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Abstract

Molecular phylogenetics, the study of reconstructing evolutionary trees, is a well-estab-

lished field of scientific endeavor. However, in certain circumstances evolution is not com-

pletely tree-like. For example, a comparison of gene trees representing a set of present-day

species and reconstructed for different genetic loci often reveals conflicting tree topolo-

gies. These discrepancies are not always due to missampling or difficulties in the gene

tree reconstruction method, but rather due to reticulation events such as horizontal gene

transfer (HGT) and hybridization. During an HGT event, a DNA segment is transferred

from one organism to another which is not its offspring, whereas hybridization describes

the origin of a new species through a mating between two different species. Both pro-

cesses yield genomes that are mixtures of DNA regions derived from different ancestors.

Consequently, evolutionary relationships between species whose past includes reticulation

can often be better represented by using phylogenetic networks rather than trees.

The main focus of this thesis is to develop new biologically motivated theoretical frame-

works that provide insight into the extent to which reticulation events have influenced

evolution. First, we have implemented the exact algorithm HybridNumber to compute

the minimum number of hybridization events for two rooted binary phylogenetic trees.

This approach is based on the notion of agreement forests and uses three rules that reduce

the size of the problem instance, before calculating the hybridization number. We applied

HybridNumber to a grass data set and analyzed the extent of hybridization. We also

approached the question whether hybridization events have occurred relatively recently

or in the distant past. Furthermore, since many biological data sets lead to reconstructed

gene trees that are not fully resolved, we extended the above mentioned framework for

rooted phylogenetic trees and showed that calculating the minimum number of hybridiza-

tion events for two such trees is fixed-parameter tractable.

Second, we present a new likelihood framework to estimate a rate of HGT for a set of

taxa. To this end, we simulate an increasing number of HGT events on a species tree to

obtain a tree distribution that can be used to estimate an HGT rate for a set of gene trees.

This framework was applied to the COG (Clusters of Orthologous Groups of Proteins)

data set and inaccuracies due to the gene tree reconstruction method were considered.

Finally, we give a new result on how to speed up the exact calculation of the rooted

subtree prune and regraft distance between two trees which is often used to model reticu-

lation events and end with two interesting examples that give rise to questions for future

research.
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1 Introduction

1.1 Phylogenetic Trees and Networks

Since Charles Darwin’s first sketch of a phylogenetic tree in 1837, one of the main goals of

evolutionary biologists is to reconstruct phylogenetic (evolutionary) trees which correctly

represent the ancestral history of a set of present-day species. In such trees, each leaf

represents an existing species, while the internal vertices correspond to hypothetical (ex-

tinct) ancestors, and edges, alternatively called branches, show the relationships between

ancestors and their descendants.

While the reconstruction of evolutionary trees was based on morphological characters

first, the vast majority of data sets that are nowadays used to infer the history of life

consists of biological sequence data like nucleotide and protein sequences. This has been

made possible by the progress in the field of molecular biology. Accompanied by the

development of efficient DNA sequencing technologies, like the shotgun method (Venter

et al. 1998), and a detailed computer-based analysis of the results, sequences obtained

from many genome sequencing projects are freely available from publicly accessible data

bases (e.g. Genbank1 and EMBL2). Due to the exponentially growing amount of data3

that is stored in such data bases, it is of utmost importance to analyze these data in a

fast and efficient—but also accurate—way. In the field of phylogenetics, this means that

models have to be developed that aim at analyzing the manifold and complex processes

that have occurred during the evolution of the current diversity of species.

Until today, research in phylogenetics is mainly focused on developing methods to

reconstruct trees that best represent the evolutionary history for different sets of taxa.

Since the fossil record is incomplete, researchers mostly rely upon sequence data of con-

temporary species to reconstruct phylogenetic trees. Essentially, there exist three types of

such methods: (1) distance-based methods like UPGMA (unweighted pair group method

with arithmetic mean) (Sokal and Michener, 1958, Sneath and Sokal, 1973) and neighbor-

joining (Saitou and Nei, 1987), (2) methods based on the parsimonious principle like

maximum parsimony (Fitch, 1971), and (3) statistical-based methods like maximum like-

lihood (Felsenstein, 1981) and the closely related Bayesian method introduced by Rannala

and Yang (1996). We refer the interested reader to Felsenstein (2004), where these and

other tree reconstruction methods are described in detail.

1http://www.ncbi.nlm.nih.gov/
2http://www.ebi.ac.uk/embl/
3http://www3.ebi.ac.uk/Services/DBStats/
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Under the usual assumption that species are evolving from a common ancestor by a

simple branching process, the previously mentioned tree-based approaches work well and

a lot of progress has been made in recent years. However, processes like hybridization,

horizontal gene transfer (HGT), and recombination—collectively referred to as reticula-

tion events—result in species whose genomes are mixtures of DNA regions derived from

different ancestors. Consequently, the analysis of different genetic loci often reveals in-

compatibilities between gene trees (McBreen and Lockhart, 2006). Inferring phylogenies

in the presence of reticulation has turned out to be more complicated, because it has

become apparent that the history of life cannot be properly represented by a tree and

that phylogenetic networks are more appropriate in those cases.

Phylogenetic networks are a generalization of evolutionary trees that allow for a si-

multaneous visualization of several conflicting or alternating histories of life. They are

necessary if the evolutionary past includes reticulation. Even if the relationships between

species are tree-like, phenomena like sampling error, parallel evolution, or model hetero-

geneity can make it difficult to represent evolution by a single tree (Gascuel, 2005). By

considering analyses in which phylogenetic networks play an important role, it becomes

obvious that there exist two fundamental types of such networks, namely implicit ones

that aim at representing incompatible signals in a data set and explicit networks that

provide a concrete scenario of reticulate evolution (Huson, 2007). Approaches that re-

construct networks of the former type are often based on split networks which represent

all splits contained in a set of gene trees. Each parallelogram of the resulting network

corresponds to two incompatible splits. Details of methods that describe how to obtain

such a network are given by Bandelt et al. (1995), Bryant and Moulton (2002), Dress and

Huson (2004), and others. Explicit networks model non-tree-like evolution and purpose

to point out which lineages have undergone reticulation events. Examples of this type of

networks are given by Gusfield and Bansal (2005) and Huson et al. (2005). An extended

list of approaches to reconstruct phylogenetic networks can be found in Huson (2007),

where detailed background information of some methods is also provided.

1.2 Processes of Reticulate Evolution

The upcoming two sections shed light on the biological processes of hybridization and

HGT and point out why the extent to which reticulation events have influenced the

evolutionary history of certain groups of species is still critically discussed.
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1.2.1 Hybridization

Analyses that focus on the extent to which hybridization has influenced the evolutionary

past of groups of present-day species have been an active and controversially discussed

field of research for many years, and even several definitions of the term hybridization

have been suggested (Harrison, 1993). For the purpose of this thesis, we refer to the

origin of a new species through a mating between individuals of two different species

as a hybridization event. This definition is commonly used by evolutionary biologists,

whereas plant and animal breeders often describe hybridization as a crossing between ge-

netically distinct individuals (Arnold, 1997). During a hybridization event, the genomes

of two distinct species recombine such that the new species has either the same number of

chromosomes as its parents (diploid hybridization) or the sum of all parent chromosomes

(polyploid hybridization). In the latter case, the hybrid species is said to be allopolyploid.

Hybrid species are sometimes adapted to habitats which are different from those of their

parents (Rieseberg et al., 2003). Additionally, hybridization can be seen as a source of

genetic variation and functional novelty and, therefore, many researchers opine that hy-

bridization plays an important role in evolution because of its contribution to an increased

biological diversity (Seehausen, 2004, and references therein). On the other hand, hybrid

events can lead to less viable or infertile offspring such that other scientists argue against

a fundamental role of hybridization in evolution (e.g. Mayr, 1992).

Eukaryotes whose evolutionary history contains hybridization events include certain

groups of plants (e.g. Ellstrand et al., 1996, Arnold, 1997), birds (e.g. Grant and Grant,

1992), and fish (e.g. Hubbs, 1955). Besides these groups of organisms for which hy-

bridization events are widely accepted, a number of publications exist that also report

on spontaneous hybridization events in the evolutionary history of mammals (e.g. Mallet,

2005, 2007) and even primates (e.g. Arnold and Meyer, 2006, Cortes-Ortiz et al., 2007). A

review of hybrid species is given by Mallet (2005). This article also contains a comparison

of the numbers of species that hybridize in different groups of organisms. The results

indicate that a rounded average of 10 % of all species are involved in hybridization events;

of course, some groups of organisms are hotspots of hybridization (e.g. vascular plants

and British Duck species).

1.2.2 Horizontal Gene Transfer (HGT)

HGT is defined to be any process different from vertical inheritance in which an organism

transfers a DNA segment to another organism that is not its offspring (Bushman, 2002).
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HGT is known as an important mechanism to shape the genomes of bacteria (e.g. Ochman

et al., 2000, Boucher et al., 2003) through three common mechanisms:

Conjugation, a process in which a bacterial cell transfers DNA into another bacterial

cell via a cell-to-cell contact.

Transduction, a process in which a piece of DNA is transferred from a donor bacterial

cell into an recipient bacterial cell by a bacteriophage.

Transformation, genetic modification of a bacterium due to an uptake of naked DNA.

For a more detailed description of these three processes, we refer the interested reader to

Madigan et al. (2005). As a result of HGT, bacterial cells which have acquired new DNA

are often better adapted to ecological niches or have an increased drug (mainly antibiotic)

resistance (Maiden, 1997).

Recently, there is an accumulation of data indicating that HGT has also occurred

in the evolution of eukaryotes (de la Cruz and Davies, 2000, Bergthorsson et al., 2003,

Andersson, 2005) and archaea (Nelson et al., 1999, Diruggiero et al., 2000). In 2001,

Salzberg et al. even reported about 40 genes of the human genome that are exclusively

shared by humans and bacteria and, therefore, are candidate examples for HGT. Of course,

the three processes of conjugation, transduction, and transformation are most likely less

common in eukaryotes than in prokaryotes (Andersson, 2005). Nevertheless, there are

other possible pathways how eukaryotes can take up DNA from non-parental organisms,

e.g. by phagocytosis, symbiosis, and transfection (Gogarten, 2003).

Although HGT is widely accepted as a driving force in the innovation and evolution

of genomes, especially for prokaryotes, its extent and impact on the evolutionary process

and the phylogeny of species remain controversial (Choi and Kim, 2007). Similar to

hybridization, arguments range from the one extreme that HGT plays an important role in

evolution such that phylogenetic trees may be inappropriate to represent the evolutionary

history of bacteria (Doolittle, 1999, Garcia et al., 2000, Gogarten et al., 2002), to the other

extreme that the impact of HGT in bacterial evolution is greatly overestimated (Kurland

et al., 2003).
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1.3 Inferring Reticulate Evolution

Within the last few years, the number of publications that discuss newly developed meth-

ods to infer reticulate evolution has increased quickly. The suggested approaches use

various combinations of ideas originating from the three disciplines biology, computer

science, and mathematics. In the following, we give a short overview of such methods.

Focusing on the detection of HGT events, there are mainly four different types of

analyses which are summarized below. Since each of these approaches has its own advan-

tages and drawbacks, it is useful to combine several types of analyses to obtain significant

results. However, it is important to note that the limitation of combined approaches is

that each method is designed to detect transfers of different types and ages (Eisen, 2000).

(i) The nucleotide composition (e.g. guanine-cytosine (GC) content) which is variable

among different species but relatively constant for a particular species’ genome can

be used to detect alien DNA by comparing the GC content of neighboring DNA

regions. Lawrence and Ochman (1997) applied this approach to the Escherichia

coli chromosome and analyzed which parts of the genome are candidates for hori-

zontally transferred genes. They also pointed out that alien DNA inserted into an

acceptor genome reflects the base composition of the donor genome at the time of

introgression, and that the newly acquired DNA will ameliorate to reflect the DNA

composition of the acceptor over time. Hence, this approach is particularly useful

to detect recently transferred DNA.

(ii) A comparison of phylogenetic trees reconstructed for different genetic markers can

indicate conflicting relationships among taxa, which might be the result of reticu-

lation events like HGT or hybridization. Overall, phylogenetic analyses are robust

indicators of reticulation, but it is important to consider that alignment and tree

reconstruction methods can lead to incompatible gene trees by themselves.

(iii) Homology-based approaches are used to determine genes that are (exclusively) ho-

mologous to distantly related species by using a BLAST (Basic Local Alignment

Search Tool) search (Altschul et al., 1997). On the one hand, this is a rapid method

to detect HGT but, on the other hand, the size of the data base can affect the

results and the similarity score of two sequences does not always accurately indicate

evolutionary relationships.

(iv) Gene present and absent patterns are often compared to detect candidate genes for

HGT (Hao and Golding, 2006). For example, the presence of a gene in a genome that

is also found in the genome of distantly related species, but not in closely related
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species, can indicate the occurrence of HGT. However, this type of analysis does not

perform well for highly conserved universal genes, and the alternative hypothesis of

gene loss should also be considered.

Recently, a number of algorithms has been developed which heuristically calculate

the number of reticulation events for two phylogenetic trees T and T ′. For example,

RIATA-HGT (Nakhleh et al., 2005a) is a polynomial-time heuristic that calculates an

agreement forest (see Section 2.2) by repeatedly finding a maximum agreement subtree to

decompose T and T ′. Another popular approach uses rooted subtree prune and regraft

(rSPR) operations (see Section 1.4.4) to model reticulation events. More precisely, given

T and T ′, the minimum number of rSPR operations is calculated that transform T into

T ′. Beiko and Hamilton (2006) developed the program EEEP (Efficient Evaluation of

Edit Paths) that bounds the number of rSPR moves between two phylogenetic trees,

subjected to evolutionarily reasonable constraints that reduce the overall computational

burden. Hallett and Lagergren (2001) implemented the heuristic LatTrans to model

HGT by calculating an rSPR distance with certain direction and time constraints. Again,

using the idea of calculating the rSPR distance, MacLeod et al. (2005) developed the

algorithm HorizStory. This heuristic detects HGT events by first eliminating identical

rooted subtrees in T and T ′ before applying rSPR operations to transform the resulting

trees. In contrast to other approaches in this field of research, HorizStory can also be

applied to multifurcating trees. This is of interest because the exact order of speciation

events is often unknown (see Chapter 5) due to insufficient sequence information.

In addition to these heuristics, a small number of approximation algorithms have been

developed that calculate the rSPR distance between two phylogenetic trees. For example,

Bonet et al. (2006) revised the idea of Hein et al. (1996) and the authors have shown

that building an agreement forest locally by taking into account sibling pairs yield a 5-

approximation algorithm, whereas Bordewich et al. (2008) approached the problem by

considering so-called incompatible rooted triples and overlapping components to show

that a careful analysis results in a 3-approximation.

1.4 Preliminary Notation

In this section, we introduce some basic definitions and terminology in the field of phy-

logenetics that is needed throughout this thesis. Unless stated otherwise, the notation

follows Semple and Steel (2003).
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1.4.1 Graphs

A graph G is an ordered pair (V, E) that consists of a non-empty set V of vertices and

a multiset E of edges such that each edge is an element of {{x, y} : x, y ∈ V }. A walk

is a sequence of at least two vertices v1, v2, . . . , vk such that, for all i ∈ {1, 2, . . . , k − 1},

there is an edge {vi, vi+1} in E. Additionally, a path is a walk in which all vertices vi with

i ∈ {1, 2, . . . , k} are distinct. A cycle in G is a walk whose first and last vertices are equal,

whereas all other edges and vertices are pairwise distinct. Moreover, a graph is said to

be connected if V is a singleton or if there exists a path from u to v for all u, v ∈ V with

u 6= v. Let v be a vertex of G. The degree of v, denoted by d(v), is the number of edges

in G that are incident with v.

A directed graph or digraph D is an ordered pair (V, A) that consists of a non-empty set

V of vertices and a multiset A of arcs such that each arc is an element of {(x, y) : x, y ∈ V }.

In general, the terminology for digraphs is similar to that for graphs. However, for com-

pleteness, we now give some of the basic definitions for digraphs. If a = (u, v) is an element

of A, then the arc a is said to be directed from u to v. A directed walk is a sequence of

at least two vertices v1, v2, . . . , vk such that, for all i ∈ {1, 2, . . . , k − 1}, there is an arc

(vi, vi+1) in A. Additionally, a directed path is a directed walk in which all vertices vi, for

all i ∈ {1, 2, . . . , k}, are distinct. We say that D contains a directed cycle if there exists a

directed walk in D whose first and last vertices are equal and all other edges and vertices

are pairwise distinct. As a consequence, D is called acyclic if there exists no directed

cycle in D. A digraph D is (weakly) connected if replacing all of its arcs with undirected

edges leads to a connected graph. In directed graphs, we often distinguish between the

indegree of a vertex v, denoted d−(v), that is the number of arcs directed into v, and the

outdegree of v, denoted d+(v), that is the number of arcs directed out of v.

1.4.2 Trees

A tree T = (V, E) is a connected graph with no cycles. Let v be a vertex of V . If

d(v) ≤ 1, then v is called a leaf or, otherwise, if d(v) > 1, then v is referred to as an

internal vertex. A rooted tree is a tree that has exactly one distinguished vertex called

the root. The root is an internal vertex unless it is the only vertex in the graph, in which

case it is a leaf. Furthermore, a rooted binary tree is a rooted tree in which every internal

vertex apart from the root has degree three. To represent the evolutionary history of a

set of present-day species, phylogenetic trees are frequently used. A rooted phylogenetic

X-tree is a rooted tree whose root has degree of at least two and whose leaf set is X.
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root

KJIHGF ECA

T (X ′)

EDCA B

T T |X ′

A C E

Figure 1.1: A rooted binary phylogenetic X-tree T with leaf set X = {A,B, . . . ,K} and the
two subtrees T (X ′) and T |X ′ with X ′ = {A,C,E}.

Lastly, a rooted binary phylogenetic X-tree is a rooted phylogenetic X-tree whose root

has degree two and all other internal vertices have degree three. An example of such a

tree with X = {A, B, . . . , K} is presented in Figure 1.1. The set X is called label set of

T , and we denote it with L(T ).

Now consider two vertices u, v ∈ V of a rooted phylogenetic X-tree T such that u

is on the path from the root of T to v. We say that u is an ancestor of v and v is a

descendant of u. Furthermore, we say that a vertex of a rooted tree is both a descendant

and an ancestor of itself. If there exists an edge e ∈ E such that u and v are incident with

e, then u is said to be the parent of v and v is a child of u. Similarly to the definitions

of indegree and outdegree of vertices in digraphs, the number of children of a vertex v is

referred to as outdegree of v, denoted by d+(v). Trivially, the number of parent vertices

of v, referred to as indegree of v, denoted by d−(v), is always one.

Let A be a subset of X. Then A is called a cluster of T if there exists a vertex v that

has precisely A as its set of descendant leaves. We denote this cluster by CT (v) or C(v) if

there is no ambiguity. The set of clusters of T is denoted by C(T ). Additionally, the most

recent common ancestor of A, denoted mrcaT (A), is the vertex of T whose associated

cluster is the minimal cluster of T containing A.

For a rooted phylogenetic X-tree T , we next introduce two different types of rooted

subtrees which will play an important role in the following chapters. To this end, let X ′

be a subset of X. Then T (X ′) is the minimal rooted subtree of T that connects all leaves

referring to taxa in X ′. Moreover, the restriction of T to X ′, denoted by T |X ′, is the

rooted phylogenetic tree obtained from T (X ′) by suppressing every vertex of degree two

apart from the root (see Figure 1.1).

Let T be a rooted binary phylogenetic X-tree. A rooted subtree of T is pendant if



Introduction 9

it can be detached from T by deleting a single edge. For example, in Figure 1.1, the

minimal rooted subtree connecting the leaves labeled with A, B, C, D, and E is pendant

in T , whereas the minimal rooted subtree connecting the three leaves labeled with E, F ,

and G is not pendant in T .

1.4.3 Networks

A hybridization network H on X is a rooted acyclic digraph, in which

(i) X is the set of vertices of outdegree 0,

(ii) the root has outdegree at least 2, and

(iii) for all vertices v with outdegree 1, its indegree is at least 2.

Like for rooted phylogenetic X-trees, the set X represents a collection of taxa and is the

label set ofH. Vertices with an indegree of at least two are called hybridization vertices and

represent an exchange of genetic material between the hypothetical ancestors. Note that

the above given definition also allows for hybridization vertices whose indegree is greater

than two and does not require that the outdegree of such a vertex is one. A hybridization

vertex v represents ambiguity in the exact order of hybridization events among all parent

species of v. The bottom part of Figure 1.2 shows a hybridization network H with two

hybridization vertices. Throughout this thesis, we adopt the convention that hybridization

networks are always drawn with their arcs directed downwards (the root is the topmost

vertex) and so omit the arrowheads. Note that rooted phylogenetic trees are special types

of hybridization networks. As one would expect, the number of hybridization vertices of

such a tree is zero.

Let T be a rooted phylogenetic X ′-tree, and let H be a hybridization network on X

with X ′ ⊆ X. We say that H displays T if all of the ancestral relationships described

in T are covered by H. Mathematically speaking, H displays T if T can be obtained

from H by first deleting a subset of edges and vertices of H and suppressing any resulting

degree zero and degree two vertices apart from the root, and then contracting edges. For

a better understanding of this concept, Figure 1.2 shows a hybridization network H on

X = {A, B, C, D, E, F} that displays the two rooted binary phylogenetic X-trees T and

T ′.

Similarly to the definition of a cluster for a rooted phylogenetic X-tree, we now in-

troduce this term in the context of hybridization networks. To this end, let H be a
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Figure 1.2: Two rooted binary phylogenetic X-trees T and T ′ and a hybridization network
H displaying T and T ′. The internal vertex ∗ as well as the leaf labeled B are hybridization
vertices.

hybridization network on X with vertex set V . For all v ∈ V , we say that the cluster of

v, denoted CH(v) or simply C(v) if there is no ambiguity, is the subset of X such that, if

d+(v) = 0, then C(v) is a singleton containing the label of v and, otherwise, C(v) contains

precisely the labels of all vertices u of V for which there exists a directed path from v to

u.

1.4.4 The Rooted Subtree Prune and Regraft Operation

We end this section by giving a formal definition of a single rooted subtree prune and

regraft (rSPR) operation which, historically, has often been used to model reticulate

evolution (e.g. see Maddison, 1997, Baroni et al., 2004, Nakhleh et al., 2005b). The

rSPR operation also is an important tree rearrangement method and other such methods

include nearest neighbor interchange (NNI) and tree bisection and reconnection (TBR)

(Felsenstein, 2004). Let T be a rooted binary phylogenetic X-tree, and let e = {u, v} be

an edge of T such that u lies on the path from the root of T to v (see Figure 1.3). We

say that T ′ can be obtained from T by a single rSPR operation if, after deleting e, a new

edge f can be joined between v and the subtree Tu containing u in one of the following

two ways (Bordewich and Semple, 2004):

(i) Create a new vertex u′ that subdivides an edge in Tu and join u′ and v via f .
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Figure 1.3: The rooted binary phylogenetic X-tree T ′ can be obtained from T by a single
rooted subtree prune and regraft operation.

Complete the regrafting step by either suppressing the degree two vertex u or, if u

is the root of T , by deleting u and the edge incident with u and turning the other

end-vertex of this edge into the root of T ′.

(ii) Create a new root vertex u′ and a new edge connecting u′ and the original root, join

u′ and v via f , and suppress the degree two vertex u.

An example of a single rSPR operation is shown in Figure 1.3. For any pair of rooted

binary phylogenetic X-trees T and T ′, the rSPR distance, denoted drSPR(T , T ′), is the

smallest number of rSPR operations needed to transform T into T ′. This distance is a

metric (see Bordewich and Semple, 2004), and it has often been used to provide lower

bounds on the minimum number of reticulation events (e.g. in the context of recombina-

tion Song and Hein (2003, 2005)). However, as described in Baroni et al. (2005) and Song

and Hein (2005), the number of such events might be underestimated by using the rSPR

distance (for details, see Section 2.2).

1.5 Organization of this Thesis

As the extent to which hybridization and HGT have influenced the evolutionary history of

species remains largely unclear, the following chapters are devoted to gaining new insight

into this fast growing field of research by developing biologically motivated mathematical

models to infer reticulate evolution.

Chapter 2: This chapter describes the main ideas of a combinatorial framework to

calculate the minimum number of hybridization events needed to explain the evolutionary

history of two phylogenetic trees. This concept is based on a characterization of the

hybridization number in terms of agreement forests which was introduced in Baroni et al.

(2005), while Baroni et al. (2006), and Bordewich and Semple (2007a,b) exploited this

characterization to develop three reduction rules that can be applied to reduce the size

of the problem instance. All papers only considered two trees. Here, we upgrade this
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approach to an arbitrarily large number of trees.

Chapter 3: With the theoretical background of Chapter 2 in hand, this part describes

the newly implemented exact algorithm HybridNumber that computes the minimum

number of hybridization events for two rooted binary phylogenetic trees on the same taxa

set. HybridNumber is based on repeated applications of three rules that reduce the size

of the problem instance before calculating the hybridization number exactly. We apply

this algorithm to a grass data set (Grass Phylogeny Working Group, 2001) and highlight

the effectiveness of the reductions.

Chapter 4: In this chapter, we approach the question whether hybridization events have

occurred relatively recently or in the distant past by showing that a combination of a

modified version of the algorithm HybridNumber (see Chapter 3) with a new algorithm

BuildForest is suitable to calculate all agreement forests of smallest size for a pair of

(unreduced) trees. With these forests in hand, we can conclude where the hybridization

events take place in an associated network to compare the number of hybridization events

at the leaves of this network with those events at interior vertices.

Chapter 5: Chapter 2 and 3 approach the question of calculating the minimum num-

ber of hybridization events for rooted binary phylogenetic trees by using a combinatorial

framework. However, for many biological examples, the reconstructed trees are not fully

resolved. In this chapter, we show that calculating the minimum number of hybridiza-

tion events for two (arbitrary) rooted phylogenetic trees is fixed-parameter tractable by

upgrading the notion of agreement forests and stating three reductions that can be used

to kernalize the problem instance. Moreover, a further reduction is described that breaks

the problem into a number of smaller and more tractable subproblems.

Chapter 6: Here, we focus on HGT which is—beside hybridization—another process

of reticulate evolution. Assuming that a species tree is given, a method is suggested

which simulates HGT events on a species tree according to a Poisson process. Using the

obtained tree distribution and a likelihood estimation approach, an overall rate of HGT

for a set of gene trees whose taxa sets are subsets of the species tree taxa is estimated.

This framework is applied to the COG (Clusters of Orthologous Groups of Proteins) data

set (Tatusov et al., 2001). Additionally, inaccuracies due to gene tree reconstruction

methods are analyzed and results for two different species trees are compared.

Chapter 7: The last chapter focuses on the rSPR operation which is frequently used to

model reticulate evolution. To calculate exactly the rSPR distance between two rooted

binary phylogenetic X-trees, we present a new reduction—similar to the cluster reduction
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(see Chapter 2 and 3)—that can be used to break the problem into two smaller and more

tractable subproblems.



2 Measuring Hybridization for a Set of Phylogenetic

Trees

Hybridization and HGT events are often used to explain inconsistencies among a set of

phylogenetic trees. Due to such reticulation events, the evolutionary history for certain

groups of extant species is better represented by using phylogenetic networks rather than

trees since the genomes of such species can be chimeras of the genomes of several distinct

species. Recently, a combinatorial-based approach to compute the minimum number of

hybridization events for two rooted binary phylogenetic X-trees has been developed (Ba-

roni et al., 2005, 2006, Bordewich and Semple, 2007a,b). This approach and its associated

framework lays the initial groundwork for a number of results in this thesis. In the follow-

ing chapter, we describe this framework and, in particular, show how it can be extended

to an arbitrarily large number of trees.

2.1 Hybridization Networks

Although the extent of hybridization in evolution is still discussed controversially for

many groups of organisms, its occurrence in plants is widely accepted and subject of

many recent evolutionary studies (e.g. Ellstrand et al., 1996, Mallet, 2005, Paun et al.,

2005). One question that is often asked by biologists studying the ancestral relationships

of species whose past includes hybridization is the following: given a collection of rooted

binary phylogenetic trees on a set of present-day species that correctly represent the

tree-like evolution of different parts of their genomes, what is the minimum number of

hybridization events needed to explain the evolution of the species under consideration?

In the following, we formalize this optimization problem and describe a mathematical

framework based on combinatorics that can be used to approach this question.

Let H be a hybridization network on X. To quantify the number of hybridization

events, the hybridization number of H is defined as

h(H) =
∑

v∈(V −{ρ})

(d−(v)− 1),

where V is the vertex set of H and ρ labels the root vertex of H (Bordewich and Semple,

2007a). Intuitively, this is the number of edges in H that must be deleted to turn H

into a rooted tree with leaf set X. Hence, h(H) = 0 if and only if H is a rooted tree.
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Figure 2.1: The hybridization network H displays the three rooted binary phylogenetic X-trees
T1, T2, and T3. Note that there is one hybridization vertex in H and that h(H) = 2.

Now let P = {T1, T2, . . . , Tn} be a non-empty collection of rooted phylogenetic X-trees.

Extending the corresponding definition given in Section 1.4, we say that H displays P if

each tree in P is displayed by H. Biologically speaking, all trees in P can be explained

by an evolutionary scenario depicted in H. Figure 2.1 shows a hybridization network H

that displays P = {T1, T2, T3}.

As described by Semple (2007), for a set P of rooted phylogenetic X-trees, we upgrade

the definition of the hybridization number and set

h(P) = min {h(H) : H is a hybridization network that displays P} .

If P = {T , T ′}, then h(P) is denoted by h(T , T ′), and we often refer to it as the min-

imum number of hybridization events that is needed to explain the ancestor-descendant

relationships of T and T ′ simultaneously. For this simplest case and if T and T ′ are

binary, the calculation of h(P) can be formalized as stated in the following optimization

problem (Bordewich and Semple, 2007a):

Minimum Hybridization

Instance: Two rooted binary phylogenetic X-trees T and T ′.

Goal: Find a hybridization network H that displays T and T ′ with minimum hybridiza-

tion number or, in other words, with minimum number of hybridization vertices.

Measure: The value h(H).
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As shown by Bordewich and Semple (2007a), Minimum Hybridization is NP-hard.

However, this problem yields an attractive mathematical approach including a charac-

terization of the minimum number of hybridization events in terms of agreement forests

and several reduction rules that can be applied to reduce the size of the problem instance

before calculating this minimum number exactly.

In the following, we explain the main ideas of this framework by focusing on the

number of hybridization vertices in H, denoted h′(H), and setting

h′(P) = min {h′(H) : H is a hybridization network that displays P} .

In contrast to the definition of h(P), we do not consider what each hybridization vertex

contributes to the total hybridization number. This modification allows us to consider an

arbitrarily large collection P of rooted binary phylogenetic X-trees. Since most data sets

consist of more than two gene trees, this task is biologically well motivated and leads to

the following modified optimization problem:

Minimum Hybridization Vertex

Instance: A set P of rooted binary phylogenetic X-trees.

Goal: Find a hybridization network H that displays P with minimum number of hy-

bridization vertices.

Measure: The value h′(H).

We close this section by remarking that, if P = {T , T ′}, the hybridization number

is equal to the number of hybridization vertices in H displaying P because the maximal

indegree of a vertex in H is two. Otherwise, if |P| > 2, the number of hybridization

vertices can be less than the hybridization number. As an example, see Figure 2.1, where

h(H) = 2 and h′(H) = 1. It is deducible that Minimum Hybridization Vertex is a

generalization of Minimum Hybridization, and it follows that Minimum Hybridiza-

tion Vertex is NP-hard.

2.2 Agreement Forests

In the following, we characterize the number of hybridization vertices h′(P) for a set P

of rooted binary phylogenetic X-trees in terms of acyclic-agreement forests. To this end,

the notion of agreement and acyclic-agreement forests for two rooted binary phylogenetic

X-trees is extended for an arbitrary large set of such trees before proving the main result
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Figure 2.2: Top: Three rooted binary phylogenetic X-trees. Bottom: Each of the rooted
binary tree has been obtained from its counterpart in the upper part by adding a root vertex
labeled ρ at the end of a pendant edge adjoined to the original root.

(Theorem 2.1) of this section.

The definition of an agreement forest was first given by Hein et al. (1996) and revised

by Bordewich and Semple (2004). Let P = {T1, T2, . . . , Tn} be a set of rooted binary

phylogenetic X-trees. For the purpose of the upcoming definition, we regard the root

of every tree in P as a vertex labeled ρ at the end of a pendant edge adjoined to the

original root (see Figure 2.2). Furthermore, we also view ρ as an element of L(Ti), for

all i ∈ {1, 2, . . . , n}. An agreement forest for P is a collection {Sρ,S1,S2, . . . ,Sk} of leaf-

labeled trees, where Sρ is a rooted binary tree whose label set contains ρ, and S1,S2, . . . ,Sk

are rooted binary phylogenetic trees such that the following three conditions are satisfied:

(i) The label sets L(Sρ),L(S1),L(S2), . . . ,L(Sk) partition X ∪ {ρ}.

(ii) For all Sj with j ∈ {ρ, 1, 2, . . . , k}, the trees in {Ti|L(Sj) : i ∈ {1, 2, . . . , n}} are

isomorphic to Sj .

(iii) For all Ti ∈ P with i ∈ {1, 2, . . . , n}, the trees in {Ti(L(Sj)) : j ∈ {ρ, 1, 2, . . . , k}}

are vertex-disjoint subtrees of Ti.

A maximum-agreement forest for P is an agreement forest in which k is minimized over

all agreement forests for P. If F = {Sρ,S1,S2, . . . ,Sk} is a maximum-agreement forest

for P, we denote the value for k by m(P). Examples of two agreement forests F1 and F2

for the three trees depicted in Figure 2.2 are shown in the upper part of Figure 2.3.

If P = {T , T ′}, it follows from Theorem 2.1 of Bordewich and Semple (2004) that
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Figure 2.3: Top: Two agreement forests F1 and F2 for P consisting of the three rooted binary
phylogenetic X-trees shown in Figure 2.2. Bottom: The digraphs GF1

and GF2
that correspond

to F1 and F2, respectively.

the number of trees in a maximum-agreement forest for T and T ′ minus one is equal

to the rSPR distance between T and T ′ and thus m(T , T ′) = drSPR(T , T ′). Moreover,

h(T , T ′) = 1 if and only if drSPR(T , T ′) = 1 (Baroni et al., 2004). Having this result, it is

tempting to conjecture that every hybridization event can be represented by a single rSPR

operation. This is not the case and, in general, drSPR(T , T ′) is a lower bound for h(T , T ′)

as one can construct pairs of trees such that h(T , T ′) > t
2
−1 and drSPR(T , T ′) = 2, where

t is the number of taxa (Baroni et al., 2005).

We now introduce a particular type of agreement forest that will be useful in char-

acterizing the number of hybridization vertices h′(P). For this purpose, an additional

constraint on the properties of an agreement forest is required to exclude the existence

of directed cycles in the corresponding hybridization network since, otherwise, a species

can inherit genetic material from its own descendants, which is biologically not plausible.

Again, let P = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees, and let

F = {Sρ,S1,S2, . . . ,Sk} be an agreement forest for P. Then GF is the directed graph

whose vertex set is F and for which (Sj ,Sj′) with j, j′ ∈ {ρ, 1, 2, . . . , k} is an arc precisely

if j 6= j′ and if there exists a tree Ti ∈ P for which the root of Ti(L(Sj)) is an ancestor

of the root of Ti(L(Sj′)). Analogously to Baroni et al. (2005), where this concept has

been introduced first, we call F an acyclic-agreement forest if GF does not contain a

directed cycle. A maximum-acyclic-agreement forest for P is an acyclic-agreement forest
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of smallest size. For such a forest, we denote the value for k by ma(P). Since every

maximum-acyclic-agreement forest is an agreement forest, we have m(P) ≤ ma(P). In

the lower part of Figure 2.3, the two digraphs GF1
and GF2

have been constructed from

F1 and F2, respectively (these are agreement-forests for the three trees that are shown

in Figure 2.2). As GF2
is acyclic, F2 is an acyclic-agreement forest for T1, T2, and T3

depicted in Figure 2.2. Indeed, F2 is a maximum-acyclic-agreement forest for these three

trees.

