic potential in Eq. (2.3), with the
surface charge assumed to be smeared out homogeneously over the sphere surface as
indicated by the blue colour. There is no attractive interaction part, since the centre-
to-centre vector, r, does not intersect simultaneously the shaded attractive patches
on particles 1 and 2. See the main text for the definitions of the remaining symbols.

temperature dependence in Eq. (2.8) constitutes a first-order Taylor-expansion
around Tc. It can be considered as a simple approximation to the so far not well
understood temperature dependence of the attractive hydrophobic interactions.
The expansion around T = Tc has been selected since the critical temperature is
an experimentally well-assessed quantity.

The fraction, χ, of the sphere surface covered by the n attractive patches is
given by the surface coverage factor [28],

χ = n sin2

(
δ

2

)
. (2.9)

Within the present patchy model, only the square of χ appears in the average
of uattr over the angular degrees of freedom. The surface coverage factor χ is
thus an additional, independent parameter in our anisotropic patchy model, and
our calculations do not depend on the actual local distribution of patches and
their individual sizes. All details of the discrete character of the pair interactions
are convoluted in the surface coverage factor χ due to this angular-averaging.
However, in place of χ one can use the opening angle δ as the adjustable parameter
for n fixed, or, likewise, n is taken as adjustable and δ is fixed. Our calculations
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2 A patchy model for the phase behaviour of lysozyme dispersions

have been performed such that δ is the independent parameter for n fixed to 2, as
sketched in Fig. 1 of this thesis. With this form, an isotropic attractive potential
is recovered in the limit δ → π.

The second osmotic virial coefficient, B2, has the following form for an angular-
dependent pair potential,

B2(T ) = −1

2

∫
dr 〈exp [−βu(r, Ω1, Ω2)] − 1〉Ω1,Ω2

, (2.10)

where

〈. . .〉Ω1,Ω2
=

1

(4π)2

∫ ∫
. . . dΩ1dΩ2 (2.11)

denotes an unbiased angular average. The reduced second virial coefficient, B∗
2 , is

defined as the ratio of B2 and the virial coefficient, B0
2 = 2πσ3/3, of hard spheres

of diameter σ, i.e., B∗
2 = B2/B

0
2 .

Lysozyme is approximately an ellipsoidal polypeptide with volume v0 = (π/6)×
4.5×3.0×3.0 nm3 [19]. In the present work, we treat the ellipsoidal-like polypep-
tide as a spherical particle of equal volume v0, and effective diameter σ = 3.4 nm
[15,54,55]. The molar mass of lysozyme is 14, 400 g/mol, and its mass density is
ρ0 = 1.351 g/cm3. In the experiments, the proteins have been dissolved with a
cb = 0.02 mol/l (2-hydroxyethyl)piperazine-N’-(2-ethanesulfonic acid) (HEPES)
buffer solution without added salt. The pH has been adjusted to 7.8 ± 0.1 using
a sodium hydroxyl solution [56, 57]. At this pH-value it is known from titration
experiments that the protein carries Z = 8 net positive elementary charges [58].

2.3 Helmholtz free energy and phase coexistence

In order to explore the phase diagram of lysozyme, we need to calculate the
Helmholtz free energies of the fluid and solid phases. For this purpose, we employ
the thermodynamic perturbation theory of Barker and Henderson [59], using hard
spheres as the reference system. The Helmholtz free energy of the actual system
is hereby expanded in powers of the interaction strength of the perturbational
potential part, up = u − u0, with the hard-sphere reference system indicated by
the subscript 0,

f(T, η) = f0(η) + f1(T, η) + f2(T, η) + . . . . (2.12)

We have non-dimensionalised here the Helmholtz free energy, F (N, V, T ), of the
proteins by the thermal energy 1/β = kBT and the volume per particle, v0 =
πσ3/6, according to f = βFv0/V , where N is the number of particles in the
system volume V . The first-order perturbation contribution to the free energy
contains only pair-wise interactions and is given by
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2.3 Helmholtz free energy and phase coexistence

f1(T, η) = 12 η2 1

σ3

∫ ∞

σ

dr r2g0(r) 〈βup(r, Ω1, Ω2) 〉Ω1,Ω2
, (2.13)

where g0(r) is the radial distribution function of hard spheres of volume fraction η.
In the solid phase, g0(r) is the orientationally averaged pair distribution function.

The second-order perturbation contribution, f2, contains three- and four-body
distribution functions and includes fluctuations in the particle density. Unfortu-
nately, this contribution cannot be computed easily because of the complexity of
these higher-order distribution functions. For this reason, we involve the macro-
scopic compressibility approximation developed by Barker and Henderson [60],
which involves only the pair distribution function and the isothermal compress-
ibility, χT, of the reference system according to

f2(T, η) = −6 η2

(
∂η

∂Π0

)
T

1

σ3

∫ ∞

σ

dr r2 g0(r)
〈
[βup(r, Ω1, Ω2)]

2 〉
Ω1,Ω2

. (2.14)

Here, χT/(βv0) = 1/η(∂η/∂Π0)T, where we have non-dimensionalised the protein
osmotic pressure, Π̃0, according to Π0 ≡ βΠ̃0v0.

In the fluid phase, the reduced free energy of the hard-sphere reference system,
f0, consists of the ideal gas part,

f id
0 (η) = η

[
ln(ηΛ3/v0) − 1

]
, (2.15)

with the thermal wavelength, Λ = h/
√

2πmkBT , involving the protein mass m,
Planck’s constant h, and the interaction free energy part. The latter is described
using the Carnahan-Starling equation of state [61],

fCS
0 (η) =

4η2 − 3η3

(1 − η)2
. (2.16)

Solid lysozyme dispersions are known to have a tetragonal crystal structure [62].
Within our simplifying model, we have mapped the ellipsoidal-like particle shape
onto a sphere, which allows us to use for simplicity the hard-sphere reference
system which has a fcc solid phase. Existing schemes for g0 in solids [63–66]
have been developed and compared with Monte Carlo simulation data only for
face-centred cubic (fcc) and body-centred cubic (bcc) lattices. For the excess
Helmholtz free energy density of the fcc hard-sphere solid phase, we use Wood’s
equation of state [67], namely

f
solid

0 (η) = 2.1306 η + 3 η ln

(
η

1 − η/ηcp

)
+ η ln

(
Λ3

v0

)
, (2.17)

where ηcp = π
√

2/6 is the fcc volume fraction for closed packing. The integration
constant (i.e., the first term on the right-hand side of Eq. (2.17)) is obtained from

15



2 A patchy model for the phase behaviour of lysozyme dispersions

the free energy density of a hard-sphere crystal calculated from Monte Carlo sim-
ulations at η = 0.576 [68]. Note that different free energy expressions are used
for the fluid and solid phases of the reference system, since there is a symmetry
change in going from one phase to the other. For the radial distribution func-
tion, g0(r), in the liquid phase, we use the Verlet-Weis (VW) corrected [69, 70]
Percus-Yevick (PY) solution [71, 72], and the orientation-averaged pair distribu-
tion function of Kincaid [66] for the fcc crystal phase.

The second-order perturbation scheme outlined above has been widely used for
various perturbation potentials and compared with simulation data. For example,
it has been used for approximating the free-energies of fluid or solid phases of
particles with attractive [73] and repulsive [74] short-ranged pair potentials of
Yukawa-type, and particles with polymer-induced depletion interactions [75–77].
As long as the contact value of the perturbation potential part is not much
larger than kBT , so that up can be treated as a perturbation relative to the
dominating hard sphere contribution, the perturbation scheme works decently
well, provided up is not too long-ranged. In our calculations, the second-order
free energy perturbation term is typically ten to twenty times smaller than the
first-order contribution.

At fluid-solid phase coexistence, the two phases must be in thermal, mechanical,
and chemical equilibrium. Since the coexisting phases are in thermal contact, the
only two conditions determining the volume fractions of the coexisting fluid (f)
and solid (s) phases are the equality of the osmotic pressure

Πf(T, ηf) = Πs(T, ηs) , (2.18)

and chemical potentials,

μf(T, ηf) = μs(T, ηs) , (2.19)

with

Π(T, η) = η2

(
∂(f(T, η)/η)

∂η

)
T

and βμ(T, η) =

(
∂f(T, η)

∂η

)
T

. (2.20)

At sufficiently low temperatures, a liquid (l) and a gas-like (g) phase of high
and low density, ηl and ηg, respectively, coexist along the gas-liquid coexistence
curve. The liquid-gas coexistence is metastable, however, with respect to a fluid-
solid phase coexistence. Under gravity, the two fluid phases are separated by a
meniscus, and particles and energy can pass through this interface. Equilibrium
is achieved for equal osmotic pressures

Πg(T, ηg) = Πl(T, ηl) , (2.21)

and chemical potentials,
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2.4 Determination of the attractive interaction parameters

μg(T, ηg) = μl(T, ηl) , (2.22)

of the coexisting phases.
The spinodal instability curve of diverging isothermal compressibility is deter-

mined by

∂2f(T, η)

∂η2
= 0 . (2.23)

The binodal and spinodal merge at the critical point (see later).
We have evaluated the improper integrals in the perturbation scheme using

Chebyshev quadrature for the zonal part of g0(r) and Romberg quadratures
for the remainder, where the perturbation pair potential has almost decayed to
zero and the angular-averaged pair distribution is nearly constant. Higher-order
derivatives of the free-energy have been computed to machine precision accuracy
using Ridder’s implementation of Neville’s algorithm. The phase coexistence
curves have been determined using a Newton-Raphson method with line search
(see [78] for the invoked algorithms).

2.4 Determination of the attractive interaction
parameters

We proceed by first characterising the yet unknown interaction parameters zattr in
Eq. (2.7) and εattr in Eq. (2.8), and compute subsequently the equilibrium phase
diagram of lysozyme for the experimentally scanned part of the T - η plane.
Aside from these two interaction parameters, there are two additional unknown
parameters in our patchy sphere model, namely the parameter ψ in Eq. (2.8),
which characterises the temperature-dependence of the depth of the attractive
potential part, and δ, the opening angle of the patches (see Eq. (2.9)), which
determines the surface coverage factor χ for the given number n = 2 of patches.

In a first attempt to determine these parameters, one could try to fit the bin-
odal, obtainable in principal from our model, to the experimental one. However,
the complexity of the involved thermodynamic expressions renders this direct
approach very tedious. For simplicity, we choose a simpler strategy and fo-
cus on a characteristic point in the phase diagram, namely the critical point
of the metastable gas-liquid protein phase coexistence. Right at the critical
point, uattr(r) is determined by zattr, εattr and δ alone, since its depth becomes
temperature-independent (see Eq. (2.8)). At the critical point, the second and
third density derivatives of the Helmholtz free energy vanish, i.e.

∂2f(Tc, ηc)

∂2η
= 0 and

∂3f(Tc, ηc)

∂3η
= 0 . (2.24)
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Figure 2.4: (a) Sodium chloride concentrations, cs, at fixed buffer concentration,
cb = 0.02 mol/l of HEPES buffer, corresponding to pH = 7.8, for which the B∗

2(T )
values of lysozyme have been obtained from static light scattering experiments by
Gibaud [79]. The vertical dashed lines mark the salt-concentration dependent critical
temperature. (b) Experimentally obtained B∗

2(T ) versus T . The solid curves are best
fits to the parametrisation B∗

2(T, cs) = 1 + A/T − B/T 2, with the two parameters
A and B determined for cs = 0.5 mol/l (•) as: A = 3921 K, B = 1.4 × 106 K2;
cs = 0.4 mol/l (�): A = 3566 K, B = 1.3 × 106 K2; cs = 0.3 mol/l (�): A = 3620 K,
B = 1.3 × 106 K2; cs = 0.2 mol/l (�): A = 2869 K, B = 1.0 × 106 K2). See the text
for additional explanation.

Here we use values for the critical temperature, Tc, and the volume fraction at the
critical point, ηc, as determined experimentally by Gibaud [79] and Cardinaux
et al. [49]. To obtain a third condition for the three unknown parameters, we
exploit an empirical observation made by Warren, Egelhaaf and Poon [33, 55].
These authors find that the B∗

2(T ) of lysozyme is practically independent of the
salt concentration for values larger than cs = 0.25 mol/l, with a plateau value of
B∗

2 = (−2.7 ± 0.2). Hence, as an additional constraint, we demand that B∗
2(Tc)

is equal to

B∗
2(Tc) = −2.7 . (2.25)

This requirement is reasonable, since B∗
2 is the second term in the density expan-

sion of the Helmholtz free energy density, f(T, η) = f id
0 (η) + 4B∗

2(T )η2 + O(η3),
so that any viable model should at least reproduce this value correctly.

Gibaud [79] has experimentally determined the reduced second virial coefficient
of hen egg lysozyme as a function of T (see Fig. 2.4(b)). These data for B∗

2(T ) are
fitted (see the caption of Fig. 2.4 for details) to the form B∗

2(T ) = 1+A/T−B/T 2,
and the so-determined second-order polynomial forms for B∗

2(T ) are used to
rescale the experimental phase diagram In the upper chart of Fig. 2.4(a), the
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Figure 2.5: Reduced experimental phase diagram of aqueous lysozyme solutions at
cb = 0.02 mol/l HEPES buffer with pH = 7.8 by Gibaud [79]. The data are consistent
with earlier measurements summarised by Warren [33], where a value of B∗

2 (Tc, ηc) =
(−2.7 ± 0.2) is observed practically independent of cs. The circles (◦) describe the
experimental gas-liquid coexistence curve for various salt content: cs = 0.5 mol/l
(◦) [49], cs = 0.4 mol/l (�), cs = 0.3 mol/l (�), and cs = 0.2 mol/l (�). The squares
(�) indicate the experimental spinodal [49]. In (a), the temperature has been replaced
by the corresponding reduced second virial coefficient, B∗

2 (T, η, cs), obtained from the
parametrisation explained in Fig. 2.4. The inset (b) displays the binodal and spinodal
for various cs values in the T - η plane.

experimentally observed critical temperatures are indicated as vertical lines for
various salt concentrations. The intercepts of these lines with the curves for
B∗

2(T ) in Fig. 2.4 give the reduced second virial coefficient B∗
2(Tc) at the salt-

concentration dependent critical point. As can be seen, there is a narrow band
of B∗

2(Tc) values for which the fluid phase becomes unstable and separates into
a gas and a liquid-like phase, supporting Eq. (2.25), and in accordance with the
extended principle of corresponding states discussed by Noro and Frenkel [48].
Foffi and Sciortino [80] have recently shown, using computer simulations, that the
principle of corresponding states holds also for non-spherical symmetrical pair in-
teraction potentials. Rosenbaum and Zukoski [18] have demonstrated that the
solubility curves collapse onto a single master curve when plotted in the B∗

2 - η
plane, or, likewise, in the τ -η plane, where τ is the stickiness parameter in the
adhesive hard-sphere model considered by them. Fig. 2.5 shows additionally, on
the basis of the data set by Gibaud [79], that the experimentally determined gas-
liquid coexistence curves of lysozyme suspensions for various salt concentrations
collapse onto a single curve when plotted in the B∗

2 - η plane. Such a scaling
behaviour of the gas-liquid coexistence curves is expected for systems interact-
ing with short-ranged attractions, because the term containing B∗

2 describes the
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2 A patchy model for the phase behaviour of lysozyme dispersions

cs Tc zrep εrep/(kBTc) zattr εattr/(kBTc) δ χ
[mol/l] [K] [◦]

0.5 291.3 8.43 0.51 3.02 3.06 73.0 0.707
0.4 286.2 7.63 0.60 3.08 3.15 73.5 0.716
0.3 279.8 6.76 0.73 3.15 3.27 74.0 0.725
0.2 270.3 5.76 0.94 3.18 3.50 74.3 0.729

Table 2.1: System and pair potential parameters used in the thermodynamic per-
turbation calculation of the metastable gas-liquid binodal/spinodal, and the stable
fluid-solid coexistence curve (for salt concentrations cs as indicated). The attractive
potential part parameters zattr and βεattr are determined by Eqs. (2.24) and (2.25),
respectively, using Z = 8 independent of η and cs. For given cs, the parameters zattr,
βεattr and δ (with a fixed value n = 2) are determined from the experimental values
for ηc(cs), Tc(cs) and B∗

2 = −2.7, with ψ fixed to 5.

mayor non-hard-sphere-like contribution to the Helmholtz free energy as we have
noticed before. Therefore, B∗

2 can be only a crude measure of the actual form of
the pair interaction potential, and, as a consequence, is quite insensitive to small
changes in the interaction parameters. A case in point will be the gas-liquid
coexistence curves discussed in the following (see, especially, Fig. 2.7).

The so far unknown parameters, zattr , εattr , and δ, characterising the attractive
pair interaction part can now be obtained numerically from solving the set of
nonlinear algebraic Eqs. (2.24) and (2.25). The additional free parameter ψ in
Eq. (2.8) mainly determines the width of the coexistence curve. Its value will
be adjusted when we compare the calculated and experimental binodals and
spinodals (see below).

At this point we emphasise, that the second-order perturbation term in Eq. (2.14)
is a necessary contribution which allows to fix χ independently of εattr. Carrying
out the angular average results in a factor of χ2. When the first-order pertur-
bation term is considered alone, χ2 and εattr appear only as a product. Thus,
one can not choose χ (or, respectively, δ at fixed n) and εattr independently when
the first-order perturbation contribution to the free energy of the reference hard-
sphere system in Eq. (2.12) is considered only.

In the present second-order perturbation theory, density fluctuation effects are
ignored, which in general lower the critical temperature. However, the fluctua-
tions become less important with increasing range of the pair interactions [81],
since the number of particles contributing to the force experienced by a central
one increases with increasing range of attraction, so that the mean-field picture
becomes more accurate (see, e.g., Fig. 1 in [82]). Thus, we can expect that the
fluctuation-induced shift of the critical point is rather small in lysozyme solutions,
as argued also earlier by Sear and Gelbart [42].

The parameters determined by the evaluation strategy described above are
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Figure 2.6: Repulsive electrostatic pair potential part, urep/(kBTc) (blue curve),
angular-averaged attractive interaction part, 〈uattr/(kBTc)〉Ω1,Ω2

(red curve), and to-
tal perturbational pair potential, 〈up/(kBTc)〉Ω1,Ω2

(black curve), for parameters at
the critical point where cs = 0.5 mol/l, using ηc = 0.17, Tc = 291.3 K. The parameters
used in the perturbational interactions for the attractive and repulsive Yukawa-type
potential parts are listed in Table 2.1. At larger r, 〈up/(kBTc)〉Ω1,Ω2

is dominated by
the attractive interaction part.

summarised in Table 2.1. Note that the range of the screened Coulomb repulsion,
1/zrep, and its strength, βεrep, show the expected increase with decreasing salt
concentration. The temperature dependency of the Bjerrum length, through
ε(T ), has been accounted for. However, in the considered temperature range, lB
is only mildly dependent on T .

Due to the stronger electrostatic repulsion between the proteins on lowering
the salt concentration, Tc decreases with decreasing salt concentration. Fig. 2.6
shows the repulsive potential part, urep(r), the angular-averaged attractive poten-
tial part, 〈uattr(r)〉Ω1,Ω2 , and the angular-averaged total perturbation potential,
〈up(r, Ω1, Ω2)〉Ω1,Ω2 , obtained at the critical concentration for cs = 0.5 mol/l. Note
that the contact value, εattr/(kBTc), of the non-angular-averaged attractive pair
potential at Tc given in Table I, is well above 3 kBTc. In contrast, Figs. 2.6
and 2.7 show the angular-averaged attractive interaction part, with contact value
〈uattr(σ)/(kBTc)〉Ω1,Ω2

= χ2εattr/(kBTc). Thus, the angular-averaged contact value
of the attractive part is smaller than 3 kBTc (see Figs. 2.6 and 2.7).

The range, 1/zattr, and depth, βεattr, of the attractive Yukawa potential ex-
ceed the range, 1/zrep, and strength, βεrep, respectively, of the repulsive part, so
that the averaged perturbation pair potential is purely attractive. Actually, this
finding holds true for all salt concentrations considered, as can be noticed from
Fig. 2.7. Due to the weaker screening of the protein surface charge at lower salt
content, cs, the attraction range of the total potential decreases with decreasing
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Figure 2.7: Angular-averaged total perturbation potential, up = u−u0, (see Eq. (2.1))
for various salt concentrations as indicated. With decreasing cs, the contact value of
〈up/(kBTc)〉Ω1,Ω2

decreases due to the enlarged range of the electrostatic repulsion
part.

amount of salt. However, in contrast to the drastic change of the repulsive in-
teraction part with cs, the parameters of the attractive potential part vary only
slightly with the salinity. The range of attraction, 1/zattr, shrinks by 6% only
when cs is reduced from 0.5 to 0.2 mol/l, whereas the attraction strength, βεattr,
increases by 14%. According to our calculations, the opening angle δ, and thus
the surface coverage χ, increase only slightly with decreasing salinity. These
changes in χ and δ are negligible as compared to the strong influence of the salin-
ity on the electrostatic screening length. Therefore, we can conclude that in our
model the range and strength of the radially averaged attractive potential part
is approximately constant within the salt range considered.

We have carefully checked the sensitivity of the calculations to small changes
in the employed parameters. Changing B∗

2 from −2.7 to −2.5 or, likewise, to
−2.9, and keeping all other parameters unchanged, leads to changes in zattr and
βεattr by less than 5%, whereas the surface coverage factor is affected by 2% only.
Varying the bare protein charge number Z = 8 by ±2, keeping again all other
parameters fixed, changes both zattr and βεattr by less than 6%, and χ by less
than 3%. As expected, our calculations are more sensitive to variations in the
critical volume fraction: Assuming an uncertainty of 10% in the experimental ηc,
say ηc = (0.17 ± 0.02), zattr changes by up to 29%, whereas βεattr is changed by
6%, and χ by 3%. An uncertainty in the protein diameter of ±0.2 nm [16] causes
deviations in zattr and βεattr by less than 4 %, and in χ by less than 2 %.

We note that an alternative strategy to extract the interaction parameters
from the experimentally observed phase diagrams is described in appendix B.
In this alternative strategy we fix the distance between the solubility curve and
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Figure 2.8: The phase diagram of aqueous lysozyme solutions for cb = 0.02 mol/l
HEPES buffer, and pH = 7.8, cs = 0.5 mol/l NaCl. The circles (◦) describe the
experimentally found metastable gas-liquid coexistence curve [49], the squares (�)
indicate the spinodal [49], and the black triangles (�) depict the experimental fluid-
crystal coexistence curve [79]. The two dashed curves show the calculated binodal
and spinodal, respectively, for ψ = 0. The two solid curves describe the calculated
binodal and spinodal, respectively, where the two curves account for an additional
temperature dependence of the attractive potential depth with ψ = 5 (see Eq. (2.8)).
The dashed-dotted curves are the calculated fluid-crystal coexistence curves for ψ = 5,
with the interaction parameters determined from the experimental data at the critical
point as explained in the text. In region I, a stable fluid phase is observed, whereas
one finds a fluid-crystal coexistence in region II, a metastable gas-liquid coexistence
in region III, and a pure crystalline phase in region IV.

the binodal at Tc. Through this we can directly obtain ψ without adjusting this
parameter by hand as described above. However, the so-obtained interaction
parameters, in particular ψ, differ only slightly from the former and result in a
similarly good agreement with the experimentally observed phase diagram.

2.5 Calculated phase diagrams

In Fig. 2.8, the phase diagram is shown for the largest salt concentration consid-
ered of cs = 0.5 mol/l. As can be seen from this figure, the predicted gas-liquid
coexistence curves are too narrow when ψ = 0 is used (dashed curves). To cor-
rect for this, we have introduced the temperature-dependent coupling parameter,
ε̃attr, in Eq. (2.8), which includes the parameter ψ. Positive values of ψ widen
the unstable region in the calculated phase diagram, because of the increase in
the strength of attraction. From calculating the binodals (solid curves) for a
variety of ψ values, and comparing them with the experimental data points at
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Figure 2.9: Reduced free energy of the fluid and solid phase as a function of the
volume fraction in a lysozyme dispersion with cs = 0.5 mol/l for T = 300 K. The
fluid branch is indicated by a blue and the solid branch by a green curve. The fluid-
crystal coexistence points are marked by crossed and are connected by a red solid
line according to the common tangent construction. The arrow emphasis the van der
Waals loop of the reduced free energy in the solid branch. This indicates the existence
of an isostructural solid-solid phase coexistence predicted in our model (see text for
further remarks).

cs = 0.5 mol/l, we find good agreement, using a value ψ = 5, for all volume
fractions smaller than twenty percent. At larger volume fractions, the calculated
binodals deviate somewhat from the experimental ones. We note, however, that
changing ψ by not more than 40% does not crucially affect the overall good
agreement between experimental and calculated binodals and spinodals.

The range, 1/zattr, and the strength, βεattr, of the attractive potential part,
obtained for one specific salt concentration (cs = 0.5 mol/l) at the critical point,
have been fixed in calculating the coexistence curves also for the other values of cs

considered. The binodal and the fluid-crystal coexistence curves have been calcu-
lated according to the double tangent construction, using Eqs. (2.18) and (2.19).
The spinodal curve follows from the condition that the isothermal compressibility
diverges (see Eq. (2.23)).

In Fig. 2.9, the reduced free energy is plotted for T = 300 K, where a symmetry-
breaking fluid-solid phase transition takes place. The volume fractions of the
coexisting fluid and crystal phase is found according to the common tangent
construction (solid red line) which minimises the reduced free energy at con-
stant pressure and chemical potential. Interestingly enough, the crystal branch
of the free energy shows a van der Waals loop indicating a isostructural solid-solid
phase transition predicted by our model (see arrow in Fig. 2.9). Because such an
isostructural solid-solid phase transition has not been reported in experiments,
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Figure 2.10: Gas-liquid coexistence curves of a lysozyme solution obtained experi-
mentally by Cardinaux et al. [49] and Gibaud [79] from temperature quenches at four
different salt concentrations : cs = 0.5 mol/l (◦), 0.4 mol/l (�), 0.3 mol/l (�), and
0.2 mol/l (�). The filled symbols mark the critical points estimated from the experi-
ment. The solid curves describe the coexistence curves as calculated from our model
using a fixed value ψ = 5.

and due to the simplified description of the crystal free energy in our model, we
have refrained from including this solid-solid phase coexistence curve into our
discussion of the phase behaviour of lysozyme dispersions. Note however, that
a similar isostructural solid-solid phase transition has been predicted in earlier
simulations by Frenkel on attractive spherical colloids [83].

In Fig. 2.10, finally, the calculated gas-liquid coexistence curves are shown
for four different salt concentrations in comparison with the experimental data
points. We could have adjusted the parameter ψ for each cs separately. However,
we find that fixing it to ψ = 5 results in binodals that describe the experimental
ones quite well for all salinities. For each cs considered, the binodal curve is
described reasonably well for low volume fractions, whereas, as discussed before,
our model underestimates the transition temperature systematically at higher
protein concentrations. This might be due to a salt partitioning over the two
phases which is not accounted for in our model calculations [16, 33].

