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Summary

This thesis deals with equilibrium and dynamical properties of colloidal dispersions.
It contains three parts, each concerned with a different colloidal system: in the first
part, we present results from classical density functional theory (DFT), dynamical
density functional theory (DDFT), and Brownian dynamics (BD) computer sim-
ulations on crystallization of a colloidal suspension of paramagnetic spheres on a
planar interface that carry a magnetic-field-induced dipole moment, directed per-
pendicular to the interface. The equilibrium system is completely characterized
by the long-range dipole-dipole interactions. The phase behavior is addressed by
two different approximations to the DFT, an extended form of the approach by
Ramakrishnan and Yussouff (RY) and the extended modified weighted density ap-
proximation. Both approaches, which are exact up to third order in the functional
expansion of the excess free energy about a fluid with uniform density, are superior
to their simpler second-order counterparts. Subsequently, the relaxation dynamics
of crystal growth and melting is studied by means of DDFT with the RY density
functional as an input and with BD computer simulations. To study the growth
scenario, a crystalline cluster of few particles is tagged in an equilibrated fluid at
a low magnetic field, before instantaneously increasing the field, which renders the
fluid undercooled, and letting the particles free at the same time. Observed is a
two-stage process, consisting of a fast relaxation towards a cutout of the stable bulk
crystal, which then either collapses or serves as a heterogeneous nucleation seed for
further crystal growth, depending on the quench depth and on the structure of the
incipient cluster.

The second part deals with crystallization in slit-pore confinement of a model
system of particles interacting via ultrasoft repulsive pair potentials representing,
e.g., amphiphilic dendrimers in solution, which is addressed with an accurate mean-
field DFT and BD computer simulations. The particles are shown to freeze into
cluster crystals either from the middle of the slit towards the walls or vice versa,
depending on the particle-wall interaction. For large wall-wall separations, a con-
tinuous growth of the fluid or solid layer on either wall, upon approaching the bulk
freezing line, indicates complete wetting in both cases. The continuous growth is
interrupted by capillary melting or freezing.

The third part is devoted to the dynamics of an active, self-propelled, colloidal
rod in two dimensions, which serves as a simplified model to study the motion of,
e.g., bacteria, spermatozoa, or artificial nano-swimmers close to planar walls. The
self-propulsion is modeled through a constant force in the rod orientation and a
constant torque, both yielding motion along circles rather than along straight lines;
we therefore designate the particle a “Brownian circle swimmer.” The motion in
the bulk is examined by integrating analytically the Langevin equations of motion,
whereas the motion in linear, confining channels is assessed by a non-Hamiltonian
rate theory and BD computer simulations. A sliding mode close to the channel wall
leads to a huge acceleration as compared to the bulk motion, which can further be
enhanced by an optimum torque-to-force ratio.



vi



vii

Zusammenfassung

Die vorliegende dreiteilige Arbeit beschäftigt sich sowohl mit Gleichgewichts- als
auch dynamischen Eigenschaften dreier verschiedener kolloidaler Suspensionen. Im
ersten Teil analysieren wir mit den Methoden der klassischen Dichtefunktionaltheo-
rie (DFT), der dynamischen Dichtefunktionaltheorie (DDFT) und mit Computer-
Simulationen der Brownschen Dynamik (BD) die Kristallisation einer Suspension
von paramagnetischen Kugeln auf einer Grenzfläche, die einem senkrecht zur Grenz-
fläche stehenden magnetischen Feld ausgesetzt sind. Das Gleichgewichtsphasen-
verhalten, das vollständig durch die langreichweitige Dipol-Dipol-Wechselwirkung
und die thermodynamischen Zustandsgrößen charakterisiert ist, wird durch zwei
verschiedene DFT-Näherungen ermittelt, zum einen durch eine erweiterte Form
der Näherung von Ramakrishnan und Yussouff (RY) und zum anderen durch eine
sogenannte extended modified weighted density-Näherung. Beide Methoden stim-
men bis zur dritten Ordnung mit der Funktionalentwicklung der Exzess-Freien En-
ergie in den lokalen Dichteschwankungen bezüglich einer Flüssigkeit mit konstanter
Dichte exakt überein und sind ihren einfacheren, lediglich bis zur zweiten Ordnung
übereinstimmenden Vorgängern überlegen. Anschließend betrachten wir die Relaxa-
tionsdynamik von schmelzenden und wachsenden Kristallen mit Hilfe der DDFT und
mit BD-Simulationen, erstere auf Basis der RY-Näherung. Um das Wachstumsver-
halten zu untersuchen, ordnen wir wenige Teilchen in einer bei niedrigem magne-
tischen Feld im thermodynamischen Gleichgewicht befindlichen Flüssigkeit zu einem
Kristalliten an, dessen Zeitentwicklung wir nach einer instantanen Erhöhung der
Feldstärke in der umgebendendn, dann metastabilen bzw. unterkühlten Flüssigkeit
beobachten. Der Relaxationsprozess besteht im wesentlichen aus zwei Schritten: Auf
sehr kurzer Zeitskala relaxiert der zuvor festgehaltene Kristallit zu einem Ausschnitt
eines thermodynamisch stabilen, unendlich ausgedehnten Kristalls. Anschließend
wächst oder kollabiert die kristalline Konfiguration, je nach originärer Geometrie
und je nach Stärke des magnetischen Feldes.

Im zweiten Teil der Arbeit untersuchen wir die Kristallisation einer weiteren kol-
loidalen Suspension zwischen zwei repulsiven oder attraktiven, planaren Wänden.
Das System, dessen Teilchen über sehr weiche, beschränkte Potentiale miteinander
wechselwirken, modelliert in einfacher Weise beispielsweise eine Lösung von am-
phiphilen Dendrimeren. Mit Hilfe der hier sehr akuraten mean-field-Näherung der
DFT und BD-Simulationen finden wir, dass die Teilchen sich bei niedrigen Tempera-
turen zu sogenannten Cluster-Kristallen ordnen, in denen jeweils mehrere Teilchen
die Position eines einzigen Gittervektors annehmen. Die Teilchen kristallisieren ent-
weder zunächst in der Mitte der Pore und erst dann an den Wänden, oder gerade
andersherum, je nach der Form der Wand-Teilchen-Wechselwirkung. Im Fall großer
Wand-Wand-Abstände wachsen die flüssigen oder kristallinen Lagen beim Annähern
an den Einfrierübergang kontinuierlich von beiden Wänden in die Mitte, was auf
eine vollständige Benetzung durch die jeweilige Phase hindeutet. Das Wachstum
wird schließlich durch die Kapillarkondensation der kristallinen oder flüssigen Phase
unterbrochen.
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Im dritten und letzten Teil geht es schießlich um die Dynamik eines aktiven,
selbst angetriebenen, kolloidalen Stäbchens in zwei Dimensionen, das als ein verein-
fachtes Model für die Bewegung von Bakterien, Spermien, oder künstlichen Nano-
Schwimmern in der Nähe planarer Oberflächen dienen kann. Der Selbstantrieb wir
durch eine konstante Kraft in Richtung der Stäbchenorientierung und ein konstantes
Drehmoment modelliert, die zusammen zu einer zirkulären Bewegung des Teilchens
führen; das Stäbchen wird daher auch als “Brownscher Kreisschwimmer” bezeichnet.
Ohne Anwesenheit eines äußeren Potentials, d.h., in der homogenen, ausgedehn-
ten Flüssigkeit, lassen sich die Langevin-Bewegungsgleichungen analytisch integrie-
ren. Für die Analyse der Bewegung in linearen, einschränkenden Kanälen bedienen
wir uns einer nicht-Hamiltonschen Ratentheorie und Computer-Simulationen, die
übereinstimmend eine deutlich schnellere diffusive Bewegung als in der ausgedehn-
ten Flüssigkeit vorhersagen. Die beschleunigte Bewegung wird durch einen metasta-
bilen, stationären Zustand des Gleitens entlang einer der beiden Wände bedingt und
kann durch eine Optimierung des Verhältnisses von Vorwärtskraft und Drehmoment
noch gesteigert werden.
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Introduction

The work at hand deals with different systems of what is generally referred to as soft
colloidal matter [132, 136, 157] and is dedicated to the question of how these systems
behave in and out of equilibrium. Soft matter comprises a vast number of everyday
realizations, such as paint, food, pharmaceuticals, biological cells, etc. [136], which—
despite their many structural and dynamical differences—have in common that their
behavior is governed by one or several mesoscopic length scales,1 which lie in the
range of 1 nm − 10μm [132, 247]. Such a length scale typically becomes manifest
in the size of the systems’ relevant constituents; the latter can be simple colloidal
particles with only translational and rotational degrees of freedom (rigid colloidal
bodies such as spheres, rods, or platelets), or more complex entities, which possess
many internal, thermally activated degrees of freedom such as polymers, proteins,
membranes, etc. [136, 157, 167]. The colloidal particles are typically immersed in a
viscous molecular solvent (aqueous or organic), i.e., there is a large separation of
length- and time-scales between the solvent and the colloidal entities (eventually,
with those of colloidal subdomains, e.g., polymer monomers, in between).

The presence of different length and time scales, which span many orders of
magnitude, is the key source of the host of diverse, exciting physical phenomena,
which make soft matter a fascinating field of physics. For a theoretical description,
however, this complexity is also a great challenge, as, on the one hand, a first princi-
ples, “ab initio” approach from the microscopic scale is impossible, but, on the other
hand, it is most often also not so obvious which of the small and intermediate scales
can be ignored or treated on a coarse level, and which have to be taken into account
explicitly. Therefore, the first and most important task is often to choose a proper
way of bridging the gap from the microscopic to the mesoscopic scale; the solution
to this problem does not only depend on the particular system under study but also
on the physical question posed. For the equilibrium problems, we base our studies
on the concept of effective interactions [157, 247], which amounts to integrating out
the small scale degrees of freedom in the partition sum; this treatment leads to a
mesoscopic Hamiltonian, which contains only the center-of-mass coordinates of the
colloids as variables, plus potentially further internal degrees of freedom. In fact,

1Our use of the term “mesoscopic” is different from the more common one, implying the scales
in which quantum-mechanical effects are significant. On the contrary, the length scale considered
here is way larger than the thermal de Broglie wavelength, rendering quantum effects negligible.
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colloidal fluids or solids are therefore to be regarded self-similar to so-called sim-
ple liquids or solids, which are not immersed in a solvent but are described by the
same Hamiltonian—up to a different prefactor setting the energy scale. Note, how-
ever, that the experimentally realized effective interaction potentials in soft matter
are by far richer and more diverse than atomic or molecular interaction potentials,
which are dictated by the electronic structure. For the non-equilibrium problems,
our studies are based on the concept of overdamped Langevin dynamics [67, 247], in
which the solvent is treated as a heat bath, exerting both friction and random forces
onto the colloids, which are related via Einstein fluctuation-dissipation relations.
Once the relevant equations of motion or a Hamiltonian are formulated, a second
step to bridge the gap between the meso- and the macro-scale can be pursued. In
the present thesis we will be mainly concerned with this second step, which is still
demanding, in particular when the underlying equations still contain a lot of micro-
or mesoscopic details.

Soft matter systems are not only interesting to study in themselves, e.g., for
their vast importance in nature or technology, but they are also most appealing
to serve as model systems for the study of very general physical problems, such
as the equilibrium phenomena of critical behavior, wetting, or freezing, and as the
non-equilibrium phenomena of nucleation, crystal growth, spinodal decomposition,
or glass formation. This latter attractiveness has two reasons: first, the important
observables are often accessible experimentally by relatively simple means for the
relatively large length and time scales, which is in contrast to atomic or molecular
systems. For example, μm-sized colloidal particles can be tracked individually with
confocal light microscopes even in three spatial dimensions [285]. At the same
time, colloids are small and light enough to be thermally excited2 and therefore
to be addressed by classical statistical mechanics and thermodynamics. Second,
the interaction potentials between the particles and also with external fields can
in many experiments be tailored according to the individual needs, e.g., to study
certain aspects of a system isolated from others. This is achieved, e.g., by changing
the solvent, the shape, or the architecture of the colloidal particles, or even by
manipulating single particle trajectories with laser tweezers [285].

In the thesis at hand the reader will encounter soft-matter systems carrying
characteristics of both kinds, pure model systems and systems of direct relevance
in nature or technology. The first system under study, paramagnetic colloids at
an interface, which are additionally exposed to an external magnetic field [307],
and the second system, a special class of amphiphilic dendrimers [192] in slit-pore
confinement, fall into the former category of model systems. The two setups are

2A more quantitative criterion for thermal excitability is that the relevant deterministic forces
Fi (e.g., due to gravity, electric or magnetic fields, and van der Waals interactions) should at typical
inter-particle distances not by far outrange the Brownian force kBTσ, where kB is Boltzmann’s
constant, T the absolute temperature, and σ a characteristic length [247]. However, as the inter-
particle forces depend on separation and, e.g., the van-der-Waals force diverges at contact, a more
careful assessment is typically necessary.
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exploited for a systematic study of equilibrium crystallization (Chapters 3, 4, and
7) and non-equilibrium crystal growth and melting (Chapters 5 and 6). Although we
put both of these systems into the first category, future relevance in nanotechnology
of adsorption, photonic crystals, etc., is not ruled out, of course. A quite different,
third system studied in Chapter 8 is a particularly designed, rodlike nano-swimmer
in two spatial dimensions, i.e., an active particle, which moves through a quiescent
solvent by self-propulsion. This system has certainly model character, but is also
highly relevant for the understanding of the motion of, e.g., bacteria or spermatozoa
close to planar walls [71].

The first and major part of this thesis, comprising Chapters 3-7, is devoted to the
theoretical modeling and understanding of the liquid-solid phase transition of the
first two soft matter systems in the bulk and in slit-pore confinement; our treatment
includes both the equilibrium phase behavior and the non-equilibrium relaxation
processes driving a system from one state to the other, i.e., crystal growth and
melting.3 In fact, an understanding of the underlying equilibrium phase diagram
in the bulk is an essential prerequisite for the modeling of more complex, broken-
symmetry problems in confinement or in non-equilibrium. Our focus lies in this work
on the systematic treatment of those situations, in which liquid and solid domains
are either in coexistence, or in competition, one eventually growing at the expense of
the other. Both of these situations involve stationary or moving interfaces between
the domains. A theory, which has proved to be very reliable for the study of many
colloidal systems in situations of the former kind, i.e., systems displaying liquid-solid
coexistence, is classical density functional theory (DFT) [85, 165, 263]. This approach
to bridge the aforementioned gap between the meso- and the macro-scale for systems
in equilibrium regards the solid as a strongly modulated fluid, i.e., a fluid, in which
the density modes have condensed. DFT is therefore able to treat the liquid and
the solid state within the same density field, which provides the ensemble averaged
probability density to find a particle at a certain point in space. The theory, which is
reviewed with a focus on applications to crystallization in Chapter 1, is particularly
appealing, because it is rigorously derivable from statistical mechanics. However,
in most practical situations of strongly correlated fluids, including most problems
involving freezing, some ad hoc approximations have to be made. Still, DFT has
made remarkably correct predictions for the equilibrium phase behavior of many
systems, including the ones studied in the work at hand.

The first soft-matter system to be examined in the realm of crystallization con-
sists of monodisperse, paramagnetic colloids, which are confined to a planar interface
and additionally exposed to an external magnetic field that is directed perpendic-
ular to the interface [307]. As these colloids are perfectly modeled by point-like
magnetic dipoles, free of additional parameters, in the strong-field limit, the system

3We will in this thesis not be concerned with the subject of spontaneous homogeneous or
heterogeneous nucleation [257], although Chapter 6 can be regarded in the realm of the latter
phenomenon (see also Subsections 1.6.1 and 2.2.4.
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marks an ideal setup for qualitatively and quantitatively comparative studies be-
tween experiment, computer simulations and theory. In Chapters 3 and 4 we put
forward different approximations to the DFT to predict very accurately the bulk
phase diagram of the system.4 The approximations made, comprise an extension of
the approach by Ramakrishnan and Yussouff [226] to third-order correlation func-
tions and a so-called extended modified weighted density approximation, which was
originally developed in three spatial dimensions [158, 159] (cf. Subsections 1.3-5).
Next to an accurate prediction of the phase diagram, the work laid out in these two
Chapters was also motivated by two other quite distinct reasons: first—quite a tech-
nical point—this work demonstrates the importance of explicit inclusion of triplet
correlation functions in the approximate density functionals of long-range, inverse-
power pair potentials in two spatial dimensions; the necessity of such an inclusion
had already been demonstrated in three dimensions [158] but the translation to two
dimensions was by far not clear a priori. Second, these two Chapters constitute
an important part of the foundations for a study of the non-equilibrium processes
of crystal growth and melting of the same system in Chapters 5 and 6, which we
shortly comment upon in the following paragraph.

Crystal growth and melting have been studied extensively by different com-
plementary means, experiments [5, 215, 304], computer simulations [15], and phe-
nomenological theories [104]. Regarding the theory side, many groups were for
a long time rather concerned with simple liquids, in which latent heat is a key
quantity ruling the dynamics of crystals in contact with their melt. Only few phe-
nomenological theories have been designed for the study of colloidal crystal growth
or melting [78, 79, 105, 296], in which the conserved particle density is the impor-
tant rate-determining quantity (see also the discussion in Section 2.2.4). However,
these models, which are typically based on a Landau-Ginzburg kind of Hamilto-
nian, need phenomenological mobilities as an input. Instead, we rely in Chapters 5
and 6 on a more microscopic theory, which is based on the Langevin equations of
motion for overdamped particles and on classical density functional theory, and is
therefore referred to as dynamical density functional theory (DDFT) [10, 179]. The
theory, which is reviewed in Section 2.2, provides an equation of motion for the
time-dependent, ensemble averaged one-particle density of a system; the latter can
be regarded as an extension of the equilibrium density field in DFT to a time-
dependent field in DDFT. However, this extension is by no means straightforward
nor is it derived, at least in principle, rigorously from the foundations of statisti-
cal mechanics, as is DFT. Instead, a crucial ad hoc approximation is made, which
amounts to approximate generally time-dependent correlation functions by equi-
librium equivalents. This so-called adiabatic approximation, which was originally
introduced by Enskog [82], is extensively discussed in Subsection 2.2.3. Still, DDFT

4Having said this, we note that the actual phase transition in two dimensions is incorrectly
predicted to be first order due to the inherent mean-field character of any approximation to the
DFT, whereas it actually consists of two continuous transitions with a narrow hexatic phase in
between (cf. the introduction of Chapter 1 and Subsection 1.6.2).
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has proved to very accurately predict the non-equilibrium dynamics of many soft-
matter systems (see Subsection 2.2.5). The same theory is therefore put forward as
the first full microscopic approach to the dynamics of crystallization in Chapters 5
and 6.

The particular physical problems studied within this thesis are limited to ho-
mogeneous melting on the one hand (Chapter 5), and to the growth of eventually
strained crystalline clusters of few particles into an undercooled melt on the other
hand (Chapter 6), both after an instantaneous change of the magnetic field from a
high to a low value or vice versa, which is equivalent to an instantaneous change of
temperature everywhere in the system. In the growth case, which is also regarded in
the realm of recent studies on heterogeneous crystal nucleation [104, 105, 257], inter-
esting dynamics are observed on different time scales, which are also confirmed by
extensive Brownian dynamics computer simulations. Next to the setups studied in
this thesis, many other problems are still to be treated or await completion. Among
them is a systematic study of the short- and long-time dynamics of planar crystal
fronts. This in principle straightforward, though computationally time-consuming,
problem is currently studied with DDFT and with the more coarse-grained phase
field crystal (PFC) model [78, 79] in collaboration with R. Backofen and A. Voigt.
The reason for this comparative study is two-fold: first, within a truncated density
expansion the PFC model can in principle be derived from DDFT, but is based
on certain strong approximations (cf. Subsection 2.2.4); a quantitative comparison
is therefore on order. Second, the PFC model certainly has the advantage to be
computationally faster than DDFT, which offers the assessment of larger length and
time scales. A prudent separation of application domains is therefore highly desir-
able. The studies on the two-dimensional model system discussed here may also
be regarded as a forerunner of more demanding studies in three spatial dimensions,
where even complementary experimental approaches are still at their infancy [285].

The second model system under study in Chapter 7 are amphiphilic dendri-
mers [192] in slit-pore confinement. The equilibrium system is studied with a den-
sity functional approach, which can therefore be partly regarded as a preparatory
work for an application of DDFT to the dynamics of crystallization in three spatial
dimensions. However, in this work we are only concerned with the static behav-
ior in equilibrium, first in the bulk, and then in confinement, which we treat with
mean-field density functional theory (cf. Subsections 1.3-5), backed by computer
simulations. Both the bulk and the confined cases are already intricate in them-
selves for several reasons. First, and different from the system of paramagnetic
colloids above, where the setup of a Hamiltonian of point-like dipoles without loss
of microscopic information was straightforward, bridging the gap between the micro-
and the meso-scale is here pursued via a much coarser, effective Hamiltonian. Af-
ter averaging over the polymeric degrees of freedom, the dendrimers are regarded
as spherical objects, which interact with each other via a special class of ultrasoft,
repulsive pair potentials. The latter are bounded and therefore allow for a complete
overlap of two or more dendrimers’ centers of mass at the expense of a finite interac-
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tion energy [192]. The ability to overlap, which is due to their polymeric nature, is
one of the prerequisites for the formation of so-called cluster crystals, in which sev-
eral particles share the same lattice site in a crystal of almost density-independent
lattice spacing [161, 190]. Note that the theoretical model is based on the strong
assumption of pairwise additive interactions between the dendrimers, which is be-
lieved to hold in a regime of small to intermediate average densities, but still awaits
testing with computer simulations or experiments. In this work, we regard the
model Hamiltonian as given even for arbitrarily high densities and leave the exam-
ination of model distortions due to many-body interactions to a future study. The
at first sight counter-intuitive phenomenon of cluster crystallization, which is absent
for unbounded, “conventional,” repulsive pair interactions,5 is the second reason for
our special interest. An astonishing finding, which to our knowledge has not been
reported for other systems, is the prevalence of the unexpected hexagonally close
packed lattice at the freezing transition. From the theory point of view, the bulk
model system is well understood; whether the assumption of pair-additivity prevails
also for large number densities, remains to be tested, however.

In the second part of Chapter 7 we go beyond the infinite bulk system and re-
gard the symmetry-broken states of different planar confinements. In a systematic
fashion we study the effect of the wall-particle interactions and the wall-wall sepa-
ration on the freezing behavior. We show that for repulsive walls the system freezes
from the middle, whereas for attractive ones crystallization sets in at the walls and
proceeds to the middle. For large wall-wall-separations we find continuous growth
of a fluid or crystalline layer on the wall, depending on the wall-particle interaction,
which is interrupted by capillary melting or freezing close to the bulk crystallization
transition. An asymptotic scaling analysis of the width of the liquid or crystalline
films growing at the walls indicates complete wetting in both cases. As in the bulk
case, the theoretical studies are backed by computer simulations. In summary, the
system of dendrimers and the simplified model system of ultrasoft, spherical par-
ticles are ideal candidates to study different further phenomena of crystallization,
as in particular the latter is easily accessible by theoretical means and computer
simulations. The still missing link to the “real” world is, however, an experimental
realization through dendrimers or possibly other complex molecules.

The third model system under study in Chapter 8, which is also addressed at
extent in Section 2.3, is an active colloidal particle in two dimensions, which is self-
propelled by an internal motor. On average, the rodlike particle performs a circular
motion, which is eventually perturbed by Brownian kicks of the embedding solvent;
we therefore refer to the particle as a “Brownian circle swimmer.” Despite its
colloidal characteristic of performing overdamped, Brownian motion in a quiescent
solvent it is quite different from the other two models, introduced above. At first,
the particle is active, i.e., it is out of equilibrium by construction; in fact, the

5Clustering in systems interacting via unbounded pair potentials is observed in the special case
of additional short-range attractions and long-range repulsions [258].
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self-propulsion is modeled through a non-Hamiltonian force driving the swimmer
in the direction of its orientation and a non-Hamiltonian torque, which together
induce the circular motion. Second, we are here only concerned with the single-
particle properties instead of collective phenomena induced by the presence of many
particles. This latter restriction may, however, be overcome in a future study. And
third, the model particle is a colloidal rod, i.e., even without the self-propulsion it
has an internal orientation, which becomes manifest through anisotropic interaction
potentials and friction coefficients. The study of this seemingly complex model is
motivated by a large number of experiments of diverse Brownian swimmers, ranging
from Bacteria and spermatozoa to catalytically driven nanorods, active, anisotropic
colloidal particles and vibrated granulates (see Chapter 8 for a list of references),
which under certain conditions swim in circles rather than along straight lines. As
an example we mention here the bacterium Escherichia coli [24], which swims in
circles close to planar walls.

In the first part of Chapter 8, we present the averaged position and the mean-
square-displacement of the swimmer in the bulk, which is obtained exactly by inte-
grating the Langevin equations of motion; it is shown that the averaged position falls
on a spira mirabilis, and that the mean-squared displacement displays a crossover
from an oscillatory ballistic to a diffusive behavior. In the second part, we identify
the modes of propagation of a circle swimmer in confining channels with repulsive
walls using Brownian dynamics computer simulations and a non-Hamiltonian rate
theory, which is introduced at extent in Section 2.3. In channel confinement, an
efficient stable sliding mode is identified for an optimum torque-to-force ratio that
strongly enhances the long-time diffusion along the channel, and might once be ex-
ploited for sorting of bacteria with microfluidic devices. If the channel is asymmetric,
the sliding mode leads to ballistic long-time motion.

The thesis is roughly divided into two parts: in a first part, comprising Chap-
ters 1 and 2, the relevant theoretical methods are introduced, their application to
the respective problem is discussed, and their use in the past is shortly reviewed.
In a second part, comprising Chapters 3-8, the physical problems under study are
presented in the form of self-contained chapters, which have already been published
or submitted to different physical journals. In particular, we start in Chapter 1 with
a review of classical DFT in equilibrium, where a special focus is put on crystalliza-
tion. In Chapter 2 we are concerned with the theoretical approaches of DDFT and
non-Hamiltonian rate theories to non-equilibrium, overdamped, Brownian dynamics.
Chapters 3 and 4 are devoted to the equilibrium properties of paramagnetic colloids
on an interface, where Chapter 4 is basically an extended version of Chapter 3,
with some comments and details excluded, however. Non-equilibrium properties of
the same system are assessed with DDFT in Chapters 5 and 6. Chapter 5 covers
melting,6 whereas Chapter 6 is devoted to the growth dynamics of small crystalline

6The same chapter also includes a short section on nucleation under shear in a different model
system by Ronald Blaak and Hartmut Löwen.
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clusters into the undercooled melt. Crystallization in slit pores of the second model
system, cluster-forming dendrimers, is assessed in Chapter 7. Finally, in Chapter 8,
the dynamics of a single, active colloidal particle in two dimensions is studied with
a non-Hamiltonian rate theory.



Chapter 1

Classical density functional theory
of freezing

A large part of the thesis at hand is devoted to the equilibrium crystallization of
colloidal liquids in the bulk (Chapters 3 and 4) and in confinement (Chapter 7).
There is to date only one microscopic theory capable to describe the solid and the
liquid state within the same framework [165, 209, 263], which is classical density func-
tional theory (DFT) [85, 87, 117, 299, 300]. Classical DFT is a liquid-based approach
which regards the solid as a strongly inhomogeneous fluid with frozen-in density
modes. The way for this viewpoint was paved by Kirkwood and Monroe [144] al-
ready in 1941. However, the approach was put on solid grounds and applied to
hard-sphere freezing only in 1979 by Ramakrishnan and Yussouff [226] and further
reformulated by Haymet and Oxtoby [119, 209, 213]. As a liquid-based approach,
DFT stands in contrast to crystal-based elasticity theory [35, 265] originally dat-
ing back as far as to Born in 1939 [34], which regards the liquid state simply as a
collapsed crystal. In two spatial dimensions, where “true” long-range translational
order is lost according to the Mermin-Wagner theorem [185] and only rotational
order persists on large scales [91, 92], Kosterlitz, Thoughless, Halperin, Nelson and
Young [113, 146, 200, 265, 305] have established a famous theory for crystal melting,
which is a two-stage process via an intermediate hexatic phase. To date, there is
no approximation of DFT capable of reproducing these features. Still, it is common
belief that even in two dimensions DFT of freezing gives good results on small to
intermediate length scales (i.e., within the “crystalline domains”) and away from
the Kosterlitz-Thoughless transition (for a discussion see Subsection 1.6.1 and also
Chapter 3). The capability of DFT to describe the liquid and the solid state through
the same density field is not only relevant for equilibrium fluids, but is also of great
advantage for the study of crystallization dynamics; this will become evident in
Chapter 2, where static DFT is extended to a dynamical theory for nonequilibrium
Brownian motion, e.g., for colloidal crystal relaxation and melting (cf. Chapter 5),
and crystal growth (cf. Chapter 6).
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The formalism of classical DFT has been established by Ebner et al. [76] in
the late 70’s. However, it is based on an equivalent framework for the electron
density in an interacting electron gas by Hohenberg and Kohn [127] and also by
Mermin [184], already developed in 1964. Since classical DFT has been used to
study liquids and crystals in equilibrium for many years already, there are excel-
lent reviews and textbooks describing the theory [85, 87, 117] and its application to
crystallization [165, 209, 210, 263]. We therefore restrict ourselves here to a sketch
of the important relations, approximations and implications, mainly following the
reviews by Evans [85] and Singh [263]. In the first part of this chapter (Section 1.1),
we sketch the basic relations leading to a variational principle for the grand poten-
tial Ω of a fluid in thermodynamic equilibrium in terms of the average one-particle
density ρ(r). In order to exploit the desired variational principle, the corresponding
grand-canonical functional Ω̃[ρ(r)] is needed, which, for most fluids of interacting
particles, can be obtained only approximatively. This is the actual challenge in DFT.
We will therefore establish a hierarchy of correlation functions in Section 1.2, before
turning to different approximations of the density functional relevant for homoge-
neous and inhomogeneous density fields in Section 1.3. In Section 1.4, we will name
those approximations applied to freezing of colloidal systems in this thesis, and we
will discuss their advantages and disadvantages compared to other approaches. For
detailed derivations and discussions of the different approaches used we refer the
reader to the relevant Chapters 3, 4, and 7. In Section 1.6, we discuss some sub-
tleties of approximate density functional approaches to freezing, in particular the
mean-field-like character of most density functionals, which leads to the omission of
important fluctuations in continuous symmetry breaking phase transitions and in
two dimensions.

1.1 The variational principle

We restrict our study to monodisperse systems of particles with mass m in a volume
V, which, in equilibrium, are completely characterized by a N -particle Hamiltonian

HN = Hkin + U +Hext . (1.1)

where

Hkin =
∑

i

p2
i

2m
; U ≡ U(r1, . . . , rN) ; Hext =

∑
i

V (ri) . (1.2)

Here, pi, ri are the momentum and position of the particle i, and the sum runs over
all N particles i = 1 . . . N . U is the potential energy of interaction of the particles,
and V is an external potential.

In the grand canonical ensemble, the equilibrium probability density for N par-
ticles is defined by

w0 = Ξ−1 exp [−β(HN − μN)] , (1.3)
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where μ is the chemical potential and β = 1/kBT , with kB Boltzmann’s constant
and T the temperature. The grand partition function Ξ guarantees normalization
of thermodynamic averages with respect to w0, which we denote by 〈. . . 〉 (e.g.,
〈1〉 = 1). It follows that the thermodynamic average of the one-particle density
operator ρ̂(r) =

∑
i δ(r− ri),

ρ0(r) = 〈ρ̂(r)〉 , (1.4)

can be regarded as a unique functional of the probability density w0.
1 Having

introduced the necessary quantities and notions of statistical mechanics, we come
now to the two basic theorems of DFT:

First, it can also be shown that the inverse relation holds, i.e., that w0 is a unique
functional of ρ0, w0 ≡ w0[ρ0] (for a proof see, e.g., Appendix 1 of ref. [85]). This is
the first fundamental theorem. The proof proceeds by showing that V (r) is a unique
functional of w0, which in turn implies that for any one-particle density ρ(r) there
exists exactly one external potential V [ρ], which renders ρ(r) an equilibrium density,
i.e., ρ(r) = 〈ρ̂(r)〉ρ , where the subscript “ρ” denotes the average with respect to
w0[ρ]. Therefore, the important functional

Fintr[ρ] =
〈
Hkin + U + β−1 lnw0[ρ]

〉
ρ

, (1.5)

which will turn out to be the “intrinsic” part of the Helmholtz free energy, is a
unique functional of ρ.

Second, it can be shown that the functional

Ω̃[ρ] = Fintr[ρ] +

∫
dr ρ(r)(V (r)− μ) (1.6)

is minimized by the equilibrium density ρ0(r), where it takes the value of the grand
potential Ω ≡ −β−1 ln Ξ, i.e., [

δΩ̃[ρ]

δρ

]
ρ0

= 0 , (1.7)

Ω̃[ρ0] = Ω . (1.8)

Eqs. (1.7) and (1.8) constitute the second fundamental theorem of DFT and also
the essential variational principle allowing for the determination of the equilibrium
state of any nonequilibrium fluid. However, so far Fintr is unknown, and we will
dedicate a large part of this chapter to finding approximate forms of this functional.
From Eqs. (1.6) and (1.8) it is now clear that Fintr[ρ0] is the intrinsic Helmholtz free
energy. The total Helmholtz free energy F is obtained from Eq. (1.8) by a simple
Legendre transform:

F = Fintr[ρ0] +

∫
dr ρ0(r)V (r) . (1.9)

1To what extent ρ0 remains a unique functional of w0 in approximate density functional ap-
proaches, particularly in the context of spontaneous symmetry breaking, will be discussed in Sub-
section 1.6.1.
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For a noninteracting fluid/gas with U = 0, the intrinsic free energy can be calculated
exactly. Fintr then reduces to

Fid[ρ0] =

∫
dr ρ0(r)

[
ln(ρ0(r)Λ

D)− 1
]

, (1.10)

where Λ = h(β/2mπ)1/2 is the thermal de Broglie wavelength and D the space
dimension. We therefore define the excess part of the intrinsic Helmholtz free energy

Fex = Fintr − Fid , (1.11)

which is solely caused by the mutual interactions of the particles.

1.2 Two hierarchies of correlation functions

Two hierarchies of correlation functions can be established from the functionals Ω̃
and Fex, respectively. First, Ω̃ is the generating functional for a hierarchy of density-
density correlation functions

H(n)(r1, . . . , rn) ≡ 〈[ρ̂(r1)− ρ0(r1)] · · · [ρ̂(rn)− ρ0(rn)]〉 = δnβΩ̃[ρ0]

δβu(r1) . . . δβu(rn)
,

n ≥ 2 ,

(1.12)

where u(r) = μ − V (r) is the intrinsic chemical potential. Eq. (1.12) implies that
if Ω̃ is known exactly, all structural properties of the liquid can be determined
by successive functional differentiation. Second, a hierarchy of direct correlation
functions can be established by functional differentiation of Fex with respect to
density:

c(n)[ρ; r1, . . . , rn] ≡ −β
δnFex[ρ]

δρ(r1) . . . δρ(rn)
, n ≥ 1 . (1.13)

The variational principle, Eq. (1.7), can now be recast into the form

ρ0(r) = Λ−D exp
(
β(μ− V (r)) + c(1)[ρ; r]

)
, (1.14)

which is the basis of an iterative numerical scheme to find ρ0(r), if the effective one-
body potential c(1)[ρ; r] is known. Eq. (1.14) will be explicitly used in Chapter 7.
We will also come back to this relation further down.

It can be shown that the second-order correlation functions of each of these
hierarchies can be related to each other via the Ornstein-Zernike or OZ equation

h(r, r′) = c(2)(r, r′) +
∫
dr′′ c(2)(r, r′′)ρ0(r

′′)h(r′′, r′) , (1.15)
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where we defined c(2)(r, r′) ≡ c(2)[ρ0; r, r
′] and replaced H(2)(r, r′) by the dimension-

less total correlation function h(r, r′), defined as

h(r, r′) = [ρ0(r)ρ0(r
′)]−1 [

H(2)(r, r′)− ρ0(r)δ(r− r′)
]

. (1.16)

Similar relations can be established for higher-order direct and total correlation
functions [291]. For uniform fluids (ρ0(r) = ρ0), Eq. (1.15) reduces to the well
known OZ equation for fluids

h(r) = c
(2)
0 (r) + ρ0

∫
dr′h(r′)c(2)

0 (|r− r′|) , (1.17)

where we introduced the subscript “0” on the direct pair-correlation function to
denote that the density field is flat. Due to translational and rotational symmetry,
h and c

(2)
0 now only depend on the distance r between two coordinates.2 The Fourier

transform of Eq. (1.17), h̃(k), is connected to the static structure factor

S(k) = 1 + ρ0h̃(k) = [1− ρ0c̃
(2)
0 (k)]−1 , (1.18)

which can be measured in scattering experiments [117, 224]. Here, c̃
(2)
0 (k) denotes

the Fourier transform of the direct pair correlation function. A whole branch of
physics, liquid state integral equation theory, is dedicated to the closure of Eq. (1.17)
through appropriate constitutive equations [117]. The resulting, often very accurate
pair correlation functions frequently serve as expansion kernels for perturbative and
non-perturbative approaches to the excess free energy functional Fex[ρ] of inhomo-
geneous fluids in terms of density modulations Δρ(r) = ρ(r) − ρ about a reference
fluid with constant density ρ; we therefore give a short excursion to the field of
liquid state integral equation theory in Section 1.3, which is also based on DFT.
Starting from a reference fluid with an arbitrary inhomogeneous density field ρi(r),
the excess free energy functional of a fluid with density ρ(r) can be obtained by func-
tional integration and making use of the hierarchy of direct correlation functions,
Eq. (1.13):

βFex[ρ] =βFex[ρi]−
∫
drΔρ(r)

∫ 1

0

dα c(1)[ρα; r]

=βFex[ρi]−
∫
drΔρ(r)

{
c(1)[ρi; r]

+

∫
dr′Δρ(r′)

∫ 1

0

dα (1− α)c(2)[ρα; r, r
′]

}
,

(1.19)

where Δρ(r) = ρ(r)− ρi(r) and ρα(r) = αρ(r)+ (1−α)ρi(r). Eq. (1.19) is the basis
for many approximate density functionals (see Section 1.4). The replacement of

2The effective one-body potential reduces to the constant excess chemical potential, β−1c
(1)
0 =

−μex
0 .
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lower- by higher-order correlation functions [in the step from the first to the second
line of Eq. (1.19)] can in principle be continued ad infinitum. For homogeneous
fluids and for ρi = 0, Eq. (1.19) reduces to an integral of the compressibility χT =
ρ−1

0 βS(k → 0), which is the susceptibility related to density-density fluctuations,
with S(k) from Eq. (1.18).