Analogously to Theorem 2 of Baroni et al. (2005), we now establish the first main

result of this chapter by showing how the number of hybridization vertices for a set of

rooted binary phylogenetic X-trees can be characterized in terms of acyclic-agreement

forests.

Theorem 2.1. Let P = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees.

Then

h′(P) = ma(P).

Proof. We first show that h′(P) ≥ ma(P). Let H be a hybridization network on X

such that h′(H) = h′(P). Let F be the forest obtained from H by deleting, for each

hybridization vertex v of H, the arcs directed into v, and then suppressing any resulting

vertex of degree two apart from the root of each tree. We show by induction on h′(H)

that F is an acyclic-agreement forest for P with h′(H)+1 components, thus showing that

h′(P) ≥ ma(P).

If h′(H) = 0, then, up to isomorphism, all trees of P are identical. Thus F = {T1} and

the result clearly holds. Now assume that h′(H) = m > 1 and that the result holds for all

sets of rooted binary phylogenetic X ′-trees for which there exists a hybridization network

that has at most m− 1 hybridization vertices. Let v be a hybridization vertex of H such

that the deletion of all arcs ending in v and, additionally, if d+(v) = 1, the deletion of the

arc leaving v and the vertex v itself, result in the following two components:

(i) a rooted binary phylogenetic tree, referred to as Tv, whose label set is CH(v) and

(ii) a hybridization network H′ containing the root vertex of H.

Note that, as H is acyclic, there always exists such a vertex v. Furthermore, Tv is a

pendant subtree of Ti ∈ P for all i ∈ {1, 2, . . . , n}. Let P ′ = {T ′
1 , T ′

2 , . . . , T ′
n} be the set

of rooted binary phylogenetic trees such that, for all i ∈ {1, 2, . . . , n}, the tree T ′
i has
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been obtained from Ti by pruning the pendant subtree Tv and suppressing any resulting

vertex of degree two. Since H displays P, it follows that H′ displays P ′. Moreover, as

h′(H′) = m − 1, it follows from the induction assumption that the forest F ′ obtained

from H′ by deleting the incoming arcs of each hybridization vertex and suppressing any

resulting vertex of degree two is an acyclic-agreement forest for P ′ containing m trees.

Let F = F ′ ∪ {Tv}. Since, for all i ∈ {1, 2, . . . , n}, the rooted binary phylogenetic X-tree

Ti can be obtained from T ′
i by adjoining Tv via one additional new arc, F is an agreement

forest for P. Furthermore, as Tv is a pendant subtree in each Ti ∈ P, we also have that

F is acyclic. Since F has m + 1 components, it follows that h′(P) ≥ ma(P).

We next show that h′(P) ≤ ma(P). To do this, it is sufficient to show that, if F is an

acyclic-agreement forest for P with k +1 trees, then there is a hybridization network that

displays P with a hybridization number of at most k. The proof is by induction on k.

If k = 0, then, up to isomorphism, all trees of P are identical and so T1 is a hybridiza-

tion network of the desired type. Now let ma(P) = k, and assume that the result holds

for all sets of rooted binary phylogenetic X ′-trees whose minimum number of components

over all acyclic-agreement forests is at most k. Suppose that F = {Sρ,S1,S2, . . . ,Sk}

is an acyclic-agreement forest for P. Since F is acyclic, there is a vertex of GF whose

outdegree is zero. Clearly, as k ≥ 1, this vertex is not Sρ and so, without loss of gen-

erality, we may assume that it is the vertex Sk. Since this vertex has outdegree zero in

GF , it follows that Sk ∈ F is a pendant subtree of all Ti ∈ P with i ∈ {1, 2, . . . , n}. Let

X ′ = X − L(Sk), and let F ′ = F − {Sk}. As Sk is pendant in all trees of P, it is easily

seen that F ′ is an acyclic-agreement forest for P ′ = {T1|X
′, T2|X

′, . . . , Tn|X
′}. Therefore,

since |F ′| < |F|, it follows from the induction assumption that there is a hybridization

network H′ on X ′ with h′(H′) ≤ k − 1 that displays P ′. Since Sk is a pendant subtree

of T1, it is easily seen that there is a hybridization network that displays T1 and can be

obtained from H′ by adjoining Sk with a new arc a1 that connects the root of Sk with

a new vertex that subdivides an arc of H′. Similarly, this process can be applied to all

Ti ∈ P with i ∈ {2, 3, . . . , n} using a new arc ai. Now let H be a hybridization network

on X obtained from H′ by joining Sk to H′ via all arcs {a1, a2, . . . , an}. By construction,

H displays P. Furthermore, as h′(Sk) = 0 and as the vertex of H corresponding to the

root of Sk has indegree n, it follows that h′(H) ≤ k and thus h′(P) ≤ k = ma(P). This

completes the proof of the theorem.

We next point out a further property of a maximum-acyclic-agreement forest F for a

set P of rooted binary phylogenetic X-trees that will be of importance in Section 2.4. The
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proof of this lemma can be established in exactly the same way as the proof of Lemma 1

of Baroni et al. (2005) and is only given for reasons of completeness.

Lemma 2.2. Let P = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees, and

let Sρ be the tree in a maximum-acyclic-agreement forest F for P whose label set contains

ρ. Then

L(Sp) ∩X 6= ∅.

Proof. Assume that L(Sp) = {ρ}. Since F is a maximum-acyclic-agreement forest for

P, there is a vertex, S1 say, of GF\Sρ (That is the acyclic digraph obtained from GF by

deleting the vertex Sρ and all edges incident with this vertex.) whose indegree is zero.

Then it is easily checked that the forest obtained from F by joining the root of S1 with

the root vertex ρ via a new edge is an acyclic-agreement forest F∗ for P with |F∗| < |F|.

This contradicts the maximality of F .

2.3 Subtree and Chain Reduction

In this section, we present the first two reduction rules initially introduced by Allen and

Steel (2001) and Bordewich and Semple (2007b) for the two-tree case. Both rules can

be used to reduce the size of the problem instance, before calculating the number of

hybridization vertices h′(P) for a set of rooted binary phylogenetic X-trees exactly. To

make the reductions work, we first need some further definitions.

Let T be a rooted binary phylogenetic X-tree. For m ≥ 2, an m-chain of T is a tuple

(a1, a2, . . . , am) of leaf labels in T such that

(i) the parent of the vertex labeled a1 is either the same as the parent of the vertex

labeled a2 or a child of the parent of the vertex labeled a2 and

(ii) for all i ∈ {2, 3, . . . , m− 1}, the parent of the vertex labeled ai is a child of the

parent of the vertex labeled ai+1.

Let P be a disjoint collection of 2-element subsets of X such that each pair {a, b} ∈ P

is a 2-chain common to all trees of P. Let w : P → Z
+ be a weight function on the

elements of P , such that each pair is assigned a positive integer weight. We refer to such

a set P of trees with associated set P and weight function w as a set of weighted rooted

binary phylogenetic X-trees.
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Now we are in a position to state the above mentioned reduction rules for a set P of

weighted rooted binary phylogenetic X-trees.

Subtree Reduction. Replace a maximal pendant subtree (for the definition of such a

tree, see Section 1.4) that contains at least two leaves and that occurs identically in all

Ti ∈ P by a single leaf with a new label and delete all members of P whose elements label

leaves of the pendant subtree.

Chain Reduction. For m ≥ 3, replace a maximal m-chain (a1, a2, . . . , am) that occurs

identically and with the same orientation relative to the root in all Ti ∈ P by a 2-chain

with new labels a and b. Furthermore, add the new 2-element set {a, b} to P with weight

w({a, b}) = m− 2 +
∑

{ai, aj} ∈ P ;

ai, aj ∈ {a1, . . . , am}

w({ai, aj}), (2.1)

and delete all pairs in P whose elements are in {a1, a2, . . . , am}.

An example, for when P = {S, T }, is given in Figure 3.1 for the subtree reduction and

in Figure 3.2 for the chain reduction.

Remark. The label set of any subtree or chain that is common to all Ti ∈ P and that is

reduced in the course of one of the above mentioned reductions intersects each pair in P

in either both elements or neither. This is simply due to the fact that the reductions are

applied to maximal pendant subtrees and maximal chains, respectively.

To reduce the trees in P as much as possible, it is desirable to repeat the application

of the subtree and chain reduction. This implies that we need to keep track of the

weighting since an m-chain may contain consecutive pairs of leaves that have previously

been involved in a chain reduction. Hence, each pair {a, b} of new leaves is assigned a

weight that is the sum of the associated weights of these pairs plus m−2 (see Equation 2.1).

Additionally, it is essential to consider the weight of each reduced 2-chain in terms of

computing a maximum-acyclic-agreement forest; that is calculating h′(P). To this end,

we introduce a third notion of agreement forests (Bordewich and Semple, 2007b). For a

set of weighted rooted binary phylogenetic X-trees, an agreement forest F is legitimate if

it is acyclic and the following property holds:

(P) If {a, b} ∈ P , then a and b are either both contained in the label set of one tree of F

or a and b label isolated vertices in F .
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Let F be an agreement forest for P. We define the weight of F , to be

w(F) = |F| − 1 + wc(F , P ), (2.2)

where

wc(F , P ) =
∑

{a, b} ∈ P ; a and b

isolated in F

w({a, b}).

Furthermore, we set f(P) to be the minimum weight of a legitimate-agreement forest for

P. With the term legitimate-agreement forest of minimum weight, we refer to a legitimate-

agreement forest F with w(F) = f(P).

An algorithmic approach to compute such a forest for two rooted binary phylogenetic

X-trees is covered in detail by Chapter 3. However, it is important to note here that the

set P of 2-chains is initially empty. Hence, 2-chains are only added if they are the result

of a chain reduction, which by definition means that they are the result of reducing a

strictly bigger chain.

We next state a theorem showing that the subtree and chain reduction preserve the

weight of a legitimate-agreement forest of minimum weight. This theorem corresponds

to Proposition 3.2 of Bordewich and Semple (2007b), where it is established for when

P = {T , T ′}.

Theorem 2.3. Let P = {T1, T2, . . . , Tn} be a set of weighted rooted binary phylogenetic

X-trees, and let P ′ = {T ′
1 , T ′

2 , . . . , T ′
n} be a set of such trees obtained from P by applying

either the subtree or chain reduction. Then

f(P) = f(P ′).

Before proving this theorem, we need the following lemma pointing out some crucial

properties of all legitimate-agreement forests of minimum weight for a given set of weighted

rooted binary phylogenetic X-trees.

Lemma 2.4. Let P = {T1, T2, . . . , Tn} be a set of weighted rooted binary phylogenetic X-

trees. With i ∈ {1, 2, . . . , n}, let A be the leaf set of a maximal pendant subtree common

to all Ti ∈ P and let (a1, a2, . . . , am) be a maximal m-chain common to all Ti ∈ P, where

m ≥ 3. Then every legitimate-agreement forest F for P of minimum weight fulfills the

following properties:

(a) F contains a tree such that A is a subset of its label set and
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(b) either F contains a tree such that {a1, a2, . . . , am} is a subset of its label set or each

of a1, a2, . . . , am labels an isolated vertex in F .

Proof. To prove this lemma, we follow the approach of Lemma 3.1 in Bordewich and

Semple (2007b). Let F = {Sρ,S1,S2, . . . ,Sk} be a legitimate-agreement forest for P

of minimum weight. We start with the proof of part (a). For a contradiction, as-

sume that A is not a subset of the label set of a single tree in F . We construct a

new legitimate-agreement forest F ′ that satisfies (a) and has a smaller weight than F .

Let J index the trees of F which include elements of A in their label sets. To be precise,

J = {j ∈ {ρ, 1, 2, . . . , k} : L(Sj) ∩ A 6= ∅}. In the following, we denote
⋃

j∈J L(Sj) by LA.

Since, for all Ti ∈ P with i ∈ {1, 2, . . . , n}, the trees in {Ti(L(Sj)) : j ∈ {ρ, 1, 2, . . . , k}}

are vertex-disjoint subtrees of Ti (see (iii) in the definition of an agreement forest), observe

that L(Sj) − A 6= ∅ for at most one element of J . Let F ′ be the forest that is obtained

from F by deleting each tree Sj with j ∈ J , and adding the new tree SA = T1|LA. Now

it is easily checked that F ′ is an agreement forest for P. Furthermore, it is legitimate

since the elements of A label a pendant subtree and thus F ′ is acyclic, and since A is the

label set of a maximal pendant subtree, property (P) holds. Moreover, it is easily checked

that w(F) > w(F ′) since F ′ has fewer components and no additional element of P labels

isolated vertices in F ′. Summing up, this gives a contradiction.

We now turn to the proof of (b). For convenience in this part of the proof, we

will rewrite L(Sρ),L(S1),L(S2), . . . ,L(Sk) as Lρ,L1,L2, . . . ,Lk. Assume that some ai

does not label an isolated vertex in F . Then, without loss of generality, the label ai

is contained in the label set Li, where Li − {ai} 6= ∅. If {a1, a2, . . . , am} ⊆ Li, the

result follows immediately. Therefore, we may assume that there exists some element of

{a1, a2, . . . , am} which is not an element of Li. First, we eliminate a particular way that

ai may be related to Li − {ai} in elements of P.

Let v be the vertex of Si labeled ai. Suppose that v and the root of Si are adjacent such

that the parent of v is an ancestor of mrca(Li−{ai}), for all members of a proper subset P1

of P with P1 6= ∅, while the parent of v is not an ancestor of mrca(Li−{ai}) for all members

of P − P1 denoted by P2 (see Figure 2.4). Then each element of {a1, a2, . . . , am} − {ai}

labels an isolated vertex in F since, otherwise, the corresponding minimal rooted subtrees

of two trees in F are not vertex-disjoint in all trees of P1 or P2. By deleting v and its

incident edge from Si, suppressing any resulting degree two vertices in the resulting tree,

and replacing the isolated vertices whose labels partition {a1, a2, . . . , am} − {ai} with a

single tree that is isomorphic to T1| {a1, a2, . . . , am}, it is easily checked that the resulting
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ai

ρ

T ∈ P1

Li − {ai}

ai

mrca(Li − {ai})

mrca(Li − {ai})

ρ

T ′ ∈ P2

Li − {ai}

Figure 2.4: Assuming that this configuration (details see text) appears in F , the elements of
{a1, a2, . . . , am} − {ai} label isolated vertices in F . Dotted lines indicate regions of a maximal
common m-chain. (Adapted from Bordewich and Semple (2007b).)

agreement forest, denoted by F ′, is acyclic. Since (a1, a2, . . . , am) is a maximal m-chain

and F is legitimate, it follows that F ′ also satisfies (P). But w(F ′) < w(F) contradicts

the minimality of F . Thus we may assume that, if v is adjoined to the root of Si and the

parent of v is an ancestor of mrca(Li − {ai}) for all trees of P1, then the parent of v is

also an ancestor of mrca(Li − {ai}) for all trees of P2.

Now let J index the trees of F whose label sets contain elements of the chain. To

be precise, that is J = {j ∈ {ρ, 1, 2, . . . , k} : Lj ∩ {a1, a2, . . . , am} 6= ∅}. Observe that

Lj − {a1, a2, . . . , am} 6= ∅ for at most two elements of J since the corresponding minimal

rooted subtrees are vertex-disjoint in all trees of P. In the following, we denote
⋃

j∈J Lj

by LC . Let F ′ be the forest that has been obtained from F by deleting each tree Sj with

j ∈ J and inserting the new tree SC = T1|LC. Essentially, we have joined all trees in F

whose label sets contain any element of {a1, a2, . . . , am} along the chain. It follows from

the assumption at the end of the previous paragraph that F ′ is an agreement forest for

P. Furthermore, as (a1, a2, . . . , am) is a maximal chain, F ′ satisfies (P).

We next show that F ′ is acyclic. Consider the directed graphs GF and GF ′ associated

with F and F ′, respectively. The vertex set of GF ′ is obtained from GF by deleting the

vertex Sj , for all j ∈ J , and introducing the new vertex SC . Furthermore, if Su,Sv ∈

(F ′−{SC}) then (Su,Sv) is an arc in GF ′ if and only if (Su,Sv) is an arc in GF . Regarding

the arcs incident with SC , there are two cases to consider. First, suppose there is some

j1 ∈ J such that the root of Tl(Lj1), for some Tl ∈ P with l ∈ {1, 2, . . . , n}, is on the path

from am to the root. Then the root of Tl(LC) is the same as the root of Tl(Lj1). Due

to our assumption at the end of the penultimate paragraph, these roots must coincide

for every tree of P. As a result, (SC ,Su) and (Su,SC) are arcs in GF ′ if and only if

(Sj1,Su) and (Su,Sj1) are arcs in GF , respectively. Since GF is acyclic, GF ′ must be also.



Measuring Hybridization for a Set of Phylogenetic Trees 26

Second, suppose there is no such j1 ∈ J . Then the root of Tl(LC) is the parent of am

for all Tl ∈ P. Since not all of the elements labeled with {a1, a2, . . . , am} are isolated

in F , there is some j2 ∈ J such that the root of Tl(Lj2) is on the path from a1 to the

root for all Tl ∈ P. It again follows, that (SC ,Su) and (Su,SC) are arcs in GF ′ if and

only if (Sj2,Su) and (Su,Sj2) are arcs in GF , respectively, and so GF ′ is acyclic. Hence,

F ′ is a legitimate-agreement forest for P. If the vertices labeled with a1, a2, . . . , am are

not all in the same component of F (thus |J | > 1), then we have reduced the number

of components and so w(F ′) < w(F). This contradicts the minimality of F . Under the

original assumption that some ai does not label an isolated vertex, we conclude that the

chain is entirely contained in a single component of F . This completes the proof of the

lemma.

We are now in a position to prove Theorem 2.3.

Proof. It immediately follows from Lemma 2.4(a) that this theorem holds if P ′ has been

obtained from P by applying the subtree reduction because a maximal pendant subtree

common to all trees in P completely stays together in one tree of a legitimate-agreement

forest for P of minimum weight. Therefore, consider a single application of the chain

reduction, where an m-chain (a1, a2, . . . , am) is common to all trees in P and gets reduced

to a 2-chain (a, b). Furthermore, let FP be a legitimate-agreement forest for P of minimum

weight. By Lemma 2.4(b), we either have

(i) {a1, a2, . . . , am} is a subset of a label set of a tree in FP or

(ii) each of a1, a2, . . . , am labels an isolated vertex in FP .

Depending on whether (i) or (ii) holds, let FP ′ be the forest obtained from FP by either

replacing the m-chain (a1, a2, . . . , am) with the 2-chain (a, b) in some element of FP or

replacing the isolated vertices labeled with the elements of this m-chain with two isolated

vertices labeled a and b. Since FP is a legitimate-agreement forest for P, it is easily checked

that FP ′ is such a forest for P ′. Moreover, in the case that (ii) holds, the contribution

of the isolated vertices a1, a2, . . . , am to w(FP) is exactly the same as the contribution of

the isolated vertices a and b to w(FP ′) (see Equations 2.1 and 2.2). It now follows that

f(P ′) ≤ f(P).

Now suppose that FP ′ is a legitimate-agreement forest for P ′ of minimum weight.

Since FP ′ is legitimate, either
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(i) FP ′ contains a tree, Si say, such that {a, b} ⊆ L(Si) or

(ii) a and b label isolated vertices in FP ′.

Depending on which holds, let FP be the forest obtained from FP ′ by either replacing Si

with T1|((L(Si)−{a, b})∪{a1, a2, . . . , am}) or replacing the isolated vertices labeled a and

b with m isolated vertices labeled a1, a2, . . . , am, respectively. Since FP ′ is a legitimate-

agreement forest for P ′, it is easily checked that FP is such a forest for P. Furthermore,

in case (ii), the contribution of the isolated vertices labeled a and b to w(FP ′) is the same

as the contribution of the isolated vertices labeled a1, a2, . . . , am to w(FP) (see Equations

2.1 and 2.2 and) in case (ii). Thus we can deduce that f(P) ≤ f(P ′). Combining both

inequalities gives the desired result.

To conclude, let P be a set of weighted rooted binary phylogenetic X-trees with an

associated set P that is empty, and let P ′ be a set of such trees obtained from P by

applying a sequence of subtree and chain reductions. Consider that we always have

f(P) ≥ h′(P) since the weight function is non-negative and f(P) = h′(P) whenever

P = ∅. Then, by Theorem 2.3, we can deduce that h′(P) = f(P) = f(P ′).

2.4 Cluster Reduction

Beside applying the subtree and chain reduction to a set P = {T1, T2, . . . , Tn} of rooted

binary phylogenetic X-trees, the calculation of h′(P) can additionally be sped up by using

an efficient divide-and-conquer approach (Baroni et al., 2006) if one or more clusters are

common to all Ti ∈ P with i ∈ {1, 2, . . . , n}. Loosely speaking, while the subtree and

chain reduction reduce the size of the problem instance, the cluster reduction breaks the

problem into a number of smaller and more tractable subproblems. We next state the

cluster reduction and prove two results in terms of (ordinary) acyclic-agreement forests

before closing this chapter by showing how this reduction can easily be fitted into the

framework of legitimate-agreement forests.

Cluster reduction. Suppose that A is a cluster with |A| ≥ 2 that is common to all

trees of P. Then replace P with two new sets of trees. The first set Pa is obtained

from P by replacing the minimal pendant subtree of Ti ∈ P whose leaf set is A by a

leaf with a new label for all i ∈ {1, 2, . . . , n}, while the second set PA contains the trees

T1|A, T2|A, . . . , Tn|A (see Figure 3.3).
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Analogously to Theorem 1 of Baroni et al. (2006), we establish the first result of this

section.

Theorem 2.5. Let P = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees.

Suppose that A ⊂ X is a cluster common to all trees of P. Let Pa and PA be the two

sets of rooted binary phylogenetic trees that have been obtained from P in the course of a

cluster reduction. Then

h′(P) = h′(PA) + h′(Pa).

Proof. If A = X, then the result clearly holds. Therefore, we may assume that A ⊂ X.

We first show that

h′(P) ≤ h′(PA) + h′(Pa).

To this end, let FA be a maximum-acyclic-agreement forest for PA, and let Fa be such a

forest for Pa. Suppose that Pa has been obtained from P by replacing the minimal rooted

subtree induced by A with a single leaf labeled a for all Ti ∈ P with i ∈ {1, 2, . . . , n}. Let

Sρ,A be the unique tree in FA with a vertex labeled ρ, and let Sj,a be the unique tree in

Fa containing a vertex labeled a. Then obtain the rooted binary tree SA,a in one of the

following two ways:

(a) If Sj,a is an isolated vertex, then obtain SA,a from Sρ,A by deleting the edge which

is incident with the vertex labeled ρ and the vertex labeled ρ itself.

(b) Otherwise, obtain SA,a by adjoining Sρ,A to Sj,a via a new edge joining the vertices

labeled ρ and a, removing the labels a and ρ, and suppressing any vertex of degree

two apart from the root.

By Lemma 2.2, note that L(Sρ,A)− {ρ} 6= ∅ and thus L(SA,a) 6= ∅. Since FA and Fa

are acyclic-agreement forests,

F = ((Fa ∪ FA)− {Sj,a,Sρ,A}) ∪ {SA,a}

is an acyclic-agreement forest for P with |F| = |FA| + |Fa| − 1. It now follows from

Theorem 2.1 that

h′(PA) + h′(Pa) = ma(PA) + ma(Pa) = |FA| − 1 + |Fa| − 1 = |F| − 1 ≥ h′(P).

We next show that

h′(P) ≥ h′(PA) + h′(Pa).
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Let F be a maximum-acyclic-agreement forest for P, then there are two cases to consider:

(i) there exists Sj ∈ F such that L(Sj) ∩A 6= ∅ and L(Sj) ∩ ((X −A) ∪ {ρ}) 6= ∅, and

(ii) for all Sl ∈ F , either L(Sl) ⊆ A or L(Sl) ⊆ ((X −A) ∪ {ρ}).

For case (i), we assume that Sj is such a tree in F . Then, for all i ∈ {1, 2, . . . , n},

the minimal rooted subtree of Ti ∈ P that contains the label set of Sj includes the root

of Ti|A. Since F is an agreement forest, this implies that Sj is the unique such tree in

F . Then obtain Sj,A from Sj by adding a vertex labeled ρ at the end of a pendant edge

adjoined to the root of Sj |(A ∩ L(Sj)). Additionally, obtain Sj,a from Sj by replacing

the pendant subtree having leaf set A ∩ L(Sj) with a single leaf labeled a. As F is an

acyclic-agreement forest for P,

FA = {Sl ∈ F : L(Sl) ⊆ A} ∪ {Sj,A}

is an acyclic-agreement forest for PA and

Fa = {Sl ∈ F : L(Sl) ⊆ ((X − A) ∪ {ρ})} ∪ {Sj,a}

is such a forest for Pa. With |F| = |FA|+ |Fa| − 1, we can deduce that

h′(P) = ma(P) = |F| − 1 = |FA|+ |Fa| − 1− 1 ≥ h′(PA) + h′(Pa).

Next, we show that the inequality also holds for case (ii). As GF of P is acyclic, it

follows that the subdigraph induced by the set {Sl ∈ F : L(Sl) ⊆ A} does not contain

any directed cycle. Hence, this subdigraph has a vertex, S0 say, with indegree zero. Let

S0,ρ be the tree obtained from S0 by adding a vertex labeled ρ at the end of a pendant

edge adjoined to the original root of S0. Since F is an acyclic-agreement forest for P, it

is easily seen that

FA = ({Sl ∈ F : L(Sl) ⊆ A} − {S0}) ∪ {S0,ρ}

is an acyclic-agreement forest for PA. Furthermore,

Fa = {Sl ∈ F : L(Sl) ⊆ ((X − A) ∪ {ρ})} ∪ {a}

is such a forest for Pa in which a is used to denote an isolated vertex labeled a. Thus
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Figure 2.5: Repeated applications of the cluster reduction on S0 and T0. Note that h(S0,T0) =
h(S ′1,T

′
1 ) + h(S ′2,T

′
2 ) + h(S ′3,T

′
3 ) + h(S3,T3).

|F| = |FA|+ |Fa| − 1 and so

h′(P) = ma(P) = |F| − 1 = |FA|+ |Fa| − 1− 1 ≥ h′(PA) + h′(Pa).

This completes the proof of the theorem.

Figure 2.5 shows an example of three repeated applications of the cluster reduction

when P = {S0, T0}. For all j ∈ {1, 2, 3}, the trees Sj and S ′
j , and Tj and T ′

j , respectively,

are obtained by applying the cluster reduction to Sj−1 and Tj−1. In general, let P0 =

{T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees. We say that the cluster

reduction has been applied t times if, for all j ∈ {1, 2, . . . , t}, the jth cluster reduction

replaces Pj−1 with two new sets of rooted binary phylogenetic trees:

(i) the cluster-reduced tree set Pj which has been obtained from Pj−1 by replacing the
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subtree whose label set Aj (with |Aj| ≥ 2) is a common cluster of Ti ∈ Pj−1, for all

i ∈ {1, 2, . . . , n}, with a single vertex labeled lj /∈ (X ∪ {ρ} ∪ {l1, l2, . . . , lj−1}) for

all Ti ∈ Pj−1 and

(ii) the cluster-tree set P ′
j obtained from Pj−1 by replacing each tree Ti ∈ Pj−1 with

Ti|Aj.

In the following, we refer to the (t + 1)-tuple R = (P ′
1,P

′
2, . . . ,P

′
t,Pt) as a cluster-tree

collection of P0.

We next state a corollary that shows how the cluster reduction can repeatedly be

applied to calculate the number of hybridization vertices h′(P) for a set P of rooted

binary phylogenetic X-trees.

Corollary 2.6. Let P0 = {T1, T2, . . . , Tn} be a set of rooted binary phylogenetic X-trees,

and let R = (P ′
1,P

′
2, . . . ,P

′
t,Pt) be a cluster-tree collection resulting from applying the

cluster reduction t times. Then

h′(P0) = h′(Pt) +
t

∑

j=1

h′(P ′
j).

Proof. The proof is by induction on t = |R| − 1. If t = 1, the result clearly follows from

Theorem 2.5. Now let t > 1 and assume that the result holds for all cluster-tree collections

R′ with |R′| ≤ t. Let A1 be the leaf set of all trees Ti ∈ P ′
1 with i ∈ {1, 2, . . . , n}. Then

R1 = (P ′
2,P

′
3, . . . ,P

′
t,Pt) is a cluster-tree collection of the set P1 that has been obtained

from P0 by replacing the pendant subtree having leaf set A1 with a single leaf labeled l1

for all Ti ∈ P0. Since |R1| < |R|, it follows from the induction assumption that

h′(P1) = h′(Pt) +
t

∑

j=2

h′(P ′
j)

and by Theorem 2.5 that

h′(P0) = h′(P1) + h′(P ′
1).

Combining both equations establishes the proof.

Note that the result of Theorem 2.5 and Corollary 2.6 holds when the cluster reduction

is applied to an arbitrarily large common cluster. For algorithmic purposes, it is of interest

to combine the application of the cluster reduction with the subtree and chain reduction in

a way that each tree pair of a cluster-tree collection has been reduced as much as possible
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by the other two reductions. Therefore, it is necessary to fit the cluster reduction into the

framework of legitimate-agreement forests of minimum weight. This is easily achievable

by considering minimal clusters only. Hence, each cluster intersects a weighted 2-chain in

either both elements or neither.

We close this section by establishing two analogous corollaries for Theorem 2.5 and

Corollary 2.6 that allow for applications of the cluster reduction in the context of legitimate-

agreement forests.

Corollary 2.7. Let P = {T1, T2, . . . , Tn} be a set of weighted rooted binary phylogenetic

X-trees. Suppose that A ⊂ X is a minimal cluster common to all trees of P. Let PA

and Pa be the cluster-tree set and the cluster-reduced tree set of weighted rooted binary

phylogenetic trees obtained from P by applying the cluster reduction once. Then

f(P) = f(PA) + f(Pa).

Proof. The following proof can be established in exactly the same way as the proof of

Theorem 2.5 by considering the weight of a forest instead of its cardinality. We first show

that

f(P) ≤ f(PA) + f(Pa).

To this end, let FA be a legitimate-agreement forest for PA of minimum weight with an

associated set PA of weighted 2-chains, and let Fa be such a forest for Pa with an associated

set Pa. Suppose that Pa has been obtained from P by replacing the minimal rooted subtree

induced by A with a single leaf labeled a for all Ti ∈ P with i ∈ {1, 2, . . . , n}. Let Sj,a be

the unique tree in Fa with a vertex labeled a, and let Sρ,A be the unique tree in FA with

a vertex labeled ρ. Then obtain the rooted binary tree SA,a in one of the following two

ways:

(a) If Sj,a is an isolated vertex, then obtain SA,a from Sρ,A by deleting the edge which

is incident with the vertex labeled ρ and the vertex labeled ρ itself.

(b) Otherwise, obtain SA,a by adjoining Sρ,A to Sj,a via a new edge joining the vertices

labeled ρ and a, removing the labels a and ρ, and suppressing any vertex of degree

two apart from the root.

Consider that A is minimal. Then, since FA and Fa are acyclic-agreement forests,

F = ((Fa ∪ FA)− {Sj,a,Sρ,A}) ∪ {SA,a}
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is such a forest for P. Furthermore, every pair of isolated vertices that corresponds to a

weighted 2-chain exists in F if and only if it exists in FA or Fa and thus F is legitimate

and wc(F , PA ∪ Pa) = wc(FA, PA) + wc(Fa, Pa). With |F| = |FA|+ |Fa| − 1, we have

f(PA)+f(Pa) = |FA|−1+wc(FA, PA)+|Fa|−1+wc(Fa, Pa) = |F|−1+wc(F , PA∪Pa) ≥ f(P).

We next show that

f(P) ≥ f(PA) + f(Pa).

Let F be a legitimate-agreement forest for P of minimum weight, and let P be a set of

weighted 2-chains associated with P. There are two cases to consider:

(i) there exists Sj ∈ F such that L(Sj) ∩A 6= ∅ and L(Sj) ∩ ((X −A) ∪ {ρ}) 6= ∅, and

(ii) for all Sl ∈ F , either L(Sl) ⊆ A or L(Sl) ⊆ ((X −A) ∪ {ρ}).

For case (i), we assume that Sj is such a tree in F . Then, for all i ∈ {1, 2, . . . , n},

the minimal rooted subtree of Ti ∈ P that contains the label set of Sj includes the root

of Ti|A. Since F is an agreement forest, this implies that Sj is the unique such tree in

F . Then obtain Sj,A from Sj by adding a vertex labeled ρ at the end of a pendant edge

adjoined to the root of Sj |(A ∩ L(Sj)). Additionally, obtain Sj,a from Sj by replacing

the pendant subtree having label set A ∩ L(Sj) with a single leaf labeled a. As F is an

acyclic-agreement forest for P,

FA = {Sl ∈ F : L(Sl) ⊆ A} ∪ {Sj,A}

is an acyclic-agreement forest for PA and

Fa = {Sl ∈ F : L(Sl) ⊆ ((X − A) ∪ {ρ})} ∪ {Sj,a}

is such a forest for Pa.

We now turn to case (ii). As GF of P is acyclic, it follows that the subdigraph

induced by the set {Sl ∈ F : L(Sl) ⊆ A} does not contain any directed cycle. Hence, this

subdigraph has a vertex, S0 say, with indegree zero. Let S0,ρ be the tree obtained from

S0 by adding a vertex labeled ρ at the end of a pendant edge adjoined to the original root

of S0. Since F is an acyclic-agreement forest for P, it is easily seen that

FA = ({Sl ∈ F : L(Sl) ⊆ A} − {S0}) ∪ {S0,ρ}
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is an acyclic-agreement forest for PA and

Fa = {Sl ∈ F : L(Sl) ⊆ ((X − A) ∪ {ρ})} ∪ {a}

is such a forest for Pa, where the singleton {a} is used to denote an isolated vertex labeled

a.

In both cases (i) and (ii), let PA be the set of weighted 2-chains associated with PA

such that PA contains exactly each element of P that is a subset of A. Similarly, let Pa

be the set of weighted 2-chains associated with Pa such that Pa contains exactly each

element of P that is a subset of (X − A) ∪ {ρ}. Since A is minimal, note that PA and

Pa are disjoint sets with P = PA ∪ Pa. Furthermore, every pair of isolated vertices that

corresponds to a weighted 2-chain exists in FA or Fa if and only if it exists in F , and thus

it follows that FA and Fa are legitimate and wc(F , P ) = wc(FA, PA) + wc(Fa, Pa). Then

with |F| = |FA|+ |Fa| − 1, we can finally deduce that

f(P) = |F|−1+wc(F , P ) = |FA|−1+wc(FA, PA)+|Fa|−1+wc(Fa, Pa) ≥ f(PA)+f(Pa).

Combining both parts of the proof gives the desired result.

Corollary 2.8. Let P0 be a set of weighted rooted binary phylogenetic X-trees with an

associated set P of weighted 2-chains, and let R = (P ′
1,P

′
2, . . . ,P

′
t,Pt) be a cluster-tree

collection resulting from applying the cluster reduction t times to a minimal cluster. Then

f(P0) = f(Pt) +
t

∑

j=1

f(P ′
j).

Proof. This corollary is an immediate consequence of Corollary 2.6 and Corollary 2.7.