2.6 Isothermal compressibility

The isothermal compressibility, χT/χid
T = S(q → 0), 1/χid

T = kBTη/v0, has been
extracted from scattering experiments at various lysozyme volume fractions for
T = 20oC and T = 30oC, respectively (see Fig. 6.3(a) in [79]). These systems

25



2 A patchy model for the phase behaviour of lysozyme dispersions

 0.1

 1

 10

 0  0.1  0.2  0.3  0.4

S
(q

→
0)

η
Figure 2.11: Isothermal osmotic compressibility, χT/χid

T = S(q → 0), calculated using
the second-order perturbation free energy density in the fluid phase for cs = 0.5 mol/l,
cb = 0.02 mol/l, and pH = 7.8. The dash-dotted curve is obtained for T = 20oC and
ψ = 5, and the dashed curve for T = 30oC and ψ = 5. The error bars correspond
to an uncertainty in ψ of Δψ = ±2. The solid curve, corresponding to T = 20oC,
and the dotted curve, corresponding to T = 30oC, are obtained using ψ = 1. The
squares (�) mark the experimental data at T = 20oC and the circles (◦) indicate the
experimental data at T = 20oC [79] (see the text for additional discussion).

are all located within the fluid-solid coexistence region above the critical point.
The measurements have been made before the phase separation has been estab-
lished, so that in fact they characterise non-equilibrium states. It is interesting
to compare the scattering data with the equilibrium isothermal compressibil-
ity as estimated from our perturbative free energy calculations using the fluid
branch of the Helmholtz free energy density. In equilibrium, and for a homoge-
neous one-phase system, the isothermal osmotic compressibility is related to the
second-order density derivative of the free energy density according to

χT

χid
T

=
1

η

(
∂2f(T, η)

∂η2

)−1

= S(q → 0). (2.26)

Fig. 2.11 shows the isothermal compressibility obtained from our patchy model
calculations. Therein, we also display the error bars in S(q → 0) resulting from an
uncertainty of ±2 in the factor ψ, as discussed earlier in section 2.5. As can been
seen, the calculated values for χT/χid

T underestimate the experimental S(q → 0).
However, as discussed before, the width of the binodal and the distance between
the fluid-solid coexistence curve and the binodal at Tc depend sensitively on the
parameter ψ quantifying the T -dependence of the contact value of ũattr(r). Thus,
if we determine ψ to match the experimental data for S(q → 0), then the best
agreement is found for ψ = 1 for both temperatures considered. Albeit there is
no quantitative agreement with the neutron scattering data for ψ = 5, the non-
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monotonic density dependence of S(0), and the location of the maximum, are well
reproduced. Recall here again that the measurements of S(0) have been made
at state points where the solution is in the process to undergo a fluid-solid phase
separation. Hence, one should be cautious when comparing these experimental
data for a non-equilibrium situation with our perturbation results expression for
the homogeneous fluid branch of the free energy.

2.7 Discussion

The virtue of our patchy model potential as compared to using a square-well po-
tential alone [26,27,29], is that we account explicitly for the screened electrostatic
repulsion. Through this model extension, we can distinguish the influence of the
excess salt concentration from the attractive potential part that to date is not
well-understood in its details. For the attractive part, in turn, we have adopted
a simplifying patchy model that is of Yukawa-type in its radial factor. We have
determined the interaction parameters characterising uattr from the experimental
data for the values of Tc, ηc, and B∗

2(Tc) of lysozyme at the critical point. Us-
ing these experimental data at the critical point, we find an attractive range of
0.33 σ at cs = 0.5 mol/l, and 0.31 σ at cs = 0.2 mol/l. These ranges of attraction
are consistent with corresponding findings by several authors as summarised by
Lomakin et al. (see their Fig. 5 in [27]). In fact, such an intermediately extended
range of attraction is very remarkable, since for a purely isotropic attractive pair
potential of Yukawa-type one would expect a stable gas-liquid coexistence region
for attractive range exceeding 0.17 σ (or, correspondingly, for zattr < 6) [73, 84].
In the present case of an attractive and repulsive pair interaction potential of
Yukawa-type, the fluid phase is stabilised against gas-liquid phase separation
by the charge-induced electrostatic repulsion, which shifts the gas-liquid critical
point below the solubility curve, and thus, give rise to a metastable binodal.
We note that the range of attraction of (1.0 ± 0.1) nm (∼ 0.3 σ), experimentally
found by Israelachvili and Pashley [85] from measuring the force between two
hydrophobic plates, is in excellent accord with our findings.

In a number of previous studies, the isotropic and rather short-range DLVO
pair potential has been used to fit the experimental scattering data on lysozyme
[13,15,54]. To make contact with this earlier work, consider now a purely isotropic
pair interaction by setting χ = 1 in our model. In the isotropic case, we obtain
1/zattr = 0.36, using the same method to determine the attractive part as in
the non-isotropic case. This attraction range, in fact, is nearly identical to the
one observed for the anisotropic case, since the critical volume fraction depends
only weakly on the patchiness [28]. On the other hand, the potential depth for
χ = 1 is given by βεattr = 1.39, corresponding to B∗

2(Tc) = −1.26. This value
for B∗

2(Tc) obtained from assuming isotropic attractions, disagrees strongly with
the experimentally observed value B∗

2(Tc) = −2.7. In contrast, our patchy model
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Figure 2.12: Phase diagram of lysozyme for cs = 0.5 mol/l NaCl, cb = 0.02 mol/l
HEPES buffer, and pH = 7.8. The symbols indicate the experimental data points
identical to the ones in Fig. 2.8 [49, 79]. The solid curves describe the equilibrium
phase diagram obtained from the anisotropic model. For comparison, the dashed
lines describe the gas-liquid and fluid-solid coexistence curves as obtained from a
purely isotropic pair potential. In both cases, ψ is set equal to 5.

for χ < 1 is capable to describe the experimental data, and it accounts for the
influence of added salt.

In Fig. 2.12, we compare the gas-liquid and fluid-solid coexistence curves, for an
isotropic interaction potential where χ = 1, with the results from our anisotropic
model from Fig. 2.8. As can be seen, the fluid-solid coexistence curve is shifted
only slightly to lower temperatures when an isotropic pair interaction potential
is assumed. Hence, isotropic attractive pair interactions for the protein solution
result in a solubility curve located further below the experimental data, for inter-
action parameters determined again at the experimental critical point. Even in
the isotropic case, the gas-liquid coexistence curve remains metastable relative to
the fluid-solid coexistence curve, which might be due to the effect of the competing
repulsive and attractive interactions. Such a weak influence of the patchiness on
the location of the coexistence curves is expected in our model calculations since
only the orientationally-averaged pair potential enters into the free energy expres-
sion. In fact, the angular-averaged contact value 〈βεattr〉Ω1,Ω2

= χ2βεattr = 1.53
(see Table 2.1), obtained using an anisotropic pair interaction potential, differs
only mildly from the contact value, βεattr = 1.39, for the isotropic pair potential.
However, the fact that the calculated B∗

2 for an isotropic interaction potential dis-
agrees by a factor of two with the experimentally observed virial coefficient, and
the observation that the fluid-solid curve is located further below the experimen-
tal data than the one for anisotropic interactions implies that the experimental
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data can be consistently described only for an anisotropic pair interaction. Fur-
thermore, our phase boundary calculations for isotropic versus anisotropic inter-
actions highlights why in earlier calculations on the phase behaviour of lysozyme,
based on assuming a short-ranged isotropic pair potential, qualitative agreement
with the experimental data has been achieved. In fact, aside from the totally
wrong prediction for B∗

2(Tc), an isotropic attractive pair potential can result in a
reasonably good qualitative agreement with the experimental phase coexistence
curves.

Carpineti et al. [46] discuss the need to account for hydrophobic patches in
order to explain the temperature dependence of the solubility curve. Our model
calculations conform to their findings, since the experimental data are recovered
with the correct B∗

2 only for χ = 1. Curtis et al. [47] have argued that 51 %
of the lysozyme surface area is hydrophobic, a value not too different from the
surface coverage factor found in our work (we obtained χ = 71−73 %). This
discrepancy between the experimentally estimated χ-value and the one observed
from our model might be explained by microion correlation effect which have not
been accounted for within the one-component macroion fluid model used in our
calculations. As shown by Allahyrov et al. [44], correlation effects between the
microionic co- and counterions due to their finite sizes reduce the strength of the
repulsive macroion-macroion pair interactions potential significantly already at
salt concentrations above cs = 0.1 mol/l. This is due to the fact that the size of the
microions in aqueous solution (∼ 0.2 nm) is not small compared to the macroion
size (∼ 3.6 nm). Thus, we presumably overestimate somewhat the strength of
the screened electrostatic repulsions by neglecting such correlation effects, and,
as a consequence, we overestimate the strength of attraction, i.e. χ, within
our simple model. Curtis et al. [47] conclude further from their experimental
data that the non-polar (hydrophobic) area on the protein surface shrinks by the
addition of sodium chloride (see Table 2.1), in agreement with our findings. Our
phenomenological description of the hydrophobic interactions between adjoined
patches using a Yukawa-like attractive interaction potential part indicates that
these interactions are only slightly affected by the salt concentration. All the
experimental binodals for cs = 0.2, 0.3, 0.4 and 0.5 mol/l can be well described
using a fixed value of ψ = 5 (see Fig. 2.10). Only the prefactor, εattr, and χ
decrease slightly with increasing cs (see Table 2.1). Thus, the main effect of salt
is to screen the lysozyme net charges.

To arrive at a deeper physical understanding of the strong temperature depen-
dence of the attractive interaction part, as indicated in lysozyme solutions by a
non-zero value of ψ = 5 ± 2 (see section 2.5), is a demanding task, since little is
known so far about the underlying molecular mechanism [86].

Some progress on the microscopic understanding of the attractive interactions
has been made only very recently by Horinek et al. [87]. Their main observa-
tion is that the force between two hydrophobic objects is caused by two contri-
butions of comparable strength; namely van der Waals attractions and water-
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2 A patchy model for the phase behaviour of lysozyme dispersions

structure effects. Because the van der Waals attractions are to a first approx-
imation temperature-independent, on neglecting the trivial temperature depen-
dence due to the Boltzmann weight of the Hamiltonian, we attribute the strong
temperature dependence in lysozyme solutions, indicated by a non-zero value of
ψ = 5 ± 2, mainly to the change in the water structure close to the hydrophobic
surface [88]. Lomakin and co-workers [27], who used an aeolotopic model to de-
scribe the phase behaviour of γ-crystallin protein solutions, have arrived earlier
at a similar conclusion by pointing to the strong temperature dependence of the
attractive interactions (see p. 1655 in Ref. 27). Furthermore, they found a com-
parable value of ψ = 3 for γ-crystallin protein dispersions. These authors propose
alternatively that the extended width of the gas-liquid coexistence might also be
due to the discrete and anisotropic character of the hydrophobic interactions.
Using computer simulations, Kern and Frenkel [28] showed that the gas-liquid
coexistence curves can broaden significantly for sufficiently short-ranged attrac-
tive pair potentials and low surface coverage. Within our simple model we cannot
distinguish whether the broadening of the gas-liquid coexistence curve is due to
a strong temperature dependence or to the patchiness.

Understanding protein crystallisation is a complex issue. The dashed-dotted
fluid-crystal coexistence curve in Fig. 2.6 deviates to some extent from the ex-
perimental data at higher volume fractions. However, aside from this, the cal-
culated phase diagram agrees qualitatively with the experimental one regarding
the metastability of the gas-liquid coexistence curve, and the extent of the gap
between the critical point and the fluid-solid coexistence curve. In addition, our
model predicts correctly a crystalline phase at remarkably low volume fraction
as often observed in protein solutions [89]. In recent work [26,90,91], it has been
demonstrated that the specific geometry, i.e., the number of patches, their size
and their distribution across the surface, significantly affects the ability to form
crystals, the nucleation kinetics and the crystalline order. In particular, crys-
tallisation is expected to be hindered whenever the preferred local order in the
liquid state is incompatible to the crystalline space symmetry. One speaks then
of a ”frustrated” liquid state [91]. In this case, the pair potential is no longer
angularly averageable to describe the solid state [26]. Furthermore, McManus et
al. [92] have shown for human γD-crystallin proteins, that angular-averaging is a
feasible simplification to describe the fluid phase in its dependence on the number
of spots on the protein surface, whereas the discrete patchiness influences cru-
cially the solubility curve. One can speculate that this applies also to lysozyme
dispersions.
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2.8 Conclusions

Using thermodynamic perturbation theory, we have studied the phase behaviour
of lysozyme dispersions on the basis of a pair potential consisting of a repulsive
DLVO-type screened Coulomb part plus a patchy attractive part.

The strength and the range of the attractive radial potential factor of Yukawa-
type, and the surface coverage of patches, have been determined using the exper-
imentally known values for the concentration, temperature and reduced second
virial coefficient of lysozyme at the metastable gas-liquid critical point. With
the so-determined patchy pair potential, we have calculated the metastable gas-
liquid coexistence and the spinodal curves of lysozyme solutions, and the fluid-
solid coexistence curve, using the compressibility approximation of second-order
thermodynamic perturbation theory. The shape of the computed phase diagram
conforms overall quite well with the experimental data, in particular regarding
the salt dependence of the coexistence curve, and the width of the gap in between
the binodal and the fluid-solid coexistence curves. The percentage of surface cov-
erage of patches (∼ 70%) obtained in our model, and the interaction range of
about 30% of the diameter, and the temperature-dependence of the attractive
interaction part, as well as the salt-dependence of the interaction strength, are
consistent with previous findings. This consistency is encouraging and supports
the applicability of our simple model to describe lysozyme solutions. To obtain
the solubility curve more accurately, however, might require to account for the
patch geometry explicitly, without invoking an orientational pre-averaging.

A One-component macroion-fluid potential

Belloni [51] provides an analytic expression for the effective pair potential in
Eq. (2.3), using the mean-spherical approximation (MSA) for the direct corre-
lation functions and on assuming point-like microions. Within this level of ap-
proximation, the DLVO potential part is corrected by a factor X depending on
the reduced inverse screening length κσ/2 and the macroion volume fraction η,
according to

X = cosh (κσ/2) + U [κσ/2 cosh (κσ/2) − sinh (κσ/2)] , (A.1)

where

U =
z

(κσ/2)3
− γ

κσ/2
, (A.2)

and

γ =
Γσ/2 + z

1 + Γσ/2 + z
, (A.3)
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with z = 3η/(1−η). The positive valued MSA screening parameter, Γ, is uniquely
obtained from solving the following quartic relation:

Γ2 = κ2 +
q2
0

(1 + Γσ/2 + z)2
, (A.4)

where q0 =
√

4πlBρ Z. In the infinite dilute limit, ρ → 0, Γ reduces to the inverse
Debye screening length κ. For an extension of Belloni’s expression to differently
sized and charged colloidal spheres, see [93].

Because of the presence of the surrounding macroions in a concentrated col-
loidal dispersion, the screening ability of the microions is reduced. Therefore,
the electrostatic repulsion between two macroions increases as compared to the
DLVO limit and, thus, X > X0. Due to the fact that non-zero colloid con-
centrations lead within the MSA only to a correction of the DLVO potential
prefactor, X0, one can define an effective number of charges, Zeff , according to
Zeff/Z = X/X0 [51]. As shown in Fig. A1(c), Zeff/Z increases rapidly with in-
creasing η and decreasing salt concentration. According to Fig. A1 (a) and (b),
the contact value of the macroion-macroion radial distribution, g00(σ

+), and the
macroion-microion radial distribution function, g0i(σ

+), as a function of η for
cs = 0.2 mol/l, 0.3 mol/l, 0.4 mol/l and 0.5 mol/l. The contact value of the radial
distribution functions increases with increasing volume fraction, and decreases
with decreasing salt concentration. As can be seen, the contact values are non-
negative for all η-values considered indicating the applicability of the linear MSA
schema. We note that non-linear screening effects are not included in the linear
MSA treatment. Non-linear screening caused by the quasi-condensation of coun-
terions close to the surface of strongly charged colloids and biomolecules give rise
to an effective charge that is, in general, smaller than the bare one (see, e.g., [69]).

B Phase diagram using the distance between the
fluid-solid coexistence curve and binodal as an
input

Instead of adjusting the parameter ψ to match the calculated binodal to the
experimental one, we can determine ψ alternatively by matching, at temperature
Tc, the vertical distance between the experimental and theoretical fluid-solid and
gas-liquid coexistence curves. This alternative procedure proceeds as follows:
there are in total five unknown parameters in our model, namely, the range of
attraction, zattr, the contact value, εattr, the parameter ψ describing the strength
of the temperature dependence at contact, the opening angle δ of a patch, and the
volume fraction, ηs, of the crystalline phase. In contrast to the first method used
earlier, where ψ has been adjusted once zattr, εattr and δ have been determined at
the critical point, all five parameters are adjusted now simultaneously using the
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Figure A1: Macroion-macroion radial distribution function contact values, g00(σ+)
(chart (a)), and macro-ion-microion contact values, g0i(σ+) (chart (b)), as a function
of the volume fraction, η, as predicted by the linear MSA closure scheme. In chart
(c), the ratio between the effective macroion charge number,Zeff , and the number of
bare charges, Z, is plotted in dependence of η.

values at the experimental critical point (Tc,ηc), and by selecting two state points
from the experimental fluid-solid coexistence region for a fixed temperature. The
critical point is known from the experiments, and we use it as one constraint to
partially adjust the five unknown interaction parameters in our patchy model. To
obtain additional constraints, we focus now on the fluid-solid coexistence curve
and select a temperature, Tfs, where the fluid of volume fraction ηf is coexisting
with a crystalline phase of volume fraction ηs. The fluid branch of the fluid-solid
coexistence curve is known experimentally, so that Tfs and ηf are given. The
volume fraction, ηs, of the coexisting solid is used as a free parameter, so that no
experimental data on the solid branch are invoked. Like in the first method used
to determine the interaction parameters, the additional constraint B∗

2(Tc) = −2.7
is employed.

In total, this gives a complete set of conditions determining the five unknowns.
The fluid-solid phase coexistence implies the constraint of equal pressures and
chemical potentials, i.e.,
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2 A patchy model for the phase behaviour of lysozyme dispersions

μ(Tfs, ηf ; zattr, εattr, δ, ψ) = μ(Tfs, ηs; zattr, εattr, δ, ψ) , (B.5)

Π(Tfs, ηf ; zattr, εattr, δ, ψ) = Π(Tfs, ηs; zattr, εattr, δ, ψ) , (B.6)

and the critical point is characterised by the two additional constraints, namely

∂2f(Tc, ηc; zattr, εattr, δ, ψ)

∂2η
= 0 , (B.7)

and

∂3f(Tc, ηc; zattr, εattr, δ, ψ)

∂3η
= 0 . (B.8)

Taken together with the condition

B∗
2(Tc; ηc, zattr, εattr, δ, ψ) = −2.7 , (B.9)

these are five equations for five unknowns. The numerical solution for these
equations is

ηs = 0.44 , zattr = 3.02 , εattr = 3.06 kBTc , (B.10)

δ = 73.0 , χ = 0.707 , and ψ = 4.36,

for the selected state point (Tfs = 324.1 K, ηf = 0.16) on the fluid branch of
the fluid-solid coexistence curve. As seen, the parameters zattr, εattr, δ, and χ
are practically unchanged compared to the previous findings, but ψ is changed
slightly from 5 to 4.36. In Fig. B2, the resulting phase diagram (dashed curves)
obtained by the present second procedure is compared with the result from the
first one used in section 2.4 (solid curves), which was obtained from fixing the
calculated binodal to the critical point values of the fluid branch only.

In comparison to the experimental binodal, the calculated gas-liquid coexis-
tence curve obtained for ψ = 4.36 is slightly more narrow. Furthermore, the
calculated solubility curve is still too steep relative to the experimental data.
However, the overall agreement between the calculated solubility curve and the
experimental data improves significantly by fixing the distance between the solu-
bility curve and the binodal. Yet, fixing the distance between the two coexistence
curves is conceptually less satisfying since it requires information both about the
location of the experimental binodal and the solubility curve. The discussion
given above suggests that our model is especially accurate for the fluid phase,
where the protein molecules re-orient themselves so that an orientational average
over the anisotropic shape and the anisotropic pair interactions is more justi-
fied. Thus, predicting the solubility curve using experimental information on the
fluid phase only is certainly more adequate. Recall again that the crystalline
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Figure B2: Comparison between theoretically calculated phase diagrams, with cs =
0.5 mol/l, and the experimental data by Gibaud [79] and Cardinaux et al. [49]. The
symbols indicating the experimental data points are identical to those in Figs. 2.8 and
2.10. The experimental data points marked by an triangle (�) describe the binodal for
cs = 0.4 mol/l. The solid lines are the theoretical gas-liquid and fluid-solid coexistence
curves shown already in Fig. 2.8, and obtained using the experimental data for the
critical point only. The dashed coexistence curves have been obtained, in contrast,
from matching the experimental gap between between an experimental point on the
solubility curve and the critical point (see the text for further details).

phase is described in our perturbative approach by a fcc crystal structure even
though experiments have shown that lysozyme crystallises depending on the tem-
perature into an tetragonal or orthorhombic lattice structure [94,95]. Therefore,
determining the attractive interaction parameters from the binodal critical point
alone avoids to refer additionally to this crude crystal description.
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3 Phase behaviour of a dispersion
of charge-stabilised colloidal
spheres with added non-adsorbing
interacting polymer chains

We present a theory for the phase behaviour of mixtures of charge-
stabilised colloidal spheres plus interacting polymer chains in good and
θ-solvents. The phase diagram is calculated using the free-volume the-
ory. We use simple but accurate combination rules for the depletion
thickness around a colloidal particle and for the osmotic pressure up
to the semi-dilute concentration regime. In this way, we obtain ex-
pressions for the free energy for mixtures of charged colloidal parti-
cles and non-adsorbing interacting polymers. From these expression
we calculate the phase behaviour, and discuss its topology in depen-
dence on the competition between the charge-induced repulsion and
the polymer-induced attraction. The homogeneous mixture of colloids
and polymers becomes more stabilised against demixing when he elec-
trostatic repulsion is increased. This charge-induced stabilisation is
strongest for small polymer-to-colloid size ratios, and it is more pro-
nounced for charged colloids mixed with polymers in a good solvent
than for polymers in a θ-solvent. For the weakly charged regime, we
find that the phase diagram becomes salt concentration-independent in
the protein regime for charged colloids plus polymers in a θ-solvent.
The liquid window, i.e., the concentration ranges where a colloidal liq-
uid exists, is narrowed down upon increasing the charge-induced repul-
sion. In addition this effect is more pronounced when charged colloids
are mixed with polymer chains in a good solvent. In summary, we
demonstrate that the solvent quality significantly influences the phase
behaviour of mixtures of charged colloids plus non-adsorbing polymers
when the range of the screened electrostatic repulsion becomes of the
order of the range of the depletion-induced attraction.
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3 Phase behaviour of colloidal dispersions with added polymer chains

3.1 Introduction

Adding non-adsorbing polymers to a dispersion of colloidal particles induces at-
tractive forces between them [6, 96, 97]. These attractive interactions are due
to the loss of conformational entropy if a polymer approaches a particle sur-
face, leading to a polymer depleted zone around the particle. Overlapping of
two depletion zones induces an inhomogeneous pressure distribution caused by
the dissolved polymers around the two neighbouring particles, and, thus, leads
to an attractive force between them. This depletion interaction has first been
described by Asakura and Oosawa [98, 99] (AO), and was later rediscovered by
Vrij [100]. In Vrij’s model for mixtures of polymers and colloids, the polymers
are freely inter-penetrable (mimicking ideal chains), while there is a hard-sphere
repulsion between the colloids and the polymers. This situation corresponds to
hard spheres dispersed in a dilute polymer solution.

First success in describing the experimentally observed phase behaviour of
colloid-polymer mixtures semi-quantitatively has been made by Gast et al. [77] us-
ing thermodynamic perturbation theory (TPT). Gas-liquid and fluid-solid phase
transitions have been predicted by TPT in accordance with experimental re-
sults. Gast et al. [77] also showed analytically that the assumption of a pair-wise
additive interaction potential in TPT is exact for polymer-to-colloid size ratios
q = Rg/a ≤ 2/

√
3−1 ≈ 0.155 in case of freely inter-penetrable polymer ’spheres’

of radius Rg and the hard-spheres of radius a. For q > 0.1547, multiple overlap
of depletion zones can occur and many-body interactions have to be taken into
account. De Hek and Vrij [101] performed experiments on model hard-sphere-
like systems with added non-adsorbing polymer chains using silica particles and
polystyrene in cyclohexane. They observed separation into two coexisting fluid
phases. The coexistence between a stable fluid and solid was observed for instance
by Vincent et al. [102, 103].

The partitioning of the polymers over the coexisting colloid-poor and colloid-
rich phases has first been described by the free-volume theory (FVT) by Lekkerk-
erker et al. [104]. Here, the main step was to approximate the free-volume ac-
cessible to the freely-overlapping polymer coils by using scaled-particle theory
(SPT) [105,106]. Meijer and Frenkel [107] used a lattice model for the mixture of
hard spheres and polymers and Monte Carlo (MC) simulation techniques to in-
vestigate the accuracy of SPT and TPT. These theories use the AO model, where
the deformability of the polymer coil is not taken into account. The simulation
data show that polymer-induced many-body interactions have to be taken into
account for q > 0.2. The theory of Lekkerkerker et al. [104] performs overall very
well but leads to deviations around the gas-liquid critical point when compared
with computer simulation results [108]. Dijkstra et al. [76, 109–112] verified and
extended the statistical-mechanical derivation of the thermodynamic properties of
colloid-polymer mixtures by Meijer and Frenkel [107]. They observed good agree-
ment for equal sizes of the polymers and colloids in comparing their computer
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3.1 Introduction

Figure 3.1: Schematic drawing of two negatively charged colloidal particles with diam-
eter 2a in a solution with neutral polymers with a radius of gyration Rg. The depletion
zone with thickness δ is indicated by the dotted circles around the colloidal particles.
The micro-ions are depicted by little plus (+) and minus (−) signs. These micro-ions
build up the electrostatic double layer around the charged colloidal particles. Because
of the negatively charged macro-ions (colloids), the concentration of counter-ions (+)
increases whereas the number of co-ions (−) decreases upon approaching the colloidal
surface.

simulation data using the effective one-component AO model with FVT [112].
Moncho-Jorá et al. [113] investigated the AO model for q � 1 (protein limit),
where many-body interactions become important. Good agreement was found
between the binodals predicted by FVT and the computer simulation data.

Fuchs, Schweizer, and co-workers [114–118] used an off-lattice Polymer Refer-
ence Interaction Site Model (PRISM) integral equation method with a modified
Percus-Yevick closure to derive analytical expressions for the spinodal boundaries
of mixtures of ideal coils and hard spheres. Because calculating the binodal coex-
istence curves is numerically extremely demanding within PRISM, Zukoski and
co-workers [119–121] have restricted themselves to compare theoretically pre-
dicted spinodal decomposition curves with binodals in mixtures of effectively
hard-sphere-like silica particles and polystyrene polymer chains under θ- (de-
calin) and good (toluene) solvent conditions. Good agreement has been found
which encourages further investigations using this approach. Compared to the
free-volume approach yielding macroscopic thermodynamic quantities, the liquid-
state theory derived by Fuchs and Schweizer gives quantitative predictions for the
microscopic structure of colloid-polymer mixtures which can be verified by ap-
propriate scattering studies. It will be interesting, for instance, to investigate
Fuchs and Schweizer’s predictions on long-ranged polymer mediated attractive
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3 Phase behaviour of colloidal dispersions with added polymer chains

forces [118], which might be related to recent observations of critical phenomena
in colloid-polymer mixtures [122, 123].