1.3 Approximate density functionals and an ex-

cursion to the homogeneous liquid state

Before we proceed to different approximations to the DFT of inhomogeneous fluids,
we throw a short glance at how to close the OZ equation, (1.17), for homogeneous
fluids. We will restrict ourselves here to systems of particles interacting via pairwise-
additive forces only, i.e.,

U(r1, . . . , rN) =
1

2

∑
i,j(i�=j)

φ(|ri − rj|) , (1.20)

which are embedded in a uniform external potential V (r) = 0. To lowest order

in density ρ0, the pair correlation function c
(2)
0 (r) � f(r) is given by the Mayer

function f(r) = exp[−βφ(r)] − 1, which reduces to c
(2)
0 (r) � −βφ(r) in the limit

of small βφ. This is in accordance with the well-known first-order virial expansion.
In the context of DFT, the latter asymptotics is obtained from the following idea,
originally formulated by Percus [218]: the radial distribution function g(r) = h(r)+1
of a homogeneous fluid with constant density ρ(r) = ρ is equal to the inhomogeneous
(radially isotropic) one-particle density ρ0(r) of the same system with one particle
held fixed at the origin, i.e., with an external potential V (r) = φ(r). The assumption
that the perturbation due to φ is small and therefore that the response of the density
change Δρ(r) = ρ0(r)− ρ is linear,

Δρ(r) �
∫
dr′H(2)(|r− r′|)βφ(r′) , (1.21)

(the Yvon equation [117]), together with Eq. (1.17), lead to the mean-field ap-

proximation (MFA), c
(2)
0 (r) � −βφ(r). Clearly, this simple relation holds at large

distances r, where φ(r) is small. Interestingly, the same relation is recovered at
all distances r for a special class of particles interacting via short-range, bounded
pair potentials in the limit of a diverging temperature (βφ)−1 	 1 and density
ρσD 	 1, where σ is the range of the potential, keeping the ratio T/ρ finite [1, 106–
108, 150, 191]: This is phenomenologically understood by reckoning that in this limit,
in which φ is much smaller than the average potential energy per particle caused by
all the other particles and smaller than the thermal energy, the excess free energy
becomes completely energy-dominated, i.e.,

Fex [ρ(r)] � U [ρ] =
1

2

∫∫
dr dr′ρ(r)ρ(r′)φ(|r− r′|). (1.22)
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Functional differentiation according to Eq. (1.13) leads to the mean-field result
c(2)[r, r′; ρ] = −βφ(|r − r′|) for any density field ρ(r). Concomitantly, all higher-
order correlation functions vanish. We will exploit Eq. (1.22) in Chapter 7. Note
that the MFA breaks down for pair interactions with a divergence at the origin.

Returning to “usual” fluids, a better approximation to the functional and to the
correlation functions is obtained by expanding Fex around a fluid of constant density
ρ in terms of Δρ = ρ(r)− ρ, which in turn is due to the test particle at the origin
(instead of expanding Δρ in terms of φ, as in the MFA, above):

βFex[ρ(r)] = βFex(ρ)−
∞∑

n=1

1

n!

∫
V

dr1 . . .drn c
(n)
0 (r1, . . . , rn; ρ)Δρ(r1) . . .Δρ(rn) .

(1.23)
Truncating the expansion at second order, n ≤ 2, employing the variational principle
to the respective grand potential functional according to Eq. (1.14) (with constrained
density

∫
drΔρ(r) = 0) together with the OZ equation lead to the hypernetted-chain

or HNC approximation, c
(2)
0 (r) = h(r)− ln[h(r)+1]−βφ(r). The latter relation con-

stitutes a closure relation to the OZ equation. Solution of the two equations for h and
c
(2)
0 typically requires the application of an iterative, numerical scheme (see Chap-
ter 4). Various other closure relations to the OZ equation are obtained by expanding
different functionals in Δρ, the second most famous closure being the Percus-Yevick
approximation (an expansion of exp[c(1)(r)] in Δρ), which can also be obtained
by functional differentiation of the fundamental measure functional [240, 243, 271].
Employing a diagrammatic description in terms of Mayer-bonds, the different ap-
proaches to the correlation functions can be recast into (infinite) sums of diagrams,
being therefore highly non-perturbative. Still, the HNC and PY approximations en-
tail equations of state reproducing correctly the second and third virial coefficients.
Whereas the HNC approximation gives good (quantitative) results for long-range
interacting particles the PY approximation serves well rather for short-range, hard-
core potentials. However, both approximations are thermodynamically inconsistent
in giving rise to different pressures upon either integrating the isothermal compress-
ibility [based on c̃

(2)
0 (k = 0)] or employing the virial equation of state [based on

h(r)] [117]. A somewhat arbitrary, but computationally feasible “mixture” of the
two, guaranteeing thermodynamic consistency, which we make use of for dipolar
particles in two dimensions (φ(r) ∼ r−3) in Chapters 3-6, is an ansatz by Rogers
and Young [239] (for the functional form see Chapter 4).

Similarly to the pair correlation functions, three-particle and even higher-order
correlation functions can in principle be calculated via generalized, higher-order OZ
equations [291] and potential closure relations. However, this task rapidly becomes
difficult and in practice often unfeasible. Therefore, typical approaches are based
on first- and second-order correlation functions. Famous approaches are by Kirk-
wood [143], Barrat et al. [20], and Denton et al. [63] (see Chapter 4 for details on
the latter two).
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1.4 Approximate density functionals for freezing

Within the density functional formalism bulk freezing sets in once a periodically
modulated density field, ρ(r) = ρ(r + R), with R a lattice vector of the “opti-
mum” crystal lattice, becomes a stable solution to the variational equations (1.7)
or (1.14). Before coming to the search for the optimum lattice in the following
chapter, we discuss here the usability of different already and yet to be introduced
approximations to the DFT for the theoretical treatment of freezing. The simplest
approximation to the excess free energy functional is the MFA, Eq. (1.22). Used
for the test-particle treatment of homogeneous liquids above, it does also serve for
the prediction of freezing for particles interacting via pair potentials with negative
Fourier amplitudes [160]. It turns out that this functional, applied to a special class
of cluster-forming particles, which interact via repulsive, bounded pair potentials with
negative Fourier components (for details of the model, see Section 7.2), leads to a
very accurate bulk phase diagram already for intermediate temperatures, βφ ≈ 1,
and densities, ρσD ≈ 1, including a first-order liquid-solid transition and a subse-
quent solid-solid transition [161, 162, 188, 190, 191]. In Chapter 7, we will extend
previous studies in scrutinizing the behavior of particles with a similar interaction
potential in slit-pore confinement, i.e., in an inhomogeneous external potential V (r)
representing two parallel, infinite planar walls. The external potential partly breaks
the symmetry of the underlying fluid and leads to wall-induced prefreezing and pre-
melting, complete wetting of the respective crystalline or liquid phase, and capillary
freezing or melting.

For unbounded potentials, the MFA-DFT is not a good approximation, as it
already fails to give converging free energies per particle in the homogeneous liquid
state. One step further goes the expansion of Fex[ρ] in terms of the density differ-
ences Δρ(r) about a reference fluid at constant density ρ, according to Eq. (1.23).
The application of this approach to freezing goes back to a work by Ramakrishnan
and Yussouff [226] in 1979; the approach was reformulated in the familiar density
functional language in 1981 by Haymet and Oxtoby [119]. For practical reasons
(i.e., due to limited knowledge of higher than second-order correlation functions of
the fluid) they truncated the expansion at n = 2; it is therefore also referred to
as second-order theory (SOT). We will extend their approach by taking third-order
correlation functions of the fluid into account [i.e., n = 3 in Eq. (1.23)], consequently
referred to as third-order theory (TOT). The TOT was applied to the problem of
freezing of hard spheres in three dimensions by Curtin [55]. However, he found that
inclusion of a third-order term substantially worsened the prediction of freezing,
compared to the result obtained within the SOT. In fact, the prediction of freezing
of the SOT and of the TOT rather come as a surprise, since the expansion param-
eter, Δρ(r), is by no means small in the crystalline phase (for dipolar particles in
2D, we will find Δρ(r)/ρ � 100). The predicting qualities must therefore be due
to a cancellation of errors. In two dimensions, however, application of the TOT to
the dipolar inverse-power potential, leads to a substantial improvement compared
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to the SOT-result (see Chapter 4 for a deeper discussion). We will also use the
second-order theory as an input to the nonequilibrium dynamical density functional
theory (see Chapter 2) in Chapters 5 and 6.

Another class of approximations to the DFT of freezing comprises non-pertur-
bative approaches (with respect to the homogeneous liquid), which take first- to
second- or third-order terms of the infinite sum, Eq. (1.23), properly into account,
but contain also contributions of all higher-order terms in a non-perturbative fash-
ion. Famous approximations are the weighted density approximation or WDA by
Tarazona [270], and Curtin and Ashcroft [56], and the modified weighted density
approximation or MWDA by Denton and Ashcroft [64]. The former amounts to
expressing the excess free energy functional,

FWDA
ex [ρ] =

∫
dr ρ(r)f0(ρ̄(r)) (1.24)

in terms of the excess free energy per particle of a homogeneous fluid, f0(ρ̄(r)) ≡
Fex[ρ(r

′) = ρ̄(r)]/N , at a weighted density

ρ̄(r) =

∫
dr′ρ(r′)w(|r− r′|; ρ̄(r′)) , (1.25)

which is a local function of the true density ρ(r), weighted with an appropriately
chosen weight function w (which is not to be confused with the probability density
introduced in Section 1.1). The choice w(|r−r′|) = δ(|r−r′|) corresponds to the well-
known local-density approximation, which, however, leads to poor delta-correlated
functional derivatives [117]. Within the WDA the weight function is normalized and
chosen to correctly reproduce the correlations of the homogeneous liquid state for
any density ρ0, i.e.,

lim
ρ(r)→ρ0

[
δ2FWDA

ex

δρ(r)δρ(r′)

]
= −β−1c

(2)
0 (r− r′; ρ0) . (1.26)

By construction, the WDA includes infinitely many higher-order terms in a non-
perturbative way as well, which is due to the self-consistent dependence of the
weight function on the weighted density in Eq. (1.25). This way of going beyond
the SOT has led to substantial improvements of the predictions of hard-sphere crys-
tallization [56, 57], the reference model for comparison with the worse SOT and
TOT.

The MWDA, in contrast, is a nonlocal theory, which approximates the excess
free energy of an inhomogeneous system by the excess free energy of a homogeneous
reference fluid

FMWDA
ex [ρ(r)] = Nf0(ρ̂) , (1.27)

with the weighted density

ρ̂ =
1

N

∫∫
dr dr′ρ(r)ρ(r′)w (|r− r′|; ρ̂) . (1.28)
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Similarly to the WDA, this approach is formulated in a self-consistent fashion ren-
dering it non-perturbative. Also, the weight function is determined by the constraint
to reproduce the correlations of the underlying liquid, Eq. (1.26). However, the non-
local formulation makes the MWDA computationally much simpler since it amounts
to solving algebraic equations rather than nonlinear differential equations as in the
WDA (for a derivation of the formalism see reference [64] or Chapter 4). The
ease of computation, however, goes along with a restriction of the theory to bulk
systems. The treatment of interfaces, for example, is only possible after a modifi-
cation of the functional to a hybrid weighted density approximation, as suggested
by Leidl and Wagner [155]. The MWDA has been successfully applied to freezing
of hard spheres [64], hard disks [309], Lennard-Jones and inverse-power potentials
(φ(r) ∝ 1/rν , with ν ≥ 4) [149]. Likos and Ashcroft have demonstrated that for the
one-component plasma (OCP), characterized by the long-range potential φ(r) ∝ 1/r,
the MWDA is not a satisfactory theory as it does not predict freezing at all [158].
This failure is due to the vanishing of the coexistence region for inverse-power poten-
tials in the limit of ν → 1 [288], i.e., the freezing transition of the OCP is isochoric.
This in turn leads to a vanishing three-particle contribution to the excess free en-
ergy functional at coexistence, which is otherwise present [158, 159]. They therefore
extended the MWDA to reproduce also third-order correlations of the underlying
liquid exactly, which is referred to as extended modified weighted density approxima-
tion or EMA [158, 159]. The second constraint to the functional [next to the first
constraint, Eq. (1.26)],

lim
ρ(r)→ρ

[
δ3FEMA

ex

δρ(r)δρ(r′)δρ(r′′)

]
= −β−1c

(3)
0 (r− r′, r− r′′; ρ) , (1.29)

is fulfilled by introducing a second (three-particle) weight function v for the deter-
mination of the weighted density ρ̂, which now reads

ρ̂ =
1

N

∫∫
dr dr′ρ(r)ρ(r′)

[
w (|r− r′|; ρ̂) + 1

N

∫
dr′′ρ(r′′)v (r− r′, r− r′′; ρ̂)

]
.

(1.30)
In fact, for long-range power law interactions, φ(r) ∝ 1/rν, this approach sub-
stantially improves the functional. We will demonstrate in Chapters 3 and 4 that
the EMA also yields very accurate results for particles with dipolar interactions
[φ(r) ∝ r−3] in two dimensions (disregarding the problem of continuous melting,
mentioned in the introduction and discussed in Section 1.6).

For a discussion of other density functional approaches to freezing we refer
the reader to the already mentioned reviews by Singh [263], Oxtoby [209, 210],
Löwen [165, 168], and also to the textbook by Hansen and McDonald [117].
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1.5 The search for the optimum crystalline den-

sity

At zero external potential, V (r) = 0, i.e., in the bulk, a homogeneous density,
ρ(r) = ρ0 = Λ−3 exp[β(μ − μex)], is always, i.e., for all T and μ, a solution to the
variational principle of Eq. (1.7) [or to Eq. (1.14), respectively]. However, for many
fluids, below some temperature T ∗(μ) or chemical potential μ∗(T ) (at fixed volume
V), a periodically modulated density field ρ(r) = ρ(r +R), with R a lattice vector
of some crystal lattice, also becomes a solution to the equations. According to the
theory, the crystal with the minimum grand potential functional among all possible
lattice structures is interpreted to be in coexistence with a liquid at that line in
the μ-T -plane, at which the grand potential functionals of the liquid and the solid
solutions are equal. To find the constant (liquid) solution to Eq. (1.14) is a simple
task. On the contrary, to find the crystalline solution to the same equation with
the minimum grand potential functional is demanding, since, in principle, infinitely
many different crystal geometries with different lattice spacings must be probed. In
many practical situations, however, the assumption of stability of simple Bravais
lattices (fcc and bcc lattices in three dimensions, and hexagonal lattices in two
dimensions) is often reasonable, although we will find in Chapter 7 that the stable
post-freezing structure of the cluster-forming particles under study, which interact
via bounded potentials, is the non-Bravais lattice of the hexagonally close packed
crystal.3

Naively assuming that each lattice site is populated by one single particle, the
lattice spacing a is given by the equilibrium average density ρ = V−1

∫
dr ρ(r), a =

cρ−1/D with c some lattice structure-dependent constant. However, the minimum
grand potential is most often found at a different, slightly smaller or larger lattice
spacing, which is interpreted as a finite concentration of defects such as vacancies
or interstitials (see Chapter 4). In fact, it turns out that the lattice spacing turns
completely density-independent in the case of cluster-forming particles in the limit
of large densities (see Chapter 7), which implies that many particles share the same
lattice site and basically sit on top of each other.

Finally, the local shape of the density within a unit cell is a priori not given,
although an isotropic, Gaussian shape is often justified a posteriori [165] (for a
detailed discussion see Chapter 4).

1.6 Discussion

A comprehensive discussion of the density functional approach to freezing goes far
beyond the scope of this chapter. We must therefore necessarily restrict ourselves

3How to discriminate crystalline from noncrystalline solutions to the DFT in external potentials,
in particular, in slit pores, will be discussed in Chapter 7.
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here to few subtleties of the theory, which are conceptually relevant for a broader
understanding and also for the dynamical density functional theory introduced in
the following chapter, but which are discussed in the subsequent chapters only to a
small extent. The following points are of order here: in Subsection 1.6.1, we discuss
the problem of spontaneous symmetry breaking occurring at a first-order freezing
transition, how it is incorporated in the theoretical description, and to what extent
fluctuations are in general omitted in approximate density functional approaches.
The problem of freezing in two dimensions is expounded in Subsection 1.6.2, in
particular, the failure of any approximate DFT to predict continuous melting and a
breakdown of translational order on large scales. In Subsection 1.6.3, we discuss the
problem of a translation of the original grand canonical into a canonical description,
which is pursued by a simple Legendre transform in the thermodynamic limit but
which is more subtle in systems of finite size.

1.6.1 Ergodicity breaking and omitted fluctuations

At the first-order liquid-solid transition in the bulk, i.e., for zero external field,
V (r) = 0, in three spatial dimensions, the continuous translational and rotational
symmetry of the isotropic fluid is spontaneously broken, which is a famous example
of ergodicity breaking [100]. Despite ergodicity breaking the DFT, which is in prin-
ciple based on an unrestricted ensemble average, should always predict a uniform
equilibrium density ρ0. On the contrary, any known approximate DFT does predict
thermodynamical stability of infinitely many crystalline states with different off-
sets and orientations, which share the same value of the grand potential functional.
Therefore, the approximate DFTs do not sample all the fluctuations but only gen-
erate restricted ensemble averages. Before suggesting a protocol to overcome this
problem, we give here an argument for the better understanding of this failure by
doing the following gedankenexperiment.

Let us assume that we have an exact functional, referred to as functional A,
which is minimized by a uniform one-particle density ρA, which is equal to the
correct average density of the crystal in the crystalline regime of the phase diagram.
Let us further assume that we have an approximate functional B, which is minimized
by an infinite number of periodically modulated density fields, which differ only in
offset or orientation. For simplicity, let us arbitrarily choose one periodic field ρB(r).
Assume further that the total correlation functions of the two completely different
density fields are equal, i.e., hA(r, r

′) = hB(r, r
′). We now ask the question what

external potential VA(r) is needed in order to render ρB(r) the equilibrium density
field of functional A. This potential, which pins the density peaks to the lattice
vectors, must have the periodicity of the crystal. The important point is now, that
its amplitude goes to zero as kBT/N in the thermodynamic limit, i.e., its total
contribution to the Hamiltonian or the free energy is of the order kBT , which is just
enough to compensate the entropy gain due to the few D translational and D − 1
rotational degrees of freedom of the whole crystal. From this gedankenexperiment
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we see that the approximate density functional eventually fails to “see” the small
difference in free energy due to additional fluctuations in the center-of-mass motion
and rotation of the crystal as a whole (we will come back to this reasoning further
down).

This problem can in principle be overcome by two different ways of reasoning,
which are, however, a bit flaw: first, we argue that all density fields leading to the
same value of the grand potential are in coexistence and therefore appear in an
experiment with the same probability; an average over these densities leads to the
desired flat density profile. This argument does not only apply to different bulk
crystal offsets and orientations but also to the coexistence of different phases at
phase boundaries, as discussed in the previous section. Second, the problem can
be overcome by breaking the symmetry of the fluid “by hand,” through application
of a symmetry breaking external field V (r) (which can, in contrast to the one in
the gedankenexperiment above, be limited to a small region in space), calculating
the equilibrium density, and then taking the limit V → 0, although, for practical
calculations, this is not necessary.4 This “recipe” and also the gedankenexperiment
above point at a deeper problem of any approximation to the DFT: as it is typically
not clear a priori, which fluctuations are physically accessible during an experimental
realization and how the ensemble average should be properly restricted in order
to yield the same restricted thermodynamics, it is even less clear whether such a
restriction is properly accounted for by the approximate DFT, which was in the
beginning designed to include all the fluctuations [165]. Still, in the context of bulk
freezing, this reasoning has been successfully applied to date.

There have been some attempts to translate this reasoning from the context of
spontaneous symmetry breaking to other problems, in which approximate density
functionals are known to fail or to perform badly due to important missing fluctua-
tions [11, 229, 262]. In these approaches, effectively, a new partition sum,

Ξ∗ = M−1
M∑
i=1

exp[−βΩi] , (1.31)

is introduced, in which the Ωi are the values of the approximate grand potential func-
tional at the constrained density fields ρi. The different ρi, which do not necessarily
minimize the functional even locally, may lead to very different values of the grand
potential functional. Reguera et al. argue that in the context of nucleation, where
DFT is frequently used to estimate nucleation barriers [212, 214], density functionals
of critical droplets should rather be interpreted as restricted averages [229]. Singh

4Within the dynamical theory introduced in Chapter 2 and applied to crystal growth in Chap-
ter 6, we will replace the mathematical problem of putting the thermodynamic limit and the limit
V → 0 in the right order by an experimentally realizable recipe of preparing a fluid system with
an applied external potential V at a high temperature at time t → −∞, quenching the system to
a low temperature at t = 0, turning the external potential off at the same time, and regarding the
limit t→∞ as the “new” equilibrium state.
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et al. construct density fields with artificial point defects, which they then average
over [262] in order to find quantitatively better vacancy concentrations of solids.
Archer et al. split a fluid density field of monodisperse hard spheres artificially into
two species and study the constrained density field of the one species in the “free
energy landscape” produced by the relaxed density field of the second species in
order to estimate the density of the hard-sphere glass transition [11]. Thereby, they
actually suppress fluctuations. At best, these exemplarily chosen approaches are
justified a posteriori by their quantitative predicting capabilities. However, they are
not based on fundamental grounds. Reguera et al. are aware of this problem and
discuss this issue [229].

Although there is no general framework to treat these problems, there is a gen-
eral tendency of approximate density functionals to miss translational or rotational
fluctuations of supra-molecular entities such as crystals, droplets, or clusters as a
whole, long-wavelength capillary fluctuations of interfaces, etc., although this is not
a strict rule. However, typically the degrees of freedom of the microscopic con-
stituents and the mesoscopic entities are not separated as clearly as, e.g., in the
example of a translating droplet. If they are, there are most often effective, coarse-
grained theories around, which do a better job in describing these degrees of freedom
correctly [157]. Of course, this is not very much different from employing Eq. (1.31)
directly. For further discussion we refer the reader also to reference [179] by Marini
Bettolo Marconi and Tarazona.

1.6.2 Density functional theory in two dimensions

The problem of missing fluctuations becomes most evident in two spatial dimen-
sions, where the picture is qualitatively different from three dimensions: here, the
Goldstone modes of the 2D crystal lead to a full breakdown of translational or-
der [91, 92, 100, 185]. In particular, at low temperatures the local crystalline order
parameter decays as a power law with distance and only long-range rotational order
persists (see also Chapter 4). To date, there is no approximation to the DFT capa-
ble of taking this breakdown, i.e., the emergence of the responsible fluctuations, the
Goldstone modes, properly into account; all available approximations turn out to be
mean-field like in this respect. Also, the two-stage melting transition with an inter-
mediate hexatic phase according to the crystal defect-based KTHNY theory is not
captured by the DFT (see Chapters 3 and 4 for a discussion). Since for the dipolar
system under study in Chapters 3 and 4 the stability range of the hexatic phase is
small and since the translational order parameter decays only slowly with distance,
deep inside the crystalline regime, we do not address this question but rather focus
on the liquid and the solid phase reasonably far away from the two-stage phase
transition. A similar view has been taken for hard disk systems [21, 248, 301, 309]
and to the 1/r-interaction in 2D [248] where density functional theory of freezing
was applied.
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We will come back to the problem of missing fluctuations in the next chapter.
There, within the context of dynamical density functional theory, we will find local
minima of approximate density functionals5 to be a source of dynamical arrest in
metastable states, which in experiments or simulations are at best long-lived.

1.6.3 The canonical vs the grand canonical ensemble

Originally, the DFT was formulated in the grand canonical ensemble, at fixed chemi-
cal potential μ, which implies the coupling to a particle reservoir. For infinite systems
in equilibrium this description is completely equivalent to a canonical description, in
which the particle number N is kept fixed, since in the thermodynamic limit fluctua-
tions about the averages of thermodynamic quantities go to zero.6 This equivalence
breaks down in small systems, where particle number fluctuations become impor-
tant. It would therefore be highly desirable to construct a canonical-ensemble DFT
with a variational principle for a Helmholtz free energy functional. An approximate
form of such a variational principle has been suggested by White et al. [293, 294].7

Their approximation is based on a saddle-point approximation of the grand parti-
tion sum of a homogeneous fluid about the corresponding canonical partition sum
in terms of the particle number fluctuations Δ2(N) = 〈N2〉 − 〈N〉2 [310]:

−βΩgc(μ) = −βFc(〈N〉) + βμ(〈N〉) + 1

2
ln 2πΔ2(N),

where the indices “gc” and “c” stand for “grand canonical” and “canonical”, respec-
tively. White et al. have generalized this concept to inhomogeneous fluids, i.e., the
fluctuations Δ2(N) become a functional of the density field, Δ2[N ; ρ]. As Δ2[N ; ρ]
is a double integral over the second-order density-density correlation function H (2),
it can be obtained via a generalized Ornstein-Zernike equation, similar to Eq. (1.15).

The differences of canonical versus grand canonical equilibrium densities have
been shown to be quite pronounced for a small number of hard spheres (N � 10) in
small cavities [294], but vanish in the thermodynamic limit. In the following chapter,
we will argue that for the dynamical density functional theory a generalization of the
concept from global to local number fluctuations would be desirable (cf. Section 2.2).

5That Ω[ρ] is a convex functional of ρ and therefore should not have more than one local
minimum was, e.g., proved by J.-M. Caillol [38].

6At phase boundaries, this scaling does not hold, but particle number fluctuations become
macroscopic [130].

7Later, Hernando and Blum [124] and Hernando [123] constructed a rigorous approach to DFT
in the canonical ensemble based on a hierarchy of correlation and distribution functions.
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Chapter 2

Colloids in nonequilibrium

After having treated equilibrium fluids and crystals by means of classical density
functional theory in the previous chapter, we turn our attention now to theoreti-
cal approaches to the overdamped, nonequilibrium dynamics of colloidal particles,
which is the basis of our work on relaxation dynamics of crystals and on the motion
of active “Brownian swimmers” laid out in Chapters 5, 6, and 8. We will start from
the microscopic Langevin equations of motion and the Smoluchowski equation for
the time evolution of the probability distribution function [96, 224, 237, 276, 283], ig-
noring hydrodynamic interactions, in Section 2.1. Deterministic, average quantities
are subsequently assessed following two different ways: the first approach is the dy-
namical density functional theory (DDFT) by Marini Bettolo Marconi and Tarazona
(MT) [179, 180], which describes the deterministic dynamics of the time-dependent,
average one-particle density of a colloidal system. The DDFT, which is the basis
of our assessment of crystal melting (Chapter 5) and growth (Chapter 6), is re-
viewed in Section 2.2.1 In particular, we sketch the derivation of the theory starting
from the Smoluchowski equation following the references by Archer and Evans [10]
and MT [179] in Subsection 2.2.1, we discuss the implications of the approxima-
tions made in Subsections 2.2.2 and 2.2.3, we comment on its application to crystal
dynamics in Subsection 2.2.4, and review further groundbreaking applications and
extensions in Subsection 2.2.5.

The second approach is a non-Hamiltonian rate theory based on the functional
integral formalism of the Onsager-Machlup theory [206], which we exploit in Chap-
ter 8 to estimate the long-time diffusion constant of a single, active Brownian particle
in two dimensions in a confining channel. This approach is introduced in Section 2.3.
As the model under study is (2 + 1)-dimensional, non-Hamiltonian, and even pos-
sesses state-dependent mobility coefficients, we embed the derivation of the approx-
imate rate theory into the exposure of the specific dynamics of the model system. In
particular, we start, once again, from the Langevin- and Smoluchowski-equations,
adapted to particles with an internal orientation in two plus one dimensions (Sub-

1For another brief review see also reference [300].
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section 2.3.1), motivate (Subsection 2.3.2) and introduce (Subsections 2.3.3, 2.3.4)
the escape rate approach, discuss the approximation used for the model system
at hand (Subsection 2.3.5), and finish with a short discussion (Subsection 2.3.6).
Note that in this chapter the particular problems addressed in Chapters 5, 6, and
8 are approached from the theory, or method side, i.e., the specific forms of the
theories used are embedded into the general framework of DDFT and rate theories,
whereas the physical motivation of the particular problems is largely deferred to the
corresponding later chapters.

2.1 Langevin dynamics

We consider the dynamics of a set of N identical, spherical, colloidal particles,
immersed in a fluid of viscosity η0, on the “Brownian” time scale [67], i.e., we
assume that the momenta of the solvent particles and of the colloidal particles have
already relaxed. The relaxation time of the colloid momenta is given by mΓ, where
m is the particle mass and Γ−1 = 3πη0σ is the friction coefficient for a colloidal
sphere with diameter σ.2 In colloidal suspensions, typical relaxation times of the
solvent and of the colloidal particle momenta are of the order 10−14 s and 10−9 s,
respectively [67, 224], whereas typical time scales of interest, e.g., the time, it takes
a particle to diffuse its own diameter, are of order 1 μs − 1 s [67, 224]. Assuming
further that the particles do not interact via hydrodynamic forces, the N coupled
Langevin equations of motion [96, 224, 237, 276, 283] are given by

ṙi = Γ (Fi + fi) , i = 1, . . . , N , (2.1)

where the dot denotes a time derivative and Γ is the already introduced inverse
friction coefficient, which is henceforth referred to as mobility coefficient. State-
dependent mobility will be discussed further down (cf. Subsection 2.2.1 for hydro-
dynamic interactions and Section 2.3 for a coupling to orientational degrees of free-
dom). For particles, which are embedded in an external field V and interact with
each other via the potential energy of interaction U , the deterministic force acting
on particle i is given by

Fi({r}, t) = −∇i [U({r}) + V (ri, t)] , (2.2)

where we denote the positions of all particles by {r} = {r1, . . . , rN}. The Gaussian
white noise random forces fi originating from the solvent are completely character-
ized by the first two moments of their distribution function,

fi(t) = 0 (2.3)

fiα(t)fjβ(t′) = 2(Γβ)−1δijδαβδ(t− t′) , (2.4)

2Often, the time scale mΓ is referred to as the “Brownian” time τB [224]. We will reserve this
variable for a different and much larger time scale, τB = σ2β/Γ, which is the time it takes for an
isolated particle to diffuse its own diameter (see further down).
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which fulfill the well-known Einstein fluctuation-dissipation relation. The bars over
the quantities denote a noise average, and Greek indices indicate a component of
the cartesian vector.

The Langevin equations of motion are the basis for Brownian dynamics (BD)
computer simulations [4], which are used in Chapters 3, 4, and 7 to obtain “exact”
structural quantities of fluids in equilibrium and in Chapters 6 and 8 to extract
time-dependent quantities of nonequilibrium systems. A straightforward algorithm
for the simulation of the continuous-time Langevin equations employing a discrete
time step Δt goes back to Ermak [83]. The update equation for the position of
particle i reads

ri(t+Δt) = ri(t) + ΓΔtFi({r}, t) + Δri + o(Δt) , (2.5)

Δri = 0 , ΔriαΔrjβ = 2Γβ−1δijδαβΔt , (2.6)

where the second line characterizes the Gaussian random displacement Δri. Equa-
tion (2.5) is exact up to order o(Δt). Leaving this short excursion to BD computer
simulations, we return to the continuous-time description.

The set of coupled, stochastic differential equations (2.1) for the particle coor-
dinates corresponds to a deterministic Fokker-Planck equation for the N -particle
probability density W ({r}, t) [96, 224, 237, 276, 283],

Ẇ ({r}, t) = LSW ({r}, t) , (2.7)

LS = Γ
∑

i

∇i ·
[
β−1∇i − Fi({r}, t)

]
, (2.8)

which determines the probability to find the set of N particles within a small vol-
ume around the positions {r} at time t, given a normalized, initial distribution
W ({r}, t = 0). The sum runs over all particles i = 1, . . . , N . Eq. (2.7), a con-
tinuity equation, which is referred to as Smoluchowski equation, can be formally
derived from the Langevin equations, e.g., via a Kramers-Moyal expansion [237].
In Eq. (2.7), we introduced the Smoluchowski-operator LS. The probability density
W ({r}, t) can be written in terms of the yet unknown conditional probability density
P ({r}, t|{r′}, t′):

W ({r}, t) =
∫
dNr′P ({r}, t|{r′}, 0)W ({r′}, 0) ,

where the short notation dNr = dr1 · · ·drN was introduced. The conditional prob-
ability density obviously fulfills P ({r}, t|{r′}, t) = δ({r}−{r′}) and obeys the same
time evolution as W ({r}, t). We will make use of the short-time solution to the
Smoluchowski equation for P ({r}, t|{r′}, t) in the functional integral approach to
the time evolution of a single, Brownian rod in Section 2.3. But first, we derive in
the following section a dynamical density functional theory for dense fluids, which
was developed by MT [179, 180].
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2.2 Dynamical density functional theory

For dense, strongly interacting fluids, one is typically not interested in the position of
all individual particles but rather in the probability to find any particle at a certain
vector r at time t. The corresponding equation of motion for the one-particle density
can on the one hand be derived directly from the Langevin equations, Eq. (2.1), via
a coordinate transformation ri → ρ̂(r) and a subsequent noise-average. This way
was followed by MT [179], following an earlier approach by Dean [61]. On the other
hand, it can be derived from the Smoluchowski equation, Eq. (2.7), an approach
adopted by Archer and Evans [10]. In the following subsection, we will follow the
latter approach, sketch the derivation and comment on the approximations made.
The implications of the use of approximate density functionals as an input to the
theory and the so called adiabatic approximation (see further down) are discussed
in Subsections 2.2.2 and 2.2.3, respectively. In Subsection 2.2.4, we discuss the
application of the DDFT to the dynamics of crystals, i.e., melting, crystal growth,
and structural relaxation. Further applications, which demonstrate the validity and
great value of the theory under many circumstances, and extensions are reviewed in
Subsection 2.2.5.

2.2.1 Derivation of the dynamical equation

First, we introduce the time-dependent one- and two-particle densities

ρ(r, t) =
∑

i

δ(r− ri(t)) , (2.9)

ρ(2)(r, r′, t) =
∑

i,j;i�=j

δ(r− ri(t))δ(r− rj(t)) , (2.10)

where we dropped the superscript “(1)” on the one-particle density. These densities
are equal to the (N − n)-times integrated probability density W ,

ρ(n)(r1, . . . , rn, t) =
N !

(N − n)!

∫
dN−nrW ({r}, t) . (2.11)

Note that in equilibrium, where the time-dependent densities turn time-independent,
the noise averages in Eqs. 2.9 and 2.10 become equivalent to canonical ensemble
averages3 and the one-particle density, Eq. (2.9), turns almost equal to ρ0(r), given
in Eq. (1.4). The important difference is, however, that there we performed a grand
canonical ensemble average (see also the discussion concerning a canonical vs a
grand canonical formulation of the DFT in Subsection 1.6.3 and its importance
in the dynamical theory at the end of this subsection and in Subsection 2.2.3).
In the following, we restrict ourselves to pairwise interacting particles,4 i.e., U =

3As we did not prescribe an initial probability density W ({r}, t0), a noise average might always
lead to the same nonergodic state even in the limit of infinitely many different realizations; the
corresponding ensemble average must then be restricted (cf. the discussion in Subsection 1.6.1).

4An inclusion of higher-order interactions is straightforward [10].
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1
2

∑
i,j;i�=j φ(|ri−rj |), which are also subject to a in general time-dependent external

potential V (ri, t). By integration of Eq. (2.7) over the positions of N − 1 of the N
particles and making use of Eqs. (2.9) and (2.10) we therefore obtain the following
continuity equation for ρ(r, t):

Γ−1ρ̇(r, t) = β−1∇2ρ(r, t) +∇ ·
[
ρ(r, t)∇V (r, t) +

∫
dr′ρ(2)(r, r′, t)∇φ(r, r′)

]
.

(2.12)
For noninteracting particles in zero external field, this equation reduces to Fick’s
diffusion equation. Also with an external field applied, Eq. (2.12) is in principle ex-
actly solvable. In the interesting case of interacting particles, however, we still need
an expression for the time-dependent two-particle density ρ(2)(r, r′, t). In principle,
we can obtain a similar equation for ρ(2) in terms of a three-particle density ρ(3) by
(N − 2)-fold integration of Eq. (2.7); this iteration can be continued ad infinitum
but is of little help. Instead, the time-dependent function ρ(2)(r, r′, t) is here ap-
proximated by its yet unspecified equilibrium counterpart ρ

(2)
0 (r, r′), evaluated at a

corresponding equilibrium fluid, in which the equilibrium density ρ0(r) is equal to
the instantaneous one-particle density ρ(r, t) of the nonequilibrium system. In order
to render ρ(r, t) an equilibrium density, an appropriate external potential v(r) must
be applied. That such a potential exists, and that it is even a unique functional
of the density ρ0(r), is one of the theorems of DFT, which has been discussed in
the beginning of Section 1.1. The approximation of replacing a time-dependent,
nonequilibrium correlation function by its equilibrium equivalent, is also referred to
as adiabatic approximation,5 which is equivalent to a protocol of dividing the time
evolution into small time intervals {ti, ti + Δτ}, in which the density fully relaxes
from ρ0[vi] to ρ0[vi+1] before relaxing towards the next density field, ρ0[vi+2], etc.