3 HybridNumber: A Reduction Algorithm for Hy-

bridization

In this chapter, we describe a new reduction-based algorithm for computing the minimum

number of hybridization events for two rooted binary phylogenetic trees on the same set of

taxa. The algorithm, called HybridNumber, is based on the combinatorial framework,

which is described in Chapter 2. HybridNumber is outlined in Section 3.2 and pseu-

docode is given in Appendix A.1. Although the two-tree problem is NP-hard (Bordewich

and Semple, 2007a), HybridNumber always gives the exact solution and runs efficiently

on many biological problems. In terms of their running time, a full range of instances is

highlighted in Section 3.3, where we apply HybridNumber to a grass (Poaceae) data

set. We end this chapter by giving some conclusions in Section 3.4.

3.1 Introduction

In the following, we restrict our attention to hybridization whose effect in evolution has

been recognized for quite some time. For example, since the 1930’s, botanists have sug-

gested that the morphological variation in the New Zealand flora is due to hybridiza-

tion (Allan, 1961). However, the computational task of determining how much hybridiza-

tion has occurred has been a much more recent consideration. Assuming that we are

given a collection of rooted phylogenetic trees on a set of present-day species that cor-

rectly represent the tree-like evolution of different genetic loci, an important step in the

study of hybridization is to analyze the minimum number of hybridization events needed

to explain the evolution of the species under consideration. As well as providing a lower

bound on the number of such events, this smallest number also acts as an indicator for the

extent to which hybridization has influenced the evolutionary history of the considered

collection of present-day species.

Formalized mathematically, this fundamental problem is NP-hard even when the ini-

tial collection consists of two rooted binary phylogenetic trees (Bordewich and Semple,

2007a). Consequently, as a result of this computational difficulty, most current research

considers the two-tree problem. There are now several algorithms focusing on this prob-

lem. However, all of these algorithms are either algorithms solving a restricted version of

the problem (e.g. Hallett and Lagergren, 2001, Huson et al., 2005, Nakhleh et al., 2005b)

or polynomial-time heuristics with no guarantee of the closeness to the exact solution (e.g.

Nakhleh et al., 2005a).
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Here, we describe a newly implemented and exact algorithm for solving the two-tree

problem (without any restrictions) based on the subtree, chain, and cluster reduction (see

Sections 2.3 and 2.4) that makes use of similarities between the original two trees. It

has recently been shown that the subtree and chain reductions are enough to ‘kernalize’

the problem and give a fixed-parameter tractable algorithm, where the parameter is the

smallest number of hybridization events needed to explain the initial two trees (Bordewich

and Semple, 2007b). This means that the algorithm runs efficiently when this smallest

number is bounded. In other words, while the general problem is NP-hard, many biolog-

ically interesting instances of the problem may be solvable in a reasonable time even for

a very large number of taxa as long as the number of hybridization events is relatively

small. For further information on fixed-parameter tractability, we refer the interested

reader to Downey and Fellows (1998). Additionally, the cluster reduction provides an

extremely useful tool for breaking the problem into a number of smaller subproblems; all

that is required is that the subtrees should have identical leaf sets, the topologies of the

two subtrees can be completely different. However, there are going to be some instances

for which HybridNumber will not return an answer in a reasonable time—in particular,

instances that have a high level of hybridization and few similarities.

The algorithm HybridNumber has been implemented in Perl. The program expects

two rooted binary phylogenetic trees on the same set of taxa as input, where each taxa

needs to be represented as an integer value, and outputs the simplified trees after each

application of the three reductions and the minimum number of hybridization events to

explain the two initial trees. Full details of the algorithm described in this chapter can

be found in Appendix A.1, where a pseudocode version is given. As HybridNumber

is restricted to the two-tree problem, note that the hybridization number is equal to the

number of hybridization vertices in a hybridization network that displays the two input

trees. This is simply due to the fact, that the indegree of a vertex in such a network is at

most two.

3.2 The Algorithm HybridNumber

Next, we briefly describe a combinatorial characterization of computing the minimum

number of hybridization events h(S, T ) for two rooted binary phylogenetic trees S and

T . This characterization underlies HybridNumber and finds the exact solution to Min-

imum Hybridization (see page 15). Loosely speaking, a forest of S (or T ) is a collection

of non-overlapping rooted subtrees of S (or T ) whose disjoint union of leaf sets is X. An
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agreement forest F of S and T is a forest of both S and T . Beginning with a hybridization

network that displays S and T , one way to obtain an agreement forest for S and T is

by deleting each of the edges coming into every hybridization vertex (for a more detailed

description, see Section 2.2). Biologically, the deleted edges correspond to different paths

of genetic inheritance. Thus the fewer the number of hybridization vertices of such a net-

work, the smaller the size of the resulting agreement forest for S and T , where the size of a

forest is the number of trees in the forest. On the other hand, if we are given an agreement

forest for S and T , then one can reverse this process to construct a hybridization network

H that displays S and T provided the forest has a particular acyclicity property. This

property excludes the possibility of circular inheritance which means that a vertex in H

does not inherit genetic information from its own descendants, in which case H contains

no directed cycles. An agreement forest with the acyclicity property is called acyclic (see

Section 2.2). Theorem 2 of Baroni et al. (2005) shows that h(S, T ) is one less than the

minimum size of an acyclic-agreement forest for S and T .

The algorithm HybridNumber is based on the repeated use of three polynomial-

time reductions (see Section 3.2.1). Essentially, each of these reductions preserves the

hybridization number in some way. The subtree and chain reduction reduce the size of

the problem instance, while the cluster reduction breaks the problem into a number of

smaller and more tractable subproblems. An exhaustive search part on each of the smaller

problems completes the algorithm. While it is likely that the general problem Minimum

Hybridization has no polynomial-time solution, it would be interesting to see how one

could speed up the exhaustive search part of HybridNumber. Improvements that are

already implemented in this part of the algorithm are described in Section 3.2.2.

3.2.1 Reductions

In this subsection, we give a brief description of the three reductions and their effect on

computing h(S, T ) for two rooted binary phylogenetic X-trees S and T . Detailed expla-

nations of these reductions can be found in Section 2.3 and 2.4 and they are illustrated

in Figures 3.1, 3.2, and 3.3, respectively. Pseudocode for each of the three reductions is

given in Appendix A.1.

Subtree reduction. Replace a maximal pendant subtree with at least two leaves that

occurs identically in S and T by a single leaf with a new label. If S ′ and T ′ denote the

resulting trees, then

h(S, T ) = h(S ′, T ′).
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T ′

A A

S T

a a

S′

Figure 3.1: Two rooted binary phylogenetic trees S and T reduced under the subtree reduction.
The triangle A indicates a maximal pendant subtree which is common to both trees and replaced
by a new leaf labeled a in S ′ and T ′.

Chain reduction. Replace a maximal chain (a1, a2, . . . , am) with m ≥ 3 that occurs

identically and with the same orientation relative to the root in S and T by a 2-chain

with new labels, a and b say, correctly orientated to preserve the direction of the chain.

If the chain consists of m leaves, then assign the pair {a, b} of new leaves weight m− 2.

If S ′ and T ′ denote the resulting trees, then either

h(S, T ) = h(S ′, T ′)

or

h(S, T ) = h(S ′, T ′) + m− 2,

depending on whether a minimum-sized acyclic-agreement forest for S ′ and T ′ has the

property that a and b are contained in the label set of one tree or not, respectively. In the

case that a and b are not contained in the same label set, a and b label isolated vertices

in the minimum-sized acyclic-agreement forest (Bordewich and Semple, 2007b). Due to

Lemma 2.4, note that these are the only two cases need to be considered. The purpose of

the weighting is to keep track of the number of leaves in the original chain when a and b

label isolated vertices because then each of {a1, a2, . . . , am} labels an isolated vertex in a

minimum-sized acyclic-agreement forest for S and T . There is a slight complication here

in that the reducing chain may contain consecutive pairs of leaves that have previously

been involved in a chain reduction. In such cases, the pair {a, b} of new leaves is assigned
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Figure 3.2: Two rooted binary phylogenetic trees S and T reduced under the chain reduction.
Dotted lines indicate regions of the m-chain.

a weight that is the sum of the associated weights of these pairs and m − 2. The effect

on h(S, T ) is a generalization of the previous outcome.

Cluster reduction. If A is a minimal cluster common to S and T and with at least

two leaves, then replace S and T with two pairs of new trees. The cluster-reduced tree

pair, S1 and T1 say, is obtained from S and T by replacing the subtree whose leaf set is

A with a new label, while the cluster-tree pair, S2 and T2 say, contains the subtrees S|A

and T |A. The point of this is that

h(S, T ) = h(S1, T1) + h(S2, T2).

Remark. Without going into details, the cluster reduction has a similar flavor to the

“Decomposition Theorem” in Huson et al. (2005). This theorem describes a one-to-one

correspondence between the overlapping cycles of an (unrooted) network H, the con-

nected components of the incompatibility graph of the splits generated by H, and the

netted components of the splits graph of the splits generated by H. However, while this

theorem yields an algorithm for minimizing the number of hybridization vertices amongst

a restricted class of networks, it is important to note that it does not give a general

strategy for minimizing this number amongst all hybridization networks as there is no

guarantee that such a reduction leads to an optimal solution. In contrast, Baroni et al.
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S2S1 T2
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Figure 3.3: Two rooted binary phylogenetic trees S and T divided under the cluster reduction
applied to A = {1, 2, 3, 4}. The hybridization number of S and T is the sum of the hybridization
numbers of S1 and T1, and S2 and T2.

(2006) showed that such a strategy, in particular the cluster reduction, works for two

trees. An analogous problem has also been posed by Gusfield and Bansal (2005) within

the framework of population genetics.

Using the three reductions, the algorithm HybridNumber initially attempts to re-

duce the size of the problem instance as much as possible. It begins by repeatedly ap-

plying the subtree reduction where possible before applying the chain reduction in the

same way. Once this is done, it finds the smallest common cluster of size at least two of

the resulting trees and uses this cluster to perform a cluster reduction, thus replacing the

pair of subtree-and-chain-reduced trees with two smaller pairs of trees. Putting aside the

cluster-tree pair, the algorithm now repeats this process for the cluster-reduced tree pair.

Eventually, no more reductions are possible and we are left with pairs of trees for which

we exhaustively find each of their hybridization numbers. Because of the combinatorial

characterization mentioned earlier, up to the weightings resulting from a chain reduction,

this exhaustive process finds an acyclic-agreement forest of smallest size for each pair of

trees. The sum of these sizes minus one for each such pair gives the hybridization number

of the initial two trees.

3.2.2 Exhaustive Search Strategy

In this subsection, we describe some improvements that have been implemented to speed

up the exhaustive search of HybridNumber. This is the computationally most intensive
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6

ρ

Figure 3.4: A rooted binary tree S. Suppose that the 2-chain (2, 3) reduces a strictly bigger
chain. To calculate an appropriate acyclic-agreement forest for S and a second tree on the
same label set that is omitted here, the dashed lines indicate edges that never get deleted.
Furthermore, given that the two thicker edges {c, d} and {d, 4} are deleted, the dotted line
indicates an edge that does not get deleted when it comes to deleting more than these two
edges.

part of the algorithm and calculates the minimum number of hybridization events needed

to explain the evolutionary history of a pair of rooted binary phylogenetic trees S and T

that result from applying the three reductions as much as possible.

A first-up approach would be to exhaustively delete an increasing number of edges

from S and T , and then see if (i) the resulting forests, FS and FT say, are the same

acyclic-agreement forests for S and T and (ii) for every 2-chain (a, b) reducing a strictly

bigger chain, the two leaf labels a and b label isolated vertices or both are contained in a

label set of one tree of FS and FT , respectively. However, a much faster approach is to

delete edges from just one of the trees, S say, to obtain a forest F = {Sρ,S1,S2, . . . ,Sk}

and then see if for all i ∈ {ρ, 1, 2, . . . , k} the tree Si is isomorphic to T |L(Si) and if the

collection

{T (L(Si)) : i ∈ {ρ, 1, 2, . . . , k}}

of trees is vertex-disjoint in T . If no, then F is not an agreement forest for S and T . On

the other hand, if yes, then F is such a forest. Of course, one also needs to check if F is

acyclic and if, for every 2-chain (a, b) reducing a strictly bigger chain, the two leaf labels

a and b label isolated vertices or both are contained in a label set of one tree of F .

Additionally, there are edges in S that never get deleted since, otherwise, the resulting

forest does not have all desired properties. There are mainly two types of such edges:

(i) the edge incident with the root vertex labeled ρ and

(ii) for each 2-chain (a, b) reducing a strictly bigger chain, the edge separating the
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Table 3.1: The Poaceae data set.

Locus Sequence Origin # Sequences Alignment Length [nc]
ITS nucleus 47 322
ndhF chloroplast 65 2210
phyB nucleus 40 1182
rbcL chloroplast 37 1344

rpoC2 chloroplast 34 777
waxy nucleus 19 773

parents of the leaves labeled a and b, respectively.

Item (i) is due to Lemma 2.2, whereas (ii) follows from the fact that a and b are both

contained in the label set of one tree of F or a and b label isolated vertices in F . Such

edges, which never get deleted, are indicated by dashed lines for the example depicted

in Figure 3.4. Moreover, no agreement forest for S and T contains an isolated internal

vertex and, hence, we do not need to consider sets of edges to delete which contain three

edges incident with one vertex. In general, after deleting an edge of S, we always exclude

those edges in S from getting deleted in a subsequent step whose deletion would result in

a forest containing a tree with an empty label set. To see this point, consider Figure 3.4

and suppose that the two edges {c, d} and {d, 4} have been deleted in the rooted binary

tree S. Then each combination of edges to delete that additionally includes the edge

{d, 5} results in a forest containing a subtree that consists of the (unlabeled) single vertex

d. Lastly, noting that a forest F can result from deleting different combinations of edges,

we perform a well-ordered iteration through all edges of S to avoid that it is checked more

than once if F is an appropriate forest for S and T .

3.3 The Grass (Poaceae) Data Set

In this section, we describe an application of HybridNumber to a grass (Poaceae) data

set. This data set was provided by the Grass Phylogeny Working Group (2001). Although

the extent of hybridization is still discussed controversially (Arnold, 1997, Rieseberg et al.,

2003), the occurrence of such events in certain groups of plants is generally accepted.

In 1996, Ellstrand et al. examined the frequency of spontaneous hybridization in five

biosystematic floras and found that, in four of these floras, the Poaceae family is among

the six families with the highest number of natural hybrids. Therefore, it is more likely

that the conflicting signals in the data are due to hybridization rather than other factors

and so it is an appropriate data set for our purposes.
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Table 3.2: Results for the Poaceae data set.

Pairwise Combination # Taxa Hybridization
Number

Run
Timea

ndhF phyB 40 14 11 h
ndhF rbcL 36 13 11.8 h
ndhF rpoC2 34 12 26.3 h
ndhF waxy 19 9 320 s
ndhF ITS 46 at least 15 2 d
phyB rbcL 21 4 1 s
phyB rpoC2 21 7 180 s
phyB waxy 14 3 1 s
phyB ITS 30 8 19 s
rbcL rpoC2 26 13 29.5 h
rbcL waxy 12 7 230 s
rbcL ITS 29 at least 9 2 d

rpoC2 waxy 10 1 1 s
rpoC2 ITS 31 at least 10 2 d
waxy ITS 15 8 620 s

aRun time on a 2000 MHz CPU, 2 GB RAM machine measured in seconds (s), hours (h), and days
(d), respectively.

The Poaceae data set consists of sequence data for six different genetic loci: internal

transcribed spacer of ribosomal DNA (ITS ); NADH dehydrogenase, subunit F (ndhF );

phytochrome B (phyB); ribulose 1,5-biphosphate carboxylase/oxygenase, large subunit

(rbcL); RNA polymerase II, subunit β ′′ (rpoC2 ); and granule bound starch synthase I

(waxy). A summary describing the sequence origin, the number of sequences for each

locus, and the alignment length for each gene in the data set is given in Table 3.1.

For each loci, a rooted binary phylogenetic tree was reconstructed using the fastDNAmL

program (Olsen et al., 1994). These gene trees were supplied by Heiko Schmidt who has

previously analyzed this data set (Schmidt, 2003). We applied HybridNumber to each

of the 15 different pairwise combinations of gene trees, where, for each combination, we

restricted the gene trees to taxa common to both. The size of the overlapping taxa set

for each combination is given in the second column of Table 3.2.

Before detailing the contents of Table 3.2, we describe one particular application of

HybridNumber that highlights the extent to which the reductions incorporated in Hy-

bridNumber can reduce the size of the problem instance. This application involves the

two phylogenetic trees of the chloroplast sequence phytochrome B (phyB) and the nuclear

sequence of the internal transcribed spacer of ribosomal DNA (ITS ) which have an over-

lapping taxa set of 30 present-day species (see the row indicated by the gray background

in Table 3.2). These two trees with the restricted taxa set are shown in Figure 3.5. To

enable a reader-friendly presentation of both trees, we have replaced the correct species
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Figure 3.5: The input to HybridNumber for the combination phyB and ITS . Restricting to
overlapping taxa, the tree resulting from the nuclear sequence ITS is on the left, while the tree
resulting from the chloroplast sequence phyB is on the right. Labels in boxes denote the eight
maximal pendant subtrees that are common to both trees, and the brace denotes a maximal
chain once we have applied the subtree reductions.

names by numbers.

Taking the two trees in Figure 3.5 as input to HybridNumber, the algorithm initially

finds all maximal pendant subtrees that are common to both trees (indicated by small

boxes in Figure 3.5) and replaces each such subtree with a single leaf whose label is a

concatenation of the subtree labels. Here, there are eight such subtrees. Next, Hybrid-

Number checks for any identical chains of leaves in the two resulting trees. There is one

such maximal chain of leaves and this is denoted by the brace in Figure 3.5. Applying

the chain reduction, the labeling of the species which has evolved first is kept, while the

labels of all other chain leaves are concatenated. The two trees resulting from the subtree

and chain reductions are shown in Figure 3.6.

In the next step, the cluster reduction divides the problem into two smaller problems

by searching for a minimal cluster of size at least two that is common to both trees

in Figure 3.6. The first such cluster, indicated by square bracket A in Figure 3.6, is

{(9), (12, 16), (3, 5, 29), (4), (15, 19), (20), (1)} and the corresponding subtrees are shown

at the top of Figure 3.7. At this point, HybridNumber has completed one iteration.

Beginning with the two trees that result from replacing the cluster A with a single new

leaf (a concatenation of the leave labels of the cluster induced subtree), the algorithm

performs two further iterations. At the end of these two iterations, we obtain two more

pairs of trees as indicated by the square brackets B and C in Figure 3.6. These two pairs
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Figure 3.6: The two resulting phylogenetic trees (left: ITS , right: phyB) after repeated ap-
plications of the subtree reduction and then the chain reduction to the two trees in Figure 3.5.
The three brackets A, B, and C indicate common minimal clusters.

are shown in Figure 3.7. At this stage, the original inputted trees have been reduced to

two identical trees.

The final step in the algorithm is to exhaustively find the hybridization number of the

three pairs of non-identical trees in Figure 3.7. The first pair has hybridization number

3, while the second and third pairs have hybridization numbers of 1 and 4, respectively.

Adding the three numbers together gives the hybridization number of 8 for the two trees

shown in Figure 3.5. The running time of this particular application is about 19 seconds

(see Table 3.2). This is remarkably quick given that the two initial trees contain 30 taxa

and the hybridization number is 8. As a comparison, we tried finding the hybridization

number of these two trees without the three reductions. After one week, the algorithm

was still running!

In Table 3.2, the results for all 15 pairs of trees are summarized. The running times

are given in days, hours, or seconds. For eight pairs, HybridNumber calculates the

hybridization number within a couple of minutes. Furthermore, the hybridization num-

bers of all but three pairs are found within a time span of two days. The successfully

completed pairs contained up to 40 taxa and have hybridization numbers as high as 14.

Those three pairs of trees for which the running time is given as 2 days in Table 3.2 are

instances of the described NP-hard problem for which the algorithm will not return an

answer in reasonable time. Nevertheless, we still have a lower bound on their respective

hybridization numbers depending upon the intermediate result of the algorithm after two

days at which time we stopped the algorithm. Lastly, the difference in running times
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Figure 3.7: The three cluster-tree pairs corresponding to the clusters A, B, and C of Figure 3.6
for which HybridNumber (separately) calculates the minimum number of hybridization events
(left: ITS , right: phyB).

of the various pairs is due to the extent of the reductions that we were able to use to

reduce the problem instance and their hybridization number if the reductions have little

effect. (The running time is dependent on the exhaustive search part of the algorithm as

the reductions take a matter of seconds.) However, it is worth noting that it is always

possible to reduce the number of leaves in a pair of trees to a linear function of its hy-

bridization number (Bordewich and Semple, 2007b)—again highlighting the effectiveness

of the reductions.

From a more biological point of view, it remains to remark that the hybridization

numbers for the three gene tree pairs consisting of two trees which have both been recon-

structed for a gene coded in the chloroplasts should be interpreted carefully since these

organelles are inherited maternally. Hence, all genes that are coded in the chloroplasts

have the same evolutionary history and, therefore, gene tree incongruence is more likely

due to problems in the tree reconstruction method for example.
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Figure 3.8: Top: Two rooted binary phylogenetic X-trees S and T . Bottom: A minimum-sized
acyclic-agreement forest F for S and T and a hybridization network H constructed from F by
successively adjoining the trees in F via new (thicker) edges (for more details, see text).

3.4 Conclusions

Due to reticulate evolution, phylogenetic gene trees reconstructed for different genetic loci

often reveal conflicting tree topologies, because processes like hybridization, HGT, and

recombination are not tree-like. The extent to which such events occur is of increasing

interest for many evolutionary studies.

In this chapter, we have described a newly implemented algorithm to calculate exactly

the minimum number of hybridization events that explains two phylogenetic gene trees.

Unlike previous algorithms, HybridNumber is not a heuristic, and its solution is not

restricted in any way. Calculating this minimum number is a computationally hard prob-

lem, and so if the initial two gene trees only share a few similarities, then in many cases

the exact calculation of the hybridization number is computationally infeasible. How-

ever, if the two gene trees share a number of common features—pendant subtrees, chains,

or clusters—which is likely for many biological examples, the new algorithm performs

remarkably well and the hybridization number can be found in reasonable time.

Note that HybridNumber calculates a lower bound for the number of hybridization

events to explain the differences between two phylogenetic gene trees (assuming that hy-

bridization is the only cause of incongruence between the two trees). It is possible that the
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real number of hybridization events that happened during the evolution of the collection

of present-day species under consideration is underestimated. Indeed, it is possible that

some hybridization events are never recognized. Nevertheless, the algorithm provides an

important first step towards an understanding of the extent to which hybridization has

influenced evolution.

Of course, in addition to computing the hybridization number of two rooted phyloge-

netic X-trees S and T , one is also interested in constructing hybridization networks that

realize this number. This can be efficiently done from a minimum-sized acyclic-agreement

forest F for S and T . Intuitively, one takes the tree in F containing the root of S and

T , and then systematically adjoins the rest of the trees in F as follows. At each step,

adjoin a tree from F whose root is not the descendant (relative to either S or T ) of

any tree not already adjoined. Each tree in F is adjoined with two new edges to the

current hybridization network so that the resulting hybridization network H displays the

appropriate restrictions of S and T . Note that H is not necessarily uniquely defined. An

example of such a construction is shown in Figure 3.8, where thicker edges indicate how

trees of F have been joined together. An explicit algorithm called HybridNetwork

that builds a network from an acyclic-agreement forest is given by Semple (2007).



4 How Deep is a Hybridization Event?

4.1 Introduction

The following extension of the HybridNumber algorithm was motivated by Peter Lock-

hart who posed the question whether hybridization events have occurred relatively re-

cently or in the distant past. If the hybridization events are uniformly distributed over a

hybridization network, these can possibly be interpreted as artifacts due to difficulties in

gene tree reconstruction methods (Lockhart, 2007). Otherwise, if hybrid species are con-

centrated in some parts of the hybridization network, whereas other parts are completely

tree-like, there is an increased probability that those events indicate true processes of

hybridization. Most of all, this is the case for hybridization events between closely related

recent species since such species are more likely to hybridize successfully and produce

viable offspring (Mallet, 2007).

To approach the above mentioned question, we need to localize hybridization vertices

in a hybridization network. Suppose that T and T ′ are two weighted rooted binary

phylogenetic X-trees. The construction of a hybridization network H displaying T and

T ′ (see page 48) shows that each hybridization vertex in H corresponds to the root of

a tree in a legitimate-agreement forest F for T and T ′ of minimum weight. Given a

hybridization network H, we refer to a hybridization event as non-deep if the resulting

hybrid species is a leaf inH and, otherwise, as a deep event. As an example, see Figure 1.2,

where the leaf labeled B indicates a non-deep hybridization event, whereas the vertex ∗

corresponds to a species that has originated through a deep hybridization event. Note

that the number of non-deep events is equal to the number of isolated vertices in F .

To compare the number of deep with the number of non-deep events, it is necessary to

calculate all legitimate-agreement forests for T and T ′ of minimum weight. Here, we only

consider legitimate-agreement forests of minimum weight because hybridization events are

supposed to have occurred rarely during evolution and, hence, we focus on the minimum

number of such events that is necessary to explain T and T ′. Furthermore, since we have

approached the question of inferring hybridization with a combinatorial framework, there

can exist several legitimate-agreement forests of minimum weight for a given pair of trees.

For example, all legitimate-agreement forests of minimum weight for the four-taxa trees

T and T ′ are depicted in Figure 4.1.

In the remainder of this chapter, we describe four ways of how to obtain a forest F for a

pair of weighted rooted binary phylogenetic X-trees T and T ′ by considering a legitimate-
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Figure 4.1: All six legitimate-agreement forests for T and T ′ of minimum weight.

agreement forest of minimum weight for two weighted rooted binary phylogenetic trees

T1 and T ′
1 that have been obtained from T and T ′ by a single application of the subtree,

chain, or cluster reduction. Depending on the reduction, we show that F is a legitimate-

agreement forest for T and T ′ of minimum weight (Section 4.2). Having these results, we

then present a new algorithm BuildForest that calculates a legitimate-agreement forest

F for T and T ′ of minimum weight by considering such a forest for each cluster-tree pair

(for the definition, see page 39) into which T and T ′ can be decomposed by repeatedly

applying the subtree, chain, and cluster reduction (Section 4.3). Loosely speaking, given

all legitimate-agreement forests of minimum weight for each cluster-tree pair, we show

that all such forests for T and T ′ can be obtained by reversing the three reductions in

an appropriate way. We close this chapter by applying this framework to a grass data

set (Grass Phylogeny Working Group, 2001) and analyzing the ratio between deep and

non-deep hybridization events (Section 4.4).

First, we obtain the following intuitive lemma.

Lemma 4.1. A pair of rooted binary phylogenetic X-trees T and T ′ with |X| ≥ 2 has a

cluster A with 2 ≤ |A| ≤ |X| taxa in common.

Proof. Since T and T ′ have leaf set X, the cluster A = X is always a common cluster of

T and T ′ such that T ∼= T |A and T ′ ∼= T ′|A, respectively.

Let T0 and T ′
0 be two rooted binary phylogenetic X-trees with |X| ≥ 2. We say that

the two rooted binary phylogenetic trees T1 and T ′
1 have been obtained by a reduction

operation from T0 and T ′
0 if they have been derived in one of the following ways:

(i) If T0 and T ′
0 have a subtree with label set A in common with |A| ≥ 2, then T1 and
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T ′
1 are obtained by applying the subtree reduction to a maximal subtree of T0 and

T ′
0 .

(ii) If T0 and T ′
0 have no such common subtree, but a chain with at least three leaves in

common, then T1 and T ′
1 are obtained by applying the chain reduction to a maximal

chain of T0 and T ′
0 .

(iii) If T0 and T ′
0 have no such common chain, then T1 and T ′

1 is the cluster-reduced

tree pair (for the definition, see page 39) after applying the cluster reduction to a

minimal common cluster of T0 and T ′
0 .

Due to Lemma 4.1, note that it is always possible to apply the cluster reduction.

4.2 Reduced Forests

Let T and T ′ be two weighted rooted binary phylogenetic X-trees, and let F be a

legitimate-agreement forest for T and T ′ of minimum weight with an associated set P

of weighted 2-chains. Furthermore, let T1 and T ′
1 be two trees obtained from T and T ′

by applying a single reduction operation. Depending on the reduction, we next describe

how to obtain a forest F1 for T1 and T ′
1 from F = {Sρ,S1,S2, . . . ,Sk}. In particular,

the upcoming four lemmas show that F1 is a legitimate-agreement forest for T1 and T ′
1

of minimum weight. Considering these results, we then prove the main theorem of this

chapter in Section 4.3.

4.2.1 A Subtree-Reduced Forest

Let A be the label set of a maximal common subtree with |A| ≥ 2. Since T |A and T ′|A

are isomorphic, there exists precisely one tree Si ∈ F with i ∈ {ρ, 1, 2, . . . , k} whose label

set contains A and thus A ⊆ L(Si). We refer to a forest F1 that has been obtained from F

by replacing the pendant subtree Si|A with a single vertex labeled s as a subtree-reduced

forest. Note that s labels an isolated vertex in F1 if A = L(Si). This construction is

depicted in Figure 4.2.

Lemma 4.2. Let T and T ′ be two weighted rooted binary phylogenetic X-trees with a

maximal common subtree whose label set is A, and let F be a legitimate-agreement forest

of minimum weight for both trees. Furthermore, let T1 and T ′
1 be obtained from T and T ′

by applying the subtree reduction to A. Then the subtree-reduced forest F1 obtained from

F is a legitimate-agreement forest for T1 and T ′
1 of minimum weight.
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Figure 4.2: A subtree-reduced forest F1 obtained from a legitimate-agreement forest F of
minimum weight. The triangle labeled A indicates a maximal common subtree.

Proof. Note first that A is maximal. Then, since F is a legitimate-agreement forest for

T and T ′, it is easily checked that F1 is such a forest for T1 and T ′
1 . This implies that

wc(F , P ) = wc(F1, P ). Furthermore, by construction of F1, we have |F| = |F1|. Hence,

f(T , T ′) = w(F) = |F| − 1 + wc(F , P ) = |F1| − 1 + wc(F1, P ) = w(F1).

Due to Theorem 2.3, stating that f(T , T ′) = f(T1, T ′
1 ), we can now deduce that F1 is a

legitimate-agreement forest for T1 and T ′
1 of minimum weight.

4.2.2 A Chain-Reduced Forest

Let (a1, a2, . . . , am) be a maximal common m-chain with m ≥ 3 that has been replaced

with a 2-chain with leaves labeled a and b and with an associated weight of

w({a, b}) = m− 2 +
∑

{ai, aj} ∈ P ;

ai, aj ∈ {a1, . . . , am}

w({ai, aj}).

By Lemma 2.4, two cases need to be considered to obtain F1 from F :

(i) If there exists a tree Si ∈ F with {a1, a2, . . . , am} ⊆ L(Si) and i ∈ {ρ, 1, 2, . . . , k},

then F1 is obtained from F by replacing the m-chain in Si by a 2-chain with new

labels a and b (see Figure 4.3).

(ii) Otherwise, F1 is obtained from F by replacing precisely m isolated vertices whose

labels partition {a1, a2, . . . , am} with two new such vertices labeled a and b, respec-

tively (see Figure 4.4).

We refer to F1 as a chain-reduced forest.

Lemma 4.3. Let T and T ′ be two weighted rooted binary phylogenetic X-trees that have a



How Deep is a Hybridization Event? 53

F1

a1

a2

am

a
b

ρ

F

ρ

Figure 4.3: A chain-reduced forest F1 obtained from a legitimate-agreement forest F of mini-
mum weight for which there exists one tree whose label set contains all labels a1, a2, . . . , am of
a maximal common m-chain.

maximal m-chain A = (a1, a2, . . . , am) with m ≥ 3 in common, and let F be a legitimate-

agreement forest of minimum weight for both trees. Furthermore, let T1 and T ′
1 be obtained

from T and T ′ by applying the chain reduction to A. Then the chain-reduced forest F1

obtained from F is a legitimate-agreement forest for T1 and T ′
1 of minimum weight.

Proof. Note first that A is maximal. Then, since F is a legitimate-agreement forest for

T and T ′, it is easily checked that F1 is such a forest for T1 and T ′
1 . We first consider the

case that F1 has been constructed according to (i) in the definition of a chain-reduced

forest. By construction, we have |F| = |F1|. Thus, with wc(F , P ) = wc(F1, P ), we can

deduce that

f(T , T ′) = w(F , P ) = |F| − 1 + wc(F , P ) = |F1| − 1 + wc(F1, P ) = w(F1).

We now turn to the construction of F1 according to (ii). Let w({a, b}) be the weight

of the 2-chain with leaves labeled a and b, and let wc′(F ,F1) be the weight of all pairs of

isolated vertices labeled c and d that are contained in F and F1. To be precise,

wc′(F ,F1) =
∑

{c, d} ∈ P ; c, d are

isolated in F and F1

w({c, d}).

Note that wc(F , P ) and wc′(F ,F1) both do not include w({a, b}) and thus w({a, b}) =

m − 2 + wc(F , P )− wc′(F ,F1). Since a and b label isolated vertices in F1, this implies

that m isolated vertices in F have been replaced with two such vertices in F1 and thus
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Figure 4.4: A chain-reduced forest F1 obtained from a legitimate-agreement forest F of mini-
mum weight for which all elements of a maximal m-chain (a1, a2, . . . , am) label isolated vertices.

|F| = |F1|+ m− 2. Hence,

w(F1) = |F1| − 1 + w({a, b}) + wc′(F ,F1)

= |F1| − 1 + m− 2 + wc(F , P )− wc′(F ,F1) + wc′(F ,F1)

= |F1| − 1 + m− 2 + wc(F , P )

= |F| − 1 + wc(F , P )

= w(F)

= f(T , T ′).

Due to the fact that f(T , T ′) = f(T1, T ′
1 ) (see Theorem 2.3), we deduce that F1 is a

legitimate-agreement forest for T1 and T ′
1 of minimum weight in both cases (i) and (ii).

This completes the proof of the lemma.

4.2.3 A Cluster-Reduced Forest and a Cluster-Pair Forest

Let A be the label set of a minimal common cluster with |A| ≥ 2. There can be at most

one tree Sm ∈ F such that L(Sm) ∩ A 6= ∅ and L(Sm) ∩ ((X − A) ∪ {ρ}) 6= ∅. In the

following, we refer to Sm as a mixed tree. For all other trees Si in the forest (or all trees

if there does not exist a mixed tree) either L(Si) ⊆ A or L(Si) ⊆ ((X −A) ∪ {ρ}).

Furthermore, let Nc ⊂ F be the set of trees whose label sets are all subsets of A, and

let Nd ⊂ F be the set of trees whose label sets are all subsets of (X − A) ∪ {ρ}. Note

that neither Nc nor Nd contains the mixed tree Sm if such a tree exists in F .

We first consider the cluster-reduced tree pair T1 and T ′
1 and obtain F1 from F de-

pending on whether a mixed tree exists in F :
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Figure 4.5: A cluster-reduced forest F1 and a cluster-pair forest Fc both obtained from a
legitimate-agreement forest F of minimum weight that contains a mixed tree Sm.

(i) If there exists a mixed tree Sm ∈ F , the minimal pendant subtree Sm|(L(Sm) ∩ A)

is replaced with a single vertex labeled x and all trees Si ∈ Nc are deleted to obtain

F1 (see Figure 4.5).

(ii) Otherwise, the forest F1 is obtained by replacing all trees Si ∈ Nc with an isolated

vertex labeled x (see Figure 4.6).

We refer to F1 as a cluster-reduced forest.

Depending on whether a mixed tree exists in F , we next obtain a forest Fc for the

cluster-tree pair T |A and T ′|A:

(i) If there exists a mixed tree Sm ∈ F , the forest Fc is obtained from F by replac-

ing Sm with Sm|(L(Sm) ∩ A), adding a vertex labeled ρc at the end of a pendant

edge adjoined to the root of the resulting tree, and deleting all trees Si ∈ Nd (see

Figure 4.5).