The fundamental interest on the influence of the attractive polymer-induced
depletion forces on colloidal dispersions, focused especially on studying the global
phase behaviour in dependence on the range of attraction through the polymer-
to-colloid size ratio. Besides that there is also a need to include properties of
non-ideal polymer solutions plus non-hard-sphere colloids to describe industrial
colloid-polymer dispersions. Concerning the colloids, a practical situation is to
account for electrostatic charges on the colloidal particles that are screened by
surface-released counterions. Apart from applications like paints or processed
food [124, 125], one encounters such systems for example in biology, and, espe-
cially, in the cell, where 20 − 30% of the volume is occupied by soluble proteins
and other biomacromolecules [126]. Here, one expects that depletion interactions
play a major role in the self-organisation of biomacromolecules, e.g., the self-
assembling of DNA [127] or the bundling of f-actin fibres [128]. The aim is there-
fore to find reasonably simple but accurate expressions to calculate the phase
behaviour of charged spheres in a crowded (semi-dilute) (bio-)macromolecular
(polymer) environment. An additional need to describe such mixtures of charged
colloids and interacting polymers results from crystallography to determine the
atomic structure of proteins. Here, polymers are often added to protein solu-
tions at high salt concentration to accelerate crystallisation or to obtain regular
crystals [10]. Not many attempts have been made to describe such systems.

Another approach to include the influence of non-ideal polymers has been made
by approximating polymers as soft colloids [129–131], and quantitative agree-
ment with computer simulation data on the phase behaviour of colloids and
self-avoiding polymers has been found [132] on the level of the depletion inter-
action between two hard walls. A disadvantage of this approach is that it relies
on Monte Carlo simulations as an input to adjust polymer-polymer and colloid-
polymer interactions.

Schmidt and Fuchs [133] derived a penetrable Asakura-Ooasawa model (PAO)
using density functional theory. The model allows colloids to penetrate the poly-
mer spheres by introducing a repulsive step-function colloid-polymer pair po-
tential. The strength of the colloid-polymer repulsions is adjusted using known
expressions from renormalisation group-theory for the insertion energy of adding
colloids into a dilute polymer solution at θ- and good solvent conditions. Essen-
tially, the model reduces to the functional AO model with a polymer-to-colloid
size ratio-dependent colloid packing fraction neglecting polymer-polymer inter-
actions. The PAO model agrees well with results from the PRISM approach.

The influence of excluded-volume polymer chains on the phase behaviour of
colloidal spheres has first been incorporated within the free-volume theory by
Aarts et al. [134] using results from renormalisation group theory [135, 136] for
the correlation length in polymer solutions.

The phase equilibrium of charged colloidal particles with polymer-induced de-
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pletion interaction has been investigated by Tavares and Sandler [137] using TPT
and Gibbs ensemble Monte Carlo simulations. In this work the electrostatic re-
pulsion was modelled on a Debye-Hückel level and van der Waals interactions
were included as well. They observed that the additional van der Waals at-
traction widens the fluid-solid coexistence curves and destabilises the dispersion
against gas-liquid phase separation. On the other hand, the repulsive electro-
static forces tremendously stabilise the colloid-polymer mixture against phase
separation. Thus, the fluid-solid coexistence curve shifts to higher polymer con-
centrations upon increasing the screened electrostatic repulsions.

Later on, Ferreira et al. [138] have calculated spinodal decomposition curves us-
ing liquid-state theory for charged colloids and neutral polymers inter alia. They
also observed that the electrostatic repulsion between highly charges colloids [84]
significantly stabilises mixtures of charged colloids and non-adsorbing polymers
against gas-liquid phase separation (see Fig. 11 and the discussion on p. 9860
in [138]).

Denton and Schmidt [139] included electrostatic repulsive forces due to screened
charges into the free-volume theory. In their model, the electrostatic repulsions
were mapped onto effective hard-sphere interactions, and the additivity of the
mixture was restored by scaling the radius of gyration of the polymer. Fortini et
al. [140] proposed a similar way to include highly screened electrostatic Coulomb
interactions to the free-volume theory by mapping the repulsive interactions onto
effective hard-sphere ones. In their approach, the non-additivity of the mixture
was not restored by (down-)scaling the polymer size. Instead, the free-volume
fraction was reanalysed from SPT, and a semi-quantitatively accurate descrip-
tion was proposed, which describes their computer simulation data reasonably
well. In contrast, the model by Denton and Schmidt underestimates the osmotic
pressure of the polymer solution significantly. Thus, it follows that rescaling
the polymers and ensuring an additive mixture is inappropriate in describing
highly screened or, conversely, weakly charged colloidal dispersions containing
non-adsorbing polymers.

Fleer and Tuinier [141] extended the free-volume approach for colloid-polymer
mixtures up to and including the semi-dilute concentration regime for inter-
acting polymer solutions, using scaling arguments for the depletion thickness
and osmotic pressure. Their expressions for the depletion thickness and osmotic
pressure were tested against experimental and computer simulation data [142].
Quite recently, Tuinier et al. [143] have compared this approach to experimen-
tal data on the gas-liquid phase coexistence diagram of hard-sphere-like poly-
methylmethacrylate colloids with added flexible polystyrene chains dispersed
in cis-decalin and found excellent quantitative agreement. This improved free-
volume theory has been named generalised free-volume theory (GFVT). Based
on this adequate refinement, we feel encouraged to apply the GFVT to mixtures
of charged colloids and interacting polymer solutions.

In this work, we present a generalised free-volume theory which predicts the
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3 Phase behaviour of colloidal dispersions with added polymer chains

equilibrium phase behaviour of mixtures of polymers and charged colloidal spheres
in either a θ- or good solvent. We calculate the fluid-solid and gas-liquid coex-
istence curves for various size ratios of the polymers and the colloids, and for
various electrostatic screening lengths. Here, we restrict ourselves to the regime
of weakly charged or, equivalently, highly screened particles with thin double
layers, where the electrostatic pair interactions can be mapped accurately onto
an effective hard-sphere interaction. We also discuss the influence of the solvent
quality and the effect of the electrostatic repulsion, on the stability of a homo-
geneous fluid phase with respect to a gas-liquid phase demixing, and we further
focus on the effect of salinity on the location of the critical end point.

3.2 Model of weakly charged colloidal particles and
non-adsorbing polymer chains

We now proceed to explain how we map the system of charged colloids onto an
effective hard-sphere system. In section 3.3, the polymers, which in addition
insert depletion-induced attractive interactions to the system, are taken into ac-
count. As an application for our model calculations one might think of weakly
charged globular proteins at high salt content, dispersed in a polymer solution
to accelerate crystallisation. Thus, we assume that the electrostatic Coulomb
interactions are highly screened, and, therefore, short-ranged. We also assume
that correlation effects between the micro-ions (added salt and surface released
counter-ions), which might arise due to the comparable size between the micro-
ions and macro-ions (proteins), can be neglected. This assumption even may
hold for high salt concentrations in case of monovalent co- and counter-ions. We
describe the electrostatic repulsion by a Debye-Hückel screened Yukawa-like pair
interaction potential,

βucc(r) =

⎧⎨
⎩

∞ , r ≤ 2a
Z2 lB

(1 + κa)2

exp [−κ(r − 2a)]

r
, r > 2a ,

(3.1)

where Z is the protein charge number and lB = e2/ (4π ε0 ε kBT ) is the Bjerrum
length with the dielectric constant in vacuo, ε0, the dielectric solvent constant, ε,
and the elementary charge e. The colloidal particle radius is denoted by a. The
square of the Debye screening parameter, κ, is given as

κ2 = 4πlB

(
|Z|ρc +

∑
s

ρs

)
, (3.2)

where ρc is the colloid number density. The first term between the brackets
accounts for monovalent counter-ions released from the colloid surface, and the
second for the additionally inserted monovalent micro-ions with number density
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3.3 Generalised free-volume theory

ρs. For later use we introduce the reduced contact value of the repulsive pair
interaction potential as βε = 2 Z2 lB a/(1 + κa)2.

As discussed previously by Fortini et al. [140], one can map electrostatic repul-
sions onto effective hard-sphere interactions provided the colloidal net charges are
sufficiently screened by the co- and counter-ions, or provided that the colloidal
particles are sufficiently weakly charged. The resulting effective volume fraction,
η′

c, is defined by

η′
c =

(
a′

a

)3

ηc = m ηc , (3.3)

where a′ is the effective colloidal radius, and ηc = 4πa3ρc/3 denotes the colloid
volume fraction. The factor m is defined as the cubed size-ratio between the
effective, a′, and bare colloidal particle radius, a. The effective radius, a′, of a
charged colloidal sphere is calculated using the expression found by Barker and
Henderson [60] from leading-order TPT

a′ = a +
1

2

∫ ∞

2a

dr (1 − exp[−βucc(r)]) . (3.4)

Next, after we have mapped the charge-induced colloid-colloid interactions onto
effective hard-sphere-like interactions, the effect of the non-adsorbing polymer
chains on the colloidal dispersion can be treated within the framework of the
free-volume theory.

3.3 Generalised free-volume theory

3.3.1 Semi-grand canonical potential

To compute the equilibrium phase diagram of mixtures of charged colloids and
polymers, we need expressions for the free energy of the colloidal fluid and solid
phases. Due to the fact that we have already mapped the screened electrostatic
Coulomb interactions onto hard-sphere ones, we can apply a simple approach that
successfully describes the stability of polymer-colloid mixtures [104, 144]. Here,
the colloid-polymer mixture is described in the semi-grand-canonical ensemble,
where Nc colloidal particles (c) and Np polymer chains are enclosed in the system
with volume V at temperature T . The system is attached to a reservoir (r) of
polymer chains (p), which is in osmotic equilibrium with the polymer solution in
the system. Thus, the system is described by the (Nc, V, T, μr

p) ensemble, where
μr

p is the chemical potential of the polymer chains in the reservoir. This potential
μr

p determines the polymer number density, ρr = Np/V , in the system. The
semi-grand canonical potential is characterised through
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3 Phase behaviour of colloidal dispersions with added polymer chains

Ω(Nc, V, T, μr
p) = F (Nc, V, T ) −

∫ μr
p

−∞

〈
Np(μ̃

r
p)
〉

dμ̃r
p . (3.5)

The (canonical) free energy of the charged colloid dispersion in the absence of
polymers is described by F (Nc, V, T ); i.e., Ω( Nc, V, T, μr

p → −∞) = F (Nc, V,
T ). The brackets, 〈·〉, underneath the integral denote the semi-grand-canonical
ensemble average, and the tilde indicates the integration variable.

We define the free-volume fraction as α(ρc, μr
p) = 〈Vfree〉/V = ρp/ρ

r
p, where Vfree

is the free-volume in the system not occupied by the colloids and their depletion
zones and ρr

p is the reservoir polymer number density. Using the Gibbs-Duhem
relation, ρr

p dμr
p = dΠr

p = (∂Πr
p/ ∂ρr

p) dρr
p, where Πr

p is the reservoir polymer
osmotic pressure, we obtain

ω(ηc, y) = f(ηc) −
∫ y

0

α(ηc, μ
r
p(ỹ))

∂Π̂r
p(ηc, μ

r
p(ỹ))

∂ỹ
dỹ . (3.6)

Here, we introduced the reduced semi-grand-canonical free energy density ω =
βΩv0/V and the reduced canonical free energy density f = βFv0/V , where 1/β =
kBT is the thermal energy and v0 = 4πa3/3 is the colloid volume. The relative
reservoir polymer concentration is given by y = ρr

p(4/3)πR3
g, where Rg is the

radius of gyration of a polymer coil. We also use the normalised osmotic pressure
defined as Π̂r

p = β Πr
p(ηc, μp(y)) v0.

So far no approximation has been made. The contribution of the polymers to
the free energy in the second term is now described by the (reservoir) polymer
osmotic pressure, Π̂r

p(ηc, y), and the free-volume fraction, α(ηc, y), accessible to
the polymer chains.

We approximate α(ηc, y) by an expression previously derived by Fortini et
al. [140],

α(ηc, y) = (1 − ηc) exp(−b1γ − b2γ
2 − b3ζ − 3b3ζ

2 − 3b3ζ
3) , (3.7)

where γ = ηc/(1 − ηc), ζ = η′
c/(1 − η′

c), b1 = 3qs + 3q2
s , b2 = 9q2

s /2, and b3 =
q3
s . The size ratio qs = δ/a is the ratio of the depletion thickness δ around a

spherical particle over a. For uncharged colloids, or infinite screening (m → 1),
the free-volume factor reduces to the hard-sphere one known from SPT [105,
106]. A geometric interpretation of these factors in terms of fundamental measure
theory has been given by Oversteegen and Roth [145]. The relative polymer
concentration within the system, ηp, is given by ηp = α(ηc, y) y.

We note that SPT is approximate, but surprisingly, the free-volume fraction
from SPT appears to be rather accurate [112]. Brader et al. [146] have discussed
possible ways to derive systematic expressions for the free-volume fraction by
first calculating the equilibrium properties of the effective one-component system
where the polymer degrees of freedom has been integrated out. This could be
done either theoretically or by using using Monte Carlo computer simulations
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3.3 Generalised free-volume theory

results. The polymer concentration and, thus, the free-volume fraction α(ηc, y)
could then be obtained exactly using pair and higher order distribution func-
tions. An effective pair potential for mixtures of interacting (excluded volume)
polymer chains and colloids has been derived from computer simulations by Louis
et al. [147], which might be used in such an approach. Thus, it is possible to test
the extensively used SPT against exact computer simulations. There is a need
for more work in this direction to reveal how accurate SPT is for more compli-
cated systems. The physical properties of the polymer solution will be discussed
separately for ideal and interacting polymer in subsections 3.3.2, 3.3.3 and 3.3.4.

The canonical free energy of the effective hard-sphere system consists in the
fluid phase of the ideal gas term,

m f id(ηc) = η′
c

[
ln(η′

cΛ
3
c/v0) − 1

]
, (3.8)

where Λc = h/
√

2πmckBT is the thermal wavelength, with the colloid mass mc,
Planck’s constant h, and the hard-sphere interaction term, which we describe by
the Carnahan-Starling equation of state [61],

mfCS(ηc) =
4η′

c
2 − 3η′

c
3

(1 − η′
c)

2
. (3.9)

Here the factor m appears because we have normalised the free energy by the
bare colloid volume v0 (see above).

The solid phase is assumed to have a face-centred cubic (fcc) lattice structure.
We use Wood’s equation of state [67] to describe the free energy of the effective
hard-sphere system [140],

mfWood(ηc) = 2.1306 η′
c + 3 η′

c ln

(
η′

c

1 − η′
c/η

cp
c

)
+ η′

c ln

(
Λ3

c

v0

)
. (3.10)

where ηcp
c = π

√
2/6 is the fcc volume fraction for close packing. The integration

constant (inside the first term on the right-hand side) is obtained from the abso-
lute free energy of a hard-sphere crystal calculated from Monte Carlo simulations
at ηc = 0.576 [68].

When fluid and solid phase coexist, the two phases are in thermal, mechanical,
and chemical equilibrium. Thus, for a given polymer reservoir concentration, y,
thermodynamic equilibrium is reached when the osmotic pressures

Π̂f(ηc,f , y) = Π̂s(ηc,s, y) (3.11)

and the chemical potentials,

μf(ηc,f , y) = μs(ηc,s, y) (3.12)
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3 Phase behaviour of colloidal dispersions with added polymer chains

of the fluid (f) and solid (s) phases are equal at the two different volume fractions,
ηc,f and ηc,s, respectively, where

Π̂(ηc, y) = η2
c

∂(ω(ηc, y)/ηc)

∂ηc
(3.13)

and

βμ(ηc, y) =
∂ω(ηc, y)

∂ηc
. (3.14)

A gas-like phase at low colloidal density coexists with a liquid-like phase at
high colloidal density for equal osmotic pressures

Π̂g(ηc,g, y) = Π̂l(ηc,l, y) , (3.15)

and chemical potentials,

μg(ηc,g, y) = μl(ηc,l, y) . (3.16)

The spinodal curve is found where the thermodynamic compressibility diverges
at infinite wavelengths, i.e., where

∂2ω(ηc, y)

∂η2
c

= 0 . (3.17)

The binodal and spinodal terminate and merge at the critical point,

∂2ω(ηc, y)

∂2ηc
= 0 and

∂3ω(ηc, y)

∂3ηc
= 0 . (3.18)

The critical end point marks the lowest polymer-to-colloid size ratio where a
colloidal liquid is stable, and is found where the gas-liquid critical point coexists
with the solid phase [148].

3.3.2 Dilute and semi-dilute polymer solutions

So far undetermined are the osmotic pressure, Π̂r
p, of the polymers in Eq. (3.6),

and the depletion thickness δ, which enters the free-volume fraction α(ηc, y),
Eq. (3.7), through the size ratio qs = δ/a. For small polymer-to-colloid size
ratios, when q � 0.4, the relevant part of the phase diagram lies below the
polymer overlap concentration (y < 1). Then interactions between the polymers
are not essential to properly describe the phase diagram and it is still sufficient
to approximate the polymer-induced osmotic pressure by the ideal gas law as
assumed in the seminal work by Lekkerkerker et al. [104]. Furthermore, the
depletion thickness takes a value close to Rg in dilute polymer solutions. In
dilute polymer solutions, the depletion thickness near a flat plate, δ0, is given
by [136,149],
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3.3 Generalised free-volume theory

δ0 = p Rg , with p =

{
2/
√

π in a θ-solvent, and
2x/

√
π in a good solvent,

where x = 3/4 + 3 ln (2)/8 + π/8 − π/
√

48 = 0.9492. When the polymers have a
similar or larger size with respect to the colloidal particles, q 	 1, the polymer
concentrations where phase transitions occur, are of the order of and above the
polymer overlap concentration (compare, e.g. Fig. 4 b and c in [134]). Thus,
for q 	 0.4 interactions between the polymer segments should be accounted
for. In the semi-dilute concentration regime, the depletion thickness becomes the
concentration-dependent correlation length ξ ∼ y−τ , with τ = 1 for θ-solvents and
τ = 0.77 for good solvents [150]. To incorporate the crossover from dilute to the
semi-dilute polymer concentrations, Fleer et al. [142] have derived phenomeno-
logical expressions for the polymer concentration-dependent depletion thickness
and the polymer induced osmotic pressure by interpolating between the exactly
known dilute limit and scaling relations valid for semi-dilute polymer concentra-
tions using combination rules.

For the osmotic pressure they found [142]

Π̂r
p(q, y) = q−3

(
y + A y3τ

)
. (3.19)

The de Gennes scaling exponent τ and the parameter A depend on the solvent
quality and will be specified in subsections C and D. In the dilute limit, y � 1,
Eq. (3.19) reduces to the osmotic pressure of an ideal polymer solution, Π̂r

p =

q−3y, and in the semi-dilute regime it recovers the scaling relation Π̂r
p ∼ ξ−3 ∼

q−3y3τ [150].
The depletion thickness for dilute and semi-dilute polymer solutions next to a

flat plate, δp, was obtained previously [141, 142,151] as,

δp/δ0 =
(
1 + By2τ

)−1/2
, (3.20)

where B is a parameter which again depends on the solvent quality. In the dilute
limit (y → 0), δp reduces to δ0, and in the semi-dilute limit it recovers the scaling
relation δp ∼ y−γ [150].

We also have to account for curvature effects to find an accurate description
for the depletion thickness, δ, around the spherical colloidal particles. For ideal
polymer chains, Louis et al. [152] and Aarts et al. [134] derived the relation
between δ as a function of the depletion thickness at a flat plate in dilute polymer
solutions, δ0, using the density profile around a sphere [135, 153],

q(mf)
s (q0) =

(
1 + 3 q0 +

3π

4
q2
0

)1/3

− 1 , (3.21)

where q0 = δ0/a and qs = δ/a. This result is valid for dilute polymers in
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Figure 3.2: Normalised depletion thickness around a sphere, qs = δ/a, as a function
of the reduced radius of gyration, q = Rg/a. The dots correspond to polymer chains
in a θ-solvent (Eq. (3.21)) and the squares describe interacting polymer chains in
good solvent (Eq. (3.22)). The solid curves indicate the power-law fits (Eq. (3.23) and
(3.24), respectively) to the analytical expressions for polymer chains in a θ-solvent
(Eq. (3.21)) and in a good solvent (Eq. (3.22)), respectively.

a θ-solvent. Hanke et al. [136] have derived an equivalent relation for polymer
chains in the excluded volume limit (i.e., for polymer chains with excluded-volume
monomer-monomer interactions (ev)),

q(ev)
s (q0) =

(
1 + 3q0 + 3c2q

2
0 − 3c3q

3
0 + . . .

)1/3 − 1 , (3.22)

where c2 = π(1−5π/8+17/36+π
√

3/4)/(4 x2) = 0.7576 and c3 = π(1673π/48−
551/15 − 40

√
3/π)/(24x3) = 0.0325. In Fig. 3.2, we plot qs as a function of q,

where q = q0/p according to Eq. (3.19). The lower curve corresponds to polymers
in a good solvent (Eq. (3.22)) and the upper curve is the result for a θ-solvent
(Eq. (3.21)). As proposed by Fleer and Tuinier [141,154], qs can be approximated
by simpler power laws, namely

q(mf)
s (q0) = 0.842 q0.9

0 , (3.23)

and
q(ev)
s (q0) = 0.814 q0.88

0 . (3.24)

These are indicated in Fig. 3.2 by dots (mean-field chains) and squares (excluded-
volume chains). As expected, the depletion thickness around a sphere is smaller
compared to the depletion thickness close to a flat plate. Furthermore, the deple-
tion thickness due to polymer chains in a good solvent (excluded-volume chains)
is smaller as compared to polymers in a θ-solvent. The deviations become more
pronounced with increasing q. The q > 2 regime is, however, less relevant as
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Figure 3.3: Influence of the polymer-to-colloid size ratio q = Rg/a on the depletion
thickness around a sphere in units of the radius of gyration, δ/Rg. The solid curve
describes the size ratio dependence of δ/Rg for polymer chains in a θ-solvent and the
dashed one the influence of the curvature for good solvent conditions.

we shall see. In addition, we show the influence of q on the depletion thickness
around a sphere, δ, relative to the radius of gyration Rg for good and θ-solvent
conditions in Fig. 3.3. As can be seen clearly, δ/Rg decreases with increasing q
and is well below one if q exceeds one.

3.3.3 Polymer solutions in a θ-solvent (mean-field
approximation)

For polymer chains in a θ-solvent, the scaling exponent τ becomes equal to its
mean-field value τ = 1. The parameters that follow from the combination rules
that link the semi-dilute regime of the osmotic pressure and the depletion thick-
ness towards zero polymer volume fraction are A = 4.1 and B = 5.94 [142],
respectively. The polymer concentration derivative of the reduced osmotic pres-
sure is

∂Π̂r
p(q, y)

∂y
= q−3

[
1 + 12.3 y2

]
, (3.25)

and the depletion thickness-to-colloid radius size ratio is

qs(q, y) = 0.938
(
q/
√

1 + 5.94 y2
)0.9

. (3.26)

Eq. (3.26) follows directly by replacing q0 with the reduced depletion thickness
for dilute and semi-dilute polymer solution, δp/a, introduced in Eq. (3.20), and
using Eq. (3.19).
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Figure 3.4: Influence of the polymer concentration y on the relative depletion thick-
ness around a sphere, qs = δ/a, and on the reduced polymer osmotic pressure
Π̂p = β Πr

p ν0. The solid curves describe the influence of y on qs and Π̂p, respec-
tively, for polymer chains in θ-solvent and the dashed curves for polymers in good
solvent.

3.3.4 Interacting polymer solutions in good solvent

In a semi-dilute polymer solution, the de Gennes scaling exponent τ equals 0.77
under good solvent conditions. The parameters A and B now read A = 1.615
and B = 3.95 [142]. Therefore,we have

∂Π̂r
p(q, y)

∂y
= q−3

[
1 + 3.73 y1.31

]
, (3.27)

and

qs(q, y) = 0.865
(
q/
√

1 + 3.95 y1.54
)0.88

. (3.28)

Note that in contrast to the classical FVT [104], ∂Π̂r
p/∂y and qs in Eqs. (3.25)-

(3.28) now depend on the polymer concentration y.
In Fig. 3.4, the effective size-ratio qs is given as a function of the polymer con-

centration y for q = 0.1, 1 and 3. The solid curves describe polymer chains in
θ-solvent and the dashed curves polymers under good solvent conditions. The
effective size-ratio, qs = δ/a, is nearly independent of y at small polymer con-
centrations (y � 0.1) and decreases rapidly with increasing y. It follows that
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3.3 Generalised free-volume theory

the effective size-ratio is smaller for polymer chains in a good solvent as com-
pared to chains in a θ-solvent for low polymer concentrations, but decreases less
rapidly with increasing y so that for high concentrations the effective size-ratio
in a good solvent is larger than qs in a θ-solvent. Also shown in Fig. 3.4 is the
reduced polymer-induced osmotic pressure βΠr

pv0, which describes the osmotic
work to insert a particle without depletion layer. As expected, the work required
for inserting a colloidal particle increases with increasing polymer concentration.
However, βΠr

pv0 increases more rapidly for polymer chains in a θ-solvent as for
chains in good solvent. We note that the polymer concentration is normalised
with the overlap concentration. The overlap concentration for polymer chains in
a good solvent is significantly smaller as for θ-chains due to chain swelling.
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Figure 3.5: Gas-liquid coexistence curves for size-ratios q as indicated in the colloid
limit (q � 1) and for equal size for mixtures of interacting polymer in a good solvent
plus hard-sphere colloids. The open symbols are results from computer simulations by
Bolhuis et al. [155] using a Gaussian core model for the polymer chains. The curves
are calculated gas-liquid binodals using generalised free-volume theory. The asterisks
indicate the theoretical critical point.

3.4 Results and discussion

3.4.1 Phase behaviour of uncharged colloid-polymer mixtures:
comparison with simulation results

We first compare the generalised free-volume theory with computer simulation
data by Bolhuis et al. [132,155] on uncharged colloid-polymer mixtures. In [132],
these authors computed the gas-liquid phase coexistence curves for mixtures of
hard spheres plus a polymer solution of interacting chains modelled as Gaussian
cores with q = 0.34, 0.67 and 1.05. Thus, the colloid regime (q < 1) and a colloid-
polymer mixture with equal size were explored. Gas-liquid binodals in the protein
regime (q > 1) were computed for hard spheres plus excluded volume chains on
a discrete lattice using Monte Carlo (MC) techniques for q = 3.86, 5.58 and 7.78.
In Fig. 3.5, the simulation data for size ratios q = 0.34, q = 0.67 and q = 1.05 are
compared with the gas-liquid coexistence curves predicted from generalised free-
volume theory (GFVT). The theoretically predicted gas-liquid coexistence curve
agrees well for q = 0.34 with the computer simulation data. With increasing size
ratio (i.e., at q = 0.67 and q = 1.05) the binodals predicted from GFVT start to
deviate slightly from the simulation data. In fact, the polymer concentration at
which phase separation first occurs is slightly overestimated by GFVT.