The equilibrium two-particle density, ρ
(2)
0 , was already almost encountered in the

previous chapter: in equilibrium, Eq. (2.10) can be rewritten in terms of the density
operator ρ̂,

ρ
(2)
0 (r, r′) = 〈ρ̂(r)ρ̂(r′)〉 − ρ0(r)δ(r− r′) , (2.13)

where the subscript “0” denotes the equilibrium state. Averages of the density
operator have already been introduced as correlation functions obtained by func-
tional differentiation of the grand potential functional in Eq. (1.12). Together with
Eq. (1.16), Eq. (2.13) therefore reduces to

ρ
(2)
0 (r, r′) = H(r, r′)− ρ0(r)δ(r− r′) + ρ0(r)ρ0(r

′) , (2.14)

= ρ0(r)ρ0(r
′) [h(r, r′) + 1] . (2.15)

A more elegant expression of the integral in Eq. (2.12) is obtained by making use of

5The adiabatic approximation was originally suggested for the time evolution of the single-
particle distribution function in a dense gas of hard spheres by Enskog [82] and later revised by
van Beijeren and Ernst [274].
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the following sum rule,

−ρ0(r)∇c(1)(r) =

∫
dr′ρ(2)

0 (r, r′)∇βφ(r, r′) , (2.16)

which connects the two-particle density ρ
(2)
0 with the effective one-body potential

β−1c(1), introduced in the previous chapter. This sum rule is obtained by solving
Eq. (1.14) for c(1) and taking the gradient:

∇c(1)(r) = ρ0(r)
−1∇ρ0(r) + β∇V (r) . (2.17)

Equating this relation, which was first obtained by Lovett et al. [164], with the first
equation of the well-known Yvon-Born-Green hierarchy [117],

∇ρ0(r) + βρ0(r)∇V (r) = −β

∫
dr′∇φ(r, r′)ρ(2)

0 (r, r′) , (2.18)

leads to the sum rule, Eq. (2.16).
Up to a minus sign, the effective one-body potential β−1c(1) is equal to the

first functional derivative of the excess free energy functional Fex[ρ] with respect to
density [cf. Eq. (1.13)]. Using eq. (2.16), we therefore rewrite Eq. (2.12) as

Γ−1ρ̇(r, t) = β−1∇2ρ(r, t) +∇ ·
[
ρ(r, t)∇V (r, t) + ρ(r, t)∇δFex[ρ(r, t)]

δρ

]
. (2.19)

By a simple check it turns out that also the two other terms on the right-hand side
of Eq. (2.19) can be written as functional derivatives of the ideal [cf. Eq. (1.10)] and
the external [cf. Eq. (1.9)] part of the total Helmholtz free energy, normalized by
ρ(r, t), i.e.,

β−1∇ρ(r, t) = ρ(r, t)∇δFid[ρ(r, t)]

δρ
, (2.20)

ρ(r, t)∇V (r, t) = ρ(r, t)∇δFext[ρ(r, t)]

δρ
, (2.21)

such that eq. (2.19) reduces to

Γ−1ρ̇(r, t) = ∇ ·
[
ρ(r, t)∇δF [ρ(r, t)]

δρ

]
, (2.22)

with

F [ρ] = β−1

∫
dr ρ(r, t)

[
ln(ρ(r, t)ΛD)− 1

]
+ Fex[ρ] +

∫
dr ρ(r, t)V (r, t) . (2.23)

Eq. (2.22) constitutes the fundamental, nonlinear, deterministic equation for the
time-evolution of the one-particle density ρ(r, t) and will be referred to as DDFT
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equation henceforth. For time-independent external potentials V (r), the DDFT
describes the relaxation dynamics of the density field towards equilibrium at the
minimum of the Helmholtz free energy functional F [ρ0], given an exact canonical
excess free energy functional Fex[ρ]. The path in the space of density fields is in
general not the one of steepest descent, but is governed by the mass conservation
constraint in Eq. (2.22) [179].

The DDFT equation had been suggested earlier on phenomenological grounds
by Evans [85] and later by Dieterich et al. [68].6 However, MT were the first to
derive the theory from the microscopic equations of motion and to make clear the
contact to static DFT [179, 180]. Actually, very valuable similar attempts had been
made by other authors before (Kirkpatrick et al. [142], Dean [61], and Kawasaki
et al. [138, 139]), which turn out, however, to be wrong in confusing of the average
density ρ with the density operator ρ̂, which in turn leads to an additional noise term
on the right-hand-side of Eq. (2.22) and therefore to an overcounting of fluctuations,
given an accurate functional F [ρ] (see also the discussions by MT [179], Archer and
Rauscher [8], and Löwen [169]).

The DDFT is an approximate theory in several respects: the first and most
fundamental approximation is the already introduced assumption of adiabatic re-
laxation dynamics. In practice, this approximation is most severe in dynamical
processes that are fast compared to the diffusive time scales of the system. To
our knowledge, this issue has been studied systematically to date only for weak
perturbations of a hard-rod fluid in one dimension by Penna and Tarazona [217]
(see also Subsection 2.2.3). The lack of systematic studies for more complex sys-
tems is understandable, because there is to date no exact functional Fex[ρ] for any
other strongly interacting fluid. The use of approximate free energy functionals
is the second fundamental approximation turning out to be severe in many appli-
cations (cf. Subsection 2.2.2 and see also the discussion in the previous chapter).
Third, we did only consider systems in which hydrodynamic interactions between
the particles play no role. The latter assumption can be approximately tackled by
allowing for density-dependent mobility constants Γ [245], which is appropriate for
long-wavelength fluctuations of the density field, or by taking hydrodynamic interac-
tions on the Rotne-Prager (two-particle) level into account, as was recently demon-
strated by Rex and Löwen [233]; this basically amounts to replacing the mobility
constant Γ in the Langevin equations (2.1) through the Rotne-Prager diffusion ten-
sor [198, 244].7 In the following subsections, we will discuss few of the consequences

6The same dynamical equation with the excess free energy functional of Ramakrishnan and
Yussouff [119, 226] had been derived by Munakata [194, 195] and extended to non-spherical particles
in the context of solvation dynamics by Calef and Wolynes [40], which was later reformulated by
Chandra and Bagchi [48, 49]; these equations are referred to as Smoluchowski-Vlasov or nonlinear
diffusion equations [194], as they are derived from a Vlasov equation [230] with a Fokker-Planck
collision operator [194].

7The stochastic forces in equations (2.1) have to be modified accordingly; further, depending
on the Îto or Stratonovich [96, 237] calculus to the delta-correlated noise, an additional drift term
has to be included in the equations [84, 224, 237]. For the corresponding modified Smoluchowski
equation, we refer the reader to references [67, 198, 224, 233].
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of the use of approximate density functionals (Subsection 2.2.2) and of the adiabatic
approximation (Subsection 2.2.3). In the latter subsection, we will also discuss a
desirable modification of the DDFT to better account for the short-time dynamics.

2.2.2 Approximate density functionals in the DDFT

Three features of approximate density functionals are to be discussed here in short:
(i) As already extensively commented in the previous chapter, most density

functionals, applied to highly correlated fluids, do not give their exact equilibrium
properties, one famous exception being the grand canonical functional for hard rods
in one dimension by Percus [219]. Typical density functionals are based on the first
few of a whole hierarchy of correlation functions of the underlying homogeneous
fluid; despite often stunning quantitative and qualitative agreement of theory and
experiment/simulation, these correlation functions are approximate. As soon as
large deviations from the homogeneous state towards highly modulated fluids due
to strong external perturbations or due to crystalline ordering take place, density
functional theory typically performs even worse. Having said this, the extent of
qualitative and quantitative agreement between theory and simulation/experiment
also in this highly nonlinear regime is often surprisingly good [168, 299, 300].

(ii) Typical density functionals display local minima in the space of density
functions, which is reminiscent of their mean-field character in this respect. However,
any exact functional should be convex in density space [38]. Famous examples
for such minima are found around phase transitions, which become manifest, e.g.,
in overheated solids or undercooled liquids typically appearing as long-lived states
in experiments and simulations. Employing such kind of density functionals in
DDFT might lead to dynamical arrest for infinite time, depending on the initial
configuration ρ(r, t = 0). This infinite arrest is unphysical, as in experiments the
system should be able to escape thermodynamically unfavorable “metastable” states
by fluctuations, e.g., nucleation. The time scale of this kind of relaxation might be
large due to large entropic or energetic barriers compared to the time scale of the bare
fluid, the Brownian time scale τB = σ2β/Γ, where σ is the microscopic length scale
of the fluid; but for finite barriers the relaxation time should not be infinite. Many
authors felt tempted to overcome this problem by imposing random noise on top of
Eq. (2.22), but as already argued above, such an additional noise is not justified in
the framework of DDFT. MT therefore suggested to simply interpret local minima
of the DFT as long-lived states in a relaxation process and to restrict the theoretical
analysis to short or intermediate time scales [179]. One way of circumventing the
problem is gone by us in Chapter 6 for the specific example of crystallization from
the undercooled melt; instead of studying homogeneous nucleation, which is not
possible within the strict deterministic framework and with the density functional
at hand, we offer a crystalline seed of few pinned particles, which are cut out from a
rhombic crystal, to the undercooled melt and study the deterministic growth of the
incipient “nucleus.” But also in this example care has to be taken, since the “long”
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Figure 2.1: Left panel: cartoon of the relaxation dynamics of few hard rods in
a closed, one-dimensional cavity after a sudden expansion of the cavity as studied
by MT [179] (setup A). Right panel: cartoon of a similar “experiment” (setup B)
with the only difference that the cavity walls are not infinitely high, but the parti-
cles inside the cavity are coupled to an infinite particle reservoir via high barriers,
βΔV 	 1.

relaxation time scale of the metastable, undercooled melt turns out to be relatively
short in the two-dimensional system of dipolar particles under study. Therefore, the
treatment of this specific problem with DDFT is only justified for a time window
smaller than the mentioned relaxation time.

(iii) As already discussed in Subsection 1.6.3 of the previous chapter, density
functionals are typically established in the grand canonical framework. In the
DDFT, however, a canonical functional is needed, as the DDFT equation is a con-
tinuity equation for the density field. In their groundbreaking work, MT have at-
tributed the failure of the DDFT to predict correctly the relaxation dynamics of few
(N = 8) hard rods in a one-dimensional, suddenly expanded cavity (for a sketch,
see the left panel in Fig. 2.1) mainly to the difference between the applied grand
canonical functional and the desired canonical one [179]. In principle, this statement
would be worth checking by either employing a more accurate functional, e.g., ac-
cording to the perturbative scheme suggested by White et al. [293, 294], which was
reviewed in Subsection 1.6.3, or by studying larger system sizes. For system sizes
with particle numbers N � O(10), the difference between the functionals and there-
fore between the equilibrium densities obtained within the canonical or the grand
canonical ensemble should disappear [293, 294]. We will come back to the different
ensembles at the end of the following subsection.
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2.2.3 The adiabatic approximation

The adiabatic approach of replacing the nonequilibrium, time-dependent two-particle
density ρ(2)(r, r′, t) by its equilibrium counterpart ρ

(2)
0 (r, r′), evaluated at the same

one-particle density ρ0(r) = ρ(r, t), as first suggested by Enskog [82], is an ad hoc
approximation. The already mentioned systematic study of the relaxation dynamics
of small-amplitude perturbations of a one-dimensional fluid of dense hard rods by
Penna and Tarazona suggests that the DDFT is a theory that works well on large
but transient time scales and for the so called soft density modes [217]; the latter are
characterized by wave vectors, which are close to the peaks of the equilibrium static
structure factor. These soft modes are decaying slowest, as the short-time evolution
of a weakly modulated fluid is given by [10]

βΓ−1 ˙̃ρ(k, t) = −k2
[
1− ρc̃

(2)
0 (k)

]
ρ̃(k, t) , (2.24)

where ρ̃(k, t) denotes the Fourier transform of the density field and the square
bracket on the right hand side is exactly the inverse static structure factor [117].
With “large but transient time scales” Penna and Tarazona refer to a regime, in
which the density modes still display the form of the soft modes and have not signif-
icantly given rise to the presence of other non-soft modes due to mode coupling in
the general eq. (2.22). For many applications, such as the relaxation of a fluid after
taking away a wall [75, 232] or crystal growth from a nucleation seed (see Subsec-
tion 2.2.4, Chapter 6), the dynamics are mainly governed by the soft modes making
the DDFT a suitable tool to study this kind of problems. Still, despite the successful
application to many colloidal problems, a systematic test of the adiabatic approx-
imation also for different interaction potentials and in different spatial dimensions
remains an open task.

The effect of the adiabatic approximation is expected to become more pro-
nounced for fast relaxation processes of strongly modulated fluids. This was actually
observed by MT for a fluid of few hard rods in an expanding cavity (as already cited
at the end of the previous subsection and as sketched in Fig. 2.1) or exposed to a
periodic, sinusoidal potential [179]. However, they attributed the faster relaxation
of the DDFT as compared to BD simulations mainly to the use of the (wrong) grand
canonical functional in the DDFT; their argument was the following: in the grand
canonical ensemble, the system can relax much faster due to particle exchange with
a particle reservoir, whereas in the canonical description it can only do so with the
fixed number of particles within the same volume. Let us assume that this argument
holds, i.e., that a canonical functional would indeed lead to a better agreement of
theoretical and simulation results (this has not been studied so far but would be
feasible applying the perturbative scheme by White et al. [293, 294], as already
commented above). Now, we modify the “experimental setup” of MT, referred to
as setup A, by coupling the few particles within the cavity to an infinite particle
reservoir through a small “channel of particle exchange” (i.e., separated not by an
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infinitely large but only by a very large potential barrier, βΔV 	 1), which we refer
to as setup B. Both setups are cartooned in Fig. 2.1. Let us also assume that the
number of particles within the cavity in setup B is strictly the same as the one in
setup A at t = 0, e.g., by applying a deep external potential well for each of the N
particles at times t < 0, which is turned off at t = 0.8 Then, it is expected that
the dynamics of the density within the cavity, obtained from BD simulations, would
be the same for both setups for times smaller than the inverse Kramers rate [147],
ρA(x, t) = ρB(x, t), 0 ≤ x ≤ L>, t/τB � exp[βΔV ], with L> the width of the cavity
after the expansion. On the contrary, clearly, the DDFT results would still differ
due to the different functionals for small or infinite particle numbers.

We have made this gedankenexperiment, which would be interesting to study
by DDFT and computer simulation in real, in order to point out that on short or
intermediate time scales a system might be better described as an assembly of effec-
tively closed subsystems, which are treated by means of canonical functionals with
few numbers of particles each, and allow for particle exchange between the subsys-
tems only for long times.9 So far, this is a very preliminary idea and we can only
claim few properties of the local length scale λ(r) defining the size of the isolated
domains around the position vector r: λ(r) should inversely depend on the rate of
density change ρ̇(r, t), rendering it infinite in equilibrium, and it should grow with
increasing diffusion constant Γ/β. Since both quantities are equal to the only char-
acteristic rates in the bulk system (up to some power of a microscopic scale σ, which
we regard as the unit length in this subsection), they can only appear as a ratio,
i.e., λ(r, t) ∝ f(βΓ−1ρ̇(r, t)). The mobility Γ should eventually be renormalized by
a Kramers rate accounting for diffusion limiting energy barriers within the domain
of radius λ around the vector r, which is still the weak point of the idea. A trans-
lation of this idea to a proper functional or an additional drift term in the DDFT
equation is still missing. However, the approach by White et al. [293, 294] describing
corrections to the functional through global particle number fluctuations might be
transferable to a local formulation. Note that the dependence of λ on ρ̇ turns the
DDFT equation nonlinear in time, which could be interpreted as reminiscent of a
memory.

2.2.4 Crystal growth and melting

Irrespective of the approximations discussed in the previous subsections, the DDFT
is a fully microscopic theory; it is therefor highly qualified for the study of relaxation
processes of those colloidal systems for which a good density functional is at hand.
One class of systems for which this is certainly the case are colloidal crystals in the

8The same external potential should then also be applied in setup A to render the initial density
fields equal within the cavity, ρA(x, 0) = ρB(x, 0), 0 ≤ x ≤ L<, with L< the width of the cavity
before the expansion.

9The notion “effective subsystems” denotes an effective number of particles N(r, t, ρ̇(r); [ρ]),
attributed to every point r at time t.
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bulk, in cavities, on walls, or in contact with coexisting liquids [165, 167, 168, 299]
(see also the previous chapter and references therein, as well as Chapters 3-7; for
further applications of the DDFT, see the next subsection). A study of colloidal
crystal growth, melting, or reorganization of the crystal’s internal structure, includ-
ing defect and grain boundary relaxation, with the DDFT is therefore in principle
straightforward;10 this holds in particular because the relevant density modes dur-
ing the time evolution are typically the aforementioned soft modes, for which the
theory has proved to work very well [217] (cf. the previous subsection). However,
apart from a stability analysis of undercooled melts towards infinite, periodic den-
sity modulations by Bagchi already in 1987 [18] and our work on melting of bulk
crystals (Chapter 5) and crystal growth from a small, incipient cluster of crystalline
particles (Chapter 6), which are all based on the approximation to the DFT by
Ramakrishnan and Yussouff (see previous chapter), there has been no attempt so
far to study the diverse problems by means of DDFT, which is still the only fully
microscopic, dynamical theory at hand to date.

The reason for the lack of further systematic studies and the restriction to more
coarse-grained and phenomenological approaches is basically twofold: first, it is
only clear since the work of MT [179] that the DDFT equation (2.22) constitutes
a dynamical theory derivable from microscopic grounds, i.e., from the Langevin
equations of motion. And second, the computational effort to solving the nonlinear
DDFT equation with a nontrivial functional Fex[ρ] for a translational and rotational
symmetry breaking density field, which in turn is furthermore highly modulated
and extended over many lattice sites, is immense and only accomplishable with
nowadays fast computer technology; even today, studying the time evolution of
density fields on large length and time scales is a challenging problem (cf. Chapter 6).
Therefore, many research groups concerned with the dynamics of crystals, e.g., the
groups around Oxtoby [19, 214], Harrowell [296], Gránásy [105], and Grant [78], have
focused on more coarse-grained equations.

In fact, the latter can partly be “derived” from DDFT by further approxima-
tions of the still unspecified functional Fex[ρ] (typically, Fid[ρ] + Fex[ρ] is reduced to
a Cahn-Hilliard function of the local field and its gradient [37]) and by making rea-
sonable assumptions about the modulation and time evolution of the density field,
which are then justified a posteriori. E.g., by setting the density in front of the
functional derivative ad hoc to be uniform, the DDFT can be transformed to deter-
ministic Cahn-Hillard theories [37] for conserved order parameter fields, which are
commonly described as “Model B” dynamics in the Halperin and Hohenberg clas-
sification scheme [44, 128]; Cahn-Hillard models are extensively used to study the
dynamics of crystals, either on the basis of the average densities of the two coexist-
ing phases within simple phase field models [80, 295] or in the context of so-called
phase field crystal (PFC) models [17, 25, 77, 78], which take into account density os-
cillations in the crystalline phase on the particle scale, similarly to the DDFT. As

10For recent reviews on colloidal crystals and their dynamics see, e.g., references [5, 215, 304].
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in the literature on the DDFT and its derivatives or predecessors, noise on top of
Eq. (2.22) is often included leading to an overcounting of fluctuations for free energy
functionals derived from DFT. In principle, by making rather crude approximations
or strong assumptions, the DDFT can also be related to “Model A” (time-dependent
Ginzburg-Landau theories for non-conserved fields) or “Model C” (two equations for
one conserved and one non-conserved field) dynamical equations [44, 128], which are
both also widely used for the study of crystal growth [214, 259, 296, 303].

The challenge in treating colloidal crystal dynamics is the nontrivial coupling
of a conserved and a non-conserved order parameter, the locally averaged, coarse-
grained density and the local crystalline structure, where the latter is typically
not simply quantifiable by a single scalar parameter, which renders the description
even more complicated. Therefore, to account for the many qualitatively different
relaxation processes possible, the problem can either be treated by a multi-variable,
coarse-grained description in the form of a “Model C”-dynamics [296, 303] or by
means of a microscopic, density-resolved theory, the DDFT or the PFC model [78].
The former “Model C”-approaches have the advantage that all appearing mobilities
can be tuned by the respective model-variables; however, this goes at the expense of
rather complicated models. The latter, DDFT and PFC models, have the advantage
of predicting all dynamical properties of the crystal based on few parameters in
the density functional or in the phase field function. Actually, the DDFT does
not have any parameter as an input, and also the PFC models can be related to
density functionals; however, some freedom in the choice of how to extract the
model parameters remains. Consequently, the mobilities, which are an outcome of
the respective theory, constitute also a test of the same. The PFC model is based
on a very approximate free energy function, whereas the DDFT may be based on
highly accurate density functionals. A test of the approximate PFC models with the
in general more accurate DDFT is therefore on order. In fact, a direct comparison of
the crystal front propagation velocities obtained from the phase field crystal model
and from the DDFT is the subject of current work [278] (see also Section 5.5).

In this work, we restrict our analysis to the problems of crystal melting (Chap-
ters 5, 6), growth (Chapter 6), and to the local relaxation of affinely and nonaffinely
strained and compressed crystallites (Chapter 6). In future work, it would be highly
desirable to extend theses studies to the relaxation of defects, e.g., after the mu-
tual convergence of two crystalline domains with different orientations (cf. a study
on defects based on the PFC model by Berry et al. [26]). Further, a study of the
relaxation dynamics of crystals in confinement and on walls would be of uttermost
interest (cf. Chapter 7).

Crystal growth typically sets in only after homogeneous or heterogeneous nu-
cleation [15, 104, 105, 246, 257]. Both of these phenomena have been studied with
so called non-classical nucleation theories based on DFT [98, 133, 134, 211, 212, 268],
determining the size and shape of “critical nuclei” and possible nucleation path-
ways. As discussed in Subsection 1.6.1, the fluctuations needed to drive a system
from the undercooled melt into the thermodynamically stable solid phase, are typi-
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cally not accounted for by approximate density functional approaches. In this work,
we therefore restrict our dynamical studies to relaxation processes, which proceed
spontaneously in the DDFT.

2.2.5 Further applications and extensions

In this final subsection, we give a short overview, to what kind of practical problems
the DDFT has successfully been applied and what extensions have been made in
order to account for problems including hydrodynamic interactions, orientational
degrees of freedom, or inertia. In recent years, the number of applications and
extensions has rapidly increased; still, as the theory is relatively young, the following
short account should give a broad, if not complete, overview of the field.

First, the DDFT was successfully tested for isotropic particles in stationary ex-
ternal potentials [75, 179, 180]—more precisely speaking, after a sudden quench at
t = 0 from V (r, t < 0) to V (r, t > 0). Later, the theory was also applied to
driven systems in the steady state [216] or with oscillating (in time) external po-
tentials [227, 232]. Physical problems under study comprise the mentioned relax-
ation dynamics in oscillating [232] or suddenly expanding [75, 179] cavities, spinodal
decomposition [10], sedimentation [245], instabilities in laning phenomena [45, 46],
binary phase separation [9], steady states in traveling wave fields [234], and crys-
tal growth (cf. the previous subsection and Chapter 6). Also, glassy dynamics has
been addressed via the test-particle approach [11], however, on quite phenomeno-
logical grounds. For these problems, different functionals were used ranging from
the mean-field [9, 11, 75, 232], via the Ramakrishnan-Yussouff [10, 179] and weighted
density approximation [179] to the fundamental measure [233, 245] and Percus [179]
functionals, which were all introduced in the previous chapter (except the Percus
functional, commented on in Subsection 2.2.2). In all of these approaches, it turned
out that the accuracy of the dynamics is directly governed by the accuracy of the
underlying free energy functional.

The theory has recently been extended in several ways: first, it was generalized
to non-spherical rodlike particles with orientational degrees of freedom by Rex et
al. [235]11 which amounts to derive a DDFT on the basis of a Fokker-Planck equation
for rodlike particles, the so-called Smoluchowski-Perrin equation [67, 72, 220]. For
the overdamped dynamics of rods, also non-conservative forces driving the rods in
the direction of their own orientation were included in the theory [290], which is the
many-body description of a model similar to the “Brownian circle swimmers” studied
in Chapter 8 and introduced in the next section. Second, hydrodynamic interactions
have been approximately included in the theory [233, 245] (cf. the discussion at the
end of Subsection 2.2.1). Third, the most fundamental extension was proposed by

11A similar dynamical density functional theory approach was proposed by Chandra and
Bagchi [48, 49] on a phenomenological basis. There, the explicit coupling between orientational
and translational diffusion was neglected. Further, a similar model with discrete orientations for
platelike particles was suggested by Bier et al. [28].
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MT [181] and Marini Bettolo Marconi and Melchionna [178] to account for non-
overdamped fluids, where inertia plays a crucial role, i.e., not only a one-particle
density but also a one-particle current has to be kept track of.12 Their approach
is based on the many body Kramers equation (the equivalent of the Smoluchowski
equation, but with inertia [96, 237]) and a multiple time scale analysis.

All of the works cited her, including our own work on crystal relaxation, and also
including the extensions to hydrodynamic interactions and to rotational degrees of
freedom, describe the dynamics under study astonishingly well. In particular, the
time evolution of the soft modes on intermediate times seems to be very accurately
taken into account by the theory rendering it most appealing for many applications
yet to come.

2.3 Nonequilibrium rate theory for a Brownian

swimmer

In the previous section, we were interested in the collective motion of highly corre-
lated fluids, for which the difficulty of the theoretical description was mainly due to
the strong correlations among the particles. Now we turn our interest to the motion
of a single particle in two dimensions, which is only interacting with the solvent and
an external potential; at first sight, this seems to be a very simple special case of the
problems studied above. However, what complicates the model and makes it dis-
tinctly different from the problems studied so far, are some novel aspects: first, the
particle under study is a rod, i.e., it has an internal orientation φ, which is coupled to
the translation of its center-of-mass vector r via anisotropic mobility coefficients ren-
dering even the bare Smoluchowski-Perrin (SP) equation [67, 72, 196, 220] without
drift term [Eq. (2.30) with aα = 0] nonlinear. Second, the particle is permanently
driven out of equilibrium by an internal motor, i.e., the particle is self-propelled; we
therefore refer to the particle as a “swimmer”. The swimming mechanism is repre-
sented by an effective, constant force F along the rod orientation and an effective,
constant torque M acting on the orientation φ (see the left panel of Fig. 2.2). Due
to the self-propulsion, the “free” swimmer performs on average a circular motion
with a radius R ∝ F/M .13 And third, the swimmer is confined to a narrow, linear
channel in the y-direction, which, together with the inherent circular motion, offers
two metastable sliding modes along either of the channel walls, i.e., the swimmer is
trapped in one of two metastable states with constant x- and φ-coordinate (cf. the
right panel of Fig. 2.2). Since the confining potential renders turning events rare
in the low-noise regime, the system can effectively be mapped to a one-dimensional
random walk with a typical step length determined by the velocity along the channel,

12Earlier, Archer made an attempt to develop a DDFT for atomic liquids based on Newton’s
equations of motion [7].

13A different model for self-propelled, circular motion in terms of a damped Langevin equation
with Rayleigh-friction [256] was recently suggested by Haeggqwist et al. [110].
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Figure 2.2: Left panel: sketch of the “free” rodlike swimmer in the (x, y)-plane.
Indicated are the effective torque M (here, M > 0) and the effective force F driving
the particle to perform on average a circular motion along the dashed curve (for a
sample trajectory from computer simulations see the upper right inset of Fig. 8.1).
Right panel: the two metastable sliding modes of the same swimmer along the walls
of a confining channel of width Lx, characterized by the x, φ-coordinates (xs, φs)
and (Lx−xs, φs+π), respectively. The dashed arrows indicate the directions of the
sliding motion.

i.e., in the y-direction, and by the turning rate γ (for a more detailed characterization
of the model features see further down and Chapter 8).

All of these features can be studied by explicitly, i.e., numerically, solving the
corresponding non-linear SP equation, similarly to the DDFT for an ensemble of
swimmers, suggested by Wensink and Löwen [290];14 however, because we are in
particular interested in the rare events of hopping between the up- and downward
motion along the channel, we found it more appropriate to approach the search
for the long-time diffusive behavior through a nonequilibrium rate theory valid in
the small-noise regime, which is based on Kramers’ flux-over-population approach
to escape rates in single-variable, equilibrium systems [116, 147]. Rate theories for
multi-dimensional and time-dependent problems, which in general violate detailed
balance, have been established by several authors, e.g., by Lehmann et al. [152–
154] and Maier and Stein [177] for oscillating (in time) energy barriers, and also
by Maier and Stein [173, 174] for general, non-conservative, but time-independent
forces. The work by Lehmann et al. [152–154] in turn is based on a functional integral
approach to the Fokker-Planck equation, which was first suggested by Onsager and
Machlup [206] and later related to the Kramers problem, e.g., by Caroli et al. [42] and
Weiss [289]. Many other works, including the references by Maier and Stein [171, 173,
174, 176, 177, 197, 255], referred to as systematic asymptotic expansions, are based on

14In reference [290], the rods only experience a force F û along the rod orientation, but no torque
M .
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a WKB treatment of the Smoluchowski equation, as suggested by Caroli et al. [41,
43, 103]. Since we are in Chapter 8 only concerned with the rate determining,
exponential Arrhenius factor (see further down),15 we are free to choose one of the
approaches, and we will choose, for convenience, the functional integral approach to
a flux-over-population rate.16

The swimmer under study is far from equilibrium due to its own driving or
propulsion mechanism; this gives rise to important effects, such as the mentioned
metastability of the sliding modes, which are strictly absent in the corresponding
equilibrium system without internal driving; these modes are referred to as attrac-
tors in the language of rate theories [116]. Different to the nonequilibrium rate
theories of Lehmann et al. and Maier et al. [154, 174] the system under study expe-
riences not only state-dependent, non-conservative—however, time-independent—
forces, but also a state-dependent (i.e., φ-dependent) mobility matrix, which is a
manifestation of the translation-rotation coupling of the bare rod without driving
(see further down), and makes the treatment in principle even more complicated.
Therefore, as for most multi-dimensional, nonequilibrium problems, the exact escape
rates of the swimmer under study need to be evaluated with the help of computer
simulations (see Chapter 8).17

As we do not employ a full rate theory in Chapter 8, but instead concentrate on
the rate determining, exponential Arrhenius factor, we restrict this introductory sec-
tion to the derivation of the same factor, however, starting from the exact definition
of the Kramers escape rate within the flux-over-population approach and comment-
ing on the relevant approximations made. For detailed derivations of rate theories
in equilibrium we refer the reader to excellent textbooks [96, 103, 237, 276], and for
nonequilibrium approaches to recent reviews by Hänggi et al. [116] and Pollak and
Talkner [223], and to the mentioned work by Lehmann et al. [152–154] and Maier et
al. [173, 174, 176, 177]. We embed the derivation of the rate determining Arrhenius
factor into the exposure of the specific dynamics of a Brownian, rodlike swimmer
in two dimensions. We will therefore start from the Langevin equations and the
corresponding Smoluchowski-Perrin equation in Subsection 2.3.1. Subsequently, we
motivate and define the flux-over-population escape rate in Subsections 2.3.2 and
2.3.3, and we introduce the necessary probability distribution function as a path
integral over the Onsager-Machlup action in Subsection 2.3.4. In Subsection 2.3.5,
we introduce an approximation to the rate theory for the swimmer under study,
and in the final Subsection 2.3.6 we discuss few points concerning rate theories of
non-Hamiltonian systems in general and applied to the particular model system.

15On the deviations from Arrhenius scaling for non-Hamiltonian systems see, e.g., refs. [175, 176].
16In order to obtain kinetic prefactors, however, the WKB approach seems to be more appropriate

for non-Hamiltonian processes with a continuous symmetry in time [152, 176].
17In Chapter 8, we perform simple Brownian dynamics simulations, which suffice to obtain

accurate data for the desired long-time diffusion constants in the temperature-regime considered.
For lower temperatures or different models, however, more refined algorithms, such as transition
path sampling methods [62], are needed.
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2.3.1 The Langevin and the Smoluchowski-Perrin equations

for a self-propelled rod

Although we will derive the functional integral formalism from the SP equation,
we start again, as in the previous section, with the Langevin equations of motion,
in order to see which different forces drive the rodlike swimmer under study. For
reasons that will become clear shortly, we write the Langevin equations in a slightly
different way as compared to their form in Eq. (2.1) or in Chapter 8 [cf. Eqs. (8.1) and
(8.2)]. Introducing the (2 + 1)-dimensional “super vector” q = (x, y, φ), the motion
of the two-dimensional center-of-mass vector r(t) = (x(t), y(t)) and the orientation
φ(t), which we let run ad infinitum, i.e., −∞ < φ <∞, are given by

q̇α = aα(q) + β−1/2Bαβ(φ)ξβ , (2.25)

where we employ the Einstein summation convention for Greek indices α, β ∈
{x, y, φ}. Here and in the following we use sans-serif letters to represent (2 + 1)-
dimensional super vectors (lowercase letters) and (2 + 1) × (2 + 1)-super matrices
(uppercase letters), where letters with or without indices represent a vector/matrix
component or the whole object, respectively. The aα(q) are the yet to be speci-
fied drift coefficients; they will be shortly given in terms of the self-propelling force
and torque, and the external potential. Bαβ(φ) is the matrix square root of the
symmetric, block-diagonal, and φ-dependent mobility matrix, i.e.,

Bακ(φ)Bκβ(φ) = Γαβ(φ) , (2.26)

which itself is given by [67]

Γ(φ) = β

(
D‖(û⊗ û) +D⊥(I− û⊗ û) 0

0 Dr

)
. (2.27)

Here, D‖ and D⊥ are the short time longitudinal and transverse translational diffu-
sion constants, û = (cos φ, sinφ) is the orientation vector, I the 2 × 2-unit tensor,
⊗ a dyadic product, and Dr the short time rotational diffusion constant; therefore,
the temperature-normalized mobilities β−1Γαβ are also referred to as diffusion coef-
ficients. Note that in the previous section on DDFT we always assumed Γαβ = Γδαβ ,
where δαβ is the Kronecker delta. The Gaussian random variables fulfill

ξα(t) = 0, ξα(t)ξβ(t′) = 2δαβδ(t− t′) . (2.28)

Since Bαβ is block-diagonal (as Γαβ), and only the “upper left” block depends on

φ but not on x or y, whereas B33 = D
1/2
r is completely independent of q, the Îto

and Stratonovich calculus to the noise are equivalent in this case, which can also
be understood by regarding the motion in the coordinate system of the rod, in
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which the diffusion coefficients are state-independent (see also the correspondingly
formulated Langevin equations in Chapter 8).18 The drift coefficients are given by

aα(q) = Γαβ(φ) [mβ(φ)− ∂βV (q)] . (2.29)

Here, m(φ) = (F û, M) is the combined constant effective force F û, which rep-
resents the propulsion mechanism responsible for the deterministic motion in the
rod orientation, and the constant effective torque M yielding the deterministic cir-
cular motion (see sketch in Fig. 8.1).19 V (q) is an external confining potential,
which is characterized more specifically in the next subsection. The Langevin equa-
tions (2.25) correspond to a SP equation for the single-particle probability density
W (q, t) [67, 72, 220],

Ẇ (q, t) = LSPW (q, t) , (2.30)

LSP = −∂αaα(q) + β−1Γαβ(φ)∂α∂β , (2.31)

which was first introduced by Perrin [220] for the special case of aα = 0 and also in
three spatial dimensions. Similar to Eq. (2.7) we introduced the SP operator LSP.
Now, it is also clear why we chose the different notation for the Langevin equations;
the drift and diffusion coefficients appear explicitly in the SP equation.20

In Chapter 8, we first consider the “free” swimmer, i.e., the case V (q) = 0.
Even in this simpler case the SP equation is nonlinear due to the φ-dependence of
Γαβ(φ), which makes an analytical treatment difficult. Recently, Munk et al. [196]
have given the exact solution of the SP equation in two dimensions with the further
constraint F = M = 0, i.e., for vanishing drift coefficients. In three dimensions,
the equation had been solved by Aragón and Pecora [6] on the same level of simpli-
fication. Instead of solving the SP equation for the whole probability distribution
W (q, t) = P (q, t|q0, 0) also for the more general case,F �= 0, M �= 0, we restrict our-
selves to its first and second moments, r(t), r2(t), φ(t), φ2(t), which we obtain exactly
by integration and a subsequent noise average of the Langevin equations (2.25); the
explicit results are given in Eq. (8.9) of Chapter 8 (see also Fig. 8.1).21

2.3.2 Hopping between the sliding modes

With an additional, arbitrary potential V (q) applied, exact analytical integration
and averaging of the Langevin equations or the Smoluchowski equation for long times

18In the computer simulations of Chapter 8, we will employ the Ermak algorithm of Eq. (2.5),
which is equivalent to the Îto convention.

19Both, F and M , can be regarded as representing an internal motor at one of the rod’s tips,
which is tilted with respect to the rod orientation.

20The drift and diffusion coefficients are the first and second coefficients of the Kramers-Moyal
expansion, mentioned earlier [96, 237].

21For the simpler case, F �= 0, M = 0, Han et al. [115] have also calculated the first few moments
of the probability distribution P (q, t|q0, 0).
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Figure 2.3: Sketch of the (x, φ)-plane of the phase space for a swimmer with pos-
itive torque M > 0. The thick dashed lines denote the separatrices between the
domains of attraction. The attractors are marked by filled and the saddles by open
circles. The three minimum action paths out of basin i, (a), (b), (c), are indicated
schematically by dotted (a), dashed-dotted (b), and solid (c) lines with the arrows
indicating the direction of motion (for the trajectories in r-space see Fig. 8.4).

t is in general impossible. In Chapter 8, we will be concerned with a special external
potential, modeling a narrow, infinite, confining channel in the y-direction of width
Lx [cf. Eq. (8.11), Figs. 2.3 and 8.2]. The exact form of V (x, φ) is not needed here;
only three characteristics are of importance for the further reasoning: first, V (x, φ) is
independent of y (and time t). Second, V (x, φ) is symmetric in x about the middle of
the channel, situated at Lx/2, i.e., V (x, φ) = V (Lx−x, φ). And third, depending on
the sign of the internal torque M and on the ratio of F/M , the x- and φ-coordinates
are most of the time fluctuating closely around two symmetric, metastable, and well
separated configurations, the attractors q1 = (xs, y, φs) and q2 = (Lx−xs, y

′, φs+π)
close to either of the two channel walls, which correspond to the sliding modes in
the positive or negative y-direction (see right panel of Fig. 2.2); the values of the
respective y-coordinates are growing or shrinking linearly in time, y ∝ (M/|M |)t
and y′ ∝ −(M/|M |)t, depending on the channel wall and on the sign of the torque
M (see Eqs. (8.12), (8.13) for the values of xs and φs, which are not important here).
To be more precise, the notion that this problem has only two attractors stems from
the periodicity of the angle φ. If one, however, lets φ run from −∞ to +∞, as we do,
one gets a set of infinitely many attractors qi, of which every other is situated close
to the “left” wall (x = xs) and every other close to the “right” wall (x = Lx − xs),
i.e., qi = (xs, y, φs + (i − 1)π) if i is odd, and qi = (Lx − xs, y

′, φs + (i − 1)π) if
i is even. Note that the attractors on either wall {qi, qi+2, . . . } are all physically
equivalent as they only differ in the angle φ by a multiple of 2π. The position of
the attractors and the boundaries of the basins of attractions in the (x, φ)-plane are
sketched in Fig. 2.3.