(ii) Otherwise, Fc is obtained from F by deleting all trees Si ∈ Nd and adding a

vertex labeled ρc at the end of a pendant edge adjoined to the root of the tree that

corresponds to a vertex whose indegree is zero in the subdigraph of GF induced by

the set Nc (see Figure 4.6).

We refer to Fc as a cluster-pair forest.

Lemma 4.4. Let T and T ′ be two weighted rooted binary phylogenetic X-trees with a

minimal common cluster A, where |A| ≥ 2, and let F be a legitimate-agreement forest of

minimum weight for both trees. Furthermore, let T1 and T ′
1 be the cluster-reduced tree pair
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obtained from T and T ′ by applying the cluster reduction to A. Then the cluster-reduced

forest F1 obtained from F is a legitimate-agreement forest for T1 and T ′
1 of minimum

weight.

Proof. Let P be the set of weighted 2-chains associated with T and T ′, and let P1 be such

a set associated with T1 and T ′
1 obtained from P by deleting those elements that contain

an element of A. Since A is a minimal cluster, note that A intersects a weighted 2-chain in

either both elements or neither. Thus we have wc(F , P ) = wc(F1, P1)+wc(Nc, P−P1). If a

mixed tree exists in F , we have |F| = |Nc|+|Nd|+1 and otherwise |F| = |Nc|+|Nd|. Since

F is a legitimate-agreement forest for T and T ′, it is easily checked that F1 is such a forest

for T1 and T ′
1 with |F1| = |Nd|+1 (see Figures 4.5 and 4.6). To show that this forest is also

of minimum weight, suppose that there exists a legitimate-agreement forest F∗
1 for T1 and

T ′
1 such that w(F∗

1 ) < w(F1) or, equivalently, |F∗
1 |−1+wc(F∗

1 , P1) < |F1|−1+wc(F1, P1).

Depending on whether x labels an isolated vertex in F∗
1 and whether a mixed tree exists

in F , four cases need to be considered. For each case, we obtain a forest F∗ from F∗
1

by reversing the process with which F1 has been obtained from F and show that F∗

contradicts the optimality of F .

(i) F∗
1 contains an isolated vertex labeled x and F contains a mixed tree Sm.

To obtain a forest F∗ from F∗
1 , the isolated vertex labeled x is replaced with Sm|(L(Sm)∩

A) and all trees of Nc are added. Thus

w(F∗) = |F∗
1 | − 1 + wc(F

∗
1 , P1) + |Nc|+ wc(Nc, P − P1)

< |F1| − 1 + wc(F1, P1) + |Nc|+ wc(Nc, P − P1)

= |Nd| − 1 + 1 + wc(F1, P1) + |Nc|+ wc(Nc, P − P1)

= |F| − 1 + wc(F , P )

= w(F).

(ii) F∗
1 contains an isolated vertex labeled x and F does not contain a mixed

tree Sm.

We can derive F∗ from F∗
1 by replacing the isolated vertex labeled x with all trees of Nc.
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As a result, we have

w(F∗) = |F∗
1 | − 2 + wc(F

∗
1 , P1) + |Nc|+ wc(Nc, P − P1)

< |F1| − 2 + wc(F1, P1) + |Nc|+ wc(Nc, P − P1)

= |Nd| − 1 + wc(F1, P1) + |Nc|+ wc(Nc, P − P1)

= |F| − 1 + wc(F , P )

= w(F).

(iii) F∗
1 does not contain an isolated vertex labeled x and F contains a mixed

tree Sm.

Since there does not exist an isolated vertex labeled x in F∗
1 , there is some Si ∈ F∗

1

whose label set contains x and at least one other label l with l ∈ ((X − A) {ρ}). Then

the forest F∗ can be obtained from F∗
1 by joining the vertex labeled x and the root of

Sm|(L(Sm)∩A) via a new edge, removing x, suppressing any vertices of degree two apart

from the root, and adding all trees of Nc. Summing up, we get the same inequality as in

case (i).

(iv) F∗
1 does not contain an isolated vertex labeled x and F does not contain

a mixed tree Sm.

Since GF is acyclic, there exists a tree Si ∈ Nc whose corresponding vertex in the subdi-

graph of GF induced by the set Nc has indegree zero. Then the forest F∗ can be obtained

from F∗
1 by joining the vertex labeled x with the root of Si via a new edge, removing

x, suppressing any vertices of degree two apart from the root, and adding all trees of

Nc − {Si}. Hence, we get the same inequality as in case (ii).

In all four cases, we have w(F∗) < w(F). Since f(T , T ′) = w(F), this contradicts the

optimality of F . As a result, we can conclude that F1 is a legitimate-agreement forest for

T1 and T ′
1 of minimum weight.

Lemma 4.5. Let T and T ′ be two weighted rooted binary phylogenetic X-trees with a

minimal common cluster A, where |A| ≥ 2, and let F be a legitimate-agreement forest of

minimum weight for both trees. Then, applying the cluster reduction to A, the cluster-pair

forest Fc obtained from F is a legitimate-agreement forest for T |A and T ′|A of minimum

weight.

Proof. Let P be the set of weighted 2-chains associated with T and T ′, and let Pc be

such a set associated with T |A and T ′|A obtained from P by deleting those elements
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Figure 4.6: A cluster-reduced forest F1 and a cluster-pair forest Fc both obtained from a
legitimate-agreement forest F of minimum weight that contains no mixed tree.

that contain an element of (X − A) ∪ {ρ}. Since A is a minimal cluster, note that A

intersects a weighted 2-chain in either both elements or neither. Thus we have wc(F , P ) =

wc(Fc, Pc) + wc(Nd, P − Pc). Since F is a legitimate-agreement forest for T and T ′, it is

easily checked that Fc is such a forest for T |A and T ′|A. To show that this forest is also of

minimum weight, suppose that there is a legitimate-agreement forest F∗
c for T |A and T ′|A

such that w(F∗
c ) < w(Fc) or, equivalently, |F∗

c | − 1 + wc(F∗
c , Pc) < |Fc| − 1 + wc(Fc, Pc).

Let Spc
be the tree in F∗

c whose label set contains ρc. Depending on whether a mixed

tree exists in F , two cases need to be considered. For each case, we obtain a forest F∗

from F∗
c by reversing the process with which Fc has been obtained from F . Afterwards,

we show that F∗ contradicts the optimality of F .

(i) F contains a mixed tree Sm.

Since F contains a mixed tree Sm, we have |F| = |Nc|+ |Nd|+ 1 and |Fc| = |Nc|+ 1 (see

Figure 4.5). Let S ′
m be obtained from Sm by replacing Sm|(L(Sm) ∩ A) with a new leaf

labeled x. Then obtain F∗ from F∗
c by joining S ′

m and Spc
via a new edge connecting the

vertices labeled x and ρc, removing both labels, suppressing any vertices of degree two

apart from the root, and adding all trees of Nd. Thus

w(F∗) = |F∗
c | − 1 + wc(F

∗
c , Pc) + |Nd|+ wc(Nd, P − Pc)

< |Fc| − 1 + wc(Fc, Pc) + |Nd|+ wc(Nd, P − Pc)

= |Nc|+ wc(Fc, Pc) + |Nd|+ wc(Nd, P − Pc)

= |F| − 1 + wc(F , P )

= w(F).
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(ii) F does not contain a mixed tree Sm.

In such a case, we |F| = |Nc| + |Nd| and |Fc| = |Nc| (see Figure 4.6). Then obtain F∗

from F∗
c , by deleting the vertex labeled ρc and the edge incident with this vertex from

Spc
and adding all trees of Nd. Hence, we have

w(F∗) = |F∗
c | − 1 + wc(F

∗
c , Pc) + |Nd|+ wc(Nd, P − Pc)

< |Fc| − 1 + wc(Fc, Pc) + |Nd|+ wc(Nd, P − Pc)

= |Nc| − 1 + wc(Fc, Pc) + |Nd|+ wc(Nd, P − Pc)

= |F| − 1 + wc(F , P )

= w(F).

In both cases, we have w(F∗) < w(F). Since f(T , T ′) = w(F), this contradicts the

optimality of F . As a result, we can conclude that Fc is a legitimate-agreement forest for

T |A and T ′|A of minimum weight.

4.3 The Algorithm BuildForest

In this section, we present the algorithm BuildForest that, basically, describes how

one can obtain a legitimate-agreement forest of minimum weight for a pair of trees by

considering such a forest for each cluster-tree pair into which the initial tree pair can be

broken down by repeatedly applying the reduction operation. A proof of correctness for

BuildForest is given in Theorem 4.6.

First, we need some further definitions. Let T0 and T ′
0 be two weighted rooted binary

phylogenetic X-trees. Furthermore, let

R = ({T1, T
′

1}, {T2, T
′

2}, . . . , {Tl, T
′

l })

be a tuple of tree pairs such that the following two properties are satisfied:

(i) for all i ∈ {1, 2, . . . , l}, the trees Ti and T ′
i are obtained from Ti−1 and T ′

i−1, respec-

tively, by applying a single reduction operation and

(ii) for all i ∈ {0, 1, . . . , l − 1}, the trees Ti and T ′
i are not isomorphic.

We refer toR as a tuple of reduced tree pairs for T0 and T ′
0 . Suppose that l′ ≤ l tree pairs of

R have been obtained by applying the cluster reduction to a minimal common cluster. We
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T0, T ′
0

T1, T ′
1

T2, T ′
2

T3, T ′
3

T4, T ′
4

T5, T ′
5

T6, T ′
6

C1, C′1 C2, C′2 C3, C′3

F1 F2 F3

Figure 4.7: An example of how to obtain the tuple R = ({T1,T
′
1}, {T2,T

′
2}, . . . , {T6,T

′
6}) of

reduced tree pairs for two weighted rooted binary phylogenetic X-trees T0 and T ′
0 by applying six

reduction operations. Since the cluster reduction has been applied three times (resulting in the
cluster-reduced tree pairs Ti and T ′

i with i ∈ {2, 4, 5}, and the cluster-tree pairs Cj and C′j with
j ∈ {1, 2, 3}), note that we have l′ = 3 and that (F1,F2,F3,F4) is a collection of forests for R.
The first three forests are legitimate-agreement forests for Cj and C′j of minimum weight, while
F4 is such a forest for the last tree pair of R. (SR: subtree reduction, ChR: chain reduction,
ClR: cluster reduction.)

call (F1,F2, . . . ,Fl′+1) a collection of forests for R, where Fl′+1 is a legitimate-agreement

forest for Tl and T ′
l of minimum weight and each Fi with i ∈ {1, 2, . . . , l′} is such a forest

for the cluster-tree pair resulting from the ith cluster reduction that has been applied to a

minimal cluster in the course of all l reduction operations. An explicit example of how to

obtain a tuple R of reduced tree pairs and an associated collection of forests is given in

Figure 4.7, where two weighted rooted binary phylogenetic X-trees T0 and T ′
0 are broken

down by a repeated applications of the reduction operation.

Next, we describe the algorithm BuildForest that calculates a legitimate-agreement

forest of minimum weight for two weighted rooted binary phylogenetic X-trees if a corre-

sponding tuple of reduced tree pairs and a collection of forests are given.

Algorithm: BuildForest

Input: Two weighted rooted binary phylogenetic X-trees T0 and T ′
0 , a tuple of reduced

tree pairs R = ({T1, T
′

1}, {T2, T
′

2}, . . . , {Tl, T
′

l }) for T0 and T ′
0 , and a collection of forests

(F ′
1,F

′
2, . . . ,F

′
l′+1) for R.

Output: A legitimate-agreement forest F0 for T0 and T ′
0 of minimum weight.

1. If T0 ∼= T ′
0 , return T0 and halt. Otherwise, set i = l, set i′ = l′, and set Fi = F ′

l′+1.

2. If the trees Ti and T ′
i have been obtained from Ti−1 and T ′

i−1 by applying the subtree

reduction to a maximal common subtree with label set A, set Fi−1 to be the forest

obtained from Fi by joining the vertex labeled s with the root of Ti−1|A via a new

edge, removing the label s, and suppressing any vertices of degree two apart from

the root.

3. If the trees Ti and T ′
i have been obtained from Ti−1 and T ′

i−1 by applying the chain

reduction to a maximal common m-chain, the forest Fi either contains two isolated
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vertices labeled a and b, or Fi contains a tree S such that a, b ∈ L(S). In the

former case, set Fi−1 to be the forest obtained from Fi by replacing the two isolated

vertices labeled a and b with m isolated vertices labeled according to the leaf labels

(a1, a2, . . . , am) of the original m-chain. In the latter case, let Fi−1 be the forest

obtained from Fi by replacing the 2-chain of S with the corresponding m-chain of

Ti−1 and T ′
i−1, respectively.

4. If Ti and T ′
i is the cluster-reduced tree pair that has been obtained from Ti−1 and

T ′
i−1 by the cluster reduction applied to a minimal common cluster, identify the

unique subtree Sρc
∈ F ′

i′ containing a vertex labeled ρc and the unique subtree

Sx ∈ Fi with a vertex labeled x. Then obtain the tree S in one of the following two

ways:

(a) if Sx is an isolated vertex, then set S to be the tree obtained from Sρc
by

deleting the edge of Sρc
which is incident with the vertex labeled ρc and the

vertex labeled ρc itself or,

(b) otherwise, obtain S from Sx and Sρc
by adjoining Sρc

to Sx via a new edge join-

ing the vertices labeled ρc and x, removing the labels ρc and x, and suppressing

any vertices of degree two apart from the root.

Set Fi−1 = ((Fi − {Sx}) ∪ (F ′
i′ − {Sρc

}) ∪ {S}) and decrement i′ by 1.

5. Decrement i by 1. Return to step 2 if i ≥ 1; otherwise, return F0 and halt.

Remarks.

(1) The construction of a legitimate-agreement forest for two (unreduced) weighted

rooted binary phylogenetic X-trees T0 and T ′
0 is of importance since we want to rec-

ognize whether hybridization events are deep or not which cannot easily be achieved

by considering collections of forests only. Additionally, such a construction is also

important if one wants to reconstruct a hybridization network that displays T and

T ′ with the minimum number of hybridization events.

(2) In each iteration, the algorithm only executes one of the steps 2, 3, or 4 and computes

a legitimate-agreement forest for Ti−1 and T ′
i−1 of minimum weight.

(3) Since the algorithm iterates backwards through R, it is ensured that any subtree,

chain, and cluster that has been reduced in the course of a reduction operation gets

expanded in the correct order. This is of importance because any such motif can

consist of previously reduced subtrees, chains, or clusters.
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Theorem 4.6. Let T0 and T ′
0 be two weighted rooted binary phylogenetic X-trees, and let

R = ({T1, T
′

1}, {T2, T
′

2}, . . . , {Tl, T
′

l })

be a tuple of reduced tree pairs for T0 and T ′
0 . Applying the algorithm BuildForest to

R and an associated collection of forests returns a legitimate-agreement forest for T0 and

T ′
0 of minimum weight. In particular, by considering all such collections of forests for R,

BuildForest calculates all legitimate-agreement forests of minimum weight for T0 and

T ′
0 .

Proof. If T0 ∼= T ′
0 , then the result follows immediately because the algorithm BuildFor-

est directly returns T0. Therefore, we may assume that this is not the case. Let F be a

legitimate-agreement forest for T0 and T ′
0 of minimum weight. The proof is by induction

on |R|. First, assume that |R| = 1. Depending on the reduction which has been used to

obtain T1 and T ′
1 from T0 and T ′

0 , respectively, let the forest F∗
1 (obtained from F) be

(i) a subtree-reduced forest if T0 and T ′
0 have a maximal subtree with label set A and

|A| ≥ 2 in common,

(ii) a chain-reduced forest if T0 and T ′
0 have no such subtree but a maximal m-chain

(a1, a2, . . . , am) with m > 2 in common, or

(iii) a cluster-reduced forest if T0 and T ′
0 have no such chain but a minimal cluster A

with |A| ≥ 2 in common.

Due to one of the Lemmas 4.2, 4.3, and 4.4, note that F∗
1 is a legitimate-agreement forest

for T1 and T ′
1 of minimum weight. In particular, since all legitimate-agreement forests of

minimum weight for T1 and T ′
1 have been calculated, there exists a forest, F1 say, with

F1 = F∗
1 . Hence, it is possible to reverse the process with which F∗

1 has been constructed

from F to obtain F from F1, thus applying the algorithm BuildForest for one iteration.

There are three different cases to consider:

Case (i): If T1 and T ′
1 are the resulting trees after an application of the subtree

reduction, there exists a tree S ∈ F1 with a vertex labeled s such that F can be obtained

from F1 by joining the vertex labeled s with the root of T0|A via a new edge, removing

the label s, and suppressing any resulting degree two vertices apart from the root.

Case (ii): If T1 and T ′
1 are the resulting trees after an application of the chain

reduction, then F1 either contains a tree S ∈ F1 with a, b ∈ L(S), or F1 contains two

isolated vertices labeled a and b, respectively. In the former case, F can be obtained from
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F1 by replacing the 2-chain (a, b) of S with the corresponding m-chain (a1, a2, . . . , am) of

T0 and, in the latter case, F can be obtained from F1 by replacing the vertices labeled a

and b with m isolated vertices labeled according to the leaf labels (a1, a2, . . . , am).

Case (iii): If T1 and T ′
1 is the cluster-reduced tree pair after an application of the

cluster reduction, let N be the set of all legitimate-agreement forests of minimum weight

for T |A and T ′|A (such forests can be calculated directly without any further reduction).

Furthermore, let F∗
c be a cluster-pair forest for T |A and T ′|A obtained from F . Due to

Lemma 4.5, F∗
c is a legitimate-agreement forest for T |A and T ′|A of minimum weight.

Hence, there exists a forest in N , Fc say, with F∗
c = Fc. Let Sρc

∈ Fc be the unique tree

whose label set contains ρc, and let Sx ∈ F1 be the unique tree whose label set contains

x. If Sx is an isolated vertex, then set S to be the tree obtained from Sρc
by deleting the

edge of Sρc
which is incident with the vertex labeled ρc and the vertex labeled ρc itself.

Otherwise, obtain S from Sx and Sρc
by adjoining Sρc

to Sx via a new edge joining the

vertices labeled ρc and x, removing the labels ρc and x, and suppressing any vertices of

degree two apart from the root. Then we can deduce that F = ((Fc∪F1−{Sρc
,Sx})∪{S}).

Now suppose that |R| > 1 and that the theorem holds for all pairs of weighted rooted

binary phylogenetic X ′-trees whose corresponding tuple of reduced tree pairs R′ has

the property that |R′| < |R|. Let R1 = ({T2, T
′

2}, {T3, T
′

3}, . . . , {Tl, T
′

l }) be a tuple of

reduced tree pairs for T1 and T ′
1 . Since R1 is an (l−1)-tuple, it follows from the induction

assumption that all legitimate-agreement forests for T1 and T ′
1 of minimum weight can

be calculated by applying the algorithm BuildForest to all collections of forests for R1

and, as shown for the base case, given all legitimate-agreement forests for T1 and T ′
1 , we

can finally obtain F by applying BuildForest for one further iteration. This completes

the proof of the theorem.

4.4 Application

The result of Theorem 4.6 gives us a good strategy how to compute all legitimate-

agreement forests of minimum weight for a pair of (unreduced) weighted rooted binary

phylogenetic X-trees T and T ′ and still allows for an application of the algorithm Hy-

bridNumber that makes use of the subtree, chain, and cluster reduction and efficiently

calculates the minimum number of hybridization events for many biological examples (see

Chapter 3). More precisely, we can first apply an extended version of HybridNumber

to T and T ′ such that all legitimate-agreement forests of minimum weight are calculated

for each cluster-tree pair and the very last tree pair that have been obtained in the course
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Table 4.1: Analysis of deep and non-deep hybridization events for the Poaceae data set.

Pairwise Combination Hybridization Number # Forests Deep Ratio
ndhF phyB 14 2268 0.62
ndhF rbcL 13 48 0.52
ndhF rpoC2 12 27 0.63
ndhF waxy 9 396 0.73
ndhF ITS least 15
phyB rbcL 4 4 0.31
phyB rpoC2 7 1 0.71
phyB waxy 3 6 1
phyB ITS 8 9 0.29
rbcL rpoC2 13 9 0.79
rbcL waxy 7 35 0.82
rbcL ITS at least 9

rpoC2 waxy 1 1 0
rpoC2 ITS at least 10
waxy ITS 8 18 0.77

of the reductions. Second, having all such forests it is possible to compute quickly all

legitimate-agreement forests for T and T ′ of minimum weight by applying the algorithm

BuildForest.

We have implemented an extension of HybridNumber (see above) as well as the

algorithm BuildForest and used the Poaceae data set which has been published by

the Grass Phylogeny Working Group (2001) as an example application to analyze the ratio

of deep and non-deep hybridization events. A detailed description of this data set is given

in Section 3.3. Additionally, we note here that all 66 analyzed taxa belong to different

genera and that about 50 % are composite taxa representing either sequences from several

genera or sequences of different species (Table 2 of Grass Phylogeny Working Group

(2001)). For each pair of gene trees, we applied the extended version of HybridNumber

and reconstructed afterwards all legitimate-agreement forests of minimum weight for the

initial two trees by using BuildForest.

We next define the deep ratio r of two rooted binary phylogenetic X-trees T and T ′ to

compare the number of deep with the number of non-deep hybridization events. To this

end, let {F1,F2, . . . ,Fn} be the set of all legitimate-agreement forests for T and T ′ of

minimum weight, and let di be the number of isolated vertices in Fi with i ∈ {1, 2, . . . , n}.

Then

r =

n
∑

i=1

di

n · h(T , T ′)
.
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For each pair of gene trees of the Poaceae data set restricted to common taxa, the

number of legitimate-agreement forests of minimum weight and the deep ratio r are pre-

sented in Table 4.1. Those three tree pairs for which no deep ratio r is given are instances

for which the number of hybridization events cannot be calculated in a reasonable time

(see Section 3.3). With exception of the three gene tree pairs phyB/rbcL, phyB/ITS , and

rpoC2/waxy , more than 50 % of all hybridization events are non-deep events and, hence,

the majority of hybrid species are present-day species. These results are in line with our

expectations since hybrid species are often less fit than their parents and, therefore, have

a reduced probability to survive and produce viable offspring. This is particularly true

for successful intergeneric hybridization which is in general less likely than intrageneric

hybridization.

However, due to a high level of variation among the deep ratios

ri =
di

h(T , T ′)

per forest, for all i ∈ {1, 2, . . . , n} of a given gene tree pair, these results have a limited

significance. Nevertheless, it is possible that a combination of this analysis with other

methods—e.g. increased taxon sampling that is frequently used to increase the accuracy

of phylogenetic estimates (Zwickl and Hillis, 2002)—will aid to gain more insight into

non-tree-like evolution; in particular, into ways to distinguish between hybridization and

other causes of gene tree incongruence.



5 Hybridization in Non-Binary Trees

5.1 Introduction

Chapter 2 and 3 describe an exact algorithm that is based on a combinatorial framework

and three reduction rules to calculate the minimum number of hybridization events for two

rooted binary phylogenetic trees. Bordewich and Semple (2007a) showed that this problem

is NP-hard even when the initial collection consists of two rooted binary phylogenetic trees.

However, the same authors showed that in the case of two binary trees the problem is

fixed-parameter tractable (Bordewich and Semple, 2007b). In particular, they showed that

the minimum number of hybridization events can be computed in time O(f(k)+ p(|X|)),

where k is the actual minimum number, f is some computable function, |X| is the number

of species, and p is a fixed polynomial. Due to the NP-hardness of the problem, such

a result is of importance, since for many practical instances, the minimum number of

hybridization events is small and, therefore, the problem may be tractable, even for a

large number of taxa. This can be seen by considering the separation of the variables

k and |X|. For more details about fixed-parameter tractability, we refer the interested

reader to Downey and Fellows (1998).

Despite the above fixed-parameter tractable algorithm, for many biological data sets

in practice (e.g. Paun et al., 2005, Fehrer et al., 2007), the reconstructed phylogenetic

trees are not fully resolved; that is, they contain polytomies. For example, this may be

due to either the tree reconstruction method or the use of consensus trees for a certain

analysis. Polytomies—alternatively called multifurcations—refer to vertices which have

more than two direct descendants. A polytomy is hard if it refers to an event during

which an ancestral species gave rise to more than two offspring species at the same time,

whereas a soft polytomy represents ambiguous evolutionary relationships as a result of

insufficient information (Maddison, 1989).

Since simultaneous speciation events only occur rarely, we typically assume that all

polytomies in a phylogenetic tree are soft. The reconstruction of a strictly bifurcating

tree may consequently force refinements that are not necessarily optimal in terms of the

hybridization number. An example for that is depicted in Figure 5.1, where two binary

refinements S1 and S2 of the tree T ′ are shown. While the hybridization number for S1

and T is 0, this number for S2 and T is 1.

In this chapter, we show that the decision problem of asking whether the minimum
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Figure 5.1: Two rooted phylogenetic tree T and T ′ and two binary refinements S1 and S2 of
T ′. The hybridization number for S1 and T is 0, while this number for S2 and T is 1.

number of hybridization events to explain two (arbitrary) rooted phylogenetic trees is

at most k is fixed-parameter tractable. We now describe the above-mentioned problem

formally beginning with several definitions.

Given the definition of a cluster (see Section 1.4.2) for a rooted phylogenetic X-tree,

we first note that we sometimes refer to such a cluster as edge cluster in this chapter. Let

T and T ′ be two rooted phylogenetic X-trees. We say that T ′ refines T , or equivalently

T ′ is a refinement of T if C(T ) ⊆ C(T ′). In addition, T ′ is a binary refinement if T ′ is

binary. Note that T is a refinement of itself. Graphically speaking, it is straightforward

to see that if T ′ refines T , then T can be obtained from T ′ by contracting interior edges.

Recalling the definition of the hybridization number of a network (see Section 2.1) and

extending it to a collection P of rooted phylogenetic trees, we set

h(P) = min{h(H) : H is a hybridization network that displays P}.

If P contains precisely two rooted phylogenetic X-trees T and T ′, then we denote the hy-

bridization number h(P) by h(T , T ′). Next, we show that the beforehand given definition

of the hybridization number for two rooted phylogenetic X-trees T and T ′ is equivalent

to

h(T , T ′) = min{h(S,S ′) : S and S ′ are binary refinements of T and T ′, respectively}

and use both definitions interchangeably in the rest of this chapter.

Lemma 5.1. Let T and T ′ be two rooted phylogenetic X-trees. Then

min{h(S,S ′) : S and S ′ are binary refinements of T and T ′, respectively}

=

min{h(H) : H is a hybridization network that displays T and T ′}.
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Proof. First, suppose that h(S,S ′) = k. Then there exists a hybridization network H

that displays S and S ′ and whose hybridization number (the number of hybridization

vertices) is k. Since S and S ′ are binary refinements of T and T ′, respectively, H also

displays T and T ′. This implies that

min{h(S,S ′) : S and S ′ are binary refinements of T and T ′, respectively} ≥

min{h(H) : H is a hybridization network that displays T and T ′}.

Second, suppose that h(H) = k. We show that there exists a hybridization network H′

with h(H′) = k that displays binary refinements S and S ′ of T and T ′, respectively. To

this end, obtain H′ from H such that C(H) ⊆ C(H′), all trees embedded in H′ are binary,

and h(H′) = k. With C(H) and C(H′), we denote the cluster set of H and H′, respectively.

Note that H′ again displays T and T ′. Now it is easily checked that H′ displays a rooted

binary tree S with C(T ) ⊆ C(S), Similarly, the same holds for S ′. Hence, we can deduce

that

min{h(S,S ′) : S and S ′ are binary refinements of T and T ′, respectively} ≤

min{h(H) : H is a hybridization network that displays T and T ′}

holds. This establishes the lemma.

We can now formally state the decision problem Minimum Hybridization for when

P = {T , T ′}:

Minimum Hybridization

Instance: Two rooted phylogenetic X-trees T and T ′, and an integer k.

Question: Is h(T , T ′) ≤ k?

Since computing h(T , T ′) is NP-hard when T and T ′ are binary (Bordewich and Semple,

2007a), calculating this value for when T and T ′ are arbitrary rooted phylogenetic X-trees

is also NP-hard.

The main result of this chapter is the following theorem.

Theorem 5.2. The decision problem Minimum Hybridization is fixed-parameter tractable

with h(T , T ′) being the parameter.

The overall approach in proving Theorem 5.2 is similar to that used to show that

Minimum Hybridization is fixed-parameter tractable when the initial two trees are
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binary. Basically, we use three reductions to kernalize the problem instance in a regulated

way before calculating exactly the minimum number of hybridization events using an

exhaustive search. The reason that this is sufficient to prove Theorem 5.2 is that the size

of the label set of the trees S and S ′ obtained from T and T ′ by repeatedly applying the

three reductions is linear in h(T , T ′).

The chapter is organized as follows. The next section contains some additional pre-

liminaries that are used throughout this chapter. In Sections 5.3 and 5.4, we characterize

Minimum Hybridization in terms of a particular type of agreement forest. This char-

acterization is essential to getting the main result of this chapter. Section 5.5 describes

the three reductions that are used to kernalize the problem instance and also includes

three key lemmas that are needed for the proof of Theorem 5.2. We also show how a

fourth reduction can be used to break the problem into a number of smaller and more

tractable subproblems. The proof of Theorem 5.2 is given in Section 5.6.

We end the introduction by remarking that despite the similarities between the ap-

proaches used to prove Theorem 5.2 and the analogous result for binary trees, we see no

obvious way that this latter result can be used to directly establish Theorem 5.2. Part of

the reason for this is that a number of additional and non-trivial complications arise in

the non-binary case.

5.2 Preliminaries

In this section, we give some preliminary definitions that are used throughout this chapter.

For a rooted phylogenetic X-tree T , a subset Y of X is called a vertex cluster of T if there

is a refinement of T in which Y is an edge cluster. For example, considering Figure 5.1,

the taxa set {1, 2} is an edge cluster in T , but a vertex cluster (and not an edge cluster)

in T ′. Note that edge clusters are special types of vertex clusters. Furthermore, a subtree

of T is pendant if it can be obtained from a refinement of T by deleting a single edge.

Note that this definition is different from the definition of pendant throughout the rest of

this thesis. Lastly, a subtree is non-trivial if it contains at least two leaves.

5.3 Agreement Forests

Various types of agreement forests have recently been used to analyze reticulate evolution

for a set of gene trees and its impact on evolution (Song and Hein, 2003, Bordewich and
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Semple, 2004, Baroni et al., 2005, Song and Hein, 2005, Bordewich and Semple, 2007b).

All of these approaches are restricted to the case when the trees under consideration are

binary. Here, we extend the definition of agreement forests to arbitrary rooted phyloge-

netic trees. For the reader familiar with agreement forests, we note that the following

definitions coincide with those previously given for rooted binary phylogenetic trees.

Let T and T ′ be two rooted phylogenetic X-trees. For the purposes of the upcoming

definitions, we regard the root of both T and T ′ as a vertex labeled ρ at the end of a

pendant edge adjoined to the original root. Furthermore, we also regard ρ as part of the

label set of T and T ′, thus we view their label sets as X ∪ {ρ}.

A forest of T is a partition {Lρ,L1,L2, . . . ,Lk} of its label set X ∪ {ρ}, where Lρ

contains ρ, no part is empty, and the trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint

rooted subtrees of T . An agreement forest F for T and T ′ is a forest {Lρ,L1,L2, . . . ,Lk}

of T and T ′ such that, for all i ∈ {ρ, 1, 2, . . . , k}, the trees T |Li and T ′|Li have a common

binary refinement. To illustrate these concepts, two examples of agreement forests F1 and

F2 are shown in Figure 5.2 for the two rooted phylogenetic trees T and T ′ also shown in

that figure. Considering F1, it is easily checked that, for each label set Li, the restrictions

of T and T ′, respectively, to Li have a common binary refinement.

A maximum-agreement forest for T and T ′ is an agreement forest {Lρ,L1,L2, . . . ,Lk}

in which k (the number of parts minus one) is minimized. The minimum possible value

for k is denoted by m(T , T ′). Bordewich and Semple (2004) established the following

result:

Theorem 5.3. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

drSPR(T , T ′) = m(T , T ′).

The corresponding characterization for the minimum number of hybridization events

for the same pair of trees requires an additional condition. This condition excludes the

possibility that species inherit genetic material from their own descendants. Let F =

{Lρ,L1,L2, . . . ,Lk} be an agreement forest for two arbitrary rooted phylogenetic X-trees

T and T ′. Let GF be the directed graph that has vertex set F and an arc (Li,Lj) from

Li to Lj precisely if i 6= j and either

(I) the path from the root of T (Li) to the root of T (Lj) contains an edge of T (Li), or

(II) the path from the root of T ′(Li) to the root of T ′(Lj) contains an edge of T ′(Li).
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Figure 5.2: Two agreement forests F1 and F2 for the two rooted trees T and T ′ and their
associated digraphs GF1

and GF2
.

We say that F is an acyclic-agreement forest for T and T ′ if GF contains no directed

cycles, that is, GF is acyclic. For the example depicted in Figure 2.3, F2 is an acyclic-

agreement forest for T and T ′ since GF2
is acyclic, whereas F1 is not an acyclic-agreement

forest for T and T ′. If F contains the smallest number of parts over all acyclic-agreement

forests for T and T ′, we say that F is a maximum-acyclic-agreement forest for T and

T ′, in which case, we denote this value of k by ma(T , T ′). In the case that both T

and T ′ are binary, these definitions again extend those typically given for two rooted

binary phylogenetic trees. Baroni et al. (2005) established the following characterization

for binary trees.

Theorem 5.4. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

h(T , T ′) = ma(T , T ′).

5.4 Characterizing h(T , T ′) in Terms of Agreement Forests

In this section, we prove the analogs of Theorems 5.3 and 5.4 for arbitrary rooted phylo-

genetic trees. The second analog is crucial in proving the main result of the chapter.

Theorem 5.5. Let T and T ′ be two rooted phylogenetic X-trees. Then

h(T , T ′) = ma(T , T ′).
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Essentially, all of the work in establishing this theorem is done in proving the next two

lemmas.

Lemma 5.6. Let T and T ′ be two rooted phylogenetic X-trees, and let F be an acyclic-

agreement forest for T and T ′. Then there exist binary refinements S and S ′ of T and

T ′, respectively, such that F is an acyclic-agreement forest for S and S ′.

Proof. Suppose that F = {Lρ,L1,L2, . . . ,Lk} is an acyclic-agreement forest for T and

T ′, and let Bi be a common binary refinement of T |Li and T ′|Li for all i. The proof of

the lemma is by induction on k. Clearly, the result holds if k = 0. Now suppose that the

result holds for all acyclic-agreement forests of T and T ′ of size at most k. Since F is

acyclic, GF contains a vertex, Lm say, with outdegree zero. Since Lm has outdegree zero,

T (Lm) is a pendant subtree of T and T ′(Lm) is a pendant subtree of T ′.

Let Tm and T ′
m be the rooted phylogenetic trees T |((X ∪ {ρ}) − Lm) and T ′|((X ∪

{ρ})−Lm), respectively, and let Fm = F −{Lm}. Since F is an acyclic-agreement forest

of T and T ′, it is easily checked that, as T (Lm) is a pendant subtree of T and T ′(Lm) is

a pendant subtree of T ′, the collection Fm is an acyclic-agreement forest of Tm and T ′
m.

Therefore, by the induction assumption, there are binary refinements Sm and S ′
m of Tm

and T ′
m, respectively, such that Fm is an acyclic-agreement forest for Sm and S ′

m.

We now construct a binary refinement of T from Sm. Let u be the vertex of T with the

property that C(u) is the minimal cluster of T that properly contains Lm. By construction,

C(u) − Lm is a cluster of Tm. Furthermore, as Sm is a binary refinement of Tm, the set

C(u)− Lm is a cluster of Sm. Let um be the vertex of Sm such that C(um) = C(u)− Lm.

