
On Real-World Experiments
with Wireless Multihop Networks

—
Design, Realization, and Analysis

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Wolfgang Kiess

aus Künzelsau

April 2008

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Martin Mauve
Heinrich-Heine-Universität Düsseldorf

Koreferent: Prof. Dr. Stefan Conrad
Heinrich-Heine-Universität Düsseldorf

Tag der mündlichen Prüfung: 03.06.2008

Abstract

In wireless multihop networks (WMN), nodes cooperate to forward data packets for each
other. This forwarding works without infrastructure, being a huge advantage if no such
infrastructure is available, e.g. because it has been destroyed by a disaster. Furthermore,
this networking paradigm is also promising in the context of vehicular safety and traffic
efficiency applications. After years of simulation-based research, the next step in the
development of this paradigm is its evaluation under real-world conditions. However, due
to the distributed nature of such a network in combination with the complex effects of
electromagnetic wave propagation, it is extremely difficult to perform these experiments
systematically. In this thesis, we tackle the fundamental problems of the control and
analysis of such experiments.

Our first step is to develop a guidebook of existing wireless multihop network exper-
imentation techniques. Furthermore, we present our initial experiments, among them
the first large-scale real-world study of ring flooding which reveals that even this simple
algorithm exhibits complex, unexpected behavior in realistic settings. The experiences
made during these evaluations as well as those made by other researchers are condensed
into a description of requirements to be fulfilled by an ideal WMN testbed. Repeatabil-
ity, comprehension and correctness have been especially neglected so far and are crucial
for systematic experiments.

With this knowledge, we develop the EXC testbed based on semi-automatic experiment
control. This control approach automates most actions while the experimenter still can
supervise and flexibly steer the experiment. EXC is a modular and highly portable
software toolkit allowing other researchers to create their own testbed installation and
thus test their protocols in the very environment for which they are designed.

Controlling and analyzing WMN experiments requires a timekeeping accuracy that ex-
ceeds the quality of normal computer clocks. The standard solution, using online clock
synchronization protocols like NTP, cannot be applied as this requires a network connec-
tion to a reference clock which would interfere with the experiment traffic. To support

iii

Abstract

the control of the experiment, we exploit the capability of the NTP daemon to cor-
rect clock speed when disconnected from the reference clock. We have performed a
study of the timekeeping quality achieved by this approach on devices typically used in
WMN experiments. It demonstrates that this increases clock precision by two orders
of magnitude, reaching millisecond precision. However, for experiment analysis this
precision is not sufficient. Therefore we created a post-experiment timestamp synchro-
nization algorithm by means of a maximum likelihood estimator (MLE) that is suited
for all networks with local broadcast media. It estimates the clock deviations based
on the recorded event log files of the single nodes and synthesizes globally consistent
timestamps for these events. In our experimental evaluation, it exhibits an error in
microsecond range. The MLE approach is integrated in pcapsync, a tool to synchronize
packet trace files in standard libpcap format.

To cope with the need of flexible data analysis after an experiment, we have developed
the modular data analysis tool EDAT. It follows a flow-based, visual programming
approach and produces graphs directly usable in scientific publications, a large fraction
of the graphs in this thesis have been created with this tool.

Combining EXC, pcapsync/MLE timestamp synchronization and EDAT, we perform
the first systematic study on experimental repeatability in wireless multihop networks.
Up to now, most often it was implicitly assumed that if all devices perform the same
actions in two experiments, also the outcome will be somewhat similar and can therefore
be compared or averaged. Due to the complex electromagnetic wave propagation effects,
this is a risky assumption. Therefore, we propose to consider and verify repeatability
on a topological level based on layer two information. We derive the AD metric to
quantify the topological similarity of experiments and show that it is sensitive to both
interference and changes in node movement. This metric is used to examine – in strictly
controlled experiments – topology variance in real-world environments.

iv

Zusammenfassung

In drahtlosen Multihop-Netzwerken (engl. WMN) kooperieren die beteiligten Knoten um
füreinander gegenseitig Datenpakete weiterzuleiten. Die Weiterleitung erfolgt dabei ohne
Infrastruktur, was einen großen Vorteil darstellt, wenn eine solche beispielsweise nach ei-
ner Naturkatastrophe nicht verfügbar ist. Daneben kann dieses Netzwerkparadigma auch
im Kontext von fahrzeugbasierten Verkehrsicherheits- und Verkehrseffizienzanwendun-
gen genutzt werden. Nach Jahren der simulationsbasierten Forschung ist der nächste
Schritt in der Entwicklung dieses Paradigmas dessen Bewertung und Erforschung unter
realistischen Bedingungen. Da es sich bei WMNs um verteilte Netzwerke handelt die
zudem den komplexen Effekten der elektromagnetischen Signalausbreitung unterworfen
sind, ist es äußerst schwierig solche Experimente systematisch durchzuführen. In dieser
Arbeit werden Lösungen für die bei der Durchführung und Analyse solcher Experimente
auftretenden fundamentalen Probleme untersucht und präsentiert.

Im ersten Schritt entwickeln wir dazu ein Handbuch das existierende Techniken zur
Durchführung und Bewertung solcher Experimente behandelt. Daneben präsentieren
wir eigene Experimente, darunter die erste großflächige experimentelle Studie über das
Verhalten von Ringfluten. Diese Studie demonstriert, dass selbst dieser einfache Algo-
rithmus unter realistischen Bedingungen ein komplexes, unerwartetes Verhalten zeigt.
Die dabei gewonnen Erfahrungen werden mit denen anderer Wissenschaftler zu einem
Anforderungskatalog für ein WMN Testbett verdichtet. Dabei zeigt sich, dass besonders
Wiederholbarkeit, Verständnis und Korrektheit bisher vernachlässigt wurden und einen
integralen Bestandteil von systematischen Experimenten bilden.

Basierend auf diesem Wissen wurde das EXC-Testbett entwickelt, welches auf einer halb-
automatischen Kontrolle von Experimenten beruht. Dieser Ansatz für die Experiment-
durchführung automatisiert die meisten Aktionen der beteiligten Geräte und erlaubt es
dennoch, das Experiment zu überwachen und flexibel zu steuern. EXC ist ein modulares,
hochportierbares Software-Werkzeug das es anderen Wissenschaftlern ermöglicht ein ei-
genes Testbett aufzubauen und neue Algorithmen in genau der Umgebung zu testen für
die diese entwickelt wurden.

v

Zusammenfassung

Die Durchführung und Analyse von WMN-Experimenten erfordert Uhrgenauigkeiten,
die die von normalen Computeruhren weit überschreiten. Der Standardansatz, die Syn-
chronisation der Uhren über eine Netzwerkverbindung mittels des NTP-Protokolls, ist
hierbei nicht anwendbar da die dabei ausgetauschten Datenpakete das Experiment
stören können. Um die Durchführung von Experimenten zu unterstützen nutzen wir
deshalb die Fähigkeit des NTP-Deamons zur Korrektur der Uhren ohne bestehende
Netzwerkverbindung. In Messungen mit bei WMN Experimenten oft eingesetzter Hard-
ware zeigt sich, dass die Uhrgenauigkeit damit um zwei Größenordnungen verbessert
werden kann, im aktuellen Fall betragen die Unterschiede nur noch wenige Millisekun-
den. Dennoch ist diese Genauigkeit für die Analyse von Experimenten nicht ausreichend.
Deswegen wurde von uns ein auf der Maximum-Likelihood-Methode (engl. MLE) basie-
rendes Verfahren zur nachträglichen Synchronisation von Zeitstempeln entwickelt, das
für alle Netzwerke mit lokalen Broadcasteigenschaften eingesetzt werden kann. Dieses
Verfahren schätzt die Uhrenfehler mittels der aufgezeichneten Logdateien und erzeugt
basierend auf dieser Schätzung global konsistente Zeitstempel für die aufgetretenen Er-
eignisse. In einer experimentellen Auswertung hat dieses Verfahren einen Fehler im Mi-
krosekundenbereich. Dieses Verfahren ist auch in pcapsync integriert, einem Werkzeug
zur Synchronisation von Paketlogdateien im weit verbreiteten libpcap-Format.

Um ein Experiment nach dessen Ende einfach und gleichzeitig flexibel analysieren zu
können, wurde im Rahmen dieser Arbeit das modulare Datenanalysewerkzeug EDAT
entwickelt. Es nutzt einen datenflußbasierten, visuellen Ansatz und kann direkt in wis-
senschaftlichen Publikationen verwendbare Diagramme erzeugen. Dies wird auch durch
die Tatsache unterstrichen, dass ein Großteil der in dieser Arbeit gezeigten Diagramme
mit diesem Werkzeug erstellt wurden.

Durch die Kombination von EXC, pcapsync/MLE-Zeitstempel-Synchronisation und
EDAT konnten wir die erste systematische Studie zur Wiederholbarkeit von WMN Expe-
rimenten durchführen. Bisher wurde meist implizit davon ausgegangen, dass identisches
Knotenverhalten in zwei Experimenten auch zu identischen Ergebnissen führt. Auf-
grund der komplexen Effekte elektromagnetischer Signalausbreitung ist dies jedoch eine
riskante Annahme. Deswegen betrachten wir Wiederholbarkeit auf der Ebene der Netz-
werktopologie. Mittels der neu entwickelten AD-Metrik ist es möglich, die Ähnlichkeit
zweier Topologien quantitativ zu bestimmen. Wir zeigen, dass diese Metrik sowohl mit
Interferenzen als auch mit Änderungen in den Knotenbewegungen umgehen kann. In
streng kontrollierten Experimenten wird untersucht wie groß die tatsächlich auftreten-
den Topologieänderungen in realistischen Umgebungen sind.

vi

Acknowledgments

The basic motivation for this thesis can be traced back to the days of my diploma thesis
in May 2003. Quite satisfied with the simulation results, I attended a presentation about
the experimental evaluation of the Fleetnet Router that took place some weeks there-
after. It was quite a shock to see how difficult it was to conduct meaningful experiments
with only four nodes, while in simulations, networks with more than a thousand nodes
were studied. This led to the insight that it must be possible to systematically conduct
and examine real-world experiments if this networking paradigm should ever be useful
in realistic environments. The efforts undertaken to solve this problem are documented
in this thesis, and I am deeply thankful to all my colleagues, friends and my family for
assisting and encouraging me.

First of all, I would like to thank my advisor Martin Mauve who invaluably supported
me throughout the last years and finally brought me to the point of finishing this thesis.
He guided me through the painful experience of writing my first research paper and set
me back on track whenever my ideas took me off the way thereafter. Furthermore, I
would like to thank Stefan Conrad who agreed to be referee for this thesis.

This thesis would not exists without the lively discussions, the invaluable feedback, and
all the other contributions of Björn Scheuermann, Christian Lochert, Jedrzej Rybicki,
and Michael Stini and all my other colleagues at the Computer Networks and Com-
munication Systems group of the University of Düsseldorf. The fruitful atmosphere I
was allowed to work in is best documented by the various papers we have co-authored.
A special “thank you” goes (again) to Björn Scheuermann and Florian Jarre from the
Mathematics Department of the University of Düsseldorf for making the time synchro-
nization papers possible and to Ryan Plocher for proof-reading the thesis.

Furthermore, I owe gratitude to Holger Füßler and Jörg Widmer from the University of
Mannheim. They supervised my diploma thesis and supported me in writing the HLS
paper.

vii

Acknowledgments

Implementing the numerous tools created during this thesis, conducting the experiments,
and developing many of the ideas presented in this thesis required countless hours of
programming, thinking and walking around the campus. A lot of this work has been
conducted during students’ thesis, master-level projects and by my student helpers. I
am in depth to all those who worked with me during the last years on this project.
Among them are Stephan Zalewski, Andreas Tarp, Thomas Ogilvie, Markus Kerper,
Magnus Roos, Nadine Chmill, and Ulrich Wittelsbürger.

Marga Potthoff and Christian Knieling prevented me from getting lost in the complexity
of computer- as well as university-system. While Marga guided me through the bureau-
cracy of the university and handled all the day-to-day tasks with impressive patience and
knowledge, Christian was the go-to-guy, the one to ask when I needed a certain piece of
software installed on one of the experiment computers or a special, exotic configuration
for a certain network card.

Life would be nothing without friends and I am deeply thankful for my friends in Düssel-
dorf, Mannheim, Köln, München, and all over the rest of the world. You inspire me,
are very different and at the same time very similar, open up my mind to music, sports,
and art, show me what is important and what is not, and with this teach me what life
really is about.

This thesis is dedicated to my family, my sister Carolin, my brothers Christian and
Johannes, and especially to my parents, Gerhard and Marianne Kiess. They always
supported and encouraged me and allowed me to become whatever I wanted. By opening
all doors, they also opened that special one that I stride through with this thesis, thus
it is their merit.

And finally: thanks to old god Neptune for providing the waves!

viii

Contents

Frontmatter i
Title . i
Abstract . iv
Zusammenfassung (German Abstract) . vi
Acknowledgements . viii
Table of Contents . xii
List of Figures . xiv
List of Tables . xv
List of Abbreviations . xix

1 Introduction 1

2 Strategies, Experiments and Consequences 5
2.1 Existing Strategies – A Guidebook . 6

2.1.1 Topologies, Node Placement and Movement Patterns 6
2.1.2 Traffic Patterns . 9
2.1.3 Implementation Strategies . 10
2.1.4 Tools . 11
2.1.5 Experimentation Strategies . 14
2.1.6 Performance Metrics and Characterization 17

2.2 Ring Flooding . 17
2.2.1 Experiment Setup . 18
2.2.2 Results . 19

2.3 Propagation Estimation . 21
2.3.1 Basic Idea and Implemented Tools 23
2.3.2 Evaluation . 26

2.4 Lessons Learned . 29
2.5 Refining the Experiences . 30
2.6 Chapter Summary . 35

3 The EXC Testbed 37
3.1 Movement and Control . 38

3.1.1 Existing Concepts . 38
3.1.2 Semi-automatic Control . 39

3.2 Implementation and Practical Aspects 40
3.2.1 Architecture . 41
3.2.2 Plug-in Mechanism . 42

ix

Contents

3.2.3 Control Scripts . 42
3.2.4 Semi-automatic Experiments . 43
3.2.5 Remote Method Invocation . 44
3.2.6 Communication . 44
3.2.7 Trace Files . 45
3.2.8 Graphical User Interfaces . 46
3.2.9 Emulation . 47

3.3 Experiments . 48
3.3.1 Integration . 49
3.3.2 Experiment Setup and Network Topology 50
3.3.3 Detected Errors . 52
3.3.4 Topology Visualization . 53
3.3.5 Communication . 53

3.4 Related Work . 54
3.5 Chapter Summary . 55

4 Time Synchronization 57
4.1 Related Work . 58

4.1.1 Online Clock Synchronization . 58
4.1.2 Offline Clock Synchronization . 59

4.2 NTP Skew Correction . 60
4.2.1 Measurement Setup . 61
4.2.2 Evaluation . 64

4.3 MLE Timestamp Synchronization . 66
4.3.1 Model, Terminology, and Applicability 68
4.3.2 Algorithm . 72
4.3.3 Solving the Optimization Problem 76
4.3.4 Properties of the MLE . 79
4.3.5 Numerical Evaluation . 83
4.3.6 Real-World Experiments . 91

4.4 Least Squares Timestamp Synchronization 94
4.5 Pcapsync . 99
4.6 Chapter Summary . 102

5 Trace File Analysis 105
5.1 Related Work . 106
5.2 Philosophy, Architecture and Implementation 107

5.2.1 Graphical User Interface . 108
5.2.2 Operators and their Data Format 109
5.2.3 Creating an Analysis . 111
5.2.4 Example Operators . 111

5.3 Advanced Features . 112
5.3.1 Automated Caching . 112
5.3.2 Executable Pieces of Code . 113

5.4 Case Study . 114

x

Contents

5.5 Chapter Summary . 115

6 Repeatability 117

6.1 Related Work . 118
6.2 A Metric for Topological Similarity . 119

6.2.1 Link Quality . 120
6.2.2 Comparing Links . 121
6.2.3 Comparing Runs . 124
6.2.4 Applying the AD Metric to Real Data 124

6.3 Experiments . 125
6.3.1 Validation of the AD Metric . 125
6.3.2 Static Setup with a Single Sender 128
6.3.3 Mobile Setup in an Office Environment 130
6.3.4 Mobile Setup with Runs of Different Type 133
6.3.5 Two Mobile Nodes . 136
6.3.6 Mobility, Unicast and an Application Layer Metric 137

6.4 Chapter Summary . 142

7 Conclusion 143

A Overview of Existing WMN Experiments 149

A.1 Historical Overview . 149
A.2 Wireless Sensor Networks . 150
A.3 Mesh Networks . 152
A.4 Mobile Ad-Hoc Networks . 154

A.4.1 DSR / Pittsburgh . 154
A.4.2 AODV, DSDV / Sydney . 155
A.4.3 TBRPF / Menlo Park . 156
A.4.4 GPSR / Mannheim . 156
A.4.5 APRL, AODV, ODMRP, STARA / Dartmouth 157
A.4.6 DSR / Houston . 158
A.4.7 DSR / Boulder . 158
A.4.8 UDAAN / Cambridge . 158
A.4.9 OLSR / Stanford . 159
A.4.10 OLSR / Rocquencourt . 159
A.4.11 TCP, AODV / Calgary . 160
A.4.12 AODV, OLSR, P2P / Pisa . 160
A.4.13 AODV / Uppsala . 161

A.5 Summary of Results . 162

B Propagation Estimation API 165

xi

Contents

C EXC Live-CD 167
C.1 Structure . 167
C.2 Build Script . 167
C.3 Initrd . 169

D Pcapsync 171
D.1 Command Line Parameters . 171
D.2 File Formats . 172

D.2.1 Text File Accompanying the Global Log File 172
D.2.2 Text File for the List Changes Mode 172

Bibliography 188

Index 189

xii

List of Figures

2.1 String placement. 6
2.2 Grid placement. 7
2.3 Roaming node. 7
2.4 Chain on the fly. 8
2.5 Mobile String. 8
2.6 Node setup in the ring flooding experiment. 19
2.7 Reliability for TTL ≥ 6 in the outdoor experiment. 20
2.8 Latency for all packets in the outdoor experiment. 21
2.9 Neighborhood stability in the outdoor experiment. 22
2.10 Screenshot of Mapconfig. 24
2.11 Example for an interpolation with n = 2. 26
2.12 Measured link quality from selected point. 27
2.13 Interpolated link quality. 28

3.1 EXC event handler registering. 41
3.2 Semi-automatic experiment with setup and main phase. 43
3.3 A screenshot of the EXC monitor GUI. 46
3.4 A screenshot of the EXC GUI for the node. 47
3.5 Movement in a mobile experiment. 51
3.6 A screenshot of the EXC topology visualization. 53

4.1 Deviation of the clocks when synchronized with NTP. 63
4.2 Deviation of uncorrected clocks. 64
4.3 Deviation of clocks with the NTP skew correction. 66
4.4 The clocks of Figure 4.2, corrected with linear regression. 67
4.5 Experiment with temperature recording 68
4.6 LP solver performance comparison. 77
4.7 Probability density functions of exponential and gamma distribution. . . 85
4.8 Event time errors. 86
4.9 Rate errors. 87
4.10 Theoretical and simulated event time estimation errors. 88
4.11 Event time estimation errors for increasing I. 90
4.12 Unsynchronized timestamp differences in real-world experiments. 92
4.13 Synchronized timestamp differences in real-world experiments. 93
4.14 Synchronized timestamp differences in real-world experiments (zoomed). 94
4.15 Synchronized timestamp differences in a long real-world experiment. . . 95
4.16 Rate estimation errors, exponentially distributed timestamping delays. . 97

xiii

List of Figures

4.17 Rate estimation errors, gamma distributed timestamping delays. 97
4.18 Offset estimation errors, exponentially distributed timestamping delays. 98
4.19 Offset estimation errors, gamma distributed timestamping delays. 98
4.20 Structure of pcapsync. 99
4.21 Packet recording with libpcap. 100
4.22 Ambiguous reception times in case of retransmissions. 100

5.1 Screenshot of the EDAT GUI. 108
5.2 Configuration of the ApplyOperation operator. 114
5.3 Example analysis for plotting the throughput between two nodes. 115

6.1 Link for a slot size of one second and ten packets/s. 120
6.2 Link quality after averaging. 121
6.3 Link A with small differences and high similarity. 122
6.4 Link B with high differences and small similarity. 122
6.5 Link C with abrupt quality change in run 3. 123
6.6 Positions in the validation experiment. 126
6.7 Quality of the links 54→55 and 55→54 in the validation experiment. . . 126
6.8 AD plot for all runs pairs in the validation experiment. 127
6.9 Setup in the basement experiment with node 50 as sender. 127
6.10 AD similarity for the basement experiment. 129
6.11 All links AD metric for the basement experiment. 129
6.12 Comparison of the link 50→55 in the basement experiment. 130
6.13 Positions and movement in the first two experiments with mobility. . . . 131
6.14 The most similar static→mobile link. 131
6.15 The most unsimilar static→mobile link. 132
6.16 Comparison of the link 51↔55 with different movement patterns. 133
6.17 The AD values for all links between mobile and static nodes. 134
6.18 Comparison of all possible combinations of type A and type B runs. . . 134
6.19 The AD values for the links 51↔53 and 52↔54 in all type B runs. . . . 135
6.20 Positions and movement in the experiment with two mobile nodes. . . . 136
6.21 The most similar mobile→mobile link. 137
6.22 The most unsimilar mobile→mobile link. 138
6.23 Positions and movement of the unicast experiment. 138
6.24 Link quality of 53→52 in the unicast experiment. 140
6.25 AD values for all mobile links in the unicast experiment. 140
6.26 Overall end-to-end delivery rate. 141
6.27 The run comparisons in the unicast experiment. 142

xiv

List of Tables

2.1 Reliability for the indoor experiments. 19
2.2 Example positioning of the measurement devices. 25
2.3 Measurement details. 26
2.4 Difference of the interpolated link quality in 100 measurements. 28

4.1 Changes of the initial correction factor (in ppm). 65
4.2 Clock rate estimation error for different clock rate standard deviations. . 87
4.3 Clock offset estimation error for different clock rate standard deviations. 88
4.4 Event time estimation errors for |I| = 10 000 events. 90

xv

List of Tables

xvi

List of Abbreviations

AODV Ad-hoc On-demand Distance Vector routing

APE Ad-hoc Protocol Evaluation testbed

API Application Programming Interface

APRL Any Path Routing without Loops

ARM Advanced RISC Machine

ARP Address Resolution Protocol

CD Compact Disk

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CRAWDAD Community Resource for Archiving Wireless Data At Dartmouth

DARPA Defense Advanced Research Projects Agency

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

DTN Delay Tolerant Network

EDAT Extensible Data Analysis Tool

ETX Expected Transmission Count

EXC EXperiment Control

FRANC FRamework for Ad hoc Network Communication

FTP File Transfer Protocol

GPS Global Positioning System

GPSR Greedy Perimeter Stateless Routing

GUI Graphical User Interface

HLS Hierarchical Location Service

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

xvii

List of Abbreviations

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISO International Organization for Standardization

LAD Least Absolute Deviation

LGR Logical Grid Routing

LP Linear Program

MAC Medium Access Control

MANET Mobile Ad-hoc NETwork

MLE Maximum Likelihood Estimator

MRT Multi-threaded Routing Toolkit

ns network simulator

NTP Network Time Protocol

ntpd NTP daemon

ODMRP On-Demand Multicast Routing Protocol

OLSR Optimized Link State Routing

OML ORBIT Measurements framework and Library

ORBIT Open access Research testBed for next-generation wIreless neT-
works

OSI Open Systems Interconnection

P2P Peer-to-Peer

PDA Personal Digital Assistant

PDR Packet Delivery Ratio

ppm parts per million

PRNET Packet Radio NETwork

RBP TCP Rate-Based Pacing Transmission Control Protocol

RFC Request For Comments

RISC Reduced Instruction Set Computer

RMI Remote Method Invocation

RSS Received Signal Strength

xviii

List of Abbreviations

SER Simulation Emulation Real-world

SNR Signal-to-Noise Ratio

SQL Structured Query Language

SRI Shared Research Infrastructure

STARA System- and Traffic-dependent Adaptive Routing Algorithm

SURAN SURvivable Adaptive Networks

TBRPF Topology Broadcast based on Reverse-Path Forwarding

TCP Transmission Control Protocol

TSC Time-Stamp Counter

TTL Time-To-Live

UDAAN Utilizing Directional Antennas for Ad Hoc Networking

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

VANET Vehicular Ad-hoc NETwork

WLAN Wireless Local Area Network

WMN Wireless Multihop Network

WSN Wireless Sensor Network

XML eXtensible Markup Language

xix

List of Abbreviations

xx

No one believes an hypothesis except its originator,
but everybody believes an experiment except the experimenter.

William Ian Beardmore Beveridge

xxi

xxii

Chapter 1

Introduction

Communication networks have strongly influenced everyday life since the invention of
semaphores and telegraphs. Nowadays, telephones, the Internet and cellular wireless
communication are used by billions of people around the world. All these networks have
in common that they rely on infrastructure, be it the routers of the Internet, the circuits
of the telephone network or the radio towers of the cell phone system. In the early
70’s [LNT87], a different type of network paradigm was proposed. Instead of relying
on infrastructure, the nodes in such networks cooperate and transmit packets for each
other in a collaborative manner. The range of possible applications of this paradigm is
constantly increasing and has led to a number of different network types. In vehicular ad-
hoc networks (VANETs), cars exchange information about current traffic or emergency
situations, thus allowing drivers to react early and appropriately. Via mesh networks the
range of wireless access points can be extended to cover bigger areas with fewer cables,
and multihop networks can continuously connect firefighters with each other and their
headquarters to increase security and responsiveness. Wireless sensor networks (WSNs)
enable new forms of sensing applications, e.g. surveying the activity of a volcano with
high precision at low cost, and delay tolerant networks (DTNs) can transmit information
to otherwise disconnected areas. All these networks are based on the same collaborative
paradigm and use wireless technology to transmit information. These networks will
therefore be summed up under the generic term wireless multihop network (WMN) in
this thesis and the more specific term mobile ad-hoc network (MANET) will be used
when focusing on WMNs with mobile nodes.

Although the basic idea of wireless multihop networks arose nearly 30 years ago, the
two most common instruments to evaluate WMN algorithms are theoretical analysis and
simulation, while real-world experiments are rare. Where theoretical analysis provides
fundamental insights into the characteristics of the investigated approaches, simulation

1

Chapter 1 Introduction

enables their exploration in a dynamic environment. Both methods require a significant
level of abstraction to reduce the real-world complexity of radio propagation, hardware,
and mobility. It has been repeatedly shown that due to these simplifications, the direct
transfer of findings, e.g. from simulations to real-world systems, is not advisable [LNT02,
LYN+04, KNG+04].

To progress in the development of wireless multihop networks, it is necessary to comple-
ment theoretical analysis and simulation by real-world experiments: If the behavior of
networks and algorithms is evaluated on the devices and in the environment for which
they have been designed, none of the possibly misleading simplifications need to be
made. Therefore, experimental evaluation is the key to a better understanding of this
networking paradigm. However, an examination of existing experiments reveals that
most real-world evaluations conducted so far lack a precise methodology. The result is
the proof-of-concept of a certain algorithm or protocol but it is difficult to gain verifiable
knowledge without a systematic approach. Furthermore, a lot of work is duplicated as
the software tools created during these evaluations are quickly hacked prototypes. To
overcome these issues, we concentrate in this thesis on methods and techniques for
a structured experimental evaluation of WMN algorithms. We examine the different
stages of an experiment and show how these stages can be supported by methodologies
and tools that are all designed for extensibility and reusability. It is the goal of this
thesis to make experiments with wireless multihop networks feasible and lower the effort
necessary for them. Our main contributions are as follows:

• We perform the first large scale study of ring flooding and discover that even this
simple algorithm exhibits a complex, unexpected behavior in realistic settings. It
is shown that flooding with the network diameter d is not enough if all nodes
should be reached and that the often used term of an n-hop neighborhood must
be revised.

• We provide a guidebook that condenses information about the experiences made in
existing experiments. It lists the most common tools, movement patterns, traffic
models and concepts and thus lowers the duplication of work.

• Based on this knowledge as well as on our own experiences, we develop a method-
ology and the EXC toolkit to conduct tightly controlled real-world experiments in
wireless multihop networks.

• With the help of EXC we perform the first systematic study on the repeatability
of experiments with wireless multihop networks. In the context of this study, we

2

show how the differences of static and mobile topologies can be quantified solely
based on packet level information.

• In the course of our experiments, we discovered that time synchronization is a
recurring issue and therefore developed two time synchronization approaches that
can be used either online, i.e. during an experiment or offline after an experiment.
The NTP skew correction is an online approach that increases clock precision by
two orders of magnitude with standard software tools, already reaching millisec-
ond precision on PDA-class devices. The second approach is a post-experiment
timestamp synchronization algorithm based on a maximum likelihood estimator
(MLE). It can synchronize timestamps provided by unmodified clocks and has an
error in microsecond range. Based on this approach, we have developed the tool
pcapsync that synchronizes packet trace files in standard libpcap format.

• To cope with the need of flexible data analysis after an experiment, we have
developed the modular data analysis tool EDAT. This tool follows a flow-based
approach and produces graphs directly usable in scientific publications.

This thesis is structured as follows. In Chapter 2, we give an overview of existing eval-
uation strategies, present some of our initial experiments and condense this to a recom-
mendation for the construction of WMN testbeds. Based on these recommendations,
we have constructed our testbed EXC that is presented together with the underlying
semi-automatic experiment control methodology in Chapter 3. The different time syn-
chronization techniques developed in the course of this thesis can be found in Chapter 4.
Thereafter, Chapter 5 discusses the extensible data analysis toolkit EDAT. The repeata-
bility of experiments with wireless multihop networks is examined in Chapter 6, followed
by concluding remarks in Chapter 7.

3

Chapter 1 Introduction

4

Chapter 2

Strategies, Experiments and Consequences

Chapter Outline

The first step in improving something is always the analysis of the state of the art, so we
started with an examination of existing experiments with wireless multihop networks.
This analysis reveals that a lot of work in this area is duplicated. To avoid such dupli-
cations in the future but also to introduce the reader to these existing approaches, we
present in the first section of this chapter a guidebook for the experimental evaluation
of wireless multihop networks. We list the different strategies that have been used to set
up an experiment, the most important tools, commonly used topologies, input parame-
ters, and metrics to characterize the outcome of the experiments. For this, we focus on
mobile ad-hoc networks but also consider the simpler static setups. The content of this
chapter has been published in [KM07a, KM07b], Appendix A reviews the experiments
from which this knowledge has been extracted.

Besides surveying existing work, we started to perform our own WMN experiments.
The first study [KTM05, KTM06] was an experimental evaluation of ring flooding, a
technique often used in MANET algorithms and applications. Furthermore we created
a number of tools to assess radio propagation in an experimentation area and performed
measurements with them [Ker06]. On the one hand, these evaluations result in knowl-
edge about the behavior of these techniques in real-world settings and are therefore
valuable contributions for themselves. However, they are even more valuable in the
context of this thesis because they provide hands-on experience with such real-world
evaluations.

These experiences as well as those made by other researchers motivated us to think
about the problems and requirements of experiments with wireless multihop networks
in general. A summary of this process which has also been published in [KZTM05] is
presented in the third part of the chapter.