Hopping between the sliding modes is equivalent to turning by an angle Δφ =
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±π, and in the limit of small thermal fluctuations the hopping/turning rate γ is
proportional to the long-time diffusion constant DL ∝ γ, which is the quantity of
our main interest. The hopping rate γ is equal to the escape rate from the phase
space basin of attraction around qi (basin i, occupying the phase space volume Ωi)
into one of the two neighboring basins of attraction around qj=i±1 (basin j, with
phase space volume Ωj). Here, the basin of attraction i with volume Ωi is defined by
all points q ∈ Ωi, from which the particle would deterministically, i.e., for β−1 = 0,
move to the attractor qi. Every pair of basins i, i ± 1, is separated by a common
boundary ∂Ωi,i±1, on which the particle is indifferent to move into either of the two
neighboring basins. The whole boundary of basin i, comprising ∂Ωi,i−1 and ∂Ωi,i+1,
which we denote as ∂Ωi, is referred to as separatrix [116].

2.3.3 The escape rate

In the present and the following subsection, we sketch a way of how to obtain
an escape rate γ for the problem under study, which is, however, formulated very
generally and in principle applicable to many different problems. Following Lehmann
et al. [154], to quantify the rate γ we introduce the population PΩi

(t),

PΩi
(t) ≡

∫
Ωi

d3qP (q, t|qi, 0) , (2.32)

which is equal to the average number of particles in the basin i at time t, given
the particle was at qi at t = 0.22 Under the assumption of weak noise, i.e., small
temperatures β−1, the conditional probability distribution P (q′, t|qi, 0), which had
already been introduced in Subsection 2.1, reaches a quasi-equilibrium profile in the
x- and φ-directions shortly after t = 0 on a time scale larger than τ ∗B, which is
equal to the maximum Brownian diffusion time to “test” the bottom of the basin
i (again, in the x- and φ-directions) and is assumed to be short with respect to
the inverse escape rate.23 The instantaneous escape rate γ(t) is then given by the
relative decrease of the population per unit time,

γ(t) = −ṖΩi
(t)/PΩi

(t) . (2.33)

For short, but intermediate times, τ ∗B � t � γ−1, when the probability of finding
the particle in basin i is still large, the instantaneous escape rate is independent of
time and equal to the desired turning rate γ.24 Assuming therefore PΩi

(t) = 1 in
the denominator of Eq. (2.33), using the SP equation (2.30) and Gauss’s theorem,
Eq. (2.33) can be rewritten as a surface integral over the separatrix ∂Ωi,

γ(t) = β−1

∫
∂Ωi

dSq nα(q)Γαβ(φ)∂βP (q, t|qi, 0) , (2.34)

22As PΩi(t = 0) = 1 it follows that PΩi (t > 0) ≤ 1.
23Note that the distribution does not reach a steady state or even quasi equilibrium in the

y-direction, as the channel is infinitely long.
24The demand t� γ−1 is to be regarded as a check of consistency.
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where dSq and n(q) are an infinitesimal surface element and the outer normal unit
vector on the separatrix at the point q. The next step is to obtain an expression
for the probability distribution P (q, t|qi, 0) via a functional integral over all possible
paths of getting from qi at time t = 0 to q at time t.

2.3.4 The probability distribution

Finding the probability distribution P (q, t|qi, 0) is pursued by first solving the
SP equation for short times, and afterwards iteratively exploiting the Chapman-
Kolmogorov relation for Markov processes [237] in order to decompose the full prob-
ability into a sum over products of short-time probabilities. Up to corrections of the
order Δt2 the short time solution of the SP equation (2.30) can be written as

P (q, t+Δt|q′, t) = [1 + LSP(q
′, t)Δt] δ(q− q′) = exp [LSP(q

′, t)Δt] δ(q− q′) .(2.35)

Upon insertion of the SP operator (2.31) and using the Fourier representation of the
δ function, this reduces to a Gaussian probability distribution

P (q, t+Δt|q′, t) = 1

(4πΔt)3/2 det[β−1Γ(φ′)]1/2

× exp
{
− 1

4Δt
[qα − q′α − aα(q

′)Δt] βΓ−1
αβ(φ

′)
[
qβ − q′β − aβ(q

′)Δt
]}

.

(2.36)

In order to obtain P (q, t|qi, 0) for large times t we make use of the Chapman-
Kolmogorov relation for Markov processes [237]

P (q, t|q′, t′) =
∫
d3q′′P (q, t|q′′, t′′)P (q′′, t′′|q′, t′), t′ < t′′ < t . (2.37)

N−1-fold decomposition of P (q, t|qi, 0) into small, equidistant time steps Δt = t/N
yields the desired result

P (q, t|qi, 0) =

∫
d3q1 · · ·d3qN−1

(4πΔt)3N/2(D‖D⊥Dr)N/2
exp

{
−β

4
S(q0, . . . , qN)

}
, (2.38)

where the end points, qN = q and q0 = qi, are kept fixed, the determinant of the
diffusion matrix, det[β−1Γ] = (D‖D⊥Dr), has been inserted, and

S(q0, . . . , qN) =

N−1∑
n=0

Δt

[
qn+1,α − qn,α

Δt
− aα(qn)

]
Γ−1

αβ(φn)

[
qn+1,β − qn,β

Δt
− aβ(qn)

]
(2.39)

is the discrete-time Onsager-Machlup action [206]. Taking the continuous-time limit
N →∞, Δt → 0, NΔt = t, the sum is symbolically written as a path integral

P (q, t|qi, 0) =

∫ q′(t)=q

q′(0)=qi

Dq′(t′) exp
{
−βS[q′(t′)]

4

}
. (2.40)
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Here, S[q(t)] is the Onsager-Machlup action [206],

S[q′(t′)] =
∫ t

0

dt′L(q(t′), q̇(t′), t′) , (2.41)

with the Lagrangian

L(q, q̇, t) = [q̇α − aα(q)] Γ
−1
αβ(φ) [q̇β − aβ(q)] . (2.42)

Note that we implicitly employed a prepoint-discretization scheme already in the
short-time solution to the SP equation, Eq. (2.35), similar to the Îto prescription in
Langevin dynamics. Different discretization schemes lead to different path integral
forms, which, however, are all equivalent in giving exactly the same Fokker-Planck
equation [112, 297]. The freedom in choosing an appropriate discretization scheme
makes Eqs. (2.40), (2.41), (2.42) meaningless if the discretization process is not
specified. The prepoint-discretization is the simplest form, as it directly leads to the
classical path, q̇α = aα(q), in which the particle deterministically follows the force
acting on it; however, such a path is possible only for a very limited set of boundary
conditions and does not apply for escape problems.

In the low-noise limit, i.e., for small temperatures β−1, the probability determin-
ing contribution to the functional integral, Eq. (2.34), is the path q∗i (t

′) with the
lowest action among all possible paths q′(t′) leading from qi to q, i.e.,

P (q, t|qi, 0) � K(q, t|qi, 0) exp

{
−βS[q∗i (t

′)]
4

}
, (2.43)

where K(q, t|qi, 0) is a non-exponential prefactor, and where q
∗
i (t

′) fulfills

S[q∗i (t
′)] ≤ S[q′(t′)], q′(0) = qi, q

′(t) = q .

The path q∗i (t
′) is referred to as the minimum action path (MAP), and the cor-

responding exponential factor as Arrhenius factor. The trajectory q∗i (t
′) is deter-

mined by the stationary solution to the Onsager-Machlup action, which can be
obtained by solving the corresponding Euler-Lagrange equations of motion, respect-
ing the appropriate boundary conditions. For Hamiltonian systems the prefactor
K(q, t|qi, 0) can be approximatively determined by a saddle point approximation,
which amounts to take Gaussian fluctuations about the MAP into account [42]. In
this case, K(q, t|qi, 0) is independent of β, i.e., the scaling of P (q, t|qi, 0) with β is
solely determined by the Arrhenius factor. For non-Hamiltonian systems, this is in
general not true [175].

2.3.5 An approximate treatment of the escape rate

Let us come back to the rate γ in Eq. (2.34), which is given by an integral over the
gradient of the probability distribution P (q, t|qi, 0) with respect to q. As P (q, t|qi, 0)
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is simply a sum over exponentials, taking the gradient leads to an additional (nonex-
ponential) prefactor on the integrand in the path integral. In the low-noise limit, the
rate determining contribution to the integral over functional integrals, Eq. (2.34),
is therefore the MAP, which leads to the lowest saddle point on the separatrix ∂Ωi

(for exceptions of this rule see the discussion further down). The work presented
in Chapter 8 is restricted to the evaluation of the corresponding Arrhenius factor;
the prefactors are henceforth ignored, or rather crudely approximated by the inverse
Brownian time τ−1

B (see also the discussion in Chapter 8). For Hamiltonian systems,
i.e., for m = 0 in Eq. (2.29), the Arrhenius factor is simply given by the potential
energy difference between the local minimum at qi and the lowest saddle point on
the separatrix at qs

i, i.e.,

min
q′(0)=qi,
q′(t)∈∂Ωi

S[q′(t′)] = 4[V (qs
i)− V (qi)] . (2.44)

For a derivation we refer the reader to the paper by Onsager and Machlup [207] or,
e.g., to reference [205]. For the non-Hamiltonian system under study in Chapter 8,
however, we do not only have a potential V (q) but also a non-conservative force m.
We therefore infer the MAP from symmetry arguments and from observed particle
trajectories in Brownian dynamics computer simulations. The problem is further
simplified by exploiting that orientational fluctuations in φ are much more relevant
for escaping the attractor than fluctuations in r.25 We therefore assume that during
the MAP the swimmer’s translation is determined by the constraint

q̇x,y = ax,y(φ).

This implies a great simplification to the Lagrangian, which reduces to

L̃(φ, φ̇, t) = (βDr)
−1
[
φ̇− aφ(q[φ])

]2

= (βDr)
−1
[
φ̇−M + ∂φV (x[φ], φ)

]2

, (2.45)

where the tilde on L̃(φ, φ̇, t) denotes the constraint; thereby the swimmer’s space
coordinate becomes a functional of the orientation φ(t), i.e., r(t) = r[φ(t′ < t)].
Note that by imposing this constraint the problem is not reduced to one dimension.
In fact, different paths φ(t) lead in general to completely different trajectories in
r-space due to the translation-rotation coupling in the diffusion matrix and—even
more important—in the non-conservative forces m(φ). However, despite the large
number of possible trajectories, it is only a small class of “costly” paths φ(t) [with
the corresponding phase space trajectory q(t) = (r[φ], φ(t))], which lead from the
attractor to one of the two saddle points on the separatrix. The latter are situated at
(xu, φu+(i−1)π) and (Lx−xu, φu+(i−2)π) if i is odd, and at (Lx−xu, φu+(i−1)π)

25This assumption is justified if the rotational diffusion constant is substantially larger than the
translational ones, and/or if the self propulsion in the direction of the swimmer F is much larger
than the torque M (see also Chapter 8).
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and (xu, φu + (i− 2)π) if i is even. The saddle points are indicated by open circles
in Fig. 2.3.

The minimization of the action with the simplified Lagrangian, Eq. (2.45), for
the swimmer under study is in detail described in Chapter 8. Here, we only mention
that not only one, but three different paths φ∗ij(t), j = 1, 2, 3, leading from the
attractor qi to either of the two saddles are taken into account. Depending on the
ratio of the self-propelling forces M/F , one of these paths, which have been identified
from computer simulations, is dominating. For the special case i = 1 and M > 0,
the projections of the trajectories on the (x, φ)-plane and on the (x, y)-plane are
sketched in Figs. 2.3 and 8.4, respectively. Two of the paths [paths (a) and (c) in
Figs. 2.3, 8.4] lead to the same, in general, lower saddle, which connects basin i with
basin i+1, whereas the third [path (b) in Figs. 2.3, 8.4] leads to another, in general,
higher saddle, connecting basins i and i− 1. The difference in height is due to the
torque M , which renders turning against the φ-direction M/|M | difficult according
to the Lagrangian, Eq. (2.45). Lacking knowledge about the kinetic prefactors of
the three different paths examined, we assume their weight to be simply determined
by their respective Arrhenius factor times the inverse Brownian time scale τB, which
leads to an overall rate

γ = τ−1
B

3∑
j=1

exp

{
−βS̃[φ∗ij(t)]

4

}
, (2.46)

where the tilde on S̃[φ∗ij(t)] denotes the use of L̃(φ, φ̇, t) in eq. (2.41), and φ∗ij(t)
describes the respective MAP, given few constraints characterizing the general shape
of the corresponding trajectory (for details on how the three different paths (a), (b),
and (c) were defined see Chapter 8).

2.3.6 Discussion

In this final subsection, we comment on few points concerning, first, rate theo-
ries in general and, second, the Brownian swimmer in particular. Eq. (2.46) is
certainly a crude approximation, and it would be highly desirable to obtain approx-
imate expressions for the corresponding kinetic prefactors as well. In fact, many
authors have been concerned with the evaluation of the latter in nonequilibrium,
non-Hamiltonian systems in more than one dimension [89, 116, 176, 197, 255]. How-
ever, already for Hamiltonian systems, in which the MAP can be identified as the
“closest” connection between the local minimum and the lowest saddle of the poten-
tial V (q), this is a formidable task, as it comprises two steps: at first, a saddle point
approximation to characterize the weight of the path in coordinate-space has to be
performed [205, 279], and second, a correct treatment of the continuous symmetry in
time is needed [42]. This latter problem has not been discussed so far, and deserves
a short comment.
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The MAP typically describes a process, which is fast, as compared to the in-
verse escape rate, i.e., the reaction time τR it takes the particle to travel from the
attractor to the separatrix is given by τR � γ−1. On large times, t 	 τR, which
we consider, the action S[q∗i (t

′)] is independent of when exactly the escape process
happens. Naively, one could be tempted to assume, that the probability distribution
P (qs

i, t|qi, 0) would therefore grow linearly with time t, as the chance that such an
event, which is also referred to as an instanton [42], had already happened before the
time t, would increase. However, this is, of course, not the case. Instead, also the
relaxation processes of leaving the separatrix either back into the basin i, which is
the unsuccessful attempt referred to as an anti-instanton, or over the barrier into the
other basin, has to be considered. Depending on the curvature of V (q) at the mini-
mum and at the saddle, higher-order combinations of instantons and anti-instantons
have to be summed up correctly, which then lead to the correct time-independence
of γ [42].

This reasoning points to a different way of approaching escape problems, which
is the concept of mean first passage times (MFPT) [96, 116]. The MFPT tΩi

(q) is
the mean time it takes the particle to reach the separatrix for the first time having
been placed at q ∈ Ωi at zero time.

26 In the spirit of the aforementioned continuous
time-symmetry, it is therefore easier, at least conceptually, to assess the correspond-
ing probability distribution, which is a solution to the SP equation with absorbing
boundary conditions on the separatrix [96], i.e., the probability distribution is not
a conserved quantity any more but—by construction—equals zero outside the re-
gion Ωi. Due to the boundary conditions this function has in the weak-noise limit
only one contribution from a single instanton, and the problem of summation over
higher-order processes is absent. However, to go beyond this single-instanton ap-
proximation is practically very difficult in the framework of path integrals, as the
absorbing boundaries are difficult to implement. Instead, the MFPT can be ob-
tained rigorously via the adjoint SP operator [96]27 or as the inverse decay rate
of the lowest-eigenvalue eigenfunction to the SP operator, which in turn can be
approximately found by a WKB treatment [174]. Both of these approaches form
the basis of a class of systematic asymptotic expansions [176, 197, 255] to escape
problems, which proved very successful for the determination of escape rates in
non-Hamiltonian systems during recent years.

One of the highly non-intuitive outcomes was the following finding: For general
non-Hamiltonian systems the most probable escape path (MPEP), which is the path
taken with the highest probability in the mathematical limit β−1 → 0 is not always

26In general, the concept of the MFPT is not limited to applications on basins of attractions
but can be formulated for any connected region in phase space [116]. In the weak noise limit and
under certain further conditions on ∂Ωi, the MFPT can be shown to be equal to the inverse of a
flux-over-population rate similar to the Kramers rate; for the differences see, e.g., appendix B of
ref. [116] or ref. [197].

27tΩi is the solution to the equation L†tΩi(q) = 1, q ∈ Ωi with boundary condition tΩi(q) =
0, q /∈ Ωi.
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equal to the MAP, a phenomenon referred to as saddle point avoidance [176, 197,
255]. This may in particular happen if two equally high saddles on the separatrix
are separated by an unstable fixed point on the separatrix [171]. In our work, this
is neither observed nor expected, as the two saddles of the domain Ωi are situated
on different boundaries ∂Ωi,i−1 and ∂Ωi,i+1, respectively.

Due to the torqueM the motion in the direction of φ and against it is asymmetric.
We already saw this becoming manifest in the higher saddle on the border ∂Ωi,i−1

as compared to the one on the border ∂Ωi,i+1, for the case M > 0. The swimmer
moves therefore on average in the +φ-direction, whereas in r-space the particle is
equally likely to move in positive as in negative y-direction. Despite the multi-
dimensional and non-Hamiltonian character, our model therefore resembles to some
extent the problems of tilted periodic potentials in one dimension [116, 237], in which
the particle hops from one local minimum of the potential energy to the next, in
very rare cases also hopping backwards for short times, but on average walking
deterministically in the direction of the tilt.
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Chapter 3

Density functional theory of
freezing for soft interactions in
two dimensions1

Abstract

A density functional theory of two-dimensional freezing is presented for a soft in-
teraction potential that scales as inverse cube of particle distance. This repulsive
potential between parallel, induced dipoles is realized for paramagnetic colloids on an
interface, which are additionally exposed to an external magnetic field. An extended
modified weighted density approximation which includes correct triplet correlations
in the liquid state is used. The theoretical prediction of the freezing transition is in
good agreement with experimental and simulation data.

A microscopic theory of freezing and melting is a great challenge in statistical
physics. There are two complementary approaches to the liquid-to-solid transition:
first, classical density functional theory [165, 209, 263] starts from liquid state and
views the solid as a condensation of liquid density modes, hence it is a liquid-based
approach. Second, crystal elasticity theory [265] is a solid-based theory where the
liquid is viewed as a solid with an accumulation of defects. In three dimensions, the
freezing transition is first order and it is known that it is not defect mediated. Here,
density functional theory provides a molecular theory for the freezing transition.
Crystal elasticity theory is appropriate to two dimensions and predicts a possible
scenario of two-stage melting via an intermediate hexatic phase [113, 146, 200, 305].

1This chapter was published by Sven van Teeffelen, Norman Hoffmann, Christos N. Likos, and
Hartmut Löwen in Europhys. Lett. 75 (2006), 583 (arXiv:cond-mat/0604422). It is reprinted with
permission from EDP Science, Copyright 2006.
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The advantage of density functional theory is that it can be used to calculate the
structure of the solid, whereas it is not possible to extract the structure of the fluid
out of crystal elasticity theory.

An excellent realization of a two-dimensional system is provided by paramagnetic
colloidal particles in a pendant water droplet, which are confined to the air-water
interface [307]. If an external magnetic field is applied perpendicular to the interface,
a magnetic moment is induced in the particles resulting into a tunable, mutual
dipolar repulsion between them. The corresponding interaction pair potential u(r) is
repulsive and soft, being proportional to 1/r3, with r denoting the distance between
the particles. The prefactor can easily be tuned by varying the external magnetic
field strength. In real-space experiments [282, 306], the two-stage melting process
was confirmed with an intermediate hexatic phase which had a tiny stability range
bracketed between the fluid and the crystalline phase. There are also computer
simulations [111, 166] for freezing in 1/r3 system but finite-size effects turn out to
become crucial here as was shown in elaborate studies [22].2

In this chapter, we apply density functional theory (DFT) to two-dimensional
freezing of soft 1/r3 interactions. There are two major difficulties arising in doing
so: first, it is known that it is difficult to get a reliable density functional approx-
imation for soft repulsive interaction potentials. While hard sphere freezing serves
as standard test case for various approximations and many reliable approximations
do exist (e.g. Rosenfeld’s fundamental measure theory [240]), the freezing of soft
inverse-power law-fluids turns out to be much harder [287]. For the extreme case of
the one-component plasma, featuring a 1/r interaction, it has been shown by Likos
and Ashcroft [158, 159] that an extended modified weighted density approximation
(EMA) which contains correct triplet correlation of the fluid yields reliable freezing
data. In this chapter, we overcome the first problem in a similar way and generalize
the EMA to two dimensions and apply it to the 1/r3 interaction. The second, more
fundamental problem is linked to the two-dimensional character of the system itself.
It is not clear to date how to include the hexatic phase into the density functional
language. Here, we do not address this deep question but rather focus on the predic-
tion of the freezing transition point neglecting the tiny stability range of the hexatic
phase. A similar view has been taken for hard disk systems [21, 248, 301, 309] and
to the 1/r interaction in 2D [248] where density functional theory of freezing was
applied to.

We demonstrate that the EMA yields excellent freezing data as compared to the
standard modified weighted density approximation (MWDA) [64]. Even the relative-
mean-square-displacement in the coexisting solid is in reasonable agreement with the
experimental data on colloids in a magnetic field.

The Helmholtz free energy density functional is typically split into the ideal
gas and an excess part, Ftot [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)]. Here the ideal part is
local and nonlinear, Fid [ρ(r)] = kBT

∫
drρ(r) {ln [ρ(r)Λ2]− 1}, with Λ denoting

2A critical survey of finite-size effects to hard disks can be found in reference [137].
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the thermal de Broglie wavelength and kBT the thermal energy. The excess part
can only be calculated approximately. Both the MWDA and the EMA approximate
the excess free energy of the inhomogeneous system by setting it equal to the excess
free energy of a uniform liquid evaluated at an appropriately weighted density ρ̂:
Fex [ρ(r)] ≈ F

MWDA/EMA
ex [ρ(r)] = Nf0(ρ̂), where N is the number of particles in the

system and f0(ρ̂) is the excess free energy per particle of the uniform liquid at the
weighted density ρ̂ determined through:

ρ̂ [ρ(r)] =
1

N

∫
dr dr′ρ(r)ρ(r′)w (r− r′; ρ̂)

+
1

N2

∫
dr dr′ dr′′ρ(r)ρ(r′)ρ(r′′)v (r− r′, r− r′′; ρ̂) .

(3.1)

Here the second term only appears in the EMA and not in the MWDA. The weight
functions w(r; ρ) and v(r, r′; ρ) are determined by requiring that the approximate
functional Fex [ρ(r)] is exact up to second (MWDA) or third (EMA) order in density
difference Δρ(r) = ρ(r) − ρ in the functional expansion of the excess free energy
of the inhomogeneous system about the excess free energy of the fluid. The second
weight function v in Eq. (3.1) is chosen to be zero in the MWDA since the third order
correlation function does not enter the formalism explicitly; rather, all higher terms
are approximately included as a consequence of the self-consistency requirement on
the determination of ρ̂, appearing on both sides of Eq. (3.1). The EMA, on the other
hand, is exact up to third order and, similarly, includes approximate contributions
from all higher-order terms. The normalized weight functions have to fulfill the
requirements [158, 159]

lim
ρ(r)→ρ

[
δ2F

MWDA/EMA
ex

δρ(r)δρ(r′)

]
= −kBTc

(2)
0 (r− r′; ρ)

lim
ρ(r)→ρ

[
δ3FEMA

ex

δρ(r)δρ(r′)δρ(r′′)

]
= −kBTc

(3)
0 (r− r′, r− r′′; ρ) ,

(3.2)

where c
(2)
0 and c

(3)
0 are the two- and three-particle direct correlation functions of the

liquid [117] which are an input to the theory. These conditions uniquely determine
the weight functions and lead to simple algebraic equations for v and w that can be
found in reference [158, 159].

In order to find the equilibrium one-particle density ρeq(r) we minimize the total

free energy functional F
MWDA/EMA
tot [ρ(r)] with respect to the inhomogeneous one-

particle density ρ(r). We make the Gaussian ansatz, ρ(r) = α
π

∑
Ri
exp

[−α |r−Ri|2
]

where {Ri} is the set of Bravais lattice vectors of a triangular lattice (with average
density ρ). For fixed average density ρ we thus end up with only one minimization
parameter α which describes the degree of localization. For α → 0 the density pro-
file becomes flat and the system turns into a homogeneous liquid of number density
ρ, whereas increasing α leads to enhanced particle localization around the lattice
sites.
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With the Gaussian parametrization of the density profiles, we obtain the follow-
ing self-consistent equation for the weighted density ρ̂ as function of the localization
parameter α and the average density ρ:

ρ̂(ρ, α)

ρ
=

⎡
⎢⎢⎣1− kBT

2f ′0(ρ̂)

∑
K �=0

μ2
K c̃

(2)
0 (K; ρ̂)− ρkBT

6f ′0(ρ̂)

∑
K �=0

Q�=0,−K

μKμQμ|K+Q|c̃
(3)
0 (K,Q; ρ̂)

⎤
⎥⎥⎦ ,

(3.3)
where μk = e−k2/4α are the Fourier coefficients of the Gaussian ansatz for ρ(r)

and, likewise, c̃
(n)
0 , n = 2, 3, denote the Fourier transforms of the n-particle direct

correlation functions, evaluated at the reciprocal lattice vectors (RLV’s) K and Q.
Primes denote derivatives with respect to density and the three-particle term only
appears in the EMA. Whereas Fid grows with α, ρ̂ decreases with the latter, causing
a concomitant decrease in Fex, because the latter is a monotonically increasing
function of ρ̂. As can be induced from Eq. (3.3) above, the decrease of ρ̂ with

α is pronounced when the RLV’s of the lattice lie close to the maxima of c̃
(2)
0 (k; ρ̂), a

feature that corresponds physically to an inherent tendency of the fluid to enhance
density waves at these wavevectors.

We now apply the MWDA/EMA to the inverse-power pair potential u(r) =
u0/r

3, where u0 is a parameter with dimensions of energy × volume; for the specific
realization of two-dimensional paramagnetic colloids of susceptibility χ exposed to
a perperndicular magnetic field B, we have u0 = (χB)2/2 in Gaussian units. The
thermodynamics and structure depend, due to simple scaling, only on one relevant
dimensionless coupling parameter Γ = u0ρ

3/2/(kBT ). Therefore, it is convenient
to express all quantities in terms of Γ and consider coupling parameters rather
than densities via this scaling relation. Correspondingly, in what follows we employ
the weighted coupling constant Γ̂, related to ρ̂ via the scaling relation Γ̂(Γ, α) =
u0ρ̂

3/2(ρ, α)/(kBT ).
In order to obtain the concrete form of the functional approximations, we need

the two- and three-particle direct correlation functions and the excess free energy per
particle f0 of the corresponding uniform fluid for a wide range of coupling constants
Γ. These quantities are obtained as described below:

(i) The two-particle direct correlation function is obtained by liquid integral
equation theory, where we used the hypernetted chain (HNC) [117] or the ther-
modynamically consistent Rogers-Young (RY) closure [239], adopted to two dimen-
sions [39]. We have also produced “exact” data for the real-space direct two-particle
correlation by computer simulation applying a closure suggested by Verlet [280] that
inverts the pair-distribution function from a finite simulation box in order to ob-
tain c

(2)
0 . A comparison between the HNC, RY and simulation data for the Fourier

transform c̃
(2)
0 of the direct correlation function is shown in Fig. 3.1 for the exper-

imentally determined coupling close to freezing. The HNC closure underestimates
the structure strongly while the RY closure is closer to the simulation data. The
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Figure 3.1: The Fourier transform ρc̃
(2)
0 (k) of the two-particle direct correlation

function at Γ = 9, plotted against ka, where a = ρ−1/2. Shown are simulation
data using the Verlet closure (solid line); liquid integral equation theory using the
RY closure (dashed line) and liquid integral equation theory using the HNC closure
(dotted line). The arrows indicate the positions of the first four reciprocal lattice
vectors of the triangular lattice.

HNC closure is therefore not considered further. We also show the positions of the
first four reciprocal lattice vectors of a triangular lattice with same density. The
value of c̃

(2)
0 at these lattice vectors crucially influences the solid free energies, as can

be seen from Eq. (3.3).
(ii) The excess free energy per particle f0 is obtained from the pair correlation

via the compressibility route [117], [ρf0(ρ)]
′′ = −kBT c̃

(2)
0 (k = 0; ρ).

(iii) Finally, the three-particle direct correlation function c
(3)
0 of the underlying

fluid is obtained from an approximation by Denton and Ashcroft [63], which is based
on a weighted density approximation to the first order direct correlation function
of an inhomogeneous system. This approach leads to an analytic expression of c

(3)
0

in terms of the one- and two-particle correlation functions c
(1)
0 , c

(2)
0 of the liquid,

employing the ‘symmetrized sum’

c̃
(3)
0 (k,k′) =

1

3

[
f̃ (|k|, |k′|) + f̃ (|k|, |k+ k′|) + f̃ (|k′|, |k+ k′|)

]
, (3.4)

where

f̃(k, k′) =
1

c
(1)′
0

[
c̃
(2)
0 (k)c̃

(2)′
0 (k′) + c̃

(2)′
0 (k)c̃

(2)
0 (k′)

]
− c

(1)′′
0[

c
(1)′
0

]2 c̃
(2)
0 (k)c̃

(2)
0 (k′). (3.5)
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Figure 3.2: The weighted coupling constant Γ̂(Γ, α) as a function of the localization
parameter α within the MWDA (solid line) and within the EMA (dashed line) using
the “exact” pair structure from simulation for the strong coupling Γ = 9.

Results for the approximations proposed are presented in Figs. 3.2 and 3.3. In
Fig. 3.2, the weighted coupling constant Γ̂(Γ, α) is shown versus the localization
parameter α for a strong coupling Γ close to freezing. Both the MWDA and the
EMA are examined with the simulation pair structure input. Obviously, Γ̂ coincides
with the bare Γ in the fluid (α = 0). It can be seen that the MWDA yields a smaller
reduction in Γ̂ relative to Γ than the EMA: explicit inclusion of three-body effects
enhances the tendency of the particles to localize. Hence, one expects freezing at
lower couplings in the EMA. In fact, in Fig. 3.3, the free energy difference between
a solid of localization α and a fluid (α = 0) shown versus α reveals that the fluid
is much more stable in the MWDA as compared to the EMA. The EMA yields a
transition from the fluid to the solid close to Γ = 9.4: while for Γ = 9.0 the fluid is
stable as indicated by the minimal value at α = 0, fluid-solid coexistence is achieved
at Γ = 9.4, see the two equal minima in Fig. 3.3. The solid phase, on the other hand,
is clearly stable for Γ = 9.8. The localization parameter at coexistence is roughly
αmina

2 = 100.

The full results of a numerical calculation using Maxwell’s double tangent con-
struction yield a weak first-order transition with a fluid density corresponding to a
coupling constant of Γf and a solid density corresponding to a coupling constant
of Γs. There is a small density gap ΔΓ = Γs − Γf , describing the coexistence re-
gion. Table 3.1 summarizes the freezing/melting parameters for the MWDA with
RY closure, for the EMA with RY closure, and for the EMA with the “exact” pair
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Figure 3.3: Relative free energy per particleN−1 [Ftot(Γ, α)− Ftot(Γ, α = 0)] in units
of kBT as a function of α obtained within the EMA for three different coupling
constants Γ = 9, 9.4, 9.8 (the three lower curves from top to bottom) compared to
the same obtained within the pure MWDA for a coupling constant Γ = 9 (uppermost
line). The fluid input is obtained from simulation.

structure obtained from simulation. The data are compared against experimental
results obtained from real-space microscopy measurement of magnetic colloids con-
fined to an air-water interface. The experiments give freezing with an intermediate
hexatic phase. The liquid-solid transition has also been studied using numerical sim-
ulation [111, 166] yielding a slightly higher inverse transition temperature between
12.0 and 12.25 but these investigations suffer from finite size effects.

As becomes evident from Table 3.1, the MWDA is not a quantitatively satisfying
theory as it overestimates the freezing coupling by a factor of 4. Note that the
overestimation of the freezing coupling is the reason why it is not possible to feed
the “exact” pair structure into the MWDA. At such high coupling, no fluid pair
structures are available since the fluid spontaneously crystallizes in the simulation.
The EMA, on the other hand, yields results in close agreement with experimental
data.

More detailed, structural information can be extracted from the localization pa-
rameter of the coexisting solid. For all approximations used we find localization
parameters at freezing in the range 99 < αmin(Γf)a

2 < 115. Strictly speaking, the
localization parameter has no counterpart in “real” 2D systems since the particles
are not localized due to long range fluctuations. However, if one relates the parti-
cle displacements to that of their nearest neighbor, one can define a finite quantity
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Table 3.1: Freezing and melting parameters Γf and Γs, the widths of the coexistence
regions ΔΓ = Γs − Γf , and the relative displacement parameters γ at coexistence
obtained within: the MWDA with the RY closure (first row); the EMA with the
RY closure (second row); the EMA with the “exact” pair structure from simulation
(third row) and experimental parameters for the isotropic-hexatic transition, the
hexatic-crystal transition and the Lindemann parameter, obtained from real-space
microscopy measurements of magnetic colloids confined to an air-water interface
(last row).

Γf Γs ΔΓ γ
MWDA with RY 41.07 41.13 0.06 0.017
EMA with RY 23.0 23.08 0.09 0.020
EMA with simulation 9.33 9.49 0.16 0.020
Experiment 10.0 10.75 - 0.038

as γ = ρ
〈
(ui − ui+1)

2〉, where ui and ui+1 are the displacement vectors of neigh-
boring lattice sites. Disregarding nearest-neighbor correlations 〈ui · ui+1〉, γ can be
estimated. Since the nearest-neighbor correlations 〈ui · ui+1〉 are expected to be
positive:

γ � 2ρ
〈
u2

i

〉 ≈ 2/(αmina
2). (3.6)

By this relation, the localization parameter of the coexisting solid gives a prediction
for γ which is included in Table 3.1. From experiments, γ is known to be close to
∼= 0.038 [306]. This was shown to be in accordance with harmonic lattice theory [95].
The EMA yields γ � 0.020, i.e. the EMA roughly overestimates the localization of
the particles by a factor of 2. γ is smaller than the experimental value, contrarily
to what was expected from the inequality (3.6). This shows that there is still a
need to improve the theories in order to correctly predict localization properties.
A similar overestimation of the localization is also common in weighted density
approximations in three spatial dimensions [64].

Another quantitiy of interest, which is directly connected to the Helmholtz free
energy is the pressure at coexistance. Within the EMA with the “exact” pair struc-
ture we obtain P (Γf = 9.33)/(kBTρ) = 72.6.

In conclusion, we have demonstrated that the EMA is able to quantitatively
predict the freezing transition of a two-dimensional colloidal system with soft and
long-ranged 1/r3-interactions in good agreement with experimental and simulation
data. In analogy to three-dimensional systems, the appearance of long-range in-
teractions requires the explicit inclusion of three-particle correlation functions of
the liquid in the construction of the weighted density. Furthermore, the predicted
transition temperatures are very sensitive towards slight changes of the two-particle
correlation functions of the underlying fluid. A highly accurate input of the same is
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therefore crucial.
Relying on the good quality of the EMA functional, our results can serve as

a platform to treat more challenging problems than bulk transitions [167]. One
obvious extension is towards external potentials acting on the particles, such as
system walls or gravity. The MWDA can in principle be applied to a fluid near a
single wall, but not to a free interface between coexisting phases. Another interesting
example is a spatially inhomogeneous magnetic field, which renders the interactions
space dependent [94]. Finally, one may employ the scheme of dynamical density
functional theory [75, 179] in order to use the EMA functional to study the effect of
spatially homogeneous magnetic fields that oscillate in time. Work along these lines
is currently under way.
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Chapter 4

Crystallization of magnetic dipolar
monolayers: a density functional
approach1

Abstract

We employ density functional theory to study in detail the crystallization of super-
paramagnetic particles in two dimensions under the influence of an external mag-
netic field that lies perpendicular to the confining plane. The field induces non-
fluctuating magnetic dipoles on the particles, resulting into an interparticle inter-
action that scales as the inverse cube of the distance separating them. In line with
previous findings for long-range interactions in three spatial dimensions, we find that
explicit inclusion of liquid-state structural information on the triplet correlations
is crucial to yield theoretical predictions that agree quantitatively with experiment.
A non-perturbative treatment is superior to the oft-employed functional Taylor ex-
pansions, truncated at second or third order. We go beyond the usual Gaussian
parametrization of the density site-orbitals by performing free minimizations with
respect to both the shape and the normalization of the profiles, allowing for finite
defect concentrations.

4.1 Introduction

Classical density functional theory (DFT) is the method of choice to the study of
inhomogeneous fluids [85]. Perhaps the most extreme inhomogeneities arise in a
crystalline solid, where the density field ρ(r) is both periodic and shows extreme
differences between its local values on the lattice sites and in the interstitial regions.

1This chapter was published by Sven van Teeffelen, Hartmut Löwen, and Christos
N. Likos in J. Phys.: Condens. Matter 20 (2008), 404217 (http://www.iop.org/journals/jpcm;
arXiv:0804.3299). It is reprinted with permission from IOP Publishing Ltd., Copyright 2008.
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DFT has been successfully applied to the problem of crystallization of a number of
different systems [157, 165, 168, 210, 263], mostly in three spatial dimensions. Here,
the most popular system is the prototype of hard spheres, for which a geometry-
based theory [240, 243, 251] has proven quite successful. For soft interactions [55, 56,
59], however, where one cannot assign geometrical measures to the interacting point-
particles, one has to resort to other functionals. In particular, it has been shown [158]
that for long-range interactions, structural information of the liquid on the pair-level
is insufficient and triplet fluid correlations should be allowed to explicitly flow into
the construction of the functional. Even less is known for crystallization in two
spatial dimensions [241, 272, 309]. Here, we consider a combination of the two above-
mentioned cases in considering long range interactions in two spatial dimensions and
we study in detail the role played by accurate liquid-state information on triplet
correlations in determining phase boundaries between a fluid and the coexisting
crystal.

In this chapter, we study freezing of a classical two-dimensional model fluid,
namely of a fluid of aligned dipoles directed perpendicular to the 2D-plane and
repelling each other with a soft 1/r3 inverse-power pair potential, with the help of
density functional theory (DFT). In Chapter 3 we studied freezing of the the dipolar
system with the modified weighted density approximation and its extension to third
order correlation functions. Within this chapter we will extend our previous study
in several ways: We allow for a finite defect concentration and relax the constraint
of Gaussian density peaks in the crystalline phase, as, e.g., suggested for hard sphere
crystals in Ref. [203]. Furthermore, we systematically study the influence of per-
turbative and non-perturbative inclusion of higher order correlation functions of the
liquid in the density functional approximation on the freezing transition. We employ
two different approximations to the three-particle correlation functions, which lead
to substantially different results, therefore signalling the importance of an accurate
approximation of the latter.