This deviation increases with increasing colloid volume fraction. In Fig. 3.6, the
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Figure 3.6: Gas-liquid coexistence curves at different size-ratios q in the protein limit
(q > 1) for hard spheres and interacting polymer chains in a good solvent. The
coexistence curves are calculated from generalised free-volume theory. The asterisks
are the critical points calculated from theory. The solid binodal data points are taken
from Bolhuis et al. [155], and the crosses indicate critical points extracted from these
computer simulation data.

calculated gas-liquid phase coexistence curves from GFVT are plotted together
with MC data in the protein limit (q = 3.86, q = 5.58 and q = 7.78), and
larger deviations are found. At low ηc the binodals are underestimated by GFVT
(i.e., phase separation is predicted at too low polymer volume fractions), whereas
the stability region of the homogeneous colloid-polymer mixture is significantly
overestimated at high ηc. The colloidal volume fraction at the critical point is
underestimated and the critical polymer volume fraction is overestimated by the
GFVT by a factor of two. Thus, we conclude that the GFVT describes colloid-
polymer mixtures in the colloid limit reasonably well, but is less adequate to
quantitatively predict the MC simulation results of the phase coexistence curves
in the protein limit. This limited accuracy of GFVT for size ratios of q ≥ 1
could be due to the fact that the polymers are treated within the SPT as a
small perturbation to the hard-sphere colloidal reference system. In fact, one
assumes that the configurations of the colloids do not change if a small polymer
chain is inserted. Obviously, this assumption holds only if the polymer coil is
small compared to the colloid size. We note that computer simulations are of
course not exact in the sense that that they approximate real systems. PRISM
gives critical colloid volume fractions in the protein limit that are quite close to
GFVT predictions [154]. Besides some quantitative mismatch, it has been shown
by Fleer and Tuinier [141] that GFVT predicts the q-scaling behaviour quite
accrately [155]. In addition, the critical colloid volume fraction observed within

53



3 Phase behaviour of colloidal dispersions with added polymer chains

 0

 1

 2

 3

 0  0.1  0.2  0.3

η p

ηc

MC q=1.03
MC q=1.45
MC q=2.05
MC q=3.20
GFVT q=1.03
GFVT q=1.45
GFVT q=2.05
GFVT q=3.20

Figure 3.7: Gas-liquid coexistence curves at different size-ratios q for ideal, non-
interacting polymer chains. The coexistence curves are calculated from generalised
free-volume theory. The asterisks mark the GFVT critical points. The solid data
binodal points are taken from Bolhuis et al. [155], with the crosses indicating the
extracted critical points from these MC computer simulation data.

GFVT is nearly constant as found also in MC simulation and PRISM. The theory
and computer simulations show that the critical polymer concentration increases
with increasing q.

In Fig. 3.7, we compare binodals for mixtures of ideal (non-interacting) poly-
mers and colloids from MC [155] and GFVT. The expressions for ideal polymers
are obtained from Eq. (3.25) and Eq. (3.26) for y → 0. In contrast to inter-
acting polymer chains, the critical volume fraction shifts to smaller values with
increasing q, while the critical polymer volume fraction increases at the same time
as observed in interacting polymers solutions. But whereas the region where a
stable homogeneous colloid-polymer mixture is increasing in interacting polymer
solutions, the area underneath the binodal shrinks with increasing q in an ideal
polymer solution. In summary, we note that the general trends of the phase be-
haviour are recovered by the GFVT even in the protein limit. Thus, we conclude
that GFVT gives quantitative predictions for q � 1 (colloid regime) and describes
polymer-colloid mixtures qualitatively for q > 1 (protein regime), capturing the
general trends correctly.

Finally, we note that there is a urgent need for simulations of the fluid-solid
and gas-liquid-solid phase behaviour to compare with our analytical theory.
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Figure 3.8: Phase diagram for a mixture of charged colloids and ideal polymers
with polymer-to-colloid size ratio q = 0.1. The data points described the phase
boundaries obtained from computer simulations taken from [140] for for various 2κa
values (2κa → ∞, m = 1.0 (◦); 2κa = 100, m = 1.110 (•); 2κa = 80, m = 1.138 (�)).
The curves correspond to the binodals calculated from GFVT for ideal polymers (solid
curve: m = 1.0, dashed curve: m = 1.110, short dashed curve: m = 1.138).

3.4.2 Comparison with previous Monte Carlo simulations on
charged colloid-polymer mixtures

In Figs. 3.8, 3.9 and 3.10 we compare the phase diagram calculated from GFVT
for mixtures of charged colloids and ideal polymer with computer simulations
from Fortini et al. [140] for q = 0.1, q = 0.6 and q = 1.0. The expressions for
the Helmholtz free energy of charged colloids and ideal polymer solutions are
obtained from Eq. (3.25) and (3.26) in the limit y → 0. As seen in Fig. 3.8,
GFVT predicts the the solid branch of the fluid-solid coexistence curve (solid
curve) well for m = 1.0 and q = 0.1, but slightly underestimates the fluid branch
for increasing colloid volume fractions. In case of charged colloids (dashed and
short dashed curves in Fig. 3.8), GFVT systematically underestimates the fluid
branches of the fluid-solid coexistence curves. For q = 0.6 (Fig. 3.9), GFVT
predicts the location of critical point in the phase diagram astonishingly well for
all values of m under consideration, but the theory fails to recover the widening
of the fluid-solid coexistence curve with increasing polymer concentration. Thus,
GFVT overestimates significantly the polymer concentrations at the triple point.
For q = 1.0 (Fig. 3.10) the gas-liquid coexistence predicted from GFVT are too
narrow as compared to the computer simulation data, indicating that GFVT
underestimates the polymer induced osmotic pressure.
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Figure 3.9: Phase diagram for a mixture of charged colloids and ideal polymers
with polymer-to-colloid size ratio q = 0.6. The data points described the phase
boundaries obtained from computer simulations taken from [140] for for various 2κa
values (2κa → ∞, m = 1.0 (◦); 2κa = 100, m = 1.110 (•); 2κa = 80, m = 1.225 (�)).
The curves correspond to the binodals calculated from GFVT for ideal polymers (solid
curve: m = 1.0, dashed curve: m = 1.110, dashed-dotted curve: m = 1.225).
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Figure 3.10: Phase diagram for a mixture of charged colloids and ideal polymers
with polymer-to-colloid size ratio q = 1.0. The data points described the phase
boundaries obtained from computer simulations taken from [140] for for various 2κa
values (2κa → ∞, m = 1.0 (◦); 2κa = 100, m = 1.110 (•)). The curves correspond to
the binodals calculated from GFVT for ideal polymers (solid curve: m = 1.0, dashed
curve: m = 1.110).
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Figure 3.11: Fluid-solid coexistences for various values of the effective volume fraction
factor m on the fluid-solid coexistence regime. The capital letters indicate the phase
region where a stable fluid (F ) or a stable solid phase (S) is observed. A fluid phase
coexists with a fcc-solid phase in the gap between the two curves (F + S). The
solid curves are calculated from our free-energy expressions for the weakly charged
spheres (Eq. (3.8-3.10)). The symbols correspond to Monte Carlo simulation data of
Hynninen and Dijkstra [156] for three different contact values, βε, of the repulsive pair
interaction potential (Eq. (3.1)); see legend. The curves represent the binodal curves
calculated using the free energy expressions of Eqs. (3.9) and (3.10) for the fluid and
fcc-solid, respectively.

3.4.3 Phase behaviour of charged colloid-polymer mixtures

Next we turn to the main topic of this chapter: the phase behaviour of charged
colloidal particles and polymers in either a good or a θ-solvent.

First, we focus on a pure hard-sphere dispersion without charges (1/κ = 0, or,
correspondingly, m = 1.0) and without any added polymers (y = 0). In this lim-
iting case we recover the hard-sphere fluid-solid phase coexistence at ηc = 0.492
(fluid) and ηc = 0.542 (solid). These values agree well with the freezing and
melting volume fractions of 0.494 and 0.545, respectively, observed in computer
simulations [157]. If the colloidal particles are charged (m > 1), the effective
volume increases (see Eq. (3.4)), and thus, the freezing and melting volume frac-
tions shift to lower values as shown in Fig. 3.11. Here, the included data points
are the fluid-solid coexistence data from Hynninen and Dijkstra [156], obtained
from Monte Carlo simulations for repulsive contact potentials of βε = 20, 39 and
81, respectively. We note from Fig. 3.11 that, as expected, the data collapse for
different βε-values when m is plotted on the ordinate.

We proceed to elucidate, first, the influence of the solvent quality on the (global)
phase behaviour and, secondly, the interplay between charge-induced repulsions
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Figure 3.12: Phase diagram for mixtures of colloids carrying screened electrostatic
charges and polymers at the θ-condition. The solid curves describe uncharged (infinite
screening) colloidal dispersions (m = 1.0, or κa → ∞, respectively). The dotted curve
is obtained for m = 1.054 (or, κa = 100 for βε = 20) and the dashed curves for
m = 1.110 (or, κa = 50 for βε = 20). The short-dashed curve describes the phase
coexistence obtained for m = 1.138 (or, κa = 40 for βε = 20) and the dashed-dotted
curves represent the phase coexistence curves for m = 1.225 (or, κa = 25 for βε = 20).
The plus symbols indicate the triple points, and the asterisks mark the critical points
of the gas-liquid phase transition. Note that the reservoir polymer concentration is
plotted as the ordinate. Thus, the tie-lines are parallel to the abcissa.

versus polymer-induced attractions. Figs. 3.12 and 3.13 show the phase behaviour
for four different size ratios (q = 0.1, q = 0.6, q = 1.0 and q = 3.0), for polymers in
a θ-solvent (Fig. 3.12) and under good solvent conditions (Fig. 3.13), respectively.
Note that we plot the phase diagrams in the ηc-y plane, with y denoting the
normalised reservoir polymer concentration. Thus, the tie-lines (not shown) are
horizontal.

Adding non-adsorbing polymers induces an attractive interaction, and for small
q the fluid-solid coexistence region widens upon increasing the polymer concen-
tration (see, e.g., Figs. 3.12 (a) and 3.13(a)). For q = 0.1, the depletion-induced
attractive interactions are too short-ranged to induce a stable gas-liquid phase
separation and only a stable (or equilibrium) fluid-solid phase separation is ob-
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Figure 3.13: Phase diagram for mixtures of colloids carrying screened electrostatic
charges and polymers at good solvent conditions. The solid curves describe uncharged
(infinite screening) colloidal dispersions (m = 1.0, or κa → ∞, respectively). The
dotted curve is obtained for m = 1.054 (or, κa = 100 for βε = 20) and the dashed
curves for m = 1.110 (or, κa = 50 for βε = 20). The short-dashed curve describes the
phase coexistence obtained for m = 1.138 (or, κa = 40 for βε = 20) and the dashed-
dotted curves represent the phase coexistence curves for m = 1.225 (or, κa = 25
for βε = 20). The plus symbols indicate the triple points and the asterisks mark
the critical points of the gas-liquid phase transition. Note that the reservoir polymer
concentration is plotted as ordinate. Thus, the tie-lines are parallel to the abcissa.

served. The metastable gas-liquid coexistence curve lies within the fluid-solid
coexistence region as shown for m = 1.138 in Fig. 3.12 (a). In Fig. 3.12 (a)
and 3.13 (a), the fluid-solid coexistence curves shift to higher reservoir polymer
concentration y with increasing Debye screening length κ−1, or, correspondingly,
with increasing m. Hence, the one-phase region underneath the fluid-solid coex-
istence curves, where a stable mixture at low polymer and colloid concentrations
exists, increases with increasing m. This behaviour is expected since the short-
ranged depletion-induced interactions are more and more compensated by the
increasing electrostatic repulsions with decreasing κ.

For larger q, the depletion-induced attraction becomes longer-ranged and a
stable gas-liquid phase coexistence is manifested. The polymer-to-colloid size
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3 Phase behaviour of colloidal dispersions with added polymer chains

m qcep qcep
s ycep αcep ηcep

c

θ-solvent: 1.0 0.34 0.29 0.31 0.36 0.32
1.11 0.40 0.30 0.43 0.43 0.27
1.225 0.49 0.30 0.59 0.51 0.23

good solvent: 1.0 0.39 0.27 0.43 0.38 0.32
1.11 0.47 0.27 0.68 0.46 0.27
1.225 0.61 0.25 1.21 0.57 0.22

Table 3.1: Values obtained from the generalised free-volume theory that characterise
the critical end point for colloids mixed with polymers in a θ-solvent (upper part) and
in a good solvent (lower part). The effect of charges is embodied in the parameter m
(see text). For m > 1, the colloids are charged.

ratio, at which this transition from a metastable to a stable phase coexistence
between two fluids with low and high colloidal density takes place, is described
by the critical end point [148]. This quantity marks the boundary condition for
a colloidal liquid. The values that characterise the critical end point obtained
from GFVT are summarised in Table 3.1 for colloids mixed with polymer in a
θ-solvent and in a good solvent. Here, m = 1 corresponds to the hard sphere case,
κ → ∞, and m = 1.110 corresponds to a inverse screening length of κa = 50,
and m = 1.225 to κa = 25, with βε = 20 assumed throughout.

As shown in Figs. 3.12 (b,c,d) and 3.13 (b,c,d), in the hard-sphere case of
infinite screening, (m = 1) and for m = 1.110, a gas-liquid coexistence curve
manifests itself at low reservoir polymer concentrations with respect to the fluid-
solid phase coexistence curve for q = 0.6, 1.0, and 3.0. In contrast, Fig. 3.13 (b)
for q = 0.6, m = 1.225 shows a metastable gas-liquid coexistence line (dashed-
dotted curve), which nearly touches the fluid-solid coexistence curve. For q = 1.0
and q = 3.0, the fluid-solid curves are stable for m = 1.225.

In the hard-sphere limit (solid curves) and for small q (i.e., q = 0.1), there is
nearly no difference between the fluid-solid phase coexistence curves for polymers
in a θ-solvent and for polymers in a good solvent (compare Figs. 3.12 (a) with
Fig. 3.13 (a)). The critical colloid volume fraction is also similar for both solvent
conditions (see Fig. 3.16 and 3.17, and the discussion on this later on). With
increasing q, the stability of the mixed phase increases. Furthermore, the binodals
are shifted to higher reservoir polymer concentrations for polymers in good solvent
conditions, as compared to chains in a θ-solvent at larger size ratios. To induce a
gas-liquid phase transition at good solvent conditions, y is about a factor of two
higher than for polymers in a θ-solvent. Similar trends have been observed by
Schmidt and Fuchs [133].

Electrostatic repulsions between the colloids in general stabilise the homoge-
neous phase. Hence, more polymers have to be added to induce sufficient attrac-
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Figure 3.14: Phase diagram for mixtures of colloids carrying screened electrostatic
charges and polymers at the θ-condition. In contrast to Fig. 3.12, the coexistence
curves are plotted here in the ηp-ηc plane with the system polymer concentration. The
solid curves describe uncharged (infinite screening) colloidal dispersions (m = 1.0, or
κa → ∞, respectively). The dotted curve is obtained for m = 1.054 (or, κa = 100 for
βε = 20) and the dashed curves for m = 1.110 (or, κa = 50 for βε = 20). The short-
dashed curve describes the phase coexistence obtained for m = 1.138 (or, κa = 40
for βε = 20) and the dashed-dotted curves represent the phase coexistence curves for
m = 1.225 (or, κa = 25 for βε = 20). The plus symbols indicate the triple points and
the asterisks mark the critical points of the gas-liquid phase transition.

tion, and hence, the phase separation curves shift to higher y-values as observed
in all phase diagrams. Interestingly, the influence of electrostatic repulsions on
the location of the phase boundaries is much more pronounced in case of good
solvent conditions than for a θ-solvent. The effect of the solvent quality on
the phase behaviour becomes especially apparent in the protein limit (i.e., when
q = 3.0), see Fig. 3.12 (d) and Fig. 3.13 (d). In case of a θ-solvent, the binodal
at low colloid volume fraction is almost unaffected by the electrostatic repulsion
(Fig. 3.12 (d)), whereas in a good solvent the homogeneous fluid phase becomes
considerably stabilised with increasing m (Fig. 3.13 (d)). This is due to the fact
that qs is much smaller than q at the binodal for q = 3.0 especially under good
solvent conditions. To make this explicit we give some values at the gas-liquid
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Figure 3.15: Phase diagram for mixtures of colloids carrying screened electrostatic
charges and polymers at good solvent conditions. In contrast to Fig. 3.13, the coex-
istence curves are plotted here in the ηp-ηc plane with the system polymer concen-
tration. The solid curves describe uncharged (infinite screening) colloidal dispersions
(m = 1.0, or κa → ∞, respectively). The dotted curve is obtained for m = 1.054 (or,
κa = 100 for βε = 20) and the dashed curves for m = 1.110 (or, κa = 50 for βε = 20).
The short-dashed curve describes the phase coexistence obtained for m = 1.138 (or,
κa = 40 for βε = 20) and the dashed-dotted curves represent the phase coexistence
curves for m = 1.225 (or, κa = 25 for βε = 20). The plus symbols indicate the triple
points and the asterisks mark the critical points of the gas-liquid phase transition.

critical point where qs = 0.5 at m = 1.0 and qs = 0.4 at m = 1.225 for colloidal
spheres plus polymer chains in a good solvent, while in a θ-solvent, qs = 0.7 at
m = 1.0 and qs = 0.7 at m = 1.225.

Actually, the depletion thickness becomes of the order of the correlation length
ξ for q > 1 (protein regime) in semi-dilute polymer solutions and decreases with
increasing y. Thus, even a short-ranged repulsion due to charges might be suffi-
cient to compensate the depletion-induced attractions and, therefore, can have a
large influence on the phase diagram.

As a practical illustration we plot the phase diagrams in Fig. 3.14 and 3.15 for
q = 0.1, 0.6, 1 and 3 in the ηp-ηc representation employing the system polymer
concentration. These can be compared with experimental data.
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3.4 Results and discussion

To discuss the influence of electrostatic repulsion and the effect of different sol-
vent qualities on characteristic points that quantify the global phase behaviour,
i.e. the critical point, the critical end point, and the triple point, we turn to
Figs. 3.16 and 3.17. Here, these characteristic state points are plotted as a func-
tion of the colloid-to-polymer size ratio 1/q. Pluses (+) indicate the triple points
and open diamonds (�) the critical points. The critical end points are marked
by an asterisk (∗). The curves interconnect the volume fractions of the gaseous,
liquids and solid phase coexisting at the triple point as a function of q. A curve
connecting several critical points as a function of q is called a critical line. The
full curve interconnects characteristic state points for m = 1.0, and the dotted
and dashed curves link the triple and critical points for m = 1.110 and m = 1.225,
respectively. The critical end points shift to larger q-values with increasing elec-
trostatic repulsions, which is at variance with Figs. 3.12 and 3.13. In addition, the
volume fractions at the triple point and the critical points reduce to lower values
when increasing the electrostatic repulsions. Due to the fact that the depletion
thickness reduces by increasing the solvent quality, gas-liquid phase separation
sets in at larger q-values in case of interacting polymers in a good solvent. Adding
electrostatic repulsions strongly reduces the liquid window; the range of colloid
concentrations and polymer-to-colloid size ratios where a colloidal liquid exists.
When comparing this with mixtures of charged spheres with non-interacting poly-
mers, one observes that the phase diagrams with interacting polymers are shifted
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Figure 3.16: Triple points (+), critical points (�) and critical end points (∗) as a
function of the inverse of polymer-to-colloid size ratio, 1/q = a/Rg, for mixtures of
non-adsorbing polymers in a θ-solvent and uncharged colloids (m = 1.0, solid curve)
and for colloids carrying screened electrostatic charges (m = 1.110, dotted curve and
m = 1.225, dashed curve).
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Figure 3.17: As in Fig. 3.16 but now for interacting polymers in a good solvent.

to significantly higher polymer concentrations for q > 0.5 [140].

Fig. 3.16 and 3.17 show that the critical colloid volume fraction, ηcrit
c , con-

verges towards a finite value in the protein limit (i.e., for q → ∞), as observed
by Bolhuis et al. [132,155]. But whereas ηcrit

c approaches a constant value in case
of a θ-solvent (Fig. 3.16), ηcrit

c has a minimum for q = 3.0 and then increases
again slightly for q → ∞ in case of a good solvent (Fig. 3.17). This observa-
tion can be explained again by the fact that ηcrit

c is determined by the range of
attraction, i.e., by the effective polymer-to-colloid size ratio. In the semi-dilute
limit the effect size δ becomes of the order of ξ (ξ � Rg) and, thus, becomes
independent of q. Therefore, ηcrit

c approaches a constant for q → ∞. In case of a
θ-solvent, the depletion-induced range of attraction, δ, is, even for q → ∞, larger
than the range of repulsion caused by the hard-sphere plus Coulomb repulsion,
and, hence ηcrit

c continuously decreases for increasing q. In contrast, in case of a
good solvent, δ is small to such a degree (compare Fig. 3.3) that it is overcom-
pensated by the repulsive interactions so that ηcrit

c goes through a minimum at
q ≈ 3 and then slightly increases for larger q-values (Fig. 3.17). We note further,
that the dominant contribution to the repulsive interactions is due to the hard-
sphere contribution for all κ-values under investigation. Therefore, ηcrit

c becomes
independent of m for q → ∞ in both cases.

We note as a critical remark that conceptual difficulties arise is mapping the
screened electrostatic Coulomb interactions onto hard-sphere ones. Here, one
has to be aware of the problems which might occur in conjunction with such
a procedure as indicated in the following (see also [158] for a general discus-
sion on effective pair interaction potentials). In general, as long the polymer
chains do not carry charges (i.e., as long we do not consider polyelectrolytes as
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depletion agents) the polymer-induced depletion interactions are driven by geo-
metrical, excluded volume effects and are thus ’entropy driven’ [5]. On the other
hand, the repulsive pair interactions of the charged colloids are transmitted by
an electric field caused by the surface and (microionic) space charges. Thus,
polymer-induced depletion effects and screened electrostatic interactions are of
a different physical origin, and, hence, independent from each other. However,
by mapping the screened electrostatic Coulomb interactions onto effective hard-
sphere ones, the two physically independent interactions becomes geometrically
related. In particular, it is unclear whether the depletion thickness must be
added to the effective hard-sphere particle or to the bare one, or, whether the
polymer size has to be scaled so that the colloid-polymer mixtures remains addi-
tive as proposed by Denton and Schmidt [139]. Such a mapping obviously fails
completely if the range of the repulsive screened Coulomb interactions exceeds
the range of the attractive interaction potential, uattr, induced by the polymer
chains in solution or when βuattr ∼ O(1). Thus, our model describes mixtures
of charged colloids and polymers dispersed in an electrolyte solvent only in the
limit of weakly charged or, respectively, highly screened colloidal particles with
thin double layers. This procedure might lead to non-physical predictions when
used ad-hoc without precaution.

3.4.4 A mixture of globulin proteins and dextran in an
aqueous salt solution

As a practical example, we compare in the following our theoretical results with
the phase behaviour of globulin dispersions with added non-absorbing dextran.
Fortini et al. [140] have shown that mapping the screened electrostatic repulsive
interactions onto effective hard-sphere ones is accurate for m � 1.225 (see [140],
Fig. (2), p. 7789, and Fig. (3.11) in this work). Such high salt conditions are often
encountered to screen the Coulomb interactions and, thus, to induce crystallisa-
tion. Hoskins et al. [159] have experimentally determined the phase behaviour
of mixtures of globulin and dextran which falls into that regime. In particular,
they observed gas-liquid demixing with increasing dextran concentration using
turbidity measurement. The solutions with varying polymer concentrations were
prepared at pH = 6.4 in the presence of cs = 0.5 mol/l NaCl. At this pH , glob-
ulin is assumed to carry Z = 25 negative charges [160]. It’s mass density is
1.351 g/cm3 [161] and it has a Stokes radius of a = (5.7 ± 0.3) nm [161] and a
molar mass of 150 kg/mol [159]. The samples were stored at T = (290±2) K. At
this temperature the Bjerrum length is lB = 0.71 nm.

Under these conditions, we have βε = 0.19 as contact potential, and κa = 13.3
for the Debye screening parameter, where we have assumed ρc = 0 in Eq. (3.2).
Then, from Eq. (3.4) and Eq. (3.3), we obtain m = 1.020. Thus, our model cal-
culations are applicable here. We note that m always decreases with increasing
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Figure 3.18: Phase diagram of a mixture of globulin and dextran at pH = 6.4 in
0.5 mol/l NaCl. The data points are redrawn from Hoskins et al. [159]. The solid
curve is the theoretically predicted binodal obtained using GFVT for weakly charged
spheres plus interacting polymers for q = 2.3 and m = 1.020 at T = (290 ± 2)K,
assuming θ-solvent conditions. The dashed curve is the theoretically predicted binodal
for q = 2.3 and m = 1.020, assuming a good solvent. The asterisks mark the critical
points calculated from GFVT.

ηc within the DLVO-approximation, due to the contribution to the electrostatic
screening by the surface released counter-ions (see Eq. (3.2)). It follows that the
condition on m is also fulfilled for all non-zero protein volume fractions ηc. For
example, one obtains m = 1.018 at ηc = 0.4 and cs = 0.5 mol/l (i.e., βε = 0.18
and κa = 13.8). However, for simplicity we will neglect the (colloidal) density
dependence of κ in the following. Therefore, we use m = 1.020. Hoskins et
al. [159] used dextran with a molar mass of Mw = 267 kg/mol, which has a ra-
dius of gyration of Rg = 13 nm [162]. Hence, we use q = 2.3. In Fig. 3.18,
we compare the experimentally observed phase diagram of Hoskins et al. [159]
with our from theoretically predicted GFVT binodal on assuming θ-solvent con-
ditions. Additionally, Fig. 3.18 shows the theoeretically predicted binodal for
good solvent conditions (dashed curve). The theoretical gas-liquid coexistence
curve slightly overestimates the polymer concentration at which phase separa-
tion sets in slightly with increasing ηc. In contrast, the calculated binodal for
a good solvent (dashed curve) overestimates largely the polymer concentration
at the gas-liquid coexistence. The remaining deviation of the theoretically pre-
dicted binodal from the experimental data points might be due to the branched
structure of dextran [162], and presumably also due to the polydispersity in Rg,
leading to an underestimation of the osmotic pressure and of the range of attrac-
tion and, thus, to a shift of the calculated gas-liquid coexistence curve to larger

66



3.5 Conclusions

polymer concentrations. Nevertheless, the theoretical and experimental binodals
agree overall well, considering that no adjustable parameters have been used.