Let S be the rooted binary phylogenetic tree obtained from Sm by subdividing the edge

coming into um with a new vertex v and adjoining the root of Bm to this new vertex v via

a new edge. Observing that C(v) = C(u), it is easily checked that S is a binary refinement

of T . Furthermore, by construction and because of the induction assumption, it follows

that F is a forest of S and, for all i, we have S|Li = Bi.

By the same construction and argument, there is a binary refinement S ′ of T ′ such

that F is a forest of S ′ and, for all i, we have S ′|Li = Bi. It now follows that F is an

agreement forest for S and S ′. Moreover, as Fm is an acyclic-agreement forest for Sm and

S ′
m, it is easily seen that F is an acyclic-agreement forest for S and S ′. This completes

the proof of the lemma.

Lemma 5.7. Let T and T ′ be two rooted phylogenetic X-trees, and let S and S ′ be binary

refinements of T and T ′, respectively. If F is an acyclic-agreement forest for S and S ′,
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then F is an acyclic-agreement forest for T and T ′.

Proof. Let F = {Lρ,L1,L2, . . . ,Lk} be an acyclic-agreement forest of S and S ′. Since S

and S ′ are both binary, it is easily seen, for all i, that S|Li and S ′|Li are binary. Therefore,

as S and S ′ are binary refinements of T and T ′, respectively, S|Li is a common binary

refinement of T |Li and T ′|Li for all i. To see that the trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}}

are edge-disjoint rooted subtrees of T , suppose that this is not the case. Then, for some

r 6= s, the subtrees T (Lr) and T (Ls) are not edge-disjoint. That is, T (Lr) and T (Ls)

have an edge e = {u, v} in common. Let u be the end vertex of e closest to ρ. Since S

is a binary refinement of T , there are vertices u′ and v′ of S with CS(u′) = CT (u) and

CS(v′) = CT (v). Now it is easily seen that S(Lr) contains u′ and v′, and S(Ls) contains

u′ and v′. In other words, S(Lr) and S(Ls) are not edge-disjoint in S, contradicting that

F is an agreement forest of S and S ′. Thus the trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are

edge-disjoint rooted subtrees of T and, similarly, the trees in {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k}}

are edge-disjoint rooted subtrees of T ′. Hence, F is an agreement forest of T and T ′.

Now relative to S and S ′, the graph GF is acyclic. With respect to F , consider the

analogous graph, G′
F say, for T and T ′. Noting that both graphs have the same vertex

set, it is clear that if (Lr,Ls) is an arc in G′
F , then (Lr,Ls) is an arc in GF . Thus the

arc set of G′
F is a subset of the arc set of GF . Since GF is acyclic, it follows that G′

F is

acyclic. This completes the proof of the lemma.

Proof of Theorem 5.5. Let S and S ′ be binary refinements of T and T ′ that satisfy

the hypothesis of Lemma 5.6. Then, by that lemma, ma(T , T ′) ≥ ma(S,S ′). But, by

Theorem 5.4, ma(S,S ′) = h(S,S ′). It now follows that, as h(S,S ′) ≥ h(T , T ′), we have

ma(T , T ′) ≥ h(T , T ′).

To establish the converse, now let S and S ′ be binary refinements of T and T ′ such

that h(S,S ′) = h(T , T ′). Then, by Theorem 5.4, there is an acyclic-agreement forest F

of S and S ′ such that

|F| − 1 = h(S,S ′) = h(T , T ′).

By Lemma 5.7, F is an acyclic-agreement forest for T and T ′, so

ma(T , T ′) ≤ |F| − 1 = h(T , T ′).

It now follows that h(T , T ′) = ma(T , T ′). This completes the proof of the theorem.
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For the reader interested in calculating the rSPR distance drSPR(T , T ′) between two

rooted phylogenetic X-trees T and T ′ which we define to be

min{drSPR(S,S ′) : S and S ′ are binary refinements of T and T ′, respectively},

we end this section by establishing a further result. Again, we start with the proofs of

two lemmas.

Lemma 5.8. Let T and T ′ be two rooted phylogenetic X-trees, and let F be an agree-

ment forest for T and T ′. Then there exist binary refinements S and S ′ of T and T ′,

respectively, such that F is an agreement forest for S and S ′.

Proof. The proof of this lemma can be established in the same way as the proof of

Lemma 5.6, without considering the acyclic condition.

Lemma 5.9. Let T and T ′ be two rooted phylogenetic X-trees, and let S and S ′ be binary

refinements of T and T ′, respectively. If F is an agreement forest for S and S ′, then F

is an agreement forest for T and T ′.

Proof. The proof of this lemma can be established in the same way as the proof of

Lemma 5.7, without considering the acyclic condition.

Theorem 5.10. Let T and T ′ be two rooted phylogenetic X-trees. Then

drSPR(T , T ′) = m(T , T ′).

Proof. Let S and S ′ be binary refinements of T and T ′ that satisfy the hypothesis

of Lemma 5.8. Then, by that lemma, m(T , T ′) ≥ m(S,S ′). But, by Theorem 5.3,

m(S,S ′) = drSPR(S,S ′). It now follows that, as drSPR(S,S ′) ≥ drSPR(T , T ′), we have

m(T , T ′) ≥ drSPR(T , T ′).

To establish the converse, now let S and S ′ be binary refinements of T and T ′ such

that drSPR(S,S ′) = drSPR(T , T ′). Then, by Theorem 5.3, there is an agreement forest F

of S and S ′ such that

|F| − 1 = drSPR(S,S ′) = drSPR(T , T ′).

By Lemma 5.9, F is an agreement forest for T and T ′, so

m(T , T ′) ≤ |F| − 1 = drSPR(T , T ′).
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It now follows that drSPR(T , T ′) = m(T , T ′). This completes the proof of the theorem.

5.5 Reducing the Size of the Problem Instance

In this section, we introduce three reductions which kernalize Minimum Hybridization

and a fourth reduction which breaks the problem instance into a number of smaller and

more tractable subproblems. The subtree and long-chain reductions extend the subtree

and chain reductions described in Bordewich and Semple (2007b). Additionally, we intro-

duce the short-chain reduction which—in combination with the other two reductions—

guarantees that all problem instances can be kernalized. The cluster reduction extends

the result of Theorem 1 described in Baroni et al. (2006). Although this reduction is not

necessary to prove Theorem 5.2 it has proven to be useful in practice (Bordewich et al.,

2007c). We begin with some preliminaries.

Let T be a rooted phylogenetic X-tree, and let x be an element of X. Viewing T as

a directed graph with edges directed away from its root, the unique vertex, u say, of T

such that (u, x) is an arc of T is called the parent of x and is denoted by pT (x).

For all n ≥ 2, an n-chain of T is an ordered tuple (a1, a2, . . . , an) of distinct elements

of X that satisfies the following properties:

(i) for all i ∈ {1, 2, . . . , n− 1}, either pT (ai) = pT (ai+1) or pT (ai) is a child of pT (ai+1),

and

(ii) there is an ordering, p1, p2, . . . , pm say, of the parents of a1, a2, . . . , an such that, for

all i ∈ {1, 2, . . . , m− 1}, the vertex pi is a child of pi+1 and, apart from p1 and pm,

each of the vertices p2, p3, . . . , pm−1 has at exactly one child not in {a1, a2, . . . , an}.

If p is a parent of an element in A = {a1, a2, . . . , an}, then p is called internal if it has at

most one child not in A; otherwise p is said to be external. An element of A is internal if

its parent is internal, otherwise it is external. Note that p2, . . . , pm−1 are always internal,

but that p1 and pm can be internal or external. Thus if ai is external, then it is a child

of p1 or pm. Furthermore, if T is binary, then all elements of A are internal. Throughout

this chapter, we will assume that if (a1, a2, . . . , an) is an n-chain of both T and T ′, where

T and T ′ are rooted phylogenetic X-trees, then T and T ′ have no common non-trivial

pendant subtree whose label set is a subset of {a1, a2, . . . , an}. As we will soon see, this

assumption does not restrict the results in this chapter; it is simply for convenience and

to avoid repetition in the statements. As an illustration, (a1, a2, . . . , an) is an n-chain of
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the two rooted phylogenetic trees T and T ′ shown in Figure 5.3, where triangles represent

subtrees outside of the chain.

Let T and T ′ be two rooted phylogenetic X-trees. Let P be a disjoint collection of

subsets {a1, a2, . . . , an} of X each being the set of elements of a chain (a1, a2, . . . , an)

common to both T and T ′ such that either

(i) (a1, a2, . . . , an) has exactly three elements that are internal in both T and T ′, or

(ii) for one of the trees, (a1, a2, . . . , an) has exactly two internal elements while, in the

other tree, (a1, a2, . . . , an) has exactly one parent.

Depending on whether the chain satisfies (i) or (ii), we assign a triple of weights or a

single weight from Z
+ × Z

+ × Z
+ and Z

+, respectively. We call such a pair of trees with

associated weighted set P a pair of weighted rooted phylogenetic X-trees.

We now describe the four reductions. Let T and T ′ be a pair of weighted rooted

phylogenetic X-trees with an associated set P , and let A be a subset of X. We say that

A does not cross P if, for each member S in P , the intersection S ∩ A is empty.

Subtree Reduction: For |A| ≥ 2, if A is the label set of a maximal pendant subtree in

T and T ′ with the properties that T |A and T ′|A have a common binary refinement and

A does not cross P , then replace these subtrees with either a single new leaf labeled a or

a pendant edge ending in a new leaf labeled a depending on whether the subtree can be

obtained without or with refinement, respectively. In all cases, the new label is the same

in both resulting trees.

Long-Chain Reduction: For n ≥ 4, let (a1, a2, . . . , an) be a maximal n-chain of T and

T ′ that does not cross P with the following properties:

(i) The chain has at least three internal parents in both T and T ′, and at least three

elements that are internal in both T and T ′.

(ii) If a1 is external in one of the trees, then a2 is internal in the same tree and a1 is

internal in the other tree.

(iii) If an is external in one of the trees, then an−1 is internal in the same tree while,

in the other tree, an is internal and there are not exactly three internal parents of

which one has an as its only child in {a1, a2, . . . , an}.

Depending upon whether ∅, {a1}, {an}, or {a1, an} is the subset of elements of {a1, a2, . . . , an}
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Figure 5.3: Two rooted phylogenetic X-trees T and T ′ reduced under the long-chain reduction,
where S and S ′ are the resulting trees. Dotted lines indicate regions of the chain (a1, a2, . . . , an).
In T , a1 is external while an is internal and, in T ′, a1 is internal while an is external.

that are external in either T or T ′, respectively replace this chain in T and T ′ with the

chain (a, b, c), (e1, a, b, c), (a, b, c, e2), or (e1, a, b, c, e2) as follows:

(i) In T ,

pT (e1) 6= pT (a) = pT (b) 6= pT (c) 6= pT (e2),

where e1 is external if a1 is external in T , otherwise e1 is internal; and where e2 is

external if an is external in T , otherwise e2 is internal.

(ii) In T ′,

pT (e1) 6= pT (a) 6= pT (b) = pT (c) 6= pT (e2),

where e1 is external if a1 is external in T ′, otherwise e1 is internal; and where e2 is

external if an is external in T ′, otherwise e2 is internal.

Relative to (a1, a2, . . . , an), if m denotes the number of internal parents in T and m′

denotes the number of internal parents in T ′, then respectively add the new set {a, b, c},

{e1, a, b, c}, {a, b, c, e2}, or {e1, a, b, c, e2} to P and, calling this set S, assign it a tuple of

weights in which the first coordinate w1 is n− |S|, the second coordinate w2 is m minus
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the number of internal parents of the resulting chain in T , and the third coordinate w3

is m′ minus the number of internal parents of the resulting chain in T ′. Intuitively, the

reduction results in replacing a1 and an with e1 and e2, respectively, if a1 or an is external

in either T or T ′, and replacing the elements of the chain that are internal in both trees

with a, b, and c. Figure 5.3 depicts an example of the long-chain reduction, where T

and T ′ are the trees before, and S and S ′ are the trees after applying the long-chain

reduction. In this example, a1 is external in T , while an is external in T ′, and so the

chain (a1, a2, . . . , an) is replaced with the chain (e1, a, b, c, e2).

Short-Chain Reduction: For n ≥ 3, let (a1, a2, . . . , an) be a maximal n-chain of T and

T ′ that does not cross P with the property that in one of the trees, say T , this chain has

exactly one parent, while in the other tree T ′ this chain has at least three internal parents.

(Due to the assumption that no element of an n-chain is part of a common non-trivial

pendant subtree of T and T ′, note that pT ′(a1), . . . , pT ′(an) are pairwise distinct vertices

in T ′ and so only a1 or an may be external in T ′.) Depending upon whether ∅, {a1},

{an}, or {a1, an} is the subset of external elements of this chain in T ′, respectively replace

this chain in T and T ′ with the chain (a, b), (e1, a, b), (a, b, e2), or (e1, a, b, e2) as follows:

(i) In T ,

pT (e1) = pT (a) = pT (b) = pT (e2).

(ii) In T ′,

pT ′(e1) 6= pT ′(a) 6= pT ′(b) 6= pT ′(e2),

where e1 is external if a1 is external in T ′ and e2 is external if an is external in T ′.

Furthermore, add the new set {a, b}, {e1, a, b}, {a, b, e2}, or {e1, a, b, e2} to P and, calling

this set S, assign it weight w = n− |S|. Intuitively, the reduction results in replacing a1

and an with e1 and e2, respectively, if either a1 or an is external in T ′ and, relative to

T ′, replacing the internal elements with a and b. Figure 5.4 depicts an example of the

short-chain reduction, where T and T ′ are the trees before, and S and S ′ are the trees

after applying the short-chain reduction. Here a1 is external in T ′, but an is internal in

T ′, and so the chain (a1, a2, . . . , an) is replaced with the chain (e1, a, b).

Cluster Reduction: For |A| ≥ 2, if A is a minimal vertex cluster in both T and T ′

with no common non-trivial subtree and that does not cross P , then replace T and T ′

with two new pairs of weighted trees. The first pair of weighted trees is the cluster-tree

pair T |A and T ′|A whose associated weighted set PA is precisely the subset of P whose

members are subsets of A. The second pair of weighted trees is the cluster-reduced tree
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Figure 5.4: Two rooted phylogenetic X-trees T and T ′ reduced under the short-chain re-
duction, where S and S ′ are the resulting trees. Dotted lines indicate regions of the chain
(a1, a2, . . . , an). Note that a1 is external in T ′ while an is internal in T ′

pair Ta and T ′
a that is obtained from T and T ′, respectively, by replacing T (A) and T ′(A)

with a pendant edge ending in a new leaf labeled a or a new leaf labeled a depending on

whether the subtree can be obtained with or without refinement. The weighted set Pa

associated with this pair is the subset of P whose members are subsets of ((X−A)∪{ρ}).

An example of the cluster reduction is illustrated in Figure 5.5.

An agreement forest F for a pair of weighted rooted phylogenetic X-trees T and T ′

is legitimate if F is acyclic and satisfies the following property (P), where, depending on

the set in P , the elements e1 and e2 may or may not exist:

(P): If {e1, a, b, c, e2} ∈ P , then exactly one of the following holds:

(i) {e1, a, b, c, e2} is a subset of a label set in F ,

(ii) {a}, {b}, and {c} are label sets in F , and e1 and e2 are in separate label sets in F ,

(iii) {a, b} and {c} are label sets in F , e1 and e2 are in separate label sets in F and,

relative to (e1, a, b, c, e2), if e1 or e2 is internal in T , then {e1} or {e2} is a label set

in F , respectively,

(iv) {a} and {b, c} are label sets in F , e1 and e2 are in separate label sets in F and,

relative to (e1, a, b, c, e2), if e1 or e2 is internal in T ′, then {e1} or {e2} is a label set

in F , respectively,
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Figure 5.5: Two rooted phylogenetic trees T and T ′ divided under the cluster reduction applied
to A = {1, 2, 3, 4}. The hybridization number of T and T ′ is the sum of the hybridization
numbers of T |A and T ′|A, and Ta and T ′

a . Note that T |A has been replaced with a single vertex
labeled a to obtain Ta from T , whereas T ′|A has been replaced with a pendant edge ending in
a new leaf labeled a to obtain T ′

a from T ′.

while if {e1, a, b, e2} ∈ P , then exactly one of the following holds:

(I) {e1, a, b, e2} is a subset of a label set in F ,

(II) {a} and {b} are label sets in F , and e1 and e2 are in separate label sets in F .

Furthermore, referring to property (P), for an arbitrary agreement forest of T and T ′, we

define the weight of F , denoted by w(F), to be

w(F) = |F| − 1 +
∑

S={e1,a,b,c,e2}∈P ;S satisfies (ii) in F

w1(S)

+
∑

S={e1,a,b,c,e2}∈P ;S satisfies (iii) in F

w2(S)

+
∑

S={e1,a,b,c,e2}∈P ;S satisfies (iv) in F

w3(S)

+
∑

S={e1,a,b,e2}∈P ;S satisfies (II) in F

w(S).

We denote the minimum weight of a legitimate-agreement forest for T and T ′ by f(T , T ′).

Observe that f(T , T ′) ≥ h(T , T ′) as the weightings are non-negative, and f(T , T ′) =

h(T , T ′) whenever P is empty.

Lemmas 5.13, 5.14, and 5.15 are key lemmas in proving that Minimum Hybridiza-

tion is fixed-parameter tractable. Each lemma describes how particular common config-

urations in T and T ′ behave in a legitimate-agreement forest for T and T ′ of minimum

weight. For convenience in the proofs of these lemmas, we will frequently refer to the
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property of a forest F that the trees in {T (Li) : i ∈ {ρ, 1, 2, . . . , k}} are edge-disjoint

rooted subtrees of T as no two label sets in F edge-overlap in T .

Much of the proofs in the rest of this section involve taking a given legitimate-

agreement forest F , modifying it slightly, and showing that the resulting partition F ′

is also a legitimate-agreement forest. Two of the repetitive tasks is to show that F ′ is

an agreement forest and acyclic. To avoid some of the repetition and to provide some

intuition, let Li ∈ F and L′
i ∈ F

′ with L′
i ⊆ Li. First observe that if L′

i is the label

set of a pendant subtree of T |Li, then L′
i is the label set of a pendant subtree of T ′|Li.

Analogously, if L′
i is the label set of a pendant subtree of T ′|Li, then L′

i is the label set of

a pendant subtree of T |Li. Second, as T |Li and T ′|Li have a common binary refinement,

T |L′
i and T ′|L′

i have a common binary refinement. Third, if Lr,Ls ∈ F∩F
′, then (Lr,Ls)

is an arc in GF if and only if it is an arc in GF ′. Since F is acyclic, it follows that if GF ′

contains a directed cycle, then this cycle must use a vertex in F ′ − F . Furthermore, if

Li 6= Lr, then, as Lr and Li are edge-disjoint in T and T ′, we have (Lr,L′
i) is an arc in

GF ′ if and only if (Lr,Li) is an arc in GF . Also, if (L′
i,Ls) is an arc in GF ′ , then (Li,Ls)

is an arc in GF . Specializing these observations to when F ′ is a refinement of F , that is,

for each L′
i ∈ F

′, we have L′
i ⊆ Li for some Li ∈ F , it is straightforward to prove the

following lemma.

Lemma 5.11. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees, and let F

be an acyclic-agreement forest for T and T ′. Let F ′ be an agreement forest of T and T ′

that is a refinement of F . Then F ′ is acyclic.

The above observations will be freely used in the rest of this section. The next lemma

is repeatedly used in the key lemmas to show that our modified agreement forest satisfies

(P).

Lemma 5.12. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees, and let F

be a legitimate-agreement forest for T and T ′ of minimum weight. Let S be an element

of P such that S contains elements of the form e1 and e2, and let A be the label set of

either a pendant subtree of T and T ′ that could be used for a subtree reduction or a chain

of T and T ′ that could be used for a long-chain or short-chain reduction. Then there are

no distinct label sets L1,L2 ∈ F such that e1 ∈ L1, e2 ∈ L2, and L1 ∩ A and L2 ∩A both

non-empty.

Proof. Suppose that there exist such label sets L1 and L2. Clearly, S does not satisfy

either (i) or (I) in the definition of (P). Assume S satisfies (ii). Most of the work in
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Figure 5.6: Set-up in the proof of Lemma 5.12 for when S satisfies (ii) in the definition of (P)
and A is the label set of a pendant subtree of T and T ′. The roots of T (L1) and T ′(L1) are
indicated by mrcaT (L1) and mrcaT ′(L1), respectively.

the proof is involved in eliminating this particular case. Since there exist such label sets

L1 and L2, and L1 and L2 are edge-disjoint in T and T ′, it is easily checked that e1 is

external in one of the trees, while e2 is external in the other tree. The upcoming argument

is independent of whether or not a and b have the same parent or b and c have the same

parent, thus, without loss of generality, we may assume e1 is external in T , while e2 is

external in T ′. Thus e1 is internal in T ′ and e2 is internal in T . Furthermore, T (L2)

contains the parents of a, b, and c in T , and T ′(L1) contains the parents of a, b, and c

in T ′. As F is acyclic, it follows that either the roots of T ′(L1) and T ′(L2) coincide in

T ′, in particular, both roots are pT ′(e2), or the root of T ′(L2) is an ancestor of the root

of T ′(L1).

If A is the label set of a pendant subtree, then, as L1 ∩ A and L2 ∩ A are both non-

empty, the paths in T from any element in L1 ∩ A to ρ and from any element in L2 ∩ A

to ρ meet at pT (e1), while the paths in T ′ from any element in L1 ∩ A to ρ and from

any element in L2 ∩ A to ρ meet at pT ′(e2). This set-up is depicted in Figure 5.6. Let

L′
2 denote the subset of elements of L2 for which pT (e1) is an ancestor. Since T |L2 and

T ′|L2 have a common binary refinement and L2∩A is non-empty, each of the elements in

L′
2 is a descendant of pT ′(e2) in T ′. Let L′

1 denote the subset of elements of L1 for which

pT ′(e1) is not an ancestor in T ′. Let F ′ be the partition obtained from F by replacing L1,

L2, {a}, {b}, and {c} with (L2−L′
2)∪{e1, a, b, c}, (L1−L′

1)−{e1}, L′
2, and L′

1. Since F

is an agreement forest of T and T ′ and since F satisfies (P), it is easily checked that F ′

is an agreement forest of T and T ′ that satisfies (P). To see that F ′ is acyclic, note that,

up to (L2 − L′
2) ∪ {e1, a, b, c}, F ′ is a refinement of F . Moreover, for Lr,Ls ∈ F ∩ F ′,

(Lr, (L2 − L′
2) ∪ {e1, a, b, c}) is an arc in GF ′ if and only if (Lr,L2) is an arc in GF , and

if ((L2 − L′
2) ∪ {e1, a, b, c},Ls) is an arc in GF ′ , then (L2,Ls) is an arc in GF unless the
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root of T ′(L2) is not a strict ancestor of pT ′(e2). In this exceptional instance, (L1,Ls)

is an arc in GF and, whenever (Lr, (L2 − L
′
2) ∪ {e1, a, b, c}) is an arc in GF ′, (Lr,L1) is

an arc in GF . Using the observations prior to Lemma 5.11, a routine check shows that

if there is a directed cycle in GF ′, then there is a directed cycle in GF . It follows that

F ′ is a legitimate agreement forest of T and T ′. But w(F ′) < w(F), contradicting the

minimality of F , and so A is not the label set of a pendant subtree.

Now assume that A is the set of elements of a chain (a1, a2, . . . , an) that could be used

for a long-chain reduction. Since L1∩A and L2∩A are both non-empty, pT (an) = pT (e1),

pT ′(a1) = pT ′(e2), a1 ∈ L1, and an ∈ L2. Thus a1 is external in T ′ and an is external in

T . Also, L1 ∩ A = {a1} and L2 ∩ A = {an}. Furthermore, as T |L2 and T ′|L2 have a

common binary refinement, except for an, no element in L2 is a descendant of pT (e1) in

T and, except for e2, no element in L2 is a descendant of pT ′(e2) in T ′. Let L′
1 denote

the subset of elements of L1 for which pT ′(e1) is not an ancestor. Let F ′ be the partition

obtained from F by replacing L1, L2, {a}, {b}, and {c} with (L2 − {an}) ∪ {e1, a, b, c},

(L1−L
′
1)−{e1}, {an}, and L′

1. The set-up is similar to that of the last paragraph where

we assumed A was a pendant subtree. Indeed, a similar argument now leads to the desired

contradiction.

Next assume that A is the set of elements of a chain (a1, a2, . . . , an) that could be used

for a short-chain reduction. Since L1∩A and L2∩A are both non-empty, pT (an) = pT (e1)

and pT ′(a1) = pT ′(e2) regardless in which tree the chain has a single parent. If the chain

has a single parent in T , then L1 ∩ A = {a1} and T ′(L2) contains a parent of one of

the elements in {a2, . . . , an}. Now |L2 ∩ A| = 1 otherwise T |L2 and T ′|L2 do not have a

common binary refinement, and so each of the at least two internal elements of the chain

in T ′ that is not the element in L2 ∩ A is a singleton in F . It is now easily checked that

the partition

F ′ = {Li − A : Li ∈ F − {L2}} ∪ {L2 ∪A}

is a legitimate-agreement forest of T and T ′. But w(F ′) < w(F), contradicting the

minimality of F . Therefore assume that the chain has a single parent in T ′. Let L′
2

denote the subset of elements of L2 for which pT (e1) is an ancestor. As T |L2 and T ′|L2

have a common binary refinement and L2 ∩ A is non-empty, each of the elements in L′
2

is a descendant of pT ′(e2) in T ′. Let L′
1 denote the subset of elements of L1 for which

pT ′(e1) is not an ancestor. Let F ′ be the partition obtained from F by replacing L1, L2,

{a}, {b}, and {c} with (L2−L′
2)∪{e1, a, b, c}, (L1−L′

1)−{e1}, L′
2, and L′

1. This set-up is

again similar to that when we assumed A was a pendant subtree and, as above, a similar

argument leads to the desired contradiction. It now follows that S does not satisfy (ii).
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If S satisfies (iii), then either L1 or L2 edge-overlap with {a, b} in T ′; a contradiction.

Therefore S does not satisfy (iii) and, similarly, S does not satisfy (iv). Lastly, assume S

satisfies (II). Then, using the fact that e1, a, b, and e2 have the same parent in T , a routine

check shows that the partition F ′ obtained from F by replacing L1, L2, {a}, and {b} with

L1∪{a, b, e2} and L2−{e2} or L1−{e1} and L2∪{a, b, e1} depending on whether T ′(L1)

or T ′(L2) includes the parents of a and b in T ′, respectively, is a legitimate-agreement

forest of T and T ′, But w(F ′) < w(F), contradicting the minimality of F . Thus there

are no such distinct label sets L1 and L2.

Lemma 5.13. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees. Let A

be the label set of a maximal pendant subtree in T and T ′ with the properties that T |A

and T ′|A have a common binary refinement and A does not cross P . Then, for every

legitimate-agreement forest F for T and T ′ of minimum weight, A is a subset of a label

set in F .

Proof. Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest of T and T ′ of

minimum weight. Suppose that two subsets, Li and Lj say, have the property that

Li ∩ A and Lj ∩ A are both non-empty. If there are no such subsets Li and Lj so that

Li∩((X∪{ρ})−A) and Lj∩((X∪{ρ})−A) are both non-empty, then it is easily checked

that the partition

{Li : Li ∩A = ∅,Li ∈ F} ∪ {LA},

where LA =
⋃

Li∈F :Li∩A 6=∅ Li, is legitimate-agreement forest of T and T ′ but with smaller

weight than F ; a contradiction. Therefore, we may assume that we can choose Li and Lj

such that Li ∩ ((X ∪ {ρ})−A) and Lj ∩ ((X ∪{ρ})−A) are both non-empty. Because of

this assumption, the pendant subtree with label set A cannot be obtained from T or T ′

by deleting a single edge. Let e denote the edge of T that is directed into the root of T (A)

and let e′ denote the edge of T ′ that is directed into the root of T ′(A). Since no label sets

in F edge-overlap in T or T ′, at most one of T (Li) and T (Lj) includes e and at most

one of T ′(Li) and T ′(Lj) includes e′. Also, since GF is acyclic, if T (Li) includes e, then

T ′(Lj) does not include e′. Similar conclusions hold for the other combinations including

e or e′. Let F ′ be the partition of X ∪ {ρ} obtained from F by replacing Li and Lj with

Li ∪ Lj. It follows from the above conclusions and the observations prior to Lemma 5.11

that F ′ is an acyclic-agreement forest for T and T ′. Furthermore, as F satisfies (P), it

follows by Lemma 5.12 that F ′ satisfies (P), and so F ′ is a legitimate-agreement forest

of T and T ′. But, as w(F ′) < w(F), we obtain a contradiction to the minimality of F .

This contradiction completes the proof of the lemma.

Lemma 5.14. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees. Let
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(a1, a2, . . . , an) be a maximal chain of both T and T ′ that does not cross P with properties

(i)-(iii) in the definition of the long-chain reduction. Then, for every legitimate-agreement

forest F for T and T ′ of minimum weight, one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set in F ,

(ii) no label set in F contains at least two elements of the chain and, if ai is an internal

element of both T and T ′, then {ai} is a singleton in F , or

(iii) for either T or T ′, say T , two elements of the chain are in the same label set

precisely if they have the same parent and, moreover, if that parent is internal in T ,

then the corresponding set contains no other elements of X ∪ {ρ}.

Proof. Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest for T and T ′ of

minimum weight. Let A = {a1, a2, . . . , an}. The proof is partitioned into two cases

depending on which of the following properties, up to interchanging the roles of T and

T ′, is satisfied by F :

(A) For all Li ∈ F with Li ∩ A non-empty and pT (a1) an ancestor of all elements in

Li − A in T , the vertex pT ′(a1) is an ancestor of all elements in Li − A in T ′.

(B) There is a label set, Li say, in F with both Li ∩A and Li−A non-empty and such

that, in T , the vertex pT (a1) is an ancestor of all elements in Li − A, but, in T ′,

the vertex pT ′(a1) is not an ancestor of all elements in Li − A.

Case (A). Let J index the label sets of F that contain elements of the chain. More

precisely,

J = {j ∈ {ρ, 1, 2, . . . , k} : Lj ∩ {a1, a2, . . . , an} 6= ∅}.

Relative to the chain (a1, a2, . . . , an), we will call an edge of T or T ′ a non-pendant chain

edge if the edge is not incident with an element in A, but it is incident with an internal

parent in T or T ′, respectively. The analysis of (A) is partitioned into two subcases:

(I) There exists (not necessarily distinct) label sets Li and Li′ in F such that T (Li)

and T ′(Li′) contain a non-pendant edge of the chain (a1, a2, . . . , an) in T and T ′,

respectively.

(II) F contains no such label sets Li and Li′.

Subcase (I). Without loss of generality, we may assume that Li and Li′ are chosen so

that the roots of T (Li) and T ′(Li′) are as close to ρ as possible in T and T ′. If neither
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Li nor Li′ contains an element of A, then, as A contains no common non-trivial pendant

subtree, it is easily seen that F satisfies (ii) in the statement of the lemma. Thus, we may

assume that either Li or Li′ , say Li, contains an element of A. If Li′ does not contain

an element of A, then one of the following holds: (a) for some aj , aj′ ∈ (Li ∩ A), we

have pT (aj) 6= pT (aj′) but pT ′(aj) = pT ′(aj′); (b) a1 ∈ Li, an 6∈ Li, and a1 is an external

element of the chain in T ′; or (c) an ∈ Li, a1 6∈ Li, and an is an external element of

the chain in T ′. Since Li′ does not contain an element of A, it follows that if a label

set in F contains an element in A and an element in (X ∪ {ρ})− A, then that label set

contains either a1 or an, in which case a1 or an are external in T ′, respectively, but no

other elements from A. Furthermore, no label set in F contains two elements of A that

have different parents in T ′. It is now easily checked that, as F is a legitimate-agreement

forest of minimum weight, F satisfies (iii) if (a) holds and F satisfies either (ii) or (iii) if

(b) or (c) holds. In all cases, if (iii) holds, then T ′ is the distinguished tree.

Now assume that Li and Li′ contain an element of A. The rest of the analysis for

(I) is partitioned into two parts. Let L′
i denote the subset of elements in Li − A that

are descendants of pT (a1), and let X ′
1 denote the subset of elements in Li − A that are

descendants of pT ′(a1) in T ′. Analogously, let L′
i′ denote the subset of elements in Li′−A

that are descendants of pT ′(a1), and let X1 denote the subset of elements in Li′ −A that

are descendants of pT (a1) in T .

For the first part, suppose that L′
i = X ′

1 and L′
i′ = X1. Let F ′ be the forest obtained

from F by removing each label set Lj with j ∈ J and inserting the new label set La =
⋃

j∈J Lj. Since we are in case (A), F ′ is an agreement forest for T and T ′. To see that

F ′ is acyclic, consider the directed graphs GF and GF ′. The vertex set of GF ′ is obtained

from GF by deleting the vertices Lj for all j ∈ J , and adding the new vertex La. Also,

if Lr,Ls ∈ F ′ − {La}, then (Lr,Ls) is an arc in GF ′ if and only if (Lr,Ls) is an arc in

GF . Regarding the arcs in GF ′ incident with La, there are two instances to consider.

First assume that Li −A is non-empty and contains an element that is not a descendant

of pT (a1) in T . Then Li − A contains an element that is not a descendant of pT ′(a1) in

T ′. Since GF is acyclic, there is no arc from Li′ to Li in GF ; otherwise, GF contains a

directed 2-cycle. Therefore, either the roots of T ′(Li) and T ′(Li′) coincide in T ′ or the

root of T ′(Li′) is a descendant of the root of T ′(Li). Since the root of T (La) is the same

as the root of T (Li) in T , it follows that if (Lr,La) is an arc in GF ′ , then (Lr,Li) and

(Lr,Li′) are arcs in GF . Moreover, if (La,Lr) is an arc in GF ′ , then either (La,Li) or

(La,Li′) is an arc in GF . Thus, as GF is acyclic, GF ′ is also acyclic.

Second assume that either Li − A is empty or if Li − A is non-empty, then it only



Hybridization in Non-Binary Trees 87

contains elements that are descendants of pT (a1). Because of the first instance, we may

assume that the analogous property holds for Li′ and T ′. Then the root of T (La) is pT (an)

in T and the root of T ′(La) is pT ′(an) in T ′. Suppose that GF ′ contains the directed cycle

C. Then, as GF is acyclic, C must contain La. Let Ll and Lm denote the vertices in C

that immediately precede and succeed La, respectively, in this directed cycle. Except for

La, all other vertices in C are also vertices in GF . Thus either (Li,Lm) or (Li′,Lm) is

an arc in GF . But (Ll,Li) and (Ll,Li′) are also arcs in GF , implying that GF contains

a directed cycle; a contradiction. Thus GF ′ is acyclic. Hence F ′ is an acyclic-agreement

forest for T and T ′. Furthermore, as F satisfies (P), it follows by Lemma 5.12 that F ′

satisfies (P). Thus if |J | ≥ 2, then w(F ′) < w(F), contradicting the minimality of F .

Therefore, A is a subset of a label set in F and so F satisfies (i) in the statement of the

lemma.

For the second part, suppose that either L′
i 6= X ′

1 or L′
i′ 6= X1. Without loss of

generality, we may assume that L′
i 6= X ′

1 and ai ∈ Li ∩ A. Since we are in case (A), this

implies that pT (a1) is not an ancestor of all elements in Li−A. Let L′′
i denote the subset

of elements in Li − A that are not descendants of pT (a1). Because we are in case (A),

X ′
1 6= Li −A, and so there is an element in Li −A that is not a descendant of pT ′(a1) in

T ′. Furthermore, we may assume that L′
i is non-empty. To see this, observe that if Li

and Li′ are distinct, then X ′
1 is empty, and so L′

i is non-empty. Also, if Li and Li′ are the

same, then, without loss of generality, we may assume that L′
i is non-empty.