We use different approximations to the DFT—based on the famous and powerful
approach by Ramakrishnan and Yussouff [226], but extending on the latter in taking
higher-order terms into account, as will be described below. The quantity to be
approximated in the DFT of freezing is the excess Helmholtz free energy functional
Fex[ρ(r)], a unique functional of the inhomogeneous one-particle density ρ(r) of
the solid [85]. The uniqueness property implies that the excess free energy can be
formally expanded about the excess free energy of a homogeneous fluid at a uniform
density ρ in terms of density difference Δρ(r) = ρ(r)− ρ:

βFex[ρ(r)] = βFex(ρ)−
∞∑

n=1

1

n!

∫
V

dr1 . . .drnc
(n)
0 (r1, . . . , rn; ρ)Δρ(r1) . . .Δρ(rn) ,

(4.1)
where β = 1/(kBT ) and V is the volume occupied of the system. Fex(ρ) is the

Helmholtz excess free energy and the c
(n)
0 are the n-particle direct correlation func-
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tions of the fluid, which are well known up to second order for dipolar fluids.2

Within the theory of Ramakrishnan and Yussouff this series expansion is trun-
cated at second order. We therefore refer to the theory as “second order theory”
(SOT). Part of the reason for this truncation lies in poor knowledge about higher
than second order correlation functions; the truncation is not well justified in the
problem of freezing, since here Δρ is not a small parameter. In particular, it has been
extensively shown that the SOT fails to accurately predict freezing for systems in-
teracting via long-range pair potentials for three-dimensional systems [149, 158]. We
will show in this work, that also for the two-dimensional dipolar system the SOT
highly underestimates the stability of the crystal. Therefore, several approaches
have been employed to include higher than second-order terms in the expansion—in
a perturbative [55] or non-perturbative way [56, 64, 158, 159].

The simplest attempt to go beyond the SOT is to explicitly include the third
order term in the expansion in Eq. (4.1), which we refer to as “third order theory”
(TOT). Employing the TOT demands an approximate form of the three-particle

direct correlation function c
(3)
0 (r, r′; ρ) of the fluid. We will show here, that—given

an accurate expression for c
(3)
0 (r, r′; ρ)—including this term substantially improves

the predicted freezing temperature of the long-range 1/r3-fluid (in line with previous
findings for long-range interactions in 3D [20]).

A third approach to the DFT we follow here, is the Modified Weighted-Density
Approximation (MWDA) [64] by Denton and Ashcroft which we already presented
for the dipolar system in brief in Chapter 3. This approach includes first and second
order correlation functions of the fluid exactly (as in the SOT) and higher order cor-
relation functions in a non-perturbative, implicit fashion. We find that the MWDA,
in two dimensions, slightly shifts the freezing transition to higher temperature as
compared to the SOT, still highly underestimating the stability of the solid state.
In a fourth approach we employ the so called “extended modified weighted-density
approximation” (EMA), as suggested in Refs. [158, 159]. Different from the MWDA,
this approximation to the density functional now includes not only first and second,
but also third order correlation functions of the fluid exactly (as in the TOT). Higher
than third-order correlation functions are contained in a non-perturbative, implicit
fashion, following a similar scheme as in the MWDA. For the dipolar system we find
that this approach leads to a very accurate value of the freezing transition tempera-
ture, lying slightly above the one obtained from the simpler TOT. The two-particle
correlation functions of the liquid are obtained from liquid state integral equation
theory and from simulation. The three-particle correlation functions are obtained
applying two approximations, both based on the two-particle correlation functions:
The first approximation used is by Denton and Ashcroft (DA) [63], and the second
is by Barrat, Hansen, and Pastore (BHP) [21].

We find that the inclusion of higher order correlation functions in a perturbative
(TOT) or non-perturbative (EMA) way subsequently increase the freezing transition

2See Chapter 3.
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temperature, thus broadening the range of the thermodynamical stability of the
crystal. In fact, we find the freezing transition temperature to be in good agreement
with experiment [306] and simulation [111, 163, 166]. The importance of inclusion
of third order correlation functions is addressed to the long-range nature of the
dipole-dipole pair interaction.

The rest of this work is organized as follows: In Section 4.2 we give a brief
description of the MWDA and of the EMA. In Section 4.3 we apply the different
approximations to the DFT to freezing of monodispers two-dimensional liquids. The
theory is adapted to the dipolar system under study in Section 4.4. In Section 4.5
we present the resulting phase diagrams and different structural properties of the
crystalline system, and we conclude in Section 4.6.

4.2 Modified weighted-density approximation and

its extension to third-order correlation func-

tions

It is well known that the intrinsic Helmholtz free energy of an inhomogeneous system
can be divided into an “ideal” and an “excess” part,

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] . (4.2)

The “ideal” term

Fid [ρ(r)] = β−1

∫
drρ(r)

{
ln
[
ρ(r)Λ2

]− 1
}

, (4.3)

is known exactly. In Eq. (4.3) Λ is the thermal de Broglie wavelength. The excess
part can only be calculated approximately. In contrast to the SOT and TOT,
within the MWDA and EMA the excess free energy of the inhomogeneous system
is approximated by setting it equal to the excess free energy of a uniform liquid
evaluated at a weighted density ρ̂,

Fex [ρ(r)] ≈ FM/E
ex [ρ(r)] = Nf0(ρ̂

M/E) , (4.4)

where superscripts denote the approximations to the DFT, MWDA (M) and EMA
(E), respectively. N is the number of particles in the system and f0(ρ̂) is the excess
free energy per particle of the liquid at the weighted density ρ̂. The latter is expressed
as

ρ̂M/E [ρ(r)] =
1

N

∫
V

dr

∫
V

dr′ρ(r)ρ(r′)w (r− r′; ρ̂)

+
1

N2

∫
V

dr

∫
V

dr′
∫

V

dr′′ρ(r)ρ(r′)ρ(r′′)

×v (r− r′, r− r′′; ρ̂) , (4.5)
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where the second term only appears in the EMA and not in the MWDA. The weight
functions w(r; ρ) and v(r, r′; ρ) are determined in such a way that the approximate
functional F

M/E
ex [ρ(r)] is exact up to second (MWDA) or third (EMA) order in

density difference Δρ(r) = (ρ(r)− ρ), i.e., up to that order Eq. (4.4) and Eq. (4.1)
do agree. Note that the weighted density ρ̂ is determined self-consistently, as it
appears as an argument of both weight functions. In order to obtain equality with
Eq. (4.1) up to second or third order in Δρ we demand the weight functions to be
normalized, i.e., ∫

V

drw(r; ρ) +
1

V

∫
V

dr

∫
V

dr′v(r, r′; ρ) = 1 . (4.6)

and to fulfill the requirements

lim
ρ(r)→ρ

[
δ2F

M/E
ex

δρ(r)δρ(r′)

]
= −β−1c

(2)
0 (r− r′; ρ) ,

lim
ρ(r)→ρ

[
δ3FE

ex

δρ(r)δρ(r′)δρ(r′′)

]
= −β−1c

(3)
0 (r− r′, r− r′′; ρ) , (4.7)

where c
(2)
0 (r; ρ) and c

(3)
0 (r, r′; ρ) are the two- and three-particle correlation functions

of the liquid with density ρ which are an input to the theory. These conditions
uniquely determine the weight functions. In order to obtain the simple algebraic
equations for v and w that can be found in Ref. [159] a further approximation has
to be made: The inner integral in the second term of Eq. (4.6) is assumed to be equal
to a constant, C (demanding the first term in Eq. (4.6) to be equal to 1−C), where
C is independent of the fixed space coordinate of the weight function v(r, r′; ρ). The
weighted density ρ̂ in Eq. (4.5) is independent of the choice of C [159].

For non-zero wave vectors (k �= 0,k′ �= 0, or k+ k′ �= 0), the Fourier transforms
of the weight functions w̃(k; ρ) and ṽ(k,k′; ρ) are simply proportional to the Fourier
transforms of the second- and third-order direct correlation functions c̃

(2)
0 (k; ρ) and

c̃
(3)
0 (k,k′; ρ), respectively:

−β−1c̃
(2)
0 (k; ρ) = 2f ′0(ρ)w̃(k; ρ) ,

−β−1c̃
(3)
0 (k,k′; ρ) = 6f ′0(ρ)ṽ(k,k′; ρ) . (4.8)

Furthermore, Eq. (4.5), together with Eqs. (4.6) and (4.7) guarantee fulfillment of
the sum rules

β−1c̃
(2)M/E
0 (k = 0; ρ) = 2f ′0(ρ) + ρf ′′0 (ρ) ,

c̃
(3)M/E
0 (k,k′ = 0; ρ) = c̃

(3)M/E
0 (k,−k; ρ) =

∂c̃
(2)
0 (k;ρ)

∂ρ
, (4.9)

where the former is the compressibility sum rule, and where the superscripts on the
correlation functions indicate that these functions are the Fourier transforms of the
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functional derivatives of the approximate excess free energy functionals in the limit
of constant average density ρ [c.f. Eq. (4.7)]. The primes on the excess free energy
density f0 denote derivatives with respect to density.

Due to the self-consistency requirement, the approximate excess free energies of
both the MWDA and the EMA include contributions from arbitrarily many higher
orders. However, if expanded about the excess free energy of a fluid with the same
average density as the inhomogeneous system according to Eq. (4.1), the MWDA
only gives even order terms and estimates the odd order terms zero. Contrary,
the EMA includes, approximately, contributions from all higher order terms. In
particular, it includes the exact third-order term, which is an input to the theory.

4.3 Application of the different approximations

to the DFT to freezing of monodisperse two-

dimensional liquids

In order to find the equilibrium one-particle density ρeq(r) of a system at a given
average density ρ and temperature T we minimize the approximate total free energy
functional F [ρ(r)] of Eq. (4.2) with respect to the inhomogeneous one-particle den-
sity ρ(r) for fixed ρ. As described, for example, in Refs. [64, 159] this minimization is
pursued in a number of subsequent steps, depending on the kind of approximation:
For all approximations to the DFT, first, an appropriate parametrization for the
inhomogeneous one-particle density is made (we will employ a free minimization in
Section 4.5.3). Within the SOT and TOT, we can now, in a second step, calculate
the excess and ideal parts of the Helmholtz free energy according to Eqs. (4.1) and
(4.3). However, within the MWDA and EMA, the excess part is given by Eq. (4.4),
with the weighted density ρ̂ obtained in an intermediate step according to Eq. (4.5).
In a final step, minimization is carried out with respect to all free variables in the
parametrization of ρ(r).

The crystalline one-particle density which we expect to be in equilibrium for low
temperature and/or high density has the symmetry of the triangular crystal—the
quadratic lattice is thermodynamically unstable for the whole range of accessible
densities/coupling constants and we expect mechanical instability with respect to
the triangular lattice for any coupling. We can therefore express ρ(r) as a sum over
reciprocal lattice vectors (RLV’s) of the triangular lattice:

ρ(r) = ρ

[
1 +

∑
K �=0

μKeiK·r
]

, (4.10)

where ρ is the average density of the solid, {K} is the set of reciprocal lattice vectors
(RLV’s), and where the μK are the dimensionless Fourier components. In terms of
Fourier components the excess part to the Helmholtz free energy within SOT and
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TOT [Eq. 4.1] now reads

βF S/T
ex [ρ(r)]/N = βf0(ρ)− ρ

2

∑
K �=0

μ2
Kc̃

(2)
0 (k; ρ)

−ρ2

6

∑
K �=0

∑
K′ �=0,−K

μKμ′Kμ−(K+K′)c̃
(3)
0 (K,K′; ρ) , (4.11)

the superscript referring to the SOT (S) and to the TOT (T), respectively. The
third term only appears in the TOT.

Within the MWDA and EMA, the weighted density, Eq. (4.5), now reads

ρ̂M/E = ρ

{
1 +

∑
K �=0

μ2
Kw (K; ρ̂) + ρ

∑
K �=0

∑
K′ �=0,−K

μKμ′Kμ−(K+K′)

[
v (K,K′; ρ̂)

N

]}
.(4.12)

As in Eq. (4.5) the three-particle term only appears in the EMA.
Since a free minimization of the approximate Helmholtz free energy with respect

to an infinite number of Fourier components μK at all RLV’s is intractable, we make
a simple ansatz for the one-particle density which is a superposition of normalized
Gaussians centered around the lattice sites of the triangular lattice:

ρ(r) =
ncα

π

∑
R

exp
[−α |r−R|2] , (4.13)

where α is the localization strength, nc is the average number of particles occupying
a lattice site, yielding a vacancy concentration nv = 1−nc, and {R} is the set of Bra-
vais lattice vectors of the triangular lattice with lattice constant a = (

√
3nc/2ρ)

1/2.
Thus, the Fourier components μK now simply read

μK = e−K2/4α . (4.14)

The ansatz, Eq. (4.13), was chosen in such a way that the system forms a triangular
lattice for any finite α keeping its average density ρ fixed. For α → 0 the density
profile becomes flat and the system turns into a liquid. We thus end up with two
minimization parameters α and nc.

This ansatz disregards a possible partition of the system into coexisting liquid
and crystal phases of different densities keeping the overall average density fixed.
However, this is accounted for by performing a common-tangent construction to the
crystal and liquid volume free energy densities in the end. Furthermore, Eq. (4.13)
disregards the spatial anisotropy of the density site profile at each lattice site. We
will see in Section 4.5.3, where we relax the constraint on the density peaks, that
both, the assumption of isotropy and the Gaussian shape are well justified close to
the positions of the Bravais lattice vectors, i.e., where the density is reasonably large
(ρ(r) � ρ).
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Figure 4.1: The function G(α/ρ) and its analytically known asymptotics for small
and large localization strength.

Employing the ansatz of Eq. (4.13) for the inhomogeneous density, the ideal part
of the Helmholtz free energy [Eq. (4.3)] can now be written as a function of α and
nc only: Fid [ρ(r)] = Fid(α, nc; ρ). For nc = 1 it reads

β

N
Fid(α, nc = 1; ρ) = const + ln(ρL2) +G(α∗) , (4.15)

G(α∗) =
∫

A1

dx
ρ(x, α∗, nc = 1)

ρ
ln

[
ρ(x, α∗, nc = 1)

ρ

]
, (4.16)

where const is an irrelevant constant and L is a density-independent length scale of
the system. x = rρ1/2 and α∗ = α/ρ are the dimensionless space coordinate and
localization strength, respectively, and the integral is performed over the area A1

of a unit cell. The function G(α∗) is approximated for small and large localization
strengths by its analytically known asymptotics

G(α∗) �
{

G1(α
∗) =

∑
K∗ �=0 exp

[−K∗2/2α∗
]
, α∗ � 1

G2(α
∗) = ln(α∗/π)− 1, α∗ 	 1 ,

(4.17)

where K∗ = K/ρ are the dimensionless RLV’s. For intermediate values of 2 ≤
α∗ ≤ 50 the function G(α∗) was calculated numerically. The function G(α∗) and
the asymptotics of Eq. (4.17) are plotted as a function of α∗ in Fig. 4.1.

The ideal free energy for values nc �= 1 is obtained via the simple scaling relation

β

N
Fid(α, nc, ρ) = const + ln(ρL2) +G(ncα

∗) . (4.18)
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4.4 The dipolar system

We now turn to the system of monodisperse particles which repel each other with an
inverse-power pair potential u(r) = u0/r

3, where u0 is a parameter with dimensions
of energy × volume. For the specific realization of two-dimensional paramagnetic
colloids of susceptibility χ exposed to a magnetic field B which is directed perpen-
dicular to the 2D plane, we have u0 = (χB)2/2 in Gaussian units [93]. Here, we
assume perfect alignment of the magnetic dipoles with the external field which is
well justified for χB2 	 kBT [307]. The thermodynamics and structure depend,
due to simple scaling, only on one relevant dimensionless coupling parameter [288]

Γ =
u0ρ

3/2

kBT
. (4.19)

Therefore, it is convenient to express all quantities in terms of Γ and consider cou-
pling parameters rather than densities via this scaling relation. Correspondingly,
the excess free energy within the SOT and TOT now read

βF S/T
ex (Γ, α)/N = βf0(Γ)− 1

2

∑
K �=0

e−K2/4αĉ
(2)
0 (K; Γ)

−1
6

∑
K �=0

∑
K′ �=0,−K

e−(K2+K ′2+(K+K′)2)/4αĉ
(3)
0 (K,K′; Γ) , (4.20)

the third term only appearing in the TOT. Here, Γ is the coupling constant cor-
responding to the average density ρ according to Eq. (4.19), ĉ

(2)
0 = ρc̃

(2)
0 , and

ĉ
(3)
0 = ρ2c̃

(3)
0 are the dimensionless correlation functions of the fluid in reciprocal

space, respectively.

For the MWDA and EMA, the weighted coupling constants Γ̂ now read

Γ̂(Γ, α) = Γ

[
1− 1

3βΓ̂f ′0(Γ̂)

∑
K �=0

e−K2/2αĉ
(2)
0 (K; Γ̂)

− Γ2/3

9βΓ̂5/3f ′0(Γ̂)

∑
K �=0

∑
K′ �=0,−K

e−(K2+K ′2+KK′)/2αĉ
(3)
0 (K,K′; Γ̂)

]3/2

, (4.21)

where f ′0(Γ) is the derivative of the excess free energy density with respect to coupling
constant. As in Eq. (4.12) the third term only appears in the EMA.

In order to solve Eqs. (4.20) and (4.21) we need the two- and three-particle

correlation functions ĉ
(2)
0 (k; Γ) and ĉ

(3)
0 (k; Γ) and the excess free energy density f0(Γ)

of the corresponding liquid for a wide range of coupling constants Γ. The two-
particle correlation function is obtained with liquid state integral equation theory
or from computer simulations. In the first case, following the procedure described
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in Ref. [126] we solve the Ornstein-Zernicke (OZ) Eq. [117]

ĥ(k) =
ĉ
(2)
0 (k)

1− ĉ
(2)
0 (k)

, (4.22)

which relates the dimensionless Fourier transform ĥ(k) = ρh̃(k) of the total cor-

relation function h(r) to the direct pair correlation function ĉ
(2)
0 (k), numerically.

Note that the density has been absorbed in both the Fourier transform of the total
correlation function ĥ(k) and in the direct correlation function ĉ

(2)
0 (k). The total

correlation function is connected to the pair distribution function via g(r) = h(r)+1.

The solution of Eq. (4.22) for the two unknown quantities ĥ(k) and ĉ
(2)
0 (k) de-

mands a constitutive equation, the so called closure relation which for any non-trivial
case can only be determined approximatively. Two approaches which proved success-
ful for the description of fluids with long-range interactions will be applied here, the
hypernetted chain (HNC) [117] and the Rogers-Young (RY) closure relation [239].
They can both be written as

h(r) = e−βu(r)
{
1 + f(r)−1

(
eχ(r)f(r) − 1

)}− 1 , (4.23)

where χ(r) = h(r) − c
(2)
0 (r) is the indirect correlation function. f(r) = 1 − e−ξr is

a ‘mixing function’ with an adjustable parameter 0 ≤ ξ ≤ ∞ which is either sent
to infinity (HNC)—which is equivalent to letting f(r) → 1—or chosen to guaran-
tee thermodynamic consistency between virial and compressibility route to the free
energy (RY).

The coupled Eqs. (4.22) and (4.23) are iteratively solved by applying the method
of fast Fourier transforms for radially symmetric two-dimensional problems as sug-
gested by Caillol et al [39] and as also summarized in appendix A of [126]. In
order to reach rapid convergence an iteration procedure for the indirect correlation
function χ(r) is used, since its Fourier transform, χ̃(k), decays more rapidly with
increasing k than h̃(k). The iteration scheme now consists of making an ansatz for

c
(2)
0 , calculating χ according to Eq. (4.22), obtaining the next estimate of c

(2)
0 via

Eq. (4.23), inserting this into Eq. (4.22), etc., until convergence is obtained.

Applying this procedure we are able to calculate ĉ
(2)
0 (k; Γ) for coupling constants

Γ much larger than the experimentally known coupling of freezing Γf ≈ 10 [306]
which enables us to calculate the Helmholtz free energy of the system deep inside
the thermodynamically stable crystalline region.

More accurate pair correlation functions can be obtained from computer sim-
ulations. We have performed extensive Monte Carlo computer simulations [4] in
a quadratic simulation box of size L × L comprising 900 particles employing peri-
odic boundary conditions in order to measure the pair distribution function gs(r) =
hs(r)+1, the subscript ‘s’ denoting the simulation result. Since the accessible range
of hs(r) is limited to distances r smaller than a cutoff radius rc � L/2 we em-
ployed an extrapolation technique suggested by Verlet [280] to obtain the complete
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Figure 4.2: The bond-orientational order parameter g6(r) for different coupling con-
stants Γ as obtained by computer simulation. g6 decays exponentially for coupling
constants Γ � 11 indicating the system to be in the fluid state.

pair correlation function: Verlet defined a closure relation to the Ornstein-Zernicke
equation

h(r) = hs(r), r < rc ,

c
(2)
0 (r) = c

(2)
HNC(r), r > rc , (4.24)

where cHNC(r) is given in Eq. (4.23). The Verlet closure relation [Eq. (4.24)] together
with the Ornstein-Zernicke equation [Eq. (4.22)] uniquely specify the direct corre-

lation function c
(2)
0 (r) for all radii r and thus also yield the correlation function in

reciprocal space ĉ
(2)
0 (k). As for the HNC and the RY closures the Ornstein-Zernicke

equation and the Verlet closure were solved iteratively via the indirect correlation
function χ. Furthermore, rc was chosen the largest root of h(r) still smaller than
L/2.

For the Verlet data we checked that the simulated system does not crystallize for
coupling constants Γ � 11. Here, the freezing-criterion was chosen a non-exponential
decay of the bond-orientational order parameter g6(r) = 〈exp[i6[θ(r)− θ(r′)]]〉,
where θ(r) is the angle of the bond connecting two neighboring particles accord-
ing to the Voronoi construction (see Fig. 4.2). The application of the Verlet closure
within the DFT formalism was thus restricted to the range 0 ≤ Γ̂ � 11.

The Fourier transforms ĉ
(2)
0 (k) of the two-particle direct correlation functions

obtained from the three different closure relations (HNC, RY, Verlet) are shown in
Fig. 4.3 for Γ = 9, which is close to the experimentally determined coupling constant
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0 (k) of the two-particle direct

correlation function at Γ = 9, plotted against k/ρ1/2. Shown are simulation data
using the Verlet closure, liquid integral equation theory using the RY closure, and
liquid integral equation theory using the HNC closure. The arrows indicate the
positions of the first four reciprocal lattice vectors of the triangular lattice.

of freezing Γf � 10 [306]. The HNC closure underestimates the pair structure
strongly while the RY closure is closer to the simulation data. We also show the
positions of the first four reciprocal lattice vectors of the triangular lattice with
lattice constant a = (

√
3/2ρ)1/2. The value of ĉ

(2)
0 at these lattice vectors crucially

influences the solid free energies, as can be seen from Eqs. (4.20) and (4.21).

Within the RY-approach the excess free energy density f0 is obtained by inte-
grating the compressibility which is inversely proportional to the static structure
factor:

βf0(Γ) =
2

3

∫ Γ

0

dΓ′

Γ′

[
βP

ρ
− 1

]
, (4.25)

where the pressure P is given by

βP

ρ
− 1 = − 2

3Γ2/3

∫ Γ

0

dΓ′

Γ′1/3
ĉ
(2)
0 (k = 0; Γ′) . (4.26)

In order to obtain the excess free energy density from the simulation data we make
use of the relation [23]

β〈uex〉 = β
∂βf0

∂β
= Γ

∂βf0

∂Γ
(4.27)
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Figure 4.4: The excess free energy density βf0(Γ) as a function of coupling constant
Γ using the Verlet closure, the RY closure and the HNC closure.

between the average excess energy density 〈uex〉 = 1
2
〈Σi�=jui,j〉 and f0 and integrate

the former. Note that for both of our approaches, the RY and the Verlet closure,
the virial and the compressibility route are equivalent. As the energy dominates the
free energy in the strong coupling limit, Γ � 1, the excess free energy density scales
roughly linearly with coupling constant, as can be seen from Fig. 4.4.

For the EMA we need the three-particle correlation function c̃
(3)
0 (k,k′; ρ) of the

underlying fluid for a wide range of coupling constants. We use here two conceptually
different approximations: The first approximation is by Denton and Ashcroft [63]
(DA) which is based on a weighted density approximation to the first order direct
correlation function c(1)(r; ρ(r)) of an inhomogeneous system. The DA approach

leads to an analytic expression of c̃
(3)
0 in terms of the one- and two-particle correlation

functions c
(1)
0 , c̃

(2)
0 of the liquid and their derivatives with respect to density:

c̃
(3)DA
0 (k,k′) =

1

3

[
f̃DA (|k|, |k′|) + f̃DA (|k|, |k+ k′|) + f̃DA (|k′|, |k+ k′|)

]
, (4.28)

where

f̃DA(k, k′) =
1

c
(1)′
0

[
c̃
(2)
0 (k)c̃

(2)′
0 (k′) + c̃

(2)′
0 (k)c̃

(2)
0 (k′)

]
− c

(1)′′
0[

c
(1)′
0

]2 c̃
(2)
0 (k)c̃

(2)
0 (k′). (4.29)

Here, primes denote derivatives with respect to density, as above. The DA approximation—
by construction—fulfills the symmetry condition

c̃
(3)DA
0 (k,k′) = c̃

(3)DA
0 (k,k+ k′) = c̃

(3)DA
0 (k′,k+ k′) . (4.30)
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The derivatives c̃
(2)′
0 (k) were obtained by applying a simple finite difference method

bearing in mind that

ρ2c̃
(2)′
0 (k; ρ) =

1

2

[
3Γ

∂ĉ
(2)
0 (kρ−1/2; Γ)

∂Γ
− kρ−1/2 ∂ĉ

(2)
0 (kρ−1/2; Γ)

∂kρ−1/2
− 2ĉ

(2)
0 (kρ−1/2; Γ)

]
.

(4.31)

We calculated c̃
(3)DA
0 (k,k′) taking the direct correlation function from both the RY

and the Verlet closure. As pointed out in Refs. [63, 159, 242] the DA model, although
itself not derived from a free energy functional but from an approximate one-particle
correlation function, is very similar to different approaches, all based on taking three
successive functional derivatives of approximate free energy functionals.

We also employed another approximation for c
(3)
0 , namely a factorization ansatz

of Barrat, Hansen and Pastore (BHP) [20]. The approximation reads

c
(3)
BHP(r, r

′) = t(r)t(r′)t(|r− r′|) . (4.32)

The function t(r) can be uniquely determined from the second of the sum rules in
Eq. (4.9) which in r-space now reads

∫
dr′c(3)

0 (r, r′; ρ) =
∫
dr′t(r)t(r′)t(|r− r′|) = ∂c

(2)
0 (r; ρ)

∂ρ
. (4.33)

We solved Eq. (4.33) numerically for t(r) applying the method of ‘steepest descent’
as outlined in appendix B of reference [20]. As opposed to the simple finite differ-

ence approach above the derivatives c
(2)′
0 (k) were now obtained by iteratively solving

the coupled differentiated Ornstein-Zernicke equation and the differentiated RY clo-
sure relation, as outlined in appendix B of [20]. Since it proved difficult to reach
convergence of the iteration procedure we did not pursue this method using the Ver-
let closure. The triplet-correlation function was then obtained by a double Fourier
transform of Eq. (4.33) using a standard expansion in Legendre polynomials, as
outlined in appendix A of [20].

In the single summation in Eq. (4.21) we consider all RLV’s of absolute value
|K| ≤ 33 |K1|, where K1 is the smallest RLV of the triangular lattice—this com-
prises the first 299 stars of RLV’s, which is by far sufficient to reach convergence of
the single summation. The double summation is performed over sets of equivalent
triangles of RLV’s which are each characterized by the absolute values of the two
RLV’s K and K′, and by the absolute value of there included angle. For the DA
model and for the BHP model we include 42 sets of triangles of RLV’s, where that
RLV of the three RLV’s, K, K′, K − K′, with the largest absolute value satisfies
|K| ≤ 4 |K1|, which also guarantees convergence of the double sum.
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4.5 Results

We first study the influence of the explicit inclusion of the triplet correlation func-
tions obtained with the DA model and with the BHP model on the approximate
excess free energy according to the TOT as compared to the simpler SOT, and ac-
cording to the EMA as compared to the MWDA, respectively. For all six approaches
we use the two different closure relations of Rogers and Young [Eq. (4.23)], and of
Verlet [Eq. (4.24)], respectively.

4.5.1 Gaussian profiles, no vacancies

In order to keep things simple in the beginning we keep the number of particles
occupying a lattice site, nc, in Eq. (4.13) fixed (i.e., nc = 1) and thus end up with a
single order parameter, the dimensionless localization strength α∗ ≡ α/ρ.

In Fig. 4.5 we show the weighted coupling constant and the associated excess free
energy difference per particle between the solid and the liquid state Fex(α

∗)/N − f0,
according to Eq. (4.4), as functions of localization strength α∗ for a value of Γ = 9
which is close to the experimentally known value of freezing, Γf � 10 [306], for
the MWDA and for the EMA, using the RY or the Verlet approach to the direct
correlation function and using the two different approaches for the triplet correlation
function, the DA and the BHP model. The latter are both based on the direct
correlation functions used for the respective two-particle term. In Fig. 4.6(a) the
excess free energy for the simpler SOT and TOT are plotted as a function of α∗

for the same approximations to the correlation functions. In Fig. 4.6(b) the non-
perturbative and the perturbative approaches are compared. Different interesting
features of the different approximations are observed:

(i) For all approaches used except for those where c
(3)
0 is obtained within the BHP

model the excess free energy decreases monotonically with increasing localization
strength α∗, reaching a plateau for α∗ ≈ 400 [c.f. Figs. 4.5(b) and 4.6(a)]. However,
employing the BHP model to the triplet-correlation function leads to an increase of
Γ̂(α∗) and Fex(α

∗) for values of α∗ � 80. The former behavior is intuitively expected
and has also been observed in the original MWDA [64]—localization is favoured by
the excess part of the free energy. Once the density peaks become very narrow, a
further increase of α∗ does not change the excess free energy further. On the other
hand, the rise of Γ̂ and of Fex within the BHP model is regarded as unphysical. We
therefore do not consider the BHP model any further.

(ii) Both within the DA model and within the BHP model (for α∗ � 80) the
sign of the third term in Eq. (4.21) is negative, i.e., the value of Γ̂ is decreased as
compared to the pure MWDA and thus freezing is favoured. It is also interesting to
note, that within the DA model the triplet-part in Eq. (4.21) is much smaller than
the second-order term while it is significantly larger within the BHP model. This
same behavior had already been found for hard spheres in three dimensions [159].

(iii) Although the direct correlation functions using the RY- and the Verlet-
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Figure 4.5: (a) The weighted coupling constant as a function of α∗ within the

MWDA and within the EMA using c
(2)
0 from the RY and from the Verlet closure,

and using c
(3)
0 from the DA and the BHP model for Γ = 9. (b) The approximate

excess free energy difference per particle f0(Γ̂(α
∗)) − f0(Γ) as a function of α∗ for

the same approximations as in (a).
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Figure 4.6: (a) The approximate excess free energy difference per particle
Fex(α

∗)/N − f0(α
∗ = 0) as a function of α∗ obtained within the SOT and TOT

using the same approximations for the two- and three-particle correlation functions
as in Fig. 4.5 for Γ = 9. (b) Comparison of Fex obtained within the four differ-

ent approximate theories MWDA, EMA, SOT, and TOT using c
(2)
0 from the Verlet

closure, and using c
(3)
0 from the DA model for Γ = 9.
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closures do not differ by more than ∼ 10% at the position of the most important
first RLV (cf. Fig. 4.4) the difference in Γ̂ between the two is quite pronounced
which is due to the self-consistency relation in Eq. (4.21). Furthermore, as shown
in Fig. 4.5(b) the difference in excess free energy is even more enhanced.

(iv) Inclusion of higher than second-order terms in a non-perturbative way within
the MWDA reduces the excess free energy as compared to the simpler SOT [c.f.
Fig. 4.6(b)]. However, inclusion of higher than third-order terms within the EMA
increases the excess free energy with respect to the TOT.

The total Helmholtz free energy per particle is obtained by adding to the excess
part Fex the ideal part Fid according to Eq. (4.2). The free energy difference per
particle ΔF/N = [F (α∗; Γ)−F (α∗ = 0; Γ)]/N is plotted in Fig. 4.7 as a function of
α∗, for the same value of Γ = 9 as in Fig. 4.5 for the SOT and TOT [Fig. 4.7(a)],

and for the MWDA and EMA [Fig. 4.7(b)], respectively, using c
(2)
0 from the RY and

from the Verlet closure, and using c
(3)
0 obtained within the DA model. It is found

that the different curves of ΔF/N show qualitatively very different behavior for the
coupling of Γ = 9: While the free energy increases monotonically with α∗ within
the SOT and MWDA and within the TOT and EMA employing the RY closure it
displays a local minimum with respect to α∗ at a finite value of α∗ within the EMA
and TOT, employing the Verlet closure, this local minimum even turning the deep
global minimum within the TOT at α∗ ≈ 213. The appearance of a global minimum
at a finite value of α∗ corresponds to a thermodynamically stable crystalline state
while the global minimum at α∗ = 0 indicates a stable fluid system.

In Fig. 4.8, we display the total free energy obtained within the EMA employing
the DA model with the Verlet closure for three different values of Γ = 9.0, 9.4, 9.8.
We thus conclude from Fig. 4.8—this has already been presented in Chapter 3—
that the EMA employing the Verlet closure and the DA model yields a transition
from the fluid to the solid close to Γ = 9.4: while for Γ = 9.0 the fluid is stable
as indicated by the minimal value at α∗ = 0, fluid-solid coexistence is achieved at
Γ = 9.4 (see the two equal minima in Fig. 4.8). The solid phase, on the other hand,
is clearly stable for Γ = 9.8. The localization parameter at coexistence is roughly
α∗min ≈ 100.

The curves always displays a local minimum with respect to α∗ at α∗ = 0. This
is in accordance with the mean-field character of any approximation to the DFT,
which ignore fluctuations leading to a breakdown of long-range order in one and
two dimensions. Therefore, a first-order transition between fluid and solid state is
always predicted, i.e., the liquid system always has to overcome a free energy barrier
in order to reach the thermodynamically stable crystalline state.

The freezing and melting transition constants for the first-order phase transi-
tion predicted by the different approximations to the DFT, Γs and Γf , respectively,
are obtained by using Maxwell’s double tangent construction to the fluid and crys-
tal volume free energy densities Γ2/3F/N ∝ F/V , where F denotes the minimum
free energy with respect to α, and Γ2/3 is proportional to the average density ρ
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Γ = 9.



82
Crystallization of magnetic dipolar monolayers: a density functional

approach

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  20  40  60  80  100  120  140

�[
F

(

) 

- 
F

(

=

0)
]/N


/�

	=9
	=9.4
	=9.8

Figure 4.8: The total free energy difference per particle ΔF (Γ)/N as a function of

α∗ within the EMA using c
(2)
0 from the Verlet closure, and using c

(3)
0 from the DA

model for Γ = 9, 9.4, 9.8.

of the system [c.f. Eq. (4.19)]. Γs and Γf correspond to the freezing and melting
densities, ρs and ρf , respectively. The volume free energy density is exemplarily
shown for the EMA using the Verlet closure and the DA model in Fig. 4.9. Within
this approximation we obtain freezing and melting with a narrow coexistence gap
ΔΓ = Γs − Γf . Table 4.1 summarizes the freezing/melting parameters for all the
approximations made. The data are compared against experimental results ob-
tained from real-space microscopy measurements of magnetic colloids confined to
an air-water interface. The experiments give freezing with an intermediate hexatic
phase. The liquid-solid transition has also been studied using numerical simula-
tion [111, 166] yielding a slightly higher inverse transition temperature between 12.0
and 12.25 but these investigations suffer from finite size effects.

As becomes evident from Table 4.1, the SOT, TOT, and MWDA are not quan-
titatively satisfying theories as they either over- or underestimate the freezing cou-
pling. Note that the overestimation of the freezing coupling within SOT and MWDA
are the reason why it is not possible to feed the “exact” pair structure into these
theories. At such high coupling, no fluid pair structures are available since the fluid
spontaneously crystallizes in the simulation. The EMA, on the other hand, yields
results in close agreement with experimental data. The TOT obviously underesti-
mates the freezing coupling by a factor of ≈ 2.

More detailed, structural information can be extracted from the localization pa-
rameter of the coexisting solid. For all approximations used we find localization
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Table 4.1: Freezing and melting parameters Γf and Γs, the widths of the coexistence
regions ΔΓ = Γs − Γf , the relative displacement parameters γ, and the pressures
P at coexistence obtained within: the SOT with the RY closure (first row); the
TOT with the RY closure (second row); the TOT with the Verlet closure (third
row); the MWDA with the RY closure (forth row); the EMA with the RY closure
(fifth row); the EMA with the Verlet closure (sixth row), where all three-particle
correlation functions were obtained with the DA model using the respective pair-
correlation function as input. The last row displays experimental parameters for
the isotropic-hexatic transition, the hexatic-crystal transition and the Lindemann
parameter, obtained from real-space microscopy measurements of magnetic colloids
confined to an air-water interface.