5

Chapter 2 Strategies, Experiments and Consequences

2.1 Existing Strategies – A Guidebook

2.1.1 Topologies, Node Placement and Movement Patterns

From a network layer point of view, topology and topology changes are among the most
prominent features of mobile ad-hoc networks. In simulations which often use a simpli-
fied radio model and no obstacles, network topology and topology changes are a direct
result of node placement and movement. In a real MANET, a large number of interwo-
ven factors have an additional influence on network topology, multipath propagation,
small and large scale fading, and radio obstacles for example. Recent studies [KNG+04]
have shown that the topology of a real MANET is complex: links are asymmetric, their
quality can change rapidly over short periods of time and a link almost never provides a
full-reliable delivery. As most of the influencing factors are hard to control or cannot be
controlled at all during an experiment, most papers about MANET experiments only
consider node placement and movement as influencing factors. In the following section,
we give an overview of the node placements and movement patterns that are used most
often in the literature. It should be kept in mind that these node placements and move-
ment patterns are intended to directly result in a similar network topology, although
this may not always be the case in the real world.

Figure 2.1: String placement.

In the string placement, the nodes are set up in a chain as shown in Figure 2.1. The
intention is to let each node communicate only with its two neighbors such that, given
a fixed number of nodes, the longest multihop chain is constructed. This placement has
been used e.g. in [MBJ99, MBJ00, GWW04, Mös03]. In order to better separate the
links from each other, obstacles like walls, buildings or even access points that create
interference limiting the transmission range have been used [MFHF04, BCDG05].

When the nodes are aligned in a grid as shown in Figure 2.2, this should result in a
topology where each node can only communicate with its four direct neighbors. As such
a node placement requires a certain number of nodes to be available, it can be found
most often in experiments with sensor networks. Nevertheless, there are also setups for
MANET experiments like in the ORBIT testbed that aligns 400 nodes in a 20 × 20
grid [ORB, RSO+05].

6

2.1 Existing Strategies – A Guidebook

Figure 2.2: Grid placement.

Figure 2.3: Roaming node.

In static experiments with commercial-off-the-shelf (COTS) 802.11 hardware frequently
used for MANET experiments, the experimenters often deploy the nodes in a way that
conforms best to the environmental conditions. This random placement consequently
also leads to a random network topology. This is most often used in indoor settings when
a larger number of nodes are deployed [DPZ04a, PAM+05] although outdoor examples
exist as well [BABM04].

The static string also builds the basis for a number of simple movement patterns: the
roaming node pattern (also called circling node) shown in Figure 2.3 is the simplest
pattern with node mobility. Out of the n nodes in the network, n-1 are static and one
is mobile. The static nodes can be set up either in a chain as shown in Figure 2.1 or be
randomly placed. Packets are then exchanged between one of the static nodes and the
moving node. As the mobile node moves in and out of the transmission range of the static
nodes, the network topology changes constantly with respect to the mobile node [HJ02,
CJWK02, PAM+05, SBSC03, DPZ04a, GWW04, STP+05, BCDG05]. Variations of the
circling node pattern are end swap (the outermost nodes in a chain change places) and
relay swap (two nodes in the middle of the chain change their place) [BCDG05].

The chain on the fly pattern shown in Figure 2.4 consists of a number of nodes that are

7

Chapter 2 Strategies, Experiments and Consequences

Figure 2.4: Chain on the fly.

Figure 2.5: Mobile String.

close to each other in such a way at the beginning of the experiment that every node
can communicate with every other node. Then the nodes start to move until they are
aligned in a chain [MFHF04, STP+05]. The experiments presented in [LLN+02] use a
variation of this topology in which clusters of nodes move around to form a chain of
clusters.

The mobile variation of the static string is the mobile string movement pattern shown in
Figure 2.5. Here, a number of nodes move around following each other without changing
their relative position. This has been mostly used in experiments with cars [MBJ99,
MBJ00, MFHF04].

The mobile random movement pattern is the mobile variation of the static random
node setup. The nodes move around randomly corresponding to the random waypoint
model used in a lot of MANET simulation studies. This pattern is most often used in
experiments with a large number of nodes where it is difficult to explicitly control the
movement of each single node [GKN+04, JBD+05, RRS+05].

Two different trends are visible in node placements and movement patterns used for
MANET experiments. On the one hand, there are the controlled setups like string,
grid, circling node or mobile string. These are built with either a small number of

8

2.1 Existing Strategies – A Guidebook

nodes or with networks of small physical extension. Random setups are used as soon
as the network becomes difficult to handle due to a large number of nodes, a great
physical extension or high node speeds. We are not aware of experiments with a larger
number of mobile nodes following a non-trivial, controlled movement pattern. As some
of the presented patterns are used to create an especially challenging scenario for the
tested protocols, they are rather artificial. Nevertheless, some patterns and placements
also have realistic counterparts. For example, “chain on the fly” occurs in robotic
surveillance systems [KOV+02, STP+05], “mobile string” occurs in unicast communi-
cation between cars on a highway, and the “random” placement is relevant for mesh
networks [BABM04].

2.1.2 Traffic Patterns

As a protocol provides services for the next layer up in the protocol stack, testing the
protocol requires that this layer requests these services. The question which WMN
applications are most promising and therefore which traffic patterns to use for this is an
open research issue. Here, we provide a short overview over the traffic patterns chosen
by different researchers for their real-world experiments.

In systems built as demonstrators, real traffic produced by a real application is trans-
ported over the MANET. The intention of this setup is to show that the given applica-
tion is working. Unfortunately, there is no demonstrator for a complex application over
a MANET we know of that has been evaluated in detail. Examples are the Fleetnet
demonstrator with “broadcasting of emergency warnings” [HFMF03], the live audio and
video transmissions over DSR [HJ02], the work in [STP+05] where live video and robot
control messages are transmitted over a MANET with one mobile node, the Centibots
project where robots transmitted topology information and control messages over the
MANET [KOV+02], or the DSR demonstrator [MBJ00] transmitting status information
as well as GPS corrections over the MANET.

Artificial traffic is used to test the underlying protocol when no real application is avail-
able. This traffic is produced by a traffic generator following a certain distribution.
There are experiments using the distribution of real applications as model such as the
artificial voice traffic in [MBJ00] or the experiments presented in [GKN+04], where the
traffic volume is modeled after a “prototype military application”. A lot of experiments
are performed to evaluate the maximum performance of a given protocol, e.g. to de-
termine the highest possible throughput or the minimum round-trip-time. Therefore,

9

Chapter 2 Strategies, Experiments and Consequences

standard tools known from wired networks and designed to stress a protocol are often
used. This can be traffic generators like netperf or iperf producing TCP and UDP
streams [SBSC03, PAM+05, MFHF04, GWW04] as well as the ping utility [MBJ99].

2.1.3 Implementation Strategies

The first step towards protocol testing is the implementation of the protocol. As no
code exists that can be (re-)used for protocols following a new paradigm, these are
often implemented as prototypes fresh from scratch. Such implementations are mostly
tailored for the experiment to be performed and are often neither published as source
code nor available in binary form. Examples of this are the DSR prototype [MBJ99,
MBJ00] or the Fleetnet position-based router [HFMF03, MFHF04]. Besides the “from
scratch”-method for prototypes, a number of different implementation strategies for
routing protocols as well as for protocols on other layers are described in the literature.

We classify all software tools built to support the task of implementing protocols as
frameworks. The PICA API [CGM03] and the “user level framework for ad hoc rout-
ing” [AGSR02] shadow the calls to operation system specific functions. With this, a
protocol can be developed once and used on different operating systems without porting
the implementation. The MANET routing framework [NKSW02], FRANC [CSS03] and
the ad-hoc support library [KZG03] extend this approach. Besides allowing platform
independent implementations, they also offer some common services needed by a lot of
algorithms and protocols. The idea is to implement flooding, neighbor discovery, packet
buffering during reactive route discovery, reliable unicast and broadcast, queues, timers,
packet sniffing or network emulation for testing purposes in the framework. This allows
the programmer to concentrate on the specifics of the individual algorithm or protocol.

The Multi-threaded Routing Toolkit (MRT) is a framework that has been used for
the DSDV implementation in [CJWK02] and also for the TBRPF implementation
in [KOV+02]. Unfortunately, the MRT project seems to be discontinued and there
is no documentation available.

The click modular router [KMC+00] provides a script language allowing the combination
of simple modules to a router. Already existing modules in the click library have tasks
like decrementing the TTL or recalculating the checksum of a packet. Furthermore it is
easy to implement and add new modules. This approach accelerates the protocol devel-
opment as it fosters reusability. Click has been developed for routing in fixed networks

10

2.1 Existing Strategies – A Guidebook

but has also been used to implement routing protocols for mesh networks [BABM04]
and MANETs [JBD+05].

As a large number of protocols intended for MANETs are already implemented1, using
existing code is another strategy that can lead to a working real-world protocol. First
of all, it is possible to directly use an existing implementation without modifications,
e.g. when a reference protocol is needed. This reusing reduces the workload and al-
lows to compare the results with other experiments. In [LLN+02], publically available
versions of AODV and OLSR are used for the experiments; [CJWK02] does the same
with MAD-Hoc AODV. The authors of [SBSC03] use an openly available OLSR ver-
sion as a reference point. The authors of [STP+05] utilize code written for a network
simulator in their real-world experiment. They do this by providing a packet converter
between simulator and real-world packet format together with additional wrapper code.
In [GKN+04], existing implementations of four routing protocols are used as model for
a reimplementation. This reimplementation is necessary because the authors need im-
plementations that differ as little as possible to increase comparability. Furthermore,
the existing code itself can be adapted. Examples of this are the signal-strength aware
version of AODV [GWW04] based on AODV-UU, the modification of the Linux-kernel-
TCP to TCP RBP in the same paper, SBRS-OLSR [SBSC03], a signal-strength aware
version of OLSR, or the multimedia extensions to DSR described in [HJ02].

2.1.4 Tools

A number of tools exist that have been repeatedly used in existing MANET experiments.
We summarize them in the following section. An emulator is a combination of soft- and
hardware that mimics the behavior of a network with some of its components being
implemented in the real world and others being simulated. Emulators can be either
used to test protocols on real hardware or to prepare real-world experiments. In the
latter case emulation is used to form a virtual topology among the nodes. This allows
easy in-lab testing without moving the nodes physically around before conducting a full-
scale experiment. For example, MAC layer emulators use real implementations for all
network layers except the MAC and physical layer. These emulators simply determine
the nodes that should receive a given packet: if a node is emulated to be within radio
range of another node, a filter tool allows the exchange of packets between them; if the
nodes are out of range of each other, the respective packets are dropped. Emulators
for WMN experiments are often based on available network filter tools such as iptables,

1 [wikb] lists ten AODV, four DSR and seven OLSR implementations.

11

Chapter 2 Strategies, Experiments and Consequences

e.g. as in MobiEmu [ZL02]. For a review on the different types of emulators refer
to [KM07a].

Due to the complex topology of a real MANET, a number of tools to classify the quality
of existing links and to filter out bad links have been built. This can be done based
on the geographical distance between sender and receiver [HFMF03], based on signal
quality [LNT02, CJWK02] or by taking the packet loss on a link into account [LNT02].
Furthermore, signal-strength awareness has been directly integrated in some routing
protocols [HJ02, SBSC03, GWW04]. However, as bad links are an inherent property
of a MANET topology, it may be worthwhile to take care of such links during protocol
design rather than try to adapt the experiments to the expectations based on simulation
models.

Monitoring tools allow the supervision of an experiment from a central point. These
tools collect information such as battery state, traffic statistics or link quality and
transmit it to one or several sinks. The monitoring information can be transmitted
either in-band, i.e. over the experimental network itself [KGBK78, MBJ99, JBD+05]
or out-of-band over an additional network [HFMF03, RABR05, SOSK05]. The in-
formation collected with monitoring tools has been mostly used for network visu-
alization [Bey90, MBJ99, RBRA04]. This aids in the explanation of the network
and furthermore supports its debugging. Debugging is also the purpose of the
other projects that have implemented network monitoring without direct visualiza-
tion [KGBK78, JBD+05, HFMF03].

In addition to monitoring an experiment, it is also necessary to control an experiment.
The existing approaches can be classified according to their level of interactivity and
automation. Trivially, all tools can be controlled manually by the experiments’ par-
ticipants. Fully programming the sequence of events in advance marks the other end
of the design space. This can be done by utilizing shell scripts that start and stop all
the software at a predetermined time, for example. As unforeseeable situations occur
often during an experiment, this lack of interactivity can sometimes have severe effects
while experimenters only recognize the resulting problems after the experiment is fin-
ished [GKN+04]. On the other hand, a certain level of automation is necessary and
has been therefore used in a number of experiments. The Ad-hoc Protocol Evaluation
testbed (APE) [LLN+02] also uses automated actions but interrupts the flow of actions
at predetermined points. For this, the experiment is divided in runs. The events in each
of these runs are specified by a script that starts traffic generators or tracing tools and
prints out status messages to the experiment participants. Each of the runs then has to

12

2.1 Existing Strategies – A Guidebook

be started manually one after the other by pressing a button. Another approach is to
steer the experiment based on experimental feedback such as with the ORBIT Measure-
ments Framework and Library (OML) [SOSK05]. In the presented example, a traffic
source increases the data rate until the monitoring reports that loss exceeds a certain
threshold. It is obvious that monitoring and controlling are most useful when working
hand-in-hand: if there is no information available on the actual state of the network,
adequate decisions are difficult to take. On the other hand, full information without the
ability to interfere is also not satisfactory.

In order to have as much information as possible available for post-experiment analysis,
tracing tools are important software components. For nearly all conducted experiments,
standard packet-level tracers such as tcpdump [TCP] are a basic source of information
as they record all packets sent and received by the recording node. This can be combined
with a log file of the internal state of the tested protocols so that the decisions taken by
these protocols can be replayed. Additionally, the performance on the layer requesting
the service from the protocol to be tested can give insights in how well this service
is provided. An important factor that strongly influences a WMN is the state of the
physical environment. For the wireless channel, this state can be recorded by logging
per-packet signal-strength or noise levels for example and the movement can be traced
via GPS positions logs. This can then be correlated with the higher-layer information to
examine the influence of the environment on the other performance parameters. As all
this data is indispensable for latter analysis of the experiment and the loss of one node’s
traces can already make the interpretation difficult, care must be taken to correctly
collect all trace files at the end of the experiment. A first step into this direction has
been taken by APE [LLN+02] where all log files are automatically transmitted to a data
collection node.

To properly understand the experiment, the recorded raw data needs to be analyzed and
interpreted. A first approach is the calculation of performance metrics using existing
software. With standard tools like netperf, iperf or ping, this is relatively simple because
they directly calculate performance metrics such as throughput or round-trip-time. Fur-
thermore, program packages such as the analysis scripts being a part of APE [LLN+02]
can be used to calculate a number of metrics from recorded raw data. This is a concept
also known from the simulation world where the tool TraceGraph [TRA] can compute a
large number of different metrics and graphs for example. If custom performance metrics
need to be calculated, e.g. because a special form of data aggregation is necessary or per-
formance metrics for a new protocol have to be calculated, a custom analysis is required.
This custom analysis is most often performed with programs written from scratch, an

13

Chapter 2 Strategies, Experiments and Consequences

approach called manual analysis. There are also network tracers like wireshark [WIRa]
that allow the recorded packets to be examined in detail. Furthermore, these tools pro-
vide some customization of this examination through simple filtering. From the simula-
tion world, visualization tools such as Adhockey [ADH] or Huginn [SFT+05] are known.
These tools process the available trace files to visualize the events in the network in a
way that allows a human to better understand the large amount of data. As such tools
are often open source, adapting their parsers to the trace formats of recorded real-world
data should be possible and can thus also support the analysis of experiments.

A testbed is a framework that supports testing, comparing and evaluating algorithms
and protocols in the real world. Therefore a testbed should combine all of the above
presented tools and be open for different protocols. The only existing testbed for mobile
ad-hoc networks used to a larger extent is APE [LLN+02] that comes a Linux distri-
bution directly bootable from CD on regular laptops. Each experiment participant is
instructed to move according to a choreography script as described above. To a certain
extent this makes experiments repeatable. The authors have integrated tools to collect
traces about the experiments, to upload these traces at the end of an experiment to a
central computer, and to calculate performance metrics.

2.1.5 Experimentation Strategies

The strategy that is pursued to perform a real-world experiment strongly depends on
the goals that should be accomplished. To get an impression of the goals that have been
reached with existing strategies and to facilitate the choice for future experiments, we
discuss the most common approaches here.

If it should be demonstrated that a given protocol or algorithm works in a real MANET,
a proof-of-concept-strategy can be applied. The goal of such an effort is the building of
a working prototype with the required functionality. The focus lies on the implemen-
tation of the protocol and experimental design is of minor importance. Furthermore,
the experiments are generally ended as soon as the protocol works under the specified
conditions within the required parameters. As the evaluation here plays a secondary
role, one should not expect quantitative results from such experiments.

An in-detail-evaluation-strategy requires a working protocol and can therefore be a
follow-up to a proof-of-concept implementation. As such an evaluation requires the
testing of the protocol under various conditions and in heterogeneous environments, ex-
perimental design becomes important. Before writing this chapter, we asked researchers

14

2.1 Existing Strategies – A Guidebook

to estimate the time they spent during different phases of their experiments. Depending
on the type of evaluation, it is quite likely that conducting and evaluating an experi-
ment can require as much as or even more time than the implementation of the protocol.
Furthermore, it has also been reported that the experiments themselves had to be im-
proved in an iterative process, i.e. a number of “designing, conducting, evaluating an
experiment”-cycles were needed.

The question how the experiment itself should be structured has been solved by nearly
all researchers in a similar way: by dividing the experiment in several runs, often with
similar runs being repeated multiple times during the same experiment2. As mobile
devices like PDAs and laptops are used in most cases as hardware for the tests, the
duration of the whole experiment is limited by their battery capacity [GKN+04]. Short
runs tend to be used for small and low mobility setups, for example the routing proto-
col tests in [BCDG05] with a duration of 60 to 120 s or the static OLSR experiments
in [PAM+05] with 60 s runs. In contrast, runs performed with cars are often of longer
duration: [MBJ99] has runs of duration 220-1000 s and the experiments with the Fleet-
net demonstrator [MFHF04] use runs of 400 s. On the other hand, the runs in [SBSC03]
where only one mobile car is involved have a duration of 90 s. Runs performed with a
larger number of mobile nodes also tend to be longer: the 40-node runs in [GKN+04]
last for 900 s and the runs in [LLN+02] with 20 to 34 nodes have a length of 250 to
400 s. The general trend seems to be influenced by the complexity of the setup as here
a certain time is required to achieve the necessary topology changes, thus increasing the
minimum duration of a run.

An emulation can be either performed instead of an experiment, to prepare an experi-
ment or to reproduce an experiment with trace data as input. For information on the first
and last case, refer to [KM07a], here we concentrate on those emulations conducted to
prepare experiments. The basic idea of this strategy is to test all soft- and hardware be-
fore the experiment under semi-realistic conditions. This can save a lot of work [MBJ99]
and the importance of such an emulation is underlined by the number of experimenters
that have used corresponding tools under different names: powerwave [CJWK02], APE
mackill [ape], MobiEmu [ZL02], Fleetnet packet suppression mechanism [MFHF04] or
FRANC virtual networks [CSS03].

Although it is very difficult to compare the outcome of two experiments, performing
baseline measurements can be a strategy to improve comparability. The basic idea is to

2An exception to this is the “multimedia over DSR” demonstration presented in [HJ02] where the
demonstration runs continuously without interruption for a whole day.

15

Chapter 2 Strategies, Experiments and Consequences

perform measurements with very simple or idealized protocols that can use more infor-
mation than is normally available at a single node. With this it is then possible to either
judge the quality of the environment, to determine upper bounds for the performance
or to calculate performance metrics relative to the best possible performance. Different
types of such baseline measurements are 1) measurement of the basic characteristics of
all links in order to assess the maximum performance of the network without multihop
effects [DPZ04a, BABM04], 2) measurement of the performance of a MANET protocol
in a static scenario in order to have an upper bound for the performance under mobil-
ity [MFHF04, MBJ99], and 3) use of an idealized protocol that has global knowledge,
e.g. for routing [FS01].

If the evaluation of a protocol comprises also a simulation and/or an emulation, Sim-
ulation, Emulation, Real-World (SER) integration, i.e. using the same protocol code
for simulation, emulation and real-world experiment, may be worth considering. This
requires some effort to adapt the code to different environments, but it also saves time:
as the protocol has to be implemented only once, bugs can be found at an early stage
in the development process and do not occur at the moment of the experiment. Fur-
thermore, it is not necessary to reimplement the whole protocol for the experiment and
double the effort. Existing SER integration approaches can be classified as follows:

1. Run encapsulated code and either use a packet converter between real world and
simulation format [STP+05] or encapsulate the packets [DRSC05].

2. Write the code by using an API available in the simulator as well as in reality:

a) Integrate the API in an existing simulator: nsclick [NJG02], GEA [HM05].

b) Write a custom-made simulator that supports the API: SURAN [Bey90],
Rooftop CPT (used by WINGS [GLA01] and GloMo DAWN [RH00]), “user
level framework for ad hoc routing” [AGSR02], the routing protocol evalua-
tion presented in [GKN+04, LYN+04].

3. Port the code manually: [RP00, LYN+04, OT05, RRS+05].

The approaches 1) and 2a) seem the most promising as they allow the use of a well
established network simulator that normally contains a variety of protocols and radio
layer models without making changes to the code.

16

2.2 Ring Flooding

2.1.6 Performance Metrics and Characterization

To judge the performance of a protocol and also to compare it with other protocols,
performance metrics are used primarily. A number of such metrics are listed in RFC
2501 [CM99] for MANET routing protocols: 1) end-to-end data throughput and delay,
2) route acquisition time, 3) percentage out-of-order delivery, and 4) efficiency (inter-
nal efficiency, e.g. delivered bytes / total bytes). These performance metrics can be
calculated as averages over a whole experimental run, e.g. the overhead of routing pro-
tocols [GWW04, GKN+04, STP+05], the packet delivery ratio [GKN+04, BCDG05],
overall throughput [JBD+05, PAM+05, GWW04] or the end-to-end latency [GKN+04].
It is also possible to build performance metrics with respect to the number of hops, e.g.
for ping requests and replies [MBJ99, LLN+02].

In order to characterize the environment in which the experiment has been executed,
plots of physical layer parameters over time have been used. The parameters here can
be received signal strength (RSS) or signal-to-noise ratio (SNR) [MFHF04, PAM+05,
GWW04, CJWK02]. This has been extended by Lundgren et al. with their virtual
mobility metric that is based on measured signal quality [LLN+02]. The idea is to
use per packet signal quality to compute virtual distances between the nodes. These
distances are used to describe the topology changes in the network as perceived by
the nodes. Plotting the virtual mobility over time then produces a fingerprint of the
experiment that can be used to determine how similar two repetitions of an experiment
are with respect to connectivity.

The approach to plot parameters over time is also used for the network layer. The pa-
rameters here are loss rate or packet delivery ratio (PDR) [MBJ99, MFHF04, STP+05,
LLN+02] and the link changes per second or connectivity [LLN+02]. In order to ex-
plain the inter-layer influences, such time-plots with parameters for different layers are
often shown in parallel for the same run, e.g. in [MFHF04] where three plots with dis-
tance, hops and PDR are shown or the experiments in [LLN+02] where plots for PDR,
connectivity and signal quality are combined.

2.2 Ring Flooding

The knowledge acquired in the previous section is complemented by the experiences
made during our experimental evaluation of ring flooding, a dissemination technique
that is frequently used in ad-hoc networks. In its simplest form, flooding is realized

17

Chapter 2 Strategies, Experiments and Consequences

by letting each node rebroadcast the flooded packet exactly once. To limit the scope
of a flooded data packet, the sender of the packet may use ring flooding. For this,
the packet’s time-to-live (TTL) field is initially set to n. As the TTL of the packet
expires after n hops, it only reaches all those nodes that are at most n hops away from
the original sender. Ring flooding is used to distribute information only relevant in a
certain area such as emergency messages in car-to-car networks, or to do an expanding
ring search during route discovery as in AODV [PBRD03], for example.

The examined scenarios consist of up to thirteen nodes and we study 1) how reliable
a flooded packet reaches all nodes, 2) how long it takes the packet to reach the nodes,
and 3) how many nodes are reachable when flooding with a certain TTL.

2.2.1 Experiment Setup

We have performed one indoor and one outdoor experiment on static multihop topologies
with IEEE 802.11b equipped nodes. The parameters that have been varied are initial
TTL, jitter and packet size. Jitter was used to delay the rebroadcasting for a random
time from the interval [0; jitter] in order to reduce collisions. All nodes used Linux and
the packets were traced with tcpdump. Flooding was implemented with click [KMC+00],
and we used nsclick [NJG02] to test the implementation in ns-2 [NS2]. One node at the
corner of the network acted as packet source. Each node repeated each packet exactly
once and ignored duplicates; packets were dropped on TTL expiration.

The indoor experiment consisted of 10 iPAQ5550 PDAs distributed in two rows over
15×50 meters as shown in Figure 2.6(a). The flooded packets had a size of 100 bytes each,
we chose 0 and 10 ms maximum jitter. For each jitter interval, we flooded 10 000 packets
divided in sequences with TTL (1, 3, 5, 7, 9) and 10 000 packets divided in sequences with
TTL (1, 2, 4, 8, 16). The minimum spacing between two flood attempts was 120ms.

For the outdoor experiment, thirteen nodes (ten iPAQ5550 and three laptops) were
distributed over an area of 110 × 145 meters on the university campus (Figure 2.6(b),
“moe” was the packet source). For all experiments, we used linear ring flooding, i.e. the
source increased the initial TTL from one to thirteen for each successive packet and then
restarted from one. Packets had a size of 200 bytes each and the used maximum jitter
values were 0, 5, 10, and 15 ms. For each of these values, a total of 3 000 packets were
flooded in six runs. As minimum spacing between two flood attempts, we used 60ms
and increased this for higher TTLs and jitter. During run thirteen, the node “laptop1”
(see Figure 2.6(b)) failed due to a lack of battery power, dividing the experiment in

18

2.2 Ring Flooding

(a) Indoor (b) Outdoor

Figure 2.6: Node setup in the ring flooding experiment.

TTL 0 ms jitter [0;10]ms jitter
3 13.7% 14.1%
4 98.0% 99.1%
≥ 5 99.7% 97.0% (99.7%)

Table 2.1: Reliability for the indoor experiments.

two different topologies. We therefore eliminate the affected runs 8-15, leaving for each
maximum jitter value 1 000 packets on each topology.

2.2.2 Results

Reliability is the percentage of packets that reach all nodes in the network. Although
each node in the indoor experiment was theoretically reachable with at most three hops,
packets with an initial TTL≥ 5 achieved the highest reliability as shown in Table 2.1.
Obviously, high reliability comes at the cost of letting each node repeat the packet. The
behavior of packets with an initial TTL≥ 5 for the [0;10] ms jitter runs is also interesting.
One of the runs had a reliability of only 54.6%. With this run, the reliability was
97.0%, without it, it was 99.7%. We assume that this difference stems from temporary

19

Chapter 2 Strategies, Experiments and Consequences

 94

 95

 96

 97

 98

 99

 100

 0 5 10 15

R
e

lia
b

ili
ty

 [
%

]

Jitter [ms]

Topology 1
Topology 2

Figure 2.7: Reliability for TTL ≥ 6 in the outdoor experiment.

interference. Also for the outdoor experiment, the trend of the curves for the two
topologies indicate that increased jitter has a positive effect on reliability as shown in
Figure 2.7. However, it should be kept in mind that each data point is an average over
only two runs, explaining the strong fluctuations that can be observed in the graph.

Latency is the time from the initial broadcast until the last node receives the packet.
For the outdoor experiments, the latency is shown in Figure 2.8 for topology two. The
highest latency in the experiment, over 140 ms occurred on topology one (not shown
here). The reason for this was a rebroadcasting delay of 120 ms in “laptop1”. Besides
that, the highest latencies for both topologies were 42, 46, 67 and 74 ms for the increasing
maximum jitter values.

Received copies are the number of copies a node receives of a flooded packet. As nodes
at the border of the network do not receive packets with low initial TTL, we only consider
packets with a sufficiently high TTL. For the outdoor experiment, a node received on
average 3.8 copies on topology one and 3.3 copies on topology two (TTL≥ 6). For the
indoor network, the number of copies per node was 3.6 (TTL≥ 5). This is interesting
in relation to those copies sent but not received by any other node. While indoor
runs with [0;10] ms jitter lost only 0.3% of all send events, 0.9% were lost for the runs
without jitter. For the outdoor experiment (averaged over both topologies), this loss
decreased slightly from 1.6% over 1.4% and 1.3% to 1.0% with increasing jitter. Due to
the dependence on jitter, we suspect that this is an effect of collisions.

Neighborhood stability denotes how the allocation of a node to a n-hop neighbor-

20

2.3 Propagation Estimation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60 70 80

A
g

g
re

g
a

te
d

 n
u

m
b

e
r

o
f

p
a

c
k
e

ts

Latency [ms]

0ms jitter
5ms jitter

10ms jitter
15ms jitter

Figure 2.8: Latency for all packets in the outdoor experiment.

hood fluctuates. Figure 2.9(a) shows the minimum number of hops the flooded packets
needed to reach the nodes. Six of the nodes were firmly attached to a certain neigh-
borhood with reception rates of over 90%. Four other nodes received between 75 and
90% over a certain number of hops. One node (“lisa”) received 62% of the packets over
three and 38% over four or more hops. Figure 2.9(b) shows how this influenced node
reachability: while 60% of the packets flooded with TTL 2 reached exactly seven nodes,
a 2-hop ring flood might reach as few as four or as many as nine nodes. A similar
behavior can be observed for the other TTL values.

These experiments show that flooding with the network diameter d is not enough if all
nodes should be reached: in the examined scenarios, flooding was most successful for
TTL≥ d + 2. Furthermore, the number of nodes reachable with an n-hop flood varied
from attempt to attempt even in our static networks. Thus the definition of the often
used n-hop neighborhood should be revised.

2.3 Propagation Estimation

Our second experimental study concentrated on the estimation of the propagation char-
acteristics of a certain area. This is important for the selection of an appropriate testing
site during preparation of an experiment. Knowledge about these characteristics allows
for better planning of the topology, for example for a setup with a certain number of
hops. This information can also be used as input for an emulation that is closer to

21

Chapter 2 Strategies, Experiments and Consequences

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6

P
a

c
k
e

ts
 r

e
c
e

iv
e

d
 [

%
]

Hops

apu
bart

burns
wiggum
skinner
homer

lisa
maggie
marge

laptop3
laptop4

(a) Min. hops/node, TTL≥ 6

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

P
a

c
k
e

ts
 [

%
]

Nodes reached

TTL = 1
TTL = 2
TTL = 3
TTL = 4
TTL >= 5

(b) Number of nodes reached

Figure 2.9: Neighborhood stability ([0;5]ms jitter) for topology two of the outdoor ex-
periment.

22

2.3 Propagation Estimation

reality than existing, distance-based connectivity assessments. The main problem here
is that directly measuring these propagation characteristics between all point-pairs in
the experimentation area is impossible: as the number of such pairs is unlimited, so
would be the number of necessary measurements.