First assume that either ai is internal in both T and T ′, or ai = a1. If (Li − A) ∩X ′
1

is non-empty, then, as T |Li and T ′|Li have a common binary refinement, L′
i ⊆ X ′

1.

Furthermore, if ai 6= a1 or ai = a1 and a1 is internal in T ′, then the same reasoning

implies that X ′
1 ∩ L

′′
i is empty. But then X ′

1 = L′
i; a contradiction. Therefore, assume

that ai = a1 and a1 is external in T ′. If an 6∈ Li, then, as F is a legitimate-agreement

forest of minimum weight, F satisfies (ii) in the statement of the lemma. So assume that

an ∈ Li. If an is internal in T , then, as T |Li and T ′|Li have a common binary refinement,

another check shows that X ′
1 ∩ L

′′
i is empty and so X ′

1 = L′
i. So now assume that an is

external in T , and therefore internal in T ′. Again as T |Li and T ′|Li have a common

binary refinement, it is straightforward to check that, for any two elements in L′′
i ∩X ′

1 the

path in T from each of these elements to ρ meets the path from an to ρ in exactly one

place. With this in hand, let F ′ be the partition of X ∪{ρ} obtained from F by removing

each label set Lj with j ∈ J and inserting the new label sets
⋃

j∈J Lj − (L′′
i ∩ X ′

1) and

L′′
i ∩ X ′

1. Clearly, F ′ is an agreement forest for T and T ′, and it is easily checked that,

as F is acyclic, F ′ is acyclic. Furthermore, by Lemma 5.12, F ′ satisfies (P). Thus F is
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a legitimate-agreement forest for T and T ′. But, in F , each of the elements of the chain

that are internal in both T and T ′ are singletons. Since there are at least three such

elements, w(F ′) < w(F); a contradiction.

Now say that (Li − A) ∩ X ′
1 is empty. As T |Li and T ′|Li have a common binary

refinement, for any two elements in L′
i, the path in T ′ from each of these elements to ρ

meets the path from an to ρ in exactly one place. If a1 is external in T , not in Li, and

the label set containing a1 contains elements in (X ∪ {ρ}) − A, then, as we are in case

(A), pT (a1) and pT ′(a1) are ancestors of each of the elements in this label set. The same

reasoning also shows that if an is external in T and not in Li, then its label set contains no

elements in (X ∪{ρ})−A. Furthermore, if aj and ak are internal elements of both T and

T ′, then, as T |Li and T ′|Li have a common binary refinement, the label set containing

aj is a subset of A if pT (aj) 6= pT (ai). Also, as no label sets in F edge-overlap in T , the

elements aj and ak are in separate label sets in F if pT (aj) 6= pT (ak). Thus there are

two such subsets of A in F . Now let F ′ be the partition of X ∪ {ρ} obtained from F by

removing each label set Lj with j ∈ J and inserting the new label sets
⋃

j∈J Lj − L
′
i and

L′
i. It is clear that F ′ is an agreement forest for T and T ′, and, by Lemma 5.12, that

F ′ satisfies (P). Moreover, it is easily checked that, as F is acyclic, F ′ is acyclic. But

w(F ′) < w(F); a contradiction.

It now follows that we may assume that Li ∩A = {an}, where an is external in either

T or T ′. By considering T , it is easily seen that if aj and ak are internal elements in T

and an 6∈ {aj , ak}, then the label set in F containing aj is a subset of A, and aj and ak

can only be in the same label set in F if they have the same parent in T . Now consider

T ′. If pT ′(a1) is an ancestor of an element in Li, then F satisfies (ii) in the statement of

the lemma. Therefore, assume that pT ′(a1) is not an ancestor of any element in Li, that

is X ′
1 is empty. Now Li′ contains an element of A and T ′(Li′) contains a non-pendant

edge of (a1, a2, . . . , an). If a1 ∈ Li′ and Li′ contains an element in (X ∪ {ρ}) − A that

is not a descendant of pT ′(a1) in T ′, then again F satisfies (ii) in the lemma. Noting

that the label set containing a1 can only contain another element of A if a1 is internal

in T , it is now easily checked that, as F is a legitimate-agreement forest for T and T ′

of minimum weight, then F satisfies (iii) in the statement of the lemma with T as the

distinguished tree unless an is internal in T . But then a similar argument to that in the

previous paragraph shows that the partition F ′ of X ∪ {ρ} obtained from F by removing

each label set Lj with j ∈ J and inserting the new label sets
⋃

j∈J Lj − L′
i and L′

i is a

legitimate-agreement forest of smaller weight than F ; a contradiction. This completes

the analysis of the second part, and therefore (I).
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Subcase (II). We may assume that for one of the trees, say T , whenever a label set Lr in

F contains an element in A, then, unless this element is external, Lr ⊆ A and all elements

in Lr have the same parent in T . If F satisfies (ii) in the statement of the lemma, then

we are done; so assume that this is not the case. Then there is a label set, Li say, in F

that contains at least two elements in A. In T ′, these elements have different parents.

Since F is a legitimate-agreement forest for T and T ′ of minimum weight, it is now easily

checked that F satisfies (iii) in the statement of the lemma. This completes the analysis

of (II) and, therefore, (A).

Case (B). First note that, since T |Li and T ′|Li have a common binary refinement,

pT ′(a1) is not an ancestor of any element in Li − A in T ′ unless Li ∩ A = {a1} and a1

is external in T or Li ∩ A = {an} and an is external in T ′. The analysis of this case is

separated into two subcases:

(I) Li ∩ A contains an element that is internal in both T and T ′.

(II) Li ∩ A contains no element that is internal in both T and T ′.

Subcase (I). Let ai be an element of Li ∩ A that is internal in both T and T ′. Let aj

be an element of A that is internal in both T and T ′. If pT (aj) 6= pT (ai), then using

the facts that no label sets in F edge-overlap in T or T ′, that T |Li and T ′|Li have a

common binary refinement, and that F is acyclic, it is easily checked that aj is in a label

set of F containing only elements of A and all of the elements in this set have the same

parent in T . Because of the requirement on internal parents in (iii) in the definition of

the long-chain reduction, there are at least two such label sets. Also, if pT (aj) = pT (ai)

for some j 6= i and aj /∈ Li, then, because F is acyclic and no label sets in F edge-overlap

in T , aj is in a label set of F containing only elements of A and all of the elements in

this set have the same parent. Furthermore, since T |Li and T ′|Li have a common binary

refinement, any two distinct elements in Li − A intersect the path from an to ρ in T ′ in

exactly one place.

We next consider a1 if a1 is external in either T or T ′, and an if an is external in

either T or T ′. If a1 is external in T , then, as T |Li and T ′|Li have a common binary

refinement, a1 6∈ Li. Furthermore, a1 is in a label set of F that contains no other elements

of A and, moreover, both pT (a1) and pT ′(a1) are ancestors of all elements in this label set.

If a1 is external in T ′, then it easily checked that a1 behaves in the same way as elements

in A that are internal in both T and T ′. Now consider an. If an is external in T , then,

as T |Li and T ′|Li have a common binary refinement, an 6∈ Li. Also, as F is acyclic, an

is in a label set of F that contains no other elements of A and, moreover, pT (an) is an
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ancestor of all elements in this label set, but pT (a1) is an ancestor of none. Furthermore,

except for an, the vertex pT ′(a1) is an ancestor of all elements in this set. Now assume

that an is external in T ′. If an 6∈ Li, then, as no label sets in F edge-overlap in T ′, the

element an is the only element of A in its label set and, if this label set contains elements

in (X ∪{ρ})−A, then pT ′(a1) is not an ancestor of any of these elements and all elements

in Li are descendants of pT ′(an).

With the above conclusions in hand and noting that it is possible for an to be external

in T ′ and an ∈ Li, let J index the label sets of F that contain elements of the chain. Let

F ′ be the forest obtained from F by removing each label set Lj with j ∈ J and inserting

the new label sets
⋃

j∈J

Lj − (Li − A)− (Ln − {an}),

L′
i = Li − A, and L′

n = Ln − A if an is external in T , where Ln is the label set in F

containing an, and
⋃

j∈J

Lj − (Li − A)

and L′
i = Li − A if an is external in T ′. Note that F ′ is a partition of X ∪ {ρ}. By

considering the possibilities for a1 and an, and noting that pT ′(a1) is not an ancestor of

any element in Li − A, it is clear that F ′ is an agreement forest for T and T ′. Using

arguments similar to that used in (A), a straightforward check shows that, as F is acyclic,

F ′ is acyclic. Since F satisfies (P), it follows by Lemma 5.12 that F ′ satisfies (P).

Therefore, F ′ is a legitimate-agreement forest for T and T ′. But, as there are at least

two label sets in F containing just elements of A, we have w(F ′) < w(F); contradicting

the minimality of F . Thus subcase (I) does not arise.

Subcase (II). First observe that Li∩A is a non-empty subset of {a1, an} and each of the

elements in Li∩A is external in either T or T ′. Let aj , ak ∈ A such that neither aj nor ak

is a1 if a1 is external in either T or T ′ and neither aj nor ak is an if an is external in either

T or T ′. Assume first that a1 ∈ Li. Since F is acyclic and no label sets in F edge-overlap

in T or T ′, it is easily checked that aj and ak are in separate label sets in F and none

of these label sets contain elements in (X ∪ {ρ})−A. Arguing similarly, if an is external

in T , and therefore internal in T ′, then {an} is a label set in F . It now follows that if

an is not external in T ′, then F satisfies (ii) in the statement of the lemma. Therefore,

assume that an is external in T ′. If an 6∈ Li, then, as no label sets in F edge-overlap in

T ′, the elements aj and an are not in the same label set in F for all j. Thus F again

satisfies (ii) in the statement of the lemma, so assume that an ∈ Li. Since T |Li and T ′|Li

have a common binary refinement, pT ′(an) is an ancestor of all elements in Li. Let F ′ be
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the partition of X ∪ {ρ} that is obtained from F by replacing Li and all other label sets

containing elements of A with the three sets L′
i, L

′′
i , and A, where L′′

i contains precisely

the elements in Li − A that are descendants of pT ′(a1) in T ′ and L′
i = Li − (A ∪ L′′

i ).

Clearly, F ′ is an agreement forest for T and T ′. Furthermore, using arguments similar to

that used in (A), it is easily checked that, as F is acyclic, F ′ is acyclic. By Lemma 5.12,

F ′ satisfies (P) as F satisfies (P), and so F ′ is a legitimate-agreement forest for T and

T ′. But F has the property that {aj} ∈ F for all aj ∈ A − {a1, an}. Since |A| ≥ 5, this

implies that w(F) < w(F ′); a contradiction.

We may now assume that an ∈ Li and a1 6∈ Li. First note that if pT ′(a1) is an

ancestor of an element in Li, then, as the label sets in F are edge-disjoint in T ′, F

satisfies (ii) in the statement of the lemma. Thus we may also assume that pT ′(a1) is not

an ancestor of any element in Li. Since no label sets in F edge-overlap in T , it follows

that if pT (aj) 6= pT (ak) or pT (a1) 6= pT (aj), then aj and ak, and a1 and aj are in separate

label sets in F , respectively. Furthermore, unless pT (aj) = pT (an) and an is external in

T ′, the label set containing aj does not contain an element of (X ∪ {ρ}) − A. Also, if

a1 is internal in T , then its label set does not contain an element of (X ∪ {ρ}) − A. It

is now easily checked that if an is external in T , then, as an is internal in T ′ and F is a

legitimate-agreement forest of minimum weight, F satisfies (iii) in the statement of the

lemma with T as the distinguished tree. Therefore, assume that an is external in T ′.

If a1 is external in T and its label set contains an element in (X ∪{ρ})−A that is not

an ancestor of pT ′(a1), then F satisfies (ii) in the lemma. Thus if the label set containing

a1 contains an element in (X∪{ρ})−A, we may assume that it is a descendant of pT ′(a1).

Now, apart from Li and the label set containing a1, if a1 is external in T , the only other

possible label set, Lk say, in F that has a non-empty intersection with A and (X∪{ρ})−A

has the property that if ak ∈ Lk ∩A, then pT (ak) = pT (an). If no label set in F contains

at least two elements of A each having a different parent in T ′ and there exists no such

label set Lk, then F satisfies (ii) in the statement of the lemma. Therefore, suppose that

one of these two possibilities occur. Let F ′ be the partition of X ∪ {ρ} obtained from F

by replacing Li, Lk if such a label set exists, and all other label sets containing elements

in A with the sets L′
i, A∪L1 ∪L′

k and L′′
k, where L′

i = Li−{an}, L1 is the label set of F

containing a1 if a1 is external in T , L′′
k contains precisely the elements in Lk −A that are

descendants of pT ′(a1), and L′
k = Lk − L′′

k. Note that, as no label sets in F edge-overlap

in T or T ′, either L1−{a1} or L′′
k is empty. Clearly, F ′ is an agreement forest for T and

T ′. Furthermore, using the fact that one of the two above possibilities occur, it is easily

checked that, as F is acyclic, F ′ is acyclic. Moreover, as F satisfies (P), it follows by
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Lemma 5.12 that F ′ satisfies (P), and so F ′ is a legitimate-agreement forest for T and T ′.

But w(F ′) < w(F) as T has at least three internal parents. This contradiction completes

the proof of (B) and hence the lemma.

Lemma 5.15. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees. Let

(a1, a2, . . . , an) be a maximal chain of both T and T ′ that does not cross P with the

property that in one of the trees, say T , this chain has exactly one parent, while in the

other tree T ′ this chain has at least three internal parents. Then, for every legitimate-

agreement forest F for T and T ′ of minimum weight, exactly one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set in F , or

(ii) no label set in F contains at least two elements of the chain and, if ai is an internal

element of (a1, a2, . . . , an) in T ′, then {ai} is a singleton in F .

Proof. Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest for T and T ′ of

minimum weight, and let A = {a1, a2, . . . , an}. Let J index the label sets of F that

contain elements of A, and let La =
⋃

j∈J Lj. Suppose that neither (i) nor (ii) holds for

F . If no label set in F contains at least two elements of A, then, relative to T ′, there

is a label set in F that contains an internal element of the chain as well as an element

of (X ∪ {ρ}) − A. By considering the structure of (a1, a2, . . . , an) in T ′, it is easily seen

that, as (a1, a2, . . . , an) has at least three internal elements relative to T ′, at least one of

these internal elements is a singleton in F . A routine check shows that, apart from one

exceptional case, we can replace such a singleton and a label set in F that contains an

internal element of the chain in T ′ as well as an element of (X∪{ρ})−A with the union of

these two sets to obtain a legitimate-agreement forest of T and T ′ that has smaller weight

then F ; a contradiction. In the exceptional case, there is exactly one label set, Li say, in

F that contains an internal element of the chain in T ′ and an element in (X ∪ {ρ})−A,

and this set has the properties that |Li ∩ A| = 1, and pT ′(a1) is an ancestor of all the

elements in Li − A, but pT (a1) is not an ancestor of all the elements in Li. Since F

is acyclic, it follows that each of the remaining internal elements of the chain in T ′ are

singletons in F . A straightforward check now shows that

{L − A : L ∈ F} ∪ {A}

is a legitimate-agreement forest for T and T ′, but with smaller weight than F . This

contradiction implies that there is a label set in F containing at least two elements of A.

Without loss of generality, we may assume that this set is Li and that ai ∈ Li ∩A, where

i > i′ for all ai′ ∈ Li ∩ A.
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Suppose that there exists an Lh ∈ F −{Li} such that |Lh∩A| ≥ 1, |Lh∩ ((X ∪{ρ})−

A)| ≥ 1, and let ah ∈ (Lh ∩ A). If pT ′(ah) is a descendant of pT ′(ai), then, as |Li| ≥ 2

and no label sets in F edge-overlap in T ′, the vertex pT ′(ah) in T ′ is an ancestor of all

elements in Lh∩((X∪{ρ})−A). Because F is acyclic, it follows that the vertex pT (ah) in

T is an ancestor of all elements in Lh∩ ((X ∪{ρ})−A); otherwise GF contains a directed

2-cycle. Now assume that pT ′(ah) is an ancestor of pT ′(ai). If Li contains an element z

that is not a descendant of pT ′(an) in T ′, then, as GF is acyclic, pT (an) is an ancestor of

all elements in Lh in T . Similarly, if Lh contains an element z that is not a descendant

of pT ′(an) in T ′, then, as GF is acyclic, pT (an) is an ancestor of all elements in Li in T .

Now let F ′ be the forest obtained from F by removing each label set Lj with j ∈ J and

inserting the new label set La. Using the outcomes of the above two possibilities, it is

easily seen that F ′ is an agreement forest for T and T ′. Furthermore, as F satisfies (P),

it follows by Lemma 5.12 that F ′ satisfies (P). Using the facts that F is acyclic and at

least one of the label sets in F contains at least two elements of A, it is straightforward

to show that F ′ is acyclic. But then w(F ′) < w(F); a contradiction to the minimality of

F . Thus F satisfies either (i) or (ii).

We end this section by showing how the number of hybridization events for two rooted

phylogenetic X-trees corresponds to this number for a cluster-tree pair and a cluster-

reduced tree pair that have been obtained from the original tree pair by a cluster reduction.

Proposition 5.16. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees with

an associated weighted set P . Let A be a vertex cluster of both T and T ′ that does not

cross an element of P . Let T |A and T ′|A and Ta and T ′
a be the two pairs of weighted

rooted phylogenetic trees obtained from T and T ′ by applying the cluster reduction to A.

Then

f(T , T ′) = f(T |A, T ′|A) + f(Ta, T
′

a ).

Proof. If A = X the proposition clearly follows. Therefore, we may assume that A ⊂ X.

Let ρA denote the root of T |A and T ′|A. First, we show that

f(T , T ′) ≤ f(T |A, T ′|A) + f(Ta, T
′

a).

Let FA be a legitimate-agreement forest for T |A and T ′|A of minimum weight, and let

Fa be a legitimate-agreement forest for Ta and T ′
a of minimum weight. Let La denote the

label set in Fa that contains a, and let LρA
denote the label set in FA that contains the
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root label ρA of T |A and T ′|A. Furthermore, let

F = (Fa ∪ FA − {La,LρA
}) ∪ {(La ∪ LρA

)− {a, ρA})}.

Using the fact that Fa and FA are acyclic-agreement forests for Ta and T ′
a , and T |A and

T ′|A, respectively, it is easily checked that F is an acyclic-agreement forest for T and

T ′. Furthermore, as Fa and FA satisfy (P) for Pa and PA, respectively, it is clear that F

satisfies (P) unless a is an element of an element in Pa. But by construction, a is a new

label and so not in any element in P . Thus F is a legitimate-agreement forest for T and

T ′. As |F| = |Fa|+ |FA| − 1, we have

f(T , T ′) ≤ w(F) = f(T |A, T ′|A) + f(Ta, T
′

a ).

Next, we show that

f(T , T ′) ≥ f(T |A, T ′|A) + f(Ta, T
′

a).

Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest for T and T ′ of minimum

weight. There are two cases to consider here:

(i) F contains mixed label sets Lm1
,Lm2

, . . . ,Lmr
, that is, label sets that have a non-

empty intersection with both A and ((X −A) ∪ {ρ}).

(ii) F contains no mixed label set.

Case (i). For all i, let {L′
mi

,L′′
mi
} be the partition of Lmi

such that L′
mi
⊆ ((X−A)∪{ρ})

and L′′
mi
⊆ A. Let

Fa = {(L′
m1
∪ {a}),L′

m2
, . . . ,L′

mr
} ∪ {Li : Li ⊆ ((X − A) ∪ {ρ}) and Li ∈ F}

and let

FA = (L′′
m1
∪ L′′

m2
∪ . . . ∪ L′′

mr
∪ {ρA}) ∪ {Li : Li ⊆ A and Li ∈ F}.

Since A does not cross P and F satisfies (P), it is easily checked that Fa and FA satisfy

(P) for Pa and PA, respectively. Moreover, as F is an acyclic-agreement forest for T and

T ′, it is easily seen that Fa and FA are acyclic-agreement forests for Ta and T ′
a , and for
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T |A and T ′|A, respectively. Therefore, as |F| = |Fa|+ |FA| − 1,

f(Ta, T
′

a) + f(T |A, T ′|A) ≤ w(Fa) + w(FA) = f(T , T ′).

Case (ii). Since GF is acyclic, the directed subdigraph of GF induced by the label sets

that are subsets of A is also acyclic. Thus this subdigraph has a vertex, L0 say, with

indegree zero. Now let

Fa = {Li : Li ∈ F and Li ⊆ ((X −A) ∪ {ρ})} ∪ {a},

and let

FA = {Li : Li ∈ F − {L0} and Li ⊆ A}) ∪ {L0 ∪ {ρA}}.

Since F is an acyclic-agreement forest for T and T ′, it is clear that Fa and FA are

acyclic-agreement forests for Ta and T ′
a , and for T |A and T ′|A, respectively. Moreover,

as F satisfies (P), Fa and FA satisfy (P) for Pa and PA, respectively. Thus, as |F| =

|Fa|+ |FA| − 1, we have

f(Ta, T
′

a) + f(T |A, T ′|A) ≤ w(Fa) + w(FA) = f(T , T ′).

This completes the proof of the proposition.

5.6 Minimum Hybridization is Fixed-Parameter Tractable

In this section, we prove Theorem 5.2. We begin by showing that each of the subtree,

long-chain, and short-chain reductions described in the last section preserves the minimum

weight of a legitimate-agreement forest. For a chain (a1, a2, . . . , an) of T , the partition of

{a1, a2, . . . , an} defined by putting ai and aj in the same part precisely if pT (ai) = pT (aj)

is called the parent partition of (a1, a2, . . . , an) induced by T .

Proposition 5.17. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees.

Let S and S ′ be the pair of weighted rooted phylogenetic X ′-trees obtained from T and

T ′, respectively, by applying the subtree, long-chain, or short-chain reduction. Then

f(T , T ′) = f(S,S ′).

Proof. It is an immediate consequence of Lemma 5.13 that if S and S ′ have been obtained

from T and T ′ by an application of the subtree reduction, then the proposition holds. We

next prove the result for when S and S ′ have been obtained from T and T ′ by applying
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the long-chain reduction. The proof of the result for the short-chain reduction is similar

and omitted.

Suppose that (a1, a2, . . . , an) is the common chain of T and T ′ used in this application

of the long-chain reduction. Now let FT be a legitimate-agreement forest for T and T ′ of

minimum weight. Then, by Lemma 5.14 one of the following holds:

(i) {a1, a2, . . . , an} is a subset of a label set of FT ,

(ii) no label set in FT contains at least two elements of the chain and, if ai is an internal

element of both T and T ′, then {ai} is a singleton in FT , or

(iii) for either T or T ′, say T , two elements of the chain are in the same label set precisely

if they have the same parent and, moreover, if that parent is internal in T , then the

corresponding set contains no other elements of X ∪ {ρ}.

Let FS be the forest obtained from FT by replacing a1 and an with e1 and e2, respectively,

if a1 or an is external in either T or T ′ and, then, depending on which of (i), (ii), or (iii)

holds, respectively replace the remaining elements of A as follows: replace a1, a2, . . . , an

with a, b, and c; collectively replace the label sets of the form {ai} with {a}, {b}, and

{c}; or collectively replace the label sets of the form {ai, ai+1, . . . , aj} with {a, b} and {c}

and, if there is a label set of the form {e1, a2, . . . , ai′} or {aj′, aj′+1, . . . , e2}, replace it with

{e1} or {e2}, respectively. Since FT is a legitimate-agreement forest for T and T ′, it is

easily checked that FS is a legitimate-agreement forest for S and S ′. In the case that (ii)

holds, the contribution of the singletons containing elements that are internal in both T

and T ′ to w(FT ) is exactly the same as the contribution of {a}, {b}, and {c} to w(FS).

Furthermore, in the case that (iii) holds, the contribution of the label sets containing just

internal elements of A in T to w(FT ) is equal to the contribution of {a, b}, {c}, and {e1}

and {e2} if either e1 or e2 are internal elements of the reduced chain in S respectively, to

w(FS). Thus w(FS) = w(FT ), and so f(S,S ′) ≤ f(T , T ′).

Now suppose that FS is a legitimate-agreement forest for S and S ′ of minimum weight.

As FS is legitimate, one of the following holds, where e1 and e2 may or may not exist

depending on whether a1 or an is external in either T or T ′:

(i) {e1, a, b, c, e2} is contained in a label set, L say, in FS,

(ii) {a}, {b}, and {c} are label sets in FS, and e1 and e2 are in separate label sets in

FS,

(iii) {a, b} and {c} are label sets in FS, and e1 and e2 are in separate label sets in FS

and, relative to (e1, a, b, c, e2), if e1 or e2 is internal in T , then {e1} or {e2} is a label
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set in FS, respectively, or

(iv) {a} and {b, c} are label sets in FS, and e1 and e2 are in separate label sets in FS

and, relative to (e1, a, b, c, e2), if e1 or e2 is internal in T ′, then {e1} or {e2} is a

label set in FS, respectively.

Let FT be the forest obtained from FS by replacing e1 and e2 with a1 and an, respec-

tively, if a1 or an is external in either T or T ′ and, then, depending on which of (i) to (iv)

holds, make one of the following replacements for a, b, and c:

(i) L with (L − {a, b, c}) ∪ A,

(ii) {a}, {b}, and {c} with the sets {ai}, where ai is an internal element in both T and

T ′,

(iii) {a, b} and {c} with the parts of the parent partition of (a1, a2, . . . , an) induced by

T whose corresponding parents are internal in T , and deleting {a1} or {an} if e1 or

e2 is internal in S, or

(iv) {a} and {b, c} with the parts of the parent partition of (a1, a2, . . . , an) induced by

T ′ whose corresponding parents are internal in T ′, and deleting {a1} or {an} if e1

or e2 is internal in S ′.

A routine check shows that, as FS is a legitimate-agreement forest for S and S ′, the

collection FT of sets is a legitimate-agreement forest for T and T ′. In (ii), the contribution

of the singletons {a}, {b}, and {c} to w(FS) is the same as the contribution of the sets

{ai} to w(FT ), where ai is an internal element of both T and T ′. Furthermore, in (iii)

and analogously in (iv), the contribution of {a, b} and {c}, and {e1} and {e2} if e1 or e2,

respectively, are internal in S to w(FS) is equal to the contribution of the label sets in FT

which exclusively contain internal elements of A in T to w(FT ). Thus w(FT ) = w(FS),

and so f(T , T ′) ≤ f(S,S ′). Hence, f(T , T ′) = f(S,S ′), completing the proof of the

proposition.

Lemma 5.18. Let T and T ′ be a pair of weighted rooted phylogenetic X-trees, and let

(a1, a2, . . . , an) be a maximal chain of T and T ′ that does not cross P . Then, by a sequence

of long- and short-chain reductions applied to this chain, the length of the resulting chain

is at most 17.

Proof. Suppose first that there is an element of the chain that is internal in both T and

T ′. With i ≤ j, choose ai and aj as follows:
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(a) If a1 is internal in both T and T ′, choose ai to be a1. If a1 is external in both T

and T ′, but a2 is internal in both T and T ′, choose ai to be a2. Otherwise, for some

R ∈ {T , T ′}, a1 and a2 are external in R. In this case, choose ai to be the element

of the chain that is external in R and has maximum index with a1, a2, . . . , ai all

external in R.

(b) If an is internal in both T and T ′, choose aj to be an. If an is external in both T and

T ′, but an−1 is internal in both T and T ′, choose aj to be an−1. Otherwise, for some

S ∈ {T , T ′}, an and an−1 are external in S. In this case, choose aj to be the element

of the chain that is external in S and has minimum index with aj , aj+1, . . . , an all

external in S.

Having picked ai and aj , consider the chain (ai, ai+1, . . . , aj). If this chain satisfies (i)

and the condition on internal parents at the end of (iii) in the description of the long-

chain reduction, then we can apply this reduction to get a chain with at most 5 elements.

Furthermore, if (a1, a2, . . . , ai−1) is a chain with at least three internal elements in the tree

in {T , T ′} that is not R, then we can apply the short-chain reduction to get a chain with

at most 3 elements. Lastly, if (aj+1, aj+2, . . . , an) is a chain with at least three internal

elements in the tree in {T , T ′} that is not S, then we can again apply the short-chain

reduction to get a chain with at most 3 elements. Note that if we cannot apply the first

or the second of these short-chain reductions, then i− 1 ≤ 3 and n− j ≤ 3, respectively.

It now follows that after these three reductions, the resulting chain has length at most

11.

Now assume that (ai, ai+1, . . . , aj) does not satisfy (i) or the condition on internal

parents at the end of (iii) in the description of the long-chain reduction. Then, up to

the possibility of an additional internal parent which only has aj as its only child in

{ai, ai+1, . . . , aj}, this chain has at most two internal parents in either T or T ′. Except

for the children of these two parents, all of the remaining elements of {a1, . . . , an} are

external in either T or T ′. In particular, a1, . . . , ai−1 share the same parent in R, and

aj+1, . . . , an share the same parent in S. As (a1, a2, . . . , an) has an internal element in

both T and T ′, these two shared parents are distinct. Applying at most four short-chain

reductions, it is easily checked that the resulting chain has length at most 17.

Now suppose that no element of the chain is internal in both T and T ′, then each

element of the chain is external in either T or T ′. In this case, either we apply a single

application of the short-chain reduction to get a chain of length at most 4 or we apply

two applications of the short-chain reduction to get a chain of length at most 8. This

completes the proof of the lemma.
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Proposition 5.17 showed that the weight function is preserved under the subtree, long-

chain, and short-chain reductions. Part (iii) of the next lemma shows that these reductions

can be applied so that the size of the label set of the resulting rooted phylogenetic trees

is bounded by a linear function in the minimum hybridization number.

Lemma 5.19. Let T and T ′ be two rooted phylogenetic X-trees, and let P initially be

an empty collection of subsets of X. Let S and S ′ be two weighted rooted phylogenetic

X ′-trees obtained from T and T ′, respectively, by repeatedly applying the subtree reduction

until no further reduction is possible and, then, for each maximal chain common to both

resulting trees, repeatedly applying the long-chain and short-chain reductions. Then

(i) S and S ′ have no pendant subtrees with common label set A such that S|A and S ′|A

have a common binary refinement and |A| ≥ 2,

(ii) the length of any chain common to both S and S ′ is at most 17, and

(iii) |X ′| < 89h(T , T ′).

Proof. For the proof of (i) and (ii), let T1 and T ′
1 be the rooted phylogenetic trees obtained

from T and T ′ after repeatedly applying the subtree reduction until no further reduction

is possible. Furthermore, observe that if P1, P2 ∈ P , then S(P1) and S(P2) are edge-

disjoint, and S ′(P1) and S ′(P2) are edge-disjoint. Suppose that (i) does not hold, and

let A be such a label set. Without loss of generality, we may assume that A is maximal.

Then, because of maximality, if A intersects a set in P , then that set is a subset of A.

Now let A′ be the set obtained from A by replacing the elements belonging to a set in P

with their original counterparts. Using the above observation, it is easily seen that A′ is

a pendant subtree of T1 and T ′
1 . But, as S|A and S ′|A have a common binary refinement,

T1|A′ and T ′
1 |A

′ have a common binary refinement; a contradiction. Thus (i) holds.

For (ii), suppose that there exists a chain common to both S and S ′ that has at least

18 elements. Without loss of generality, we may assume that this chain is maximal. Let

A denote the label set of this common chain. Analogous to (i), because of maximality,

if A intersects a set in P , then that set is a subset of A. Moreover, if this intersection

involves a set that was part of a sequence of reductions to reduce a common chain in T1

and T ′
1 , then all of the associated sets in P are subsets of A. Using Lemma 5.18 to get a

contradiction, a similar argument used to establish (i) can now be used to establish (ii).

Now consider (iii). Let F = {Lρ,L1,L2, . . . ,Lk} be a legitimate-agreement forest

for S and S ′ of minimum weight. Let B and B′ be two binary refinements of S and

S ′, respectively, so that F is an acyclic-agreement forest for B and B′. By Lemma 5.6,
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such binary refinements exist. If B and B′ have a common pendant subtree with label

set A and |A| ≥ 2, then this subtree is a common binary refinement of S|A and S ′|A,

contradicting (i). Thus B and B′ have no such pendant subtree. Furthermore, if B and B′

have a common chain with label set A and |A| ≥ 18, then this implies that S and S ′ have

such a chain, contradicting (ii). Hence, any chain common to both B and B′ has at most

17 elements. With these restrictions on B and B′, we can now use the argument for the

analogous result for binary trees in Bordewich and Semple (2007b) to complete the proof

of (iii). The only modification necessary is to replace chains of size 2 with chains of size

at most 17. Making this change and working through the straightforward algebra gives
∑

i |Li| ≤ 89k − 51. By definition of f and Proposition 5.17, k ≤ f(S,S ′) = f(T , T ′).

Since P is initially empty, f(T , T ′) = h(T , T ′) and the result follows.

Before proving Theorem 5.2, we need one further lemma which points out an efficient

way for checking whether two rooted phylogenetic trees have a common refinement. A

collection J of non-empty subsets of a finite set X is a hierarchy if, for all A, B ∈ J ,

the set A ∩ B ∈ {∅, A, B}. It is well-known that the set of (edge) clusters of a rooted

phylogenetic tree is a hierarchy and, moreover, if J is a hierarchy, then there is a rooted

phylogenetic tree whose set of non-trivial (edge) clusters is J (Semple and Steel, 2003).

Lemma 5.20. Let T and T ′ be two rooted phylogenetic X-trees. Then T and T ′ have a

common refinement if and only if C(T ) ∪ C(T ′) is a hierarchy.

Proof. Let S be a common refinement of T and T ′ or, in other words, let S be a rooted

phylogenetic X-tree such that C(T ) ⊆ C(S) and C(T ′) ⊆ C(S). This implies that C(T ) ∪

C(T ′) ⊆ C(S). Since C(S) is a hierarchy on X, the same holds for C(T ) ∪ C(T ′). This

gives the first direction of the lemma. For the converse, let C(T )∪C(T ′) be a hierarchy on

X. Hence, there exists a rooted phylogenetic X-tree T ′′ such that C(T ′′) = C(T )∪C(T ′).

Now it is easily checked that each rooted phylogenetic X-tree S with C(T ′′) ⊆ C(S) is a

common refinement of T and T ′.

Proof of Theorem 5.2. Let T and T ′ be two rooted phylogenetic X-trees, and let P be

an initially empty collection of subsets of X. Let k be an integer. Let S and S ′ be the

weighted rooted phylogenetic X ′-trees obtained from T and T ′ by repeatedly applying

the subtree reduction until no further reduction is possible and, then, for each maximal

chain common to both resulting trees, repeatedly applying the long-chain and short-chain

reductions. As P is initially empty, h(T , T ′) = f(T , T ′) and so, by Proposition 5.17,

h(T , T ′) = f(T , T ′) = f(S,S ′).
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It is clear that S and S ′ can be found in time polynomial in |X|, say p(|X|). By

Lemma 5.19 (iii), |X ′| ≤ 89h(T , T ′) and so, if |X ′| > 89k, we declare that h(T , T ′) > k.

Now suppose that |X ′| ≤ 89k. The time taken to check whether a partition of X ′∪{ρ}

is a legitimate-agreement forest for S and S ′ takes time polynomial in k. By Lemma 5.20,

note that for deciding if two rooted phylogenetic trees T1 and T ′
1 have a common binary

refinement, one simply needs to check whether or not C(T1) ∪ C(T ′
1 ) is a hierarchy. Fur-

thermore, as |X ′| ≤ 89k, the number of forests with at most k + 1 parts is bounded by a

computable function in k, say f(k). If one of these forests is a legitimate-agreement forest

for S and S ′ with weight at most k, then we declare h(T , T ′) ≤ k; otherwise, we declare

h(T , T ′) > k. Hence, we can answer the Minimum Hybridization decision problem for

T and T ′ in time O(f(k) + p(|X|)). Thus Minimum Hybridization is fixed-parameter

tractable.

Concluding remarks.

1. While one could explicitly give a function in k that bounds the number of partitions

to consider in the proof of Theorem 5.2, it is unlikely to be the best theoretically

and we expect in practice much better methods.