3.5 Conclusions

We have investigated the influence of additional, charge-induced repulsions be-
tween the colloids, and the effect of interacting polymers in good and θ-solvent
conditions, on the phase behaviour of colloid-polymer mixtures. This has been
be accomplished by incorporating colloidal electrostatic repulsions into a recently
formulated generalised free-volume theory. First, we have demonstrated that the
proposed theory is in quantitative agreement with previously performed Monte
Carlo computer simulation results for uncharged colloids for polymer-to-colloid
size ratios smaller than one, and in overall good semi-quantitative agreement for
size ratios above unity. Secondly, for charge-stabilised colloidal particles, we find
a strong influence of the range of repulsion on the phase stability of mixtures of
polymer chains and charged spheres. The charge-induced repulsion between the
colloids stabilises colloid-polymer mixtures against gas-liquid phase separation.
In addition, with increasing repulsion the crystallisation curve shifts to lower col-
loid volume fractions. Thirdly, we find that the solvent quality also affects the
phase diagram significantly. The stability region where a stable fluid is found,
is larger for a good solvent than for a θ-solvent; the influence of the solvency
is stronger for a larger polymer-to-colloid size ratio. This is due to the fact
that phase separation takes place at larger polymer concentrations (normalised
with the polymer overlap concentration). Finally, we find good agreement when
comparing our theoretically predicted and experimentally observed binodal in
an aqueous mixture of charged globulin (protein) and dextran (polysaccharide).
From our work it follows that it is useful for experimentalists working on biolog-
ical systems such as protein-polysaccharide mixtures to characterise the solvent
quality of the biopolymers in solution. The solvent quality can significantly alter
the phase stability.

67



3 Phase behaviour of colloidal dispersions with added polymer chains

68



4 Polymer depletion-driven cluster
aggregation and demixing in
charged-stabilised colloidal
dispersions

In chapter 3, we have theoretically investigated the phase behaviour of
mixtures of charge-stabilised colloidal spheres and non-adsorbing poly-
mers. To exploit the phase behaviour and the stability of such mixtures
also experimentally, we study in the following an aqueous dispersion of
amorphous charged silica spheres with added dextran macromolecules.
Due to surface-released counterions, the silica spheres carry nega-
tive surface charges which can be screened by adding sodium chloride.
Attractive interactions between the colloidal particles are induced by
adding dextran, a slightly branched polysaccharide, which does not ad-
sorb on the silica-water interface, as we have explicitly verified in our
experiments. Different from the theoretical model discussed earlier,
these silica particles do not behave as hard spheres. Instead, the van
der Waals forces induce strong attractions at close distances, causing
aggregation at sufficiently high salinity. We demonstrate in the follow-
ing that this aggregation can drastically influence the solution proper-
ties at sufficiently high salt concentrations, when the electrostatic re-
pulsion is partially screened out. We find that the cluster-aggregation
rate increases, as expected, with increasing salt concentration, and
the dispersion becomes stable at sufficiently low salinity. This makes
it possible to tune the strength of repulsion at will, depending whether
one is interested in aggregation processes or equilibrium properties.
By adding non-adsorbing polymers, a depletion-driven attraction is
induced. In the present experimental study, we first investigate the in-
fluence of the range of colloidal repulsion and attraction on the cluster
growth rate at low colloid volume fractions, using photon correlation
spectroscopy. The polymer chains add an additional attraction to the
van der Waals forces, so that the Coulomb barrier is lowered. As a
consequence, an accelerated cluster growth rate is observed. If the poly-
mer molar mass is sufficiently high, the polymers induce a long-range
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4 Depletion-driven aggregation and demixing in charged colloidal dispersions

attractive interaction, which can drive a fast initial phase separation,
accompanied by a proceeding slow aggregation process. When the dis-
persed colloidal particles are not density matched, larger aggregates
sediment under gravity, and a concentrated phase of colloidal clusters
is formed at the container bottom (cluster fluid). Second, the time
evolution of the non-equilibrium phase diagram, recorded for a vary-
ing range of the colloidal repulsion, and the resulting phase behaviour,
is discussed in terms of an initial phase separation process. From com-
paring the non-equilibrium state diagram with the equilibrium phase
diagram obtained from GFVT, we suggest that demixing procedes the
slow aggregation of colloidal particles at high polymer concentrations,
high colloid volume fractions and low salt concentrations.

4.1 Introduction

4.1.1 DLVO-theory of colloidal stability

Cluster-aggregation processes are ubiquitous in physics, chemistry and astro-
physics and, therefore, have received intensive attention during the past [163,164].
Common to all these phenomena is the formation of fractal, statistically self-
similar structures describable by universal scaling laws [165]. Accordingly, the
formation and growth of non-equilibrium clusters has been intensively investi-
gated in colloidal systems, where these structures can be directly imaged us-
ing, e.g., electron microscopy [166] and more recently, confocal microscopy tech-
niques [167–169]. A first explanation for the coagulation of charged colloidal
particles has been given by Derjaguin, Landau, Verwey and Overbeek (DLVO) in
their theory of colloidal stability [12]. According to the classical DLVO theory, a
colloidal dispersion can be stabilised against aggregation by sufficient electrostatic
repulsion. This is due to the fact that the attractive van der Waals (dispersion)
force acts only at short inter-particle distances typically of the order of about 10%
of the particle diameter. The van der Waals (vdW) attraction of two dispersed
spheres can be approximately described by the effective pair potential [6],

uvdW(r) = −AH

6

(
2a2

r2 − 4a2
+

2a2

r2
+ ln

[
1 − 4a2

r2

])
, (4.1)

for r > 2a. Here, r is the centre-to-centre particles distance, a is the radius of
a colloidal sphere, and AH is the Hamaker constant. The dispersion potential
decays as uvdW(r) ∼ 1/r6 for large r, and diverges as uvdW(r) ∼ −(r−2a)−1 near
contact distance r = 2a [69]. The screened electrostatic inter-particle repulsion
is described in the DLVO theory by the effective pair potential, uel(r), with

βuel(r) =
Z2 lB

(1 + κa)2

exp [−κ(r − 2a)]

r
, (4.2)
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Figure 4.1: Sketch of an aggregation cluster of size R consisting of colloidal particles
of radius a.

for r > 2a, with 1/β = kBT , Bjerrum length lB = e2/ (4πε0εkBT ), (effec-
tive) number of elementary charges, Z, on the colloidal surface, and the Debye
screening parameter κ with κ2 = 4πlB (|Z|ρc + 2ρs + ρb). Here, ρc, ρs, and ρb

are the number densities of colloidal particles, monovalent salt ions, and ionic
buffer molecules, respectively. The strength of the electrostatic potential part is
quantified by the contact value βε = Z2lB/[(1 + κa)22a]. The total pair poten-
tial of charged colloids in an electrolyte solution consists thus of the hard-sphere
potential, uhs(r), describing the excluded volume interaction of two spheres of di-
ameter 2a, the van der Waals attraction part, uvdW(r), and the contribution uel(r)
describing the screened electrostatic repulsion arising from overlapping electric
double layers. At sufficiently low salt concentration and large particle charge, the
total effective pair potential,

uDLVO(r) = uhs(r) + uvdW(r) + uel(r) , (4.3)

is dominated by uel(r), and the system is practically purely repulsive. By adding
salt, i.e., by increasing κ, the electrostatic repulsion decreases. If the range, κ−1,
of electrostatic repulsion becomes comparable to the range of the attractive dis-
persion forces, it becomes more likely that the surface-to-surface distance of two
particles becomes so small that the dispersion attraction dominates. Under such a
high-salt condition, the maximum in the pair interaction potential can be so small
(Fig. 4.2) that the dispersion becomes unstable against aggregation (see Fig. 4.1).
Then two particles stick irreversibly together after a collision event, since they
are trapped in the deep primary minimum of the pair interaction potential. If a
third particle collides with a dimer, a trimer is created and so on. Thus, particle
clusters are growing in time and one speaks of an irreversible aggregation (IA)
process. Cluster-aggregation processes in colloidal dispersions have been under
investigation both experimentally [170–172] and theoretically [173,174] since the
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4 Depletion-driven aggregation and demixing in charged colloidal dispersions

early eighties. It has been verified experimentally that the kinetics of cluster
formation depends significantly on the underlying aggregation mechanism. If the
particles or clusters stick together irreversibly upon the first collision, the cluster
growth rate is mainly determined by the diffusivity of the monomers (and clus-
ters), and one refers to a diffusion-limited (cluster) aggregation (DLA, or DLCA,
respectively) process. If, however, several collision events are required for two
constituents to stick together irreversibly, the cluster-growth rate is determined
by the monomer-monomer, or, more generally, the cluster-cluster, reaction ki-
netics. The corresponding process is called reaction-limited (cluster) aggregation
(RLA, or RLCA, respectively). As one expects, a cluster grows faster in a DLA
than a RLA process. In the former case, the cluster radius, R, obeys a power-law
time dependence, according to R(t) ∼ t1/df , characterised in three dimensions by
a cluster fractal dimension df(DLA) = 1.75 ± 0.03 [164]. For RLA, the cluster
size is described by an exponential growth rate, R(t) ∼ exp(t/τa), characterised
by the aggregation time τa. The clusters are obviously more compact in the case
of RLA, since the monomers can diffuse deeper into the cluster, resulting in a
larger fractal dimension of df(RLA) = 2.1 ± 0.1 [164].

In contrast to the high salinity case considered so far, where the Coulomb bar-
rier is so small (∼ kBT ) that two particles can reach the primary minimum
that causes irreversible aggregation after collision, there can be also circum-
stances where aggregation becomes reversible. Reversible aggregation (RA), or
reversible flocculation, can occur when the electrostatic repulsion is only partially
screened. With increasing electrostatic repulsion, the repulsive barrier, named Q
(see Fig. 4.2), grows and can become much larger than kBT , so that irreversible
aggregation becomes very unlikely. However, if the secondary minimum, which
occurs at relatively large inter-particle distances, is relatively deep compared with
kBT , the colloidal particles can form loose and reversible bounded aggregates.

We note that the irreversible aggregation processes encountered in DLA and
RLA are distinctly different from the reversible cluster aggregation [43]. The
structures arising from reversible aggregation can be described by equilibrium
statistical physics like, e.g., in the case of microphase separation [42], whereas
the irreversible aggregation phenomena discussed in the present chapter require
stochastic theory and kinetic equations for their description. The growth of a
colloidal cluster has been described successfully for the first time by Smoluchowski
in his rate equation for the evolution of the distribution function, n(x, t), for the
number of clusters of size x in time t [176],

∂n(x, t)

∂t
= −n(x, t)

∫ ∞

0

dy K(x, y) n(y, t) +
1

2

∫ x

0

dy K(y, x− y) n(y, t) n(x− y, t) .

(4.4)
Here, the collision rate in which a cluster of size x collides with a cluster of size
y and forms a cluster of size x + y, is described by the kernel function K(x, y).
Obviously, K(x, y) is symmetric in it’s two arguments. The first loss term on
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Figure 4.2: Typical DLVO pair potential (a = 12 nm, Z = 440, cs = 0.3 mol/l,
cb = 0.02 mol/l, φ = 0.01, AH = 0.8× 10−20(kBT )−1 [175], T = 295 K) of an unstable
aqueous silica dispersion. The dashed-dotted line describes the repulsive potential
part, uel(r), (Eq. (4.2)) and the dashed curve the attractive part, uvdW(r), (Eq. (4.1)).
The solid curve is the total pair potential, uDLVO(r). The height of the Coulomb
barrier is denoted as Q. If Q is small and two particles approach each other, the
primary minimum causes irreversible aggregation. However, if Q is large (Q � 1) and
the vdW attraction strong, two spheres can get trapped transiently in the secondary
minimum and reversible aggregation can occur.

the right-hand side of Eq. (4.4) accounts for the loss of clusters of size x due
to the collision with clusters of size y, and the formation of a larger cluster of
size x + y. The second (gain) term describes the formation of a cluster of size
x due to the collision of a cluster of size y ≤ x with clusters of size x − y. The
factor 1/2 corrects for the double-counting in the number of combinations. If one
assumes for simplicity that the two clusters of size x and y stick together only
upon contact, the aggregation rate is given by [177],

K(x, y) = 2πD0a
(x + y)2

xy
, (4.5)

where D0 is the single colloid (monomer) diffusion coefficient given by the Stokes-
Einstein relation, and a is the colloid radius. This expression holds true for ob-
servation times t � a2/D0. As can be seen from integrating Eq. (4.4) over the
interval [0,∞), this kernel ensures the conservation of mass (or particles) at t = 0,
so that

∫∞
0

dxn(x, 0) = n(a, 0) ≡ n0. Eqs. (4.4) and (4.5) are formulated such
that the aggregation of clusters is solely determined by the Brownian diffusion
of monomers (colloids) and clusters, i.e., they describe diffusion-limited aggrega-
tion or rapid flocculation. Note that the derivation of the rate equation for the
formation of dimers at the initial stage of Brownian flocculation is summarised
in appendix A, following Russel’s derivation [178].
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4 Depletion-driven aggregation and demixing in charged colloidal dispersions

If the particle concentration is very small and the inter-particle attraction much
larger than kBT , a system-spanning fractal network is observed [179]. At far
higher colloid volume fraction, φ, a gel-like structure is formed, which becomes
glass-like with further increasing φ [180].

4.1.2 Depletion-induced non-equilibrium phase separation

Consider now what happens if, in addition to the vdW attractions, another source
of attraction becomes operative. This is experimentally accomplished, for exam-
ple, by a polymer-induced depletion interaction. The colloid attractions induced
by adding non-adsorbing polymers to a colloidal suspension of spheres of radii a,
can be described at small polymer concentrations by the Asakura-Oosawa-Vrij
(AOV) model. In this simplifying model, the effective depletion pair potential is
given by the product of the osmotic pressure of the polymer solution in the reser-
voir, Πr

p, and the overlap volume Vov(r), e.g., uAOV(r) = −Πr
p · Vov(r) [98–100].

The effective depletion pair potential between two colloidal spheres due to phan-
tom chains (described as mutually penetrable spheres) has been originally derived
by Vrij and reads [100]

βuAOV(r) = − c

c∗
(1 + q)3

q3

(
1 − 3r

4(1 + q)a
+

r3

16(1 + q)3a3

)
, (4.6)

where 2a < r < 2 [a + Rg]. Here, q = Rg/a is the size ratio between the polymer
radius of gyration, Rg, and the radius of a colloidal sphere. The polymer concen-
tration (mass per volume) is denoted by c, and the polymer overlap concentration
is estimated by c∗ = 3M/(4πR3

gNA).
If one adds non-adsorbing polymers to the solution, the cluster-aggregation gets

accelerated, because the polymer chains induce an additional depletion attrac-
tion to the DLVO-like pair interaction potential, which decreases the electrostatic
repulsions and, as a consequence, aggregation due to the primary minimum be-
comes more likely. We note that the diffusivity of the colloidal particles is not
significantly hindered when a dilute solution of polymers is added. In contrast to
this, one finds dramatic effects on the phase behaviour when the range of attrac-
tion increases. For sufficiently large q, the solution can become unstable against
a gas-liquid-like phase separation (see Fig. 4.3). For q = 0.059, Lu et al. [181]
showed that the bi-continuous amorphous colloid structure initiated by spinodal
decomposition becomes arrested. It has been shown that the spinodal decompo-
sition arrest arise since the colloid particles aggregate, or experience a glass-like
arrest in the denser colloidal phase [182–185]. Then, a sponge-like rigid structure
is formed which behaves viscoelastically. The length scale for which spinodal
decomposition becomes arrested can be determined by the interplay between the
fastest growing wavelength of the density fluctuations leading to a demixing of
the fluid, and the aggregation kinetics, which depends on φ, the colloid diffu-
sion coefficient, and the specific form of the interaction potential. Thus, it is
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Figure 4.3: Sketch of a phase diagram in the temperature-colloid volume fraction
phase space, as encountered in a colloid-like dispersion with short- and long-ranged
attractive pair interactions. In case of polymer-induced depletion attractions, the
inverse polymer concentration replaces the temperature axis. The solid black curve
indicates the binodal line which terminates at the critical point (•), and the dashed
blue curve marks the spinodal line. At shallow temperature quenches (
), the solution
separates into a colloid-poor phase of volume fraction φa and a colloidal-rich phase φb

along the tie-line (green double arrow). At two points of the black dashed horizontal
line, the gel line (right red curve) intersects with the binodal. At deep temperature
quenches (
) below the horizontal black dashed line, βuvdW(r) decreases due to the
factor β, and gelation occurs in the colloid-rich phase at φd. Due to a glassy or
percolation arrest in this denser phase, the spinodal decomposition of colloidal spheres
gets arrested before equilibrium is reached, so that φc > φeq.

c and φd < φeq.
d .

interesting to explore how the critical slowing down occurring during spinodal
decomposition affects the aggregation process of colloidal particles.

Arrested spinodal decomposition occurs typically for colloid volume fractions
in between 0.01 and 0.4, depending on the range of attractions. An explanation
of the glass-like arrest of spinodal decomposition has been given by Manley et al.
[185] based on mode-coupling theory (MCT). Even though MCT does not predict
spinodal decomposition, the experimental data are explained quantitatively by
this theory, which has been designed originally to describe the hard-sphere glass
transition of the colloid-rich phase that occurs experimentally at φ ≈ 0.58. The
reason why the MCT is useful also in describing arrested phase separation is the
separation of time scales. In fact, phase separation sets in immediately after the
sample mixing, leading to the aforementioned bi-continuous network of growing
characteristic length scale, ξ, that characterises the width of the gills of the
network. In contrast, the particles get arrested at later times after mixing when
the density of the colloidal-rich phase is above the glass-transition value. When
short-ranged attractive interactions between the colloidal particles are operative,
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4 Depletion-driven aggregation and demixing in charged colloidal dispersions

so that they can stick together after a collision event, clusters are formed instead
during spinodal decomposition in the denser liquid phase [186–189]. This cluster
formation is expected to take place at lower volume fractions, and on a shorter
time scale during the spinodal decomposition process. The resulting clusters
can sediment to the container bottom, and by this circumvent the formation
of a container-spanning network. It should be emphasised that the kinetics of
cluster-aggregation processes depends crucially on the colloid volume fraction,
the strength and range of the repulsive electrostatic interactions, the binding
mechanism (i.e., whether the colloids are chemically or physically connected),
and the form of the reversible or irreversible aggregation mechanism. Thus, a
large variety of mechanisms can lead to gelation.

Whereas at low φ the aggregation process can be well described by kinetic
equations, and glassy solidification is captured quite well by the MCT approach,
no general description exists so far for intermediate volume fractions, where non-
equilibrium aggregation processes and equilibrium phase separation are operative.
On the one hand, this complexity is certainly due to the fact that the dense
concentration regime is not amenable to perturbation methods such as a virial
expansion, since multi-body interactions are important. On the other hand,
continuum theories describing appropriately the equilibrium phase behaviour do
not capture aggregation phenomena.

Bergenholtz and Fuchs [190] have been the first to describe gel formation in
colloidal dispersions with short-ranged attractive interactions using the MCT of
non-ergodic arrest, used before only to study the liquid-glass transition. There-
after, the similarities between gelation and glass transition, e.g., their kinetic
origin, the basically unchanged fluid-like structure factor at the transition, the
occurrence of two time-separated relaxation modes, have been experimentally ob-
served by Segrè et al. [191]. As experimentally shown by Pham et al. [192], the
MCT theory successfully describes the attractive glass transition for φc ≥ 0.4.
Due to the success of MCT in predicting the phase behaviour of attractive glasses,
and further experimental studies by Sedgwick et al. [169,193,194], Kroy et al. [195]
have made an attempt to extend MCT to lower volume fractions. In the absence
of a spinodal decomposition, i.e., for sufficiently short-ranged attractions, larger
clusters are formed on a shorter time scale, as observed by experimentally by
Segrè et al. [191]. When all monomers have been absorbed by the growing clus-
ters, aggregation stops and gelation only occurs after these cluster have diffused
sufficiently in space to get stuck (jammed) at a later stage. Kroy et al. have
applied MCT to these clusters to describe this glass-like arrest. Accordingly, the
theory is referred to as the cluster mode-coupling theory (CMCT). Besides these
theoretical approaches, only a number of ad hoc explanations have been given
to explain the experimental observations (see, e.g., Lu et al. [181] for a short
overview).

Notwithstanding the lack of a complete theoretical understanding, to deepen
our physical insight, we study in the following the dynamics of colloidal par-
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ticles in a dextran solution in situations, where phase separation and cluster-
aggregation interfere. We note that a gelation process which interrupts spin-
odal decomposition is often encountered in protein solutions (see chapter 2,
and [57, 79]), where cluster-aggregation is unwanted because it inhibits protein
crystallisation. Aside from proteins, materials made of such foam-like rigid struc-
tures (e.g., by drying the arrested network) have also the potential for technical
applications [196].

In the present work, we investigate mixtures of nano-sized Ludox silica parti-
cles and dextran in water. We focus here on the effect of long-ranged depletion
attractions where 0.49 ≤ q ≤ 2.6. In section 4.2, the samples are characterised
and the light scattering technique and the data evaluation are explained. We
first demonstrate that the dextran polymers do not adsorb on the particle sur-
face at the solvent conditions met in our experiments. In using light scattering,
the growth of clusters is monitored. Thus, we concentrate on the percolation
regime, where non-equilibrium clusters and a low-volume fraction gel are formed.
In section 4.3, we first monitor the growing cluster size as a function of the
added electrolyte, in the absence of added polymers. Then, dextran polymers
are added which induce an additional depletion attraction between the charged
colloidal spheres, and a depletion-driven cluster-growth is observed (section 4.4).
In section 4.5, we monitor the effect of the salt concentration on the precipitation
lines and construct a non-equilibrium state diagram. In addition, we discuss an
initial phase separation and irreversible aggregation processes which are driven
by an interplay of short-ranged vdW and long-ranged depletion attractions. Our
experimental and theoretical results are summarised in the final section.
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Figure 4.4: Left: Square of the normalised electric field autocorrelation function,
[g1(t)]2, of a sample with φ = 0.01 and cs = 0.15 mol/l for various scattering angles θ
as indicated. Right: Inverse of the corresponding mean relaxation time, 〈τ〉KWW, as
a function of the square of the scattering wave number q.

4.2 Experiments

4.2.1 Sample materials

Silica particles (LudoxTM TMA) were kindly provided by Grace Davison (Worms,
Germany). These amorphous particles were supplied in a deionised aqueous stock
dispersion of pH = 6.9. The dispersion contains a mixture of 5-chloride-2-methyl-
2H-isothiazol-3-on and 2-methyl-2H-isothiazol-3-on with a total volume fraction
of 0.0025% to prevent fungal decay and bacterial growth. The density of the
amorphous silica particles of ρc = (2.1 ± 0.1) g/cm3 was determined from the
weight loss when drying a known amount of dispersion, the colloidal dispersions
density, and the density of water.

Dextran from Leuconostoc with molar masses M = 4×104 g/mol, 5×105 g/mol
and 2 × 106 g/mol, respectively, were purchased from Fluka. The radius of gyra-
tion, Rg, of dextran is estimated, using the results from Nordmeier [162], to Rg =
0.0633 × M0.427 = (5.8 ± 0.4) nm, (17 ± 1) nm and (31 ± 2) nm, respectively, on
assuming a polydispersity of 15%. We note that the exponent of 0.427 < 0.5 is
indicative of a somewhat branched chain structure. The polymer overlap concen-
tration, c∗, is estimated as c∗ = 3M/(4πNAR3

g), resulting in c∗ = 0.0796 g/cm3,
0.0391 g/cm3, and 0.0265 g/cm3 for M = 4 × 104 g/mol, 5 × 105 g/mol, and
2×106 g/mol, respectively. The mass density of dextran is ρp = 1.637 g/cm3 [197].
To ensure that dextran does not adsorb on the silica-water interface and to in-
crease the colloidal stability, an ammonium-chloride buffer has been used (see
below). The buffer concentration, cb, was set to 0.02 mol/l with pH = 9.2 ± 0.1,
and the ionic strength was varied by adding sodium chloride (Sigma-Aldrich).
The aqueous Ludox dispersion was dialysed against the ammonium-chloride buf-
fer solution for two weeks. For all solutions, the aqueous medium was taken
from a Millipore ultra-clean facility. All solutions where properly sealed to
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prevent evaporation of the dissolved ammonia. To avoid bacterial growth, N-
methylisothiazolon-HCl (Chemos, Regenstauf, Germany) was added at a volume
fraction of 0.0025%. Furthermore, the silica-containing dispersion was stored in
plastic containers to prohibit wall-induced aggregation occurring in glass contain-
ers. The samples have been prepared from stock solutions to ensure rapid mixing
of the polymer and the colloidal solutions. For this purpose, the dextran powder
was dissolved in a buffer solution containing already the desired sodium chloride
concentration. Stirring of the polymer solution was avoided to prevent disrupting
the polymer chains. Shortly before the samples were prepared, the dialysed Lu-
dox dispersion was mixed with a proper amount of a high concentrated sodium
chloride solution (1 mol/l). Afterwards, the desired colloid-polymer mixture was
prepared by adding proper amounts of the colloidal stock solution, the polymer
solution and the salt-containing buffer solution. The suspension was then gen-
tly mixed. In this way, the polymer, colloid, buffer and salt concentrations are
precisely known.

4.2.2 Experimental techniques and sample characterisation

Dynamic light scattering (DLS) experiments were performed on a ALV/CGS-
8F S/N 060 laser goniometer system (ALV, Langen, Germany), using a 22 mW
Helium-Neon-Laser (JDS Uniphase, Milpitas, USA) and a single avalanche photo
diode detector. The temperature was set to T = 295 K during all DLS measure-
ments. Samples containing the colloidal dispersion only were filtered through a
0.45 μm pore-size Nylon filter (Roth, Karlsruhe, Germany) to remove dust. Mix-
tures of colloids and polymers were filtered with Cameo Nylon filters of pore
size 5.0 μm. Transparent solutions were filled into cylindrical glass cells (Hellma,
Müllheim, Germany) of 10 and 20 mm diameter. Mixtures which become tur-
bid right after mixing, were filled into 5 mm NMR tubes (VWR, Darmstadt,
Germany). All samples where sealed with Teflon tape.