2.3.1 Basic Idea and Implemented Tools

To acquire the desired information with a limited number of measurements, we have
developed a toolset that records the link quality only between selected point-pairs and
uses interpolation to estimate the qualities for uncovered points. As directly measuring
link quality is only supported by some wireless network interfaces, our tools use packet
level information as link quality indicator. The whole measurement process is sped up
by deploying multiple devices at the same time. The devices rotate through the different
measurement positions and cover multiple point-pairs in one round. Thus, fewer mea-
surement rounds are necessary to cover the whole area. However, this speedup comes
at the price of a more complex experiment coordination. In total, we have developed
three related tools for this task: Mapconfig is used for planing the measurements and
calculating the sequence of positions for these. During the measurements, Mapkit pro-
vides a simple positioning service and also sends out the packets. The results of these
measurements then can be directly processed by our library. To examine the propaga-
tion characteristics of the area in detail, we have implemented an Analyzer visualizing
the measurements’ outcome.

The first step in planning the measurements is to determine points for which measure-
ments are to be made. To this end, Mapconfig positions a grid of adjustable size on
a map where the grid points mark the measurement positions. Out of the set of grid
points, the required subset of measurement points can then be selected. A screenshot
of this tool during the planning of one of our experiments can be found in Figure 2.10;
the selected points are marked white. For the measurement, the devices at the different
positions have to send out packets successively such that they can be recorded without
interfering transmissions of other devices. For the coordination of these tasks, we use
control packets that are flooded in the network: as soon as a node has finished sending
packets, the flooded control packet triggers the action in the successor node. To keep
the network connected when the nodes rotate through the different measurement points,
we use static mesh nodes. The mesh nodes must have a single- or multihop connection
with every other mesh node and it must be possible to reach at least one of these from
each measurement position. With some experience, these mesh nodes can be positioned

23

Chapter 2 Strategies, Experiments and Consequences

Figure 2.10: Mapconfig screenshot with activated, white-marked measurement points.

simply by visually inspecting the map. In case of doubt, however, it is advisable to
conduct some pre-measurements.

Mapconfig also determines the movement sequences for the participating nodes. For this,
the nodes are divided in two groups and rotated through the measurement positions as
illustrated in Table 2.2. Here, a total of eight measurement points x1, x2, ..., x8 are to be
covered with four mobile measurement nodes n1, .., n4. The nodes n1, n2 that are part
of the first group G1 move to the first positions while the nodes n3, n4 of the second
group G2 rotate through the remaining positions. After the second group has finished,
the nodes in G1 move on to the next set of positions. The nodes in G2 once again start
rotating but skip those positions already covered by G1 in the previous round. This
process continues until all point-pairs have been covered3.

The tool Mapkit is responsible for performing the measurements. It supports the users
in correctly positioning the devices and also controls and performs the packet sending.
For the first task, we use a map-based, visual positioning service: the target position is
shown to the user who then manually marks its current location. In contrast to using

3For point-pairs such as x1, x2 where several measurements are made, the recorded link qualities are
averaged during the analysis step.

24

2.3 Propagation Estimation

Scenario/Position x1 x2 x3 x4 x5 x6 x7 x8

1 n1 n2 n3 n4

2 n1 n2 n3 n4

3 n1 n2 n3 n4

4 n1 n2 n3 n4

5 n1 n2 n3 n4

6 n1 n2 n3 n4

Table 2.2: Example positioning of the measurement devices.

GPS, this does not require additional hardware and also works when the view to the
sky is obstructed, e.g. inside or in the vicinity of buildings. In our experiments, this
simple approach allowed the devices’ positioning with a precision of a few meters. Even
though we use the mesh nodes, sometimes control packets do not arrive at the target
nodes. Therefore, there is an additional monitor that coordinates the experiment and
can repeat such missing packets. This monitor is also responsible for initializing the
measurement.

The recorded values are used then as input for the interpolation in the analysis step.
The different cases that can occur when the quality between a source S and a target T

should be calculated are:

1. S is a measurement point, T is not.

2. S is not a measurement point, T is a measurement point.

3. Neither S nor T are measurement points.

The basic interpolation approach is identical for all cases and can be illustrated for
the first case: in the initial step, a maximum of n measurement points around T are
determined, n ∈ {1, 2, 3, 4}. As only measurements close to the corresponding point
should be considered, points with a distance above a certain threshold can be rejected
in this step. The qualities from S to these points are then weighted with their dis-
tance to T (where the weight decreases with the distance) and averaged, resulting in
an approximation for the quality between S and T . Obviously, this calculation can be
similarly performed for the second case. In the third case, this principle is applied in
both directions, i.e. the above calculation is made four times for the neighbors of S,
the results then are weighted with the distance of T to the measurement points around
its own position. This is outlined in Figure 2.11 for n = 2. In the first step, the points
s2, s4 that are closest to S are selected and the qualities to T are calculated by using the

25

Chapter 2 Strategies, Experiments and Consequences

Figure 2.11: Example for an interpolation with n = 2. The algorithm in this case selects
the points s2, s4 and t1, t2.

map size 1500×1500 pixel
area size ca. 90×45 m
grid size 125 pixel =̂ 18.75 m
scale 1 pixel =̂ 15 cm

Table 2.3: Measurement details.

values provided by t1, t2. The results of this calculation are the interpolated qualities
from s2, s4 to T . These are then once again weighted with the distances of s2, s4 to S

and then averaged.

2.3.2 Evaluation

With these tools, we have examined the propagation characteristics in the area close to
the university already known from the above flooding experiment. As map, an aerial
photograph of the university campus has been used, for other areas maps or photographs
with sufficient quality are available e.g. via Google Maps [Goo]. The area had a size
of about 90×45 m and one grid square was 18.75 m wide; see also Table 2.3. On this
grid, twelve measurement points and one mesh point have been selected, and a total
of five Zaurus SL-6000 devices were used. This results in 15 different scenarios, i.e.
measurement rounds. The measurement packets had a size of 256 bytes and the number
of packets has been varied between 100 and 200 in the different scenarios. All devices
used 802.11b network interfaces switched to ad-hoc mode on channel two.

26

2.3 Propagation Estimation

Figure 2.12: Measured link quality from selected point.

In the first step, we consider the measured values without interpolation as displayed in
Figure 2.12. It shows a screenshot of the Analyzer, the single lines mark the links from
the position under the tree in the upper right corner to all other points on the grid, the
small white figures at the end of each line represent the measured link quality. In this
scenario, it is obvious how trees and buildings impact the quality. One example here is
the link passing through the group of trees in the middle, only reaching a quality of 15%.
Those links to the bottom of the area are obstructed by buildings and do not even work
at all. In contrast, links to points in the vicinity of the sender have a high quality. The
influence of these obstacles on the interpolated link quality is displayed in Figure 2.13,
here shown for an interpolation with n = 2. In this screenshot, the sender is positioned
in about the same location as above, indicated by a white rectangle. Obviously, the
coarse grid resolution does not allow to determine the quality in the proximity of smaller
obstacles with enough precision. Nevertheless, e.g. the buildings’ influence is clearly
visible and the propagation map reflects our experiences made in this area.

The visual result of the interpolation shows that the propagation behaves as can be
expected. However, it is not clear how close the interpolated values approximate the
real link qualities. To clarify this matter, we have performed five additional rounds of
measurements where the participants where asked to move to a new, randomly selected
location in each round. This results in a total of 100 link measurements that can be
compared to the interpolated values. Table 2.4 displays the results of this comparison.

27

Chapter 2 Strategies, Experiments and Consequences

Figure 2.13: Interpolated link quality.

Difference n = 1 n = 2 n = 4
≤ 20% 58 68 59
≤ 50% 78 85 88
≥ 50% 22 15 12
≥ 80% 11 7 5

Table 2.4: Difference of the interpolated link quality in 100 measurements.

Here, the interpolation with two points approximates 68 out of the 100 measurements
with a difference of less than 20%. On the other hand, only 15 of the measured links are
misestimated with an error ≥50 %. In contrast, interpolating with more points reduces
the number of good estimates and does not avoid many of the bad ones. If those links
that are interpolated grossly wrong are examined in more detail, it becomes clear that
most of these go through one of the obstacles like the group of trees in the middle or
the building on the right. Thus, this has to be considered in future measurements, e.g.
with a more fine grained grid resolution close to such obstacles.

28

2.4 Lessons Learned

2.4 Lessons Learned

In the following section, we sum up the experiences made and the lessons learned during
the experiments with flooding and the propagation estimation. Inspired by [MBJ99],
we investigated the radio ranges of our hardware before performing the above presented
ring flooding evaluation. During these measurements, we discovered that the iPAQ ra-
dios were sometimes able to successfully deliver ping packets over more than 900 m while
already a tree in the line-of-sight between two nodes can block a transmission. Thus, set-
ting up a reliable, reconstructible 7-node/6-hop string topology for our preparatory tests
was only possible by carefully positioning each device around the edges of a building.

Our next step was to set up a multihop topology where every node had multiple neigh-
bors. After further measurement sessions, a suitable experimental site seemed to be the
university parking lot. Only after the main experiment did we discover some undesir-
able properties of this location. As the library and other university buildings are nearby,
there were other WLANs present requiring the careful selection of the radio channel (a
problem also described in [RABR05]). Another issue were moving cars, possibly leading
to frequent changes in the topology even though the nodes themselves did not move.

In the flooding experiment, the topology is determined at the start of an experiment by
letting each node transmit a number of beacons. While one node transmits its beacon
at a time, all other nodes record the packet reception. The necessary exact coordination
is achieved with a domino effect. Prior to the experiment, a route is specified that
includes all nodes of the network. The nodes use the sequence imposed by this route
to coordinate their beaconing. The first node starts with its beaconing. Its successor
will take over once this node has finished. This is repeated until the last node has
transmitted its beacons. The domino approach worked well for the static setup in the
flooding experiment but needed to be adapted for the propagation estimation where
the topology changed during the experiment. As outlined above, the coordination was
therefore performed by flooding the control messages, thus triggering each single action
in the devices. Although this worked well in most situations, this resulted in a lot of
control traffic. Furthermore, it required the supervision of each single control packet
transmission from a central node as control packets sometimes were lost. For future
experiments, it might therefore be necessary to develop a more generic mechanism and
use a time-based coordination to reduce control traffic.

Often during our experiments, a link, the used software or a whole node failed. Every
time this happened, we had to check each node manually. To ease this task, we im-

29

Chapter 2 Strategies, Experiments and Consequences

plemented a simple in-band one-hop status check. Each node wrote its current status
to a file accessible via HTTP. To control the nodes’ status, it was sufficient to walk
around and use a Perl script to retrieve the status file from each node. Obviously, this
approach has several limitations: it requires walking into the radio range of each node to
be checked, the transmissions “contaminate” the experimental data, and the correction
of an error still requires physical access to the affected node.

Another issue appeared during the postprocessing of the data from the experiments and
the simulations. As the output format of the simulator (ns-2) differs from the trace
format of the experiment (tcpdump), each tool for the analysis of the results had to be
implemented twice. Furthermore there is currently no good solution for commenting
and documenting the raw data so that special events during the experiments can later
be remembered and reconstructed.

2.5 Refining the Experiences

Our own experiences outlined above as well as those of other researchers, see also Ap-
pendix A, show that most experimenters conducting real-world experiments have to
face unforeseen difficulties: the failure of nodes during experiments was only discovered
after the experiment, reproduction of results was difficult and required the unnecessary
duplication of work by multiple work groups or the network showed unexplainable be-
havior. We believe that these problems can be alleviated if future experiments satisfy
three key requirements of scientific experimentation.

• Repeatability is the “closeness of the agreement between the results of succes-
sive measurements of the same measurand carried out under the same conditions
of measurement” [TK94]. For WMN experiments, this means that it must be
possible to gain similar results in back-to-back measurements. Repeatability is
also a prerequisite for reproducibility, meaning that other researchers should be
able to recreate the experiments with comparable results. For mobile ad-hoc net-
works, repeatability is a significant challenge due to the complex impact of radio
propagation and node mobility on the results of an experiment.

• Comprehension A scientist conducting an experiment must be able to access
all relevant information to comprehend and explain the results of the experiment.
There is a need for tools that collect information on different layers and combine
this information to allow a detailed analysis.

30

2.5 Refining the Experiences

• Correctness Any experiment may suffer from broken tools, errors with the setup
and problems when conducting the experiment. While repeatability and compre-
hension will most likely reveal these problems, it is vital to the efficiency of a
researcher to be able to verify whether any given experiment has produced valid
results. This can be supported by an established methodology and a selection of
appropriate tools.

To examine in detail how these requirements can be supported by a testbed, we divide
an experiment in several phases: implementation, experiment specification, node config-
uration, setup verification, execution, and analysis. For each of these phases we discuss
in the following how a testbed can support them. We assume that the testbed consists
of two key elements: a number of physical devices (nodes) which may be moved around
individually and the software to support and conduct the experiments. Note that this
stands in sharp contrast to most existing approaches in which soft- and hardware are
coupled to form a shared research infrastructure, e.g. [DRK+06, JSF+06, RSO+05].

The first phase of an experiment is the implementation of the algorithm to be tested.
A good testbed will support this phase in three ways: it will 1) help to minimize the
work required for the implementation, 2) seek to reduce implementation errors, and 3)
encourage interoperability between algorithms implemented and evaluated by distinct
research groups. As a lot of algorithms will be initially analyzed by means of simulation,
reusing the simulation code instead of reimplementing it eases the workload and reduces
the potential for errors. Thus a good testbed will allow the usage of SER integration
tools. Encouraging interoperability is mainly a matter of interfaces and methodology.
A good testbed will specify concise interfaces and best-practice methods for integrating
new functionality. It will also support interoperability through a clean and simple
architecture.

After the implementation is complete, the experimenter specifies the scenario used for
the evaluation. In order to allow other research groups to verify the results, the speci-
fication should be a complete description of the experiment made available as a file in
a standardized format. There exist at least two variants of scenarios, strict and loose
scenarios. In a strict scenario each node follows detailed instructions on when each
action is to be performed. Although a rigid description of the experiment fosters re-
peatability, there are setups in which this might not be suitable, e.g., if experiments are
run as background tasks on devices primarily used for other purposes or if the number
of nodes is too big to be controllable. A scenario with loose descriptions of the services
and actions able to adapt to the current state of the node is better suited in this case.

31

Chapter 2 Strategies, Experiments and Consequences

When the scenario is prepared, the nodes need to be configured with the information
required to run the experiment. This includes the implementation of the investigated
algorithms as well as the specification of the actions and the movements of each node.
This step mainly consists of the distribution of files and the configuration of nodes
(setting of addresses for example), thus it should be automated as much as possible. The
key to the autonomous configuration of the nodes is the experiment specification. Since
this specification contains any relevant information on how each node should behave,
a good testbed will be able to install the required software and perform the necessary
configuration based solely on this information. This can either be done by directly
distributing the specification to each node or it can require its “compilation” to gain
configuration files that are specific for each node. If the nodes are physically accessible
to the experimenter, the automatic file distribution can be provided with simple means,
e.g., through a one-hop download. However, in loose scenarios the devices may not be
available for a direct download and the required files therefore need to be distributed
to nodes that are already in the field. One approach to do this is to let the nodes
distribute the required files amongst themselves, i.e., whenever two nodes come in radio
range, they will exchange information and files on the scheduled experiments.

The actual execution of an experiment that uses a strict scenario is extremely costly in
terms of man-power and time. A verification of the test setup and the used hardware
before the experiment in a controlled laboratory environment is therefore vital and
should be supported by the testbed. The verification can be divided into tests involving
one or multiple devices. Single device tests allow to avoid problems occurring due
to lack of memory, low battery power or physical damages, for example. Tests with
multiple devices can reveal problems that result form the interaction between devices.
An important multiple device test which should always precede an experiment is running
the complete setup installed on real devices under laboratory conditions in an emulation.
Although these artificial conditions prevent the acquisition of quantitative results, the
setup is not expensive, can be repeated easily, and allows the isolation of errors. A
good testbed can use the position information in the scenario file to compute the virtual
distances and control the topology accordingly.

The main phase of the experiment starts with the distribution of the devices. Each
experiment will most likely consist of several runs in which the nodes move around.
Finally, the devices need to be collected and the phase is concluded by downloading the
trace files from the devices. The main phase has some properties which necessitate a
dedicated support by the testbed: 1) the time in this phase is expensive: only an optimal
usage of experimental time makes experiments economically feasible, 2) repeatability of

32

2.5 Refining the Experiences

this phase is crucial for a scientific evaluation, and 3) all information available here is
valuable. Due to these properties, the testbed should support the experiment by op-
timizing the usage of experimental time, by fostering repeatability and by collecting
detailed information on the nodes’ actions. The usage of experimental time can be opti-
mized by automating tasks and by avoiding errors and therefore unnecessary repetitions.
As device distribution and collection are physical tasks, the potential for automation
here is small. This is different with tasks not requiring a direct (human) interaction
like trace file collection. A large optimization potential also lies in the avoidance of
the execution of erroneous experiments. By controlling that all nodes act within the
parameters specified in the scenario, the testbed should assure that exactly the intended
experiment is executed.

The repeatability of an experiment is provided if it is possible to rerun the same exper-
iment such that the relevant parameters in both runs have sufficiently similar values.
There are two ways to support repeatable experiments: comparing the parameters after
an experiment to determine if it was a repetition of a prior experiment or steering the
experiments to ensure that these parameters lie within an acceptable threshold. Open
issues in this context are the determination of the relevant parameters and the question
if it is technically and economically possible to record these parameters.

For all aspects mentioned so far it is crucial to trace the data on the behavior of nodes
and on external influences as completely as possible. This data can be used for a detailed
post-run analysis as well as for steering the experiment. The data to be recorded involves
packet-level traces, timing and positioning information, states of higher level protocols
as well as physical and MAC layer logging.

To steer the experiment, the experiment control component of the testbed should con-
tinuously compare the actual values of the relevant parameters to those specified in the
scenario. The testbed therefore should provide a method to specify and control bound-
aries for these parameters, soft boundaries like “position between x-5 and x+5” as well
as hard boundaries like “GPS daemon running”. In case some of these boundaries are
violated, the testbed can adjust the behavior of the node during the run or mark the run
as invalid. If the violation is severe, this can render the whole experiment unusable and
should therefore be known during the experiment. Thus, the testbed should support
the transmission of status information to a central monitor station and it should also
be possible to remotely correct errors or alter the configuration of the affected node.

Experiment monitoring and remote login necessitate the exchange of management mes-
sages between the nodes and the monitoring station, possibly during the experiment.

33

Chapter 2 Strategies, Experiments and Consequences

This counteracts a primary design goal of the testbed, i.e., minimizing the interference
of the test equipment (both hard- and software) with the experiment. As outlined in
Section 2.1.4, a solution to this is the “out-of-band”-transmission of all management
messages. This can be achieved either via a separate network interface during the ex-
periment or in the pauses between the single runs of an experiment using the tested
network itself. Although the last method does not allow to stop erroneous runs directly,
this is not problematic if runs are short. Furthermore, it is more practical than the
more expensive first method.

The postprocessing can be divided into organizing the raw data gathered during the
experiment and analyzing it. This phase should be governed by the principle that the
raw data is a valuable resource. It needs to be documented, stored and published.
Based on this data, independent researchers must be able to verify any conclusions that
are drawn from the experiments. A good testbed will provide mechanisms to ease the
documentation and support storage and publication of the involved files, e.g. via the
repository of the CRAWDAD project [cra]. Furthermore it will provide or incorporate
an extensible toolset for analyzing the raw data.

The first postprocessing step is the structured, permanent storage of all raw data. As
there are also a lot of other files involved in the postprocessing such as scenario files
or tools, the testbed’s automatic file handling should include these. One possibility is
the implementation of a file management framework that defines interfaces to access,
view, annotate, process, and store these files. The organization of the raw data is
concluded by the documentation of the events and conditions not recorded in the traces
but perceived by the human participants. The tools to process the raw data should
provide functionality for consistency checks, data analysis or for enabling trace-based
simulation. All these tools can be used for multiple experiments, thus the testbed
should foster reusability to reduce work. If the tools are modular and reusable, this also
increases reliability as results can be easily reproduced. Therefore the goal has to be
the creation of a reusable standard toolset for the postprocessing of WMN experiments
which should be publically available, extensible and well documented. The analysis tools
should support the different input formats of real-world traces and simulator traces to
allow comparison of results from both evaluation methods.

34

2.6 Chapter Summary

2.6 Chapter Summary

In the first part of this chapter, we have presented a guidebook to existing WMN ex-
perimentation strategies. This guidebook contains an overview of the most common
tools, lists important topologies, and surveys the metrics that have been used for the
analysis of such experiments. This knowledge is complemented with the experiences
made during our own experiments on ring flooding and the evaluation of a propaga-
tion estimation toolkit. In the third part of this chapter, we have then combined this
knowledge. Repeatability, comprehension and correctness have been identified as the
three key requirements that future experiments should fulfill and we have described
how a testbed can support these requirements throughout the different phases of such
experiments.

35

Chapter 2 Strategies, Experiments and Consequences

36

Chapter 3

The EXC Testbed

Chapter Outline

A lot of full-scale WMN experiments follow a “let’s install the software and see what
happens” approach that results in a proof-of-concept but does not allow the protocols
to be investigated in detail [KM07a]. Instead, in order to acquire verifiable knowledge,
protocol behavior must be examined in well-defined situations, e.g. on a specific topology
or during transition from a partitioned to a connected network. Although the radio
layer has a non-deterministic influence here, tightly controlling all other variables like
movement or timing of the used software increases the chance of creating the desired
situation. The coordination of such systematic experiments is a complex task: 1) The
devices, spread over a possibly large area, have to perform actions at predetermined
points in time. 2) The tested software as well as the protocols are prototypes, thus
errors are likely to occur. 3) The used tools must not disturb the experiment as this
would distort the results.

To cope with these requirements, we have developed the concept of semi-automatic
experiments. While parts of the experiment are fully automated in runs, it still can
be influenced between these runs. This concept is implemented in EXperiment Control
(EXC), a toolkit to control and steer experiments with wireless multihop networks that
is based on the knowledge outlined in the previous chapter. EXC is a pure software ap-
proach that runs on Linux-based systems supporting the Ruby programming language.
This approach allows researchers to use their own hardware to build a testbed and
execute experiments in a controllable fashion with moderate effort. EXC supports ex-
periments under fully realistic conditions, as we do not require any modifications of
either the environment or the used hardware. Thus, it is possible to perform controlled
experiments in the very environment for which the algorithms have been designed. The

37

Chapter 3 The EXC Testbed

development of EXC has been guided by the belief that a WMN testbed should be open
source, not restricted to special hardware, customizable, and not bound to any specific
location. As outlined in the previous chapter, it must support repeatable, comprehen-
sive, and correct experiments. Due to the complexity of such a testbed, we implemented
it with a modular, extensible architecture. In the following chapter, we present this
toolkit together with a description of the different experimental aspects supported by
EXC. This chapter is based on a paper that has been accepted for publication [KOM08].
The analysis component of EXC is called EDAT and will be presented in Chapter 5;
a full-scale study on experiment repeatability performed with EXC can be found in
Chapter 6.

3.1 Movement and Control

Two of the most important questions to be solved during preparation of real-world ex-
periments with (mobile) wireless multihop networks are 1) How to move a large number
of devices in a large area? 2) How to control the actions of the devices and the timing
of the actions?

3.1.1 Existing Concepts

In some existing testbeds, nodes are moved automatically e.g. by robots [DRK+06,
JSF+06]. This fosters the repeatability of movement patterns but also leads to high
initial costs and makes it difficult for other researchers to repeat the experiment. Fur-
thermore, this does not allow for tests under realistic conditions such as they are neces-
sary in the development of car-to-car communication for example. Another possibility
is to let humans move the devices [LLN+02]. With this, the complexity of an automatic
movement can be avoided, fixed costs can be kept low and the variable costs per hour
of experiment mainly depend on the participants’ salary.

For the coordination of the nodes’ actions, there are currently two approaches: manual
or automatic control. In manually controlled experiments, all actions on the partici-
pating nodes are triggered directly by the users. This allows for a very flexible control
but either requires users with high qualifications and a lot of knowledge about the test-
system, or limits the complexity of actions. Besides, such experiments are error-prone
and it is hard to obtain even a basic level of repeatability since exact timing of actions
is difficult. In automatically controlled experiments such as the previously described

38

3.1 Movement and Control

flooding experiments or the comparison of four MANET routing protocols described
in [GKN+04], all actions to be performed are laid down in a script. The script is exe-
cuted on startup and triggers all actions to be performed during the whole experiment
without the need of further interference by the participants. This allows for complex
actions and high timing precision with unexperienced users and possibly increases re-
peatability of actions. However, the automatic control approach is not flexible and no
knowledge about the state of the experiment is available. Above as well as in [GKN+04],
it has been reported that failing nodes reduced the number of actually participating de-
vices. These errors can require the repetition of the whole experiment, thus they should
be avoided or compensated for to the best possible extend.

3.1.2 Semi-automatic Control

As outlined above, protocol behavior should be examined in well-defined setups. The
network size in most of these experiments will be in the order of some tens of nodes
as this already allows the creation of interesting scenarios and at the same time limits
complexity and cost. The movements depend on the type of network: when testing an
emergency communication system among firefighters, participants will carry a personal
digital assistant (PDA) or laptop, in a car-to-car scenario they will drive a car equipped
with the respective device. The devices will be moved by unexperienced users that are
only roughly briefed about the functioning of the experiment. In case a problem occurs
on a device, the user would not be able to overcome the problem, and no one with
sufficient knowledge would be close by.

To conduct such experiments in a systematic way, we have developed the concept of
semi-automatic control. Each experiment here is partitioned in a number of runs that
are only loosely coupled. In a run, all node actions, like sending certain packets or
moving the node, are precisely scheduled based on a predefined script. As most actions
can be executed without any interaction from the users, this increases repeatability and
minimizes errors. Those errors that still occur only corrupt one run, not the whole
experiment. After each run, the nodes pause and the person responsible for controlling
the experiment (called operator) remotely queries the state of the nodes. If errors
such as wrong position or a software crash have occurred, the operator has the chance
to overcome these before continuing. If a run could not be conducted correctly, e.g.
because the movement path of one of the nodes was temporarily blocked, it is also
possible to repeat this run later on. After this control phase, the operator remotely

39

Chapter 3 The EXC Testbed

selects and starts the next run. As all the communication takes place between runs, the
runs themselves are unaffected.

Besides dealing with unforeseen errors, this also allows the experiment to be steered
based on experimental feedback that currently is only feasible with fixed nodes with
an additional network for control traffic [RSO+05, SOSK05]. An example is the mea-
surement of maximum throughput along a chain of nodes: after specifying runs for
the whole range of possible throughputs (for a 802.11b based scenario, this would be
0–5.5Ṁbit/s), one would start with a value just in the middle, e.g. 2.75 Mbit/s. After
the end of the first run, the operator can query the last receiver for its reception rate.
Depending on the result of the query, he then can select the next run to be executed
similar to a binary search.

This semi-automatic control approach results in certain demands that the experiment
control software must fulfill. It must allow the devices to be automatically steered based
on command scripts, i.e. to start arbitrary actions either at predetermined moments or
a selectable number of seconds after a certain event. Furthermore, it must be possible to
communicate with the devices between runs because the operator at a central node needs
to supervise the experiment by querying the nodes’ state and by remotely influencing
the nodes’ behavior.

3.2 Implementation and Practical Aspects

In this section, we present our EXC software that implements the above described
approach. As the software is too complex to be described in full detail, we concentrate
on those aspects relevant for researchers that want to steer their experiment with EXC.

EXC is implemented in the scripting language Ruby because this allows for a simi-
lar code base on different platforms. The routing components are implemented with
click [KMC+00]. For the GUI on the monitor (the node from which the experiment is
controlled), we have used Qt and the corresponding Ruby/Qt bindings, the graphical
user interface on our mobile nodes is implemented with GTK+ [QTT, QRB, GTK].
Configuration scripts, scenario files and movement files are mostly specified in XML
and there is also a parser for movement files in ns-2 [NS2] syntax.

40

3.2 Implementation and Practical Aspects

Figure 3.1: Schematic overview of two objects A and B that register their getStatus
and startRun event handlers with Control.

3.2.1 Architecture

As outlined above, the devices move around and perform certain tasks during an ex-
periment. Among these tasks are starting a routing protocol or a packet source, telling
the user the next position to go to or setting the devices’ clock. All these tasks can be
regarded as actions triggered by an event. Therefore an event handler framework is the
basic building block of the EXC architecture. The basic idea is to use a central class
called Control that allows other classes to register their event handlers. All events that
occur are raised within Control. This class delegates the handling sequentially to the
registered handlers. This is schematically outlined in Figure 3.1. Here, the startRun
handler is implemented by both objects A and B while only B has a handler for the
getStatus event. These handlers are registered with Control and are called whenever
the corresponding event occurs. Note that different handlers can react differently to
the same event. For example, startRun can cause the handler of A to start counting
the duration of the run while the handler of B starts writing a trace file. In order
to determine which handlers (and with this which functionality) are needed during an
experiment, we use an XML configuration script listing the required components.

This architecture has several advantages, the most obvious one is its generality and
extensibility. The EXC scheduler is a good example: as it is designed to trigger an
event at a certain moment in time, all events can be scheduled. All components of
EXC follow this generality principle by working with such events. If other researchers
want to use EXC and extend it with their own functionality, it is sufficient to write an
appropriate handler and specify it in the configuration script. The new functionality
is then fully integrated in the control software and can use all features offered by it.
Furthermore, this architecture also allows to easily exchange certain components. An

41

Chapter 3 The EXC Testbed

example is the packet tracing for which we in general use tcpdump [TCP] during our
experiments. At a certain point it was necessary to record packets at the moment
they passed the firewall, a feature offered by ulogd [ULO]. For this it was sufficient to
implement a second event handler that relied on ulogd but reacted to the same events
as the one for tcpdump.

3.2.2 Plug-in Mechanism

The entire event handler management is performed by an object-oriented method plug-
in mechanism. An object can register any of its own methods with the Control-class.
After a method X has been registered, the event X can be raised by calling Control.X().
Whenever the method Control.X() is invoked thereafter, all methods that have been
registered with this keyword and signature get called in their registration order. With
this feature, it is thus possible to install handlers for single events.

Beside actions that can be performed in one single method call, certain programs and
components can run for a longer time during an experiment. This may be a packet
tracer like tcpdump or a new routing protocol implemented as Linux kernel module.
Such long-running components are started at a certain instant, run in the background
for a while and are stopped at some future moment. During runtime, the user or operator
may want to know whether this component is still working correctly. For the routing
protocol, starting means to load the kernel module, information about the state may be
acquired via the “proc”-interface and stopping is performed by unloading the module.
For programs with such requirements, it is sufficient implement a subclass of Service

and appropriate start, stop and status methods. After these methods are registered
via the plugin-mechanism, they are accessible within EXC and it is thus possible to fully
control the routing protocol with EXC.

3.2.3 Control Scripts

To automate the sequence of actions as much as possible, it needs to be specified prior to
the experiment. In EXC, this is done via an XML script. Each XML tag corresponds to
the case-insensitive name of one method registered in Control. Method parameters are
listed in child-tags and a tag also contains information on affected nodes and execution
time. In this way, new methods registered via the plugin mechanism are callable from
the scenario script without further programming. An excerpt from such a script looks
as follows:

42

3.2 Implementation and Practical Aspects

Figure 3.2: Semi-automatic experiment with setup and main phase. A phase is only
started upon an explicit command.