Γf Γs ΔΓ γ βP (Γf)/ρ
SOT with RY 42.85 42.92 0.07 0.017 288.3
TOT with RY 13.49 13.62 0.13 0.021 93.1
TOT with Verlet 6.79 6.97 0.18 0.019 53.1
MWDA with RY 41.07 41.13 0.06 0.017 276.1
EMA with RY 23.0 23.08 0.09 0.020 156.9
EMA with Verlet 9.33 9.49 0.16 0.020 72.6
Experiment 10.0 10.75 - 0.038 -
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Figure 4.9: The liquid (solid line) and crystal (dotted line) volume free energy
densities Γ2/3F/N obtained within the EMA using the Verlet closure and the DA
model as a function of Γ2/3. The inset show the tilted free energy densities around
the transition values Γs, Γf , as indicated by arrows.

parameters at freezing in the range 99 < α∗min(Γs) < 115. Strictly speaking, the
localization parameter has no counterpart in “real” 2D systems since the particles
are not localized due to long range fluctuations. However, if one relates the parti-
cle displacements to that of their nearest neighbor, one can define a finite quantity
as γ = ρ

〈
(ui − ui+1)

2〉, where ui and ui+1 are the displacement vectors of neigh-
boring lattice sites. Disregarding nearest-neighbor correlations 〈ui · ui+1〉, γ can be
estimated. Since the nearest-neighbor correlations 〈ui · ui+1〉 are expected to be
positive:

γ � 2ρ
〈
u2

i

〉 ≈ 2/α∗min. (4.34)

By this relation, the localization parameter of the coexisting solid gives a prediction
for γ which is included in Table 4.1. From experiments, γ is known to be close to
∼= 0.038 [306]. This was shown to be in accordance with harmonic lattice theory [95].
The EMA yields γ � 0.020, i.e. the EMA roughly overestimates the localization of
the particles by a factor of 2. γ is smaller than the experimental value, contrarily
to what was expected from the inequality (4.34). This shows that there is still a
need to improve the theories in order to correctly predict localization properties.
A similar overestimation of the localization is also common in weighted density
approximations in three spatial dimensions [64].

Another quantity of interest, which is directly connected to the Helmholtz free
energy is the pressure at coexistence which is also included in Table 4.1. It is
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obtained via the Eqs. (4.25), (4.26), (4.27), depending on whether the RY closure
or the simulation data were used.

4.5.2 Gaussian profiles, allowing for vacancies

In this subsection, we relax the constraint of zero vacancy concentration, 1−nc = 0,
in Eq. (4.13) and instead minimize the total free energy with respect to the two
parameters α and nc, respectively. However, instead of calculating the phase diagram
for all approximations to the DFT and to the pair- and triplet-correlation functions,
we focus here on the two non-perturbative approaches, the MWDA using the RY
closure and the EMA using the Verlet closure and the DA model. In Fig. 4.10 we
plot the approximate total free energy per particle of the EMA as a function of
α and nc for the freezing coupling constant obtained at fixed nc = 1, Γ = 9.49.
The minimum of the total free energy is slightly shifted in nc and α from (nc ≈ 1,
α∗ ≈ 98.7) towards (nc ≈ 0.998, α∗ ≈ 100.5). As can be seen in Fig. 4.10(a), the
difference in total free energy per particle between the two configurations is only of
the order 10−4kBT , which has no influence on the phase diagram within the accuracy
given in Table 4.1.

For the simpler MWDA, however, the vacancy concentration is substantially
larger, which has pronounced effects on the phase diagram. In particular, we find the
coupling constants of freezing and melting reduced to (Γf ≈ 37.35,Γs ≈ 37.45), the
liquid being in coexistence with the triangular crystal at the parameters nc ≈ 0.966,
α∗ ≈ 200.5, i.e., the relaxation of nc improves the prediction of the freezing coupling
while the Lindemann parameter γ ≈ 0.01 is by a factor of ≈ 2/3 smaller than
predicted within the simpler theory keeping nc = 1 fixed which—compared to the
experiment—is worse than the result from the constrained theory.

4.5.3 Free minimization

In this final subsection we completely remove the constraint of Gaussian density
peaks. Instead, we minimize the density functional with respect to a free, periodic
density field ρ(x, y), which has the periodicity of the hexagonal lattice with lattice
constant a = (

√
3nc/2ρ)

1/2, as above. As laid out in Chapter 5, we minimize the
density functional of the SOT with the RY closure with respect to ρ(r) by calculating
the overdamped relaxation dynamics of a highly ordered hexagonal crystal with the
help of dynamical DFT [10, 75, 179]3 according to

∂ρ(r, t)

∂t
= βD∇ ·

(
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

)
, (4.35)

where βD is the mobility coefficient, which sets the Brownian time scale τB =
(ρD)−1. Since in this work we are only interested in the equilibrium state reached

3See also Chapter 6.
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the DA model for Γ = 9.49. The upper panel displays a zoom-in of the lower panel.



4.5 Results 87

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20  25  30  35  40  45  50  55  60
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05
�(

r=
0,
	)

/�

��
F

(	
)/
N

	

�(r=0,	)/�
��F(	)/N

Figure 4.11: Height of the density peak ρ(r,Γ) and difference in free energy ΔF (Γ)
as a function of Γ obtained from dynamical DFT using the SOT with the RY closure.

after long time, τB is irrelevant in the following considerations, i.e., we use Eq. (4.35)
just as a minimization procedure to the static DFT. Starting from an initial density
profile ρ(r, t = 0), Eq. (4.35) is solved numerically for times (t/τB) � 10 applying a
finite difference method and keeping the coupling constant Γ fixed. The maximum
time is chosen large enough to guarantee convergence towards a (local) minimum of
the free energy landscape. The rectangular periodic box of size Lx × Ly =

√
3a× a

with a discretization of 256 × 128 lattice points comprises 2nc particles. Due to
lattice symmetry, it suffices to solve the problem in a single elementary cell. For
ρ(r, t = 0) we choose a superposition of sharply localized Gaussians according to
Eq. (4.13) with a large localization strength of α∗ = 200.

At first, we fix nc = 1 and calculate the equilibrium density profiles and the
according approximate Helmholtz free energies for various coupling constants 0 <
Γ ≤ 62.5. In Fig. 4.11 we plot the difference in Helmholtz free energy density
ΔF (Γ)/N = F [ρ(r, t → ∞; Γ)]/N − f0(Γ) between the final (solid/liquid) and the
liquid state as a function of Γ. The system remains crystalline for couplings Γ � 30.7.
However, the free energy difference is negative only for Γ � 36.2, which is equivalent
with thermodynamic stability. As for the Gaussian parametrization coexistence is
found in a narrow gap around Γ ≈ 36.2 which we do not specify here.

In Fig. 4.12(a) we plot the equilibrium density profile ρ(r; Γ) for Γ = 36 which is
close to freezing. In Fig. 4.12(b) the quantity r2ρ(r), where r is the distance from a
lattice vector, is shown along the two directions [11] and [10], corresponding to cuts
through the density plane in Fig. 4.12(a) along the x- and the y- axis, respectively,
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Figure 4.12: (a) The density profile ρ(r) obtained from dynamical DFT using the
SOT with the RY closure for Γ = 36 which is close to freezing. (b) The quantity
r2ρ(r; t → ∞) along the straight line connecting two nearest neighbours [y2ρ(x =
0, y; t→∞), i.e., in the [10]-direction] and along the line connecting two next-nearest
neighbours [x2ρ(x, y = 0; t → ∞), i.e., in the [11]-direction], both drawn from the
center to the respective edge of the box in (a). The two curves are compared to a
Gaussian of the same amplitude at r = 0. The inset displays the bare density along
the same lines and the bare Gaussian.



4.5 Results 89

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.92  0.94  0.96  0.98  1  1.02  1.04  1.06

��
F

(	
)/
N

nc

	=35
	=36
	=37
	=40

Figure 4.13: The difference in Helmholtz free energy per particle ΔF (nc; Γ)/N as
a function of nc for different coupling constants Γ = 35, 37, 40. The arrows indicate
the positions of the minima.

which is compared to a Gaussian of the same height as the density peaks. It is
found that the density profile has an isotropic Gaussian form for small distances
from the origin r � 0.1/ρ1/2. For larger distances, however, i.e., where the density
is of the order ρ(r) � ρ, the density profile significantly deviates from a Gaussian
form. In particular, we observe the establishment of “bridges” of higher density
between neighbouring lattice sites, whereas the density is significantly lower between
next-nearest neighbours. This counter-intuitive behavior was also found applying
the MWDA to hard sphere crystals in three spatial dimensions [203]. However,
computer simulations revealed that the behavior should be the opposite. Although
we did not measure the density profiles of the two-dimensional dipolar system in
computer simulations, we expect a similar behavior: The probability density should
be enhanced along the [11]-direction as compared to the [10]-direction.

We also performed the minimization procedure for different vacancy concentra-
tions. In Fig. 4.13 we show the free energy difference ΔF (nc; Γ) as a function of
nc for four different values of Γ. We find, that for crystals in equilibrium, i.e., for
Γ � 36, the equilibrium vacancy concentration is 1− nc ≈ 0.03. However, the over-
heated crystal which is metastable for 31 � Γ � 36 prefers a vacancy concentration
of 1 − nc ≈ −0.03, implying interstitials instead of vacancies. We note that most
of the point defects in the experimental realization of the dipolar system appear in
pairs or in pairs of pairs as dislocations or pairs of dislocations, respectively [306].
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4.6 Discussion and concluding remarks

In conclusion, we have demonstrated that density functional theory is able to quan-
titatively predict the freezing transition of a two-dimensional colloidal system with
long-range 1/r3-interactions in good agreement with experimental and simulation
data. In complete analogy to systems in 3D, the appearance of long-range inter-
actions requires the explicit inclusion of three-particle correlation functions of the
liquid in the construction of the weighted density [158, 159]. Furthermore, the pre-
dicted transition temperatures are very sensitive towards slight changes of the two-
and three-particle correlation functions of the underlying fluid. A highly accurate
input of the same is therefore crucial.

The obtained density functional can be used in future studies in order to approach
more complicated situations such as crystals in confinement [203], under gravity [27],
and crystal-fluid interfaces [203] By extending the static functional to Brownian dy-
namics [10, 75, 179],4 one may even address nonequilibrium situations. One possible
problem to tackle is heterogeneous nucleation upon temperature quenches and sub-
sequent crystal growth as outlined in Chapter 6.
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Chapter 5

Critical nuclei and crystallization
in colloidal suspensions1

Abstract

The aim of this paper of to review and to preview some selected topics of crystal
nucleation in colloidal suspensions. First we discuss how the structure of critical
nuclei can be calculated by computer simulations, in particular how linear shear flow
affects the size and shape of the critical nuclei. Second we preview the possibilities to
access heterogeneous crystal nucleation and dynamics of a crystal by using the recent
developed formalism of dynamical density functional theory. In particular, data for
global crystal heating are presented.

5.1 Introduction

The theoretical prediction of crystal nucleation phenomena is an active and still
open area of current research [211]. Classical nucleation theory (CNT) is based on
simple thermodynamical consideration of a spherical nucleus covered by an solid-
liquid interface which separates the stable crystal phase inside the nucleus from
the unstable liquid phase outside. The classical nucleation theory makes explicit
predictions for the nucleation rate and the size of the critical nucleus. If the latter
is exceeded, growth of the crystallite initiated by the nucleus takes place.

Recently, computer simulation techniques have been applied to extract the size
and shape of a critical nucleus in the undercooled melt [15] using the umbrella
sampling technique. It was found that the critical nucleus possesses a pretty rough
interface and is not spherical in general. The same result has also been extracted
from real-space experiments on colloidal suspensions [97].

1This chapter was published by Hartmut Löwen, Christos N. Likos, Lahcen Assoud, Ronald
Blaak, and Sven van Teeffelen in Philos. Mag. Lett. 87 (2007), 847 (http://www.informaworld.com).
It is reprinted with permission of Taylor and Francis Ltd., Copyright 2007.
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Very recently a microscopic dynamical theory [179, 180] was put forward to de-
scribe crystal nucleation which is dynamical analog of the traditional classical den-
sity functional theory of freezing [165]. This theory was justified on the basis of the
Smoluchowski equation for Brownian systems and allows for a fit-parameter-free
description of one-particle density dynamics. This theory can straightforwardly be
used to describe the deterministic crystal growth once a heterogeneous nucleus of
fixed seed particle is offered to the undercooled melt. This can be experimentally
realized in colloidal suspensions [284].

The aim of this paper is twofold: first, we shall review what is known about the
critical nucleus in sheared colloidal suspensions. Here computer simulations have
been used in nonequilibrium situation to access the size and shape of the critical
nucleus and its orientation relative to the shear flow. A convenient generalization
of classical nucleation theory including a finite shear rate γ̇ does describe the data
surprisingly well although there is a priori no reason for it to work in nonequilibrium.
Second, we shall briefly introduce and describe dynamical density functional theory.
We apply it to a situation of gradual and rapid global heating of a bulk solid growth.
The relation to the recently proposed phase field crystal is also briefly discussed.

5.2 Homogeneous nucleation of colloidal melts un-

der shear

A model colloidal mixture consisting of a Yukawa fluid which performs Brownian
motion at fixed temperature was extensively studied by computer simulations [30,
31]. A linear shear flow was imposed such that a fixed shear rate γ̇ is prescribed.
By generalizing the umbrella sampling technique to nonequilibrium situations [32],
the size and shape of the critical crystal nucleus is obtained for different shear rates
and “undercoolings”, the meaning of the latter can be rationalized by the pressure
difference to the fluid-solid coexistence pressure.

Results are shown in Fig. 5.1 where the number of colloidal particlesN∗ belonging
to the critical cluster is shown as a function of the reduced shear rate γ̇/κ2D. Here
κ denotes the inverse screening length of the Yukawa interaction and D is the free
diffusion constant of the colloidal particles. Data are presented for three different
pressures P measured in terms of κ3/β where β is the inverse thermal energy. The
cluster size increases with shear rate. At the same time, the crystallization rate de-
creases. This implies that shear suppresses crystallization for this particular model.
Although classical nucleation theory does not hold a priori in non-equilibrium situa-
tions (such as shear), it is tempting to test an ansatz where the shear rate is treated
as a thermodynamic variable. Surprisingly good agreement is found, see again the
parabolic fits in Fig. 5.1, when the concept of classical nucleation theory is applied.

The anisotropy of the critical nucleus relative to the shear flow direction is shown
in Fig. 5.2. It is tilted relative to the shear gradient direction (y axis). The averaged
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Figure 5.1: The number of particles N∗ of the critical nucleus as a function of the
dimensionless shear rate γ̇/κ2D and for different pressures P . The solid lines are
parabolic fits through the data. The stars are data from equilibrium Monte Carlo
simulations without shear.

tilt angle scales linearly with the shear rate.

A detailed comparison with experiments is in principle possible. Data for crys-
tallization rates in charged suspensions are known [254] and individual particles can
be tracked and visualized under shear flow [51, 52, 65, 129]. Still the size of the crit-
ical nucleus should be measured, by e.g. confocal microscopy [97], in order to verify
the simulation predictions of Refs. [30, 31].

5.3 Dynamical density functional theory

Dynamical density functional theory is the generalization of classical density func-
tional theory which is formulated in terms of the static one-particle density field ρ(r)
towards an ensemble-averaged time-dependent one-particle density field ρ(r, t). In
the static case [85, 165, 263], a free-energy functional F [ρ(r, t)] is uniquely defined.
The dynamical generalization can be derived from Smoluchowski’s approach [10].
The only assumption is that pair correlations in nonequilibrium are replaced by
their corresponding equilibrium expression, an assumption whose validity is amply
confirmed by extended studies [75, 231, 232]. Then the following dynamical equation
for ρ(r, t) is derived:
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∂ρ(r, t)

∂t
= βD∇ ·

(
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

)
(5.1)

This is a deterministic equation without noise (see the comment of Ref. [8])
which is microscopic in principle since all molecular correlations are included in the
functional F [ρ(r, t)]. Note that the mobility coefficient βD is not a phenomeno-
logical fit parameter (as typically for order parameter dynamics) but has a precise
microscopic meaning. Three remarks are in order: i) The uniqueness proof of the
dynamical functional can be performed also for dynamical density functional theory,
see Ref. [47]. ii) Mode coupling theory can be brought into relation with dynami-
cal density functional theory, see Ref. [7]. iii) There are alternate ways of deriving
dynamical density functional theory on microscopic grounds [179, 180].

The dynamical density functional theory has been tested against Brownian dy-
namics computer simulations for strongly inhomogeneous fluids and very good agree-
ment has been found, see e.g. Ref. [231, 232]. Hence it is tempting to use the dy-
namical density functional approach also for crystallization. The conventional static
density functional theory provides a microscopic approach to freezing. For a given
particle interaction, it is in principle possible to predict to full phase diagram of the
system including freezing and melting. The inhomogeneous density profile of the
crystal consists of periodic peaks around the solid lattice positions. For a functional
F [ρ(r, t)] which predicts freezing, the full dynamical of a crystal out of a given start-
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ing density profile can be then predicted. Since the dynamical density functional
theory works well for strongly inhomogeneous liquids it is expected that it describes
the dynamics of freezing as well.

The following problems of herogeneous nucleation and microstructure formation
can be addressed, at least in principle:

1) Heterogeneous nucleation at an external planar wall, e.g. by a system bounr-
day.

2) Crystal growth out of an undercooled melt if a piece of crystal with a cleaved
front is offered to the fluid. If there is no mass transport necessary, a steady-state
growth velocity should be obtained [278].

3) Heterogeneous nucleation and subsequent growth starting from a germ of
prescribed structure.

Homogeneous nucleation requires an additional careful treatment of fluctuations
(see again Ref. [8]) but is also contained in the framework of dynamical density
functional theory.

5.4 Application of DDFT to gradual versus sud-

den solid heating

An example for how dynamical density functional theory works for freezing and
melting is shown for a two-dimensional system interacting via an inverse power po-
tential u(x) = ε/x3. Here x = ρ1/2r denotes particle distance, where ρ is the average
density. In this case reliable equilibrium functionals F [ρ(r, t)] are known [226] (see
also Chapters 3, 4) which describe freezing in quantitative accordance with experi-
ments [306].

Here, we use the approximation of Ramakrishnan and Yussouf [226] to the equi-
librium density functional. Starting from an initial density profile ρ0(r, t = 0),
Eq. (5.1) is numerically solved for times (t/τB) � 100, where τB = (ρD)−1 is the
Brownian time scale. In this case the rectangular periodic box with Lx/Ly =

√
3

comprises 2 solid particles. Due to lattice symmetry, it suffices to solve the problem
in a single elementary cell.

As a first application, we study melting of a highly ordered two–dimensional, infi-
nite triangular crystal which is in equilibrium for a low temperature T0 = 0.016ε/kB <
Tm, where Tm � 0.028ε/kB is the melting temperature, at higher temperatures.

In a first Gedanken experiment we adiabatically increase the temperature T , i.e.
we increase the temperature by a small step, let the system equilibrate, increase the
temperature again, etc. and we proceed like that until the crystal melts to the fluid
state. In Fig. 5.3 we plot the amplitude of the such obtained equilibrium density
peaks ρ∗a(T ) = ρa(r = R;T ) and the difference in Helmholz free energy density
ΔF (T )/N = F [ρa(r;T ), T ]/N − Fl(T )/N , where Fl(T ) = F [ρ(r) = ρ, T ] is the free
energy of the fluid, and where N is the number of particles as a function of T . We
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an adiabatic temperature decrease from T0 = 0.016ε/kB.

find that for temperatures T ≤ To � 0.033ε/kB the system remains crystalline but
only for T ≤ Tm � 0.028ε/kB is the free energy difference negative and thus the
crystal in thermodynamic equilibrium. For Tm < T < To the free energy difference
is positive implying the crystal is metastable and therefore overheated as can be
seen in Fig. 5.3. The system is not able to overcome the free energy barrier which
would lead to a favorable liquid state. For T > To the crystal immediately melts
into the fluid state.

In order to see wether the system upon increasing the temperature is able to
surround the free energy barrier by choosing a different pathway through the free
energy landscape we perform a second Gedanken experiment: Starting from the
same initial density profile ρ0(r, t = 0) as above we heat the system instantanously to
a temperature Tq > T0 and monitor time evolution of the density profile. In Fig. 5.4
we plot the amplitude of the density peaks ρ∗q(t;Tq) = ρq(r = r, t;Tq) for different
quench temperatures Tq as a function of time. We find that the system reaches
the same density profiles as above, i.e. ρq(r, t → ∞;Tq) = ρa(r;Tq). Therefore we
conclude that upon heating the system, the heating rate does not affect the final
density profile ρ(r, t →∞;T ).
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5.5 Relation to phase-field models

Phase-field models are derived on a more phenomenological (coarse-grained) level
for order-parameter dynamics [80]. The resulting equations for the dynamics of the
order parameter are similar to Eq. (5.1) if the corresponding functional is replaced
by a square-gradient functional of the order parameter in the spirit of Ginzburg-
Landau theory. These dynamical equations of the phase-field model are then solved
numerically. There are numerous applications of phase-field dynamics to various
circumstances of crystal growth and nucleation [81, 105].

Phase field models have been refined to incorporate more microscopic information
from the solid phase. One important development in this direction is the description
of so-called phase-field crystal by suitable order parameters [78]. The phase-field
crystal approach can also be generalized to include elastic distortions in the growing
solid phase [2, 77, 101, 264]. Dynamical density functional theory, on the other hand,
operates on the full microscopic level without any phenomenological parameters. It
is a challenge to derive the phase-field model from dynamical density functional
theory. Then one should get insight into the levels of different approximations
which are included in the phase-field approach (including the phase-field crystal).
For the static density functional theory this has been performed [170, 172], but the
extension towards dynamical situations is still missing.
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5.6 Conclusions

In conclusion, computer simulations and dynamical density functional theory are
ideal tools to study nucleation on a microscopic level, i.e. on molecular length and
time scales. In particular, dynamical density function theory which is still in its
infancy as far as applications of crystallization is concerned is expected to play
a major role as a microscopic theory for any crystallization and nucleation event.
At the same time real-space experiments on colloidal suspensions will give direct
insight into the birth and growth of crystals such that of mutual cross-fertilization
of experiment, simulation and theory is expected in this research area [167].



Chapter 6

Colloidal crystal growth at
externally imposed nucleation
clusters1

Abstract

We study the conditions under which and how an imposed cluster of fixed colloidal
particles at prescribed positions triggers crystal nucleation from a metastable col-
loidal fluid. Dynamical density functional theory of freezing and Brownian dynamics
simulations are applied to a two-dimensional colloidal system with dipolar interac-
tions. The externally imposed nucleation clusters involve colloidal particles either
on a rhombic lattice or along two linear arrays separated by a gap. Crystal growth
occurs after the peaks of the nucleation cluster have first relaxed to a cutout of the
stable bulk crystal.

While important steps towards a quantitative understanding of homogeneous crystal
nucleation out of the melt have been made in the past decade (for recent reviews,
see [15, 246]), work on the molecular principles of heterogeneous nucleation is still
at its infancy [104, 105, 257]. Colloidal suspensions have served as excellent model
systems for nucleation, since the crystallization process is typically much slower
than in their molecular counterparts and the critical nucleus can be detected in real
space [97]. By using external fields, e.g., optical tweezers, it is possible to fix a
cluster of colloidal particles and watch directly its impact on the rest of the colloidal

1This chapter was published by Sven van Teeffelen, Christos N. Likos, and Hartmut Löwen in
Phys. Rev. Lett. 100 (2008), 108302 (arXiv:0802.2235). It is reprinted with permission from the
American Physical Society, Copyright 2008.
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suspension. If the crystal phase is slightly off-coexistence and the fluid is stable, it
is possible to generate crystalline layers around such a cluster [36, 121, 285].

In this chapter we study crystal growth processes into a metastable fluid. A clus-
ter of fixed colloidal particles, which could act as a seed for heterogeneous crystal
nucleation is arranged within the metastable melt. Whereas in homogeneous nucle-
ation such clusters spontaneously form by means of thermal fluctuations, here they
are externally imposed. We investigate whether they serve as initiators of crystal
growth processes. Our motivation for this study is twofold: first, by imposing a seed
cluster one can steer the crystallization behavior. Second, offering complex cluster
structures could lead to unexpected dynamical scenarios of crystal growth.

We approach the problem using classical density functional theory (DFT) of
freezing which is a microscopic approach to crystallization [263, 299]. DFT can be
extended to describe dynamics in strongly inhomogeneous Brownian fluids [10, 75,
179].2 Here it is put forward as the first full microscopic approach to the dynamics of
crystallization. Our DFT results are backed by Brownian dynamics (BD) computer
simulations. In principle, the dynamical DFT is superior to phase-field crystal theo-
ries of nucleation [78], which operate on more coarse-grained length and time-scales
and need phenomenological mobilities as an input. Therefore our results provide
benchmark data to test the validity of more approximate theories.

In detail, we study a model for a two-dimensional suspension of superparamag-
netic colloids, exposed to an external magnetic field which tunes their parallel dipole
moments [111, 307]. By using additional fields, such as optical tweezers, certain par-
ticles can be fixed in the suspension [145, 221, 222]. We first consider a stable fluid
phase, realized for a weak magnetic field. In this fluid suspension, colloidal particles
are placed by optical tweezers into prescribed positions forming a cluster. Then the
magnetic field is suddenly increased rendering the fluid metastable with respect to
the stable hexagonal crystal and the tweezers are released. Two different kinds of
cluster geometries are considered: In the first setup we study hexagonal clusters
that are cut out of a perfect rhombic lattice while in the second setup two sets of
linear crystalline arrays, separated by a gap, are examined.

As a result, we observe that the kinetic pathway of the system is a two-stage
dynamical process: first, on a sub-Brownian time scale, the peak positions of the
externally imposed nucleation cluster relax towards a cutout of the stable bulk
crystal. Then, on a Brownian time scale, there are two further possibilities: either
the relaxed cluster acts as a nucleation seed for further complete crystal growth or
it dies out completely without stimulating further crystallization. Whether crystal
growth occurs or not depends delicately on the compatibility of the initial cluster
geometry with that of the stable bulk crystal in terms of strain energy.

Our system is characterized by the pairwise interaction potential u(r) = u0/r
3,

where u0 is the interaction strength. For the specific realization of two-dimensional

2A stability analysis of undercooled fluids in three spatial dimensions with respect to periodic
density waves was performed by B. Bagchi [18].
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paramagnetic colloids of susceptibility χ exposed to a perpendicular magnetic field
B, we have u0 = (χB)2/2. The thermodynamics and structure depend only on
one dimensionless coupling parameter Γ = u0ρ

3/2/kBT , where ρ is the average one-
particle density and kBT is the thermal energy.

It has been shown [10, 75, 179] that the static, classical DFT can be given an
extension to dynamics to describe overdamped, time-dependent, out-of-equilibrium
systems in terms of a deterministic, time-dependent, and ensemble averaged one-
particle density ρ(r, t). The time evolution of ρ(r, t) is then governed by the conti-
nuity equation

∂ρ(r, t)

∂t
=

D

kBT
∇ ·

[
ρ(r, t)∇δF [ρ(r, t)]

δρ(r, t)

]
. (6.1)

Here, D/kBT is the mobility coefficient originating from the solvent, ignoring hy-
drodynamic interactions.

The equilibrium phase diagram of the system under study has been obtained
using classical DFT,3 which provides the intrinsic Helmholtz free energy functional
F [ρ(r)], a unique functional of the static one-particle density ρ(r) of the system.
The functional F [ρ(r)] is minimized by the equilibrium one-particle density, where
it takes the value of the system’s intrinsic Helmholtz free energy. The density func-
tional is typically split into the ideal gas, an excess, and an external part,

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] + Fext [ρ(r)] . (6.2)

The ideal part is

Fid [ρ(r)] = kBT

∫
drρ(r)

{
ln
[
ρ(r)Λ2

]− 1
}

, (6.3)

with Λ denoting the thermal de Broglie wavelength. Fid is of completely entropic
nature and leads to a simple diffusion term in Eq. (6.1). The excess part Fex, origi-
nating from the correlations between the particles, is in this chapter approximated
by the ansatz of Ramakrishnan and Yussouff to the DFT [226]. It is expanded up to
second order in terms of density difference Δρ = ρ(r)− ρ around a reference fluid,
where the fluid density ρ is chosen as the average density of the inhomogeneous
system:

Fex [ρ(r)] � Fex(ρ)− 1

2
kBT

∫∫
drdr′Δρ(r)Δρ(r′)c(2)

0 (r− r′; ρ) . (6.4)

Here Fex(ρ) and c
(2)
0 (r; ρ) are the excess free energy and the direct correlation func-

tion of the reference fluid of density ρ, respectively. Finally, the external part is
simply given by Fext [ρ(r)] =

∫
drρ(r)V (r), where V (r) is the total external poten-

tial.

3See Chapters 3, 4.
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t<0: equilibrium liquid
t>0: undercooled liquid

�

A

Figure 6.1: Sketch of the imposed, rhombic nucleation cluster of 19 particles sur-
rounded by a gray fluid. The angle φ between the spanning basis vectors and the
area of a unit cell A are also shown.

For both setups under study, the clusters of tagged particles are first, i.e., for
times t < 0, held fixed in a thermodynamically stable, equilibrated fluid of density
ρ at a coupling constant of Γ< = 10, which is well below the freezing transition at
Γ � 35.7,4 obtained within the theory. For the equilibration of the fluid, Eq. (6.1) is
numerically solved fixing the tagged particles by deep parabolic external potentials
at the tagged particle positions—in an experiment this could be achieved by using
optical tweezers [145]. At time t = 0 we turn the external pinning potential off and,
at the same time, instantaneously quench the system to a coupling constant Γ> =
62.5, which is well above the freezing transition and we observe the time evolution
of the density field for times (t/τB) � 10, where τB = (ρD)−1 is the Brownian
time scale. Eq. (6.1) is numerically solved applying a finite difference method. The
dimensions Lx × Ly = nxa× ny(

√
3/2)a of the rectangular periodic box considered

are chosen integer multiples nx, ny of the lattice spacing a = (2/
√
3)1/2ρ−1/2 of the

perfectly ordered hexagonal crystal.
The first setup under study comprises a rhombic nucleation seed of 19 tagged

particles, arranged in a hexagon, as sketched in Fig. 6.1. The nucleus is characterized
by the strain parameters A, the area of a unit cell which in the perfectly ordered
hexagonal crystal equals A = 1/ρ, and φ, the angle spanned by two of the nucleus
axes. The size of the periodic rectangular box is 16a × 16(

√
3/2)a. In Fig. 6.2

snapshots of the time-evolving density field are shown exemplarily for two clusters
cut out from two compressed hexagonal crystals with parameters (Aρ = 0.7, cosφ =
0.5) and (Aρ = 0.6, cosφ = 0.5), respectively, at times t/τB = 0, 0.001, 0.1, 1.0.

While the former, less strongly compressed cluster grows into the equilibrium

4See Chapter 5.
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Figure 6.2: Snapshots of the central region of the dimensionless density field ρ(r, t)/ρ
of two colloidal clusters with strain parameters Aρ = 0.7, cosφ = 0.5 (left panel)
and Aρ = 0.6, cosφ = 0.5 (right panel) at times t/τB = 0, 0.001, 0.1, 1.0 (from top
to bottom; t/τB = 1.0 only for Aρ = 0.7; see EPAPS Document No. E-PRLTAO-
100-032811 for movies of the time evolution of ρ(r, t)). Note that the images display
only the system’s central region of dimensions Lx/2× Ly/2.
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Figure 6.3: Stability “island” of the imposed nucleation cluster of 19 particles ac-
cording to Fig. 6.1. The shaded region separates the growth from the no-growth
situation. The (blue) stars display the according boundaries for fixed cosφ = 0.5
obtained from BD computer simulation. The hexagon symbols indicate the way the
seeds are deformed in the different regions of the parameter space. The (red) dots
indicate the configurations for the snapshots in Fig. 6.2.

crystalline state, the latter collapses back into an undercooled, metastable fluid
within t/τB � 0.1. The growth dynamics of the stable nucleus is a two-stage process:
In the first stage—on a sub-Brownian time scale t � 0.002—the positions of the
seed’s density peaks move to a cutout of the thermodynamically stable bulk crystal.
In the second stage—on the Brownian time scale—the system crystallizes out of the
relaxed cluster.

Fig. 6.3 displays the “island” of growth in the (A, cosφ)-parameter space, i.e.,
the set of parameters, for which the nucleus grows for t > 0. It is found that the
“island” is nearly symmetric in cosφ, relative to the equilibrium value of cosφ = 0.5
while it is asymmetric in unit cell area A about the ideal value of A = 1/ρ. This
asymmetry is qualitatively validated by BD simulations.56

5In the Brownian dynamics simulations, the following cluster criterion for crystal growth was
chosen. A particle is defined to be crystalline if it has six nearest neighbours according to the
Voronoi construction. Neighbouring particles i and j are assigned to the same crystalline cluster
if |Re[Ψi

6Ψ
j∗
6 ]|/|Ψi

6Ψ
j∗
6 | � 0.32, where Ψi

6 is particle i’s complex bond order parameter. Crystal
growth is defined if the average number of crystalline particles belonging to the cluster which
contains the seed’s innermost particle at t/τB = 0.1, Nc, exceeds Nmin = 23. For the strain
parameters cosφ = 0.5, ρA = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6 we performed 10.000 independent runs
each and measured Nc as a function of A. By linear interpolation the boundaries of the stability
island for cosφ = 0.5 were determined Amin � 0.26, Amax � 1.5.

6Since freezing in the simulation sets in at Γ � 12 [111] we quench the simulated system from
Γ< = 5 to Γ> = 20.
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Within the second setup we study the time evolution of a nucleation seed of
two equal linear arrays along the y-direction, each comprising three infinite rows
of hexagonally crystalline particles, which are separated by a gap, as can be seen
from the density map for t = 0 in Fig. 6.4. These arrays, corresponding to an
equilibrium crystal generated via a suitable external potential, are displaced relative
to each other in y-direction by half a lattice spacing Δy = a/2. In between the two
crystalline arrays there is an empty stripe of width Δx =

√
3a corresponding to

one missing row of crystalline particles. In contrast to the first setup, the second
setup corresponds to a configuration with a huge local, non-affine strain relative to
a perfect cutout of a bulk crystal due to the gap.

In order to keep the gap free of particles during the equilibration of the sur-
rounding fluid for times t < 0 we employ an additional strong external poten-
tial in the region of the gap. The dimensions of the periodic box within which
Eq. (6.1) is solved numerically are now given by Lx × Ly = 64(

√
3/2)a× a. Snap-

shots of the central region of the density field ρ (r, t) are shown in Fig. 6.4 for times
t/τB = 0, 0.01, 0.1, 0.63, 1.0 after the quench.

Again, a two-stage dynamical scenario is observed: On a sub-Brownian time-
scale of about 0.02 τB, the positions of the peaks drift to those of a perfect cutout of
the stable bulk crystal. This leads to a rapid filling of the gap. Then crystallization
occurs on a Brownian time-scale. In Fig. 6.5 we plot the distances xi(t) of the three
crystalline density peaks and the distance of the crystal front xf (t) with respect to
the center of the gap as a function of time. The latter is taken as the inflection point
of the envelope function of the y-averaged density field. The theoretical curves are
compared to BD simulation data of the same setup7 obtained by averaging over the
particle positions of 24000 independent simulation runs. The two-stage picture is
clearly confirmed.

In conclusion, we have investigated by dynamical density functional theory whether
and how an externally imposed cluster of fixed particles acts as a nucleation seed
for crystal growth if the particles are released and the system is quenched instan-
taneously from a stable to a metastable bulk fluid. If the imposed cluster is not
too much strained relative to a cutout of the stable bulk crystal, it induces global
crystallization. The kinetic pathway of the imposed cluster exhibits a two-stage
scenario: the cluster structure first relaxes towards an appropriate cutout of the
bulk crystal before further growth. This two-stage process is unexpected since it
is reversed in larger clusters which contain quite a large portion of the stable bulk
crystal. In the latter case crystal growth starts at the edges but the inner elastic
distortion anneals on a much larger time scale. For higher undercoolings, i.e., larger
Γ>, the size of the stability island (Fig. 3) increases.

Our predictions can be verified by real-space experiments on two-dimensional
superparamagnetic colloidal particles confined to the air-water interface in an ex-

7Since freezing in the simulation sets in at Γ � 12 [111] we quench the simulated system from
Γ< = 5 to Γ> = 20.
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Figure 6.4: Snapshots of the central region of the dimensionless density field ρ(r, t)/ρ
of a linear nucleus of two times three infinite rows of hexagonally crystalline particles,
separated by a gap, at times t/τB = 0, 0.01, 0.1, 0.63, 1.0 (from top to bottom; see
EPAPS Document No. E-PRLTAO-100-032811 for movies of the time evolution of
ρ(r, t)). Note that the images display twice the system’s central region of dimensions
Lx/4× 2Ly for better visibility.
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Figure 6.5: Time evolution of the distance of the linear array’s three density peaks
xi(t) and of the crystal front xf(t) with respect to the center of the gap as a function
of time. Dynamical density functional theory results (lines) are compared against
Brownian dynamics simulation data (symbols; the dashed line connecting the crosses
is a guide to the eye). The arrows indicate the typical time scales on which the
relaxation of the xi is occurring and on which the crystal growth sets in, respectively.
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ternal magnetic field [111, 307]. Qualitatively similar scenarios are expected for
different repulsive interactions and in three spatial dimensions, which are relevant
for nucleation and growth experiments in sterically and charge stabilized suspen-
sions [60, 253, 285, 292]. In three dimensions, one may even induce the growth of
metastable crystals and quasi-crystals imposed by suitable nucleation seeds [308].
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Chapter 7

Cluster crystals in confinement1

Abstract

A large class of fluids of particles interacting via ultrasoft, repulsive pair potentials
crystallize into cluster crystals. Here, we employ density functional theory and com-
puter simulations to study the behavior of a system of particles that repel each other
with a exp(−r8)-potential [A. J. Moreno and C. N. Likos, Phys. Rev. Lett. 99
(2007), 107801] under planar confinement. We compare the behavior for purely re-
pulsive to that for attractive slit walls. In particular, we present the phase diagram
and we show that for repulsive walls the system freezes from the middle, whereas for
attractive ones crystallization sets in at the walls and proceeds to the middle. For
large wall-wall-separations we find continuous growth of a fluid or crystalline layer
on the wall, depending on the wall-particle interaction, which is interrupted by cap-
illary melting or freezing close to the bulk crystallization transition. An asymptotic
scaling analysis of the width of the liquid or crystalline films growing at the walls
indicate complete wetting in both cases.

7.1 Introduction

The influence of slit pore confinement and of single planar walls on freezing and melt-
ing has been studied for many different atomic and colloidal systems [3, 50, 98, 165]
by means of computer simulation [53, 54, 70, 88, 109, 114, 131], theory [58, 202, 204],
and experiment [50, 90, 275]. In general, two limiting cases of planar confinement
are to be distinguished in terms of the pore size: In narrow pores of the width of one
or few particle diameters, crystallization of the quasi-2D system is strongly influ-
enced by the wall-particle interaction and by packing effects [88, 208, 249, 250]. For
monolayers or even a few hard-sphere layers in planar confinement, the otherwise

1This chapter is accepted for publication in Soft Matter by Sven van Teeffelen, Angel J. Moreno,
and Christos N. Likos, Soft Matter, DOI:10.1039/b813916d (arXiv:0808:1363). It is reprinted with
permission of the Royal Chemical Society, Copyright 2008.