Colloidal particle size and polymer radius of gyration

The size of the silica sphere was determined from the measured diffusion coeffi-
cient for various colloid concentrations at T = 295 K, and a salt concentration
of cs = 0.15 mol/l. To illustrate this size determination, consider a dispersion
of Ludox particles of volume fraction φ = 0.01. For each scattering angle θ,
the hardware records the scattered intensity I(t) over a period of time. Si-
multaneously, the hardware correlator calculates the normalised intensity auto-
correlation function g(2)(t) = 〈I(0)I(t)〉/ 〈I2(0)〉. The function g(2)(t) is related
to the normalised auto-correlation function of the scattered electric field, g(1)(t) =

〈 �E∗(t) · �E(0)〉/ 〈| �E(0) |2〉, by the Siegert relation g(2)(t) = 1 +
[
g(1)(t)

]2
[198]. In

Fig. 4.4, the result of such a light scattering experiment is shown. In the left

figure,
[
g(1)(t)

]2
is plotted for various scattering angles θ as indicated. For a
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Figure 4.5: Measured collective diffusion coefficient, D, obtained by dynamic light
scattering as a function of the silica particle volume fraction, φ, for salt concentration
cs = 0.15 mol/l.

dilute suspension of monodisperse spherical particles that are uncorrelated, the
normalised field auto-correlation function decays single exponentially according
to g(1)(t) = fc exp [− (t/τ)], where fc < 1 describes the coherence area factor
limited by the applied optics. Only if one were able to focus the detector onto
a single speckle, fc = 1 could be achieved. To date, values of fc ≈ 0.95 are
reached using single mode fibre optics. The relaxation time, τ , of density fluctu-
ations of wavelength 2π/q is related for a very dilute sample to the single particle
diffusion coefficient, D0, according to 1/τ = D0q

2, where q = (4πn/λ) sin(θ/2)
is the scattering wave number for light of vacuum wavelength λ in a medium
of refractive index n. Thus by fitting a single exponential function to the mea-
sured correlation function, as depicted in Fig. 4.4, D0 is obtained. In prac-
tice, however, colloidal particles are not ideally monodisperse and a superposi-
tion of exponentials is measured. For simplicity, we globally describe it by a
stretched exponential, namely the Kohlrausch-William-Watts (KWW) expres-
sion, g(1)(t) = fc exp [− (t/τ)βKWW ], with a stretching exponent βKWW, that char-
acterises the overall size polydispersity [199]. For βKWW > 0.9, the polydispersity
becomes negligible. The mean relaxation time on a polydisperse sample is then
given by 〈τ〉KWW = (τ/βKWW)Γ(1/βKWW), where Γ denotes the Gamma-function.
In the right figure in Fig. 4.4, the average relaxation time is plotted as a function
of q2. From the slope of its line fit, D0 is deduced. The so-obtained value of D0

can be related to the hydrodynamic radius, R0, of the particles using the Stokes-
Einstein relation D0 = (kBT )/ (6πηR0), including the solvent shear viscosity η.
The viscosity of the solvent (water) at T = 295.15 K, taken from the literature,
is η = 0.959 mPa · s [200].

In Fig. 4.5, the measured collective diffusion coefficient for samples of varying
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Figure 4.6: Left (a): TEM picture of the dried Ludox particles dispersion. Right (b):
Size distribution of Ludox particles observed from image analysis. The mean particle
radius is 〈a〉 = (12 ± 2) nm (see text for details).

volume fractions is plotted. The line represents a fit to the expression D(φ) =
D0(1 + kdφ), which describes a low-density expansion of the collective diffusion
coefficient, D(φ), in terms of φ applicable for sufficiently large κa [201]. For
vanishing φ, the single-particle diffusion constant D0 is recovered. From our fit
we find D0 = (1.214± 0.001)× 10−11 m2 s−1. Using the Stokes-Einstein relation,
we can estimate the hydrodynamic radius of the Ludox silica particles in our
DLS measurements as R0 = (18.6 ± 0.1) nm. The virial coefficient is estimated
to be kd = 3.2 ± 0.2. Since kd = −24φ

∫∞
0

dx x2(exp [−βu(x)] − 1), for x =
r/(2a), without hydrodynamic interactions (HI) and since the negative valued
HI correction to kd is quite small for the large salt content considered [202,203],
a positive kd indicates that the pair potential is practically repulsive. For a
monodisperse hard-sphere dispersion, one finds instead that kd = 1.454 [201].

A Transmission-Electron-Microscope (TEM) picture of Ludox particles is shown
in Fig. 4.6. Assuming a Gaussian distribution of the particle diameter d given
by p(d) = p0 exp [−(d − 〈d〉)2/(2σ2)], with amplitude p0 = 135 ± 4, mean value
〈d〉 = 24 nm and standard deviation σ = 4.4 nm, the mean colloid radius is
〈a〉 = 〈d〉/2 = (12 ± 2) nm. The z-averaged particle radius is defined as 〈a〉z =∫∞

0
da p(a) a6 / (

∫∞
0

da p(a) a5), resulting in 〈a〉z = (14 ± 2) nm for our system.
This value is slightly smaller than the observed hydrodynamic radius, R0 =
(18.6 ± 0.1) nm, obtained by DLS. We note that the mean radii from TEM
and DLS are often quite different [204–207]. The colloidal particles are made
of amorphous silica material. Hence, the particles can shrink when drying the
suspension in order to make a TEM picture. In addition, our measurements might
be influenced to a small extent by electrokinetic effects. However, κa in our mea-
surements is typically much larger than 1, and thus electrokinetic effects are quite
small. In the following, we use the value observed from TEM in all our model
calculations. Note that for simplicity we will denote the mean colloidal sphere
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Figure 4.7: Left: Titration curve of the pure buffer solution without salt (cs = 0 mol/l)
(•), and of the colloid dispersion containing silica particles dissolved in the same
buffer solution (
). Right: Difference, ΔV , between the volume of hydrogen chloride
solution (0.01 mol/l) added to the colloid solution and the pure buffer solution as a
function of the pH-value. The vertical dashed line marks the pH-value of the hydrogen
chloride solution.

radius 〈a〉 as a in the following. Furthermore, we define the polymer-to-colloid
size ratio as q = Rg/a. Accordingly, for Mw = 4× 104 g/mol, 5× 105 g/mol, and
2 × 106 g/mol, we obtain q = 0.49 ± 0.03, 1.4 ± 0.1, and 2.6 ± 0.2, respectively.

Initially after the sample preparation, an angular-dependent DLS measurement
was done for each sample. The so-obtained diffusion coefficient, D(t = 0), was
then used to normalise the subsequent time-dependent DLS measurements, made
at a fixed scattering angle of θ = 60◦.

Charge titration

The number of surface charges on the silica particles was estimated by charge
titration. For this purpose, a 0.01 mol/l hydrogen chloride (HCl) solution was
added stepwise to the colloidal dispersion of known volume fraction, and known
salt and buffer concentrations. During addition, the pH value was monitored as a
function of the added volume of HCl solution. The procedure was then repeated
for the buffer solution at the same salt concentration but without Ludox (see
Fig. 4.7, left). The number of titration charges, Ztitr, follows then from the
difference of HCl solution additionally added to saturate the hydroxyl-groups on
the silica surface (see Fig. 4.7 right and Fig. 4.8). A MATLAB (Math Works
Inc., USA) routine was encoded to evaluate the measurements.

According to Fig. 4.8, Ztitr increases with increasing salt content. If the elec-
trolyte concentration is increased, the Debye screening length decreases. The
number of surface charges is caused by the dissociation of silanol groups, ac-
cording to SiOH + H2O � SiO− + H+

3 O. In equilibrium, the concentration of
hydronium ions and protonated and deprotonated silanol groups are characterised
by the dissociation constant in the mass action law. As a consequence of the mass
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Figure 4.8: Number of titration charges, Ztitr, of Ludox silica particles obtained
from charge titration as a function of the sodium chloride salt concentration cs. The
depicted error bars for Ztitr are mainly caused by the uncertainty in a.

action law and the fact that the hydronium concentration near the colloidal sur-
face is affected by the electric surface potential, one obtains in combination with
the Poisson-Boltzmann equation that the number of SiO−, i.e., the number of
surface charges, increases with the salt concentration [6, 208]. For later use, we
have fitted the data points to the quadratic form Ztitr(cs) = a1c

2
s + a2, with the

two parameters given by a1 = (9671 ± 415) l2/mol2 and a2 = 1280 ± 95.
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Viscosity of the polymer solution

To be able to account for the increase in the intrinsic shear viscosity of the
colloidal dispersion with increasing polymer concentration, the shear viscosity, η,
of pure Dextran solutions has been measured using an Ares 4LS1 rheometer (TA
Instruments, USA) with a Cuette cell of 17 mm inner diameter. The polymer
was diluted in the pure buffer solution without salt. In Fig. 4.9, the measured
viscosity of the dextran solution is shown as a function of the reduced density
of polymer coils for molar masses of M = 4 × 104 g/mol, 5 × 105 g/mol and
2×106 g/mol, respectively. As expected, η is a function of c/c∗ only, independent
of the molar mass. The solid curve is a fit to the cubic expansion η(x) = η0(1 +
α1x + α2x

2 + α3x
3) [209], with x = c/c∗, and α1 = 3 ± 1, α2 = 0.7 ± 0.6,

and α3 = 0.43 ± 0.07. The solvent viscosity has been taken from literature,
η0(T = 295 K) = 0.959× 10−3 Pa · s [200]. The experimentally observed viscosity
of the pure buffer solution, η(x = 0) = (1.0 ± 0.2) × 10−3 Pa · s, is in agreement
with this value. A NaCl concentration of 0.5 mol/l increases the (pure) solvent
viscosity only slightly to (1.1±0.2)×10−3 Pa·s and, as a consequence, is neglected
in the following.

84



4.2 Experiments

 0

 0.5

 1

 1.5

 0  10  20  30

D
 [1

0-1
1  m

2 /s
]

c [mg/cm3]

cs=0.0 mol/l
cs=0.1 mol/l
cs=0.2 mol/l

 0  1  2
Γp [mg/m2]

 0

 10

 20

 30

 0  10  20  30

R
 [n

m
]

c [mg/cm3]

cs=0.0 mol/l
cs=0.1 mol/l
cs=0.2 mol/l

 0  1  2
Γp [mg/m2]

Figure 4.10: Left: Collective diffusion coefficient, D, of a Ludox silica dispersion at
φ = 5×10−3 as function of the added dextran concentration, c, (Mw = 5×105 g/mol)
for pH = 9.2 ± 0.1 and for cs = 0 mol/l, 0.1 mol/l and 0.2 mol/l, respectively.
Right: Hydrodynamic radius, R, obtained from the Stokes-Einstein relation using
η0 = 0.959 mPa · s. The lower scale of the abscissa gives the polymer surface con-
centration, Γp, that would result if all polymers adsorb on the surface of the silica
particles. As a rule of thumb, one expects that the surface is completely covered when
Γp ≥ 1 mg/m2 [210].

Evidence that dextran does not adsorb on the silica-water interface

To investigate whether dextran adsorbs at the silica sphere surfaces, we prepared a
dispersion of Ludox and mixed it with dextran solutions of varying concentration.
The samples were mixed thoroughly and stored for 24 hours at room temperature
to equilibrate before the measurements were conducted. All samples contain the
ammonium chloride puffer with cb = 0.02 mol/l and pH = 9.2 ± 0.1. The volume
fraction of Ludox was fixed to φ = 0.005. Figure 4.10 displays DLS measurements
on these Ludox-dextran mixtures at varying salt concentrations. As shown, the
collective diffusion coefficient, D, and, likewise, the hydrodynamic radius, R, are
not affected upon increasing the polymer concentration. In contrast, one expects
a significant decrease of D, and conversely, an increase in R in case of adsorbing
polymers due to an enlarged hydrodynamic friction caused by the adhering chains.
Thus, we can conclude that dextran does not adsorb onto the surface of the Ludox
particles at pH = 9.2 ± 0.1, in accordance with previous findings [211–213].
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Figure 4.11: Left: Normalised measured collective diffusion coefficient as a function
of the elapsed time after sample preparation, for varying cs (see legend) and φ = 0.01.
Right: Reduced hydrodynamic radius as a function of the elapsed time after sample
preparation, calculated from the diffusion coefficient in the left figure using the Stokes-
Einstein relation.

4.3 Cluster-aggregation in pure silica dispersions

In this section, we first explore aqueous suspensions of fused silica particles
without added polymers, which have been under considerably investigation in
the past [170, 214–218]. However, earlier studies used slightly different colloidal
batches than ours in terms of the particle size and densities, and slightly different
solvent conditions. Thus, a direct quantitative comparison of these earlier data
with our present measurements is not possible. Our light scattering data on the
pure silica-water system discussed in the following serve as the basis to study the
additional influence of added polymers on the cluster aggregation rate.

4.3.1 Influence of the electrolyte concentration on the
aggregation rate

In the left figure of Fig. 4.11, the collective diffusion coefficient of silica spheres
in a Ludox dispersion at φ = 0.01 and pH = 9.2, is measured over several hours
for various salt concentrations. The diffusion coefficient has been normalised by
the single particle diffusion coefficient, D0. In the right figure, the corresponding
hydrodynamic radius obtained from the Stokes-Einstein relation is shown. As can
be clearly seen, the time evolution of the diffusion coefficient depends strongly on
cs. With increasing cs, the diffusion coefficient decays faster to zero, indicative of
a more quickly growing cluster size of aggregates (see the right figure of Fig. 4.11).
This observation is explained by the salt-induced screening of the colloid charges.
The electrostatic repulsion decreases with increasing cs, according to Eq. (4.2), so
that the particles can overcome the reduced Coulomb barrier more easily during a
collision event (see Fig. 4.2), leading to the formation of dimers, trimers and so on.
With growing reaction time, increasingly larger aggregates are observed, which
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Figure 4.12: Semi-logarithmic plot of the reduced time-dependent hydrodynamic
radius of colloid clusters measured for several salt concentrations as a function of time
for φ = 0.01. The straight lines are fits to the form R(t) = R0 exp(t/τa), with the
adjustable time parameter τa determined for lines a, b, c, d, e, f and g. cs = 0.6 mol/l
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τa = (2.93±0.01) h, (d) τa = (1.67±0.07) h; cs = 0.4 mol/l (�): (e) τa = (23.8±0.1) h;
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respectively.

consist of several silica particles (monomers). As a consequence, the diffusion
coefficient of the aggregates decreases, and likewise, the cluster hydrodynamic
radius increases with time.

In Fig. 4.12, the logarithm of the reduced hydrodynamic radius is plotted as
a function of the time elapsed after sample preparation. Note that the τa for
cs = 0.15 mol/l has been monitored by angular-dependent DLS over a period
of 16 days. For all salt concentrations considered, a linear relation within the
logarithmic-linear plot is observed for initial times. Thus, we conclude that the
initial cluster growth is caused by a slow, irreversible reaction-limited aggregation
process, where the hydrodynamic radius scales with exp(t/τa) in time. For cs =
0.5 mol/l and 0.6 mol/l, a second and faster exponential cluster growth regime
is observed at later times. This regime can be attributed to a faster irreversible
reaction-limited cluster aggregation mechanism, which sets in after the clusters
have consumed the monomers in their surroundings. Accordingly, further growth
of clusters by capturing monomers is prevented. Instead, bigger aggregates are
formed at larger time scales due to cluster-cluster collision.

The short-time aggregation time, τa, obtained from the linear fit to the short-
time data points in Fig. 4.12, is shown in Fig. 4.13 as a function of cs. As expected,
τa increases with decreasing cs, because of the increasing Coulomb barrier.
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Figure 4.13: Short-time aggregation time, τa, as a function of salt concentration cs,
for φ = 0.01.

4.3.2 DLVO-like description of the aggregation kinetics

Having carefully characterised our system in terms of colloid size, titration charge
at pH = 9.2, and Hamaker constant AH = 0.8 × 10−20J [175], we are now in the
position to calculate the DLVO pair potential consisting of the van der Waals
interaction part, uvdW(r), in Eq. (4.1), and the electrostatic pair potential part
uel(r) in Eq. (4.2).

The pair potential uDLVO(r) obtained using the titration charges in uel(r) (see
Fig. 4.14), is practically purely repulsive for all salt concentrations considered,
and does not exhibit a sufficiently small Coulomb barrier that can be overcome
by thermal motion. Thus, irreversible cluster-aggregation caused by the primary
van der Waals minimum would be entirely inhibited by the strong electrostatic
repulsion caused by Ztitr. In contrast to this, we observe experimentally a rapid
cluster-growth with increasing cs. Note here that for cs > 0.15 mol/l, a secondary
minimum in uDLVO(r) appears in Fig. 4.14. However, this weak secondary min-
imum (� 1 kBT ) is to shallow to cause reversible aggregation. The reason for
the difference between the experimental results and the theoretical predictions
is that the titration charge, which is an estimate of the bare particle charge,
can not be used in the effective potential uel(r). For values lB |Z| /a 	 1, the
linear Debye-Hückel (DH) theory assumption leading to Eq. (4.2) is not valid
any more. In fact, in our Ludox dispersions, lB|Z|/a > 50 for all cs considered.
For larger charges, the DH form of uel(r) can still be used, but Z (and also
κ) must be replaced by an effective (renormalised) charge number Zeff , and a
renormalised κ, that incorporate the effect of quasi-counterion condensation near
strongly charged colloid surfaces. Due to this quasi-counterion condensation,
Zeff can be substantially smaller than the bare charge at lower salinity. Several
approximative schemes, mainly based on the Poisson-Boltzmann approach and
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Figure 4.14: DLVO pair potential for the pure Ludox silica dispersion considered
in Fig. 4.11, with φ = 0.01 and various cs-values at pH = 9.2 and T = 295 K as
indicated. The electrostatic part of the DLVO potential has been calculated here using
the colloidal charge number, Ztitr, found from titration measurements (see Fig. 4.8).
The Hamaker constant in the vdW attraction part is AH = 0.8×10−20J, for the fused
silica particles dissolved in water [175].

additional cell model or jellium model assumptions have been devised to compute
Zeff(cs) and κ for a given Z, φ and cs [219–221]. We point out that Zeff(cs) is
determined from matching the calculated τa to the experimental one for a single
small φ = 0.01. Then Zeff(cs) is kept constant when φ is changed. Which method
of charge renormalisation gives the most reliable result for Zeff is still a matter of
debate. Similar problems in experimental studies on dispersions of highly charged
silica particles of nanometric size, where the Debye-Hückel approximation is not
quantitatively correct, have been encountered before [222].

We note further that the particle distance, where the maximum in uDLVO(r)
occurs, is in the sub-nanometre range for the small and highly charged Ludox
particles and for the high salt concentrations considered. Thus, in addition, the
continuum description of the solvent used in the mean-field Poisson-Boltzmann
theory is not fully justifiable any more, and the discrete nature of the microions
and the solvent molecules may play a role. Also, the van der Waals attraction
may not be quantitatively describable any more by Eq. (4.1). Furthermore, the
particle surface roughness [223, 224], effects of an inhomogeneous surface charge
distribution [225, 226], and hydration forces [227, 228] should also be considered
in principle. Such a quantitative model description of the experimental system
would be extremely demanding and has not been accomplished to date.

Since our present work mainly concentrates on the influence of polymer-induced
attraction on the non-equilibrium and equilibrium phase behaviour of charged
colloidal dispersion, we are not concerned here with a first-principle theoretical
description. Rather, we will restrict ourselves to a DLVO-like description and
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Figure 4.15: Mobility of the relative motion of two spheres along their line of centres
[229]. The dashed line indicates the linear lubrication regime, where G(r) ∼ (r−2a)/a.

consider Z (= Zeff) in uel(r) as an adjustable parameter, with renormalised κ2 =
4πlB (|Zeff |ρc + 2ρs + ρb) for a 1-1 electrolyte in accord with the renormalised
jellium model theory of charge renormalisation [220]. The van der Waals forces
are approximated by Eq. (4.1) using a Hamaker constant of AH = 0.8 × 10−20J
as given in the recent literature [175]. We compare the aggregation time, τa,
deduced from our experiments with the dimer formation theory of Brownian
flocculation [6, 178], where τa is given by

τa =
πη a3

φ kBT
W , (4.7)

and W is the stability ratio, obtained from

W = 2a

∫ ∞

2a

exp (βu(r))

r2G(r)
dr . (4.8)

The derivation of Eqs. (4.7) and (4.8) are summarised in the appendix A. The
hydrodynamic function G(r) in Eq. (4.8) quantifies the relative mobility of two
spheres along their line of centres [230]. The tabulated values for that hydro-
dynamic function is shown in Fig. 4.15. If two spherical particles approach one
another, the liquid in the gap between the two colloids has to be squeezed out.
For r → 2a, the pressure in the liquid gap diverges as ηV a/(r − 2a)2 [231], and
G(r) decays to zero as (r − 2a)/a. The two-sphere hydrodynamics described by
G(r) leads thus to an increase in τa. We note that aggregation is possible because
the flux due to the inter-particle forces, and thus, W , remains finite, since the
diverging vdW attraction overcomes the vanishing mobility.

For u(r) = 0 and G(r) = 1, i.e., if the pair interaction potential only acts
to stick particles together at contact, and if the hydrodynamics interactions are
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Figure 4.16: Effective colloid charge as a function of the salt concentration, obtained
from matching Eq. (4.7) to the experimentally determined initial aggregation time τa

given in Fig. 4.13. The solid curve is a fit to the form Zeff(cs) = b1c
2
s + b2cs + b3 with

b1 = (−1184± 90) l2/mol2, b2 = (2267 ± 68) l/mol and b3 = 413 ± 12.

neglected, an aggregation time of τa(Zeff) = 0.13 ms is obtained for φ = 0.01, and
τa(Zeff) = 0.01 ms for φ = 0.12, on assuming a = 12 nm, η = η0 and T = 295 K.
By substituting u(r) ≡ uDLVO(r) in Eq. (4.8), using AH = 0.8×10−20J [175], τa is
estimated by the dimer formation theory in terms of the solutions properties if, in
addition, the number of charges is provided. Here, we determine Zeff by matching
the τa in Eq. (4.7) to the experimental values. Since the major contribution to
the integral in Eq. (4.8) comes from the vicinity of the maximum in u(r), we can
introduce a lower cutoff radius a → a + ε. Values of ε in between 0.1 nm and
0.2 nm have been employed [6]. However, in the present systems of highly screened
colloid particles of nanometre size, the location of the maximum in uDLVO(r) is at
sub-nanometre distances [222]. Hence, we can select for a + ε the radial distance
r0, where uDLVO(r) crosses zero near contact distance. The so-obtained effective
charge number, Zeff , is plotted in Fig. 4.16 as a function of cs. In Fig. 4.17, the
corresponding pair potentials are presented.

We point out that, as expected, Zeff < Ztitr for all cs considered. The in-
crease of Zeff with increasing cs is consistent with the lowering of quasi-counterion
condensation due to enlarged screening [220]. Table 4.1 contains the numer-
ical values characterising the pair potential. The location of the maximum
(Coulomb barrier), rmax, and the secondary minimum, rmin, in βuDLVO range
from rmax/(2a) = 1.007 to rmax/(2a) = 1.006, and from rmin/(2a) = 1.26 to
rmin/(2a) = 1.10, respectively, when cs increases from 0.15 mol/l to 0.6 mol/l. At
the same time, the pair potential at rmax, βuDLVO(rmax), decreases from 35 to 25,
and the depth of the secondary minimum, βuDLVO(xmin), increases from −0.04 to
−0.24. Note that the centre-to-centre distance, r0, where uDLVO intersects with
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Figure 4.17: DLVO pair potential calculated for parameters obtained from adjusting
the effective colloid charge number Zeff(cs) entering the calculation of τa to the ex-
perimentally found initial aggregation time, for a system with φ = 0.01 at T = 295 K
(see Table 4.1).

the x-axis at near-contact distance, is almost unaffected by the change in the
salinity, and is given by r0 = 1.002, whereas the Coulomb barrier height Q is
strongly affected. Table 4.1 illustrates how sensitively τa depends on the salinity.
By increasing cs from 0.15 mol/l to 0.6 mol/l, τa is reduced from several weeks
down to only half an hour.

cs Zeff 1/(κσ) βε Q τa

[mol/l] [h]
0.15 725 0.032 56.9 35.1 17408
0.3 990 0.023 55.9 30.7 186
0.4 1130 0.020 55.6 28.7 24
0.5 1246 0.018 54.6 26.7 2.9
0.6 1349 0.016 53.8 25.0 0.5

Table 4.1: Effective charge number and other parameters characterising uDLVO(r) for
several experimentally used salt concentrations. The effective charge number Zeff has
been adjusted to match the experimental values of τa as described in the text. The
Hamaker constant used for the fused silica is AH = 0.8 × 10−20J [175].
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Figure 4.18: Left: Influence of the colloid volume fraction (see legend) on the mea-
sured diffusion constant as a function of the elapsed time after sample preparation,
for cs = 0.15 mol/l and cs = 0.3 mol/l. Right: Corresponding reduced apparent hy-
drodynamic radius calculated using the Stokes-Einstein relation.

4.3.3 Influence of the colloid volume fraction on the
aggregation rate

We investigate now the influence of the colloid volume fraction varied in the
range from 0.01 to 0.14, for two salt concentrations cs = 0.15 mol/l and 0.3 mol/l.
The time-evolution of the collective diffusion coefficient D and the hydrodynamic
radius of the growing clusters is shown in Fig. 4.18. The diffusion coefficient in-
creases with increasing φ and decreasing cs, as observed also in equilibrium sus-
pensions of charge-stabilised particles [201]. Hence, the obtained values D(t =
0) = (1.258±0.005)×10−11 m2 s−1 at cs = 0.3 mol/l and φ = 0.12, and D(t = 0) =
(1.434±0.002)×10−11 m2 s−1 at cs = 0.15 mol/l and φ = 0.12, are larger than the
single-particle diffusion coefficient D0 = (1.214±0.001)×10−11 m2 s−1. Note that
D(t) in Fig. 4.18 is normalised by its value measured directly after sample prepa-
ration, D(t = 0), and accordingly, the increment R(t)−R(t = 0) is normalised by
R(t = 0). The cluster growth is thus enhanced with increasing φ and increasing
cs. The influence of φ follows from the fact that the collision probability increases
as φ2. When plotting the logarithm of the normalised hydrodynamic radius as a
function of time (see Fig. 4.19), a linear relation is observed for short times after
sample preparation, indicating a slow reaction-limited aggregation mechanism.
However, for cs = 0.3 mol/l and φ ≥ 0.06, we observe a non-exponential cluster
growth rate at later times. This non-exponential behaviour can be explained
by the gelation of the sample, which manifests itself in a power-law-dependent
growth rate [232]. In accordance with the observed accelerated growth rate with
increasing φ, the aggregation time, obtained from the fits to the data points in
Fig. 4.19, increases with increasing 1/φ (see Fig. 4.20). Also shown in Fig. 4.20
are the theoretically predicted aggregation times calculated from Eq. 4.7 using
uDLVO(r) (Eq. 4.3) and Zeff (see Fig. 4.17). The dimer formation theory for the
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Figure 4.19: Semi-logarithmic plot of the hydrodynamic radius of aggregated colloidal
clusters as a function of the elapsed time. The straight lines (a-g) are fits to the
form R(t) = R(t = 0) exp(t/τa), with the parameters τa and R(t = 0) determined
right after the sample preparation. The data for φ = 0.01, and cs = 0.15 mol/l and
cs = 0.3 mol/l are replotted for comparison from Fig. 4.12. cs = 0.15 mol/l: (�, g)
φ = 0.01, τa = (725 ± 298) d; (�, f) φ = 0.06, τa = (94 ± 9) d; (�, e) φ = 0.12,
τa = (10.6 ± 0.2) d; (�, c) φ = 0.14, τa = (4.29 ± 0.02) d; cs = 0.3 mol/l: (
, d)
φ = 0.01, τa = (7.8 ± 0.1) d; (♦, b) φ = 0.06, τa = (17.9 ± 0.1) h; (�, a) φ = 0.12,
τa = (4.7 ± 0.2) h.

initial stage of Brownian flocculation describes the experimental data surprisingly
well for φ ≤ 0.14. In concentrated colloidal suspensions, we expect an acceler-
ated aggregation rate due to correlation effects as found by Sauer and Löwen [233]
using computer simulations. In addition, effects on the screening ability of the
microions and the additional screening by the intervening macroions have to be
accounted for with increasing colloid concentration [51, 234].
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Figure 4.20: Aggregation time, τa, as a function of the inverse colloid volume frac-
tion for cs = 0.15 mol/l (•) and cs = 0.3 mol/l (
). The solid curves describe the
theoretically predicted aggregation times calculated from Eq. 4.7, using uDLVO(r) in
Eq. (4.3) with Zeff (see also Fig. 4.17).
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4.4 Depletion-driven cluster-aggregation

4.4.1 Description of polymer-induced cluster aggregation

In the following, we analyse the influence of the depletion agent dextran on the
aggregation kinetics. We account for the influence of added non-adsorbing poly-
mers on the aggregation behaviour of the silica dispersion, by the AOV effective
pair potential, uAOV(r), in Eq. (4.6). We explore polymer-to-colloid size ratios
in the range 0.49 ≤ q ≤ 2.6. The total colloid pair potential, u(r), which enters
into the calculation of the aggregation time, through Eqs. (4.7) and (4.8), con-
sists then of the hard sphere contribution, uhs(r), the van der Waals attraction
part, uvdW(r), the screened electrostatic repulsive part, uel(r), and the polymer-
depletion induced attractive part, uAOV(r), so that

u(r) = uhs(r) + uvdW(r) + uel(r) + uAOV(r) . (4.9)

Using this u(r), the evaluation of W in Eq. (4.8) proceeds as explained in sub-
section 4.3.2. The AO model assumes that the polymers can freely overlap, and
describes them as phantom hard spheres of radius Rg. Hence, the AO model
can be expected to apply to infinitely diluted polymer solutions at θ-solvent con-
ditions, for q ≤ 1 (see, [104], and chapter 3). In fact, dextran is close to its θ
temperature value at T = 295 K [162]. On considering further that we are mainly
interested in polymer concentrations below the overlap concentration c∗, we use
the AOV depletion potential throughout to predict τa theoretically. Effects aris-
ing from non-ideal polymer solution properties, which are expected to become
important for semi-dilute polymer concentrations, could be incorporated into the
description of the depletion-driven colloidal aggregation kinetics in an additional
step. However, this will be left to future work.