<userinfo nodes="1-3" time="1" id="start">Starting...</userinfo>

<starttracing nodes="1-3" depends="start" time_delta="5">

<param key="file">trace1</param>

<param key="snaplength">200</param>

<param key="interface">wlan0</param>

</starttracing>

The first tag specifies a userinfo event (this may print the given string on the command
line or show it on the GUI) on nodes one to three at time one. The packet tracer is
started five seconds later as specified by the second tag.

3.2.4 Semi-automatic Experiments

During the preparation of an experiment, each single run is specified in a control script.
In our experiments, a run is composed of a setup phase and a main phase as shown in
Figure 3.2. In the setup phase, the nodes start the necessary software, schedule all the
actions for the main phase and the users move to their start positions. At the end of
this phase, the monitor sends out a status request to verify that no errors occurred and
then the run can be started. All this is available via two commands, setupRun(<ID>) to
select a certain run from the experiment description and launch the preparation phase
and startRun to trigger the main phase. Thus, two commands are sufficient to trigger
the next run if no errors occur while the two phases are still decoupled. This allows for
the delay of the main phase, e.g. in case one of the users takes more time than expected
to reach his start position.

43

Chapter 3 The EXC Testbed

3.2.5 Remote Method Invocation

As the actions on the nodes should be accessible remotely, the methods of Control

must be callable over the network. This is performed by the RemoteCommunication

class that provides remote method invocation (RMI). For each node participating in the
network, this class holds a stub serving as placeholder for the remote Control instance.
If a method should be called on a remote node, the stub class constructs a message
object that serves as a container for method name and arguments. The message is
then transformed to a string via the marshaling feature of Ruby and transmitted to
the remote node. There, the message is reconstructed and the corresponding method
of Control is called. By convention, the return value of methods starting with the
keyword get is transmitted over the network. In contrast, the return values of methods
without this prefix are not returned remotely.

3.2.6 Communication

The EXC RMI allows the state of a node to be queried by executing a getXY-method
and also provides the ability to influence the nodes’ behavior by remotely executing
methods. To this end, data packets must be exchanged with the devices. As outlined
above, this is either possible by using an additional network and implementing out-
of-band monitoring or by using the experimental network itself by means of in-band
monitoring.

In EXC, both options are available because all control communication takes place over
a control network interface specified in the node configuration file. Out-of-band moni-
toring is technically easy but requires additional network hardware, thus increasing cost
and complexity. The central task when using in-band monitoring is routing, the trans-
mission of control packets to the target nodes. The nodes in experiments with mobile
multihop networks are spread over a larger area and the network topology is unknown.
Thus only a limited number of these nodes is within direct reach of the monitor. The
conditions under which the messages need to be delivered limit the choice of a suitable
transmission method: 1) During a run, the method must not disturb the experiment.
2) Packet delivery must be robust and work on arbitrary multihop topologies.

At first glance, this looks like a task for one of the well-known MANET routing pro-
tocols. However, all proactive protocols continuously transmit packets and thus violate
condition 1). Another option are reactive routing protocols like AODV [PBRD03] or
DSR [JMH03] that fulfill their task in two steps. In the initial phase, a request is flooded

44

3.2 Implementation and Practical Aspects

to discover a route to the target node, then the data is transmitted over this route in
the second step. However, for our remote method invocation either method name and
method parameters or a short return value need to be transmitted. As this information
fits in one packet, we directly flood the control messages. As shown in Section 2.2.2,
a wireless multihop network can deliver a high percentage of such control packets. To
deal with losses still unresolved, each of these messages is sent out multiple times1. This
method worked sufficiently well for all our experiments. If such losses are problematic,
it is easy to use acknowledgments and retransmissions instead. This control packet ex-
change is based on the flooding implementation already used and tested in Section 2.2.
The flooding itself is hidden behind a virtual Linux tun/tap interface that serves as
control network card. All packets transmitted over this interface are encapsulated and
then flooded in the wireless network. The target node unpacks the packet and delivers
it over its own virtual network interface. This mechanism is called monitor routing
because it serves the in-band transmission of experiment monitoring information

3.2.7 Trace Files

Experiments result in a large number of trace files: for each run there are position traces,
packet traces or application layer traces. In order to associate these files with the correct
run, they are stored in a special directory. EXC uses the DirectoryGenerator to keep
track of the current trace-directory that is created new for each run and follows the
notation experimentname/runname/run-id timestamp. This also allows the use of the
same run-specification multiple times without overwriting previous trace files, e.g. in
case a run has to be repeated due to an error. For components that need to write such
files, it is sufficient to call the Control.getCurrentDirectory()-method and write the
file to this directory.

At the end of an experiment, the trace files can be automatically collected by the
monitor. For this, EXC uses an FTP-server on the monitor to which the different nodes
transmit their compressed trace-directory upon a call to the Control.uploadTraces-
method. In addition, the file transfer mechanism is also available to remotely update
the control scripts and even the EXC installation on the nodes.

1In the current implementation, it is sent out three times.

45

Chapter 3 The EXC Testbed

Figure 3.3: A screenshot of the EXC GUI that is running on the monitor used for an
experiment with four nodes.

3.2.8 Graphical User Interfaces

Due to the large amount of complex information that must be handled by the operator
on the monitor, EXC provides a graphical user interface that is shown in Figure 3.3. It
has been implemented with Qt and Qtruby [QTT, QRB]. The GUI allows to monitor
the participants’ state, send RMI commands, visualize the network topology and keep
track of other information regarding the experiment. The table on the left of the GUI
contains a list of the participating nodes along with their status. The RMI command
interface is located to the right and below. This interface adapts to the current con-
figuration of EXC: if a plugin is loaded, the corresponding methods are available. The
scrollable window on the right displays the current position of the participants and the
topology if this information is available on the monitor. The component on the bot-
tom stores information about the experiment state and displays the raw information
exchanged between monitor and nodes. A detailed description of this GUI can be found
in [Ogi07].

Besides the GUI for the monitor, EXC also provides a graphical user interface for the
nodes that is shown in Figure 3.4. It is implemented with C++/GTK+ [GTK] as this
allows for an easy cross-compilation for arm-based platforms like our Zaurus SL-6000
PDAs. The node GUI features a map display that provides a bird’s-eye view on the
area. On this map, the track the participant has to follow is displayed as white line.

46

3.2 Implementation and Practical Aspects

Figure 3.4: A screenshot of the EXC GUI for the node.

The current position on the track is indicated by a color change. Furthermore, the node
GUI is able to display text messages that can be triggered by userinfo events.

3.2.9 Emulation

Emulation tools can create and manipulate a multihop topology without requiring actual
node movement [KM07a]. Running such an emulation prior to the full-scale experiment
is a valuable component as it helps to discover problems in the setup as well as bugs in
the software.

Existing tools like MobiEmu [ZL02] use a central server to enforce the network topology
as predefined in a script: if two nodes move out of each others’ virtual radio range, a
command is sent that makes these nodes block packets from each other. First of all, such
an external tool complicates the setup, as e.g. the nodes actions and emulation need
to be synchronized. Besides, such a centralized approach is problematic as it cannot
be assumed that a central server knows the whole topology a priori. This is the case
when a positioning system is used on the nodes. Examples for such systems are GPS
(that must be replaced by an emulation component for the pretest) or tools like the
manual positioning system implemented in Mapkit, see Section 2.3. The positioning
component is part of the system to be tested, thus the position is only known on the

47

Chapter 3 The EXC Testbed

nodes. Furthermore, even without such a positioning system, only the node knows where
it should be because it has to display the movement pattern to the user. By enforcing
the movement via a centralized emulation, such components cannot be tested because
errors affecting the node position simply do not occur.

Due to this, we implemented a new, mixed centralized/decentralized emulation compo-
nent in EXC that only assumes that nodes know their own position. The component
on each node continuously requests the position with local getPosition method calls
and transmits it to a central machine. This central server collects the positions and
integrates these to form the global position model. Based on this model, it decides
which nodes can communicate. In the current implementation this is done by a simple
distance metric. The connectivity information is transmitted back to the nodes that
set and remove corresponding iptables rules. Problems like the time synchronization
between emulation server and emulation clients as outlined in [ZL02] do not occur as
the server calculates the topology based on the positions transmitted by the nodes. The
communication between nodes and central machine takes place over the emulation net-
work interface specified in the configuration file. Obviously, the emulation server should
not be blocked by the nodes. Thus, the server either must be hosted on a dedicated ma-
chine that does not participate in the emulation or an additional (hardware or virtual)
network must be available.

In all of our emulations, we treat the monitor as any other node. This creates a more
realistic emulation as the monitor is also affected by topological effects such as network
partitions in the real experiment. If the monitor cannot issue control commands to
devices in other partitions, this might be a situation that should already occur in the
emulation. To hide the complexity of the emulation setup from the experimenter, we
have written appropriate plugins for EXC. Clients need to specify the EmulationClient
service, the server EmulationServer in the configuration file. Both services react to the
startEmulation event that triggers the above described mechanism and with this the
emulation.

3.3 Experiments

In this section, we report on experiences made during case studies performed with
the support of EXC, amongst them experiments with the whoisthere node presence
detection approach presented in [TSM07]. A node using whoisthere regularly sends
out a beacon announcing its own presence as well as the local information about other

48

3.3 Experiments

nodes. Upon reception of a beacon, the information is incorporated in the local presence
table. This way, the information spreads throughout the network. As the focus here lies
on the behavior and performance of EXC, we will not go into the details of the tested
algorithms. An EXC study concentrating on the experimental results themselves can
be found in Chapter 6. For the following evaluations, both static and mobile scenarios
were used, thus spanning the different setups encountered when conducting experiments
with wireless multihop networks.

3.3.1 Integration

An important early task is the integration of the software to be tested; we use the
whoisthere implementation as example here. In order to control this command line
program from EXC, the following Ruby class had to be implemented:

class WhoisthereService < ServiceForExternalProgram

def initialize ()

super ()

Register methods with EXC

Control.register(self ,: startWhoisthere ,

["interval","nodeNumber"])

Control.register(self ,: stopWhoisthere , [])

Control.register(self ,:stop ,[], METHOD_INTERNAL_TO_EXC)

Control.register(self ,:getStatus , [])

@start_id = 1

end

def startWhoisthere(interval , nodeNumber)

Determine command line parameters

nic = Configurator.get(’interface_name ’)

b_addr = Configurator.get(’broadcast_ip ’)

node_id = Configurator.get(’nodeid ’)

trace = Control.getCurrentDirectory () +

"whoisthere_trace.txt"

trace += @start_id.to_s()

@start_id += 1

Assemble command

command = "whoisthere -i #{nic} " +

"-b #{ b_addr} -bi #{ interval}" +

"-n #{ nodeNumber} -id #{ node_id} " +

49

Chapter 3 The EXC Testbed

"-log #{trace}"

Start ’whoisthere ’ as subprocess

io = IO.popen(command)

@pid = io.pid()

@last = OK

end

def stop()

stopWhoisthere ()

end

def stopWhoisthere ()

killchilds(@pid)

stopService(self.class.to_s ())

end

def getStatus ()

return {self.class.to_s() => status ()}

end

end

The constructor initialize is responsible for registering the implemented methods by
means of the plugin-mechanism described in Section 3.2.2. As all input to whoisthere

is performed over command line parameters, the startWhoisthere method collects
the relevant parameters that are all available via EXC method calls. After the com-
mand line has been assembled in a string, whoisthere is started as a subprocess. The
stopWhoisthere method uses a method provided by EXC to kill all child processes of
the current process (identified by @pid) and then stops the process itself. The current
state of whoisthere is determined in getStatus by inspecting the system process table
with a method provided by EXC.

With this 45 lines of code, whoisthere is fully integrated with EXC: it can be started
and stopped from an XML script at predetermined moments, the trace files are stored in
the correct directory, the status is available in the GUI and commands can be executed
remotely.

3.3.2 Experiment Setup and Network Topology

In most experiments, an IBM Thinkpad X40 laptop with Gentoo Linux was the monitor
and Zaurus SL-6000 PDAs running OpenZaurus Linux in version 3.5.4.2 [opec] served as

50

3.3 Experiments

Figure 3.5: Movement of the four mobile nodes (61-64) and position of the stationary
node 60 during a mobile experiment.

nodes. Besides, some experiments were conducted with an Xubuntu-based EXC Live-
CD that allows to run EXC on x86- or PowerPC-based, CD drive equipped computers
either in node or monitor mode, see Appendix C for details on the Live-CD.

The experiments consisted of up to eight nodes and one monitor. The topology and
also the location of the network varied: some experiments have been conducted inside
the offices of our university, others were performed in a students’ hostel, on the campus
and in a nearby residential area. An example for a mobile experiment can be found
in Figure 3.5, one of the static setups is shown in Figure 3.6. The mobile experiment
consisted of a total of five nodes: four mobile nodes (IDs 61-64) and one static node
with the ID 60 that also served as monitor. The movement pattern was adjusted to
normal walking speed and fully specified in advance. The volunteers that carried the
mobile devices across the campus followed the pattern displayed on their nodes’ GUI,
see Figure 3.4. Due to the bird’s-eye view on the area, it was easy to follow the pattern
and from the visual impression, the error in the movement path was in the range of
meters.

51

Chapter 3 The EXC Testbed

3.3.3 Detected Errors

One of the primary motivations behind the design of EXC is improving correctness
by reducing errors and providing a fast recovery from errors that still occur during an
experiment. As with every other evaluation, we encountered a number of such error
situations during our measurements. These are described in the following to get an
impression of the capabilities of EXC for these tasks.

During the preparation of one experiment, we deleted by mistake the basic trace di-
rectory on all participating nodes instead of its contents. When the first run of the
next experiment was executed thereafter, the tracing component reported an error: the
packet tracer (tcpdump in this case) needed to write its file to the trace directory which
was not present. This was detected right after setting up the first run and thus could
be fixed directly without abandoning the experiment.

Another error occurred during the mobile experiment due to a misconfiguration of the
sleep cycle of the nodes. Per default, i.e. after flashing the standard operating system
image to the SL-6000, the PDAs go to sleep mode after five minutes without user input.
As our experimental setup did not require any user input in combination with EXC, this
situation occurred shortly after the experiment was started. Here, the concept of EXC
with an experiment divided in runs showed its whole potential: right after a run, some of
the nodes did not answer to status requests. After requesting an error description from
one volunteer over a walkie-talkie (“the screen suddenly went black”), we were able to
wake up the devices again and synchronized the state between the nodes. The run was
restarted remotely and the experiment set back on track. The misconfiguration itself
could be overcome with a workaround (“click the touchscreen once per minute”).

During one of the static indoor experiments, no power connection was available. In the
middle of a run, some of the devices switched themselves off due to a lack of battery
power. This was discovered right after that run as the devices did not answer any more
to status requests. After recharging the battery, the experiment could be restarted with
the run that failed first. Furthermore, as consequence of this incident, we implemented
a service to remotely query the battery state and integrated appropriate feedback in the
GUI, see Figure 3.3.

In the course of one presence detection experiment, the network interfaces of two nodes
crashed due to unknown reasons. This ruined the current run and left the devices
unaccessible. The error was detected right after the run, the devices had been rebooted
manually and the runs could be repeated, leading to a full set of runs.

52

3.3 Experiments

Figure 3.6: A screenshot of the EXC topology visualization showing a chain-like setup
in one of the presence detection experiments with nine nodes.

3.3.4 Topology Visualization

Obviously, information propagation speed has a large impact on the performance of the
whoisthere presence detection. Most interesting here is a string-like network topology
that has some alternative paths. This is one of the scenarios outlined at the beginning
of this chapter in which an experiment is to be performed on a well-defined topology.
Setting up this topology was much simplified by the network visualization feature of EXC
as shown in Figure 3.6. After the nodes had been distributed over the different offices
of the second floor, we were able to test the topology. Some nodes were temporarily
disconnected in the first setup. After two more “moving nodes and testing the topology”
cycles, we were able to setup a topology that suited our experimental needs.

3.3.5 Communication

In the mobile experiment shown in Figure 3.5, all nodes moved effectively in a circle
and returned to the starting point after the run. Thus, monitor communication gener-
ally took place over one hop here and therefore worked fine. In a second set of mobile
experiments, the nodes moved from one position to another between runs. Also here
the communication worked without problems as the network spanned multiple but nev-
ertheless static hops. In fact, mobility itself and the resulting topology changes may
not be an issue at all for the monitor routing of EXC: in all of our experiments that
involved mobility during runs, the nodes were nevertheless stationary between runs.

The network with the largest diameter in our setups is the one shown in Figure 3.6.
Because the monitor with id 50 is positioned in the middle, the monitor routing had to

53

Chapter 3 The EXC Testbed

cope with up to three hops here. This worked without perceptible performance degra-
dation throughout the experiment. As the monitor routing is implemented as a simple
form of flooding, it will very likely perform like ring flooding, see also Section 2.2.2.
Furthermore, we also verified that all runs were free of monitor communication packets.
Thus, EXC does not produce any packet influencing the protocols to be tested.

3.4 Related Work

The only testbed that can be directly compared with EXC as it is purely software-
based and offers unlimited mobility in real environments is APE [LLN+02]. It comes
as a Linux Live-CD and relies on shell scripts to fully automate the actions during
the tests. After APE is booted on the participating laptops, the single runs can be
started one after the other in a predefined sequence by pressing a button on any of the
devices. In contrast to that, EXC follows the philosophy of a semi-automatic control of
experiments. Only the actions during a run are automated, the decision which run is
to be executed next can be made at runtime from a central point. The feedback on the
experiments’ status allows to encounter frequently occurring errors like node failures or
wrong configurations already during an experiment and even permits to repeat runs.
Furthermore, as stated in the REQUIREMENTS file of the APE distribution, APE
needs “i386 compatible computers (preferably laptops) equipped with ORINOCO IEEE
802.11 WaveLAN cards”. In contrast to that, EXC is highly portable and platform-
independent and there are no further requirements on CPU architecture or network
interface hardware models. The EXC base system (except for the platform dependent
graphical user interfaces that require cross-compilation) works with similar code on the
most recent Gentoo, Ubuntu and OpenEmbedded Linux distributions on i386-based
laptops as well as ARM-based PDAs and also has been successfully tested on PowerPC
Apple laptops.

All other testbeds that offer the ability to examine mobile nodes are shared re-
search infrastructures (SRI) out of which we consider MiNT-m [DRK+06], Mobile Em-
ulab [JSF+06], and ORBIT [RSO+05] here. The idea is to concentrate the physical re-
sources at a central place and offer remote access to these resources to other researchers.
This allows for sophisticated setups and a larger number of nodes, and researchers that
want to perform experiments do not have to setup their own installation. Both MiNT-
m [DRK+06] and Mobile Emulab [JSF+06] are indoor testbeds that use robots for node
mobility. An important aspect in these systems is the combination of robot steering and

54

3.5 Chapter Summary

positioning that must be as precise as possible. As the multihop topologies are created
inside a single room, both testbeds need radio hardware with limited range. While Mo-
bile Emulab relies on sensor network hardware working in the 900 MHz band, MiNT-m
uses attenuated IEEE 802.11a/b/g-cards. The ORBIT [RSO+05] testbed currently also
consists of an indoor installation but follows a different approach to achieve mobility.
Here, a total of 400 nodes are installed in a grid. Instead of moving nodes, the signal
is switched from node to node. Although an outdoor installation is planned, it is not
clear what it will look like.

Obviously, the approach and focus of EXC is orthogonal to such shared research infras-
tructures. While an SRI initiative results in one single testbed for all researchers, it
is our goal to enable each researcher to set up an experiment with his own hardware.
Where SRI testbeds need to rely on automatic mobility by means of robots, our goal
is mobility by equipping each participating person with a device and thus allowing also
tests with human centric networks. Furthermore, EXC makes it possible to perform
experiments in the very environment for which the algorithms are designed while SRI
approaches allow for tests in a controlled (indoor) laboratory setting.

Besides the above described testbeds, there is a lot of interesting work related to the ex-
perimental evaluation of wireless multihop networks. These are experiments performed
with network prototypes, testbeds for mesh or sensor networks as well as software tools
that support e.g. monitoring or emulation. Because these projects pick out certain
special aspects of experimentation and therefore follow very different goals than a fully-
fledged mobile testbed, we do not consider these here. For a detailed overview, refer
to [KM07a] and Appendix A.

3.5 Chapter Summary

In this chapter, we have presented EXC, a software toolkit to conduct experiments with
mobile and static multihop networks under fully realistic conditions. EXC is based on
the new concept of semi-automatic control that divides each experiment in a series of
runs that can be started individually. This is only possible with the central, flexible
control feature of EXC that allows to request the nodes’ status between runs. With
this, errors occurring during the experiment can be detected and repaired. EXC is
the first toolkit that allows to conduct real-world experiments with fully controlled
mobility. By presenting the experiences made during different research projects, we

55

Chapter 3 The EXC Testbed

show how these features enable the evaluation of static and mobile ad-hoc networks
under realistic conditions.

56

Chapter 4

Time Synchronization

Chapter Outline

A fundamental problem in real-world computer network experiments that also occurred
repeatedly during our own evaluations is that each system uses its own local clock to
timestamp events or schedule actions. As these clocks do not run perfectly synchronous,
this can have negative effects not only when the experiment is running but also on its
analysis. During an experiment, synchronized clocks can be a crucial factor for the coor-
dination of the nodes’ actions. After an experiment, event log files where all timestamps
refer to a single reference clock instead of multiple local clocks are highly desirable for
the investigation of timing related performance parameters, event correlation, and vi-
sualization. In production environments, this problem is often solved either by using a
high-precision, special purpose external clock or by synchronizing the nodes’ clocks over
a network. A prominent example for such a synchronization protocol is the Network
Time Protocol (NTP) [Mil92], but a number of other solutions exist as well [RBM05].
Both of these methods cannot be directly applied to experiments with wireless multi-
hop networks because they either require the use of specialized, expensive hardware or
a permanent, reliable network connection between a reference clock and the nodes that
cannot be guaranteed during such experiments.

To improve clock precision during an experiment, we have developed a simple method
that uses off-the-shelf software called NTP skew correction. It exploits the characteristic
behavior of these clocks and the capability of the NTP daemon to correct clock speed
when not connected to a reference clock. To evaluate the synchronization accuracy
achievable with hardware typically used for real-world experiments, we have performed
a measurement study that is presented in Section 4.2. It shows that clock precision can
be improved by two orders of magnitude with simple means. A paper thereon has been
published [KZM07].

57

Chapter 4 Time Synchronization

Although the clocks’ deviation can be limited to a few milliseconds with this method, the
precision may still be too low for the analysis of time-related performance parameters like
round-trip time. Furthermore, even if the clocks were perfectly synchronized, it takes
some system dependent (and potentially non-deterministic) time from the occurrence of
an event until it is actually timestamped and recorded. We call this the timestamping
delay. While it may be possible to use customized hard- and software to bound the
timestamping delay, such a solution cannot be employed for the off-the-shelf systems
often used in network experiments.

In order to avoid these problems we have developed MLE timestamp synchronization,
an algorithm to correct the timestamps of the individual log files after an experiment is
completed which is based on a maximum likelihood estimator (MLE). For this synchro-
nization, we take advantage of a specific characteristic of networks with local broadcast
media: a transmission is often received by multiple nodes. Upon recording this trans-
mission, each node uses its local clock to provide a timestamp for the same physical
event. Such shared events can be used as anchor points that relate the different clocks
to each other. The combination of multiple anchor points allows for a very good esti-
mation of this relation and finally for an accurate post-experiment synchronization of
the log files. A description of this approach is provided in Section 4.3, it is based on a
paper that has been accepted for publication [SKR+08b].

4.1 Related Work

The relevant literature in the area of clock synchronization can be divided into online
and offline clock synchronization protocols. The aim of online clock synchronization
protocols, like the well-known Network Time Protocol (NTP) [Mil94a, Mil92], is to
keep the clocks of the participating nodes synchronized while the network is up and
running. By contrast, offline clock synchronization approaches correct timestamps that
have been provided by unsynchronized clocks after the experiment is finished. NTP
skew correction is a special application of NTP and an online approach, MLE timestamp
synchronization clearly falls into the second category.

4.1.1 Online Clock Synchronization

As discussed above, most online approaches use explicit messages for clock synchroniza-
tion. They are also constrained by the fact that they need to work in a distributed

58

4.1 Related Work

fashion and may consume only very limited computational resources. Moreover, online
synchronization can only exploit past information, whereas offline approaches can make
use of all—previous as well as later occurring—events for the time estimates. For these
reasons, online synchronization protocols are not an optimal solution if the goal of the
synchronization are log files with a common time base. In the following section, we
summarize the approaches that use the idea of events observed by multiple systems. A
broader overview of the topic, with a focus on wireless sensor networks, can be found
in [RBM05]. Although our NTP skew correction is based on NTP, the basic idea behind
it can be adapted for other online protocols as well.

A number of online synchronization protocols [VRC97, MFNT00, EGE02] rely on the
parallel reception of broadcasted packets by multiple systems. A broadcasted packet is
received by all systems nearly at the same instant, and the only uncertainty in times-
tamping such packets is the signal propagation time and the timestamping delay. To
synchronize the clocks, the recipients of a given broadcast communicate to exchange
their respective reception times. By comparing these reception times, two nodes are
able to compare and adjust their clocks. In [EGE02], for example, the clock skew is
estimated using linear least-squares regression. A complete network can then be syn-
chronized by synchronizing adjacent nodes pairwise along a tree structure, yielding,
however, the disadvantage of accumulating the pairwise errors.

In [KEPS04], the pairwise synchronization of [EGE02] is extended to a global one. The
authors present an online synchronization approach for sensor networks that is based
on a global unbiased minimum variance estimator. They first introduce a version that
considers only clock offsets, and then complement it with an idea on how to deal with
clock rate differences. Their approach, however, is not able to handle offsets and rate
deviations conjointly, but must rely on separate estimates on different time scales. This
is feasible and appropriate in the considered context of online time synchronization for
continuously running sensor networks, but is not optimal for the offline synchronization
of the logs of time-limited experiments. In addition to avoiding the general drawbacks of
using online approaches for the synchronization of log files, our MLE approach estimates
offsets and rates in one single step, and can thus exploit all the available information to
find the global optimum for both.

4.1.2 Offline Clock Synchronization

The first offline clock synchronization algorithm was proposed by Duda et al. [DHHB87]
for generic distributed systems. The send and receive timestamps of messages between

59

Chapter 4 Time Synchronization

nodes A and B are taken as coordinates of a point, the x-axis being the timestamp of A

and the y-axis being the timestamp of B for the same packet. Due to the network delay,
two point-clouds emerge with an empty corridor in between. Each point is either above
the corridor (when sent from A to B) or below (when sent from B to A). The authors
present two methods to fit a line in this corridor, thereby estimating the difference in
clock speed and offset between A and B. The first method computes the separating
line with linear regression; the other uses a convex hull approach. They also sketch a
maximum likelihood approach but are not able to use it due to a lack of knowledge
about the message delay from sender to receiver.

Duda’s linear regression and convex hull approaches have been extended in [Ash95]. The
author corrects the timestamps using experimental knowledge about the smallest round
trip delays. This knowledge is incorporated in an algorithm that selects the two best
points to estimate the skew and offset between the nodes. In [MST99], linear program-
ming is used to compensate for clock skew that influences one-way delay measurements
between two nodes over the Internet. A convex hull based approach able to cope with
clock resets is presented in [ZLX02].

All of the presented offline synchronization algorithms can compensate linear clock de-
viations between two nodes without requiring additional network traffic. In contrast to
our MLE approach, which exploits the broadcast nature of the medium, they can be
used for all kinds of communication systems. However, this benefit is also their main
drawback: all of them consider the comparison of send and receive timestamps. Thus,
the network delay cannot be completely eliminated, as it is the case in our approach.
Likewise, they cannot separate and handle the timestamping delay. Finally, while we use
all the available data to compute globally consistent estimates for an arbitrary number
of nodes in parallel, all these algorithms synchronize only two clocks directly. In order
to synchronize more clocks, a successive synchronization of node pairs is necessary, a
process in which errors can accumulate.

4.2 NTP Skew Correction

In the following we model clocks as twice differentiable functions, mapping some (virtual)
global, absolute time t to the view of the respective clock. This model matches those
commonly used in literature related to clocks and time synchronization [Mil92, MST99,
EGE02], and is justified since only the limited timespan of a single experiment needs to

60

4.2 NTP Skew Correction

be considered. For the same reason and for the sake of simplicity we do not account for
clock resets.

The true clock CT is a clock which is correct by definition: ∀t : CT (t) = t. The offset of
a clock C at time t is the difference C(t)− CT (t) between C and the true clock CT . If
we use the term offset without referring to a certain point in time we refer to C(0), the
offset at time t = 0. C ′(t) is called the rate or frequency of C at time t. The difference
between a clock’s rate and the true clock’s rate C ′(t)−C ′

T (t) = C ′(t)− 1 is called skew
or frequency error. Finally, the second derivative C ′′(t) is called the drift of C. The
clocks of devices participating in WMN experiments can have an arbitrary offset, but
their skew is limited within production dependent boundaries.

The NTP daemon (ntpd) uses a network connection to a node with a high-precision
clock to determine offset and skew of the local clock. Approximately one hour after ntpd
acquires synchronization, the skew is laid down in the so called drift file1. Ntpd continues
to correct the local clock with this skew estimate even if the device is disconnected from
the reference clock. This continued NTP skew correction without network connection
makes ntpd suitable for the synchronization of the clocks in a WMN experiment where
no such connection is available. As long as the clock drift is small and thus the skew
remains relatively constant over the time of an experiment, this should allow the local
clock to maintain a good degree of synchronization with the reference clock.

To determine the accuracy achievable with hardware typically used in WMN experi-
ments, we have conducted a series of measurements. On the one hand, the achievable
absolute precision is of interest. On the other hand, it is also interesting how the
skew and the related synchronization quality changes over time. Note that this skew
correction approach is orthogonal to existing online synchronization algorithms as any
approach able to determine clock skew with sufficient precision can be used. We have
chosen NTP as it has been in productive use for a long time, is available on a large
number of platforms and thus allows other researchers to easily adopt our method for
their own experiments.

4.2.1 Measurement Setup

Two different kinds of handheld devices have been used for the measurements:

• HP iPAQ 5550 (Nodes 2-11)

1Although this file name may be misleading as the file contains the skew and not the drift, we keep
this name to stay consistent with existing terminology.

61

Chapter 4 Time Synchronization

• Sharp Zaurus SL-6000 (Nodes 51-64)

Both of these devices have integrated 802.11b WLAN network interfaces and were run-
ning a customized version of OpenEmbedded Linux [opeb] named zaulux [zau]. As not
all devices were available for all experiments, some had been conducted with a subset
of these nodes.

For the measurements, we used a setup similar to the one in [EGE02]: all nodes were
set up in a single room, one node broadcasted a packet (beacon) once every second
over 802.11b WLAN. The nodes receiving the beacon recorded it together with their
local timestamp that has a resolution of 1ms. Due to the proximity of the devices,
the propagation delay is small enough to be ignored, each device thus records an event
that has occurred at the same moment in time. By comparing the timestamps for this
moment, it is possible to determine the differences of the clocks. For each run, we sent
140 000 beacons, resulting in an experiment duration of approximately 39h. During the
experiment, we minimized background traffic in order to avoid disturbances. Note that
this single-hop setup is used for measuring the clock behavior; the proposed approach,
however, also works for multihop networks.