2. In this chapter, we reduced a chain using two types of chain reductions. However,

we believe that it is possible to do this with a single type of chain reduction. The

drawback of such a reduction is that the number of possibilities for a legitimate-

agreement forest for T and T ′ increases. Since the goal of this chapter is to show

that Minimum Hybridization is fixed-parameter tractable, we decided to use the

two types of reductions, thereby reducing the complexity and lengths of the proofs.

3. In collaboration with Joshua Collins (University of Canterbury), the implementa-

tion of an algorithm for finding the minimum number of hybridization events for

two (arbitrary) rooted phylogenetic trees that considers the results of this chapter

is subject of ongoing research. We expect to implement this algorithm in a similar

way than HybridNumber (see Appendix A.1), but also to include some crucial

differences. For example, the order of the reductions which is used in Hybrid-

Number needs to be modified to guarantee that no common short- or long-chain

arises once the namesake reductions have been applied. This is of importance since,

otherwise, due to consecutive leaves that have previously been involved in a short-

or long-chain reduction, the weighting scheme gets more complex. We also intend

to use rekernalization, which is often termed interleaving, for the exhaustive search

part of the algorithm. This technique repeatedly applies the reduction rules as
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part of the exhaustive search. Detailed information about interleaving are given by

Niedermeier and Rossmanith (2000).



6 A Likelihood Framework to Measure Horizontal

Gene Transfer

In this chapter, we focus on the process of horizontal gene transfer (HGT). Like hybridiza-

tion, HGT can cause gene tree incongruence and, currently, a lot of effort is put into new

developments to analyze the extent to which HGT has influenced the evolution of a set

of present-day species. Here, we present a likelihood-based approach to estimate a rate

of HGT in a simplified setting. To this end, we assume that the number of HGT events

within a given time interval follows a Poisson process. To obtain estimates for the rate of

HGT, distributions of tree topologies for different numbers of HGT events on a clocklike

species tree are simulated. Using these simulated distributions, we estimate an HGT rate

for a collection of gene trees representing a set of taxa. As an illustrative example, we ap-

ply this approach to the “Clusters of Orthologous Groups of Proteins (COGs)” (Tatusov

et al., 2001). Additionally, inaccuracies due to gene tree reconstruction methods are

analyzed.

6.1 Introduction

It is well known that gene trees reconstructed for different genetic loci for the same

set of taxa do not necessarily have the same branching pattern. In fact, these may be

different from each other and different from the species tree (Pamilo and Nei, 1988).

Such discrepancies are not always due to problems in the tree reconstruction method,

but rather due to biological processes like hybridization, gene duplication and deletion,

or HGT (Syvanen, 1994). Here, we will focus on the latter of these processes.

The effect of one HGT event is depicted in Figure 6.1A where a species tree of the five

taxa A, B, C, D, and E is shown. This tree indicates a close relation between A and the

most recent common ancestor of B and C. In many cases, the species tree also explains

the phylogeny of single genes, but sometimes a gene has a different evolutionary history

than the species tree (Pamilo and Nei, 1988). For such a gene the gene tree is displayed in

Figure 6.1B. One possible explanation for this kind of difference is HGT. In the course of

such a process, a piece of DNA (e.g. a gene) is transferred from one organism to another

which is not its offspring and often the new genetic material is stably incorporated into

the acceptor genome afterwards. In the depicted case, the arrow shows a gene transfer

from species A (donor) to species D (acceptor). Consequently, the gene tree for this gene

shows a close relationship between A and D.
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(A) species tree T (S)

S={A,B,C,D,E}

(B) gene tree topology τ(X)

X={A,B,D,E}

(C) tree topology τ(S|X)

A

A

B

C

D

E

A

B

D

E

E

B

D

Figure 6.1: Comparison of a species tree (A) and a corresponding gene tree (B) after a single
HGT event. The arrow indicates a gene transfer from species A (donor) to species D (acceptor).
To check whether the gene tree is a subtree of the species tree, we compute the tree topology
τ(S|X) derived from the species tree (C).

Several approaches have been published which discover single HGT events (Lerat et al.,

2003, 2005), whereas another kind of approach estimates the amount of genes that have

been acquired through HGT for a given genome. The latter type of analysis is reviewed

in Ochman et al. (2000) for 19 completely sequenced genomes. For these species, the

amount of adopted genes varies between virtually none in organisms with a small genome

size, for example Rickettsia prowazekii, Borrelia burgdorferi, and Mycoplasma genitalium,

to almost 17 % in Synechocystis PCC6803. Another way of detecting horizontally trans-

ferred genes uses bacterial genome sequences to examine the nucleotide composition (GC

content) and usage of different codons (Lawrence and Ochman, 1997).

In contrast to these approaches, we estimated an overall rate of HGT for a given set

of species based on simulating a likelihood curve for the reconstructed species tree. We

constructed a clocklike species tree reflecting the actual evolutionary history of the ana-

lyzed organisms (Pamilo and Nei, 1988) and simulated different numbers of HGT events

that are implemented as sequences of rooted subtree prune and regraft operations on the

species tree (see Section 1.4.4). Simulations with different numbers of HGT events lead

to a distribution of tree topologies which are comparable with the gene tree distribution

to estimate an HGT rate supported by a likelihood framework.

As the number of tree topologies increases exponentially with the number of species,
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the probability to get a specific topology is very low. In trying to overcome this prob-

lem, we worked with quartet subtrees instead of the complete gene tree topologies (see

Section 6.2).

6.2 Materials and Methods

6.2.1 Notation

In addition to the usual terminology of phylogenetic trees that is given in Section 1.4,

we next introduce some further notion that is needed exclusively for this chapter. Let

S = {s1, s2, . . . , sn} be a set of taxa, and let X be a subset of S. To describe all binary

tree topologies with label set X, we use P(X). Furthermore, let τ(X) denote an element

of P(X). A species tree with taxa set S, denoted T (S), is an element of P(S). For a

species tree T (S) with edge set E, let l : E → R
≥0 be a length function on the elements of

E such that each element e ∈ E is assigned a non-negative value, the branch length. The

tree length L(T (S)) is the sum over all branch lengths of T (S). We assume a species tree

T (S) to be binary, rooted, leaf-labeled, and clocklike (i.e. each leaf has the same distance

to the root) and interpret the distance between any vertex and the root as time which has

passed since the first speciation event at the root. Moreover, a gene tree is a tree topology

of a leaf-labeled tree which evolves within a species tree and contains at most all taxa of

S. The restriction of S to X, denoted by τ(S|X), is the minimal unrooted tree topology

obtained from T (S) by connecting all leaves labeled with taxa of X and suppressing all

vertices of degree two (Figure 6.1C). Since we obtain an unrooted tree τ(S|X), note that

this definition differs from the definition of a restriction which is given in Section 1.4 and

used throughout the rest of this thesis.

6.2.2 Modeling Horizontal Gene Transfer

To model the process of HGT, some pivotal assumptions are needed:

(1) A species tree T (S) is given.

(2) Differences between a gene tree and T (S) are only caused by HGT events.

(3) The HGT rate λ is homogeneous per gene and unit time.

(4) Genes are transferred independently.

(5) One copy of the transferred gene still remains in the donor genome.
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(6) The transferred gene replaces any existing orthologous counterpart in the acceptor

genome.

As mentioned above, the effect of an HGT event can result in a branching pattern of

a gene tree which differs from a given species tree (Figure 6.1). From a computational

point of view, we model each HGT event as a rooted subtree prune and regraft operation

(see Section 1.4.4). As we assume a homogeneous HGT rate λ, the transfer events are

uniformly distributed along all branches of the tree. Loosely speaking, for each HGT

event, we randomly choose a starting point in the clocklike species tree, determine the

corresponding time in this tree, search for all branches that coexist at that point of time,

and randomly select one as acceptor branch. To prevent gene transfer from species to

their own ancestors, note that single transfer events between species are only possible if

they coexist in time. This biologically well-motivated restriction is not considered in some

current research on HGT models. Furthermore, it is easily seen that not every HGT event

changes the branching pattern of the species tree, e.g. if the process takes place between

lineages that share the parent vertex.

For a given species tree with total length L(T (S)) and a fixed λ, the tree topology τ(S)

occurs with a certain probability P (τ(S) | T (S), λ, L(T (S))) or, in short, P (τ(S) | λ),

since λ is the parameter of interest. As stated in the introduction, the number of HGT

events is Poisson distributed with parameter Λ = λ · L(T (S)) for a fixed species tree.

Thus the probability for τ(S) given λ is

P (τ(S)|λ) =
∞

∑

h=0

(

e−Λ · Λh

h!
· P (τ(S) | HGT = h)

)

. (6.1)

The Poisson distribution describes the probability that h HGT events happen on the

species tree T (S) with L(T (S)) and λ, whereas the second factor is the probability to

observe τ(S) as tree topology after h HGT events. While the Poisson distribution is easy

to compute, the probability distribution of the gene trees for a fixed number of HGT

events is hard to calculate, except for trivial cases like h ∈ {0, 1}.

For a fixed arbitrary subset X ⊆ S, we can compute the probability for a subtree

τ(X) as follows

P (τ(X)|λ) =
∑

τ(S)∈P(S)

(

δ(τ(X),τ(S|X)) · P (τ(S)|λ)

)

. (6.2)
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The Kronecker delta δ(τ(X),τ(S|X)) is one if the topology of the induced subtree τ(S|X)

with respect to X ⊆ S is identical to τ(X) and, otherwise, it is zero.

Equations 6.1 and 6.2 allow for an estimation of λ in a likelihood framework. Therefore,

we assume that λ acts on each gene independently. If m gene trees τ1(S), . . . , τm(S) are

given, the likelihood of λ is

lik(λ|τ1(S), . . . , τm(S)) =

m
∏

i=1

P (τi(S)|λ). (6.3)

We maximize Equation 6.3 with respect to λ and interpret the result as the most likely

transfer rate.

This approach turns out to be computationally infeasible since a reliable estimation of

P (τ(S)|λ) is only possible for a small number of taxa. Hence, we resort to an approxima-

tion of the likelihood. We consider a collection {X1, . . . , Xm} of subsets of S together with

the probability distribution induced by Equation 6.2 and assume that the occurrences of

the gene trees τ(X1), . . . , τ(Xm) are mutually independent for different randomly chosen

subsets X1, . . . , Xm. In this case, the joint probability of τ(X1), . . . , τ(Xm) is

P (τ(X1), . . . , τ(Xm)) ≈
m
∏

i=1

P (τ(Xi)|λ). (6.4)

Although Equation 6.4 is an approximation to Equation 6.3, the simulations show that

it is good enough for the practical application and that we can also apply the described

equations to estimate λ̂ and Λ̂, respectively.

6.2.3 Estimating the Probability Distribution of Gene Trees

From the previous paragraph, it is obvious that it is difficult to find an analytical expres-

sion for any of the equations. However, Equation 6.1 suggests an efficient simulation. For

a fixed number h of HGT events, we can approximate the distribution P (τ(S)| HGT = h)

reasonably well. Therefore, we simulate N = 100, 000 times h HGT events on a species

tree with 0 ≤ h ≤ 60 and calculate how often each gene tree occurs in the simulated trees.

The resulting probability distribution, denoted by P ∗(·), represents the results for the ith

gene tree in the ith column and the results for a fixed number h of HGT events in the hth

row. The final likelihood estimation is then based on P ∗(·).

While P (τ(S)|λ) can be estimated for small taxa sets, it gets intractable for biologically
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interesting numbers because too many tree topologies exist and, hence, it is impossible

to simulate enough trees for a reliable estimation within a reasonable time span. In

such situations, the probability for different subsets of S proves more successful. Thus

we reduce the calculated probability distribution P ∗(·) to a subset of randomly chosen

quartet topologies of the given set of gene trees.

6.2.4 The COG Data Set

The whole COG data set, which is available via the NCBI website4, comprises 3,167

protein families of 44 species (2 eukaryotes, 9 archaea, and 33 bacteria) to which we

will refer as COG taxa set SCOG in the following. As the analysis currently only considers

single-copy genes, we extracted those families. To obtain enough phylogenetic information

to reconstruct the gene trees, we only used COG families with a minimum alignment

length of 100 amino acids (Nei, 1996) and required at least four species per COG family.

After applying those three criteria, 780 protein families remained. For each of these

families, a gene tree was reconstructed by using Tree-Puzzle (Schmidt et al., 2002) and

the Dayhoff substitution model (Dayhoff et al., 1978).

To construct a species tree that considers the information of all 780 protein families,

we built the three unrooted binary trees for all possible quartets (A, B, C, D) and com-

puted the corresponding log-likelihood values ℓ as sum of the log-likelihoods over all COG

families (gi).

ℓ(AB|CD) =
780
∑

i=1

ℓgi
(AB|CD)

ℓ(AC|BD) =
780
∑

i=1

ℓgi
(AC|BD) (6.5)

ℓ(AD|BC) =

780
∑

i=1

ℓgi
(AD|BC).

All three log-likelihood values ℓgi
are set to be 0 if at least one of the species A, B, C, or D

has not been sequenced for the corresponding COG family gi. Afterwards, Tree-Puzzle

was used to construct a species tree T (SCOG) of the so-obtained log-likelihood values.

To assign branch lengths to T (SCOG), we performed a clock test (see Felsenstein, 1988)

for all 780 protein families. The results contained 443 clocklike and 337 non-clocklike COG

4http://www.ncbi.nlm.nih.gov/
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Figure 6.2: Distribution of the COG data set according to the number of sequences in each
protein family (black bars: all 780 protein families are considered; white bars: only those families
are considered whose corresponding gene tree is a subtree of T (SCOG)).

families. Only three of all 780 families consist of 44 sequences (COG0013: Alanyl-tRNA

synthetase, COG0092: Ribosomal protein S3, COG0541: Signal recognition particle GT-

Pase Ffh), but none of them evolved clocklike. Therefore, we used an appropriate set

of gene trees which covers all 44 species. For each clocklike evolving COG family with

taxa set X, we reconstructed the corresponding subtree τ(SCOG|X) with a total branch

length measured in numbers of substitutions per site. Furthermore, we identified a set

G of subtrees fulfilling the following conditions: (a) the union of label sets of trees in G

contains all taxa of T (SCOG) and (b) each branching point of T (SCOG) is determined by at

least one subtree of G. Such a coverage was found for the three clocklike evolving fami-

lies: COG0419 (ATPase involved in DNA repair), COG0173 (Aspartyl-tRNA synthetase)

and COG1242 (uncharacterized FeS oxidoreductase). As some of the splitting times are

given by two or three of these families and each of them evolved with a different rate, we

computed the ratio of these rates to estimate the splitting times relative to one protein

family, in this case COG0419. The obtained species tree with L(T (SCOG)) = 29.9 is shown

in Appendix A.2 (Figure A.2.1). Finally, the reconstructed species tree T (SCOG) was used

to simulate distributions of tree topologies for different numbers of HGT events.

An overview of the COG data set is summarized in Figure 6.2, where the black bars

represent the distribution of protein families according to the number of sequences and,

hence, to the number of taxa represented by the corresponding gene tree. It is easily seen

that the majority of families contains less than 10 sequences. Additionally, the white bars

only consider those protein families, whose associated gene trees are subtrees of T (SCOG).

Since the reconstruction of T (SCOG) was quite complex and since it remains unclear
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if this tree represents the evolutionary history of the COG taxa set correctly, a second

clocklike species tree T (SRNA)—based on 16/18 S rDNA sequences—was reconstructed.

The 16 and 18 S rDNA genes are homologous to each other (Rubtsov et al., 1980) and

encode for the RNA of the small ribosomal subunit. For the tree reconstruction, we

downloaded the 16 S rDNA sequence for all 33 bacteria and the 18 S rDNA sequence for

all 11 eukaryotes and archaea, respectively, from the RefSeq (NCBI Reference Sequence)

data base (Pruitt et al., 2005), calculated a multiple sequence alignment with the Mafft

program (Katoh et al., 2005), and reconstructed T (SRNA) by using TreePuzzle. In

Appendix A.2 (Figure A.2.2), the resulting tree with L(T (SRNA)) = 4.8 is shown. A com-

parison of L(T (SCOG)) and L(T (SRNA)) indicates that the 16/18 S rDNA sequences were

highly conserved during evolution. Note that Figure A.2.2 shows a tree that represents

three distinct clades of the kingdoms bacteria, eukaryotes, and archaea as suggested by

Woese and Fox (1977).

6.2.5 Comparing Trees

Before detailing a further analysis, we recall that two quartet trees A1|B1 and A2|B2 are

compatible if at least one of the sets A1 ∩ A2, A1 ∩ B2, B1 ∩ A2, and B1 ∩ B2 is the

empty set (Semple and Steel, 2003). Note that in the case of quartet trees each of the

sets A1, B1, A2, and B2 contains two taxa. To compare the most frequent gene tree with

T (SCOG), we extracted all quartet topologies from all 780 gene trees and summarized the

information in a descending sorted list representing each quartet tree by the number of its

occurrences. Afterwards, we built a pairwise compatible quartet set that finally consisted

of 35.7 % of the initially extracted quartet topologies. Starting with the most frequent

quartet topology, we put each successively following quartet tree in the current set if the

resulting set of quartet trees was pairwise compatible. Based on the final quartet set, we

reconstructed a tree using Tree-Puzzle. To compare the obtained tree topology with

the COG species tree, we built a consensus tree using the program Consense of the

Phylip package (Felsenstein, 1989).
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Figure 6.3: Quality of the rate estimation in dependence on the number of quartet topologies:
(A) 100, (B) 1, 000 and (C) 10, 000. N = 100, 000 and hmax = 60 are fixed. Each displayed
value is based on one estimation.

6.3 Results

6.3.1 Quality Check

Before estimating an HGT rate for the COG data set, we performed several analyses to

check which parameter settings allow reliable results. To this end, we used a program

that simulates HGT events with rate λ on T (SCOG). The corresponding number of HGT

events was drawn from the Poisson distribution. This kind of simulation generates a new

data set which is comparable to the 780 gene trees of the COG data. Since we know

the true HGT rate λ, we can check the reliability of the estimation procedure. In the

course of such a procedure, we first estimated the probability P ∗(τ(X) | HGT = h) to get

the tree topology τ(X) if exactly h HGT events happened on T (SCOG). Assuming that

P ∗(τ(X) | HGT = h) is the relative occurrence of the topology τ(X), we simulated N

times h HGT events on T (SCOG).

To analyze the influence of the size of the quartet set, we generated 1, 000 gene trees

for several HGT rates λ, extracted all quartet topologies, and used a randomly chosen

subset of these topologies to estimate the HGT rate λ. Repeating this for the quartet set

sizes 100, 1, 000, and 10, 000, we got the results visualized in Figure 6.3, where the true

HGT rate λ which was used to generate the gene trees and the estimated rate are shown.

It turned out that a set of 10, 000 topologies was large enough to get reliable results.

For a second test, we used 10, 000 quartet topologies and varied the value of hmax

(the maximal number of simulated transfers on T (SCOG)) with N = 100, 000. Figure 6.4

shows the estimation results based on hmax ∈ {20, 30, 40, 60}. For each hmax, there exists

a maximum rate which can be estimated reliably while rates above get underestimated.



A Likelihood Framework to Measure Horizontal Gene Transfer 112

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

e
s
ti
m

a
te

d
 r

a
te

true rate

hmax = 20
hmax = 30
hmax = 40
hmax = 60

Figure 6.4: Quality of the rate estimation as a function of the maximum number of simulated
HGT events with N = 100, 000 and 10, 000 quartet topologies. Each displayed value is based
on one estimation.

6.3.2 The Most Frequent Gene Tree

To determine whether the most frequent gene tree is similar to the reconstructed species

tree T (SCOG), we compared both trees. We computed a quartet set of all quartet topologies

of the 780 COG gene trees which only consisted of pairwise compatible quartet topologies

(see Section 6.2.5). A comparison of the tree reconstructed for this quartet set with the

species tree T (SCOG) led to the consensus tree depicted in Figure 6.5. Both trees support

all bifurcations except for two vertices indicated by multifurcations in the consensus tree.

We can conclude that both trees are almost equal and that the most common gene tree

is very similar to T (SCOG).

6.3.3 Estimating the HGT Rate λ for the COG Data Set

The quality tests described in Section 6.3.1 have shown that an HGT rate λ of 0.7 can

reliably be estimated if we randomly choose 10, 000 quartet topologies of the 780 COG

gene trees and use the parameter setting N = 100, 000 and hmax = 60.

We applied this procedure to the COG data, repeated the estimation for 50 randomly

chosen sets of quartet topologies, and obtained results for λ̂ between 0.43 and 0.48, and

for Λ̂ between 12.86 and 14.35 presented in Figure 6.6A . Since Λ is the parameter of

the Poisson distribution which describes the occurrence of HGT events in time, Λ̂ is the

expected value for the number of HGT events that happened on T (SCOG). The estimated

HGT rate λ̂ is relative to the number of substitutions in the protein family COG0419

(ATPase involved in DNA repair) which was used to assign branch lengths to T (SCOG).
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Figure 6.5: Consensus tree of the COG species tree and the tree reconstructed of the quartet
set that represents the most frequent quartet subtrees of the 780 gene trees. Only two multifur-
cations exist which indicate discordance between both trees. This tree was reconstructed with
the strict consensus option of the Consense program (Felsenstein, 1989).

To test the reliability of these results, we checked if the estimated HGT rates differ

from those estimated for quartet sets randomly chosen from all quartet topologies of the

44 species. Figure 6.6A shows the estimation results of quartet topologies which could

be found in the 780 gene trees and Figure 6.6B represents estimations over all
(

44
4

)

· 3

quartet topologies. The graph indicates an estimated HGT rate λ̂, which is about 10

times higher, between 4.66 and 4.7. These rates are higher because the set consists of

quartet topologies which are not subtrees of any gene tree, and so more HGT events are

necessary to get the distribution.

Furthermore, we simulated HGT events on T (SRNA) and estimated an HGT rate for

20 quartet sets, where each such set contained 10, 000 randomly chosen quartet topologies

of the 780 COG gene trees. The obtained results indicate that Λ̂ = 21 on average.
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Figure 6.6: Distribution of the estimated HGT rates λ̂ for the COG data for randomly chosen
quartet sets (A) of the 780 gene trees, and (B) over all 44 species tree taxa.

6.3.4 Rate Correction

We performed a further analysis that takes into account the inaccuracies of the gene tree

reconstruction method. For each protein family gi with i ∈ {1, 2, . . . , 780} representing a

taxa set Xgi
, we restricted T (SCOG) to Xgi

, denoted by τ(SCOG|Xgi
), and assigned branch

lengths to all of those tree topologies using Tree-Puzzle. Afterwards, we simulated

protein sequences of the same size than the corresponding COG sequences along the cal-

culated trees with Seq-Gen (Rambaut and Grassly, 1997) using the Dayhoff substitution

model (Dayhoff et al., 1978). We repeated this step five times, calculated gene trees for

the simulated sequences, and repeated the estimation procedure. As the newly simulated

sequences are based on trees which are subtrees of T (SCOG), we expected to estimate an

HGT rate λ̂ of about zero.

After the estimation of ten randomly chosen quartet sets for each of the five simulated

data sets, we got the distribution which is shown in the stacked histogram of Figure 6.7.

Each of the five colors represents one data set. The estimation results are nearly constant,

at about 0.1 (0.1± 0.01). This result could be interpreted as a kind of background noise

due to inaccuracies in the applied gene tree reconstruction method (see Section 6.2).

Since τ(SCOG|Xgi
) is a subtree of T (SCOG), for all i ∈ {1, 2, . . . , 780}, this implies that

the estimated average HGT rate λ̂ of about 0.46 per gene and unit time is about 22 %

too high. This would decrease the total amount of HGT events which is necessary to

transform T (SCOG) into one gene tree from 14 to 11 events per gene on average.
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Figure 6.7: Distribution of the estimated HGT rates λ̂ for five simulated data sets. Each data
set is based on the 780 protein families and their corresponding subtrees in T (SCOG). For each
data set, ten randomly chosen quartet sets were estimated.

6.4 Discussion

In the previous sections, we have described some results based on a new approach to

estimate an overall rate of HGT with the help of a likelihood framework. This procedure

allows to estimate a rate of HGT under the assumptions that all differences between a

gene tree and an associated species tree have been caused by HGT and that the HGT

rate is homogeneous over the whole tree. Note that we did not make any statement about

the probability if a gene is transferred at all, but how many events have occurred within

one COG family on average. Thus we are assuming that every gene is transferred with

the same probability.

A recent publication by Ge et al. (2005) also analyzed the COG data set and detected

HGT in 33 out of 297 protein families. To do so, they used a novel test statistic based

on tree topology comparisons. Unfortunately, they did not say anything about how many

HGT events happen in each of those 33 detected COGs, which would be interesting to

compare their results with ours.

There are several other approaches trying to estimate an HGT rate. For example, Huel-

senbeck et al. (2000) developed a Bayesian framework for the analysis of cospeciation

which could also be used to estimate rates of genetic transfer. Suchard (2005) published

two stochastic models with the same purpose. The first model, developed by Suchard, is

based on subtree prune and regraft operations and is applicable if the number of taxa under

consideration is small, while the other approach is a random walk over complete graphs

and offers a solution for an increasing number of taxa. In both publications, the fact that
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the corresponding framework can deal with gene and species tree topologies which are not

known without error is highlighted. Furthermore, both HGT models require that all gene

and species trees are based on the same set of present-day species. In contrast, the new

approach, which we have introduced here, can incorporate gene/protein families whose

taxa sets are subsets of the species tree taxa set by using quartet subtrees. As an example,

the COG data set only comprises three protein families which represent sequences for all

44 taxa (see Figure 6.2). Furthermore, this new framework also takes into account the

inaccuracies in the gene tree reconstruction method.

As genomes are not only shaped by HGT, but also by processes like hybridization,

gene loss, and duplication (Snel et al., 2002), it becomes clear that the estimated rate of

about 11 events per gene and unit time is a kind of upper bound because we assume that

all conflicts in the gene tree topologies are caused by HGT. However, it remains as yet

unclear, how the rate estimate changes if multi-copy genes were included in the analysis.

The high estimates can be explained by the fact that a lot of HGT events will not change

the tree topology (events between two vertices that share parents). This is of importance

since 71 % of the total branch length of the COG species tree can be involved in HGT

events which do not change the branching pattern. As it is most likely that the majority

of HGT events in nature takes place between closely related taxa it becomes clear that

the number of these events would be underestimated by just counting differences in the

branching pattern between two given trees. Moreover, if one gene is transferred back and

forth between two lineages, these events will not be detected either. The importance to

take unobservable HGT events into account is supported by the fact that the topologies

of 264 (34 %) of the 780 COG gene trees are subtrees of T (SCOG) (see white bars in

Figure 6.2). This means that the gene tree topology can be explained without any single

HGT event. As the number of taxa of those 264 trees differs widely, and even gene

trees with up to 36 taxa are equal to the corresponding COG species tree restriction, we

can assume that HGT events happened during the evolution of the corresponding genes

although we cannot see any of them. This is also supported by the fact that it is still

not known if a core of non-transferable genes exists (Nesbø et al., 2001). Summing up,

the importance of simulating HGT events on a given species tree, instead of counting

visible differences between a species and gene tree, becomes obvious and separates our

approach from some previous work on estimating an HGT rate. To get an impression of

the probability that an HGT event does not change the tree topology, we counted the

simulated trees which are equal to the COG species tree. The result indicates that this

probability is 9 % (0.9 %) for the simulated trees after one (two) transfer(s). As our

approach includes simulations on a species tree which gave us a distribution of trees after
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different numbers of HGT events, we automatically include unobservable HGT events

and, therefore, the estimated rate is higher than in other approaches. Of course, this

high rate also indicates that HGT influences the tree topologies strongly, as described by

Doolittle (1999).

Many other approaches (e.g. see Hao and Golding, 2006, Dagan and Martin, 2007)

exist which also estimate an HGT rate. All those methods are quite different from one

another and it is difficult to compare their results with ours. The two mentioned pub-

lications are based on gene present and absent patterns, while the method, which we

have introduced here, uses the information of reconstructed gene trees to calculate an

HGT rate. Dagan and Martin (2007) have presented a method in which they inferred

a conservative lower-bound estimate of about 1.1 HGT events per gene family and gene

family lifespan considering the genome size of present day species. As already explained

above, the estimates represented here are a kind of upper bound and, therefore, they are

higher. Since both methods (Hao and Golding, 2006, Dagan and Martin, 2007) are tested

on different data sets, it would be interesting to see how much the results really differ

when both are applied to the same data set.

Finally, a comparison of the estimated rates (uncorrected) for the COG species tree

with those for the RNA species tree shows that about seven additional HGT events are

necessary to explain the incongruence between T (SRNA) and any of the 780 gene trees

than for the same gene tree and T (SCOG). This is in line with our expectations because

the species tree T (SCOG) represents the evolutionary history of all 780 analyzed COG

families and, hence, it is not guaranteed that this tree depicts the species history of the

COG taxa set, whereas T (SRNA) was obtained from 16/18 S rDNA sequences which are

often used to reconstruct universal species trees for a set of given taxa (Woese, 2000, and

references therein).

6.5 Outlook

The newly developed likelihood framework to estimate a rate of HGT gives rise to a

number of further studies. Since this framework is based on several key assumptions

(Section 6.2.2) including some that might be not reasonable from a more biological point

of view, it would be interesting to consider more biologically relevant aspects of HGT in the

future, e.g., like Suchard (2005), the possibility to include heterogeneous HGT rates in the

analysis. Such rates are important to take into account since genes belonging to different

functional categories have different transferabilities (Nakamura et al., 2004). Another
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interesting and important extension for the simulation would be to include uncertainties

of the species tree branch lengths. So far, it is assumed that these lengths are exactly

known. Currently, the introduced framework exclusively deals with trees that represent

a single gene copy per species. Since phylogenies often present several distantly related

copies for a given organism, the HGT estimates based on orthologs only could be too low.

Hence, another task of future work can be the allowance for multi-copy genes.



7 A New Result for Computing the Rooted Subtree

Prune and Regraft Distance

7.1 Introduction

Beside the tree rearrangement operations NNI and TBR, the SPR operation is frequently

used in many areas of evolutionary research. Among other applications, (a) the rSPR

distance between two rooted binary phylogenetic trees on the same taxa set provides a

lower bound on the number of reticulation events (Baroni et al., 2005) and (b) the SPR

operation is used to find the best tree in a heuristic search over a tree space (e.g. see

Chapter 4 of Felsenstein, 2004).

As shown by Bordewich and Semple (2004), calculating the rSPR distance between

two rooted binary phylogenetic trees is an NP-hard problem and exact algorithms which

calculate this distance and have a reasonable running time are rare. Hence, one of-

ten resorts to approximation algorithms. Two such algorithms that have recently been

developed are the 5-approximation algorithm described in Bonet et al. (2006) and the

3-approximation algorithm described in Bordewich et al. (2008). The latter publication

also gives an attractive fixed-parameter tractable algorithm for the problem of computing

the rSPR distance between two trees exactly.

We state the optimization problem of computing the rSPR distance between two rooted

binary phylogenetic trees as follows:

Minimum rSPR

Instance: Two rooted binary phylogenetic X-trees T and T ′.

Goal: Find a minimum length sequence of single rSPR operations that transform T into

T ′.

Measure: The length of this sequence.

Bordewich and Semple (2004) established the following result:

Theorem 7.1. Let T and T ′ be two rooted binary phylogenetic X-trees. Then

drSPR(T , T ′) = m(T , T ′).

Furthermore, they gave a fixed-parameter tractable algorithm to compute drSPR(T , T ′)

by applying slightly modified versions of the subtree and chain reduction to T and T ′.
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Figure 7.1: A maximum-agreement forest F for the two rooted binary trees T and T ′ on the
same set of taxa (left). A maximum-agreement forest FA for the cluster-tree pair T |A and T ′|A
(middle) and a maximum-agreement forest Fa for the cluster-reduced tree pair Ta and T ′

a (right)
resulting from applying the cluster reduction to the cluster A = {1, 2, . . . , 6} of T and T ′.

However, a similar result for the cluster reduction in the context of calculating the

rSPR distance is not yet established. In the remainder of this chapter, we show how the

problem of calculating exactly the rSPR distance between two rooted binary phylogenetic

X-trees can be broken into two smaller subproblems by a single application of the cluster

reduction (Section 7.2) before showing two examples that point out some difficulties in

trying to apply this reduction more than once (Section 7.3).

Let F be a maximum-agreement forest for two rooted binary phylogenetic X-trees T

and T ′ that have a cluster A with |A| ≥ 2 in common. Suppose that the cluster reduction

(see Section 2.4) is applied to T and T ′ such that the resulting two tree pairs are the

cluster-reduced tree pair Ta and T ′
a obtained from T and T ′, respectively, by replacing the

subtree having leaf set A with a single vertex labeled a and the corresponding cluster-tree

pair T |A and T ′|A whose label set is A. Furthermore, let FA be a maximum-agreement

forest for T |A and T ′|A, and let Fa be such a forest for Ta and T ′
a .

Theorem 2.5 shows that the hybridization number of T and T ′ is equal to the sum of

the hybridization numbers of the cluster-tree pair and the cluster-reduced tree pair that

result from applying the cluster reduction once. By considering that the rSPR distance

between T and T ′ is equal to the size of a maximum-agreement forest for T and T ′ minus

one (see Theorem 2.1 of Bordewich and Semple, 2004), it is suggesting to conjecture that

the cluster reduction can also be used to calculate the rSPR distance between T and T ′,
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denoted by drSPR(T , T ′). However, Figure 7.1 shows that the result does not hold in this

context since

drSPR(T , T ′) = |F| − 1 = 2

and

drSPR(T |A, T ′|A) + drSPR(Ta, T
′

a) = |FA| − 1 + |Fa| − 1 = 2 + 1 = 3.

As stated in Proposition 11.7 of Semple (2007), the rSPR distance only satisfies the

following weaker result

drSPR(T , T ′) ≤ drSPR(T |A, T ′|A) + drSPR(Ta, T
′

a ) ≤ drSPR(T , T ′) + 1.

Recalling Lemma 2.2, no label set of a maximum-acyclic-agreement forest exclusively

contains the root label, whereas Figure 7.1 indicates that a maximum-agreement forest

for two rooted binary phylogenetic X-trees can contain an isolated vertex that represents

the root. Hence, there can exist two maximum-agreement forests FA and Fa such that

FA contains an isolated vertex representing the root, labeled ρa say, and Fa contains an

isolated vertex labeled a. As we will shortly see, this situation is crucial in establishing

a cluster result for the calculation of drSPR(T , T ′). Furthermore, it is important to note

now that we do not impose a minimality criteria on the size of the cluster that is reduced

in the course of a cluster reduction to break up the problem of computing drSPR(T , T ′).

7.2 A Single Application of the Cluster Reduction

In this section, we first establish two lemmas that are needed to prove the main theorem

of this chapter. This theorem shows how one can calculate the rSPR distance between

two rooted binary phylogenetic trees on the same label set by calculating this distance

for the two tree pairs resulting from applying the cluster reduction.

Suppose that F = {T1, T2, . . . , Tk} is a maximum-agreement forest for two rooted

binary phylogenetic X-trees T and T ′ that have a cluster A with |A| ≥ 2 in common.

We say that F contains a mixed tree Tm if there exists an element m ∈ {ρ, 1, 2, . . . , k}

such that L(Tm) ∩ A 6= ∅ and L(Tm) ∩ ((X − A) ∪ {ρ}) 6= ∅. Note that there can exist

at most one such tree in F since, otherwise, the trees {T (Li) : i ∈ {ρ, 1, 2, . . . , k} are not

vertex-disjoint in T and the trees {T ′(Li) : i ∈ {ρ, 1, 2, . . . , k} are not vertex-disjoint in

T ′, respectively.

Depending on whether there exists a maximum-agreement forest F containing a mixed



A New Result for Computing the Rooted Subtree Prune and Regraft Distance 122

tree, we next prove two lemmas which provide lower bounds on calculating drSPR(T , T ′).