4.4.2 Influence of non-adsorbing polymer chains

When adding dextran of a molar mass M = 5 × 105g/mol (q = 1.4 ± 0.1)
to a charge-stabilised Ludox silica dispersion with φ = 0.01, cs = 0.15 mol/l,
pH = 9.2 ± 0.1 and T = 295 K, we do not observe an enhanced creation of clus-
ters even up to c/c∗ = 1.67, until two days have passed after sample preparation
(see, Fig. 4.21). This indicates that, at cs = 0.15 mol/l, the polymer-induced de-
pletion attraction cannot compensate enough the Coulomb repulsion. Instead,
we observe a strong influence of the polymer concentration on the aggregation be-
haviour for a larger cs = 0.3 mol/l (see Fig. 4.22). The diffusion coefficient decays
faster with increasing c/c∗. Plotting the reduced hydrodynamic radius against
time on a logarithmic-linear scale results in a linear relation (see Fig. 4.23). This
finding suggests that the addition of non-adsorbing polymers at near-θ solvent
conditions does not change the aggregation mechanism. Hence, also in the pres-
ence of the polymer chains, the cluster growth is likely be described by the RLA
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Figure 4.21: Left: Time evolution of the collective diffusion coefficient of Ludox silica
particles with varying polymer concentration c, normalised by the overlap concentra-
tion c∗ (see legend). The colloidal dispersion has been prepared with φ = 0.01 and
cs = 0.15 mol/l. The polymer molar mass is M = 5 × 105g/mol, corresponding to
q = 1.4±0.1. Right: Logarithmic plot of the reduced hydrodynamic radius increment
calculated using the Stokes-Einstein relation.

mechanism. From the slopes of the curves in Fig. 4.22 we extract the character-
istic aggregation time depicted in Fig. 4.24. Decreasing values of τa with increas-
ing polymer concentration correspond to an accelerated cluster growth rate. The
solid curve in Fig. 4.24 gives our theoretical prediction for τa(c) obtained from
Eqs. (4.7-4.8), and based on the DLVO pair potential in conjunction with the
AO model. As shown in Fig. 4.24, the effect on τa due to the polymer chains is
overall well described by the AOV model. The aggregation times predicted by
the aggregation theory are moderately larger than the experimental values. This
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Figure 4.22: Time evolution of the normalised collective diffusion coefficient of Ludox
silica particles with varying polymer concentration (see legend) for φ = 0.01, cs =
0.3 mol/l, and polymer molar mass M = 5 × 105g/mol.
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Figure 4.23: Semi-logarithmic plot of the reduced hydrodynamic radius of colloid
clusters as a function of elapsed time for a mixture of Ludox silica spheres at φ = 0.01
and dextran at varying concentrations corresponding to q = 1.4±0.1 at pH = 9.2±0.1,
T = 295 K, and cs = 0.3 mol/l. The straight lines are fits to the form R(t) = R(t =
0) exp(t/τa), with the characteristic time τa and the hydrodynamic radius R(t = 0)
measured right after sample preparation. The data for c/c∗ = 0 are replotted from
Fig. 4.12 for comparison. c/c∗ = 0: (
), τa = (7.8 ± 0.1) d; c/c∗ = 0.42: (�),
τa = (2.7 ± 0.1) d; c/c∗ = 0.84: (•), τa = (16.2 ± 0.1) h.

discrepancy increases with increasing c/c∗. However, we note that no adjustable
parameter has been used for the polymer-induced depletion interactions.
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Figure 4.24: Circles: experimentally observed aggregation time as a function of re-
duced polymer concentration in a mixture of dextran with M = 5 × 105g/mol and
q = 1.4 ± 0.1, and silica particles with φ = 0.01 and cs = 0.3 mol/l. The solid
curve is the theoretically τa obtained using Eq. (4.9) for u(r) and Zeff as explained in
subsection 4.4.1.
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Figure 4.25: Reduced intensity cross correlation function, g
(2)
c − 1, of a mixture of

charge-stabilised Ludox silica particles with φ = 0.01, and dextran with c/c∗ = 0.42
(M = 5 × 105 g/mol), measured using a 3D-DLS setup at T = 295 K and cs =
0.3 mol/l.
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Figure 4.26: Reduced intensity auto-correlation function (left figure) and correspond-
ing angular-dependent relaxation time (right figure) of a mixture of charge-stabilised
Ludox particles with φ = 0.01, and dextran with c/c∗ = 0.42 (M = 5 × 105 g/mol),
measured using a standard DLS setup at T = 295 K and cs = 0.3 mol/l.

4.4.3 Hydrodynamic radius of sedimented colloidal clusters

In Figs. 4.26 and 4.25, we show our results for the size of sedimented clusters for a
sample with φ = 0.01, c/c∗ = 0.42 and cs = 0.3 mol/l, obtained using a standard
DLS apparatus and a 3D-DLS setup [235]. The latter setup accounts for multiple
scattering in slightly turbid samples. The sample turbidity gradually increases
with time, and a lower liquid-like cluster phase is formed after a few days. The
hydrodynamic radius of the sedimented aggregates is 0.7 μm, indicating that large
clusters have been formed. After shaking the sample, these aggregates sediment
to the bottom of the container within an hour and form again a lower turbid
fluid-like phase.

98



4.4 Depletion-driven cluster-aggregation

 0

 0.5

 1

 0  5  10  15  20

D
/D

(t=
0)

time [h]

c/c∗,M [kg/mol]
0, 0
0.42,   500
0.84,   500
0.62, 2000
0.80, 2000
0.21,     40
0.82,     40

Figure 4.27: Time evolution of the collective diffusion coefficient of silica particles for
varying polymer concentrations, and varying polymer molar mass M . The colloidal
dispersion has been prepared with φ = 0.01 and cs = 0.3 mol/l.

4.4.4 Influence of the polymer-to-colloid size ratio q

Figs. 4.27 and 4.28 show the time evolution of the collective diffusion coeffi-
cient, and the scaling behaviour of the hydrodynamic radius, for samples with
varying polymer concentration and molar mass at T = 295 K, pH = 9.2 ± 0.1,
cs = 0.3 mol/l, and φ = 0.01. Fig. 4.29 summarises the so-obtained aggrega-
tion times in dependence on the polymer concentration. We observe here that
τa decays with increasing c/c∗ for all q considered. It decays, however, faster for
smaller q. The curves represent the theoretically calculated τa(c). Good agree-
ment is observed between the theoretical predictions and the experimental data,
for polymer concentrations below c∗. For q = 0.49, the dimer formation theory
agrees well with the experimental τa for all c < c∗. In contrast, τa is predicted
correctly by the theory only for c/c∗ � 0.5 in case of ratios q much larger than
one (i.e, for q = 2.6 ± 0.2). At polymer concentrations near c∗ (c/c∗ ≈ 0.8), τa

decays more rapidly than predicted by the simple dimer formation theory, when
q = 1.4 ± 0.1 and q = 2.6 ± 0.2.
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Figure 4.28: Semi-logarithmic plot of the reduced time-dependent hydrodynamic
radius of colloid clusters as a function of elapsed time, for a mixture of Ludox spheres
at φ = 0.01, and dextran at varying dextran concentrations and molar masses (for
cs = 0.3 mol/l). The straight lines are fits to the form R(t) = R(t = 0) exp(t/τa),
with τa and R(t = 0) measured right after sample preparation. The data for M =
5× 105g/mol are replotted from Figs. 4.12 and 4.23. (
) c/c∗ = 0, τa = (7.8± 0.1) d;
q = 0.49 ± 0.03: M = 4 × 104g/mol, (�), c/c∗ = 0.21, τa = (3.8 ± 0.1) d; (�),
c/c∗ = 0.82, τa = (12.9 ± 0.1) h; q = 1.4 ± 0.1: M = 5 × 105g/mol, (�), c/c∗ = 0.42,
τa = (2.7±0.1) d; (•), c/c∗ = 0.84, τa = (16.2±0.1) h; q = 2.6±0.2: M = 2×106g/mol,
(�), c/c∗ = 0.62, τa = (2.8 ± 0.1) d; (◦), c/c∗ = 0.80, τa = (1.43 ± 0.03) d .
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Figure 4.29: The data points (symbols) give the experimentally determined aggrega-
tion time as a function of the reduced polymer concentration in a mixture of dextran
with varying range of attractions, q = 0.49± 0.03 (M = 4 × 104g/mol), q = 1.4 ± 0.1
(M = 5 × 105g/mol), and q = 2.6 ± 0.2 (M = 2 × 106g/mol), and Ludox particles
with φ = 0.01 at cs = 0.3 mol/l. The curves are the theoretically predicted τa based
on the AOV potential and Zeff as explained in subsection 4.4.1.
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4.5 Non-equilibrium state diagrams

The silica-dextran mixtures investigated so far have a low colloidal volume frac-
tion (φ = 0.01) and low polymer concentrations (c � c∗). These samples form
initially a homogeneous and transparent mixture. With increasing delay time
after mixing, the samples gradually turn more turbid. In the sections 4.3 and
4.4, we have measured the growth of colloidal clusters using photon correlation
spectroscopy, and we have determined the characteristic aggregation time. On
the basis of these measurements, we attribute the increasing sample turbidity to
the growth of colloidal cluster for samples with φ = 0.01. Samples with φ = 0.01,
containing a pure colloidal dispersion without polymers, form a system-spanning
gel at later times. When adding polymer chains, the cluster aggregation process
is accelerated for φ = 0.01 (see section 4.4).

In contrast, the dispersions behave quite differently when one increases the
polymer concentration in the mixture at sufficient high electrolyte concentrations
(e.g., for samples with φ = 0.01 and cs 	 0.3 mol/l), or, likewise, when φ and c
are increased at low salt content (cs ≤ 0.2 mol/l). At high φ, high c and low cs,
the samples become turbid right after mixing of the stock solutions. Then, after
several hours, a turbid (milky) and highly viscous fluid forms at the bottom of the
container. Depending on the composition of the sample, the bottom turbid phase
ceases to flow and forms a white gel within several hours or a few days. The upper

Figure 4.30: Photograph of two samples containing a colloid-polymer mixture of silica
spheres and dextran for cs = 0.15 mol/l, φ = 0.10, M = 5×105 g/mol, and c/c∗ = 1.67
at pH = 9.2. Sample (i) was prepared right before the picture has been taken. Sample
(ii) has been stored for 1 day at room temperature. The total height of the mixture,
h0, and the height, h, of the more turbid lower phase at the bottom of the tube is
indicated by arrows.
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Figure 4.31: Reduced height, h/h0, of the turbid lower phase formed at the bottom
of the sample tube for φ = 0.01 and varying c (M = 5 × 105 g/mol). Shown are data
for three different salt concentrations: cs = 0.15 mol/l (�), cs = 0.3 mol/l (
) and
cs = 0.5 mol/l (•). The reduced height of the lower phase has been recorded two days
after sample preparation, thereafter it has remained constant up to two weeks. The
curves are guides to the eye illustrating the general trends.

fluid phase consists of a slightly turbid solution which becomes transparent at
later times (see, Fig. 4.30). Furthermore, a sharp interface between the two fluids
is visible, which allows to clearly distinguish between the upper and lower phases.
Even though we refer here to two fluid phases, this does not imply that these are
two equilibrium phases. On the contrary, our time-resolved measurements at low
φ strongly indicate that this separation process has followed a non-equilibrium
route. Note that we describe the region in phase space, where such a phase
separation is observed, as unstable. Likewise, we will speak of a stable single-fluid
phase otherwise. Note further, however, that clusters can be formed in the single
fluid colloidal phase depending on the electrolyte and polymer concentrations.
We will discuss in the following whether the observed non-equilibrium phase
separation and the measured cluster aggregation processes become related at
high colloid volume fractions and high polymer concentrations.

The influence of the electrolyte concentration on the fraction of the system
volume occupied by the bottom turbid phase has been studied for φ = 0.01 and
cs = 0.15 mol/l, 0.3 mol/l and 0.5 mol/l (see Fig. 4.31). At cs = 0.15 mol/l, the
mixture at φ = 0.01 does not demix for all polymer concentrations under inves-
tigation. A bottom turbid phase of increasing volume ratio is formed, however,
for cs = 0.3 mol/l when c is increased. This deposit can be redispersed by shak-
ing the sample thoroughly. For cs = 0.5 mol/l, we observe a phase separation
into a transparent upper and a turbid bottom phase for all c. Interestingly, the
volume ratio of the bottom phase, as measured by h, decreases with increasing
c. The influence of the polymer molar mass on the volume distribution of the
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Figure 4.32: Reduced height of the more turbid bottom phase, formed several hours
after sample preparation, for a mixture of polymer chains with varying polymer molar
mass and Ludox silica particles of φ = 0.01 at cs = 0.5 mol/l and room temperature.
The data points (symbols) describe samples of varying polymer molar mass: M =
4 × 104 g/mol (�), M = 5 × 105 g/mol (•), M = 2 × 106 g/mol (�). The height of
the bottom phase is recorded two days after sample preparation, and does not change
within a total delay time up to two weeks after sample preparation.

top and bottom phases is recorded in Fig. 4.32 for samples with φ = 0.01 and
cs = 0.5 mol/l. As depicted in Fig. 4.32, the molar mass has no significant effect
on the distribution of the two phases over the system volume.

For cs in the range between 0.1 mol/l and 0.2 mol/l, the non-equilibrium state
diagram has been mapped out in Fig. 4.33. The status of the samples has been
recorded two weeks after sample mixing. The curves are guides to the eye to
distinguish slightly turbid but homogeneous, one-phase samples (◦) from samples
which have phase separated (��), or form a percolated, system-spanning network
(gel) (�). In Fig. 4.34, we show photographs of samples in these different states.
The line divides samples forming a single phase from samples which are phase-
separated two weeks after preparation. According to Fig. 4.33, this phase line
moves to lower φ and smaller c with increasing cs (see, especially, Fig. 4.33 (f)).
Furthermore, the phase line shifts to lower φ- and c/c∗-values for increasing time
(see Fig. 4.35).
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Figure 4.33: Non-equilibrium state diagrams of aqueous mixtures of Ludox silica
particles and dextran for varying salt concentrations: chart (a): cs = 0.1 mol/l, (b):
cs = 0.125 mol/l, (c): cs = 0.15 mol/l, (d): cs = 0.175 mol/l, (e): cs = 0.2 mol/l, for
q = (1.4± 0.1) nm (M = 5× 105 g/mol) at room temperature. The phase diagrams of
the samples have been recorded by visual inspection two weeks after sample prepara-
tion. Open circles (◦) indicate fluid-like homogeneous mixtures. The half-filled circles
(��) describe samples, where a turbid viscous phase is observed at the container bot-
tom. The triangles (�) mark samples which form a gel throughout the sample. The
solid curves separate the single-fluid phase region from the region where phase sepa-
ration or a system-spanning gel is observed after two weeks. These curves, for all salt
concentration considered, are summarised in figure (f).
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Figure 4.34: Photographs of samples containing a colloid-polymer mixture with cs =
0.15 mol/l (compare to Fig. 4.33(c)), and polymer molar mass M = 5 × 105 g/mol.
The picture has been taken two days after sample preparation. Then, sample (i)
(φ = 0.04, c/c∗ = 2.93) has become turbid and forms a gel at later times. In sample
(ii), where φ = 0.09 and c/c∗ = 1.26, and sample (iii), where φ = 0.09 and c/c∗ = 2.09,
two phases are observed. The total height of the dispersion, h0, and the height of the
more turbid bottom phase, h, are indicated by arrows.
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Figure 4.35: Time evolution of the non-equilibrium state diagram for an aqueous
mixture of Ludox silica particles and dextran, with cs = 0.15 mol/l and q = (1.4 ±
0.4) nm (M = 5 × 105 g/mol). The red symbols give the state of the sample two
days after sample preparation. The black symbols describe the sample state after two
weeks. The solid curves separate the single-fluid phase region from the phase region
where two separated phases or a system-spanning gel are observed.
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Figure 4.36: Total pair potential u(r) for q = 0.49 ± 0.03 (M = 4 × 104g/mol),
q = 1.4±0.1 (M = 5×105g/mol), and q = 2.6±0.2 (M = 2×106g/mol), with φ = 0.01,
cs = 0.3 mol/l, cb = 0.01 mol/l, T = 295 K, and constant polymer concentration,
c/c∗ = 0.5. The blue curve is the repulsive electrostatic part, and the grey curve the
short-ranged van der Waals part of u(r). The inset focuses on the Coulomb barrier
part of u(r) that occurs at smaller particle separations.

4.6 Discussion

We have found that aqueous mixtures of charge-stabilised silica colloids and non-
adsorbing dextran polymers aggregate irreversibly into clusters at low colloid
volume fractions and small polymer concentrations, with values depending on
the strength of the electrostatic repulsion and the polymer-induced depletion
attraction. At constant temperature and pH-value, the electrostatic repulsion is
tuned by varying the electrolyte concentration.

At a sufficiently low φ = 0.01 and without polymer chains, we observe that the
samples are always transparent after mixing. However, the low-φ samples gradu-
ally turn more turbid, and form a gel after several hours or days for cs ≥ 0.3 mol/l.
The increasing turbidity is attributed to the formation of clusters, which aggre-
gate to a system-spanning network (gel) at later times. On increasing cs, the
electrostatic repulsion is screened and the Coulomb barrier in u(r) decreases.
Thus, at large cs, smaller inter-particle distances during the rare collision events
are probed. At very short distances, the vdW attraction dominates u(r), and
the colloids stick irreversibly together, forming clusters of increasing number of
particles with increasing delay time. We have found that the cluster growth rate
increases with increasing φ. This can be attributed to an enlarged collision rate
proportional to φ2.

Adding non-adsorbing polymers to a colloidal dispersion adds a depletion at-
traction part to the DLVO effective pair potential. We find that the polymer
concentration and the polymer-to-colloid size ratio strongly affect the aggregation
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Figure 4.37: Theoretically predicted binodals (solid curves) and spinodals (dashed
curves) obtained form GFVT (see chapter 3), for aqueous mixtures of Ludox silica
particles and dextran at cs = 0.125 mol/l and 0.2 mol/l, respectively, cb = 0.01 mol/l,
and q = 1.4 on assuming θ-solvent conditions. The asterisks denote the critical point.

kinetics (see Fig. 4.29). With increasing polymer concentration, the aggregation
time decreases monotonically for all q considered. Additionally, we observe that
the aggregation time decays faster for smaller q where q < 1. Furthermore, if
the polymer concentration becomes of the order of the overlap concentration, the
experimentally observed cluster aggregation rate, for q = 1.4 and q = 2.6, is
faster than predicted by the simple dimer aggregation theory based on the AOV
depletion potential.

These findings can be explained as follows: The cluster formation rate grows
with increasing polymer concentration due to the increasing osmotic pressure,
which pushes the colloidal particles together, and thus, promotes colloidal aggre-
gation. By adjusting the effective colloid charge Z to match the salt-dependent
experimental aggregation time, we can quantitatively describe the time-dependent
aggregation in mixtures of charge-stabilised colloidal particles and non-adsorbing
polymers under θ-solvent conditions, provided that c < c∗ (see Fig. 4.29). Note
that the depletion attraction is described by the AOV potential without any ad-
justable parameter. In Fig. 4.36, the pair potential parts of u(r) for q = 0.49, 1.4
and 2.6 are plotted for a fixed polymer concentration c/c∗ = 0.5. Comparing the
full pair potential with uDLVO(r) for varying q, shows that polymer depletion as
described by uAOV(r), adds a long-ranged attraction to u(r). Thus, the polymer-
induced depletion reduces the height of the Coulomb barrier in u(r), and creates
a pronounced secondary minimum of depth around 1 kBT . Hence, τa decreases
with increasing c/c∗, and so does W in Eq. (4.8). The range of attraction in-
creases with increasing q as expected for a dilute polymer solution well below
c∗ (see Fig. 4.36). However, at fixed c/c∗, the strength of the polymer-induced
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Figure 4.38: Reduced total pair potential, βu(r), for cs = 0.1 mol/l, 0.15 mol/l and
0.2 mol/l with φ = 0.09, c/c∗ = 1.25, and q = 1.4 (M = 5 × 105g/mol). The inset
focuses on the Coulomb barrier part of u(r).

attraction decreases for increasing q like q−3 to leading order in a small q, whereas
the range of attraction grows linearly in q. Thus, for increasing q, the increasing
range of the depletion attraction is outweighted by its decreasing strength (see
Fig. 4.36). Accordingly, W and thus τa, increase with increasing q for a fixed
c/c∗, giving rise to an enhanced colloidal stability. The experimentally observed
decrease in τa for q > 1 and c/c∗ 	 0.8, can be explained by the non-ideal so-
lution behaviour of dextran, which is not accounted for in the AO model. As
shown in Fig. 3.4 of subsection 3.3.3, the thickness of the depletion layer starts
to decrease quickly for polymer concentrations near c∗ and for q > 1, because
the colloid size is then of the order of the polymer correlation length. Therefore,
the range of polymer-induced attraction between the colloids decreases with in-
creasing c/c∗. Simultaneously, the osmotic pressure exerted by the polymers on
the colloids increases rapidly for q > 1 with increasing c/c∗ (see Fig. 3.4), and
thus, the strength of the depletion attraction increases. Both effects, the decrease
in range and the increase in strength of the depletion attractions, enhance the
formation of clusters as seen with our experiments.

On increasing φ and c, the mixture becomes turbid immediately after sample
preparation, and eventually phase separates into a transparent top phase, and a
turbid and highly viscous bottom phase at later time (see Fig. 4.34 (i) and (ii)).
The region in the non-equilibrium phase diagram where this demixing process
occurs, shifts to lower polymer concentrations and lower colloid volume fractions
with increasing electrolyte concentration (Fig. 4.33) and, likewise, with increas-
ing time (see Fig. 4.35). The fact that the sample becomes turbid immediately
after mixing is reminiscent of critical opalescence occurring during spinodal de-
composition. Very recently, Lu et al. [181] have provided evidence that gelation is
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driven by spinodal decomposition in (model) colloid-polymer mixtures with very
short-range attractions (q = 0.059). Similar experimental observations have been
made earlier by Grant and Russel [236], for a dispersion of sterically stabilised
silica particles in an organic solvent. Both groups observed that the gelation line
coincides with the spinodal line at low colloid volume fractions. Grant and Rus-
sel [236] found that the spinodal line is metastable with respect to the fluid-solid
coexistence curve. In systems with longer-ranged colloid attractions, i.e., when
q 	 0.3, with the precise value of q depending on the shape of the pair potential,
the gel line often lies within the region of the stable gas-liquid coexistence [237].
These findings suggest that gelation in colloid-polymer mixtures can be initiated
by spinodal decomposition.

In Fig. 4.37, we show the binodal and spinodal lines obtained using the gen-
eralised free-volume theory described in chapter 3, and extended to the present
colloid-polymer mixture, for cs = 0.125 mol/l and 0.2 mol/l. In using the GFVT,
we disregard the vdW attractions. Furthermore, the range, κ−1, of the electro-
static repulsion in our experimental system is quite large, i.e, we have m ≥ 1.4 >
1.225 (see Eq. (3.3) of chapter 3, and [140]). Therefore, the GFVT is not quan-
titatively accurate, and can describe only qualitative trends in our system. At
cs = 0.1 mol/l, the GFVT predicts a gas-liquid critical point at nonphysically
high polymer concentrations of c/c∗ 	 13, and it fails to predict the binodal and
spinodal lines. Furthermore, the GFVT predicts that the gas-liquid coexistence
region reduces for large c/c∗ 	 3, as indicated by the spinodal line (long-dashed
line) of unphysical negative slope in the top right corner at high φ and high c
in Fig. 4.37. This unphysical prediction is due to the disregard of the polymer
osmotic pressure contribution in the free-volume factor expression in Eq. 3.7 (see
chapter 3).