After the experiment, the trace files were gathered and evaluated with our EDAT analy-
sis tool that will be presented in Chapter 5. For each clock, we then plotted the averaged
difference to the timestamp of a reference node that is chosen from the receivers. To
compensate for initial differences in the clock setting, the constant offset of the first
packet is subtracted from all values2. These differences also occur in a real MANET
experiment but can be compensated by setting the clock before disconnecting ntpd from
the reference clock. The difference of a node’s timestamp to the timestamp at the ref-
erence node is plotted on the y-axis, the elapsed time is shown on the x-axis. Thus,
the y-axis always shows differences relative to the reference node. As we are interested
in general clock behavior rather than that of individual nodes, the corresponding curve
labels will be omitted in these graphs.

Clock Quality

Before evaluating the quality of the NTP skew correction, we determine lower and upper
bounds for the synchronization quality. This upper bound is marked by a permanent
NTP clock correction while running the clocks freely allows the quality of hardware
clocks of our devices to be determined. The behavior of the clocks when these are

2The only exception is Figure 4.1 where such differences do not occur due to the setup.

62

4.2 NTP Skew Correction

-20

-15

-10

-5

 0

 5

 0 5 10 15 20 25 30 35

T
im

e
 d

if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 n
o

d
e

 [
m

s
]

Time [h]

Figure 4.1: Deviation of the clocks when synchronized with NTP.

permanently corrected by NTP and connected over an additional wired network to a
reference clock is shown in Figure 4.1 for ten of the Zauri. It can be seen that after
an initial phase with larger oscillations, ntpd keeps the clocks well synchronized and
adapts to changing clock skew such as the peak that occurs for one of the nodes around
the 23rd hour. Without any correction, the clocks’ quality is quite bad, as shown in
Figure 4.2. Each device’s clock soon diverges from the reference node. It is furthermore
interesting to note that the clocks of the iPAQs (all lines ending above 6 000) tend to be
faster than the clocks of the Zauri (the lines around zero and below). The clock spread
in the group is about 77ms/h for the iPAQs and about 128ms/h for the Zauri. The
overall spread is 307ms/h. This strongly highlights the need for a simple mechanism
that is able to correct the clocks.

Precision of the Drift Files

As long as ntpd has a connection to a reference clock, it updates the factor in the
drift file to compensate for changing clock skew. This factor is measured as frequency
error in “parts per million” (ppm)3 and is updated once per hour. An important factor
influencing the quality of NTP skew correction is the stability of the drift factor over
time. The more stable it is, the more synchronized the nodes will stay even when
disconnected from the reference clock. The stability of the drift factor for our devices is

3An error of 12 ppm corresponds to about one second per day.

63

Chapter 4 Time Synchronization

-6000

-4000

-2000

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20 25 30 35

T
im

e
 d

if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 n
o

d
e

 [
m

s
]

Time [h]

Figure 4.2: Deviation of uncorrected clocks.

shown in Table 4.1. It shows the changes of the initial correction factor for some of the
participating devices over 46 hours, measured in ppm. For the majority of the devices,
the initial frequency error never changes more than 0.8 ppm, so a longer synchronization
time would not improve the correction factor significantly. However, synchronization for
several hours is recommended since the error rate tends to stabilize in the first few hours,
as also shown in Figure 4.1.

4.2.2 Evaluation

After knowing that the clocks behave as expected, we evaluated the performance of ntpd
with the proposed NTP skew correction. We let ntpd create and refine the drift file for
several hours and then shut down the network connection, relying only on the drift file
to keep the clocks synchronized. The results of this experiment are shown in Figure 4.3
(note the different y-axis scale of this figure compared to Figure 4.2).

Obviously, the overall time deviation of the clocks can be reduced by this method, in
our setup by two orders of magnitude. Nevertheless, the results are surprising as the
plot shows some non-linearity. We repeated this setup several times and got similar
results. The most likely reason for this is temperature fluctuation, as it has the largest
short-term influence on the oscillator stability [Mil94b]. After examining this in more
detail, we wondered if this non-linearity also exists for the non-synchronized case but
could not be observed due to the different y-axis scales of the plots. We therefore

64

4.2 NTP Skew Correction

Node Start Median Standard Max. difference
value freq. err. deviation from start value

60 95.792 95.888 0.031 0.12
5 18.893 18.946 0.116 0.256
51 79.851 80.1725 0.113 0.392
3 14.365 14.1855 0.105 0.412
7 4.965 4.9385 0.168 0.429
11 15.302 15.665 0.101 0.542
9 15.131 15.6005 0.127 0.616
2 7.458 7.0815 0.15 0.677
10 -1.866 -2.217 0.117 0.733
6 2.069 1.3145 0.173 1.056
61 80.94 82.611 0.361 1.785
63 61.367 59.374 1.07 7.105

Table 4.1: Changes of the initial correction factor (in ppm).

use linear regression to approximate the slope of each of the curves in the uncorrected
plot in Figure 4.2. This approximated slope leads to a correction function that can
be used to remove linear deviations, leaving mainly the non-linear components of this
deviation. The result is shown in Figure 4.4. Due to the applied correction that results
in a compression of the y-axis, it is now possible to compare this graph to the one in
Figure 4.3 at the same scale. It is obvious that similar non-linear features are present
in both cases. The discovered non-linearity is inherent to the devices’ clocks, and the
overall quality of the clocks is not influenced by the proposed skew correction approach.

The above results reveal a certain kind of non-linearity in the clocks and the available
literature [Mil94b] suggests that changes in the environment temperature may be re-
sponsible for this. We therefore set up an additional experiment in which we also have
recorded the temperature to examine its influence on the clocks. During this experi-
ment, we have varied the environment temperature on purpose to provoke a reaction
of the clocks. The evaluation method is the same as above: freely running clocks were
corrected after the experiment with linear regression and we plotted averaged differ-
ences. The result can be seen in Figure 4.5, containing both temperature and the time
differences. The influence of the temperature is immediately obvious: as soon as the
temperature starts to decrease from 24 degrees to the lowest temperature of 15 degrees,
the nodes change their relative clock speed. Different nodes show different reactions
to this change in environmental conditions: some oscillators are more sensitive to tem-

65

Chapter 4 Time Synchronization

-60

-40

-20

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

T
im

e
 d

if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 n
o

d
e

 [
m

s
]

Time [h]

Figure 4.3: Deviation of clocks with the NTP skew correction. It is interesting that all
clocks behave similarly except for one clock that is much faster and therefore
has a difference to the reference node of more than 100 ms at the end of the
experiment.

perature than others. As we chose an arbitrary node as reference, some clocks here
slow down compared to this reference node (the lines below zero), while other clocks
speed up in relation to this node. This experiment shows that it is advisable to avoid
temperature fluctuations, e.g. by not exposing nodes to direct sunlight. Furthermore, it
also shows that these clocks behave approximately linear if the temperature is stable.

To sum up, this measurement study reveals that NTP skew correction can reduce the
clock frequency error of devices typically used in WMN experiments by two orders of
magnitude. As this approach does not require a connection to an external reference
time source, it is especially suited for such experiments where this connection is not
available most of the time.

4.3 MLE Timestamp Synchronization

These experiments show that the clocks can be kept in sync within a few milliseconds
over the duration of a whole experiment, a precision high enough for the coordination
of actions. However, parameters like end-to-end delay have values in the same order of
magnitude, their analysis therefore requires higher synchronization precision. For this,

66

4.3 MLE Timestamp Synchronization

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 5 10 15 20 25 30 35

T
im

e
 d

if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 n
o

d
e

 [
m

s
]

Time [h]

Figure 4.4: The clocks of Figure 4.2, now corrected after the experiment with a linear
regression-based method.

we have developed the MLE timestamp synchronization approach. It employs a model
for the clocks and the timestamping delays and uses physical events recorded at the
same moment by multiple nodes (so-called anchor points) to estimate the parameters
of this model. These parameters are estimates of the clock deviations and allow to
derive estimates for the timestamps of all events on a common time basis. A maximum
likelihood estimator is used for this purpose. It leads to a large linear program with a
very specific structure. We exploit this structure to solve the linear problem efficiently
in spite of its huge size. The solution then yields a synchronized log file where all entries
are recorded with a common time basis. Analytical and numerical results show that the
solution converges quickly to a good estimate for increasing input data sizes, and that
it is robust if the assumptions made for its derivation are not perfectly fulfilled. Thus,
in practice, a very reasonable amount of log data is typically sufficient to identify and
eliminate clock deviations.

Our approach is applicable to all networks with local broadcast characteristics. It just
requires that the clocks of any two nodes in the network can be—directly or indirectly—
set into relation by anchor points. In particular, this includes experiments in wireless
ad-hoc-, sensor- and mesh-networks for which it was initially designed. However, it is
also suited for local area networks with multiple stations in each collision domain and
satellite networks.

67

Chapter 4 Time Synchronization

-2

-1

 0

 1

 2

 3

 4

 0 5 10 15
 14

 16

 18

 20

 22

 24

 26

T
im

e
 d

if
fe

re
n

c
e

 t
o

 r
e

fe
re

n
c
e

 n
o

d
e

 [
m

s
]

T
e

m
p

e
ra

tu
re

 [
C

]

Time [h]

Figure 4.5: Experiment with temperature recording (solid line) and the time differences
averaged over one minute.

4.3.1 Model, Terminology, and Applicability

Nodes and Events

In our terminology, an event is an incident that has been observed by one or more nodes
and is recorded in their local log files. Of particular interest for us are packet reception
events, since they can be observed by multiple nodes almost at the same time. We
assume that parallel receptions of the same transmission can be identified as such and
concentrate primarily on events that have occurred in more than one node, since they
can serve as anchor points for the synchronization.

We denote the set of nodes participating in an experiment by J and the set of events
that occur during the experiment by I. Each event i ∈ I occurs at some “true” time
Ti. The same event i can be observed by multiple nodes. In this case each of the nodes
records its own timestamp for the event according to its local clock, i. e., event i is
recorded by some of the nodes j ∈ J with local timestamps ti,j .

The recorded times define a relation R ⊆ I × J in the sense that (i, j) ∈ R if and only
if event i is recorded by node j. The subset of nodes that observe a certain event i ∈ I

is denoted by Ri, i. e., j ∈ Ri if and only if (i, j) ∈ R.

68

4.3 MLE Timestamp Synchronization

Clocks

As stated above, the true clock CT is a clock which is correct by definition: ∀t : CT (t) =
t. Our aim is to approximate this clock as closely as possible by the calculated global
event timestamps.

The clock model we use for our estimator assumes that during the time interval of an
experimental run, the local clocks in the nodes can be closely approximated by a linear
function. We denote the rate of a node j’s local clock Cj by rj > 0 and its offset at
time t = 0 by oj . Thus, for all times t during the run we have

Cj(t) = rjt + oj . (4.1)

The time span over which the linearity assumption holds is related to the clock’s fre-
quency stability. It is commonly specified using the Allan deviation [All87], which
characterizes the rate variations over different timescales. One application area of of-
fline synchronization are the experiments with wireless multihop networks this thesis
concentrates on. As pointed out in Section 2.1.5, the duration of an experimental run
typically does not exceed 1 000 seconds. This coincides with previous work, which shows
that clock drift is typically negligible over time spans up to 1 000 seconds [VBP04]. Fur-
thermore, also the experiments in Section 4.2.2 show that clocks are approximately
linear for shorter intervals and stable temperature.

If the linearity assumptions do not hold, the accuracy of the results may deteriorate.
As will become clear later, the degradation is graceful, i. e., the estimation is a good
linear approximation. Note also that it is easily possible to synchronize arbitrary sub-
intervals of longer logs, such that the assumption holds reasonably well within each
sub-interval.

Furthermore, care must be taken that the linearity assumption is not thwarted by pro-
cesses running on the nodes and manipulating the clocks. If online synchronization must
be used—e. g., because it is part of the experiment—then it should record all non-linear
modifications it made to the local clock, so that the effects of these changes can be
eliminated from the log files of the respective nodes prior to synchronizing them. As
NTP skew correction only applies linear corrections, this is not problematic here.

In practice, time in computer systems does not run continuously, but progresses in dis-
crete steps. While the resolution of the timer-interrupt driven system clock is typically

69

Chapter 4 Time Synchronization

relatively coarse—in the order of milliseconds—, more fine-grained time sources are of-
ten available and used. On the x86 platform, for example, the CPU’s TSC register
progresses with every CPU clock cycle. Thus, its granularity is very fine. It serves for
generating the timestamps, for example, when using a Linux kernel and the widespread
packet tracing library libpcap [LIB]. Thus, we can assume that the error introduced by
the clock resolution is small in comparison to other sources of error. Our approach does
not amplify such errors.

Timestamping Delay

When sending a message, a number of different delays occur from the moment the source
application generates the message until the receiver timestamps it. As our approach uses
these timestamps as synchronization anchors, we are interested in the delay differences
experienced by distinct nodes. The deterministic components are not an issue in our
context: if all timestamps in a node are recorded late by some fixed time, then this is
the same as if they were recorded immediately with a correspondingly increased offset.
So, the fixed delay components are equivalent to an additional clock offset.

The experienced delay can be decomposed into four components according to [KO87]:
the time needed to compose the message and to assemble the packet; the time to access
the medium; the propagation delay on the medium; and finally, after the transmission
arrives at the receiver, the receive time, i. e., the delay for checking the message and
recording the arrival timestamp. Obviously, the time until the packet leaves the sender
is the same for all receivers and thus does not need to be considered.

The propagation delay depends on the distance between sender and receiver, and the
propagation delay differences depend on the different distances between sender and
receivers. As long as these differences are in the order of a few hundred meters, the
propagation delay difference is in the order of, at most, microseconds and is therefore
negligible4. The receive time is a result of the delayed recording of the timestamps in
the nodes that does not happen immediately upon reception. It can be decomposed
further into a fixed component (which equals the minimum path delay of the processing
necessary at the receiver), and an additional, variable time that occurs because the
timestamping is performed by the node’s CPU, which may be busy with other tasks
before the event is processed. The latter we call timestamping delay.

4If nodes are really far apart and the propagation delay is long, then it is often the case that the
distances and thus also the delays are approximately known. This applies to satellite systems, for
example. In this case it is possible to eliminate the delay prior to synchronization.

70

4.3 MLE Timestamp Synchronization

Note that the delay of an event is also “measured” by the recording node’s clock, and
thus is scaled with the rate of this clock. An event i at “true” time Ti that is recorded
by node j with timestamping delay di,j thus leads to a timestamp

ti,j = Cj(Ti + di,j) = rj(Ti + di,j) + oj . (4.2)

The timestamping delay is, like all delays, obviously nonnegative. Furthermore, it seems
reasonable to assume that most timestamps are recorded with small latency and few are
set after a longer time. We model the timestamping delays as exponentially distributed,
pairwise independent random variables. Moreover, we assume that the exponential
distributions of all delays share the same parameter λ. The latter is reasonable if
the nodes participating in the experiment use comparable hard- and software for the
timestamp generation, which will often be the case in a testbed.

In a real-world application, our assumptions about the timestamping delay just like
those about the clocks’ linearity will, of course, not perfectly hold. In fact, depending
on the hard- and software of the devices, reality might look very different. We use the
mentioned assumptions for the motivation and derivation of our method. It will later
become clear that the resulting approach yields good results also under non-conformant
circumstances.

Connectivity Constraints

As our proposed approach relies on anchor points to relate the clocks, it depends on
the presence of events that can serve this role. Consider the case in which there is no
common event between two groups of nodes. Here, it would be impossible for anchor
point-based synchronization to tell if all clocks in one of the groups are, for example,
early by one hour. A common, global time basis can thus not be established, whereas
it remains nevertheless possible to synchronize the clocks within each group.

Note that the availability of anchor points does not imply that all pairs of nodes must
share common events—clocks may also be related indirectly, over intermediate nodes. It
also does not necessitate the network to be “connected” in the commonly used sense. For
example, if there are two almost independent groups of nodes, one single node sharing
events with both groups suffices. These shared events need not occur during the same
time intervals, and thus there is no need for a fully connected topology at even just one
single point in time.

71

Chapter 4 Time Synchronization

Hence, the existence of anchor points is not a severe constraint in practice, and anchor
point-based synchronization will be possible in the vast majority of experimental se-
tups. If this condition is not met, artificial anchor points could be generated, e. g., by
broadcasting “anchor packets”. Doing so during the experiment might interfere with the
experiment itself, just like running an online synchronization protocol. Anchor points,
however, may also be generated before and after an experimental run.

4.3.2 Algorithm

The previous section introduced a model of the network and the timestamping delays.
Now, we will formalize the problem and propose an approach for its solution via a
maximum likelihood estimator (MLE). Given the recorded local timestamps, we wish
to maximize the likelihood that our estimates of the true event times are correct.

Due to the exponentially distributed delays, the conditional probability density for mea-
suring a timestamp ti,j for event i at node j given Cj and Ti is

f(ti,j | Cj , Ti) = f(di,j) = λe−λdi,j . (4.3)

Because of the independence of the delays the probability density for the whole set of
measurements in our experiment can be written as

f((ti,j)(i,j)∈R | (Cj)j∈J , (Ti)i∈I) =
∏

(i,j)∈R

λe−λdi,j . (4.4)

We can now express our problem as an optimization problem. Under a uniform prior,
we want to find the optimal estimates T̂i of Ti for all i ∈ I, and, in parallel, the optimal
estimates Ĉj of Cj for all j ∈ J such that the likelihood function L defined in the
following way is maximized:

L = L((Ĉj)j∈J , (T̂i)i∈I | (ti,j)(i,j)∈R)

= f((ti,j)(i,j)∈R | (Ĉj)j∈J , (T̂i)i∈I).
(4.5)

From (4.2) we can see that

∀(i, j) ∈ R : di,j =
ti,j − oj

rj
− Ti. (4.6)

72

4.3 MLE Timestamp Synchronization

This relation must also hold for the estimates of Ti and Cj . Let r̂j , ôj , and d̂i,j denote
the estimates for rj , oj , and di,j , respectively. Then, in analogy to the above we have

∀(i, j) ∈ R : d̂i,j =
ti,j − ôj

r̂j
− T̂i. (4.7)

Therefore, L can be expressed as

L =
∏

(i,j)∈R

λe−λ bdi,j

=
∏

(i,j)∈R

λe
−λ

„
ti,j−bojbrj

−bTi

«
,

(4.8)

eliminating the estimates d̂i,j for the unknown quantities di,j .

Since all the delays are non-negative, the maximization of L is subject to the con-
straints

∀(i, j) ∈ R :
ti,j − ôj

r̂j
− T̂i ≥ 0. (4.9)

Now we apply a standard technique in maximum likelihood estimation: maximizing L

is equivalent to maximizing lnL, because L > 0 for all valid parameterizations.

lnL = ln
∏

(i,j)∈R

λe
−λ

„
ti,j−bojbrj

−bTi

«

=
∑

(i,j)∈R

(
lnλ + ln e

−λ

„
ti,j−bojbrj

−bTi

«)

= |R| lnλ−
∑

(i,j)∈R

λ

(
ti,j − ôj

r̂j
− T̂i

)
.

(4.10)

Optimizing this expression with regard to λ and all the T̂i and Ĉj is a difficult nonlinear
optimization problem. However, we are not primarily interested in the parameter λ.
Fortunately it turns out that the optimal T̂i and Ĉj are independent of the value of λ.
Let for the moment

k(x) := − lnx− |R| lnλ

λ
. (4.11)

73

Chapter 4 Time Synchronization

k is strictly monotonically decreasing for any λ > 0 and |R|. Thus, it is easy to see that
L is maximal if and only if k(L) is minimal:

k(L) = − lnL− |R| lnλ

λ
=

∑
(i,j)∈R

(
ti,j − ôj

r̂j
− T̂i

)
. (4.12)

Therefore, instead of maximizing L, we minimize k(L). We have thus eliminated the
variable λ > 0. The constraints of the resulting optimization problem are still of the
form (4.9).

From the clock model we know that the rates of the clocks are strictly positive. We
exploit this fact and define

r̄j := r̂−1
j (4.13)

ōj :=
ôj

r̂j
. (4.14)

Equivalently, we have r̂j = r̄−1
j and ôj = ōj r̂j = ōj

r̄j
. Expressing k(L) in terms of the

variables ōj and r̄j leads to

k(L) =
∑

(i,j)∈R

(
ti,j r̄j − ōj − T̂i

)
. (4.15)

Similarly, the constraints (4.9) can be simplified to

∀(i, j) ∈ R : ti,j r̄j − ōj − T̂i ≥ 0. (4.16)

This is a linear objective function with linear constraints, which can be solved using
standard linear program (LP) solvers like the simplex method.

For exponentially distributed errors, the maximum likelihood estimator is known to be
nearly optimal. In our case, however, a different interpretation of the resulting approach
is also possible. When comparing (4.12) and (4.7), we observe that

k(L) =
∑

(i,j)∈R

d̂i,j . (4.17)

The optimal solution minimizes the sum of the estimated delays. Therefore, the result-
ing approach may also be understood as a form of constrained Least Absolute Deviation

74

4.3 MLE Timestamp Synchronization

(LAD) regression. Since this interpretation is completely independent from the assump-
tion of exponentially distributed delays, it supports the expectation that the derived
estimator is also well-suited for delays with other distributions.

Note that the optimization problem (4.15) and (4.16) has the trivial solution ∀j ∈ J :
ōj = r̄j = 0 and ∀i ∈ I : T̂i = 0. This is because it is only possible to estimate the
relative deviation between clocks from the information contained in the log files. We
call this the rate ambiguity. To overcome the rate ambiguity, we add a normalizing
constraint

∑
j∈J r̄j = |J |; in the average, the inverse clock rates are assumed to be

accurate. This assumption, however, is not crucial at all: if the average takes some
other value, the solutions are simply scaled accordingly.

Similar to the rate ambiguity, there is also an offset ambiguity in the log files. The right
hand sides of (4.15) and (4.16) do not change when all ōj are replaced with ōj + τ and
all T̂i are replaced with T̂i − τ , where τ ∈ R is a given constant term. Thus, like above
for the rates, it is not possible to estimate absolute, but only relative event times and
clock offsets (even ignoring the fact that there is, of course, no “absolute time”). We
may set, without loss of generality, ō1 = 0.

If a reference clock is available—e. g., because at least one node has a connection to
an external time source like a GPS receiver and records appropriate data—absolute
synchronization to this reference is possible. More specifically, if the correct, global
time of one event occurrence in one single node is known, then the offset ambiguity can
be overcome. If the global times of two events, or, alternatively, the time of one event
and the rate of one node are known, then the rate ambiguity can likewise be eliminated.
This is possible either by adapting the constraints for rates and offset, or by a respective
transformation of the synchronization result.

The resulting linear program can be written in the form

minimize bTy subject to ATy ≤ c, (4.18)

where y is the vector of the unknowns T̂i for i ∈ I, followed by the vectors ō ∈ R|J | and
r̄ ∈ R|J | of the ōj and r̄j for j ∈ J , i. e.,

y =

T̂

ō

r̄

 . (4.19)

75

Chapter 4 Time Synchronization

The matrix AT represents the inequality constraints (4.16) and the normalizing con-
straints.

Events that have only been observed by one single node do not contribute information
for the synchronization. Therefore, to keep the size of the linear program as small as
possible, they should not be included in the optimization. Corrected timestamps for
such events can easily be generated based on the rate and offset estimates.

4.3.3 Solving the Optimization Problem

In (4.18), (4.19) the maximum likelihood estimator is defined as the solution of a linear
program with |I|+2 · |J | variables and |R| linear inequality constraints. Due to the size
of the linear program a straightforward application of the simplex method may result in
a significant effort in terms of computational power and memory. When solving (4.18)
with a standard simplex solver like QSopt [ACDM] the program takes hours to terminate
even for relatively small problems. Therefore, we will now focus on the special structure
of the linear program (4.18) and how it can be exploited to allow for a fast numerical
solution. Below we outline the ideas behind our implementation of the synchronization
approach. It is able to solve the linear program for data sets with |J | ≈ 100, |I| ≈ 105,
and |R| ≈ 106 on a standard PC within a few seconds.

Each row of AT corresponding to a constraint (4.16) has exactly three non-zero entries
and A is thus very sparse. The matrix AT is closely related to the matrices arising in
network optimization problems. In particular, it does not have full column rank. In the
previous section, offset ambiguity was introduced. Since we set ō1 to zero, the corre-
sponding column of A can be eliminated prior to the optimization. Our implementation
checks for further redundancies that depend on the particular instance R and eliminates
additional linearly dependent columns of AT if existent.

We use a modern interior-point algorithm for our solver, a variant of Mehrotra’s predic-
tor corrector algorithm [Meh92] that is particularly well suited to handle the structure of
(4.18). The primary advantage of interior-point algorithms versus the simplex method
is that interior-point methods do not suffer from degeneracy of the problem. Practical
implementations very rarely take more than 70 to 100 iterations to solve a linear pro-
gram. In our case, the particular structure of (4.18) can be exploited, making a single
iteration very cheap. The concept of the algorithm as implemented here is based on
Algorithm 14.3 in [NW99].

76

4.3 MLE Timestamp Synchronization

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000

R
u

n
ti
m

e
 (

s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

QSopt
SeDuMi

Our solver

(a) |J | = 20.

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000 100000

R
u

n
ti
m

e
 (

s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

QSopt
SeDuMi

Our solver

(b) |J | = 100.

Figure 4.6: Performance comparison of QSopt, SeDuMi, and our own implementation
as time synchronization LP solvers.

77

Chapter 4 Time Synchronization

Apart from minor adjustments of the parameters proposed in [NW99], the main mod-
ification in our implementation concerns the storage format for the matrix A. Storing
A directly would be extremely inefficient in terms of memory requirements as well as
from a computational perspective. Our implementation comprises a specialized storage
format for A, tailored to both the problem structure and the specific operations that
appear in the interior-point algorithm. For matrices A arising from (4.18) this is a supe-
rior alternative to general purpose sparse matrix formats, as they are readily provided,
e. g., by Matlab.

The main computational effort at each iteration of an interior-point algorithm is the
computation and the Cholesky factorization of the matrix product H = ADAT. Here,
D is a positive definite diagonal matrix that changes at each iteration. Due to our choice
of setting up the variable y by first including T̂ and then ō, r̄, the leading |I|×|I|-block
of H is a positive definite diagonal matrix; only the trailing 2 · |J | rows and columns
of H do have fill-in. This sparsity structure is also inherited by the Cholesky factor L

of H. The leading |I|×|I|-block of L can thus be computed in linear time. Given that
typically |I| � 2 · |J |, the computation of L and thus the solution of the overall problem
is very cheap.

To demonstrate the huge gain in performance that is possible by using the tailored
solver, we compare the runtime of our implementation with that of QSopt [ACDM]
and SeDuMi [SRP]. QSopt is, as mentioned before, a solver that uses the simplex
method. SeDuMi on the other hand is a Matlab interior-point code that, like our own
solver, benefits from the special structure of H, but uses a more general—and therefore
somewhat slower—storage format of the sparse matrix AT, and a more general sparse
Cholesky factorization.

Figure 4.6 shows the computation times for calculating the solutions of optimizations
with 20 nodes and with 100 nodes, for different numbers of shared events. All mea-
surements have been made on an AMD Athlon X2 BE-2300 CPU with 1900 MHz and
1 GB of main memory. From the figure it can be seen that our implementation actually
works very well. The tailored solver brings a large performance gain—it reduces the
computation time by typically at least a factor of 10–15.

Note that SeDuMi expects readily preprocessed input data in Matlab’s sparse matrix
format. The time needed for converting the data to this format is not included in the
SeDuMi results in Figure 4.6. Especially for the larger problems, this can be substan-
tially higher than the time needed for solving the problem. The processing times shown
for our own solver do include the time for reading the input data and preparing the

78

4.3 MLE Timestamp Synchronization

optimization problem. For our specialized matrix format this step can be performed
very efficiently; it accounts only for a negligible fraction of the total processing time.

In particular the results with QSopt underline that an off-the-shelf simplex solver is in
fact highly unsuitable for the specific type of linear optimization problem that we deal
with. Not only does the computation time grow rapidly with an increasing problem
size, but also do the memory requirements. By contrast, our tailored implementation is
very memory efficient, and its observed runtime increases approximately linearly with
the number of events |I|.

4.3.4 Properties of the MLE

Now that we have seen that it is in fact possible to calculate a solution of the linear
program and thus the maximum likelihood estimator within reasonable time, we are
interested in the quality of this solution. In this section, we will thus tackle the question
of how good the synchronization result is.

The available amount of data to estimate the clock deviations increases with an in-
creasing number of network packets that have been received by multiple network nodes.
Thus, intuitively, one could expect that the quality of the estimate improves with the
availability of more experimental data. Similarly, it sounds reasonable that it is very
unlikely that the result of the time synchronization process is grossly wrong if the input
data is very accurate. In this section, we confine ourselves to a simplified variant of
our estimator. For this simplified variant we can prove that these intuitive expectations
are actually true. Since the complete proofs of these properties are quite complex and
technical despite this simplification, we have not included them here. Instead they can
be found in [SKR+08a]. Below we will discuss the results and their implications, and we
give a rough sketch of the proofs’ ideas. Our numerical results presented later underline
that the results also hold for the fully featured estimator with clock rate estimates.

The simplified estimator does not take clock rate deviations into account, i. e., it assumes
that for each node the clock rate rj is (approximately) 1 and thus correct with respect
to the “true clock”. Under this assumption the recorded time for a node-event pair
(i, j) ∈ R becomes Ti + di,j + oj . Thus, the simplified maximum likelihood estimator,

79

Chapter 4 Time Synchronization

in analogy to the fully featured version, is the solution to the following problem:

maximize L =
∏

(i,j)∈R

λe−λ(ti,j−boj−bTi)

subject to ∀(i, j) ∈ R : d̂i,j = ti,j − ôj − T̂i ≥ 0.

(4.20)

The optimum is again independent of λ and the above is equivalent to

minimize k(L) =
∑

(i,j)∈R

(
ti,j − ôj − T̂i

)
=

∑
(i,j)∈R

d̂i,j (4.21)

under the same constraints.

Here we will point out two desirable properties for this version of the estimator. First,
we give tight error bounds on the estimation error that hold under the assumption of
a bounded timestamping delay. In particular this means that the algorithm does not
amplify errors. Furthermore, we show that the estimator is consistent: in other words,
for increasing data set sizes the estimate converges (in probability) to the true values of
the estimated features. It thus supports the intuition that the estimate improves for a
larger amount of observed and logged events in the nodes.

Error bounds

In order to be able to give a bound for the estimation error, we need to make two
additional assumptions. While the first guarantees network connectivity, the second
establishes an upper bound on the timestamping delay. Note that an upper bound
for the timestamping delay does not constrain the practical applicability of the results
presented here: for any practical experiment there is a finite number of receptions, and
thus also a maximum timestamping delay.

The existence of the offset ambiguity as introduced in Section 4.3.2 prohibits that the
absolute event times and clock offsets are determined from the log files. This also holds
for the simplified estimator considered here. From the offset ambiguity, it is easy to see
that there is also no way to estimate the relative time between two separate partitions
within the same experiment. If there are no anchor points between two sets of nodes,
there will be an ambiguity of the offset between these partitions. Thus, in order to get
a bounded maximum estimation error, we need to assume network connectivity in the
sense of anchor points: the network nodes do not fall into disjoint partitions, between
which no events are shared.

80

4.3 MLE Timestamp Synchronization

Under such an assumption we can prove that

∀j1, j2 ∈ J : |(oj1 − oj2)− (ôj1 − ôj2)| ≤ (|J | − 1) ·D (4.22)

if D ∈ R+ is an upper bound for the delays, i. e.,

∀(i, j) ∈ R : di,j ≤ D. (4.23)

Note that the bound is on the difference between two estimation errors because of the
offset ambiguity.