110 Cluster crystals in confinement

first-order Kosterlitz-Thouless phase transition becomes continuous [225, 302]. On
the other hand, for large confinement widths, freezing and melting is dominated by
the 3D bulk phase behavior and by single-wall properties, i.e., crystal/fluid wet-
ting [53, 54, 70]. For large confinement widths, two possible scenarios are observed
upon approaching the bulk liquid-solid transition, depending on the different in-
teractions between the wall, the liquid, and the crystal: In the first scenario, the
walls induce melting, which becomes manifest in a fluid layer growing on the walls,
already under conditions in which the crystal is stable in the bulk, a situation re-
ferred to as premelting [58, 90, 202, 204]. In the second scenario, the walls induce
freezing, which is due to the presence of a crystalline slab under conditions in which
the fluid is stable in the bulk, denoted as prefreezing [53, 54, 70, 88, 131]. The for-
mer mechanism is responsible for surface melting, which prevents the persistence of
overheated crystalline states [90]. On the other hand, the latter mechanism prevents
undercooling of the fluid state; after a quench from a high to a low temperature it is
responsible for heterogeneous nucleation on the walls [14] which is often much more
likely than homogeneous nucleation deep in the (bulk) fluid state.

Despite a host of literature on experiments, simulation studies, and phenomeno-
logical theories, there have been only few attempts to study confinement-induced
freezing or melting by means of microscopic theories [3], in which the only input
should be the particle-particle and the wall-particle interaction potentials. The
method of choice is, evidently, classical density functional theory (DFT) [85, 86, 165,
209, 263]. DFT is an exact reformulation of the statistical mechanics of many-body
systems, uniform and nonuniform alike, based on the equilibrium one-particle den-
sity ρeq(r) of the system. As such, it treats fluids (ρeq(r) = ρ, a prescribed constant)
and crystals (ρeq(r) is a periodically modulated space field) on equal footing. In
fact, several of the commonly used liquid-state theories can be derived from a DFT
formulation [117], whereas the DFT-treatment of crystals can be traced back to the
pioneering work of Ramakrishnan and Yussouff [226]. Concomitantly, DFT offers
also a tool to study bulk phase coexistence, a prerequisite for the subsequent investi-
gations of fluid-solid interfaces [182]. There have been DFT calculations for surface
melting of Lennard-Jones particles [202, 204], for hard spheres on hard walls [204],
for hard spheres in very thin slit pores [252], and also for hard spheres sedimenting
onto hard walls [186]. Hard spheres in slit pores have been examined by means of
macroscopic, thermodynamically-inspired arguments [140] as well as by computer
simulations in a system similar to the one that is the subject of this work, in the
sense that it also forms clusters, albeit of a different nature than the ones we consider
here [135]. Quite a bit of theoretical work and simulation studies have been carried
out for liquid-gas separation and wetting phenomena of fluids in confinement [29, 86].
However, to the best of our knowledge, the effect of varying confinement-width on
crystallization has not been systematically studied by means of DFT to-date.

In this work, we study the influence of planar confinement on a special class of
colloidal particles, which interact via bounded and purely repulsive pairwise addi-
tive potentials. In particular, these pair potentials do not diverge at zero particle
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distance. These so called ultrasoft, repulsive particles are realized in nature and
experiment by a large class of complex molecules, such as branched or non-branched
polymers that possess a vast number of internal degrees of freedom, a property which
allows them to share their (center-of-mass) position with another particle or even
several other particles of their kind [157]. The effective interaction of such complex
molecules is highly tunable by choosing different architectures and solvabilities of
the respective polymer monomers, model amphiphilic dendrimers being a concrete
example [192]. Recent interest in such potentials has grown not only on the basis
of their physical relevance but also due to some beautiful mathematical properties
they possess, allowing for the determination of exact ground states [266, 267] and
the application of generalized duality relations to such systems [273].

The rest of this work is organized as follows: In Section 7.2 we introduce the
model interaction and briefly review its properties. In Section 7.3 we give a short
description of the DFT, whereas in Section 7.4 we describe the numerical simulation
technique used. The bulk phase behavior is discussed in Section 7.5. The system
confined between repulsive walls is studied in Section 7.6, whilst the attractive walls
are studied in Section 7.7. Finally, in Section 7.8 we summarize and draw our
conclusions.

7.2 The model: ultrasoft, repulsive particles

The particles considered here interact by means of a non-negative and bounded pair
interaction potential, 0 ≤ φ(r) < ∞, that is integrable and possesses a Fourier
transform φ̃(k), and are termed ultrasoft, repulsive particles. Such interactions have
been divided into two categories, the so called Q±- and the Q+-class [160]. The
former classifies potentials for which φ̃(k) has an oscillatory decay about zero, while
interaction potentials in systems of the latter kind fulfill the condition φ̃(k) ≥ 0.
The drosophila of bounded pair potentials is the generalized exponential model of
index n (GEM-n), which is defined by

φ(r) = ε exp[−(r/σ)n] , (7.1)

where r is the particle distance, σ is the interaction range (typically a measure of
the particle’s size), and ε is the interaction strength. In the following, we will set
ε = 1, σ = 1 as well as kB = 1, the latter being Boltzmann’s constant. It has been
shown [161] that φ(r) of Eq. (7.1) belongs to the Q+-class for n ≤ 2 and to the Q±-
class for n > 2. Moreover, it has been established [160] that the distinction of Q±-
and Q+-particles goes along with two different principle features of the topologies
of the respective bulk phase diagrams: Systems of the Q±-kind display freezing for
arbitrarily high temperatures and densities into so called cluster crystals [161, 188,
190, 192] while systems of the Q+-kind are characterized by reentrant-melting and
a maximum freezing temperature [150]. In this chapter, we concentrate on the class
of Q±-particles and their behavior in confinement.
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Cluster crystallization is highly distinct from crystallization of “conventional/
ordinary” colloids: It implies that at high densities several particles share the same
lattice site of a periodic crystal. In fact, it has been shown for the GEM-4 model that
upon increasing the density, the lattice constant of the stable fcc crystal, a =

√
2d,

where d is the nearest-neighbor distance, approaches a density- and temperature-
independent constant [192]. The above implies that the average number of particles
sharing a lattice site, nc, grows linearly with density. In this work, we investigate
the phase behavior of GEM-8-particles, i.e., representative ones of the Q±-species,
which show a tendency to cluster at a lower density than the GEM-4-particles do,
due to a deeper minimum of the respective Fourier-transformed pair potential [161].
Freezing is studied with the help of mean field density functional theory (MFA-
DFT) and with simulation for different wall-particle interactions and for different
wall-wall separation Lz. MFA-DFT has proved to be highly accurate to reproduce
the bulk phase behavior of the GEM-4 model [188], and will be shown here to
accurately predict the equilibrium phase diagram of the GEM-8 in the bulk and in
confinement.

The main focus of this work is in the behavior of the GEM-8 model in slit
pores. Two kinds of planar confinement are considered: In a first setup we study
the effect of purely repulsive Yukawa-walls on the structure and phase diagram
of the system while in a second setup the influence of attractive Lennard-Jones
walls is examined. The Yukawa potential has been shown to model the interaction
of dendrimers with hard walls [102, 156]. In order to model attractive walls we
introduce a 9-3-Lennard-Jones potential. The latter interaction is not based on
microscopic grounds but is introduced to model the influence of attractive wall
potentials in general. However, recent simulation results [156] have shown that
dendrimers on walls with core-monomer-wall attractions show very similar effective
interaction potentials. We demonstrate that the first setup leads to premelting: the
system is molten at the walls and crystallizes at the center, while for the second setup
the opposite happens, i.e., there the walls induce prefreezing [3, 98]. Furthermore,
we argue that both setups display complete wetting [69] which is deduced from a
continuous, logarithmic growth of the fluid/crystalline wetting layer down/up to the
point of capillary melting/freezing.

A salient property that distinguishes the behavior of clustering particles from
non-clustering ones in confinement, is the ability to locally adjust the average occu-
pation number of the clusters, nc, without distorting the crystal structure through
point defects such as vacancies or interstitials. Remarkably, although there is inces-
sant hopping of particles from one site to the other, rendering these crystals ergodic
and endowing them with a non-vanishing long-time diffusivity, the underlying crystal
structure remains intact. In fact, this happens not despite the hopping mechanism
but because of it. For details, see Ref. [162, 193].
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7.3 Density functional theory

Density functional theory is based on a variational grand canonical functional Ω̃[ρ(r)],

a unique functional of the static one-particle density ρ(r) =
〈∑N

i=1 δ(r− ri)
〉
of the

system, where ri, i = 1 . . .N are the particle coordinates and 〈. . . 〉 denotes the
according grand canonical average [85]. The functional Ω̃[ρ(r)] is minimized by
the equilibrium one-particle density ρeq(r), where it takes the value of the system’s
grand potential, Ω[ρ(r)]. The density functional is typically split into the ideal gas,
an excess, and an external part,

Ω̃[ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)]

+

∫
drρ(r) (V (r)− μ) ,

(7.2)

where V (r) is the external potential and μ is the chemical potential. The integral
runs over the system volume. The ideal part reads as

Fid [ρ(r)] = β−1

∫
drρ(r) [ln ρ(r)− 1] + 3 〈N〉 β−1 ln Λ , (7.3)

with β−1 = T , 〈N〉 = ∫
drρ(r) being the average particle number and Λ the thermal

de Broglie wavelength. The last term in Eq. (7.3) above is thermodynamically
irrelevant and will be ignored henceforth. The excess part is given very accurately
for sufficiently high temperatures and/or densities by the mean-field expression [161]

Fex [ρ(r)] =
1

2

∫∫
dr dr′ρ(r)ρ(r′)φ(r− r′) . (7.4)

It is pertinent, at this point, to shortly comment on the accuracy of the expres-
sion (7.4) above. In Ref. [161], it has been shown that this functional form rests on
the validity of the approximation c(r) = −βφ(r) for the direct correlation function
c(r) of the fluid (uniform) phase. Within the framework of linear response theory
and employing the Percus identity, it can be shown that the relation c(r) = −βφ(r)
holds asymptotically in regions of space for which the potential φ(r) caused by a test
particle held fixed at the origin is much weaker than the other two energy scales of
the problem: the thermal energy T and/or the average potential energy per particle
caused by all other particles in a fluid of density ρ [117]. For diverging potentials,
this relationship must break down at sufficiently small r-values.2 However, for ultra-
soft, bounded potentials, it can and it indeed does hold approximately true for all
separations r provided T and/or ρ are sufficiently high, so that the thermal and/or
the potential energy per particle dominate over φ(r). In previous work [160, 161]
it was demonstrated that the conditions T � 1 and/or ρ � 1 are sufficient for the
relationship c(r) = −βv(r) to be fulfilled to a satisfactory degree of approximation.

2In fact, exact diagrammatic expansions show that c(r) remains finite for all r, whereas diverging
potentials do not at r = 0. Thus, c(r) = −βφ(r) must break down in such case.
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Minimization of Ω̃[ρ(r)] is pursued by demanding its functional derivative with
respect to density to vanish. This amounts to numerically solving the self-consistent
equation

ρeq(r) = exp

{
βμ− βV (r)−

∫
dr′βφ(|r− r′|)ρeq(r

′)
}

, (7.5)

for ρeq(r) in an iterative fashion, on a periodic rectangular grid of Nx × Ny × Nz

grid points, where the convolution integral is evaluated with the help of fast Fourier
transform. We chose a grid of Nα ≈ 16Lα, α = x, y, z which is fine enough to reach
numerical convergence for all state points under study. For the study of crystalline
states the x- and y-dimensions of the box are chosen to be commensurable with
the expected lattice spacings in plane with the confining walls (see Section 7.5).
The lattice spacing of crystalline GEMs in the bulk is well known to be relatively
insensitive towards density/chemical potential and temperature. This is also found
for the GEM-8 in confinement, as will be shown below.

7.4 Simulation

We simulated a system of several thousand particles, N , interacting through a GEM-
8 potential φ(r) = exp(−r8). For the case of confinement, they also experience an
external wall potential V (z) presented in Sections 7.6 and 7.7. Simulation results
presented here are obtained by means of Brownian dynamics. The equation of
motion for the position vector ri of a particle i is given by:

ṙi(t) = −Γ∇ri

[
V (ri) +

∑
j �=i

φ(|ri − rj |)
]
+wi(t) , (7.6)

where Γ is a mobility constant (we set Γ = 1) and wi(t) is a stochastic Gaussian
noise term. The latter represents the random collisions with the much faster solvent
molecules, which are not explicitly included in the model. The noise fulfills the
statistical properties [4]

wi(t) = 0 , wα
i (t)w

β
j (t

′) = 2β−1δαβδijδ(t− t′) , (7.7)

where α, β are the Cartesian x, y, z-components and the bars over the quantities
denote a noise average.

We implemented periodic boundary conditions for the simulation cell of volume
Vc = Lx × Ly × Lz. Periodicity was applied in the x, y-directions in all cases, and
also in the z-direction for the bulk case. We employed a cubic cell of size Lx = Ly =
Lz = 18.57 for the bulk system. In the confined system, we set Lx = Ly = 20.43 for
slits of thickness Lz ≤ 8. We also carried out simulations on the confined system
for thickness Lz = 24, with Lx = Ly = 9.285.

The Brownian dynamics simulations were performed at constant N , Vc, and T ,
and the equations of motion (7.6) were integrated via the Ermak’s algorithm [4, 83],
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with a timestep Δτ = 10−4τB. Here, τB = β is the Brownian time scale. The system
was prepared by randomly placing the particles in the simulation cell. In this way,
crystallization occurs spontaneously at sufficiently high density. An equilibration
run of typically 106 timesteps was performed before the production run of typically
3×106 timesteps. During the production run, configurations were periodically saved
for computation of observables. Density profiles and radial distribution functions
(see below) were averaged over typically 30 configurations, the interval between two
consecutive configurations of the latter being 100 000 timesteps. In this time scale,
the particle mean displacement is of at least one molecular diameter for all the
investigated systems, guaranteeing that the former configurations are uncorrelated.
At high densities, a few independent runs were also performed for some fixed state
points (ρ, T , Lz), starting from different configurations of the particles, in order to
check that the final values of the former observables are independent of the initial
conditions.

7.5 The bulk phase diagram

The phase behavior in confinement is determined by two factors, the interaction of
the particles with the walls and the behavior in the bulk; in particular, the location
of the considered thermodynamic point (μ, T ) with respect to bulk phase boundaries
plays a decisive role in influencing the density profiles in confinement and related
surface phase transitions. Before presenting the phase diagram of the system in
confinement we therefore provide the bulk phase behavior, as obtained from the
DFT, which serves as a reference point.

Solving Eq. (7.5) within the minimum rectangular unit cell of the body centered
cubic (bcc), the face centered cubic (fcc) and the hexagonal close packed (hcp)
lattices of variable lattice spacing, we find that for temperatures 0.5 ≤ T ≤ 4
the system undergoes two subsequent first-order transitions upon increasing the
chemical potential μ, first from the liquid to a hcp cluster crystal at μf , and at
higher μ, a subsequent structural phase change from a hcp to a fcc cluster crystal.
This scenario is in contrast to other GEM-n models with smaller n where at first
a post-freezing bcc cluster phase is found, preceding a bcc → fcc transformation at
higher values of ρ (or μ) [188, 190]. We have not carried out a search of other non-
Bravais lattices than the hcp-one. Thus it cannot be ruled out that there are other
stable phases of non-Bravais lattices at freezing or at higher μ. However, we can
clearly state that within the DFT the post-freezing lattice is not a Bravais lattice.

For T = 1, which is the temperature for all confinement studies throughout this
work, we locate the freezing transition in the bulk at a chemical potential μf = 12.09.
Here, a fluid of density ρf = 2.96 coexists with the hcp cluster crystal of density
ρs = 3.48. The latter crystal consists of polydisperse clusters that contain on average
nc
∼= 6.02 particles each, corresponding to an equilibrium nearest neighbor distance

of d = 21/6(nc/ρs)
1/3 ∼= 1.347. The second transition towards the fcc crystal takes
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place at a chemical potential μ = 20.03. Here, already deep in the crystalline phase,
an hcp lattice of average density ρ = 7.80, average occupation number nc = 11.96,
and nearest neighbor distance d = 1.295 coexists with a fcc lattice of average density
ρ = 7.82, occupation number nc = 11.85, and nearest-neighbor distance d = 1.289
implying a lattice constant of a =

√
2d = 1.823. We anticipate that, similar to the

GEM-4-model, there is a triple point at which liquid, hcp crystal and fcc crystal
coexist.

The detailed investigation of the bulk phase behavior of the GEM-8-model is not
the purpose of this work, yet a few comments are of order. First, the stability of
the hcp lattice with respect to the fcc comes as a surprise, since the latter features
a larger distance to the third-nearest neighbors of a given particle than the first.
On energetic grounds, one would thus expect the fcc to win, and it indeed does so
at T = 0. But very much like the bcc-lattice is the post-freezing structure above
the triple point of the GEM-4-model on entropy grounds, the hcp achieves a lower
free energy than the fcc due to an entropically more favorable arrangement of the
density profiles around the crystal sites [277]. As density grows, however, so does
also the cluster population nc. The inter-site interaction energy, which scales as n2

c ,
becomes increasingly important, energy takes over and fcc wins over hcp. There
are indications from the simulations in confinement that at post-freezing densities
the ordered state indeed has the propensity to undertake a hcp-like ordering, i.e., an
ABAB . . . stacking of hexagonal arrays, as opposed to the ABCABC . . . stacking of
the fcc, as shown in Fig. 7.1. However, in bulk simulations the system spontaneously
forms a bcc lattice at freezing. The determination of accurate phase boundaries
and crystal phases could be pursued by means of the novel simulation technique of
Mladek, et al. [189, 192]. This task goes beyond the scope of this work and will be
the subject of further investigations.

For the rest of this chapter, we sidestep thus the issue of the stability of the hcp-
lattice and the associated question of the possible existence of other non-Bravais
lattices and restrict our theoretical studies to Bravais crystals only. The reasons
for doing this are twofold: first, as mentioned above, because it is not clear which
other non-Bravais lattices might be competitive. Second, we expect that our results
are generic, since the physics is dictated by the tendency of the model to form
cluster crystals and is not dependent on the detailed spatial arrangement of the
same on a specific lattice. Therefore, we focus on the bulk results for the phase
boundary between a liquid and a fcc crystal, ignoring any other candidate periodic
arrangement; among all Bravais lattices, the fcc lattice is the most stable one. The
bulk freezing transition for the same temperature T = 1 within the DFT is found
at a slightly higher chemical potential than for the liquid-hcp transition, namely
μf = 12.13. Here, a fluid of density ρf = 2.97 coexists with the fcc cluster crystal of
density ρs = 3.50. The fcc crystal consists of polydisperse clusters that contain on
average nc

∼= 6.04 particles each, corresponding to an equilibrium lattice constant
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Figure 7.1: Left panel: simulation snapshot of the four crystalline layers of a confined
GEM-8-model at temperature T = 1 and density ρ = 4.2, view of one quarter of
the xy-periodic box from the bottom (lower wall). The two repulsive walls have
a separation Lz = 5.2 and are lying parallel to the page. The layers of clusters
are color-coded, from bottom to top: green, blue, orange, and gray. An ABAB . . .
stacking of the hexagonal layers can be seen. Right panel: same as the left but now
from the side view.

of a = (4nc/ρs)
1/3 ∼= 1.905. The equilibrium lattice constant exceeds the value

a∗ = 2
√
3π/k∗ = 1.859 , (7.8)

where k∗ = 5.855 is the wavenumber for which φ̃(k) attains its minimum, negative
value, by a factor 1.025. The lattice constant a∗ corresponds to a nearest-neighbor
distance d∗ = 2−1/2a∗ = 1.314 and to a distance of adjacent layers of hexagonally
crystalline particles in the 111-direction of the fcc crystal c∗ = a∗/

√
3 = 1.073 [13].

The result of Eq. (7.8) stems from a simplified version of the MFA-DFT, which
takes only the first reciprocal lattice vector (RLV) of the fcc lattice into account and
results into the outcome that the length of the first shell of RLVs of the fcc crystal
should coincide with k∗ at all densities [161]. The equilibrium lattice constant of the
fcc crystal resulting from the full DFT-minimization is relatively insensitive towards
temperature changes. Furthermore, as is known for the GEM-4 as well, it is almost
independent of μ. In particular, for T = 1, a decays as a function of μ towards a
plateau of a = 0.94a∗ which it reaches at μ ∼ 50, as can be seen in Fig. 7.2.

In view of the aforementioned insensitivity of a with respect to the state point in
the phase diagram, we can simplify the calculation by fixing it to a constant value
a = a∗ for all state points (μ, T ) and recalculate the bulk phase diagram under this
constraint. Thereby, a slightly higher chemical potential at freezing is obtained: For
T = 1, the value μf = 12.25, with coexistence densities of ρf = 3.00 and ρs = 3.58,
and average cluster occupancy nc

∼= 5.74 results. The chemical potential μf and the
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Figure 7.2: The equilibrium lattice constant for the fcc crystal in the bulk as a
function of chemical potential for T = 1.

densities of coexistence are plotted versus temperature in Fig. 7.3.3

Another constraint to the lattice geometry, which becomes important for the con-
finement studies, is the following: The distance of neighboring layers of hexagonally
crystalline particles in the 111-direction of the fcc crystal c is free to vary whereas
the nearest-neighbor distance of particles within each plane is fixed to d = d∗. If
we minimize the grand potential in this partially constrained fashion (d = d∗ only
in the xy-plane of confinement), we obtain yet a third value for the bulk freezing
chemical potential, μf = 12.19, which lies in-between the two bulk values μf = 12.13
(free lattice constant a) and μf = 12.25 (fixed lattice constant a = a∗). The optimal
distance of neighboring layers was then found to be given by c = 1.113 which exceeds
the corresponding distance c∗ in an isotropic fcc-crystal with lattice constant a∗ by
a factor 1.038. The bulk freezing parameters obtained by DFT under the various
constraint conditions on the minimization procedure are summarized in Table 7.1.

3By fixing the lattice constant to a∗ there is actually a stable bcc-phase intervening between the
liquid-fcc-crystal phase transition, which is not persistent when relaxing the constrained of fixed
lattice constant. We therefore ignore this subtlety here.
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Figure 7.3: The (constrained) bulk phase diagram for fixed lattice constant a∗ and
for the fixed fcc-lattice. Left panel: The phase diagram at the (ρ, T )-representation.
The lines are the loci of the coexisting liquid- and fcc-densities and the gap in-
between denotes the coexistence region. Right panel: same as the left one but at
the (μ, T )-representation.

7.6 Repulsive slit pores

In the first setup we study the effect of the repulsive confining walls. The latter are
characterized by the external potential

VY(r) = 10

[
e−z

z
+

e−(Lz−z)

Lz − z

]
, 0 < z < Lz , (7.9)

where z is the component of the particle coordinate r perpendicular to the wall,
measured with the origin on one of the walls. The Yukawa form is motivated on the
basis of results for the interactions of athermal dendrimers (GEM-2-particles) with
model planar walls [102] and is confirmed by recent results of Lenz, et al. [156]. The
prefactor 10 in Eq. (7.9) is so far arbitrary but should roughly scale linearly with
the number of monomers of a dendrimer.

In the DFT, the xyz-periodic box for the density field has the dimensions of
Lx×Ly×(Lz+1), where neighboring slits in the z-direction are separated by a large
additional barrier of width 1, which is wide enough to obviate any mutual particle
interactions across the wall. The system volume itself is only of size Lx × Ly × Lz,
excluding the barrier. The dimensions parallel to the walls, Lx and Ly, are chosen
to be commensurate with the fcc-lattice of lattice constant a∗ either at the 100- or
the 111-direction perpendicular to the walls (100: Lx = Ly = a∗, 111: Lx = 2−1/2a∗,
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Table 7.1: Freezing parameters for the liquid-solid transition in the bulk
obtained within mean field density functional theory for different con-
straints to the lattice types of the crystalline phase (hcp, fcc, distorted
fcc) and for different unit cell dimensions (fixed vs variable spacing of
neighboring hexagonal layers c and fixed vs variable nearest-neighbor
distance within each plane d). The freezing parameters are the chemical
potential μf , the densities of the coexisting liquid (ρf ) and solid (ρs), the
in-plane nearest neighbor distance d, the distance of neighboring planes
c, and the average occupancy nc.

lattice minimization μf ρf ρs d/d∗ c/c∗ nc

hcp free 12.09 2.96 3.48 1.025 1.025 6.02
fcc free 12.13 2.97 3.50 1.025 1.025 6.04
fcc constraineda 12.25 3.00 3.58 1 1 5.74
distorted fcc constrainedb 12.19 2.98 3.54 1 1.038 5.89
a The (isotropic) lattice constant is held fixed (a = a∗).
b The nearest-neighbor distance within a plane of hexagonally crystalline
particles is held fixed (d = d∗) but the inter-plane distance c is allowed to relax
freely (cf. text).

Ly =
√
3/2a∗). The 110-orientation is unfavorable due to inefficient packing and

is therefore not considered. As already mentioned in the determination of the bulk
phase diagram, we did not vary the nearest neighbor distance in the x- and y-
direction in the slit pore geometry. However, we left the system freedom in adjusting
its lattice constant in the z-direction, i.e., perpendicularly to the walls.

In confinement, freezing is defined at the point in which a fully modulated density
field ρ(r) yields a grand potential lower than that of the z-modulated fluid with
density ρ(z): Ω[ρ(r);Lz ] < Ω[ρ(z);Lz ]

4 and it occurs at a corresponding freezing
chemical potential in confinement, μf(Lz). It will be shortly demonstrated that due
to the repulsive nature of the Yukawa walls, the bulk freezing chemical potential μf

can be independently obtained as μf = μf(Lz →∞) by an appropriate extrapolation
procedure. Since we minimize the grand potential in a partially constrained fashion
(fixed d = d∗ only in the xy-plane, which will turn out to be perpendicular to the 111-
direction of the equilibrium fcc-crystal in slit pores of large widths), the asymptotic
value of μf(Lz → ∞) should coincide with the bulk freezing chemical potential
μf = 12.19 as obtained by applying the partially constrained minimization procedure
in Section 7.5 (cf. Table 7.1, line 4). The coincidence of the results obtained by
two independent routes for the determination of μf serves as a confirmation of the

4Here and in the following, we denote the local minima of Ω̃[ρ(r)] with respect to the density
field ρ(r) by Ω[ρ(r)], although the grand potential is, of course, given by the minimum value of all
local minima.
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validity of the extrapolation procedure to be employed.
In DFT, symmetry does not break spontaneously. To avoid getting trapped in

metastable minima of the free energy landscape in our search for the true equilibrium
configuration, we iteratively solve Eq. (7.5) starting from different initial density
fields. In particular, we start both from a purely z-modulated density field, which
always leads to a stable or metastable fluid state and from highly modulated fields,
which possess the symmetry of the fcc crystal everywhere but very close to the
confining walls, trying different orientation and offsets. To be precise, we start
from 111- and 100-oriented crystals (with respect to the walls), which have either a
particle layer centered about the middle of the box (z = Lz/2) or a particle layer
shifted by half an inter-plane distance from z = Lz/2. The 111-oriented fcc crystal
always leads to a stacking of hexagonally ordered clusters in the ABCABC-fashion.
The ABAB-stacking resulting from an hcp-crystal is not tested within the theory
(see the above discussion of the bulk phase behavior).

Due to the slow exponential decay of the wall-particle potential, the clusters in
the layers closest to the walls are less populated and blurred compared to the middle
of the slit. This can be seen from the plots of the x- and y-averaged density field
ρxy(z) ≡ (LxLy)

−1
∫∫

dx dy ρ(r) for different average densities ρ = L−1
z

∫
dz ρxy(z)

in Fig. 7.4(a), as obtained from the DFT. We therefore introduce the notion that the
crystal freezes from the middle under the influence of the repulsive, Yukawa walls.
For comparison, we present in Fig. 7.4(b) results from BD computer simulations for
the same parameters as in the DFT, which show the same quantitative behavior for
ρ = 2 and the same qualitative behavior for ρ = 4. For ρ = 3, the DFT predicts a
crystalline state whereas the system remains fluid in the simulation. The difference
in the density profiles for the states at ρ = 3, 4 is associated with a difference
in the bulk liquid/solid coexistence densities which has already been observed for
the GEM-4 model when applying the compressibility route to the Helmholtz free
energy [191].

The pronounced crystallinity in the central region of the simulation box can be
observed not only in the density profiles but is also confirmed by measurements of
the restricted pair-distribution function [3] in the xy-plane,

g
(k)
2D (r‖) ≡

Vk

N2
k

∑
i,j(i�=j)

′
δ
(
r‖ −

∣∣ri‖ − rj‖
∣∣) . (7.10)

Here, r‖ denotes the lateral projection (onto the slit plane), i.e., r‖ ≡ r− (r · êz)êz,
where êz is the unit vector in the z-direction. The double sum in Eq. (7.10) runs over
all Nk particles i and j lying in the kth layer from the wall (this restriction being
denoted by the prime) with volume Vk. Particles belong to the same layer if their
position lies between the same two consecutive minima of the respective laterally-
averaged density profile ρxy(z). We show g

(k)
2D(r‖) for the first three layers from either

wall, k = 1, 2, 3, in Fig. 7.5. Peaks and minima of the pair distribution function
clearly become more pronounced for increasing distance of the layer from the wall.
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Figure 7.4: Yukawa walls: Laterally-averaged density profiles ρxy(z) for different
average densities (ρ = 4, 3, 2 from top to bottom) for Lz = 7 as obtained from
the DFT, (a), and the simulation, (b). (a) The fcc crystal in the DFT has the 100-
orientation. The numbers over the peaks denote the average number of particles, nc,
occupying a cluster, for ρ = 4 (top value) and ρ = 3 (bracketed, lower value) from the
DFT. (b) The lateral dimensions of the periodic simulation box are Lx = Ly = 20.43.
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Figure 7.5: Yukawa walls: The lateral pair distribution function g
(k)
2D (r‖) for the first

three layers of clusters on either of the wall (k is counted from the wall) for the same
confinement as in Fig. 7.4 at average density ρ = 4 (for the definition of layers see
main text).

Also, the appearance of a shoulder at the third peak of g
(2)
2D and g

(3)
2D indicates the

strong crystallinity of the clusters within the respective layers.

It is important to note that the ability of the particles to form clusters has two
profound consequences for the interpretation of the density field ρ(r), qualitatively
distinguishing them from ordinary colloidal crystals: First, the decreased sharpness
of the density peaks close to the walls as compared to the central region of the
slit is not only to be interpreted as a fluctuation of the clusters’ center-of-mass
position but also and rather as an increase of the cluster radii, i.e., an increase of
the mean distance of the particles from their cluster’s center of mass. Second, as
was already mentioned in the introduction, the different average numbers of particles
occupying the cluster peaks indicated by the numbers in Fig. 7.4, do not go along
with distortions of the lattice structure. In contrast to freezing of usual colloidal
systems in confinement, even for the smallest average densities above freezing the
average number of particles occupying a cluster is substantially larger than 1. In
fact, it is these features which make the system very amenable to a mean field
DFT-treatment.

For all confinement lengths 2 ≤ Lz ≤ 48 studied, the freezing chemical potential
in confinement is higher than in the bulk, μf(Lz) > μf , see Fig. 7.6; freezing is hin-
dered by the confining Yukawa walls. On the other hand, the fluid and the fcc solid
average densities ρf(Lz) and ρs(Lz) at coexistence are smaller than the respective



124 Cluster crystals in confinement

 10

 15

 20

 25

 30

 35

 40

 1  10

� f
(L

z)

Lz

confinement 100
confinement 111

bulk

Figure 7.6: Yukawa walls: Freezing chemical potential μf(Lz) as a function of the
confinement width Lz for the 111-orientation (red/solid) and the 100-orientation
(green/dashed). The (blue) stars mark those points where the 100-orientation is
stable versus the 111-orientation. The horizontal line displays the respective freezing
value of the bulk system, μf = 12.19.

bulk values for Lz � 1, as can be seen in Fig. 7.7. The reason lies in the decreased
probability density to find a particle close to the walls. Both freezing chemical po-
tential and fluid/solid densities at coexistence display pronounced oscillations while
approaching the respective bulk values with increasing Lz. This effect is clearly more
pronounced for small wall-wall separations. After each spike of μf(Lz) in Fig. 7.6,
a new layer of crystalline clusters is introduced into the box. The local minima of
μf(Lz) correspond to crystalline states with optimal layer spacing in the z-direction.
Concomitantly, the wavelength of the oscillations equals the bulk value of the dis-
tance of the crystalline particle layers in the 111-direction, c = 1.04c∗ = 1.113 (cf.
Table 7.1, line 4). This finding is qualitatively validated by the computer simulations
(see Fig. 7.7). Here, a simple criterion to separate crystalline from non-crystalline
states was based on the value of the first minimum of the laterally averaged pair
distribution functions g

(k)
2D (r‖) of the most central layer k, which always freezes first

among all layers. The simulation points in Fig. 7.7 display the states of constant
minimum g

(k)
2D(rmin) = 0.15.

The confining walls have a profound influence on the grand potential of the
system, especially for small values of Lz. Despite the lower average density within
the slit pores, the grand potential density ω(μ;Lz) ≡ Ω[ρeq(r;μ, Lz)]/V , plotted as a
function of μ for different confinement lengths Lz in Fig. 7.8, is higher in confinement
than in the bulk. In Fig. 7.8, ω(μ;Lz) is represented both for the solid and the fluid
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from the simulation, where k refers to the most central layer (see main text).
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Figure 7.8: Yukawa walls: Grand potential density ω(μ) in the fluid (solid lines)
and the solid state (dashed lines) as a function of chemical potential for T = 1 for
different confinement lengths Lz = 3.5, 7 and for the bulk (from top to bottom).
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Figure 7.9: Yukawa walls: Laterally-averaged density profiles ρxy(z) close to the left
wall for Lz = 48 for different chemical potentials μ = 16, 13, 12.5, 12.24 (from top to
bottom).

state, the fluid being stable for μ < μf(Lz) and metastable for μ > μf(Lz).

For the case of small confinement lengths, Lz � 7, the favorite orientation of the
compressed/expanded fcc crystal is, except within some tiny Lz-intervals, the 111-
orientation. As a consequence, the chemical potential at freezing for the 100-crystal
which is metastable within the DFT, is almost always equal or higher than for the
111-crystal (cf. Fig. 7.6), within the accuracy of the DFT calculation. This signifies
that the system favors to have a layer of hexagonally crystalline clusters close to
the walls, this layer being clearly visible in the simulation snapshots in Fig. 7.1. We
note exemplary for Lz = 7, for which we find a stable 100-oriented crystal, that
under consideration of the non-Bravais hcp lattice, the latter is thermodynamically
stable in comparison to the fcc one, albeit with a small difference in grand potential,
leading again to a hexagonal cluster arrangement on the walls. The stability of the
hcp versus the 100-oriented fcc lattice is also most likely to be found for the other
confinement lengths but we did not check this in our study. For very large Lz, the
difference in grand potential density between the 100- and the 111-orientations is
decreasing and we focus on the 111-orientation for Lz ≥ 24.

For large wall-wall separations, Lz 	 1, as the bulk freezing chemical potential
is approached from above (μ > μf = 12.19), the blurred clusters on the walls melt
and a fluid layer grows on each wall. The walls enforce the growth of a liquid film,
a property referred to as premelting. The number of molten layers Nm on each wall
increases continuously with decreasing difference in chemical potential Δμ ≡ μ−μf ,
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Figure 7.10: Yukawa walls: The number of molten layers Nm(Δμ) on either Yukawa-
wall as a function of the difference in chemical potential Δμ. The black bars indicate
the points of capillary melting, μf (Lz). The points to the left of the bars correspond
to metastable crystalline states with the minimum grand potential among all possible
crystalline states. We did display Nm only for those chemical potentials for which
at least one other still crystalline state with a higher number of molten layers was
found to be metastable (see main text). Inset: The corresponding width λ(Δμ) of
the fluid system close to the wall for Lz = 48, evaluated at the kinks of Nm(Δμ).
The dashed line is the least-square logarithmic fit −ξf ln(Δμ) + const.

as can be seen from the xy-averaged density profiles in Fig. 7.9 for the confinement
length of Lz = 48. In Fig. 7.10, we show the number of molten layers on the walls
as a function of Δμ for two different confinement lengths, Lz = 24 and Lz = 48.
Here, a layer of what used to be crystalline clusters, is defined to be molten once
the density within it exceeds the threshold value of ρ(r) > 0.15 for all x and y. This
criterion has been used for the absence of knowledge about the pair-correlations,
which was the basis for the simulation-results above. The z-position of a layer is
defined by the z-position of the respective maximum of the x- and y-averaged density
field. After growing up to a maximum finite number of molten layers on each wall,
N c

m(Lz), the system turns completely fluid due to capillary melting at μf(Lz), as is
also visualized in Fig. 7.10 by the black vertical bars. At the melting transition, the
number of molten layers at each wall is still substantially smaller than the number
of crystalline layers in the central region of the slit. In particular, we find for the
maximum wall-wall-separation under study, Lz = 48, that N c

m(Lz = 48) = 4 which
is still microscopic. For Lz = 24 we find N c

m(Lz = 24) = 2.
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The occurrence of capillary filling when a system close to its bulk phase transition
is confined between two parallel walls is a well-known phenomenon in the the context
of liquid-gas phase coexistence of ordinary fluids [69, 86]. Here, we establish the
existence of capillary melting from the walls for a system that forms crystalline layers
in the middle of the slit pore. For the liquid-gas coexistence, capillary condensation
precludes the wetting transition that takes place between two semi-infinite bulk
phases [86]. Wetting can be studied within DFT if one employs a semi-infinite
system with the appropriate boundary condition at a distance z → ∞ from the
wall and it is straightforward to implement for the case of uniform phases [12]. In
our case, however, this would correspond to fixing a periodic crystal at z → ∞,
whilst the chemical potential μ is lowered towards its bulk value μf from above.
This renders the DFT-calculation very complicated, therefore we will resort to a
different approach in arguing that in the limit of infinite wall-wall separation, the
fluid completely wets the Yukawa wall as μ → μ+

f . The approach is based on general,
thermodynamic considerations that lead to scaling laws for the width of the wetting
layer, which diverges at the bulk phase transition. Thus, the walls drive the system
to the molten state.