Lemma 7.2. Let F be a maximum-agreement forest for two rooted binary phylogenetic

X-tree T and T ′ that have a cluster A in common with |A| ≥ 2. Furthermore, let Ta

and T ′
a be the cluster-reduced tree pair obtained from T and T ′ by applying the cluster

reduction to A, and let T |A and T ′|A be the corresponding cluster-tree pair. If F contains

a mixed tree, then

drSPR(T , T ′) ≥ drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A). (7.1)

Proof. Let Tm be the mixed tree of F . The minimal rooted subtree of T which contains

the label set of the mixed tree includes the root of T |A and, similarly, this also holds for

T ′. Since F is an agreement forest, this implies that Tm is the unique tree in F with

the described properties. Let Ta be the tree obtained from Tm by replacing the pendant

subtree Tm|(A ∩ L(Tm)) with a single leaf labeled a. Furthermore, let the tree Tρa
be

obtained from Tm by adding a vertex labeled ρa at the end of a pendant edge adjoined to

the root of Tm|(L(Tm) ∩ A). Then, as F is an agreement forest for T and T ′,

Fa = {Tj ∈ F : L(Tj) ⊆ ((X −A) ∪ {ρ})} ∪ {Ta}

is an agreement forest for Ta and T ′
a and

FA = {Tj ∈ F : L(Tj) ⊆ A} ∪ {Tρa
}

is such a forest for T |A and T ′|A. It is easily checked that |F| = |Fa| + |FA| − 1. Then

it follows from Theorem 2.1 of Bordewich and Semple (2004) that

drSPR(T , T ′) = |F| − 1

= |Fa|+ |FA| − 1− 1

≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A).

This inequality gives the desired result and completes the proof of the lemma.

Lemma 7.3. Let F be a maximum-agreement forest for two rooted binary phylogenetic

X-tree T and T ′ that have a cluster A in common with |A| ≥ 2. Furthermore, let Ta

and T ′
a be the cluster-reduced tree pair obtained from T and T ′ by applying the cluster

reduction to A, and let T |A and T ′|A be the corresponding cluster-tree pair. If F contains



A New Result for Computing the Rooted Subtree Prune and Regraft Distance 123

no mixed tree, then

drSPR(T , T ′) ≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1. (7.2)

Proof. Let {a} and {ρa} be used to denote the trees consisting of an isolated vertex

labeled a and ρa, respectively. All trees Tj ∈ F have the property that either L(Tj) ⊆ A

or L(Tj) ⊆ ((X−A)∪{ρ}). Since F is an agreement forest for T and T ′, it is easily seen

that

Fa = {Tj ∈ F : L(Tj) ⊆ ((X − A) ∪ {ρ})} ∪ {a}

is an agreement forest for Ta and T ′
a and

FA = {Tj ∈ F : L(Tj) ⊆ A} ∪ {ρa}

is such a forest for T |A and T ′|A. Thus |F| = |Fa|+ |FA| − 2. Again, by Theorem 2.1 of

Bordewich and Semple (2004), we can deduce that

drSPR(T , T ′) = |F| − 1

= |Fa|+ |FA| − 2− 1

≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1

and the result follows immediately.

Having the results of the above two lemmas, we are now in a position to state the

central theorem of this chapter. Given all maximum-agreement forests for a cluster-tree

pair and all such forests for the corresponding cluster-reduced tree pair, it shows how one

can calculate the rSPR distance between the two initial unreduced trees.

Theorem 7.4. Let T and T ′ be two rooted binary phylogenetic X-trees and suppose that

A is a common cluster of T and T ′ with |A| ≥ 2. Let Ta and T ′
a be the cluster-reduced

tree pair obtained from T and T ′ by applying the cluster reduction to A, and suppose that

the label set of both trees is (X −A)∪ {a}, where a /∈ X. Furthermore, let T |A and T ′|A

be the corresponding cluster-tree pair. If there exists a maximum-agreement forest Fa for

Ta and T ′
a in which a labels an isolated vertex and if there exists a maximum-agreement

forest FA for T |A and T ′|A in which the root labeled ρa is an isolated vertex, then

drSPR(T , T ′) = drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1
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and, otherwise,

drSPR(T , T ′) = drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A).

Proof. Let {a} and {ρa} be used to denote the trees consisting of an isolated vertex

labeled a and ρa, respectively. First, we show that the inequality

drSPR(T , T ′) ≤ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1 (7.3)

holds. Let Fa be a maximum-agreement forest for Ta and T ′
a that contains an isolated

vertex labeled a, and let FA be a maximum-agreement forest for T |A and T ′|A that

contains an isolated vertex labeled ρa. Then

F = (Fa − {a}) ∪ (FA − {ρa})

is an agreement forest for T and T ′ with |F| = |Fa| − 1 + |FA| − 1 and as a result, we

have

drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)− 1 = |Fa| − 1 + |FA| − 1− 1

= |F| − 1

≥ drSPR(T , T ′).

This establishes Equation 7.3.

We next show that

drSPR(T , T ′) ≤ drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A). (7.4)

Let Fa be a maximum-agreement forest for Ta and T ′
a , and let FA be a maximum-

agreement forest for T |A and T ′|A. Suppose that a and ρa do not both label isolated

vertices in Fa and FA, respectively. Let Ta be the unique tree in Fa with a vertex labeled

a, and let Tρa
be the unique tree in FA with a vertex labeled ρa. Then the tree Ta,ρa

can

be obtained in one of the following three ways.

(i) If neither a nor ρa labels an isolated vertex in Fa and FA, respectively, then Ta,ρa
is

obtained from Tρa
and Ta by adjoining Tρa

to Ta via a new edge joining the vertex

labeled a with the root labeled ρa, removing the labels a and ρa, and suppressing

any degree two vertices apart from the root.

(ii) If a labels an isolated vertex in Fa and ρa does not label an isolated vertex in FA,
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then Ta,ρa
is obtained from Tρa

by deleting the edge which is incident with the vertex

labeled ρa and the vertex labeled ρa itself.

(iii) If a does not label an isolated vertex in Fa and ρa labels an isolated vertex in FA,

then Ta,ρa
is obtained from Ta by deleting the pendant edge ending in the vertex

labeled a and the vertex labeled a itself.

Since Fa and FA are agreement forests, we have

F = (Fa ∪ FA − {Ta, Tρa
}) ∪ {Ta,ρa

}

is an agreement forest for T and T ′. With |F| = |Fa|+ |FA| − 1 it now follows that,

drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A) = |Fa| − 1 + |FA| − 1

= |F| − 1

≥ drSPR(T , T ′).

This establishes Equation 7.4.

For the second part of this proof, let F be a maximum-agreement forest for T and T ′.

There are two cases to consider:

(i) F contains no mixed tree and

(ii) F contains a mixed tree.

Suppose that there exists a maximum-agreement forest Fa for Ta and T ′
a that contains

an isolated vertex labeled a and that there exists a maximum-agreement forest FA for T |A

and T ′|A that contains an isolated vertex labeled ρa. We next show that the inequality

drSPR(T , T ′) ≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1 (7.5)

holds. If no mixed tree exists, then Equation 7.5 follows directly from Lemma 7.3. On

the other hand, if a mixed tree Tm exists, assume that the Inequality 7.5 does not hold;

that is

drSPR(T , T ′) ≤ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 2.

Linking this inequality with the result of Lemma 7.2, we have

drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)≤drSPR(T , T ′) ≤ drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)− 2.
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This gives a contradiction. By combining both cases with Equation 7.3, we can deduce

that

drSPR(T , T ′) = drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)− 1. (7.6)

This establishes the first part of the theorem.

Now suppose that there exists no combination of two maximum-agreement forests Fa

and FA such that a labels an isolated vertex in Fa and ρa labels an isolated vertex in FA.

We next show that the inequality

drSPR(T , T ′) ≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A) (7.7)

holds. If a mixed tree exists in F , Equation 7.7 follows directly from Lemma 7.2. Oth-

erwise, by Lemma 7.3, a maximum-agreement forest F which does not contain a mixed

tree has the property that

drSPR(T , T ′) ≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1.

Recalling our assumption that no combination of two maximum-agreement forests Fa and

FA exists such that a labels an isolated vertex in Fa and ρa labels an isolated vertex in

FA, we can follow that Fa or FA is not of smallest size. This can be easily checked by

considering the construction of Fa or FA in the proof of Lemma 7.3, where a and ρa both

label isolated vertices. Hence, Fa and FA can be obtained from F in a way such that

|F| > |Fa|+ |FA| − 2. Thus

drSPR(T , T ′) = |F| − 1

> |Fa|+ |FA| − 2− 1

≥ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1 (7.8)

or, in short, drSPR(T , T ′) > drSPR(Ta, T ′
a ) + drSPR(T |A, T ′|A) − 1. For a contradiction,

now assume that Inequality 7.7 does not hold; that is

drSPR(T , T ′) ≤ drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)− 1.

Combining this assumption with Inequality 7.8, we have

drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A)− 1 < drSPR(T , T ′) ≤ drSPR(Ta, T
′

a ) + drSPR(T |A, T ′|A)− 1.

This inequality gives a contradiction. By considering both cases and Equation 7.4, we
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can follow that

drSPR(T , T ′) = drSPR(Ta, T
′

a) + drSPR(T |A, T ′|A).

This completes the proof of the theorem.

7.3 Some First Insight into Repeated Applications of the Clus-

ter Reduction

Since a running time analysis of the HybridNumber algorithm (see Section 3) has shown

that the cluster reduction has a considerable positive impact on its speed, it is likely that

such a framework can make a contribution to the development of exact algorithms to

calculate the rSPR distance between two rooted binary phylogenetic trees. Consequently,

it is of interest to apply the cluster reduction more than once. In the following, we provide

the reader with some first insight into such a framework by trying to extend the result of

the previous section. We will shortly see some examples pointing out that this is not easily

achievable. For example, it is not sufficient to calculate maximum-agreement forests only,

but agreement forests up to a certain size need to be considered.

We first introduce some new definitions. Let T0 and T ′
0 be two rooted binary phy-

logenetic X-trees. We say that the cluster reduction has been applied t times if, for all

j ∈ {1, 2, . . . , t}, the jth cluster reduction replaces Tj−1 and T ′
j−1, with two new tree pairs:

(i) the cluster-reduced tree pair Tj and T ′
j which has been obtained from Tj−1 and T ′

j−1

by replacing a subtree whose label set Aj is a common cluster (with |Aj| ≥ 2) of

Tj−1 and T ′
j−1 with a single vertex labeled lj /∈ (X ∪ {ρ, l1, l2, . . . , lj−1}) and

(ii) the cluster-tree pair Tj−1|Aj and T ′
j−1|Aj.

In the following, we refer to the tuple

R = ({T0|A1, T
′

0 |A1}, {T1|A2, T
′

1 |A2}, . . . , {Tt−1|At, T
′

t−1|At}, {Tt, T
′

t })

as a cluster-tree collection for T0 and T ′
0 . To calculate an agreement forest for two rooted

binary phylogenetic trees on the same label set, a root vertex is added at the end of a

pendant edge adjoined to the original roots (see Figure 2.2). We label this vertex with ρj

for all cluster-tree pairs Tj−1|Aj and T ′
j−1|Aj with j ∈ {1, 2, . . . , t} and with ρ for Tt and

T ′
t .

Let F∗ be a collection of forests such that each member of F∗ is a maximum-agreement
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Figure 7.2: Counterexample to Conjecture 7.5 with A = {1, 2, . . . , 6} and B = {7, 8, . . . , 12}.
(For details, see text.)
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forest for a tree pair in R. Then, for all j ∈ {1, 2, . . . , t}, set sj to be 1 if there exists a

maximum-agreement forest in F∗ with an isolated vertex labeled lj and if there exists a

maximum-agreement forest in F∗ with an isolated vertex labeled ρj and, otherwise, set

sj to be 0. In the following, we refer to

S =

t
∑

j=1

sj

as isolation score for F∗.

Conjecture 7.5. Let T0 and T ′
0 be two rooted binary phylogenetic X-trees, and let

R = ({T0|A1, T
′

0 |A1}, {T1|A2, T
′

1 |A2}, . . . , {Tt−1|At, T
′

t−1|At}, {Tt, T
′

t })

be a cluster-tree collection for T0 and T ′
0 . Furthermore, let F∗ be precisely the collection

of maximum-agreement forests that contains all such forests for each tree pair in R, and

let S be the isolation score associated with F∗. Then

drSPR(T0, T
′

0 ) = drSPR(Tt, T
′

t ) +
t

∑

j=1

drSPR(Tj−1|Aj, T
′

j−1|Aj)− S. (7.9)

If t = 1, then, by recalling Theorem 7.4 and the definition of the isolation score S,

it is easily checked that the conjecture holds. However, this is not necessarily the case if

t > 1. To see this, consider Figure 7.2 which shows two rooted binary trees T and T ′ on

the same label set whose rSPR distance is |F| − 1 = 4 (see (I)). The three tree pairs of

the cluster-tree collection

R = ({T |A, T ′|A}, {T |B, T ′|B}, {Ta,b, T
′

a,b})

for T and T ′ are shown in (II), (III), and (IV). Note that there only exists one maximum-

agreement forest for each of the tree pairs visualized in (I), (II), and (III), whereas there

are three such forests for Ta,b and T ′
a,b. Since a, b, ρa, and ρb label an isolated vertex in

some maximum-agreement forest, we calculate the following rSPR distance by applying

Equation 7.9:

drSPR(Ta,b, T
′

a,b) + drSPR(T |A, T ′|A) + drSPR(T |B, T ′|B)− S = 1 + 2 + 2− 2

< drSPR(T , T ′)

= 4.
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Having this result, it is easily seen that one needs to choose precisely one agreement forest

for each tree pair contained in R. Hence, the crucial question is which agreement forests

one has to choose to calculate the rSPR distance between the two initial two trees.

To see why it is not sufficient to consider maximum-agreement forests only, a second

example is presented in Figure 7.3. Again, two rooted binary trees T and T ′ on the same

label set are shown whose rSPR distance is |F|−1 = 5 (see (I)). Further below, three tree

pairs (see (II), (III), and (IV)) are depicted that are contained in the associated 3-tuple

R = ({T |A, T ′|A}, {T |B, T ′|B}, {Ta,b, T
′

a,b}).

Since each of these tree pairs has exactly one maximum-agreement forest and neither a

and ρa nor b and ρb both label isolated vertices, it is straightforward to calculate the

following rSPR distance:

drSPR(Ta,b, T
′

a,b) + drSPR(T |A, T ′|A) + drSPR(T |B, T ′|B) = 2 + 2 + 2

> drSPR(T , T ′)

= 5.

The result shows that Fa,b, FB, and FA do not lead to the correct rSPR distance between

T and T ′ and that one needs to consider agreement forests up to a certain size. For

example, if all agreement forests for Ta,b and T ′
a,b with at most four trees are calculated,

then one of these forests is F∗
a,b (see (IV)). By considering that a, b, ρa, and ρb label

isolated vertices, it is then easily checked that a maximum-agreement forest F∗ for T

and T ′ can be obtained from F∗
a,b, FB, and FA with F = F∗. Consequently, we have

drSPR(T , T ′) = |F∗| − 1.

It is subject of ongoing research to consider these results and to develop an appropri-

ate framework that will finally allow for repeated applications of the cluster reduction.

Intuitively, one wants to find exactly one agreement forest for each tree pair in

R = ({T0|A1, T
′

0 |A1}, {T1|A2, T
′

1 |A2}, . . . , {Tt−1|At, T
′

t−1|At}, {Tt, T
′

t })

such that the number of trees over all t + 1 forests minus the number of trees over all

t + 1 forests whose label sets are subsets of {l1, l2, . . . , lt, ρ1, ρ2, . . . , ρt} is minimized over

all such collections of t + 1 agreement forests.

Remark. It is straightforward to check that the result of Theorem 7.4 can be upgraded to

two arbitrary rooted phylogenetic trees T and T ′ by taking into account that more than
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Figure 7.3: Example showing that it is not sufficient to consider maximum-agreement forests
only. Here, the cluster reduction is applied to the following two clusters of T and T ′: A =
{1, 2, . . . , 6} and B = {7, 8, . . . , 12}. (For details, see text.)
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one mixed tree in a maximum-agreement forest for T and T ′ can exist. For a definition

of drSPR(T , T ′) if T and T ′ are rooted phylogenetic X-trees, see page 74. Furthermore,

the subtree and chain reduction can be applied in the same way as stated in Section 5.5,

but without considering the set P with an associated weight function. Than and Nakhleh

(2008) have recently approached the problem of calculating the number of reticulation

events for two rooted phylogenetic trees in terms of rSPR operations, thus providing

a lower bound on this number. They have suggested a quadratic-time algorithm that

refines two trees as much as possible and preserves the number of rSPR operations before

applying the subtree reduction and a restricted version of the chain reduction.



Summary

Reticulate evolution—the umbrella term for processes like hybridization, horizontal gene

transfer (HGT), and recombination—results in species whose genomes are mosaics of DNA

segments derived from distinct ancestral species. Consequently, the analysis of different

genetic loci often reveals incompatibilities between gene trees due to different branching

patterns. Inferring phylogenies in the presence of reticulation events has turned out to

be more complicated because the history of life can probably not be best represented by

using evolutionary trees and phylogenetic networks seem to be more appropriate in these

cases.

This thesis describes two new mathematical models that aim at calculating the extent

to which hybridization and HGT, respectively, have influenced the development of the

current diversity of species. More precisely, the following results have been established:

Measuring Hybridization for a Set of Phylogenetic Trees (Chapter 2):

Recently, Bordewich and Semple (2007a,b), and Baroni et al. (2005, 2006) have developed

a combinatorial framework to calculate the minimum number of hybridization events

for two rooted binary phylogenetic X-trees. This approach provides the background for

Chapters 3, 4, and 5 of this thesis. Rather than repeating this concept, we have presented

a generalization for when the set of trees is arbitrarily large.

HybridNumber: A Reduction Algorithm for Hybridization (Chapter 3):

In the context of this chapter, we have shown how the combinatorial approach which

is described in Chapter 2 can be used to implement the new and exact algorithm Hy-

bridNumber that computes the minimum number of hybridization events for two rooted

binary phylogenetic trees on the same taxa set. HybridNumber is based on a characteri-

zation of the hybridization number in terms of agreement forests and repeated applications

of three reduction rules that reduce the size of the problem instance before calculating the

hybridization number exactly. Given that the underlying problem is NP-hard, we have

shown that HybridNumber runs efficiently on many instances of a grass data set (Grass

Phylogeny Working Group, 2001) and returns the exact solution within a reasonable time.

How Deep is a Hybridization Event? (Chapter 4):

To approach the question when hybridization events have occurred during the evolution-

ary history of a set of present-day species, we have established some theoretical results

which show that a combination of a modified version of HybridNumber with a new

algorithm BuildForest is suitable to calculate all combinations of hybridization events
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of minimum size for a given tree pair. We applied the algorithms to the previously men-

tioned grass data set and compared the number of hybridization events at the leaves of

an associated network with those at interior vertices of this network. The results indicate

that—in line with our expectations—the majority of hybridization events have occurred

relatively recently.

Hybridization in Non-Binary Trees (Chapter 5):

Based on the combinatorial framework to calculate the minimum number of hybridization

events for rooted binary phylogenetic trees that has been described in Chapters 2 and 3,

we have shown that calculating this number for two (arbitrary) rooted phylogenetic X-

trees is fixed-parameter tractable. Motivated by the fact that many biological data sets

contain trees with polytomies, we have established theoretical results that finally allow

for a reduction of the problem instance such that the size of the label set of the resulting

two trees is linear in the actual number of hybridization events for the original two trees.

This has been achieved by a careful upgrade of the notion of agreement forests and the

statement of several reduction rules which are similar to the subtree, chain, and cluster

reduction for binary trees but also contain crucial extensions.

A Likelihood Framework to Measure Horizontal Gene Transfer (Chapter 6):

Beside hybridization, HGT is another important process of reticulate evolution that is

common among bacteria. Assuming that the number of HGT events within a given time

interval follows a Poisson process, we have introduced a new method to simulate different

numbers of HGT events on a given species tree. The resulting tree distribution can

afterwards be used to estimate a rate of HGT for a set of gene trees in a likelihood-based

framework. We applied this newly developed method to the COG data set (Tatusov et al.,

2001). Additionally considering inaccuracies due to the gene tree reconstruction method,

the results suggest an HGT rate of about 0.36 per gene and unit time or, in other words,

11 HGT events per gene occurred on average among the 44 taxa of the COG species tree.

A New Result for Computing the Rooted Subtree Prune and Regraft Distance

(Chapter 7):

The rooted subtree prune and regraft distance has often been used to provide a lower

bound on the number of reticulation events. Calculating this distance between two trees

is an NP-hard problem and exact algorithms are rare. In this chapter, we have introduced

a new reduction that can be used to decompose the problem instance into two smaller

and, hence, more tractable subproblems. Although this reduction is similar to the cluster

reduction that can be used to compute the number of hybridization events for two trees,

there are some crucial differences. Since it is desirable but challenging to apply this
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reduction more than once, we give two examples pointing out some difficulties in trying

to achieve this.



Zusammenfassung

Hybridisierung, horizontaler Gentransfer (HGT) und Rekombination sind wichtige Prozes-

se der Evolution, die in Spezies resultieren, deren Genome aus DNA Segmenten ver-

schiedener Arten zusammengesetzt sind. Infolgedessen deckt ein Vergleich mehrere Gen-

bäume, die für verschiedene Gene einer Gruppe von Spezies konstruiert wurden, oft

Widersprüche in den Baumtopologien auf. Die Rekonstruktion phylogenetischer Bäume

in Gegenwart von Hybridisierung, HGT oder Rekombination ist daher eine komplexe

Fragestellung von aktuellem Forschungsinteresse, und es wird diskutiert, ob die Evolution

der Arten ausreichend genau mit Hilfe eines phylogenetischen Baumes dargestellt werden

kann. Phylogenetische Netzwerke scheinen in diesem Zusammenhang eine geeignetere

Wahl zu sein.

Diese Arbeit beschreibt zwei neu entwickelte, mathematische Modelle, mit denen man

analysieren kann, wie stark Hybridisierung und HGT die Entwicklung der Arten beein-

flusst hat. Im Einzelnen wurden die folgenden Resultate erzielt:

Ein kombinatorischer Ansatz zur Berechnung von Hybridisierung (Kapitel 2):

Bordewich und Semple (2007a,b) sowie Baroni et al. (2005, 2006) haben vor kurzem eine

Methode vorgestellt, mit der man die minimale Anzahl von Hybridisierungsereignissen

(im Folgenden als Hybridisierungszahl bezeichnet) für zwei gewurzelte, binäre Bäume

berechnen kann. Dieser kombinatorisch ausgerichtete Ansatz ist Grundlage für Kapitel 3,

4 und 5 der vorliegenden Arbeit. Statt die Theorie der genannten Veröffentlichungen zu

wiederholen, haben wir ein verallgemeinertes Konzept für eine beliebig große Anzahl von

Bäumen vorgestellt.

Der Algorithmus HybridNumber (Kapitel 3):

In diesem Kapitel haben wir gezeigt, wie die in Kapitel 2 vorgestellte Methode genutzt

werden kann, um den Algorithmus HybridNumber zu implementieren, der die Hybri-

disierungszahl für zwei gewurzelte, binäre Genbäume exakt berechnen kann. Grundlage

von HybridNumber sind (1) die Charakterisierung der Hybridisierungszahl mit Hilfe

identischer Teilbäume (sogenannte agreement forests), in welche die beiden Genbäume

zerlegt werden können, sowie (2) die wiederholte Anwendung dreier Reduktionsregeln,

welche die Taxaanzahl der Genbäume reduzieren, bevor die Hybridisierungszahl berechnet

wird. Trotz der Tatsache, dass das zugrunde liegende Problem NP-schwer ist, konnten

wir zeigen, dass HybridNumber für einen Gräserdatensatz (Grass Phylogeny Work-

ing Group, 2001) in den meisten Fällen effizient arbeitet und das exakte Ergebnis in

angemessener Zeit ausgibt.
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Verteilung von Hybridisierungsereignissen im Netzwerk (Kapitel 4):

Schwerpunkt dieses Kapitels ist die Fragestellung, wann die einzelnen Hybridisierungs-

ereignisse während der Evolution stattgefunden haben. Wir haben dazu einige theoreti-

sche Resultate präsentiert, die zeigen, dass eine Kombination einer erweiterten Version von

HybridNumber mit dem neuen Algorithmus BuildForest dazu benutzt werden kann,

alle Kombinationen von Hybridisierungsereignissen für zwei gewurzelte, binäre Bäume

zu berechnen. Auf Grundlage dieses theoretischen Ergebnisses haben wir die Algorith-

men auf den zuvor erwähnten Gräserdatensatz angewandt und die Anzahl der Hybri-

disierungsereignisse an den Blättern eines Netzwerks mit der entsprechenden Anzahl von

Ereignissen verglichen, die an den internen Knoten stattgefunden hat. Unseren Erwartun-

gen entsprechend konnten wir zeigen, dass die Mehrzahl der Hybridisierungsereignisse an

den Blättern und somit in jüngster Zeit stattgefunden hat.

Hybridisierung in phylogenetischen Bäumen mit Polytomien (Kapitel 5):

Basierend auf der in den Kapiteln 2 und 3 vorgestellten kombinatorischen Methode zur

Berechnung der Hybridisierungszahl für zwei gewurzelte, binäre Bäume, werden in diesem

Kapitel Ergebnisse vorgestellt, die zusammengefasst zeigen, dass die Berechnung der Hy-

bridisierungszahl für beliebige, gewurzelte Bäume fixed-parameter tractable ist. Durch

die Tatsache motiviert, dass für viele biologische Daten nur Bäume mit Polytomien kon-

struiert werden können, haben wir die agreement forest Notation erweitert und mehrere

Reduktionsregeln formuliert, die eine Verkleinerung der Probleminstanz ermöglichen, bis

diese linear zur Hybridisierungszahl ist.

Eine Likelihood-Methode zum Simulieren und Schätzen von HGT (Kapitel 6):

HGT ist neben Hybridisierung ein weiterer wichtiger Vorgang, der zu den nicht baumhaft

verlaufenden Evolutionsprozessen gehört. Unter der Annahme, dass der Verteilung von

HGT Ereignissen in einem gegebenen Zeitintervall ein Poisson Prozess zugrunde liegt,

haben wir eine neue Methode vorgestellt, um HGT Ereignisse auf einem Speziesbaum

zu simulieren. Die resultierende Baumverteilung kann dazu benutzt werden, um eine

HGT Rate für eine Menge von Genbäumen zu schätzen. Das entwickelte Schätzverfahren

ist dabei likelihood-basiert. Diese Methode wurde auf den COG Datensatz (Tatusov

et al., 2001) angewandt, und zusätzlich wurden Ungenauigkeiten in der Rekonstruktion

der Genbäume berücksichtigt. Die erhaltenen Resultate schlagen eine HGT Rate von 0.36

pro Gen und Zeiteinheit vor. Dies bedeutet, dass im Durchschnitt 11 HGT Ereignisse pro

Gen zwischen den 44 Taxa des COG Speziesbaumes stattgefunden haben.

Ein neues Ergebnis zur Berechnung der rSPR Distanz (Kapitel 7):

Die rooted subtree prune and regraft (rSPR) Distanz zwischen zwei gewurzelten, binären
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Bäumen wird häufig dazu benutzt, um eine untere Schranke für die Anzahl von HGT

oder Hybridisierungsereignissen zu bestimmen. Auch dieses Problem ist NP-schwer und

nur wenige exakte Algorithmen sind bislang entwickelt worden. In diesem Kapitel haben

wir eine Reduktion vorgestellt, die zur Zerlegung des Problems in zwei kleinere Teilpro-

bleme genutzt werden kann. Dabei besteht jedes der beiden resultierenden Teilprobleme

aus einem neuen Baumpaar mit einer kleineren Taxamenge. Es ist wünschenswert diese

Reduktion mehrfach anwenden zu können, jedoch hat sich herausgestellt, dass dies eine

komplexere Aufgabe ist als erwartet. Zur Verdeutlichung haben wir zwei Beispiele gezeigt,

welche einige Schwierigkeiten aufdecken, die zur Lösung des Problems umgangen werden

müssen.



Abbreviations

BLAST Basic Local Alignment Search Tool

ChR chain reduction

ClR cluster reduction

COG Cluster of Orthologous Groups of Proteins

DNA desoxyribo nucleic acid

EMBL European Molecular Biology Laboratory

GC content guanine-cytosine content

HGT horizontal gene transfer

mrca most recent common ancestor

nc nucleotide

NCBI National Center for Biotechnology Information

NNI nearest neighbor interchange

rDNA ribosomal DNA

RefSeq NCBI Reference Sequence

rSPR rooted subtree prune and regraft

SR subtree reduction

TBR tree bisection and reconnection

UPGMA unweighted pair group method with arithmetic mean
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Appendix

A.1 Pseudocode of HybridNumber

Here, we present the pseudocode of HybridNumber. For a rooted binary phylogenetic

X-tree T and a subset A of X, we denote the minimal subtree of T connecting the

elements in A by T (A). Furthermore, we denote the tree formed by replacing a cluster

A with the new leaf c by T [A → c]. If B is a subset of X, we use T [−B] to denote the

phylogenetic tree obtained from T by deleting each of the elements in B and suppressing

any resulting vertex of degree two apart from the root. Finally, F(T , E) denotes the

forest obtained from the tree T by deleting the edges in the set E. Due to the chain

reduction, the input to HybridNumber includes a weight function w on pairs of taxa;

this can be taken to be zero for all pairs in the initial input.

�

�

�

�

Algorithm A.1.1: HybridNumber(S, T , w)

(S, T , w)← SubtreeReduction(S, T , w)

(S, T , w)← ChainReduction(S, T , w)

if ∃ a minimal common cluster C of S and T and

1 < |C| < number of taxa of S

do























(S1, T1, w1,S2, T2, w2)← ClusterReduction(S, T , w)

h1 ← ExhaustiveSearch(S1, T1, w1)

h2 ← HybridNumber(S2, T2, w2)

h← h1 + h2

else

do h← ExhaustiveSearch(S, T , w)

return (h)
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�

�

�

�

Algorithm A.1.2: SubtreeReduction(S, T , w)

A← maximal common subtree of S and T

if |A| > 1

do























S ′ ← S[A→ a]

T ′ ← T [A→ a]

w′ ← w restricted to pairs of taxa not in A

(S, T , w)← SubtreeReduction(S ′, T ′, w′)

return (S, T , w)

�

�

�

�

Algorithm A.1.3: ChainReduction(S, T , w)

(a1, . . . , am)← maximal common chain of S and T

if m ≥ 3

do















































weight←
∑m−1

i=1 w(ai, ai+1)

w(a, b)← weight + (m− 2)

S ′ ← S[{a1} → a, {a2} → b,−{a3, . . . , am}]

T ′ ← T [{a1} → a, {a2} → b,−{a3, . . . , am}]

w′ ← {w(a, b)} ∪ w restricted to pairs not in {a1, . . . , am}

(S, T , w)← ChainReduction(S ′, T ′, w′)

return (S, T , w)

�

�

�

�

Algorithm A.1.4: ClusterReduction(S, T , w)

C ← minimal common cluster of S and T

S1 ← S(C)

S2 ← S[C → c]

T1 ← T (C)

T2 ← T [C → c]

w1 ← w restricted to pairs of taxa in C

w2 ← w restricted to pairs of taxa not in C

return (S1, T1, w1,S2, T2, w2)
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�

�

�

�

Algorithm A.1.5: ExhaustiveSearch(S, T , w)

if S ∼= T return (0)

h← number of leaves of S

i← 0

repeat

for each E a subset of the edges of S such that |E| = i

do















































F ← F(S, E)

if F is a legitimate-agreement forest of S and T

do























P ← {(a, b) : a, b are isolated taxa in F}

h′ ← i +
∑

(a,b)∈P w(a, b)

if h′ < h

do h← h′

i← i + 1

until i ≥ h

return (h)

Remarks

(ii) The actual implemented algorithms contain various small improvements compared

to the pseudocode in order to improve running time. While these changes (described

in Section 3.2.2) do not affect the theoretical ‘worst case’ running time, in practice

they are beneficial.

(ii) In HybridNumber, following a call to the cluster reduction, the cluster-tree pair

S1 and T1 cannot be reduced any further using the reductions, in which case we

immediately call ExhaustiveSearch. However, it may now be possible to further

reduce the cluster-reduced tree pair S2 and T2 and so we call HybridNumber.

(iii) In ExhaustiveSearch, if we have found a forest of weight h formed by deleting

fewer than h edges, we must run until we have checked all possible forests resulting

from the deletion of up to h edges in case there exists one of lower weight. This

check is a consequence of the way in which the chain reduction works.
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A.2 Species Trees

The following two figures represent the species trees that were used to estimate an HGT

rate for the COG data set containing protein sequences for 44 species. The first such

tree (Figure A.2.1) was reconstructed from the 780 protein families of the COG data set,

whereas the second species tree (Figure A.2.2) was calculated by using the 16/18 S rDNA

sequences of the same 44 species.

Buchnera sp. APS

Candida albicans

Saccharomyces cerevisiae
Aeropyrum pernix

Halobacterium sp. NRC 1
Pyrococcus abyssi

Pyrococcus horikoshii
Archaeoglobus fulgidus
Methanococcus jannaschii

Methanobacterium thermoautotrophicum
Thermoplasma acidophilum

Thermoplasma volcanium
Borrelia burgdorferi

Treponema pallidum
Aquifex aeolicus
Thermotoga maritima
Campylobacter jejuni
Helicobacter pylori 26695

Chlamydia pneumoniae
Helicobacter pylori J99

Chlamydia trachomatis

Deinococcus radiodurans
Mycobacterium leprae

Mycobacterium tuberculosis
Lactococcus lactis

Streptococcus pyogenes

Bacillus subtilis
Bacillus halodurans

Mycoplasma pneumoniae
Mycoplasma genitalium

Ureaplasma urealyticum

Mesorhizobium loti

Caulobacter crescentus

Rickettsia prowazekii

Escherichia coli K12
Escherichia coli O157

Haemophilus influenzae
Pasteurella multocida

Neisseria meningitidis Z2491

Xylella fastidiosa
Pseudomonas aeruginosa
Neisseria meningitidis MC58

Vibrio cholerae

Synechocystis

Figure A.2.1: Species tree reconstructed for the COG data set.
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Neisseria meningitidis MC58

Aquifex aeolicus

Campylobacter jejuni NCTC 11168
Thermotoga maritima

Helicobacter pylori 26695
Helicobacter pylori J99
Treponema pallidum
Borrelia burgdorferi

Mycoplasma pneumoniae
Mycoplasma genitalium

Ureaplasma urealyticum

Chlamydia trachomatis
Chlamydia pneumoniae CWL029
Deinococcus radiodurans
Synechocystis PCC 6803
Xylella fastidiosa 9a5c
Pseudomonas aeruginosa

Escherichia coli K12
Escherichia coli O157 H7 EDL933

Buchnera sp. APS
Vibrio cholerae

Haemophilus influenzae Rd KW20
Pasteurella multocida

Candida albicans

Archaeoglobus fulgidus

Saccharomyces cerevisiae

Methanococcus jannaschii

Thermoplasma volcanium
Thermoplasma acidophilum

Halobacterium sp. NRC 1
Methanobacterium thermoautotrophicum

Pyrococcus horikoshii
Pyrococcus abyssi
Aeropyrum pernix
Lactococcus lactis
Streptococcus pyogenes M1 Gas

Bacillus subtilis
Bacillus halodurans

Mycobacterium leprae
Mycobacterium tuberculosis H37Rv
Mesorhizobium loti

Rickettsia prowazekii

Caulobacter crescentus CB15

Neisseria meningitidis Z2491

Figure A.2.2: Species tree reconstructed for the 16/18 S rDNA sequences.