The basic idea of the proof is the following. Consider two nodes j1 and j2. Then
it can be shown that there always exists a sequence of unique nodes s1, ..., sn, 2 ≤
n ≤ |J |, s1 = j1, sn = j2, with a special property. In this sequence, for each pair
of subsequent nodes sq and sq+1, there is an event observed by both sq and sq+1,
for which the estimated timestamping delay in sq is zero. This, together with the
nonnegativity of the timestamping delays, allows for the construction of an upper bound
for (oj1 − oj2) − (ôj1 − ôj2). Since j1 and j2 can be chosen arbitrarily, the same bound
also holds with j1 and j2 interchanged. This yields a correspondingly lower bound for
j1 and j2 and thus constrains the absolute value as shown above.

We are also able to show that under the mentioned assumptions the bound is the best
possible, i. e., that no estimator can exist that achieves a smaller worst-case error. This
proof is based on two explicitly constructed worst-case scenarios that result in identical
log files. The point is that although the resulting local log files are identical for the
two scenarios, the clock offsets differ so much that no estimate can be better than the
worst-case bound given above in both cases.

From the bound on the clock offset estimation error it is then quite easy to come to a
similar bound on the event time estimates:

∀i1, i2 ∈ I : |(Ti1 − Ti2)− (T̂i1 − T̂i2)| ≤ |J | ·D. (4.24)

No part of the proof exploits the exponential distribution of the delays. Thus, inde-
pendent of the derivation of the estimator, it shows that if there is an upper bound for
the timestamping delays, the estimates are close to the real values, regardless of the
distribution of the delays within [0, D].

81

Chapter 4 Time Synchronization

Consistency

Differing from the results presented so far, we will now no longer assume an upper bound
on the timestamping delays. Instead, we exploit their assumed exponential distribution.
Under these premises, consistency of the simplified estimator can be established, which
means convergence in probability to the correct offset values for an increasing number
of observed events:

∀j ∈ J : plim
|I|→∞

ôj = oj + x, (4.25)

where x ∈ R again comes from the offset ambiguity.

Similar to the previous results, it is clear that such a result cannot hold if the network
is not connected. We show the consistency of the simplified MLE under an additional
regularity condition, defined as follows. We say that this regularity condition is fulfilled
if there exists an undirected, connected graph G = (J, V) and some positive constant β

such that
∀{j1, j2} ∈ V : E

[∣∣{i ∈ I|{j1, j2} ⊆ Ri}
∣∣] ≥ β · |I|. (4.26)

This precondition can be seen as a somewhat stronger variant of the connectivity as-
sumption used above. It is stronger in the sense that it requires an (in expectancy)
ever-growing number of independent connections between all parts of the network with
an increasing total number of observed events.

In order to prove the consistency result we show that the probability of the likelihood
function having its optimum in an arbitrarily small environment around the correct clock
offset estimates is arbitrarily high for a sufficing number of observed events. The key
idea is to introduce a per-event decomposition of the objective function k(L). Certain
properties of these event-wise objective function terms form the basis of our proof. We
have seen before that k(L) is simply the sum of the d̂i,j for all (i, j) in R. Then a
decomposition of k(L) into event-wise components fi is trivial:

fi :=
∑
j∈Ri

d̂i,j k(L) =
∑
i∈I

fi. (4.27)

We then switch our point of view. We regard the fi no longer as functions of the esti-
mated latencies, but as functions of the estimation error. It is then quite straightforward
to show that all the fi are convex and that they are all Lipschitz continuous with a com-
mon Lipschitz constant. Furthermore, we show that the expectancy for each fi—as a
function of the estimation error—has a global minimum for the correct estimate, and we

82

4.3 MLE Timestamp Synchronization

give a non-negative lower bound for the difference between this expectancy in case of a
non-zero estimation error and the minimum value. All these results in conjunction with
the law of large numbers can then be used to establish the consistency of the estimator:
for a given δ > 0 there is a number of events N such that for |I| > N the probability
that the estimation error is greater than δ becomes arbitrarily small.

From the consistency result for the clock offset estimate, it is easy to obtain a result on
the quality of the event time estimates in the same asymptotic setting. If the estimation
error of the clock offsets is close to zero (neglecting the offset ambiguity), the remaining
event time error for an event i is minj∈Ri di,j . This minimum of the independent,
exponentially distributed di,j is itself exponentially distributed with parameter |Ri| · λ.
In particular this means that the expected estimation error decreases with the number
of nodes observing the same event.

4.3.5 Numerical Evaluation

While the previous section assessed the performance of the proposed time synchro-
nization method analytically, we will now focus on numerical experiments with the
algorithm. In particular, we will show that the asymptotic properties that have been
proven for the simplified estimator hold also for the fully featured version with clock
rate estimates. Moreover, it will become clear that the convergence is quick enough
to yield accurate estimates even for small event counts. Finally, we will show that the
algorithm is robust if the assumptions—in particular the exponential distribution of the
timestamping delays and the negligibility of clock drift—do not hold.

Methodology

Although desirable, using log files from a real testbed for an evaluation that rigorously
quantifies the numerical quality of the calculations and the convergence speed is not
possible: for real hardware, the correct values for the rates, offsets, and event times
cannot be determined. This is why we need post-experiment timestamp synchronization
in the first place. Therefore, we use a two-step simulation in which the correct values
are known. In the first step, the network is simulated to obtain globally consistent event
times and a receiver relation R. Then, subsequently, we simulate the timestamping of
the events in each node. Random clock rates, offsets, and timestamping delays are used
to transform the correct timestamps, yielding a set of per-node log files. Like after a
real experiment, our algorithm is then given these log files as input. The quality of the

83

Chapter 4 Time Synchronization

solution can be determined by comparing the results to the correct times, rates, and
offsets.

How a simulation should be set up for credible network protocol evaluation results is a
highly controversial and heavily discussed topic. Since our focus here, however, is on
supplying the numerical algorithm evaluation with an event set I, event times T , and
a receiver relation R, and not on a realistic performance evaluation of some protocol,
we constrain ourselves to a basic simulation scenario. We use the network simulator
ns-2 [NS2] in version 2.30, which has been extended to support promiscuous mode-like
packet tracing: if a data packet could be successfully decoded by a node’s simulated
wireless interface, the packet is timestamped and logged, regardless of whether the node
was the intended destination or just able to overhear the transmission.

In our simulations, |J | = 100 nodes move on an area of 1200 × 1200 meters according
to the random waypoint mobility model. AODV [PR99] is used as a multihop rout-
ing protocol. Five pairs of nodes communicate continuously over a simulation time of
10 minutes, performing FTP data transfers over TCP connections. The IEEE 802.11
MAC protocol is used at a fixed network bandwidth of 1 MBit/s. The radio range is set
to 250 meters, the carrier sense radius to 550meters.

For the generation of the local node log files, the clock offset and rate of every node
were chosen randomly. The choice of the offset is not at all critical: our implementation
actually exploits the offset ambiguity to achieve improved numerical stability and, as
its first step, shifts all processed log files to start at time zero. Consequently, whichever
offset is chosen for a node, the performed calculations and thus the accuracy of the es-
timates are virtually identical. In our simulations, we sample the offsets from a normal
distribution with mean zero and standard deviation five seconds. For the clock rates,
we used a gamma distribution5 with mean one and different standard deviations. The
gamma distribution has the advantages of yielding only positive rate values, and being
concentrated around the expectancy. The probability density function of a gamma dis-
tribution is depicted in Figure 4.7. Unless otherwise stated, the parameters have been
chosen to yield a standard deviation of 100 ppm corresponding to the maximum devia-
tion that we have encountered during the measurements for the NTP skew correction,

5The gamma distribution is given by the probability density function

f(x; k, θ) = xk−1 e−x/θ

θk · Γ(k)
for x > 0,

where Γ is the gamma function. The gamma distribution has two parameters, called the shape
parameter k and the scale parameter θ. It has mean k · θ and variance k · θ2.

84

4.3 MLE Timestamp Synchronization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 f

(x
)

x

Exponential (λ = 1)
Gamma (k = 3, θ = 1/3)

Figure 4.7: Probability density functions of exponential distribution (λ = 1) and gamma
distribution (k = 3, θ = 1/3).

see also Table 4.1. This means that on average, a clock is wrong by more than eight
seconds per day.

To be able to compare the synchronization results directly with the correct values from
the simulation trace file, the rate and offset ambiguities need to be overcome. As stated
in Section 4.3.2, the normalization constraints lead to scaled and shifted results if the
average inverse clock rate is different from 1, and if the offset of node 1 is different from
0. This scaling and shifting can easily be removed by a linear-affine transformation after
the optimization, based on the average inverse clock rate in the simulation and the offset
chosen for the first node.

Because ns-2 simulates the radio propagation delay, the arrival times of the same packet
at different nodes actually differ slightly. For calculating the event time errors, we
compare the estimated event time to the average ns-2 reception time. The differences
are in the order of 10−7 seconds, and therefore significantly below the other errors that
we are dealing with here.

Convergence and Numerical Accuracy

In our first set of experiments, we simulated the timestamping delays according to our
assumptions, i. e., exponentially distributed. We varied the expected timestamping de-
lay λ−1 between 10−3 and 10−5 seconds, and increased the number of events used for

85

Chapter 4 Time Synchronization

10
-7

10
-6

10
-5

10
-4

10
-3

 100 1000 10000 100000

T
im

e
s
ta

m
p

 e
rr

o
r

(s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

λ
-1

 = 10
-3

 s
λ

-1
 = 10

-4
 s

λ
-1

 = 10
-5

 s

Figure 4.8: Event time errors depending on the number of events |I| and the average
timestamping delay λ−1.

the synchronization. One central result in the previous section was that—at least for
the simplified estimator—we can expect the quality of the estimates to improve if an
increasing number of events is available for synchronization. In a practical implemen-
tation, numerical effects of, e. g., a limited floating point precision, may influence the
results. The primary purpose of our first simulations is to verify that what we have
shown in theory for the simplified case also holds for our practical implementation of
the full estimator, and also to give an idea of the convergence speed.

Figure 4.8 shows the resulting average event time error with 95-percentile error bars.
For better readability of the chart, only the upper part of the error bars is shown. The
x-axis denotes the number of events that have been used for the synchronization. These
have been chosen randomly from all transmissions with more than one receiver. Note
that at the left hand side of the chart, for 100 events, there is only one sent packet
per node on average. The randomly chosen clock errors are quite significant. Still,
the synchronization eliminates them to an extent that allows for accurate event time
estimates. If more events are available for the synchronization, the estimates improve
further quickly, and the average event time errors are one order of magnitude below the
timestamping delays. The convergence is so quick that for 1000 available anchor point
events and more, only tiny fluctuations are left.

From these as well as from our other results, it can also be seen that the extent and the
nature of the timestamping delays constitute the central limiting factor for the achievable

86

4.3 MLE Timestamp Synchronization

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

 100 1000 10000 100000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

λ
-1

 = 10
-3

 s
λ

-1
 = 10

-4
 s

λ
-1

 = 10
-5

 s

Figure 4.9: Rate errors depending on the number of events |I| and the average times-
tamping delay λ−1.

std. dev. of rates avg. rate error 95-perc. max rate error
10 ppm 0.00352 ppm 0.00935 ppm

100 ppm 0.00358 ppm 0.00945 ppm
1000 ppm 0.00355 ppm 0.00927 ppm

Table 4.2: Clock rate estimation error for different clock rate standard deviations (λ−1 =
10−4 s, |I| = 10 000).

event time estimate accuracy. This is a common limitation to any synchronization
solution. The error of the rate and offset estimates, however, tends to zero for large |I|.
This is evident from Figure 4.9, which shows how the rate error develops in the same
setting as before. The figure also displays the different levels of accuracy depending on
the order of magnitude of the timestamping delays. The corresponding results for the
offset estimates show the same behavior. For very small delays with λ−1 = 10−5 seconds
and a high number of available anchor points, it can be seen that the accuracy does
no longer improve linearly; the implementation then approaches its numerical accuracy
limits.

It also turns out that the estimation errors of rate and offset are largely independent from
the true values of these parameters and their spread. For the offsets, this is clear from
the problem structure. For the rates, however, this trait is not immediately obvious.
Tables 4.2 and 4.3 show the accuracy of the estimation results. The small deviations in
estimation accuracy are remaining statistical fluctuations.

87

Chapter 4 Time Synchronization

std. dev. of rates avg. offset error 95-perc. max offset error
10 ppm 1.56 µs 3.84µs

100 ppm 1.50 µs 3.81µs
1000 ppm 1.50 µs 3.96µs

Table 4.3: Clock offset estimation error for different clock rate standard deviations
(λ−1 = 10−4 s, |I| = 10 000).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 4 6 8 10 12 14 16 18 20 22 24 26

T
im

e
s
ta

m
p

 e
rr

o
r

[µ
s
]

Number of receivers |R
i
|

Simulation
Theoretical (λ

-1
/|R

i
|)

Figure 4.10: Theoretical and simulated event time estimation errors depending on the
number of receivers |Ri|. (λ−1 = 10−4 s, |I| = 10 000)

Another theoretical result from the previous section is that the event time estimation
accuracy for an event i increases with |Ri|. More specifically, the result said that for
correct rate and offset estimates, the remaining expected event time error is exponen-
tially distributed with parameter |Ri| · λ, and thus is λ−1/|Ri| on average. Figure 4.10
shows simulation results from log files with λ−1 = 10−4 seconds and |I| = 10 000. They
exhibit exactly the predicted behavior. The chart shows the average event time error
and again the 95-percentile upper error bar, where the events are broken down along
the x-axis according to the number of nodes |Ri| that observed them. The chart shows
also the theoretical average error given by the function x → λ−1/x, and it is evident
that the results match the theoretical expectations very closely.

We conclude that the convergence of the estimate is very quick, and a reasonable syn-
chronization quality can be expected even if only a limited number of anchor points is
available. The results also underline that the numerical performance of our implemen-
tation will not be the limiting factor for the accuracy in practical usage.

88

4.3 MLE Timestamp Synchronization

Robustness

So far, our simulations have used clocks and timestamping delays that match the as-
sumptions made for the derivation of the approach. Now we assess how robust the
estimator is if these assumptions do not hold. We thus use the very same estimator as
before, but generate simulation data that intentionally contradicts the assumptions in
different ways.

The event time estimation errors occurring in these experiments are shown in Fig-
ure 4.11. The results with λ−1 = 10−4 seconds from the previous simulations, where all
our assumptions hold, are used as a “baseline” for comparison (labeled “exponential”).
Since the error bars in particular are difficult to identify in this figure, Table 4.4 pro-
vides a more detailed view on the exact values for |I| = 10 000. As could be expected,
the estimation results with exponential delays are slightly better than those where the
assumptions do not hold.

First, we varied the distribution from which the timestamping delays were sampled.
The result labeled “gamma” shows the estimation error for delays drawn from a gamma
distribution with shape parameter k = 3. The scale parameter θ has been set to 1/(k ·λ).
This yields a mean of λ−1 and therefore allows for a direct comparison to the results with
exponentially distributed delays with the same mean. The probability density functions
of these two distributions are shown in Figure 4.7, both adjusted to mean 1.

In the “multi-modal” simulations we assess the robustness to outliers in the timestamp-
ing delays. The majority of timestamping delays follows an exponential distribution
with λ−1 = 10−4 seconds. 10 %, however, are instead drawn from a gamma distribution
with k = 10 and a mean ten times higher. 1 % are “heavy outliers”, sampled from a
gamma distribution with a mean 50 times higher and k = 100. From these results, it
can be seen in particular that our proposed method is very robust against outliers.

Heterogeneous hardware with different timestamping delay characteristics is simulated
in the “two groups” setup. The simulated network nodes are divided into two groups
of 50 nodes each. The delays are exponentially distributed here, but the values of λ−1

differ by one order of magnitude: one half of the nodes uses λ−1 = 10−4.5 seconds, and
the other half uses λ−1 = 10−3.5 seconds.

We have also simulated the effects of a bad clock accuracy. As stated earlier, clocks
in computer systems sometimes have a rather coarse resolution. In the simulations
labeled “lim. resol.”, the timestamping delays are again exponentially distributed with
λ−1 = 10−4 seconds, but the timestamps’ resolution has been reduced to 0.1 milliseconds

89

Chapter 4 Time Synchronization

10
-5

10
-4

10
-3

 100 1000 10000 100000

T
im

e
s
ta

m
p

 e
rr

o
r

(s
,

lo
g

a
ri
th

m
ic

)

Number of events |I| (logarithmic)

exponential
gamma

multi-modal
two groups

lim. resol.
clock drift
combined

Figure 4.11: Event time estimation errors for increasing I if assumptions do not hold.

distribution avg. timestamp err. 95-perc. max timestamp err.
exponential 9.4 µs 31.6 µs
gamma 30.2 µs 60.5 µs
multi-modal 11.0 µs 35.9 µs
two groups 20.3 µs 38.7 µs
lim. resol. 22.5 µs 46.0 µs
clock drift 24.5 µs 75.8 µs
combined 36.0 µs 93.5 µs

Table 4.4: Event time estimation errors for |I| = 10 000 events
if assumptions do not hold.

90

4.3 MLE Timestamp Synchronization

prior to performing the time synchronization. The estimator again deals very well with
this effect. It is particularly remarkable that the availability of measurements from
multiple nodes with different offsets allows for an estimation of the event times that is
more accurate than the resolution of a single node’s clock.

The “clock drift” simulations show the effect that randomly drifting clocks have on
the accuracy of the estimates. Instead of linear clock functions, we use second order
polynomials. Clock drifts are chosen independently from a Gaussian distribution with
mean zero and standard deviation 3 · 10−9. With this, the speed change of a clock
can easily sum up to several ppm during a ten-minute simulation. Nevertheless, as our
results show, the effect on the synchronization accuracy is very limited.

Finally, the “combined” simulations incorporate all of the above sources of inaccuracies.
In this data set, the timestamps are delayed according to the outlier-prone “multi-
modal” distribution, there are two groups of nodes with different expected timestamping
delays like in the “two groups” simulations, the simulated clocks drift as described
above, and the timestamps’ resolution is again limited to 0.1 ms. Even this combination
of effects—all of which heavily contradict the foundations on which we have initially
built our method—results in a degradation of the estimation quality by substantially
less than one order of magnitude.

In summary, the estimator has proven to be very robust and yields sensible results also
if the various assumptions made for its derivation do not exactly hold. Although the
quality of the estimates degrades to a certain extent as could be expected, they are still
very good, and the estimator converges quickly to a high accuracy in all cases.

4.3.6 Real-World Experiments

The previously presented robustness assessment has shown that our proposed time syn-
chronization method is able to deal well with a whole range of adversarial effects in the
log data. Still, however, these evaluations were based on artificially generated simula-
tion data. We will thus now complement them with an application of our method to
real-world experimental data. While this does not allow to rigorously determine the re-
maining errors due to the unknown true values, it nevertheless provides a good intuitive
understanding and shows how well the method can handle real data.

Our experimental setup consist of seven PCs with rather heterogeneous hardware both
in terms of CPU/memory and the wireless interface card. One of these nodes peri-
odically broadcasts one packet per second, over a total of 20 minutes. The other six

91

Chapter 4 Time Synchronization

-200

-100

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 [
m

s
]

Packet ID

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 4.12: Unsynchronized timestamp differences in real-world experiments.

record and timestamp the received packets. Initially, the offsets have been reduced by
approximately setting the clocks by hand.

In our figures, we use one of the receivers as a reference, and plot the differences in
the recorded timestamps between this receiver and the other five. Figure 4.12 shows
how—for unsynchronized clocks—this difference develops during the experiment. The
almost exactly linear relative clock errors are clearly visible. Where the lines in the plot
are interrupted, the respective nodes have missed packets.

The data from the above experiment has then been used as input for pcapsync, an
implementation of our approach for real-world log files that will be presented in Sec-
tion 4.5. This synchronization yields estimates r̂j and ôj for the rates and offsets of
the six receivers. We use those to eliminate the estimated linear clock deviations from
Figure 4.12, by computing

ti,j − ôj

r̂j
≈ Ti + di,j (4.28)

for each timestamp. In Figure 4.13, we show the results of this correction. Again we
plot the timestamp differences to the reference node, the y-axis uses the same scale as
in Figure 4.12.

The approximation in (4.28) is exact if the estimates r̂j and ôj of rj and oj are exact.
Remaining clock deviations or estimation errors would therefore be visible in Figure 4.13:
they would result in remaining timestamp differences to the reference node.

92

4.3 MLE Timestamp Synchronization

-200

-100

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 [
m

s
]

Packet ID

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 4.13: Synchronized timestamp differences in real-world experiments.

That such errors are in fact virtually non-existent becomes clear if we zoom the y-axis
further in, as we do in Figure 4.14. It can be seen that the timestamping differences
are typically in the order of some ten microseconds, with occasional outliers of up
to 1–2milliseconds. There is, however, no sign of a systematic (i. e., rate or offset
estimation) error, like clocks drifting apart over time. This indicates that the rate and
offset estimates are indeed correct.

Note that eliminating the estimated linear clock deviations according to (4.28) leaves the
timestamping delays in the data. In a practical application, our approach would have
been able to also eliminate long timestamping delays with very high probability. Recall
that given exact rate and error estimates, it removes all but the shortest timestamping
delay that occurred for events with multiple observers. Since we do not know the true
times of the packet receptions in the experiment, we cannot tell how large exactly the
then remaining deviations are. It seems reasonable, however, to assume that the smallest
timestamping delay for a packet is within the same order of magnitude as the minimal
timestamp difference to the reference node6. Considering (4.28) this difference is simply
the difference of two timestamping delays. In the discussed experiment, the average of
the per-packet minimum timestamp difference is 5 microseconds; for 95% of the packets,
it is below 29 microseconds.

In order to examine the impact of clock drift, we have performed a second experiment

6This does of course not hold when the minimum path delay is included in the timestamping delay.
This, however, is not a problem here: recall from Section 4.3.1 that the minimum path delay in a
node is equivalent to an additional clock offset, and may thus be eliminated.

93

Chapter 4 Time Synchronization

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 200 400 600 800 1000 1200

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 [
m

s
]

Packet ID

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 4.14: Synchronized timestamp differences in real-world experiments (zoomed).

with a duration of 100 minutes. Note that this significantly exceeds the time span over
which drift can be neglected. The experimental setup as well as the used evaluation
methodology are the same as above. The results of this experiment after correcting the
timestamps according to (4.28) are shown in Figure 4.15. The non-linear deviations—
effects of clock drift—are clearly visible. Nevertheless, our approach provides good
estimates for the offsets and rates. Moreover, 95 % of all timestamp differences are
below 142 microseconds.

4.4 Least Squares Timestamp Synchronization

In addition to the above presented MLE timestamp synchronization, we have developed
an approach that performs the same task with least squares regression. This approach
avoids the assumption about exponentially distributed timestamping delays and we were
able to proof its convergence to the correct values for a fully featured version. We give
a short overview in the following section, for details refer to [JKM+].

By reformulating (4.2) for an event i ∈ I and k, l ∈ Ri it follows that

rlti,k = rkrl(Ti + di,k) + rlok

rkti,l = rkrl(Ti + di,l) + rkol.
(4.29)

94

4.4 Least Squares Timestamp Synchronization

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000 6000

T
im

e
 d

e
lt
a

 t
o

 r
e

fe
re

n
c
e

 [
m

s
]

Packet ID

Node 1
Node 2

Node 3
Node 4

Node 5

Figure 4.15: Synchronized timestamp differences in a real-world experiment with an
overall duration of 100 minutes.

Subtracting the second from the first equation yields

rlti,k − rkti,l = rkrl(di,k − di,l) + rlok − rkol. (4.30)

In (4.30), the unknown quantities Ti are eliminated. To obtain a set of linear equations,
we substitute r̄j := 1/rj and ōj := oj/rj for all j ∈ J . Multiplying relation (4.30) by
1/(rkrl), we obtain

ti,kr̄k − ti,lr̄l + ōl − ōk = di,k − di,l. (4.31)

Consider a fixed pair k, l ∈ J with k > l and where the set

Rk,l = Rl,k := Rk ∩Rl

of events i that are recorded in both nodes k and l is nonempty, Rk,l =/ ∅. By adding
(4.31) for all i ∈ Rk,l we obtain

t̄l,k r̄k − t̄k,l r̄l + |Rk,l| ōl − |Rk,l| ōk = ∆dk,l, (4.32)

95

Chapter 4 Time Synchronization

where

t̄l,k :=
∑

i∈Rk,l

ti,k

t̄k,l :=
∑

i∈Rk,l

ti,l

∆dk,l :=
∑

i∈Rk,l

(di,k − di,l).

(4.33)

We obtain up to |J | · (|J | − 1)/2 equations of the form (4.32). These are summarized in
the matrix equation

M

(
ō

r̄

)
= ∆d, (4.34)

where ō and r̄ denote the vectors of the ōj and r̄j , respectively.

To overcome the existing rate and offset ambiguity, corresponding rows are added to the
matrix as normalization constraints. As an estimator for the unknown parameters ōj , r̄j ,
a least squares solution to the resulting system is computed. Once these estimates—and
thus the rj = 1/r̄j and oj = ōj/r̄j—are readily available, the estimates for the event
times Ti can be obtained, for example, from (4.2) by setting

T̂i = min
j∈Ri

ti,j − oj

rj
= min

j∈Ri

(r̄jti,j − ōj). (4.35)

Under connectivity assumptions similar to the ones in Section 4.3.4, it can be proven
that the least squares algorithm converges to the correct rate and offset values. As
this proof has been conducted with the fully featured least squares algorithm, this is a
significantly stronger result than the proof for the simplified MLE approach. However,
with the same methodology as in Section 4.3.5, the two estimators can be compared
numerically. The results of this comparison are shown in Figure 4.16 and Figure 4.17
for the rate estimation for exponential and gamma distributed timestamping delays. It
is obvious that the MLE approach yields better estimates for both distributions, and
these differences are even more pronounced for the offset estimates in Figure 4.18 and
Figure 4.19.

These results show that the MLE approach yields significantly more accurate estimates
even in cases where the underlying assumptions are not satisfied. The theoretical bounds
that have been derived for the least squares estimator can thus be regarded as an indirect
justification of the MLE.

96

4.4 Least Squares Timestamp Synchronization

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

 100 1000 10000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 4.16: Rate estimation errors for exponentially distributed timestamping delays
with least squares and MLE (λ−1 = 10−4 s).

10
-9

10
-8

10
-7

10
-6

10
-5

 100 1000 10000

R
a

te
 e

rr
o

r
(l
o

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 4.17: Rate estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s).

97

Chapter 4 Time Synchronization

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

 100 1000 10000

O
ff

s
e

t
e

rr
o

r
(s

,
lo

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 4.18: Offset estimation errors for exponentially distributed timestamping delays
with least squares and MLE (λ−1 = 10−4 s).

10
-6

10
-5

10
-4

10
-3

10
-2

 100 1000 10000

O
ff

s
e

t
e

rr
o

r
(s

,
lo

g
a

ri
th

m
ic

)

Number of events |I| (logarithmic)

Least squares
Maximum likelihood

Figure 4.19: Offset estimation errors for gamma distributed timestamping delays with
least squares and MLE (λ−1 = 10−4 s).

98

4.5 Pcapsync

log files

MLE sync

anchor

points

offset/rate sync

other

events

synced log files

offsets and rates

normalization

synced anchor

points

synced

other events

 synced and

 normalized events

Figure 4.20: Structure of pcapsync.

4.5 Pcapsync - Applying MLE Timestamp Synchronization to

Real-world Data

Up to now, it has been just assumed that anchor points can be identified as such. In
the following section, we examine how they can be identified in real-world data. We
concentrate on experiments with IEEE 802.11 networks [802] documented in libpcap
format [LIB] (used by tcpdump [TCP] and wireshark [WIRa], for example), as this
is the most common type of WMN experiment. This method together with the MLE
timestamp synchronization has been implemented in the pcapsync tool. The single steps
for this are shown in Figure 4.20: pcapsync reads a set of libpcap log files, identifies
potential anchor points in them, applies our offline time synchronization algorithm, maps
the recorded local timestamps to a common, global time scale, and finally writes back
a corresponding set of synchronized libpcap files. Its output can thus be immediately
used for further analysis with standard tools. The following section is based on a paper
on pcapsync [MKS+08].

As stated in Section 4.3.1, an anchor point is an event observed and timestamped at
nearly the same moment by multiple nodes. These anchor points are the foundation
of MLE synchronization, and its performance crucially depends on correctly identifying
them. When examining the tracing behavior of libpcap shown in Figure 4.21, it becomes

99

Chapter 4 Time Synchronization

Figure 4.21: Packet recording with libpcap.

Initial transmission

Retransmission

Figure 4.22: Ambiguous reception times in case of retransmissions.

clear why outgoing packets are not suited as anchors. These packets are recorded by
libpcap before being added to the send queue, and the delay from its recording to
its transmission can be quite large, e.g. if the medium is occupied. Thus, a packet
recorded due to a send event marks a different physical event than the corresponding
packet reception(s). In contrast, the logging for received packets takes place after their
reception with a relatively small delay. If several nodes receive and timestamp the same
packet, this happens at nearly the same moment in time. In pcapsync, we therefore
use parallel receptions of the same transmission as anchor points. For a real wireless
network, it is thus necessary to identify groups of timestamped packet receptions in the
libpcap files belonging to the same physical transmission. One central duty of pcapsync
is the identification of such events.

The link layer reliability mechanisms in IEEE 802.11 retransmits unicast packets up to
seven times if an acknowledgment is missing [802]. If multiple nodes receive the same

100

4.5 Pcapsync

unicast transmission7, these events therefore do not necessarily belong to the same
physical layer transmission: for example, as shown in Figure 4.22, it may well happen
that one node receives only the first transmission attempt, while another node receives
only the second one. Unfortunately, it is not possible to record the number of performed
retransmissions in a hardware-independent way. A packet reception log entry does also
not reveal which (re)transmission attempt has been received. Thus, in the specific case
of 802.11, unicast packets cannot be used as anchor points. For broadcast packets there
is no automatic retransmission. Nevertheless, it can happen that identical broadcast
packets recorded in the log files refer to different transmissions since higher layers may
generate multiple copies of the same packet. ARP [Plu82], for instance, often broadcasts
identical requests when the same address is resolved again. However, broadcast packets
generated multiple times can easily be identified using the records about sent packets in
the log files. Consequently, they are not used as anchor points. In summary, pcapsync
is able to use parallel receptions of globally unique broadcast transmissions as anchor
points for the synchronization in 802.11 networks.

Based on these rules, the events that can be used as anchor points and those which are
not suitable for this purpose can be identified and separated. For the anchor points,
synchronized timestamps are estimated by the MLE algorithm. As it also yields esti-
mates for clock rates and offsets of all nodes, the timestamps of all other events can be
corrected by applying a linear transformation. For an event observed at local time t by
some node with estimated clock rate r̂ and estimated offset ô, it can easily be seen from
(4.1) that the corrected timestamp T̂ is given by

T̂ =
t− ô

r̂
. (4.36)

After calculating synchronized timestamps for all events, pcapsync normalizes them
such that the first event in the experiment occurs at time zero. For this normalization,
the globally earliest synchronized event timestamp is subtracted from all timestamps.
Finally, pcapsync writes the data to new, synchronized per-node log files. To simplify
the evaluation and visualization of a network experiment, the tool also offers the option
to write the synchronized data into one global log file.

7Note that this is generally possible if the log files are recorded in promiscuous mode.