In the limit of large wall-wall separation and for macroscopically thick fluid films
of width 1� λ(Δμ)� Lz on either wall, the grand potential per unit surface area
A of the short-range interacting system can be written as [16, 69]

Ω(Δμ)

A
= 2 (γfw + γfs) + ω(μf)Lz + 2ε1 exp

[
− λ

ξf

]
− [(Lz − 2λ)ρs + 2λρf ]Δμ +O(Δμ2) ,

(7.11)

where γfw is the fluid-wall surface tension, γfs is the fluid-solid surface tension,
and ε1 is the prefactor of the interaction between the fluid-wall and the fluid-solid
interfaces, which decays exponentially on the range of the correlation length of
the fluid that wets the wall [16, 69]. As thermodynamic quantities on the right-
hand side are evaluated at phase coexistence, use has been made of the identity
∂ωf,s/∂μ = −ρf,s, where ωf,s are the grand potential densities of the fluid and the
crystal at coexistence, respectively. The correlation length ξf of the fluid is obtained
as the inverse of the smallest imaginary part of the pole of the static structure factor
S(k) = [1 − ρf φ̃(k)]

−1 closest to the real axis, i.e., ξf = [Im(k)]−1 = 1.20, where k
fulfills 1− ρf φ̃(k) = 0 [12]. In the case of complete wetting, i.e., for

γsw = γfw + γfs , (7.12)

where γsw is the wall-solid surface tension, two scaling behaviors follow from this
ansatz. At first, upon approaching μf from above, the width of the fluid film λ(Δμ)
grows logarithmically as a function of Δμ:

λ(Δμ) � −ξf ln(Δμ) + const , (7.13)
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as long as λ � Lz holds, i.e., as long as both walls behave each as single walls in
contact with a semi-infinite crystal. Growth is indeed observed in our results but it
is interrupted at the freezing transition μf(Lz) by capillary melting, which leads us
to the second scaling relation: at the point of capillary melting, the net contribution
of the fluid region in the middle of the slit pore to the grand potential per unit area,
(ωf −ωs)(Lz−2λ) equals twice the liquid-solid surface tension γfs, which yields the
following relation:

Lz − 2λ (μf(Lz)) � 2γfs

(ρs − ρf) (μf(Lz)− μf)
. (7.14)

For the maximum confinement-width studied (Lz = 48), we found N c
m = 4 at

μ = μf(Lz) ∼= 12.24 corresponding to λ ∼= 4.1, which is too small to accurately be
fitted to a logarithmic function and to extract μf(Lz). Nevertheless, within the DFT
it is possible to avoid the transition to the stable, capillary-molten phase, and remain
instead in a partly crystalline setup also for μ < μf(Lz) by iterating Eq. (7.5) with
an appropriate initial density field ρ(r), which already has a given number of molten
layers. For a single wall, in which case capillary melting is absent, the system will
choose the crystalline state with the lowest value of Ω̃[ρ(r)]. Accordingly, we focus
on the state that fulfills the same condition, among all metastable crystalline states,
in the presence of two walls. However, we do consider only those chemical potentials
for which at least one other state, which is still crystalline and has a higher number
of molten layers, was found to be metastable, i.e., non-collapsed to a fluid. In this
way, further growth of the fluid layer is observed up to a point where the crystalline
slab in the middle of the slit becomes unstable towards collapse (see Fig. 7.10). By
performing a least-square fit of the whole growth (between Nm = 1 and Nm = 6) to
the logarithmic growth of Eq. (7.13), we obtain the bulk freezing chemical potential
μf = 12.19 independently of the already known value from Section 7.5 (see inset of
Fig. 7.10). In fact, the width λ(Δμ) was taken to be the distance of the most distant
molten layer from the wall. As expected, for large numbers of molten layers we find
λ(Δμ) � cNm(Δμ), with the layer separation c = 1.04c∗ = 1.113, as discussed
above. The independently obtained freezing chemical potential μf = 12.19 agrees
perfectly with the freezing chemical potential obtained from the partly constrained
bulk measurement in Section 7.5. This finding constitutes a strong confirmation of
the validity of the complete wetting scenario.

The second scaling relation, Eq. (7.14), serves as a check, again for the largest
confinement length Lz = 48. The ingredient we are still missing is the surface tension
γfs at coexistence. The latter quantity can be obtained within DFT by comparing
the grand potential Ω of a bulk system at μ = μf with that of a system that contains
stripes of equally sized liquid and crystalline parts that form two planar liquid-
solid interfaces within the periodic ’box’ of size Lx × Ly × Lz . We have performed
this calculation using a box with the same x- and y-dimensions as in the confining
case and a longer z-length, Lz = 96; clearly, there is no external potential in this
case. In this way, we obtain γfs

∼= 0.49, where the crystal is oriented in the 111-
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direction at the interface. Insertion of γfs, together with ρs−ρf = 0.56 and μf(Lz =
48)−μf = 0.05 into Eq. (7.14), yields Lz − 2λ ∼= 35.3, which agrees reasonably well
with Lz − 2λ ∼= 39.9 from the direct comparison of the grand potential densities
of the capillary-molten or crystalline states in confinement. It must be noted that
we disregarded widths of the interfaces in our crude, ‘sharp-kink’ treatment of the
interfaces that led to Eq. (7.14). In reality, the widths of the fluid-wall and of
the fluid-solid interfaces are of the order of ∼ 2σ, which helps in explaining the
discrepancy.

Capillary melting is a first-order phase transition, which comprises the possibility
of non-equilibrium states close to or at the transition remaining metastable. In
the DFT calculations, the metastability of non-molten states beyond equilibrium
capillary melting has already been exploited for extracting the logarithmic growth
of the wetting layer [see Fig. 7.10 and Eq. (7.13)]. In computer simulations of systems
in the NV T -ensemble, metastable states may persist in small periodic simulation
boxes and for average densities lying within two coexisting densities of a first-order
phase transition. Here, free energy contributions of phase-separating interfaces are
comparable or larger than bulk contributions.5 This behavior is also observed in
computer simulations of the GEM-8 model in a relatively large planar confinement
of Lz = 24, where the lateral dimensions of the xy-periodic simulation box Lx =
Ly = 9.29 are comparatively small. Consequently, by continuously varying the
density of the system a continuous growth of a liquid layer on each Yukawa wall up to
complete filling of the box is observed (see Fig. 7.11). Snapshots of the simulation are
exemplarily shown for three different average densities ρ = 3.5, 3.7, 4.0 in Fig. 7.12.

The average number of molten layers on each wall, Nm(ρ) in Fig. 7.11, has been
determined by analyzing the lateral pair distribution function g2D(r‖) (not shown
here) for a total of 22 crystalline layers in parallel to the walls, occurring for large
densities. As for the narrow confinement of Lz = 7 above, the range of each layer in
the z-direction is determined by two consecutive minima of the respective density
profile ρxy(z) (also not shown here). A layer is defined to be molten/crystalline
once the first minimum of g2D(r‖) is larger/smaller than 0.15. Clearly, the system
separates along the z-axis and does not show an indication of capillary melting.
However, and as already argued above, we have strong evidence that the observation
of states with a large number of molten layers is a finite-size effect in the simulations.

5Strictly speaking, these states are in equilibrium due to the (small) finite size but only for
larger sizes they would be metastable.
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Figure 7.11: Yukawa-walls: The average number of molten layers on each wall for
the same confinement as in Fig. 7.12 as a function of average density ρ, and as
obtained from the computer simulations. The averages are performed over the left
and the right wall.

7.7 Attractive walls

In the second setup, we study the effect of attractive Lennard-Jones walls. The
corresponding external potential is taken to have the form

VLJ(r) = 10

[
1

z9
− 1

z3
+

1

(Lz − z)9
− 1

(Lz − z)3

]
,

0 < z < Lz .

(7.15)

Recent numerical simulations by Lenz et al [156] have indeed shown that amphiphilic
dendrimers of the second generation, demonstrated to be GEM-particles of the Q±-
class in ref. [192], together with an attractive core wall-particle interaction lead to
very similar effective interaction potentials. The precise shape of the wall potential
depends, of course, on the different molecular interaction parameters. However, a
range of the attraction of the order of σ and a depth of the order of few kBT is
certainly a reasonable assumption. Here, the minimum value of the Lennard-Jones
potential for large Lz is VLJ(zmin

∼= 1.2) ∼= −3.85.
In contrast to the setup with repulsive, Yukawa walls of Section 7.6, the system

now freezes at the walls before freezing in the middle region of the confinement, as can
be seen for Lz = 7 in Fig. 7.13. Note the big difference of cluster population close to
the wall and in the middle of the slit by more than 2 particles per cluster. As for the
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Figure 7.12: Yukawa walls: Simulation snapshots for Lz = 24 and average densities
of ρ = 3.5, 3.7, 4.0 (from top to bottom). The boundaries of the box (Lx = Ly =
9.29) are indicated by thin lines. The Yukawa-walls are situated at the left and at
the right boundaries, respectively. The simulation boxes are oriented differently for
better visibility of the crystalline region in the middle of the box.
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Figure 7.13: Lennard-Jones walls: Laterally-averaged density profiles ρxy(z) for
three different densities above (ρ = 2, 3) and below (ρ = 1) the freezing transition
for Lz = 7 as obtained from the DFT, (a), and the simulation, (b). The numbers
over the peaks denote the average number of particles, nc, occupying a cluster, for
ρ = 3 (top value) and ρ = 2 (in parentheses, lower value). (b) The lateral dimensions
of the periodic simulation box are Lx = Ly = 20.43.
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(k)
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the first three layers of clusters on either of the wall (k is counted from the wall) for
the same confinement as in Fig. 7.13 at average density ρ = 3 (for the definition of
layers see main text).

Yukawa setup, we present in Fig. 7.13(b) results from BD computer simulations for
the same parameters as in the DFT, which show the same quantitative behavior for
ρ = 1 and the same qualitative behavior for ρ = 2, 3. The reversal of the dependence
of crystallinity on the layer-distance from the walls is confirmed by measurements
of the restricted pair-distribution function, g

(k)
2D (r‖), Eq. (7.10), shown for the first

three layers from either wall in Fig. 7.14. Peaks and minima of the pair distribution
function clearly become less pronounced for increasing distance of the layer from the
wall.

Freezing in terms of breaking the xy-symmetry of the system is now mainly a
single-wall effect, which is slightly disturbed by the interaction of the two crystalline
layers on either wall with each other. This is at odds with freezing at the Yukawa
setup, which is a bulk-dominated phenomenon disturbed by the walls. On these
grounds, we denote the surface freezing chemical potential for the Lennard-Jones
setup as μs

f(Lz), in order to distinguish it from the respective capillary freezing
chemical potential μf(Lz) (see below). The bulk phase diagram only enters the stage
once the bulk freezing chemical potential, μf , is approached from below. Interactions
between crystalline layers on either wall are subdominant for wall separations as
small as Lz ≈ 5. This can be ascertained from the dependence of the surface-
freezing chemical potential μs

f (Lz) on Lz, Fig. 7.15, which monotonically approaches
a plateau value of μs

f ≡ μs
f(Lz → ∞) already from Lz = 5 on. By extrapolating
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Figure 7.15: Lennard-Jones walls: Surface freezing chemical potential μs
f(Lz) as a

function of the confinement width Lz for the attractive Lennard-Jones walls.

the phase diagram of Fig. 7.15 to Lz → ∞ we find μs
f
∼= 7.7 which corresponds to

a bulk fluid density of ρ ∼= 1.90. This value, of course, depends on the depth of the
external potential.

Contrary to Yukawa walls, this setup shows capillary freezing from the walls.
Whereas at μs

f(Lz) surface-induced freezing sets in, capillary freezing occurs at a
significantly higher value μf(Lz), which now approaches μf from below as Lz grows,
i.e., μf(Lz →∞) = μf . We note also that freezing on the walls is not only observed
for the prefactor 10 in Eq. (7.15) but for any prefactor, i.e., for a vanishing attractive
part of VLJ(r), implying that surface-induced freezing is an intricate effect which
sensitively depends on the nature of the wall-particle interaction. In particular, for
the system under study the question whether surface-induced freezing or melting is
observed, seems to be mostly a matter of the range or softness of the wall-particle
potential. Our results suggest that there is surface-induced freezing for a hard wall
(as for the Lennard-Jones walls) whereas there is surface-induced melting for a soft
wall (as for the Yukawa-walls).

For small values of Lz, the two minima of the external potential merge and
the system behaves qualitatively the same as for the repulsive Yukawa walls. We
therefore restrict our analysis to Lz ≥ 4. Due to the relatively strong attraction of
the walls, the system favors a hexagonal pattern of clusters on the planar surfaces.
The equilibrium orientation of the (distorted) fcc lattice in confinement is therefore
always the 111-orientation. As the chemical potential is increased beyond μs

f(Lz)
and as the bulk freezing chemical potential μf is approached from below, the number



136 Cluster crystals in confinement

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  2  4  6  8  10  12

� x
y(

z)

z

12.125
12.1

12
11

7.75

Figure 7.16: Lennard-Jones walls: Laterally-averaged density profiles ρxy(z) close to
the left wall for Lz = 48 for different chemical potentials μ = 12.125, 12.1, 12, 11, 7.75
(from top to bottom).

of crystalline layers on either wall grows continuously, as can be seen from the density
profiles for Lz = 24 in Fig. 7.16.

Upon approaching μf from below, we find for the Lennard-Jones walls that the
number of crystalline layers on the walls, Nc(μ), grows continuously and nearly
logarithmically with |Δμ| = |μ − μf | (cf. Fig. 7.17 for Lz = 24, 48). This growth
is eventually interrupted by capillary freezing, which occurs at a chemical potential
μf(Lz). The surface- and bulk-freezing chemical potentials for attractive walls order
as μs

f(Lz) � μs
f � μf(Lz) � μf .

As for the case of the Yukawa walls, we studied two large confinement lengths
Lz = 24 and Lz = 48. We found μf(Lz = 24) = 12.12 and μf(Lz = 48) = 12.16. In
the limit of large Lz and large crystalline film thickness λ, still substantially smaller
than Lz/2, the (local) density of the fluid in the middle of the confining region is very
close to the fluid density of a semi-infinite fluid reservoir on a single Lennard-Jones
wall at infinity, which allows us to define the adsorption as

γ =

∫ Lz/2

0

dz [ρxy(z)− ρxy(Lz/2)] , (7.16)

which is plotted as a function of |Δμ| in the inset of Fig. 7.17.
Following the same reasoning as for the Yukawa walls, the slopes of the logarith-

mic growths of Nc and γ are now given by the correlation length of the (bulk) solid
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Figure 7.17: Lennard-Jones walls: The number of crystalline layers on the walls,
Nc(μ), as a function of the difference between the bulk freezing chemical potential,
Δμ and for two different confinement widths. Note that μf > μ here. Inset: the
adsorption of a crystal layer γ, Eq. (7.16), as a function of |Δμ|.

phase ξs that wets the wall:

Nc � −ξs

c
ln (|Δμ|) + const , (7.17)

γ � −(ρs − ρf )ξs ln (|Δμ|) + const , (7.18)

where c = 1.113 is the distance of neighboring layers of the constrained bulk fcc
crystal, again. By fitting a logarithmic curve to the Nc-data at intermediate Nc

we roughly obtain ξs
∼= 2, roughly twice as large as the fluid correlation length ξf .

As for the specular case of the Yukawa-walls, we cannot rule out the possibility of
a non-continuous growth of the crystalline layer in a single-wall setup. However,
our results for the two confinement widths of Lz = 24, 48 suggest that the crystal
completely wets the Lennard-Jones walls and that the growth of the crystalline film
is only interrupted by capillary freezing.

We present snapshots of BD-computer simulations of the system in planar Lennard-
Jones confinement of Lz = 24 for different average densities in Fig. 7.18. For the
smallest density of ρ = 2.5 the system is only crystalline on the walls. For inter-
mediate density, ρ = 4.0, the system displays two equally large crystalline layers on
both walls, and for ρ = 5.0 the system turns completely crystalline. This behav-
ior is again quantified through the analysis of g

(k)
2D (r‖) for all crystalline/fluid layers

parallel to the confining walls, as in Section 7.6. The resulting average number of
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Figure 7.18: Lennard-Jones walls: Simulation snapshots for Lz = 24 and average
densities ρ = 2.5, 4.0, 5.0 (from top to bottom). The boundaries of the box (Lx =
Ly = 9.29) are indicated by thin lines. The Lennard-Jones walls are situated at the
left and at the right boundaries, respectively. The simulation boxes are oriented
differently for better visibility of the crystalline region in the middle of the box.
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Figure 7.19: Lennard-Jones-walls: The average number of crystalline layers on each
wall for the same confinement as in Fig. 7.18, as a function of average density ρ,
and as obtained from the computer simulations. The averages are performed over
the left and the right wall.

crystalline layers on each wall, Nc(ρ), is plotted as a function of average density in
Fig. 7.19.

7.8 Conclusions

In conclusion, we studied the effect of repulsive and attractive slit-pore confine-
ment on freezing and melting of cluster-forming, ultrasoft, repulsive particles of the
GEM-8-class. For repulsive Yukawa-walls we found that the system freezes from the
middle of the slit whereas for attractive Lennard-Jones walls it freezes at the walls
before freezing in the middle. For small confinement-widths the respective freezing
chemical potentials and liquid-solid coexistence densities display strong oscillations
with varying slit width—the wavelength being equal to the distance of crystal layers
in the bulk. However, whereas the oscillations are very pronounced for Lz � 15 in
the case of the Yukawa-walls, they are damped already for Lz ≈ 5 in the case of the
Lennard-Jones walls. In the case of large confinement-widths we could find strong
indications that upon approaching the bulk freezing chemical potential from above
the Yukawa-walls are completely wetted by fluid whereas upon approaching the
bulk freezing chemical potential from below the Lennard-Jones walls are completely
wetted by the crystal.

Different modifications to the slit-pore geometry and to the particle-wall interac-
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tions are of interest: Whereas in this work both confining walls were of the same kind,
it would be interesting to study the influence of “competing walls” [29]. Further,
the crystal arrangement at the walls is very sensitive towards structured/patterned
substrates [33, 118, 121, 122]. Moreover, slit pore confinement is a reference model
for more complicated geometries such as porous media [141]. Confinement has also
intriguing implications for the diffusive dynamics in and out of equilibrium. For
equilibrium fluids in planar confinement, it has been recently demonstrated that
both lateral and perpendicular diffusivities, D‖ and D⊥, are enhanced at z-positions
of higher average one-particle density ρxy(z) as compared to the regions of lower
density [99, 187]. For cluster-forming, GEM-n particles, diffusive dynamics features
novel characteristics, since even crystals now display nonzero long-time diffusivities,
due to the presence of activated hopping processes [162, 193]. It would be interest-
ing to examine the behavior of D‖ and D⊥ in confinement, calculated separately for
each layer, for the case at hand. Bulk studies [162, 193] have revealed an essentially
Arrhenius-type behavior, D ∼ exp(−βEA), of the long-time diffusivity, with an ac-
tivation energy EA proportional to ρ. It is interesting to find out to what extent
this law holds also locally for each layer formed in slit-pore confinement. Recently,
the relaxation dynamics of a fluid of Gaussian particles in a temporally oscillating,
spherical, harmonic trap has been studied using computer simulations and dynam-
ical density functional theory [232]. The latter method is an extension of the DFT
to overdamped non-equilibrium dynamics [10, 75, 179], which has recently also been
used to study crystal growth in 2D.6 It would be interesting to employ dynamical
density functional theory to study the relaxation of cluster crystals upon sudden or
temporally periodic changes of the slit-pore confinement.
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Chapter 8

Dynamics of a Brownian circle
swimmer1

Abstract

Self-propelled particles move along circles rather than along a straight line when their
driving force does not coincide with their propagation direction. Examples include
confined bacteria and spermatozoa, catalytically driven nanorods, active, anisotropic
colloidal particles and vibrated granulates. Using a non-Hamiltonian rate theory and
computer simulations, we study the motion of a Brownian “circle swimmer” in a
confining channel. A sliding mode close to the wall leads to a huge acceleration as
compared to the bulk motion, which can further be enhanced by an optimal effective
torque-to-force ratio.

Active particles, which are self-propelled by their own motor, exhibit a wealth of
novel and fascinating nonequilibrium effects such as giant density fluctuations [261],
swarming [281], and swirling [148]. Examples are found in quite different areas
of physics and include micro-organisms propelled by flagella in a fluid [24, 71, 125,
236, 298], man-made colloidal swimmers [73], catalytically driven nanorods or Janus
particles [66, 286], vibrated granulates of polar rods [148, 199], and pedestrians [120].
Typically it is assumed that the swimmers move along their symmetry axis such that
the force and the particle orientation are in line. This leads to a motion along a
straight line just perturbed by random (e.g., Brownian) fluctuations.

1This chapter was published by Sven van Teeffelen and Hartmut Löwen in Phys. Rev. E 78
(2008), 020101(R) (arXiv:0803.2008). It is reprinted with permission from the American Physical
Society, Copyright 2008. It was selected for publication in the September 2008 issue of the Virtual
Journal of Nano Science & Technology (http://www.vjnano.org/).
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Here we study the case in which the internal force propelling a colloidal par-
ticle does not coincide with the particle orientation. In the absence of Brownian
fluctuations, this will lead to an overdamped motion along a closed circle, there-
fore we refer to this particle as a “circle swimmer.” Even a slight misalignment of
the drive direction will result in circle swimming, which is thus the generic case of
self-propulsion. Circle swimmers with a pronounced curved trajectory are realized
in nature and can be artificially prepared: In fact, it has been shown that certain
bacteria [24, 71, 125, 151] and spermatozoa [236, 298], when confined to two dimen-
sions, swim in circles. Moreover, catalytically driven nanorods [66, 286] and colloidal
particles [73] can be prepared with a tilted motor, and a vibrated polar rod [148] on
a planar substrate with an additional left-right asymmetry will move along circles.
Last but not least, the trajectories of completely blinded and ear-plugged pedestri-
ans have a significant circular form [201]. Despite their practical importance, the
Brownian dynamics of a circle swimmer has not yet been addressed by theory and
simulation either in the bulk or under confinement.2

In this chapter, we propose a simple model for Brownian motion of a circle swim-
mer in two spatial dimensions arising from the combined actions of an internal self-
propelling force and a torque. We solve the Langevin equation of a two-dimensional
circle swimmer analytically in the bulk providing a suitable reference model. The av-
eraged position falls on a spira mirabilis, and a crossover from an oscillatory ballistic
to a diffusive behavior is found in the mean-squared displacement. We then identify
the modes of propagation of a circle swimmer in confining channels with repulsive
walls using computer simulations and a non-Hamiltonian rate theory. In symmetric
channels, the long-time self-diffusion coefficient DL is significantly enhanced medi-
ated by an efficient sliding mode of a tilted rod close to a wall. Furthermore, DL

is nonmonotonic in the torque. Finally, in asymmetric channels which are lacking
a left-right symmetry (e.g., due to gravity [145]), the sliding mode of the circle
swimmer yields a ballistic motion along the wall.

Neglecting hydrodynamic interactions, the overdamped motion of the Brownian
circle swimmer in two dimensions is governed by the Langevin equations for the rod
center-of-mass position

ṙ = βD · [F û−∇V (r, φ) + f ] (8.1)

and for the rod orientation

φ̇ = βDr [M − ∂φV (r, φ) + τ ] , (8.2)

respectively, where dots denote time derivatives and β−1 = kBT is the thermal
energy. The rod’s short time diffusion tensor

D = D‖(û⊗ û) +D⊥(I− û⊗ û) (8.3)

2We note that in three spatial dimensions misalignment of internal direction and force leads to
motion along spirals which has been observed for bacteria, see ref. [260].
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is given in terms of the short time longitudinal (D‖) and transverse (D⊥) transla-
tional diffusion constants, with û = (cosφ, sinφ), I the unit tensor and ⊗ a dyadic
product. Dr is the short time rotational diffusion constant. F û is a constant ef-
fective internal force that represents the propulsion mechanism responsible for the
deterministic motion in the rod orientation, and M is a constant effective internal or
external torque yielding the deterministic circular motion (see the sketch in Fig. 8.1).
V (r, φ) is an external confining potential. f and τ are the zero mean Gaussian white
noise random force and random torque originating from the solvent, respectively.
Their variances are given by

f‖(t)f‖(t′) = 2δ(t− t′)/(β2D‖) (8.4)

f⊥(t)f⊥(t′) = 2δ(t− t′)/(β2D⊥) (8.5)

τ(t)τ(t′) = 2δ(t− t′)/(β2Dr) , (8.6)

where f‖, f⊥ are the components of f parallel and perpendicular to û, respectively.
The bars over the quantities denote a noise average. We remark that for an active
self-propelled particle, F and M are effective net forces that could be determined in
the bulk from the forward and angular velocities F = |�̇r|/(βD‖) and M = |φ̇|/(βDr),
respectively, but are not necessarily directly connected to the internal propulsion
mechanism [228].

At first we consider the free circle swimmer, i.e., we set V (r, φ) = 0. In the limit
of zero temperature, the rod center of mass would describe a perfect circle of radius
R = (D‖F )/(DrM), with the circular frequency ω ≡ βDrM . For finite temperature
all moments of r and φ can be calculated exactly. The first and second moments of
φ(t) are simply given by

φ = φ0 + ωt , (8.7)

Δφ2 = [φ(t)− φ0]
2 = (ωt)2 + 2Drt , (8.8)

where φ0 = φ(t = 0), and where we let φ run ad infinitum. The first two moments
of Δr ≡ r(t)− r(0) are given by

Δr =λ
[
Drû0 + ωû⊥0 − e−Drt

(
Drû+ ωû

⊥) ]
Δr2 =2λ2

{
ω2 −D2

r +Dr(D
2
r + ω2)t

+ e−Drt
[
(D2

r − ω2) cos(ωt)− 2Drω sin(ωt)
]}

+ 2(D‖ +D⊥)t ,

(8.9)

with λ = βD‖F/(D2
r + ω2), û0 = (cos φ0, sinφ0), û⊥0 = (− sinφ0, cosφ0), û =

(cosφ, sinφ), and û
⊥
= (− sin φ, cosφ), i.e., Δr describes a spira mirabilis.

We consider a very thin rod of length L, where Dr/D‖ = 3/(2L2), D⊥ = D‖/2.
We will denote all times in units of τB = L2/D‖, lengths in units of L, and energies
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Figure 8.1: Trajectories of the mean position r of the self-propelling rod for fixed
βFL = 10, βM = 0.2, 1, 5, 25 (r0 = 0, φ0 = 0). Left inset: the mean-square
displacement Δr2 for the same force and torques, but also for βFL = 0, βM = 0
(lowermost curve). Right inset: a typical trajectory of the rod for βFL = 25,
βM = 10, for times 0 < t < τB. Lower right inset: Sketch of the self-propelled circle
swimmer.

in units of β−1. Different regimes are distinguished in terms of the dimensionless
quantities Dr/ω and βFL. The latter determines whether the rod’s erratic motion
is dominated by the kicks of the solvent particles or by the self-propulsion. The
former is the ratio of the ballistic over the random turning rate. In Fig. 8.1, we
show Δr for different internal torques M and a typical trajectory of the rod position
during two complete turns. In the second inset of Fig. 8.1 we display Δr2, which
shows deterministic behavior for t � 1/Dr while for large times the swimmer moves
in a random fashion according to Δr2 ∝ t.

Next, we introduce a confining, integrated segment-wall power-law potential in
the x direction,

V (x, φ) =

∫ L

0

dl v [x′(l)] + kx (8.10)

with

v(x′) ≡ (βL)−1

{[
L

x′

]n

+

[
L

(Lx − x′)

]n}
, (8.11)

where Lx is the channel width, n = 24 is a large exponent, and x′(l) is the x position
of the rod segment at contour length l (see the right inset of Fig. 8.2). In case the
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solvent is confined as well, hydrodynamic interactions between the particle and the
wall lead in principle to an x-dependent diffusion tensor [74], which is ignored in our
model. An additional gravitational force in the x direction [145] of strength k will be
applied later, but we focus first on the symmetric case k = 0. At zero temperature,
for a not too large ratio M/LF and under appropriate initial conditions (r0, φ0), the
tilted swimmer performs a steady-state sliding motion along either of the two walls
with a constant x-position close to the wall and with a constant angle φ determined
by the steady-state conditions ẋ = 0, and φ̇ = 0, respectively. Without loss of
generality, we consider the case M > 0, i.e., the rod rotates counterclockwise, such
that it slides upwards along the left wall (see the sketch in Fig. 8.2). In the limit of
hard walls (n → ∞), the two solutions to the set of steady-state equations can be
given explicitly as

xs/u = L

(
1− 1

2
cosφs/u

)
, (8.12)

i.e., the front rod tip sits on the wall, and

cos2 φs/u =
1− 2

(
M
LF

)2 ∓
√
1− 8

(
M
LF

)2

2 + 2
(

M
LF

)2 , cos φs/u < 0 , (8.13)

where the minus sign corresponds to the stable (φs) and the plus sign to the unstable
(φu) solution. Clearly, for 2

√
2M/LF > 1 there is no solution to the steady-state

conditions, but the rod keeps on rotating. For large exponents n, the asymptotic
steady-state velocity in the y direction is given by vy � D‖F sin φs/(1 + cos2 φs).

The sliding mode is also present at finite temperature. However, by thermal fluc-
tuations the rod eventually leaves the wall and reaches the opposite wall under an
appropriate angle for the respective sliding mode in the opposite y direction, which
we refer to as “flipping.” Consequently, the circle swimmer moves diffusively accord-
ing to Δr2 � 2DLt, with DL the long-time translational diffusion coefficient. This
picture is clearly confirmed by Brownian dynamics computer simulations, averaged
over 1000 independent simulation runs, as shown in Fig. 8.2.

For large βFL, large βM , and a channel width of the order of the circle radius
(Lx � R), the average time the swimmer spends in its stable mode on either of the
walls is large as compared to the duration of a flip. Thus, the swimmer effectively
performs a one-dimensional random walk with a typical step length a � vy/γ, where
γ is the flipping rate. This random walk leads to a long-time diffusion coefficient
of DL � v2

y/γ, which we display as a function of internal torque M for different
wall-wall separations Lx in Fig. 8.3.

It is clearly seen from the simulations [Fig. 8.3(a)] that the diffusion in the
channel is strongly enhanced as compared to the diffusivity of the free swimmer. In
particular, this strong enhancement is already observed for M = 0, as the narrow
walls constantly align the rod in the y direction. However, the diffusion eventually
slows with increasing wall-wall separation Lx. For intermediate M/LF ≈ 0.15,
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Figure 8.2: Mean-square displacement Δr2 in confinement (βFL = 60, Lx = 8L)
without gravity and with zero torque (black), without gravity and with finite torque
(red), and with torque and gravity (blue). The left inset displays the rod sliding
along the walls. The right inset shows the confining potential without (left) and
with (right) gravity.

diffusion is enhanced even further—in the simulations [Fig. 8.3(a)] by an order of
magnitude—displaying a much smaller dependence on Lx. This non-monotonic
behavior of DL as a function of M is due to the stability of the sliding mode.

To understand the nontrivial interplay of F , M , and Lx in more detail, we
identified from the simulations three different paths, (a), (b), and (c), dominating
the flipping rate γ. They all describe the transition from a stable mode at the left
wall (φs, xs) to another at the right wall (φs+π, Lx−xs) due to fluctuations in the rod
orientation φ, whereas the translational motion just follows the internal force F and
the confining potential V (r, φ).3 These three different paths are sketched in Fig. 8.4
and are described as follows: The rod can slip out of its stable sliding mode by
fluctuating in the direction of the torque [path (a)] or by fluctuating against it [path
(b)]. In path (a), detachment from the (left) wall, which amounts to overcoming a
barrier in the torque/angle from φs to φu, most likely also leads to finding the stable
mode on the other (right) wall (for Lx � R). Path (b), however, is only successful if
the rod orientation is subject to strong and fast fluctuations which enable it to make
a turn of an angle (−π+φu−φs) before reaching the other wall. This explains why

3This assumption is clearly justified for large ratios Dr/D‖, Dr/D⊥ 	 1/L2, and FL/M 	 1.
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Computer simulation, (b) rate theory.

for intermediate torques and small Lx, another important three-stage path (c) is
dominating. This path is initiated by a small fluctuation of the orientation against
the direction of the torque, from φs toward π/2 on the (left) wall. In a second stage,
the swimmer approaches the other (right) wall at a small, constant turning velocity
φ̇, reaching it after only a short time due to its strong internal force. By the other
(right) wall it is reoriented in an upward direction before, in a third stage, turning
quickly in the direction of the torque such that it reaches the original (left) wall at
an angle φu. The flipping rate is now given by the path integral

γ ∝
∫

Dφ exp(−βS[r, φ]/4) , (8.14)

keeping initial and final configurations of φ and x appropriately fixed. Here, the
Onsager-Machlup action [206]4 is given by

S[r, φ] =

∫ ∞

0

dt′ |∂t′φ(t
′)−M + ∂φV (r(t′), φ(t′))|2 , (8.15)

4For a recent generalization of the Onsager-Machlup theory to non-equilibrium steady states,
see ref. [269].
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Figure 8.4: Top panel: the paths governing the flipping rate: (a) turning in the
direction of the torque, (b) turning against the direction of the torque, (c) three-
stage event—first, turning in the direction of the torque and then turning against
it. Bottom panel: The rates of the three different paths as a function of M/LF for
βFL = 60, Lx = 8L.

with t′ = βDrt the normalized time. Note that our system is non-Hamiltonian due
to the internal driving force and the translation-rotation coupling. Hence, the least
action path cannot be found as the minimum energy path in some energy landscape,
as vastly studied in the literature [205, 279]. In contrast, we now construct a non-
Hamiltonian rate theory by assuming that—in the limit of large forces βFL—the
flipping rate γ is dominated by either of the three paths [i = (a), (b), (c)], identified
in the simulation. The respective minimum actions are given by Si[ri, φi], with
φi(t

′) minimizing the action subject to the constraints [φi(0) = φs, xi(0) = xs] and
[φi(∞) = φs±π, xi(∞) = Lx−xs], where the plus sign corresponds to paths (a) and
(c), and the minus sign to path (b). Paths (a) and (b) [(c)] are further constrained
by the condition not to reach (to reach) the initial wall between the initial and the
final stage.

In order to calculate the associated actions for the different paths, we divide the
trajectories into parts where the front rod tip sits on the original (left) wall and into
parts where the rod moves at a constant turning velocity φ̇i in between the walls. The
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former parts can then be expressed as the barrier heights 4
∫ φm

φs
dφ|M − ∂φV | [205],

with φm = φu for path (a) and φm = π/2 for paths (b), (c), whereas the latter are
simply given by |∂t′φi −M |2t′max, t′max being the normalized time it takes to swim
from one wall to the other (t′max is chosen to minimize the action). The individual
rates are roughly given by

γi ≈ τ−1
B exp[−βSi/4] , (8.16)

where the kinetic prefactors are crudely approximated by 1/τB, and plotted in
Fig. 8.4. Summation over the individual rates yields the long-time diffusion co-
efficient

DL ≈ v2
yγ
−1, γ �

∑
i

γi , (8.17)

plotted as a function of M for different Lx in Fig. 8.3(b). The rate theory reproduces
clearly the Lx dependence and the nonmonotonicity of DL as a function of M and
attributes it to different rates of the paths (a) and (c). Moreover, the maximum in
DL is predicted to be weakly dependent on Lx in agreement with the simulations.
However, the actual values of the rate theory differ from the simulation data due to
the crude approximation made for the kinetic prefactors.

Finally, we study the effect of an additional gravitational field in the x direction
(k > 0), breaking the symmetry of the channel potential (see the right inset of
Fig. 8.2). On average, the swimmer is now situated more on the left than on the
right channel wall, such that the sliding mode becomes ballistic (see Fig. 8.2).

In conclusion, we have studied the dynamic behavior of a self-propelled Brownian
rod performing circular motion. In the bulk, the analytical solution reveals long-
time diffusive behavior. In channel confinement, an efficient stable sliding mode
was identified that strongly enhances the long-time diffusion along the channel as
obtained by computer simulation and a non-Hamiltonian rate theory. If the channel
is asymmetric, the sliding mode leads to ballistic long-time motion.

The sliding motion of circle swimmers can be verified in experiments with differ-
ent set-ups: First, catalytically driven nanorods [66, 286] and self-propelled magnetic
colloidal rods confined to a microchannel [145] will exhibit sliding [183]. Second, con-
fined bacteria [24, 71, 125] and spermatozoa [236, 298] move in two dimensions along
circles. In fact, the typical radius of the observed circular motion is in the range of
10 − 1000μm for spermatozoae [236, 298] and of the order of 50μm for Escherichia
coli bacteria [24]. Therefore, the radii are typically larger but comparable with the
particle sizes. When these particles are exposed to microchannels of similar widths
as the observed radii, as realized for the bacteria [71], the predicted huge accel-
eration behavior should be observed, as has already been seen in 3D [24]. Third,
vibrated polar granular rods [148] with an additional left-right asymmetry perform
circle motions. When placed into a slit geometry, a sliding effect may be observed
here as well.
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Accelerating the dynamics in the channel by tuning the torque may be exploited
as a mechanism to separate a certain species out of a crowded solution of differ-
ent active particles. If a microfluidic channel is connected to a bulk mixture, the
species moving quickest along the channel will arrive first at the channel end and
can efficiently be removed. This might be more efficient than traditional separation
techniques such as capillary electrophoresis [238].
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determining clustering versus reentrant melting behavior for bounded interac-
tion potentials. Phys. Rev. E 63 (2001), 031206.

[161] Likos, C. N., Mladek, B. M., Gottwald, D., and Kahl, G. Why
do ultrasoft repulsive particles cluster and crystallize? Analytical results from
density functional theory. J. Chem. Phys. 126 (2007), 224502.

[162] Likos, C. N., Mladek, B. M., Moreno, A. J., Gottwald, D., and

Kahl, G. Cluster-forming systems of ultrasoft repulsive particles: statics and
dynamics. Computer Physics Communications 179 (2008), 71.



BIBLIOGRAPHY 163

[163] Lin, S. Z., Zheng, B., and Trimper, S. Structure and dynamics of repul-
sive magnetorheological colloids in two-dimensional channels. Phys. Rev. E 73
(2006), 066106.

[164] Lovett, R., Mon, C. Y., and Buff, F. P. The structure of the liquid-
vapor interface. J. Chem. Phys. 65 (1976), 570.
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