In comparing Figs. 4.35 and 4.37, we see that the experimental phase line in
Fig. 4.35, obtained two days after mixing for samples with cs = 0.15 mol/l, nearly
coincides with the GFVT spinodal line in Fig. 4.37. Hence, a possible explana-
tion for the experimentally observed turbid lower phase goes as follows: First,
the sample undergoes spinodal decomposition. During demixing, the colloids ag-
gregate within the denser, colloidal-rich regions. Because the colloids are not
buoyancy-matched, the larger clusters sediment to the bottom of the container
and form the lower turbid phase observed in the experiment. At later times, the
sedimented clusters aggregate, and the bottom phase forms a gel. On diluting a
turbid sample (φ = 0.09, c/c∗ = 1.26, M = 5 × 105g/mol, and cs = 0.15 mol/l)
with the buffer solution and cs kept constant a few hours after mixing, we ob-
serve a hydrodynamic radius of R = (21.2 ± 0.4) nm similar to R0. However,
the gel-like bottom phase, which has formed in this sample after a few days, can
not be redispersed. To investigate the possible demixing process in more detail,
we have plotted u(r) in Fig. 4.38 for φ = 0.09, c/c∗ = 1.25 and cs = 0.15 mol/l.
As depicted Fig. 4.35, the polymers induce a long-ranged attraction, which can
cause demixing. In addition, a pronounced secondary minimum is formed, which
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can cause reversible aggregation. Therefore, we argue that at short times loosely
connected aggregates are formed in the denser phase during the polymer-induced
phase separation, and that the colloids aggregate irreversible in the denser bot-
tom phase at later times. Note that increasing cs from 0.1 mol/l to 0.2 mol/l
results in a decrease of τa from 2845 h to 3 h. Notice further in Fig. 4.33 (f) that
we have observed a similar sensitive dependence on cs for the phase line in our
experiments.

However, as noted before, the uncertainties in the theoretically predicted phase
diagram are too large to serve as a proof that gelation in our system is always
driven by spinodal decomposition, as suggested for similar mixtures by Lu et
al. [181]. In particular, clear experimental evidence is needed to show that our
samples undergo spinodal decomposition at initial times after mixing. Alterna-
tively, one could argue that large sedimented aggregates, which form the turbid
bottom phase, have formed within the homogeneous fluid phase without a pre-
ceding spinodal decomposition. Our measurements discussed in subsections 4.3.3
and 4.4.2 have shown that τa decreases rapidly for increasing φ and c, respec-
tively. Thus, one might argue that the formation of larger clusters at high φ and
high c is solely caused by the enhanced aggregation kinetics. The formation of
such a cluster fluid phase has been reported by Lu et al. [238] for their buoyancy-
and refractive-index-matched model colloid-polymer mixtures. Concerning the
observed long-time evolution of the non-equilibrium phase diagrams in Figs. 4.33
and 4.35, we note that the shift of the phase line to lower φ and c with increas-
ing time might be attributed to the slow aggregation at low salt conditions. We
argue here that large clusters have formed in the mixture. These clusters sed-
iment then to the tube bottom and form a turbid fluid-like phase (see section
4.4.3). Because the Coulomb barrier decreases with increasing cs, the phase line
is shifted to lower φ and lower c at larger cs, as depicted in Fig. 4.33. We have
experimentally verified the existence of such micrometre-sized colloidal clusters in
the single-fluid phase region, also predicted the GFVT discussed in section 4.4.3,
using a 3D-DLS setup. Furthermore, we have shown that these large clusters are
free to diffuse in the suspension. In addition, in Figs. 4.31 and 4.32 we have stud-
ied the relative height of the bottom phase as a function of cs and q, respectively,
for φ = 0.01. Yet, no systematic effect could be observed. As pointed out by
de Hoog et al. [167], the final structure of the sediment is caused by a complex
interplay between several parameters (see [9] for a thorough discussion).

Interestingly, for 0.125 mol/l ≤ cs ≤ 0.2 mol/l the GFVT predicts a large gap
in the phase diagram between the binodal and the spinodal lines. In this re-
gion of the phase space, the system demixes by nucleation and growth, which
might affect the cluster morphology. Yet, our data obtained by visual inspec-
tion are too crude to relate the observed phase separation unequivocally to the
region in phase space where spinodal decomposition is expected. However, our
experiments and the comparison with our theoretical prediction for the equilib-
rium phase diagram point to an initial phase separation in combination with a
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slower ongoing irreversible aggregation process, for low salt concentrations, high
polymer concentrations and high colloid volume fractions.

4.7 Conclusions

We have studied the aggregation kinetics and phase behaviour in aqueous mix-
tures of charge-stabilised silica spheres (Ludox) and non-adsorbing neutral ho-
mopolymers (dextran). By varying the polymer molar mass, and the polymer
and electrolyte concentrations, we can tune the range and strength of the de-
pletion attraction and electrostatic repulsion at will. In addition, the colloids
strongly attract each other at very short inter-particle distances due to van der
Waals forces, which can trigger irreversible colloidal aggregation depending on
the strength of the Coulomb barrier. For low φ, we have measured the time-
resolved colloid cluster aggregation rate using photon correlation spectroscopy.
From these measurements, we find that the formation of clusters is enhanced with
increasing electrolyte and polymer concentrations, and increasing colloid volume
fraction. Furthermore, we observe that the cluster aggregation rate decreases
with increasing q at fixed c/c∗. It has been demonstrated that the combined ef-
fect of salt-induced electrostatic screening, depletion attraction and van der Waals
attraction on the initial colloid aggregation, can be quantitatively described for
c < c∗ by the Smoluchowski dimer formation theory with two-particle hydrody-
namic interactions included. We have accounted for the screened electrostatic
repulsion using an effective colloid charge determined from adjusting the theoret-
ically obtained τa to the experimental one, for a pure colloidal dispersion without
added polymers. The depletion attraction is described in our calculations by the
AOV potential. At polymer concentrations close to c∗, we find that the aggre-
gation rate is faster than theoretically predicted by the AO model. This effect
might be attributed to the non-ideal solution behaviour of dextran for c/c∗ ≈ 1.

With increasing φ and c, we observe a few days after sample preparation the
formation of a turbid, viscous phase at the container bottom. Thus, a macroscopic
phase separation is observed. We find that the phase line shifts to smaller φ and
smaller c with time. In addition, we find that this line shifts faster to smaller φ-
and c-values in phase space with increasing electrolyte concentration, due to the
enlarged electrostatic screening. This non-equilibrium phase behaviour has been
compared to the equilibrium phase diagram predicted by the GFVT devised in
chapter 3. We observe that the experimental phase line obtained after two days
nearly coincides with the GFVT spinodal line. Therefore, we argue that the long-
ranged effective potential u(r), which has a well-developed secondary minimum
of about 2 kBT , can drive an initial phase separation into a denser (more turbid)
and a less dense phase, accompanied by a more slowly progressing reversible
aggregation process. The aggregation can be expected to progress faster in denser
regions of the sample.
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4 Depletion-driven aggregation and demixing in charged colloidal dispersions

This scenario of combined initial phase separation and reversible aggregation
at short times after sample mixing is evidenced by the observation that the phase-
separating sample can be rediluted within a couple of hours into a dispersion of
essentially non-aggregated colloidal particles. Furthermore, the formation of a
gel-like bottom phase, which can not be rediluted, indicates irreversible aggrega-
tion at later times. However, we cannot distinguish clearly between this afore-
mentioned initial phase separation process and the formation and sedimentation
of large clusters, which might form in the suspensions in the absence of a pre-
ceding spinodal decomposition. Future experiments will be helpful to explore in
more detail the demixing mechanism underlying these combined reversible phase
separation and irreversible aggregation processes. This will require advanced ex-
perimental techniques like small angle x-ray and small angle neutron scattering,
to observe at higher φ the low-wavelength divergence of the structure factor that
signals the onset of the spinodal decomposition. Furthermore, we note that x-
ray photon correlation spectroscopy in particular is an appropriate technique at
higher φ to study the dynamic arrest of silica particles of nanometre size, because
it is less plagued by multiple-scattering than light scattering techniques.

Systems with tunable attractive and repulsive interactions will be of interest
in future studies for an additional reason: As shown by Pini et al. [239] and
Archer et al. [41], the region in phase space where critical fluctuations become
dominant, can largely extend into the thermodynamically stable fluid phase re-
gion, for long-ranged weakly repulsive and relatively short-ranged attractive in-
teractions. Hence, in such systems one can explore the dynamics of the cluster
aggregation process in the presence of critical density fluctuations and in the
absence of spinodal decomposition. We note that these non-equilibrium cluster-
aggregation processes should also be compared to equilibrium aggregates formed
in those systems after microphase separation [40–42, 239–241]. As an alterna-
tive system, it will be useful to design a colloidal dispersion of particles with
hard-sphere plus repulsive Yukawa interactions dispersed in a polymer solution.
For such a mixture, irreversible aggregation could be prohibited, e.g., by short
polymer brushes grafted on the colloid surfaces. These dispersions could be used
to extend previous research on hard-sphere-like systems, which has been proven
so instructive in the past [96, 169, 181, 191, 192, 238, 242]. A possible candidate
for such a system are charged brush-coated poly(methyl methacrylate) (PMMA)
spheres.
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A Dimer formation theory of initial flocculation

Consider a dispersion which initially consists of non-aggregated colloidal spheres
randomly distributed in the system volume V . The spheres describe a Brownian
random walk due to solvent collisions. Whenever two particles approach each
other so that the short-range inter-particle attractions become dominant, they
can form a dimer. If the dispersion is highly diluted, we can neglect three-body
and higher order collision events at short times. Then, the formation of dimers
can be described by the following evolution equation for the pair probability
density, P2(r, t), of finding two spheres at time t at a centre-to-centre distance
r, [6, 178],

∂P2(r, t)

∂t
=

1

r2

∂

∂r

[
2D0 G(r)

∂P2(r, t)

∂r
+ 2D0 G(r) P2(r, t)

dβu(r)

dr

]
. (A.1)

The first term in the bracket on the right-hand side arises from the diffusive
flux part. This thermally driven diffusion of the colloids tends to smooth out local
accumulations of colloidal particle, which occur due to fluctuations in the colloid
concentration. The single particle diffusion constant here is D0 = kBT/(6πηa).
The second term on the right-hand side accounts for the relative flux arising from
the pair potential u(r). At very short inter-particle distances, when the van der
Waals attraction dominates u(r), this term becomes negative, favouring a local
accumulation of colloidal spheres. Initially, P2(r, 0) = n2

0, where n0 = n(t = 0)
is the initial number density of randomly distributed colloids (monomers). The
boundary conditions at infinite colloidal separation and on contact distance are
P2(∞, t) = n2

0 and P2(2a, t) = 0, respectively, assuming a random distribution
of spheres for r → ∞ and irreversible dimer formation at contact, respectively.
From solving Eq. (A.1) with the aforementioned initial and boundary conditions,
the collision rate is obtained to [178],

J11 = 4π (2a)2 lim
r→2a+

2D0 G(r)

[
∂P2(r, t)

∂r
+ P2(r, t)

dβu(r)

dr

]
. (A.2)

The time-dependent monomer number concentration, n(t), is then obtained from
the rate equation, dn(t)/dt = −J11, with n(t = 0) = n0, that describes the
disappearance of monomers from the suspension. Using a steady-state approxi-
mation [178], the solution to Eq. (A.1) reads,

P2(r, t) = n2
0

exp [−βu(r)]
∫ r

2a
dr′ exp [βu(r′)]

r′2 G(r′)∫∞
2a

dr′ exp [βu(r′)]
r′2 G(r′)

, (A.3)

and the collision rate follows as
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J11 =
8π D0n

2
0∫∞

2a
dr′ exp [βu(r′)]

r′2 G(r′)

, (A.4)

For u(r) = 0 and G(r) = 1, Eq. (A.4) reduces to the classical result of Smolu-
chowski, first observed for diffusion limited aggregation processes, namely J0 =
16 π a D0 n2

0. The stability ratio W is defined by

W =
J0

J11
= 2a

∫ ∞

2a

dr
exp [βu(r)]

r2 G(r)
, (A.5)

and the characteristic aggregation time for dimer formation follows then as

τa =
π η a3

φ kBT
W . (A.6)
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5 Summary and outlook

In summary, we have investigated theoretically the equilibrium phase behaviour
of protein solutions, and mixtures of charge-stabilised colloids and interacting
polymer chains. Furthermore, we have studied experimentally the initial ag-
gregation kinetics and non-equilibrium phase behaviour in a model system of
charge-stabilised silica particles and non-adsorbing polysaccachride chains in wa-
ter.

In the first part of this thesis (chapter 2), we have presented and analysed
a simple patchy model to describe the equilibrium phase behaviour of charged
lysozyme proteins. Our model description accounts for the anisotropic attrac-
tive interactions and the electrostatic Coulomb repulsions between the globular
proteins. Previous work either addressed the phase diagram on a DLVO-level
by assuming purely isotropic interactions [13–15,19, 57, 243, 244], or the effect of
anisotropic interactions was examined using a simple attractive square-well poten-
tial only [26,29,30,33,36,245]. In our patchy model, we describe the electrostatic
repulsion part due to the charges on the protein surfaces by the one-component
macroion fluid pair potential, characterised by an effective protein charge [51].
The repulsive interaction part is completely characterised by the solvent condi-
tions, i.e., the electrolyte, protein and buffer concentrations, and the pH-value,
which determine the effective charge number of a protein. The anisotropic at-
tractive interaction part is accounted for in our model by an angular-modulated
patchy pair potential of Yukawa-type [246]. We have calculated the Helmholtz
free energies for the fluid and solid phases by employing the thermodynamic
perturbation theory by Barker and Henderson [59], using hard spheres as the
reference system. Because the perturbational attractive, and repulsive pair po-
tential parts are angular-averaged over all protein-protein orientations in the free
energy calculation, only the surface coverage factor, χ, which describes the sur-
face fraction covered by the attractive patches, enters into the calculation. The
parameter χ, and the range and strength of the attractive potential part, have
been determined using information on the gas-liquid critical point. Based on this
information, we have calculated the complete phase diagram. Our patchy protein
model describes the gas-liquid phase coexistence quite well when a temperature-
dependent coupling parameter is included which influences the strength of the
attractive potential part. In particular, our model nicely captures the influence
of added salt on the stability of the liquid phase. Furthermore, the range of
attraction predicted in our calculations is in good agreement with experimental
data by Israelachvili and Pashley [85], where the force between two hydrophobic-
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coated surfaces immersed in water has been measured as a function of their
distance. This strongly suggest that the attractive interactions caused by hy-
drophobic patches on the protein surfaces dominate the phase behaviour in the
lysozyme solutions. The overall good agreement between the binodal predicted
from our free energy calculations, and the experimental binodal, supports the
assumption by Hoskins et al. [247] that the local, asymmetric distribution of
charges over the protein surface is negligible for solution pH-values that are of
2 − 3 units away from the isoelectric point. Notwithstanding this success of our
model, a more accurate estimate of the χ-factor of lysozyme would be useful,
because the surface coverage factor of χ ≈ 70% obtained in our calculations is
near the border of the χ-range for which Kern and Frenkel [28] predict, from
their computer simulations, that pre-avering of the interaction potential is still
feasible. An accurate value of χ, would allow us to see if micro-ion correlation
effects significantly affect the phase behaviour of lysozyme and, if this is the case,
we could study these effects in detail. Moreover, further research is necessary to
explain the strong widening of the gas-liquid coexistence curves observed in the
experiments. From our simple model, we cannot decide whether this is due to
the temperature-dependence of the hydrophobic interactions, or to the random
distribution of patches across the protein surface. As a test of our model, we
have predicted the fluid-solid coexistence curve (the solubility curve), using in-
teraction parameters obtained from experimental data on the gas-liquid critical
point. On assuming a fcc lattice structure, reasonable agreement between the
experimental and the theoretically predicted solubility curves has been observed.
Indeed, predicting state points at which crystals are formed in a protein solution
is a highly relevant task in biology. In praxis, the proteins must be in a crystal
state before the atomic structure can be investigated using scattering techniques.
For this reason, the practical use of such a simple model is evaluated by it’s accu-
racy in predicting the fluid-solid coexistence curve. Therefore, it will be worth to
extend our calculations of the solubility curve using a more realistic simple cubic
crystal lattice structure. On accounting for the observation by Wukovitz and
Yeates [89], that about 36% of all proteins crystallise into the same space group,
it might then turn out that a simplistic description of the crystall symmetry
is sufficient do predict the solubility curve for a large number of globular pro-
teins [248]. Concerning the practical goal of finding rapid crystallisation paths,
in a next step we can use the information gained so far about the interactions of
lysozyme proteins to calculate crystal nucleation rates [34], and to improve the
design of protein crystallisation reaction containers [249]. Besides the equilibrium
phase diagram discussed in chapter 2, it is also very challenging to understand the
gel-line discovered in lysozyme dispersions [49]. Here, for example, it is unclear
to date whether the anisotropic hydrophobic interactions influence the structure
of the network formed by a kinetically arrested spinodal decomposition [79].

In chapter 3, we have derived and analysed the generalised free volume theory
(GFVT) in its ability to predict the equilibrium phase behaviour of mixtures of
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charge-stabilised spherical colloids and polymer chains of different sizes. To this
end, we have compared its predictions for the phase diagram both with computer
simulations and experimental data. From this comparison, we have mapped out
the conditions for which the free-volume approach can be successfully applied.
The GFVT is a thermodynamic description of mixtures of spherical colloidal par-
ticles and non-adsorbing polymer chains. It describes such a colloid-polymer bi-
nary mixture in a semi-grand canonical ensemble where the mixture is in osmotic
equilibrium with an infinite reservoir of polymers chains. The semi-grand canon-
ical free energy in this description consists of two contributions: the canonical
free energy of the colloidal dispersion, and a grand-free energy contribution from
a reservoir of polymers, which is in contact with the mixture by a semi-permeable
membrane impenetrable to the large colloids [250]. The latter term involves the
product of the reservoir osmotic pressure of polymers and the free volume, Vfree,
accessible to the polymers in the mixture. Thus, the polymers enter into the free
energy calculation only geometrically through Vfree, which is directly related to
the depletion layer around the colloidal sphere, and through the polymer osmotic
pressure. By describing the colloid-polymer mixture in the semi-grand canoni-
cal ensemble, GFVT accounts for the partitioning of the polymers between the
adjacent phases.

In the present work, the GFVT was used to calculate the phase behaviour
of mixtures of weakly charged colloids and interacting polymers at θ− and good
solvent conditions. The effects of the solvent quality and of concentrated polymer
solutions on the colloid phases was accounted for by interpolating between exact
expression for the depletion thickness, and the osmotic pressure, in the dilute
limit, and using scaling relations for semi-dilute polymer solutions in good and
θ-solvents. Thus, the depletion thickness around a sphere, δ, and the osmotic
pressure become a function of the polymer concentration. In semi-dilute polymer
solutions, δ becomes of the order of the correlation length, i.e., proportional to
the polymer blob size. We have also accounted for curvature effects, that lead
to a smaller δ as compared to its value near a flat plane, δp. The influence of
the solvent quality enters the GFVT calculations in form of scaling exponents
and numerical prefactors that depend on the solvent quality. We have described
the electrostatic repulsion between the colloidal particles using the repulsive part
of the standard DLVO potential. Since we have been primarily interested in
colloid-polymer mixtures with relatively thin electric double layers, we have been
in the position to map the repulsive Yukawa-type system on an effective hard-
sphere system using the first-order BH description of TPT [60]. Consequently,
the electrostatic repulsions enters into the free energy expression only by the
effective colloid diameter. The free volume accessible to the polymer chains is
approximated using the scaled-particle theory [105]. This theory, which allows to
calculate the work required to create a cavity for a polymer in the hard-sphere
fluid, has recently been extended by Fortini et al. [140] to account for electrostatic
repulsion, by inserting the effective colloid volume fraction into the Percus-Yevick

117



5 Summary and outlook

compressibility relation. We have compared the result of GFVT with available
computer simulation data for the gas-liquid coexistence curve. In the colloid
limit, i.e., for polymer-to-colloid size ratios, q, smaller than one, we find nearly
quantitative agreement with the simulation data. For q < 1, we observe in accord
with the simulation data that the gas-liquid coexistence curve shifts to higher
critical polymer concentrations with increasing q. Likewise, with increasing q,
the colloid volume fraction at the critical point shifts to smaller values both
in good and θ-solvent conditions. In case of charged colloidal particles and for
q < 1, we observe that the colloid-polymer mixtures are stabilised against gas-
liquid phase separation with increasing electrostatic repulsion. In the so-called
protein, or nano-particle regime, where the colloidal particles are small compared
to the polymers (q > 1), larger deviations from the simulation data are observed.
Thus, for q > 1, our calculations can predict only general trends in the phase
behaviour in the protein regime. Moreover, for q > 1, we observe a strong
effect of the solvent quality on the phase behaviour of weakly charged colloids.
The gas-liquid coexistence curve in a θ-solvent becomes at low φ unaffected by
the electrostatic repulsion, whereas in a good solvent the region in the phase
diagram, where a homogeneous mixture can be found, increases for q > 1 with
increasing electrostatic repulsion. This effect is explained from noting that the
depletion thickness decreases for increasing q more rapidly for polymer chains
in good than in θ-solvent conditions. We conclude that the solvent quality can
significantly affect the phase behaviour of mixtures of charge-stabilised colloids
and non-adsorbing polymers for q > 1.

The colloidal particles usually differ in size and charge in most colloidal sus-
pensions. This polydispersity makes a quantitative comparison with experimental
data rather difficult. Hence, it will be rewarding in future work to include poly-
dispersity effects into the free-volume theory. The good accuracy of this theory
for q ≤ 1 is likely due to its self-consistency in the osmotic pressure description,
as noted by Dijkstra et al. [112]. In fact, the GFVT accounts in a non-systematic
way for higher-order terms in the polymer fugacity zp [109]. In this way, the
truncation after the first-order term of the expansion of the semi-grand canonical
free energy in terms of zp is to some extend compensated. A possible reason for
the less good accuracy of the GFVT for q > 1 is that we did not account for
the fact that the colloids penetrate the polymer coils for q > 1. For q > 1, the
fact that the polymer segments are connected along a chain, and that the deple-
tion thickness becomes of the order of the polymer correlation length, leads to a
restriction on the allowed polymer configurations, and thus decreases the free en-
ergy [133,251]. Furthermore, the assumption made in the SPT that the presence
of the polymers causes only a small disturbance of the colloidal suspension may
be not justifiable in the protein regime so that a more refined description must
be used, which accounts explicitly for all polymer conformations in a given posi-
tional configuration of colloids [118, 138]. In this refined approach, the depletion
forces are attributed to the change of the polymer conformational entropy when

118



an additional colloid is inserted into the polymer solution. The colloids disturb
the chains by reducing the possible polymer conformations, and consequently,
give rise to a decrease in the polymer conformational entropy. This loss of en-
tropy is partially compensated by the colloids getting closer together, to create
space for a polymer chain to expand. Accordingly, there is a polymer-induced
attraction between the colloids.

In chapter 4, we have studied the aggregation kinetics, and the non-equilibrium
phase behaviour, in unstable mixtures of charge-stabilised, nanosized silica spheres
and non-adsorbing polysaccharide chains using photon correlation spectroscopy
and by visual inspection. First, the effect of salt-induced screening of the elec-
trostatic repulsion on the initial aggregation kinetics was investigated in the pure
colloidal suspension without added polymers. For this purpose, we followed the
time-dependent cluster growth in low-φ suspensions by measuring the collective
diffusion coefficient of the aggregates. The hydrodynamic radius, R, was then
determined from the Stokes-Einstein relation. We have also investigated the ef-
fect of increasing colloid volume fraction on the cluster-aggregation growth rate.
Following the time-evolution of the hydrodynamic radius, we obtained the salt-
and φ-dependent aggregation time. From the observed exponential scaling be-
haviour of R, we conclude that the cluster growth (at least for short times) is
induced by a slow and irreversible reaction-limited aggregation process (RLA) at
initial times after sample preparation. At later times, we observe an accelerated
exponential growth rate for high salt concentrations and large φ. This change in
the aggregation rate can be explained by a transition from a slow RLA process
at early times to a faster progressing RLCA mechanism at later times. To gain
quantitative insight, we used the colloid dimer formation theory of initial floc-
culation. In this theory, the formation of dimers is explained by accounting for
the electrostatic repulsion on the DLVO-level and the inclusion of van der Waals
attractions. A theoretical description of the experimentally observed aggregation
time has been achieved using the van der Waals force parameters of fused sil-
ica nanoparticles dispersed in water known from previous experiments, and by
adjusting the effective colloid charge number in dependence of the salt concentra-
tion. In this way, we have circumvented the well-known difficulties in predicting
aggregation rates in colloidal dispersion theoretically from first principles.

In the second part of chapter 4, we have added polymers to colloidal dis-
persions at low colloid volume fractions. We find that the collective diffusion
coefficient of clusters decreases with increasing polymer concentration. The ag-
gregation growth rate decreases with increasing q, i.e., with increasing polymer
molar mass. We have shown that the polymer-induced aggregation rate is well de-
scribed theoretically by the Asakura-Oosawa-Vrij depletion potential for polymer
concentrations below the overlap concentration c∗. For c ≈ c∗, the experimental
aggregation rate is faster than theoretically predicted, since non-ideal polymer
solution properties become important. This result is in agreement with previous
experimental observations that water-dissolved dextran is close to the θ-solvent
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condition at room temperature [162]. Finally, we have prepared and analysed
samples of varying polymer concentration and colloid volume fraction, for differ-
ent amounts of added salt. At high c and large φ, the samples become immediately
turbid after preparation, and a turbid lower phase is formed at the bottom of the
tube with progressing observation time. This bottom phase ceases to flow after
several hours and forms then a gel. This is indicative of a phase separation process
accompanied by a slower and irreversible cluster aggregation process [181, 183].
We speculate that the bottom phase is formed by micrometre-sized colloidal clus-
ters. In addition, we have compared the experimentally observed non-equilibrium
phase diagrams at various salt concentrations, with the theoretically predicted
equilibrium phase diagram obtained from the GFVT described in chapter 3. In
both phase diagrams, the homogeneous mixture is stabilised, as expected, when
the electrostatic repulsion becomes stronger. Furthermore, we find that the re-
gion in our experimental non-equilibrium phase diagram, where phase separation
is observed at short times after mixing, coincides with the region enclosed by the
spinodal line obtained from the equilibrium GFVT. This suggests that the ex-
perimentally observed turbid phase at the tube bottom is due to the aggregation
of large cluster in the colloid-rich phase during demixing, that sediment to the
bottom of the container and form a dense phase.

In future work, it will be interesting to study experimentally the fast demixing
process at high polymer concentrations and high colloid volume fractions using,
e.g., x-ray correlation spectroscopy and small-angle x-ray scattering. Further-
more, little is known to date about the influence of long-ranged, polymer-induced
attractions on the cluster fractal dimension. The fractal dimensions can be de-
termined, in principle, by small-angle light scattering. On the theoretical side,
it will be worth to explore the interplay between demixing and accompanying
cluster aggregation.
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Abbreviations

AO Asakura-Oosawa (approximation)

AOV Asakura-Oosawa-Vrij (potential)

BH Barker-Henderson (approximation)

CMCT cluster mode-coupling theory

DH Debye-Hückel (theory)

DLA diffusion limited aggregation

DLCA diffusion limited cluster aggregation

DLVO Derjaguin-Landau-Verwey-Overbeek (potential)

FVT free-volume theory

GFVT generalised free-volume theory

IA irreversible aggregation (process)

MCT mode-coupling theory

MSA Mean-Spherical Approximation

PAO penetrable Asakura-Oosawa (model)

PRISM polymer reference interaction site model

PY Percus-Yevick (approximation)

RA reversible aggregation

RLA reaction limited aggregation

RLCA reaction limited cluster aggregation

SPT scaled-particle theory

TPT thermodynamic perturbation theory
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