101

Chapter 4 Time Synchronization

4.6 Chapter Summary

In the first part of this chapter, we have shown that the clock skew of typical PDA-class
devices can be reduced by two orders of magnitude when NTP skew correction is used.
The clocks’ deviations are reduced from 12 s to 0.2 s over a time of 39 hours. For this, it
is only necessary to let the NTP daemon use a previously generated drift file to correct
the clocks without requiring any connection to an external reference time source. The
non-linear behavior of the clocks that became obvious due to the correction is inherent
to the clocks themselves. We have shown that it can be provoked by changing the
environmental temperature. However, as long as an experiment does not span several
hours with significant temperature changes, the impact of this is rather small. To sum
up, this purely software-based method improves the clock quality to a point that makes
it suitable for the coordination and monitoring of WMN experiments.

In the second part, we then consider offline timestamp synchronization for networks
with local broadcast media. We have proposed a method to combine separate event
log files from nodes in such a network into one single log file with a common time
basis, in spite of deviating local clocks and latencies that occur when the timestamps
for the events are generated. The key issue is how the deviations of the clocks and the
latencies can be addressed without the necessity of additional communication between
the network nodes. Our algorithm utilizes transmissions that have been received by
multiple nodes as anchor points. It has been shown how the synchronization can be
formulated as an optimization problem, and how this problem can be expressed as a
linear program. The special structure of this linear program can then be exploited by
an efficient solution algorithm. We have presented an implementation of a specialized
solver, and comparisons to other LP solvers underline the performance of the employed
solution techniques. Furthermore, we have presented analytical results on the quality
of the synchronization for a simplified variant of the estimator. In particular, these
results include a bound on the maximum possible synchronization error, depending on
the maximum timestamping delay, and a consistency proof. A subsequent numerical
evaluation shows that the convergence to accurate estimates is quick, and that the
solver is robust even if the underlying assumptions do not hold. The performance of
this first approach is also underlined by the numerical comparison with the least squares
approach that makes weaker assumptions. To apply the generic MLE approach to data
from experiments with wireless multihop networks, we have implemented pcapsync.
The main focus of this tool is the correct identification of suitable anchor points in real-
world data, and we have shown how globally synchronized timestamps can be obtained

102

4.6 Chapter Summary

also for packets not suitable as anchors. With this tool, we have synchronized data from
a number of experiments demonstrating that the MLE estimator is able to correctly
handle real-world data in the presence of timestamping delays and clock drift.

We consider the presented MLE approach generally applicable whenever event data is
distributed over multiple sources, and common events can be used as anchor points for
a maximum likelihood timestamp synchronization. Apart from supporting the inter-
pretation of experimental results in networks with local broadcast media that we have
primarily considered, adaptations of the proposed technique for example in the field of
network forensics can be envisioned. Here, data of, e. g., multiple intrusion detection
systems (IDS) or firewall logs can be combined as certain events will often have been
observed in parallel by multiple systems.

103

Chapter 4 Time Synchronization

104

Chapter 5

Trace File Analysis

Chapter Outline

After a real-world experiment or a simulation is completed, it has to be interpreted
based on the recorded trace files. The result of such an analysis are graphs usable e.g.
for scientific publications. As an example for this process, consider the calculation of
the packet delivery ratio between two stations A and B of a protocol X based on data
from a real experiment. For this, the information in the two packet traces has to be
processed by: 1) parsing the traces, 2) removing packets not sent by A or not belonging
to protocol X, 3) counting the number of packets for each time interval in both files,
4) dividing the matching values through each other, and 5) producing a plot of these
values.

Obviously this requires a significant, custom-made processing of the input data. There-
fore, such analyses are most often performed with custom-made software tools written
in scripting languages like Perl, Python, Sed, or Ruby. When such a program is built
from scratch, it can be crafted for the current analysis. However, these programs are
only a by-product of an examination and their creation can be time consuming. As a
result, such analysis programs are often “quick hacks” and lack a good software design,
thus reducing maintainability and reusability. Furthermore, every small change in the
analysis process requires the manual adaptation of the program source code and the
subsequent rerunning of the whole analysis.

After examining our own programs written over the last years for the analysis of simu-
lations and real experiments, it became obvious that a lot of simple as well as complex
operations recur in modified form in nearly each program. Therefore, we have developed
the Extensible Data Analysis Toolkit (EDAT) to encapsulate and reuse these recurring
functionalities in so-called operators. EDAT treats the data to be analyzed as a flow

105

Chapter 5 Trace File Analysis

that runs through a chain of concatenated operators. Each operator in the chain mod-
ifies the incoming data stream and hands the result over to the next operator. EDAT
itself provides more than 50 operators and can be easily extended within a few minutes
by either implementing new operator classes or combining existing operators to more
complex ones. The tool can produce graphs in postscript-format and features a graphi-
cal user interface to combine operators by simple drag-and-drop. EDAT is designed for
1) the rapid development of analyses with 2) detailed control over the whole process
of data manipulation with 3) the same power as directly programming it in a scripting
language. The toolkit is in productive use and has already been used for the analysis
of our own experiments, among them those for the different time synchronization ap-
proaches in Chapter 4 and for the repeatability examination in Chapter 6. A paper on
the toolkit is in preparation [KCWM].

5.1 Related Work

The tasks in the post-experiment analysis based on recorded data can be divided into
parsing, processing, data modeling/mining, and visualization. After extracting the raw
data from a collection of files in the parsing step, this data is processed by combining,
filtering, and transforming the information. Data modeling/mining is the application
of statistical methods or clustering techniques to discover patterns and dependencies in
the data, and visualization consists of producing a two or three-dimensional graphical
representation of the result.

The processing on a per-packet basis is supported by network tracers like tcpdump [TCP]
or wireshark [WIRa] in an offline-mode. In this mode, packets in capture files can be
filtered, and these tools also provide some basic manipulation of the files’ content like
cropping or altering packet timestamps. If the data has been parsed and inserted into a
relational database, processing can also be performed by means of SQL with operations
like joining or averaging. For more complex processing, the network data mining tool
CoMo [Ian06] can be used. CoMo manages the recording and storage of raw capture
data as a data flow and provides callbacks in this flow. Via these callbacks, the user
can insert custom functions written in C to implement the analysis.

The idea to combine generic elements to a processing pipeline can already be found
in tools like the Unix shell bash or in dataflow programming languages. Here, we
concentrate on tools that are somewhat related to the task of network data analysis and
that use this approach mainly for visualization or data mining. Huginn [SFT+05], a

106

5.2 Philosophy, Architecture and Implementation

3D visualizer for simulation trace files, allows to combine a predefined set of processing
components within a fixed pipeline. The resulting information is used to alter the
properties of the displayed network nodes. In the data mining tool KNIME [Kni],
the necessary statistical calculations are created by graphically combining processing
components. KNIME also supports simple (pre-)processing of the input data, e.g., via
filtering or sorting. For more complex processing however, KNIME would have to be
extended with new components. As their creation requires a lot of work [Kni] this may
be too time consuming for an analysis process requiring such extensions on a regular
basis. OpenDX [OPEa] is a data visualization tool for 2D or 3D plotting and also
allows the production of animations. It provides a visual program editor to configure the
plotting with predefined, connectable components. LabView [lab] is a commercial visual
programming language mainly used to build measurement and control applications. The
analyses provided by LabView concentrate on the description of physical phenomena,
e.g., by means of signal or image processing or wavelet transform.

Instead of providing a framework to create analyses, TraceGraph [TRA] defines stan-
dard evaluations. This trace file analyzer is designed for files produced by the network
simulator ns-2 and supports over 200 different analysis types. If the data has already
been processed, plotting can be performed with gnuplot [gnu]. It requires an input
file in a table style format and some configuration parameters and is able to plot the
corresponding graph in a large number of output formats.

5.2 Philosophy, Architecture and Implementation

An examination of custom-made, handwritten programs for the analysis of network
simulations and experimental traces shows that these programs share a lot of similar
functionality. Instead of implementing each of these recurring operations from scratch
upon design of a new analysis, EDAT provides a framework to encapsulate them in so
called operators. These operators can be combined to form a data processing pipeline
where the data is handed from one processing element to the next and successively trans-
formed in each step. To adapt to the processing needs, each operator can be configured
by means of certain parameters. With this approach, an analysis is a concatenated
sequence of operations on the input data.

107

Chapter 5 Trace File Analysis

Figure 5.1: Screenshot of the EDAT GUI. The analysis shown on the workbench pro-
duces a plot of the number of packets a node has sent per second.

5.2.1 Graphical User Interface

A data processing pipeline is created with the EDAT graphical user interface (GUI) as
shown in Figure 5.1. The GUI provides boxes as visual representations of the operators
that can be added and combined by simple drag and drop. The user interface is divided
into four main areas, the operator library on the left, the workbench in the center, the
operator inspector on the right and a result and feedback view at the bottom. Once
an operator is on the workbench, selecting it shows its current configuration in the
inspector. To integrate an operator into the analysis, its input and output ports must
be connected to other operators. Existing connections are represented by lines drawn
from an output port at the bottom of one box to an input port at the top of another
box. Each of the boxes provides a context menu to delete the operator or view and
modify the operator’s source code. The “execute” entry in the context menu triggers
the processing of this operator. The result is then shown in the text box at the bottom,
allowing for an inspection of the data in the flow.

A noteworthy feature of the EDAT GUI is operator folding that allows to create a new
operator by combining other operators. As a simple example, imagine that an analysis
of all packets with a size between 500 and 1 000 bytes should be performed. To extract
these packets, two consecutive filters can be inserted in the data flow, the first filtering
out all packets below 500 bytes while the second discards all packets above 1 000 bytes.
However, if such a range filter is needed in another analysis, the same two filters would

108

5.2 Philosophy, Architecture and Implementation

have to be configured once again. Instead, these filters can be combined to a new
operator: once they have been selected on the workbench, their context menus provide
the “Create compound operator” option. This inserts a new operator into the library
that internally uses the two filters to perform its tasks. In order to create a generic range
filter, special tags can be used as configuration parameters. Each of these tags is used as
argument of the newly created range filter and internally handed over as configuration
option to the internal filter operators.

5.2.2 Operators and their Data Format

Under the hood, an EDAT operator is implemented as class in the scripting language
Ruby. The input ports are realized as references to other operator objects, and the
remaining configuration is performed via additional constructor parameters. Between
operators, data is exchanged in generic data containers. The format of these containers
is related to the tables of relational databases but allows for “rows” with arbitrary
structure. To this end, each row is implemented as an associative array of key-value
pairs, and all rows together are stored in an array that preserves the input order. The
processing in an operator is performed in three steps: 1) get the container with the
output of the preceding operator; 2) modify the data and put the result in another
container; 3) return the result container to the subsequent operator.

This mechanism is best explained by means of an example: consider an experiment
where packets are transmitted over a network with lossy links. The goal of the analysis
is to calculate the length of the occurring error bursts based on the receiver packet
trace. The corresponding EDAT parser for this trace format produces a data container
in which each row corresponds to one packet. The different header fields are stored as
key-value pairs. A row from this container looks as follows:

{"ip_src"=>192.168.5.50, "time"=>Wed Jul 25 09:03:02 +0200 2007,

"ip_dst"=>192.168.5.255, "id"=>46, ...}

To compute the length of the error bursts, we use the CalculateInterrowDifference

operator. It calculates the difference of the same field between each consecutive pair of
rows. The idea is to compute this delta for the packet-id field: if the id of consecutive
packets (rows) differs by n, n − 1 packets are missing. The implementation of this
operator looks as follows:

109

Chapter 5 Trace File Analysis

class CalculateInterrowDifference < Basic

def initialize(input , key)

super(input , key)

@input = input # preceding operator

@key = key # target field

@delta_key = key + "_delta"

end

def process ()

input_container = @input.getResult () # input data

result_container = Array.new()

previous_row = nil

input_container.each do |row| # loop over input data

if previous_row.nil ?() # first row: no delta ...

row[@delta_key] = nil # ... calculation possible

else # else: calculate delta

row[@delta_key] = row[@key] - previous_row[@key]

end

result_container.push(row)

previous_row = row

end

return result_container # return the result

end

end

The constructor has two input parameters, a reference to the operator that serves as
input and the key to the field for which the difference should be calculated. The whole
processing is then performed in the process method. The call to the getResult method
of the preceding operator triggers this operators’ process method and returns the input
data container. The calculation of the difference is then performed in a loop over all
rows in this container. The result is stored in a new container and returned at the end
of the method.

With the correct configuration, this operator transforms the input data into

{"ip_src"=>192.168.5.50, ..., "id"=>46, "id_delta"=>36, ...}

{"ip_src"=>192.168.5.50, ..., "id"=>54, "id_delta"=>8, ...}

where the new field id delta contains the delta between consecutive ids. In the current
example this difference is eight, thus a total of seven packets have been lost between
these two successively recorded packets.

110

5.2 Philosophy, Architecture and Implementation

5.2.3 Creating an Analysis

From an implementation point of view, an analysis is a concatenation of operator in-
stances in a stand-alone Ruby script. This script consists of commands to instantiate and
configure the different operators and a call to the last operators’ getResult method. If
the GUI needs to execute an analysis, it generates the corresponding script and then ex-
ecutes it in a separate process. Due to this architecture, an analysis can also be invoked
from shell or Ruby scripts to perform batch processing, or it can even be integrated into
other programs.

5.2.4 Example Operators

Up to now, the general architecture of EDAT and the idea behind the operator concept
have been described. In order to get an impression of the capabilities of this concept
as well as on the different operations that are already supported, this section presents
some of the operators implemented up to now.

In our experiments, it was often necessary to partition the input data into subsets and
perform a certain operation on each subset. An example is the calculation of delivery
ratio per second, where the packets sent in a certain second are the subset and the
operation is counting these packets. This operation is implemented by the GroupBy

operator that is inspired by the group by clause of SQL. It builds such subsets and
executes an operator on each subset. However, it is not limited to simple aggregate
functions but can also apply any operator to the data in the groups. Similar to GroupBy,
the Join operator is inspired by the corresponding SQL expression. Join combines or
matches the input from two flows to one flow based on a configurable key that serves as
join-criterion. The problem of duplicate keys that occurs when two rows of data with
the same content are joined is solved by appending “1” or “2” as a suffix to each key.

In order to interact with an SQLite database, the SimpleSQL operator can be used.
It is configured with an SQL statement and returns the result in the well-known form
of an array of hashes. Furthermore, there also exists an Insert operator to load the
data in the flow into an SQL table. For this, the structure of the flow is analyzed
and an appropriate table is created, then the single lines are inserted into this table.
A concatenation of these two operators even allows arbitrary SQL statements to be
executed on the data in the flow: Insert integrates the data in the database and
SimpleSQL executes the target query.

111

Chapter 5 Trace File Analysis

The important task of visualizing analysis results is performed by the PlotAll operator.
It is designed to produce two dimensional plots with one or more curves. To do this,
the operator assumes that each row in the input flow contains the data for one point
on the x-axis. The field representing this point can be configured as one of the input
parameters. All other values in a row are plotted as data points that belong to the
configured x-value. The plotting itself is performed by gnuplot: the preprocessed data
is written to a file in appropriate format and then an instance of gnuplot is created for
plotting. As the gnuplot files as well as the resulting postscript graphs are stored in the
filesystem, PlotAll implicitly creates a chronologically sorted archive of all plots.

5.3 Advanced Features

5.3.1 Automated Caching

When analyzing data and working with it, a user often just changes the parameter of
one operator (e.g., the scope of a filter) and re-executes the whole analysis to examine
the influence on the result. Furthermore, most analyses are developed in a step-by-step
process in which the user adds a new operator to the end of the current analysis-flow and
then re-executes it to examine the output. In both cases, the same calculations would
be repeated over and over again, a rather time consuming task when large amounts of
data are processed.

To cope with this, EDAT supports the caching of previous computations. This is im-
plemented in the base class Operator from which all other operators are derived. Thus,
newly created operators automatically inherit this feature. For the caching, the result
of a computation is serialized and written to a file-system directory. If the configuration
of an operator has changed, a recalculation is necessary, otherwise the result can be
loaded from the cache. To determine whether a recalculation is necessary, EDAT uses
a fingerprint of the operators’ configuration that changes as soon as the configuration
parameters change. Depending on their type, these parameters are treated differently
when included in the fingerprint: 1) in order to determine whether the input provided
by another operator has changed, its fingerprint is used. 2) If the parameter is a file,
the modification timestamp is considered. 3) Parameters like strings or numbers can be
directly included. All this different information is then concatenated. In order to avoid

112

5.3 Advanced Features

that the fingerprint becomes too large due to these concatenations, an md5sum [Riv92]
over all these values then represents the operators’ fingerprint1.

5.3.2 Executable Pieces of Code

As EDAT is implemented in a scripting language, it is possible to configure operators
with pieces of code that are evaluated and executed at runtime. In contrast to a compiled
language like C/C++ or Java in which the operations must be specified at compile time,
this allows for more generic operators. With EDAT, the data can be modified in ways
that would normally require a significant amount of manual programming. For example,
in one of our experiments packets of varying size have been sent over a multihop network.
To allow for a unique identification as a packet travels from node to node, each packet
carries a consecutive number. This number is wrapped in a UDP packet that is itself
wrapped in an IP packet. Extracting this number thus requires to take the payload of
the IP packet (i.e. the UDP packet), strip the eight UDP header bytes, and convert the
rest to an integer. For this task, the operator ApplyOperation is configured with an
executable piece of code as third argument:

ApplyOperation.new(output, "ip_data", "[8..-1].to_i()")

The important code snipped from ApplyOperation that performs all the modifications
in the process method looks as follows:

lines.each do |line|

line[@key] = eval("line[@key]" + @operation)

result.push(line)

end

The eval method provided by Ruby evaluates the expression that it gets as argument.
Instance variables start in Ruby with the at sign “@”. In the current example @key

is the second and @operation the third argument of the ApplyOperation constructor.
Due to the above configuration, the performed operation is thus

line[ip_data] = (line[ip_data])[8..-1].to_i()

1Note that a harmful fingerprint collision is very unlikely. For this to happen, 1) an md5sum collision
has to occur and 2) the wrongly loaded result must not lead to a crash of the rest of the analysis.
However, to fully avoid this, caching can be either switched off for the final analysis or the “detect
fingerprint collision” option that verifies the fingerprint can be activated.

113

Chapter 5 Trace File Analysis

Figure 5.2: Configuration of the ApplyOperation operator.

Thereby the bytes starting at position eight until the end are extracted from the payload
and the “to integer” method is applied to the resulting substring. The configuration of
this transformation via the GUI is shown in Figure 5.2. After the data flow has passed
the corresponding operator, the ip data field contains the decoded packet sequence
number instead of the IP payload.

5.4 Case Study

In the introduction to this chapter, the calculation and plotting of delivery ratio has
been used as an example for a standard analysis. How this analysis is conducted with
EDAT will be demonstrated with data from one of our experiments. Here, we use the
libpcap trace files from two laptops equipped with 802.11b network interfaces. The first
laptop broadcasted 80 packets/s and the second recorded these packets with tcpdump.
A screenshot of this analysis on the EDAT workbench can be found in Figure 5.3.

The first half of the analysis shown in Figure 5.3(a) starts with parsing the files and
filtering the packets according to the correct sender address. In the GroupBy operator,
the packets are first sorted according to their timestamps in 5-second buckets, followed
by counting the number of packets in these buckets. After the results are extracted
from the special “GroupBy” data structure, they are joined according to their bucket
id. The data flow now contains lines of the form [value input1 = 416, value input2

= 220, time i = 1185347050] where the first value represents the sent packets, the
second the received packets, and the third the timestamp of the bucket. The second half
of the processing can now be found in Figure 5.3(b). After the ratio between the two
input-values has been added as additional field to each line of the flow, only the fields

114

5.5 Chapter Summary

(a) Part 1 (b) Part 2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120

F
ra

c
ti
o
n
 o

f
p
a
c
k
e
ts

 r
e
c
e
iv

e
d

Time absolute [s]

delta

(c) Graph produced by this analysis

Figure 5.3: Example analysis for plotting the throughput between two nodes.

required for the plot are extracted. The following operator sorts the rows according
to their timestamp which is then normalized to start at time zero. The result of this
analysis as it is plotted when executing PlotAll can be found in Figure 5.3(c).

To get an impression of the impact of caching, the runtime of the above analysis has
been measured and averaged over 100 repetitions. Without caching, analyzing the 14 000
packets in the two files took 3.2 s on a 2GHz Opteron. If caching is activated, the runtime
with empty cache is 5.5 s as new results must be written to the cache files. This improves
if cached data can be reused, e.g., if the bucket size in the GroupBy-operators is changed
from five to ten seconds. Here, the results of the two previous Filter-operators are
reused, resulting in a duration of 2.5 s. This shows the tradeoff: although twice as fast
as the analysis with empty cache, the improvement is only moderate compared to the
execution without caching. This changes if more of the previous calculations can be
reused, e.g., if the delta calculation in the first operator of Figure 5.3(b) is changed to
a subtraction instead of a division. Here the analysis only takes 0.02 s.

5.5 Chapter Summary

In this chapter, we have presented the extensible data analysis toolkit EDAT that is
designed for the evaluation of network simulations and experiments. It follows a flow-
based approach where modular operators are combined to form the analysis. The tool

115

Chapter 5 Trace File Analysis

is easily extensible, comes with a rich set of operators, and has already been used to
produce the graphics for a number of our own scientific publications. Although extending
the tools’ capabilities requires some programming knowledge, analyses that use existing
components can be created by non-programmers with its graphical user interface. EDAT
eases the task of evaluating network simulations and experiments, allowing researchers
to concentrate on the original problems rather than on the development of tools to
analyze them.

116

Chapter 6

Repeatability

Chapter Outline

In Section 2.5, comprehension, correctness and repeatability have been identified as
key requirements of scientific experimentation. A more detailed examination of these
requirements shows that comprehension can be achieved if sufficient information is avail-
able. Thus appropriate tools are required to record this information which also depends
on the experimental setup. Furthermore, an experiment must be correct, for broken
tools, errors with the setup and other problems will corrupt the experimental result. As
demonstrated in Section 3.3.3, a number of such errors can be detected by EXC, thus
improving and supporting correctness. While this shows that solutions for the first two
requirements exist, repeatability (and reproducibility that is founded thereon) has been
neglected up to now.

Repeatability is the “closeness of the agreement between the results of successive mea-
surements of the same measurand carried out under the same conditions of measure-
ment” [TK94]. In existing experiments, most often it was just implicitly assumed that
if all controllable factors are similarly set, i.e. all devices perform the same actions,
also the outcome will be somewhat similar and can therefore be compared or aver-
aged [SBSC03, BCDG05, GKN+04]. However, this is a risky assumption as such ex-
periments take place in an unstable environment where uncontrollable factors play an
important role. For example, the movement of obstacles, changing humidity or inter-
ference from external sources all strongly affect electromagnetic wave propagation and
thus the experiment.

Due to the importance of these uncontrollable factors for the experiments’ outcome,
their influence should be monitored. However, separately monitoring all these factors,
e.g. on the physical layer, can be extremely expensive and it is not clear if and how all

117

Chapter 6 Repeatability

relevant factors can be recorded. Besides, these factors can fluctuate over very short in-
tervals, making it nearly impossible to perform exactly repeated experiments. Instead,
repeatability should be considered and verified at layer two of the ISO/OSI stack as
reflected in the network topology. This has the advantage that all physical layer fac-
tors, even the unknown ones, are represented therein. If the topology is considered for
intervals of appropriate length, also short-term fluctuations can be eliminated. Further-
more, instead of requiring special hardware or modifications to the used software, the
corresponding values can be recorded and calculated with standard tools and devices.

In this chapter, we examine the repeatability achievable on a topological level. For this,
we study the variability of topologies in identically executed experiments. These are
performed back-to-back, i.e. within a short time period to limit environmental changes
influencing physical layer parameters due to long term effects. In the initial step, a
metric to quantify the topological similarity of experimental runs with wireless multihop
networks is developed. It can be computed with link quality information recorded with
standard packet tracers like tcpdump [TCP] for static as well as mobile setups. We then
show that this metric is able to classify repetitions of the same experiment according
to the heterogeneous topology caused by interference and distinct node behavior. This
metric is used to examine – in strictly controlled experiments – how much topology
variations occur in real-world environments. Based on these measurements we are able to
identify classes of links that have a strong negative influence on topological repeatability.
Finally, in a setup with multihop UDP traffic, the relation between an application layer
and the topology metric is examined. The experiments show that it is in fact possible
to repeat experiments with wireless multihop networks.

For this study, it was necessary to combine the different methodologies and tools de-
veloped throughout this thesis: the experiments have been controlled with EXC and
the precise control and repetition of all actions was crucial here. The metric has been
implemented with EDAT components and the evaluation required the pcapsync/MLE
timestamp synchronization. The content of this chapter is based on a paper that is
currently in preparation [KOTM].

6.1 Related Work

In the context of the APE project [LLN+02], the differences of repetitions of experimen-
tal runs with mobile ad-hoc network are considered. For this, signal strength measured
with a custom driver is used to calculate the “virtual mobility” as perceived on the

118

6.2 A Metric for Topological Similarity

radio layer. This calculation results in a two-dimensional time-mobility graph for each
run that averages link quality changes over all nodes. By comparing graphs for different
runs, an experimenter can visually assess the similarity of the average quality change
in the runs. In contrast, our metric works with arbitrary 802.11 interfaces and only
requires layer two information. Similarity is considered on an individual per-link basis,
thus it is also suited for experiments where nodes follow individual movement paths.
Furthermore, our metric quantifies the similarity between run pairs and thus allows for
an automatic comparison of runs.

In [GKHS05], it is demonstrated that the physical layer behavior of different network
interfaces strongly varies and should therefore be calibrated. Furthermore, the authors
examine throughput and signal strength in experimental runs in the ORBIT testbed.
They overlay time/value plots of throughput and signal strength to visualize their vari-
ation and calculate the overall mean and standard deviation in these runs. In contrast
to this descriptive approach for specific experiments, we provide a generic method based
on network topology that considers the influence of interference and mobility.

For network anomaly detection, it has been proposed to view a network as graph and
model changing topologies as series of graphs [SKR99]. Techniques like graph edit
distance are used to discover the one outstandingly different graph (i.e. topology) in
a coarse-grained time series of graphs. By contrast, the examination of topological
repeatability requires that a fine-grained series of differences between graphs considering
the time dimension as well as the average difference be assessed on a per-link basis.

6.2 A Metric for Topological Similarity

For the remainder of this chapter, we assume that an experiment is divided in R runs.
Two runs have a similar type if the used hardware and software, the actions (e.g. starting
of packet generators), and the movements of the devices are similar. However, an equal
configuration is only the prerequisite for repeated, similar runs. The second condition
is the similarity of the resulting topologies that can be used as coarse-grained indicator
for the influence of uncontrollable physical layer factors. If this similarity is high, it can
be assumed that the uncontrollable factors have not changed significantly.

To determine the topological similarity of two runs, we propose a metric quantifying
topology differences and following a bottom-up approach. In the first step, a measure
for the similarity on a per-link basis is deduced. The measures for all links in the run
pair are then combined to an estimate for the whole topology.

119

Chapter 6 Repeatability

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140 160

#
P

a
c
k
e

ts
 s

e
n

t/
re

c
e

iv
e

d

Slot ID (slot size 1s)

Received
Sent

Figure 6.1: Link for a slot size of one second and ten packets/s.

6.2.1 Link Quality

A link in a wireless network is not simply “up” or “down” but rather exhibits a certain
quality that varies over time [LLN+02, ABB+04]. This quality can be determined by
calculating the fraction of packets successfully delivered in a certain interval i. If node
a has sent si packets and node b has received ri out of these packets, the link quality
qab
i is:

qab
i =

ri

si
. (6.1)

To be able to easily compare the quality of a link in different runs, each run is divided
in S similar-sized intervals called slots.

The examination of time variation of loss rates in [ABB+04] indicates that short-time
fluctuations occur for at least a slot-size of one second. Furthermore, if the number of
packets sent is low as shown in Figure 6.1, the link quality estimate will be rather coarse.
To overcome these issues but still be sensitive to movement-induced quality changes, the
quality is averaged over a sliding window in our metric.

Based on [ABB+04] and our own experiences, we parameterize the quality calculation
with a slot size of one second and a window length of five seconds. Thus, the averaged
quality wab

i can be computed as

wab
i =

i∑
k=i−s

qab
k

s + 1
(6.2)

120

6.2 A Metric for Topological Similarity

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a

lit
y
 [

%
]

Slot ID (slot size 1s)

averaged quality

Figure 6.2: Link quality of Figure 6.1 after averaging with a sliding window of five
seconds.

where

s =

i, i < 4

4, i ≥ 4

The quality for a link over the whole run is then ~ab = {wab
i |i = 0, ..., S − 1}. For the

link in Figure 6.1, this results in a quality as shown in Figure 6.2.

6.2.2 Comparing Links

The next step is to assess the similarity for the same link in different runs. The problem
is visualized in Figures 6.3 and 6.4 that show the qualities for two links A and B together
with the inter-run differences. For a human, it is possible to discover that link A only
has small differences and that this difference is stable while link B shows large differences
and intermediate fluctuations. However, for an automatic comparison it is necessary to
quantify this in a single figure. Therefore we decided to separately calculate measures
for the two intuitive dimensions difference and fluctuation and then combine these to
an overall measure for link similarity.

The basis for these measures is the difference of the link qualities as it is also displayed in
Figures 6.3, 6.4, and 6.5. It can be calculated as dab

rj = | ~abr− ~abj | and will be abbreviated
as d = dab

rj in the following. The first dimension, difference can then be expressed as

121

Chapter 6 Repeatability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a

lit
y
 [

%
]

Slot ID (slot size 1s)

Run 0
Run 5

difference

Figure 6.3: Link A with small differences and high similarity.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a

lit
y
 [

%
]

Slot ID (slot size 1s)

Run 0
Run 5

difference

Figure 6.4: Link B with high differences and small similarity.

122

6.2 A Metric for Topological Similarity

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a

lit
y
 [

%
]

Slot ID (slot size 1s)

Run 0
Run 3

difference

Figure 6.5: Link C with abrupt quality change in run 3.

average of these differences:

diff =

n∑
i=0

di

n
(6.3)

For link A in Figure 6.3, this is 3.8%, and the link in Figure 6.4 has an average difference
of 35.1%.

The intuition to be expressed in the calculation of fluctuation is that a link with a stable
difference of 10% between two runs is more similar than a link that has no difference
at all during 90% of the time and a total outage during 10% of the runtime. For this,
consider the example link in Figure 6.5. The average difference here reaches a value
of 25.0% suggesting a higher similarity than the 35.1% average difference of the link
in Figure 6.4. However the total outage in the first 40 seconds of run 3 can have an
especially severe impact. To appropriately consider such cases, the variance can be used
because it captures the dispersion of the values and overweights outliers. However, in
order to assess the spread of link quality in the same unit as the quality itself, the
standard deviation (the square root of variance) is used:

fluct =

√√√√√√n ·
n−1∑
i=0

di
2 −

(
n−1∑
i=0

di

)2

n(n− 1)
(6.4)

For link A in Figure 6.3, this standard deviation is 2.8%, link B in Figure 6.4 has a
value of 19.0% and the link in Figure 6.5 has 37.4%.

123

Chapter 6 Repeatability

Together, average difference and standard deviation allow to measure how different the
link has been between the runs and how much this difference changed. In the remainder,
we will call these two figures the average and the deviation of a (link) comparison, or
shorter AD metric and use the notation (avg,dev) to characterize such a comparison.
To quantify the similarity of a link in two runs in a single figure, average and deviation
need to be weighted and combined appropriately. In the remainder of this paper we use
equal weights and characterize the difference by the sum of these values, avg+dev. The
estimate for the link differences is thus for link A (3.8,2.8) = 6.6%, for link B (35.1,19.0)
= 54.1%, and for link C (25.0,37.4) = 62.4%.

6.2.3 Comparing Runs

Based on the AD values of single links, the overall similarity of a run pair is computed
by averaging these values. The lower this average, the smaller the overall difference and
the higher the similarity between the runs. Depending on the type of experiment and
the links that are used, this evaluation can be based on all n · (n − 1) links or on a
subset thereof. The latter allows to focus on certain parts of the topology, e.g. on the
path from a sender to a receiver, and to exclude other links. This can be helpful if these
links are far away or otherwise do not influence the path but would negatively effect
the expressiveness of the AD similarity metric. In this case we speak of examining the
relevant links.

6.2.4 Applying the AD Metric to Real Data

As link quality can only be calculated when at least one packet is sent in the corre-
sponding time interval, slots in which no packets are sent need to be considered. One
approach is to appropriately design the experiment such that no empty slots occur.
However, this limits the range of experiments that can be examined. Furthermore, even
with a permanent packet source, it can still happen that no packets are sent, e.g. be-
cause the receiver of a unicast packet cannot be reached. In our own experiments, we
therefore use linear interpolation to cope with empty slots.

With the AD metric, it is possible to compute similarity estimates for all run pairs in
an experiment. However, comparing these estimates for all runs manually can become
quite laborious as the number of possible combinations grows quadratically. On the
other hand, this task cannot be fully automated. The resulting estimates are a relative
measure where it is difficult to give absolute numbers for “similar” or “non-similar”. The

124

6.3 Experiments

assessment of similarity also should consider the experimental conditions. Therefore, we
use a graphical representation of the similarity estimates that will be called AD plot in
the remainder. For this, the similarity estimates between all R·(R−1)

2 run pairs in an
experiment are sorted and then plotted as shown in Figure 6.10. The x-axis shows the
IDs of the compared runs while the y-axis displays the AD similarity estimate for this
pair. If all runs in an experiment are very similar as in the left half of the figure, the
curve is flat and does not exhibit major jumps. A steep curve and abrupt jumps like in
the right half indicate that the topologies exhibit more differences.

6.3 Experiments

All of our experiments have been executed with EXC to guarantee for runs as similar
as possible. For the mobile experiments, we used the EXC node GUI so that the person
carrying the device could precisely follow the movement path. All devices in the network
used Linux as operating system and the integrated IEEE 802.11b cards in ad-hoc mode
as network interface. The laptops used were IBM Thinkpads and the personal digital
assistants (PDAs) are ARM-based Sharp Zaurus devices. For every run type, a total of
ten repetitions have been performed.

6.3.1 Validation of the AD Metric

To validate our metric, we have performed an experiment with deliberately provoked
interference. For this, the laptops 52-55 where distributed on our office floor as shown in
Figure 6.6. The microwave displayed in the graph operates in the same frequency band
as our networking hardware and therefore produces some interference when running. A
run in this experiment has a duration of 60 seconds. In runs of type A the interferer
was switched off while it was switched on in runs of type B. Each node broadcasted
40 packets/s with a size of 100 bytes and recorded all incoming packets. The strongest
reaction on the provoked interference can be observed between the nodes 54 and 55, see
Figure 6.7. In each second run (runs of type B with interference), the quality for 54→55
is 40 to 70% while it exceeds 95% in type-A runs. In contrast, the opposite direction
55→54 is not affected.

The AD plot for all of the 190 possible comparisons between runs of type A and type
B can be found in Figure 6.8. As the links in the two run types behave differently,
the 90 comparisons for which the AD metric computes the lowest differences are those

125

Chapter 6 Repeatability

Figure 6.6: Positions in the validation experiment.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

L
in

k
 q

u
a

lit
y
 [

%
]

Time of concatenated runs [s]

54->55
55->54

Figure 6.7: Link quality of the links 54→55 and 55→54 in the validation experiment.
Each dot marks the average over ten seconds.

126

6.3 Experiments

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

A
D

 [
%

]

 Run-pairs of the same type Run-pairs of different types

(3)

Figure 6.8: AD plot for all runs pairs in the validation experiment.

Figure 6.9: Setup in the basement experiment with node 50 as sender.

between runs of the same type (A,A or B,B comparisons). The 100 runs with the
highest differences are those of differing type (A,B or B,A). Thus, the metric is able to
distinguish runs with and without interference solely based on the information that is
available at layer two.

An interesting observation can be made for those comparisons marked in Figure 6.8 with
(3). This group has a higher difference compared to other similar-type run pairs. All
these comparisons take place between runs of type B, i.e. with interference. An exami-
nation of the microwaves’ interference pattern with a Wi-Spy spectrum analyzer [WiS]
reveals that this interference is not constant. Instead, it periodically switches to frequen-
cies outside the 802.11b band with a period 15-20 seconds. This periodicity is reflected
in the link quality and leads to the higher differences if these are not synchronized
between the compared runs.

127

Chapter 6 Repeatability

6.3.2 Static Setup with a Single Sender

To evaluate the behavior of single, isolated links, the next experiment has been con-
ducted in the basement of our university. For this area, we verified with the spectrum
analyzer that the 2.4 GHz interference was low and that no other 802.11 traffic could be
received. As shown in Figure 6.9, we set up seven PDAs and the laptop with the ID 50
as sender. As we use only one sender, the other nodes do not produce packet collisions.
The source broadcasts sequences of packets with fixed, different sizes of 50, 100, 500,
1000, and 1400 bytes at a rate of 80 packets/s.

The AD plot for this experiment is shown in Figure 6.10. The values of about half
of the possible run comparisons are indeed low and close together but there are also
run-pairs that exhibit higher dissimilarity towards the right end of the plot. To localize
the source of these differences, the values of the AD metric for the single links have to
be examined. A graph of this, sorted similarly to the previous AD plot, can be found in
Figure 6.11. This graph shows that there are a number of links that nearly contribute
no error at all while some links are responsible for most of the deviation. The links
with the highest error contribution are those to the nodes 55 and 56. The reason for
this is the bad link quality that varies between 0 and 60% during the experiment. This
bad quality is most likely the result of low signal-to-noise ratio that is affected already
by the slightest change in environmental conditions. The influence on the similarity
between two runs on a link level is shown in Figure 6.12 for the link 50→55. The
quality of the link between the runs 0 and 9 strongly varies and therefore negatively
affects topological repeatability. The AD plot in Figure 6.10 shows that the runs 0, 1,
and 2 are the most different to the right of the visible gap. These are the runs with the
lowest repeatability.

Besides such unstable links, there are three other classes visible: 1) perfect links to the
nodes 51 and 52 with an average difference of 0.7% and a link quality of nearly 100%
throughout the whole experiment, 2) intermediate links to the nodes 53 and 54 with
differences of 3.7% and 6.0% and a quality of above 90% for most of the time, and 3)
a zero link to node 57 that produces no variations as it receives nearly no packets at
all.

In a follow-up experiment on our office floor, a similar setup with one node sending
out 100 byte packets at a frequency of 50 packets/s and eight receivers was performed.
Also in this office environment with more interference, the same link characteristics were
found.

128

6.3 Experiments

 0

 5

 10

 15

 20

6
-4

3
-4

8
-4

8
-3

6
-3

6
-8

8
-5

3
-5

6
-5

7
-9

9
-3

4
-5

6
-7

9
-5

9
-4

6
-9

7
-3

8
-9

7
-5

7
-4

7
-8

8
-2

2
-5

9
-2

7
-2

6
-2

8
-0

2
-3

2
-4

0
-3

0
-1

6
-0

0
-4

0
-5

9
-0

7
-0

1
-4

6
-1

1
-3

8
-1

9
-1

0
-2

1
-5

7
-1

1
-2

A
D

 [
%

]

Figure 6.10: AD similarity for the basement experiment.

 0

 10

 20

 30

 40

 50

 60

 70

6
-4

3
-4

8
-4

8
-3

6
-3

6
-8

8
-5

3
-5

6
-5

7
-9

9
-3

4
-5

6
-7

9
-5

9
-4

6
-9

7
-3

8
-9

7
-5

7
-4

7
-8

8
-2

2
-5

9
-2

7
-2

6
-2

8
-0

2
-3

2
-4

0
-3

0
-1

6
-0

0
-4

0
-5

9
-0

7
-0

1
-4

6
-1

1
-3

8
-1

9
-1

0
-2

1
-5

7
-1

1
-2

A
D

 [
%

]

50->51
50->52
50->53
50->54
50->55
50->56
50->57

Figure 6.11: All links AD metric for the basement experiment, sorted by overall run
similarity.

129

Chapter 6 Repeatability

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

L
in

k
 q

u
a

lit
y
 [

%
]

Slot ID (slot size 1s)

Run 9
Run 0

difference

Figure 6.12: Comparison of the link 50→55 in the runs 0 and 9 in the basement exper-
iment with an AD value of (26.9, 17.3).

From these experiments we can thus conclude that the similar behavior of static links
between different runs has a direct relation to link quality: if this quality is very high
(> 90%) or close to zero, the link will be stable throughout the repetitions while an
intermediate quality leads to strong variations and instability. Thus, the number of
perfect, intermediate and zero links in relation to unstable links strongly affects overall
repeatability.

6.3.3 Mobile Setup in an Office Environment

After examining the behavior in shielded as well as unshielded environments with a
single sender, in the next step we move on to runs with mobility and multiple senders.
As shown in Figure 6.13, we use the roaming node movement pattern here. The three
static nodes 51 to 53 are set up within each others radio range for this and the mobile
node 59 follows the movement path indicated by the displayed line. The track is designed
such that the mobile node looses connection to the static nodes in the outermost areas.
A run has a duration of 160 s. In this setup, each node permanently sends out broadcast
packets at a rate of 10 packets per second with a size of 100 byte.

The interesting point here is the repeatability achievable for links between mobile and
static nodes. The best link for the direction static→mobile (s→m) is shown in Fig-
ure 6.14. The average difference in the link qualities is 3.2% with a standard deviation
of 3.9% resulting in an AD value of 7.1%. The similarity for s→m links is in general

130

6.3 Experiments

Figure 6.13: Positions and movement in the first two experiments with mobility. The
nodes for the first mobile experiment with three static and one mobile node
are marked with circles while the movement and positions for the second
experiment with two different types of runs are marked with triangles. In
both experiments, the mobile node 59 follows the same path indicated by
the line in the corridor.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a
lit

y
 [
%

]

Slot ID (slot size 1s)

Run 0
Run 5

difference

Figure 6.14: The most similar static→mobile link comparison from 51→59 with an AD
value of (3.2, 3.9) in the office setup.

131

Chapter 6 Repeatability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a
lit

y
 [
%

]

Slot ID (slot size 1s)

Run 0
Run 1

difference

Figure 6.15: The most unsimilar static→mobile link comparison from 53→59 with an
AD value of (8.4, 13.3) in the office setup.

rather high: even the s→m link with the biggest difference has an AD value of (8.4,
13.3) = 21.7% as shown in Figure 6.15. In both graphs, the pattern of connected as
well as unconnected phases induced by mobility is clearly visible and exhibits a high
repeatability for the links in the displayed runs. The highest differences between the
curves occur in the transition phases from the connected to the non-connected state and
thus also have the biggest contribution to the AD value. As the links here work in the
same quality spectrum as the instable links, this is not surprising.

For the current experiment, the overall error contribution of the s→m links is lower
than that of all other links. An examination of the connections between static nodes
reveals however that these all belong to the classes of intermediate or unstable links.
This lower error contribution of s→m connections is thus an artefact of the setup that
did not comprise perfect links. Another observation can be made for the m→s links in
this experiment. In only 9% of all possible run combinations, these links have a higher
similarity than the links in the opposite direction. In the vast majority however, their
repeatability is much worse.

Based on these experiments, several general observations can be made: 1) Static links
with a high delivery rate (well above 90%) are very stable. 2) Static links with interme-
diate and low delivery rates are likely to vary during repetitions and strongly contribute
to the overall difference. 3) Depending on the quality, mobile links can exhibit a higher
stability than static links. 4) Mobile links exhibit their highest differences in the tran-
sition phase from connected to non-connected states.

132

6.3 Experiments

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

L
in

k
 q

u
a
lit

y
 [
%

]

Slot ID (slot size 1s)

Run 3b
Run 6

difference

Figure 6.16: Comparison of the link 51↔55 for the runs 3b vs. 6 with different movement
patterns. The AD value is (23.4, 29.4).

6.3.4 Mobile Setup with Runs of Different Type

In order to examine the effect of slight topology changes on repeatability, we performed
an experiment with two types of runs. For both configurations, the setup consists of four
static and one mobile node that follows the same path as in the previous experiment.
The detailed setup is also shown in Figure 6.13. In runs of type A, the mobile node 59
directly starts to follow the indicated path when the run begins, whereas this is delayed
for ten seconds in type B runs. In both run types, each node broadcasts 20 packets of
100 bytes per second and all other settings are equally similar. Thus, the only difference
between the two types is the 10 second delay in starting the movement of the mobile
node. We have performed ten runs of both type A and B, each with a duration of
170 s.

The effect of this small change in the mobility pattern on the similarity of mobile links
is severe, as can be seen in Figure 6.16. The graph shows the comparison of link 51→55
for the runs 3b and 6a. Similar to the delayed movement, the link-quality curves are
shifted by 10 seconds between the different run types, resulting in a large AD value
of 52.8%, and thus a large difference. This effect is equally pronounced for all links
between mobile and static nodes, see Figure 6.17. It shows the AD values for all these
links, sorted according to their average, for all 190 possible run combinations. The
combinations on the left of the gap are those for runs of the same type while those
to the right with an AD value of well above 40% are combinations of differing type.
Thus, already small changes in the movement can have a severe impact on topological
repeatability.

133

Chapter 6 Repeatability

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

A
D

 [
%

]

 Run-pairs of the same type Run-pairs of different types

52->55
53->55
51->55
55->51
55->52
55->53
54->55
55->54

Figure 6.17: The AD values for all links between mobile and static nodes in both direc-
tions.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120 140 160 180

A
D

 [
%

]

 Run-pairs of the same type Run-pairs of different types
 (incl. 7B other B types)

(3)

Figure 6.18: Comparison of all possible combinations of type A and type B runs sorted
according to the average link difference (AD metric). Part (3) represents
runs of type A with run 7B.

134

6.3 Experiments

 0

 20

 40

 60

 80

 100

3
b

-0
b

1
b

-0
b

3
b

-1
b

3
b

-2
b

6
b

-0
b

6
b

-3
b

2
b

-1
b

6
b

-1
b

2
b

-0
b

9
b

-8
b

4
b

-0
b

6
b

-2
b

4
b

-3
b

5
b

-4
b

6
b

-4
b

4
b

-2
b

6
b

-5
b

4
b

-1
b

5
b

-0
b

5
b

-3
b

5
b

-2
b

0
b

-8
b

6
b

-9
b

0
b

-9
b

6
b

-8
b

5
b

-1
b

1
b

-8
b

1
b

-9
b

3
b

-8
b

2
b

-8
b

3
b

-9
b

2
b

-9
b

4
b

-8
b

4
b

-9
b

5
b

-8
b

5
b

-9
b

7
b

-8
b

7
b

-9
b

7
b

-6
b

7
b

-3
b

7
b

-0
b

7
b

-1
b

7
b

-2
b

7
b

-5
b

7
b

-4
b

A
D

 [
%

]

53->51
52->54
51->53
54->52

Figure 6.19: The AD values for the links 51↔53 and 52↔54 in all type B runs sorted
according to the type-B AD plot.

The AD plot in Figure 6.18 shows that both run types achieve an equal level of repeata-
bility. For the first 81 entries of the graph (read from the left), the similarity values
are close together and only exhibit small variations. All of these entries correspond to
comparisons of runs of the same type, i.e., either comparisons of type A with type A or
B-B comparisons.

With 81 comparisons of similar-type runs, there are a total of nine combinations of the
same type missing. In this case, these are all combinations of run 7B with the other
type-B runs. Two of these are prominently positioned as the two crosses in the middle
of the gap. The others are intermixed with the A-B/B-A comparisons to the right of
the gap. For this diversion the links 51↔53 and 52↔54, all between static nodes, are
responsible. The AD values of these links in type-B runs are shown in Figure 6.19 that
is sorted according to the overall AD value of the run pairs. Also here, the run 7B has
the lowest similarity, the comparisons containing this run are all at the rightmost end of
the plot. Out of all these comparisons, the links 51↔53 still have rather low AD values
for 7B-8B and 7B-9B. As in the basement experiment, three runs should be removed
due to their high dissimilarity. If 7B, 8B, and 9B are left out, the overall range of the
AD values for the type B comparison drops from [6.6, 24.8] to [6.6, 11.6].

The influence of this dissimilarity is also reflected in the A-B/B-A comparisons in the
AD plot for the whole experiment, see Figure 6.18. It is visible as a sharp increase in the
displayed value close to the right border of the graph. In this area marked with (3), the

135

Chapter 6 Repeatability

Figure 6.20: Positions and movement in the experiment with two mobile nodes. The
mobile nodes move along the line in the corridor and start in different
directions.

comparisons of run 7B with all possible runs of type A are located. Thus, the diversion
of the different movement pattern and that produced by the differing links adds up.

The conclusions that can be drawn from this experiment are as follows: 1) Although
the movement is delayed in type-B runs, they achieve equal similarity estimates as
runs of type A and vice versa. Thus the topological similarity for runs with small
variations achieves equal levels. 2) However, these small mobility variations strongly
affect repeatability. 3) The AD metric is also sensitive to movement induced topology
variations.

6.3.5 Two Mobile Nodes

In the next step, a setup with a second mobile node has been examined. For this,
we altered the movement path and increased the distance between the static nodes as
shown in Figure 6.20. In this setup, the two mobile nodes follow the same path but
in opposite directions. Furthermore, a higher number of packets (100 packets/s) have
been transmitted by each node and a run had a duration of 160 s. In addition to the
broadcast packets, the nodes 51 and 54 sent out multihop unicast packets to each other,
however their transmission did not work correctly due to a non-working MAC address
resolution for one of the mobile nodes. Therefore, unicasted packets are examined in
the next experiment and we concentrate here on the repeatability of the link between
the two mobile nodes based on the broadcast packets.

The similarity of this link between different repetitions can be high as demonstrated
in Figure 6.21. It shows the link in direction 69→68 in a run comparison with an AD
value of (4.4, 4.0) = 8.4%. The most unsimilar link comparison in the experiment has an
AD value of (15.7, 13.2) = 28.9% and is shown in Figure 6.22. Although the phases of

136

6.3 Experiments

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

L
in

k
 q

u
a
lit

y
 [
%

]

Slot ID (slot size 1s)

Run 10
Run 2

difference

Figure 6.21: The most similar mobile→mobile link, in this case in direction 69→68. The
AD value is (4.4, 4.0) here.

disconnection are slightly shifted here and the quality in the connected phases exhibits a
higher level of variability, the similarity is still high. This is also reflected by the average
AD values for this link that lie between 17% and 20% for type B runs and between 16%
and 18% for type A runs.

When examining the different types of links, certain patterns can be observed. The
links with the highest similarities all are the static→static links. The only exception
to this being 52→51 that fluctuates between 40% and 95% and 52→53 that has a
strongly varying quality below 60% most of the time. This underlines the statement in
Section 6.3.3 that the low similarity of s→s links was an artefact of the setup there. The
m→s links in most cases have a higher similarity than the links in the opposite direction
s→m. This stands in contrast to the experiment in Section 6.3.3 where the s→m links
had a higher similarity.

6.3.6 Mobility, Unicast and an Application Layer Metric

The experiments presented up to now focused on broadcasted packets and topologies
with a maximum of two hops. Now we examine unicast packets in a scenario with four
hops that is displayed in Figure 6.23. The four laptops (51-54) are set up similar to
the previous experiment and we verified by means of pings that the links 51↔52 and
53↔54 have a high quality and the nodes 52 and 53 were separated until no ping could
be transmitted any more. This results in a disconnected chain. The mobile PDA with
ID 55 moves from one end of the chain to the other and can act as forwarder between

137

Chapter 6 Repeatability

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

L
in

k
 q

u
a
lit

y
 [
%

]

Slot ID (slot size 1s)

Run 6
Run 3

difference

Figure 6.22: The most unsimilar mobile→mobile link, here from 68→69. The AD value
is (15.7, 13.2).

Figure 6.23: Positions and movement of the unicast experiment. The topology consists
of four static nodes and one mobile node. Packets are sent from node 51
to 54 and vice versa, the static route is shown by the (blue) dotted arrows.
The mobile node moves along the (red) line in the corridor and acts as a
connection between the two partitions ({51, 52}, {53, 54})

138

6.3 Experiments

52 and 53 if in radio range of both. To allow for a communication over four hops, the
static route 51↔52↔55↔53↔54 is set up. The nodes 51 and 54 at both ends of the
chain transmit 100 byte UDP packets to each other via this route at a frequency of 20
packets/s, a run has a duration of 170 s. Also in this experiment, two types of runs are
performed where the mobile node delays its movement until second 10 for runs of type
B. In the first half of the experiment, five repetitions of type-A runs are executed and
then five runs of type B. In the second half of the experiment, this order is reversed.
All nodes trace packets in promiscuous mode, thus they also record unicasted packets
that are not directed towards themselves.

In contrast to the first two setups on the office floor, the distances between the static
nodes are much longer, as reflected in the link qualities. There is no link between node
54 and the nodes 51 and 52 on the left of the gap, and also for 53→51, the quality
is close to zero most of the time. However, the link in the opposite direction, 51→53
changes from a bad to a good quality around the middle of the experiment, and the link
53→52 fluctuates during the whole experiment as shown in Figure 6.24. Furthermore,
this behavior is more pronounced for the reverse direction 52→53. Thus, although the
nodes were positioned such that no ping traffic could be transmitted over 53↔52, the
tracing in promiscuous mode still exhibits instable links here. A plot of the similarity
estimates for the links of the mobile node can be found in Figure 6.25. The variability
is much higher than in the previous experiment. This is most likely due to the fact that
the timespan for which these links operate in the critical range between connected and
unconnected state is longer in this setup. As we are interested in the interplay between
single links and multihop behavior on the application layer, only links transporting
packets along the chain will be considered in the following analysis. The relevant links
for the evaluation are: 51↔52, 52↔55, 55↔53, 53↔54.

As metric for the application layer, the delivery rate over time is used, i.e. the percentage
of packets sent in a certain second that arrive at the other end of the chain. An example
plot of this metric can be found in Figure 6.26 for the runs 0a and 3a that achieve one
of the highest AD values in the experiment. The movement of the mobile node is clearly
reflected on the application layer: starting in a connected state, the chain is interrupted
when the node moves out of 53’s radio range. Around second 80, this connection is
reestablished. But then the link to 52 is (nearly) interrupted as the node reaches the
second turning point. At the end of both runs, the chain is fully connected again. As
measure for the similarity of two runs on the application layer, we use the averaged
differences between these delivery rate curves. In Figure 6.26, this difference is shown
as dotted line, the application layer difference for the displayed runs is 5.7%.

139

Chapter 6 Repeatability

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000

L
in

k
 q

u
a

lit
y
 [

%
]

Global time of the experiment [s]

Figure 6.24: Link quality of 53→52 in the unicast experiment. Each point marks the
average over 10 seconds, the runs are clearly visible.

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100 120 140 160 180

A
D

 [
%

]

 Run-pairs of the same type Run-pairs of different types

52->55
53->55
51->55
55->51
55->52
55->53
54->55
55->54

Figure 6.25: AD values for all mobile links in the unicast experiment.

140

6.3 Experiments

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

E
n

d
-t

o
-e

n
d

 d
e

liv
e

ry
 r

a
te

 [
%

]

Time [s]

Run 0a
Run 3a

difference

Figure 6.26: Overall end-to-end delivery rate for both directions for the runs 0a and 3a
with the difference that is 5.7% on average.

The AD plot for the whole experiment together with the similarity of the end-to-end
delivery rate in these run pairs is shown in Figure 6.27. The AD similarity estimate of run
combinations of equal type (A-A, B-B) is higher than that of all the combinations where
the types differ. Thus, also here the AD metric correctly classifies the runs according
to the mobility induced topology differences. However, the transition is not as extreme
as in the previous experiment. Especially the quality fluctuations in the mobile link
52↔55 in runs 7a and 9a have a strong influence and their topological similarity with
other type-A runs is therefore rather low. As consequence, the seven similar typed
comparisons with the highest differences left of the horizontal line in Figure 6.27 all
include either run 7a or run 9a.

The application layer metric shows a strong relation to the topology. In runs of type
B in which the movement is delayed, the delivery rate curves are also shifted in time.
Nevertheless, as multiple links are involved, their differences amplify, resulting in high
variations between the different runs, as shown in Figure 6.27. In comparison to the
similarity estimate of the topology, the curve for the application layer displays high
fluctuations. In spite of these variations, a general trend is visible. The delivery rate
comparison shows small differences for similar topologies (the values on the left of the
plot) and tends towards greater differences if also the topologies are more different.
This visual impression is reflected in the correlation between the two displayed metrics
that has a value of 0.82 here. Considering topological similarity in this experiment thus
allows for the identification of those run pairs in which the application layer metric

141

Chapter 6 Repeatability

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100 120 140 160 180

A
D

,
A

p
p
lic

a
ti
o
n
 L

a
y
e
r

d
if
fe

re
n
c
e
 [
%

]

 Run-pairs of the same type Run-pairs of different types

Application Layer
AD

Figure 6.27: The run comparisons in the unicast experiment sorted according to the AD
metric, only relevant links. The correlation between the AD metric and the
application layer metric is 0.82.

variations are the effect of topology changes.

6.4 Chapter Summary

In this chapter, we have examined the repeatability of experiments with wireless single-
and multihop networks. For this, the AD metric is used that quantifies the similarity of
static and mobile network topologies based on layer two information. We have shown
that this metric produces good similarity estimates and is sensitive to both interference
and mobility induced topology variations. With this metric it is thus possible to identify
runs in which external factors distort the topology. We discovered that certain classes of
links show different behavior with respect to repeatability and found a relation between
topological similarity and similarity on the application layer.

As the WMN community moves from simulative evaluation to tests with real hardware
in realistic environments, experimental methodology becomes increasingly important.
One of the cornerstones thereof is repeatability as it is a prerequisite of valid and sound
experiments. We believe that the presented metric is an essential tool for the validation
of experimental repeatability and that it can also be a starting point for the examination
of reproducibility.

142

Chapter 7

Conclusion

In this thesis, techniques for the experimental evaluation of wireless multihop networks
have been developed. The focus has been laid on solving the practical problems that
up to now prevented the systematic evaluation of algorithms and protocols in realistic
settings.

To this end, existing techniques and approaches have been examined in Chapter 2. These
have been complemented by our own experiences made during the experimental study
of ring flooding and the development of a toolkit to create a radio propagation map of
an experimental area. Based on these experiences, the features of an ideal testbed were
derived.

Chapter 3 presented our own testbed EXC that is purely software-based and follows the
new approach of semi-automatic controlled experiments. We have shown how EXC can
be adapted for a new experiment and discussed the different ways in which it supports
experiments and can be used to discover errors.

Due to their inherently distributed nature, computer network experiments suffer from
the imprecise clocks of the participating devices. In Chapter 4, a number of solutions
to this problem have been presented. For the synchronization of clocks during the
experiment and thus for a better coordination, NTP skew correction has been proposed
and experimentally evaluated. This purely software-based approach improves clock
precision by two orders of magnitude. However, for the investigation of metrics like
round-trip time, this precision is still too low. Therefore we created MLE timestamp
synchronization. It uses a mathematical model of the devices’ clocks and estimates the
parameters of this model based on anchors, i.e. packets received by multiple nodes at the
same moment. We have presented an analytical assessment of the synchronization error,
performed numerical experiments that show the robustness of the synchronization for

143

Chapter 7 Conclusion

cases in which the underlying assumptions do not hold and complemented this evaluation
with a number of real-world experiments. These show that the synchronization error
for standard soft- and hardware is likely in the order of a few tens of microseconds.
Furthermore, we also derived a second solution to this synchronization problem for
which we can proof the error bounds. However, numerical comparisons indicate that
the MLE approach achieves a higher synchronization precision.

In Chapter 5, the analysis of WMN experiments was examined and the extensible data
analysis toolkit EDAT has been presented. It follows a flow-based analysis approach
in which existing components can be combined to an analysis. It is shown in a case
study how EDAT can be used to produce graphs that are directly usable in scientific
publications.

The different tools and methodologies created throughout this thesis are then combined
in a study on the repeatability of WMN experiments in Chapter 6. We discussed the AD
metric that assesses the level of topological repeatability and performed a large set of
experiments with the help of EXC. This study shows that repeatability on a topological
level can be achieved if all controllable parameters are controlled and that runs where
external factors distorted the topology can be identified with the AD metric.

We consider the tools, methods and algorithms created during this thesis as our main
contribution to the field of the experimental evaluation of wireless multihop networks.
The resulting implementations will therefore be made publically available on our insti-
tutes’ website under an appropriate open source license. This allows other researchers
to freely use and adapt these tools for their own evaluations and thus to profit from
our work. We will also support others in setting up their own EXC-based testbeds and
using the tools.

Interest in the experimental evaluation of WMN technology also increases due to its
potential in car-to-car communication. This is best documented by the large amounts
of money that soon will be invested in this area and by the large experiments planned
for the next few years. Among them is a field operational test on a European scale as
well as the German SIM-TD project by a consortium of all major car manufacturers
involving a total of 500 equipped cars. These projects profit from the knowledge acquired
throughout this thesis; the examination about repeatability and the ability to relate
events with sub-millisecond precision are especially obvious assets here. In this context,
a number of research challenges become clear, among them the time-synchronization of
long-running experiments and the extension of the repeatability examination to setups
where cars move in real traffic. As preparation for these experiments, we are currently

144

setting up an EXC-based testbed for inter-vehicular communication in cooperation with
the Volkswagen AG in Wolfsburg. The goal of this effort is to perform tests with up
to ten cars on real roads. At the time of writing, initial tests with a one-car prototype
system are performed and EXC has already been extended to support UMTS-based
out-of-band monitoring.

During our examination of repeatability, it became obvious that the second big challenge
is reproducibility, the ability to reproduce and verify the result of an experiment both in
another environment as well as by other researchers. On the one hand, the question here
is on what level results can be reproduced due to the chaotic nature of electromagnetic
wave propagation. On the other hand, the necessary techniques for the description of
an experiment need to be developed, i.e. an experiment must be described with enough
detail. We believe that considering level two information as proposed for repeatability
verification can contribute to this effort; however, it does not seem to be enough for
achieving reproducibility.

Although we advocated throughout the whole thesis for experimentally evaluating
WMNs, ironically simulations will profit from this work. The need for experimenta-
tion is mainly a result of the insufficient modeling of real-world behavior in simulations,
which in turn results from a lack of understandable, sound experiments. As a conse-
quence of this thesis, we would like to see the detailed calibration of simulation tools
with the results from realistic measurements, and finally the creation and spread of a
closed-loop evaluation approach that encompasses simulation, emulation, and real-world
experimentation.

145

Chapter 7 Conclusion

146

Appendix

147

Appendix A

Overview of Existing WMN Experiments

The following sections give an overview over the WMN experiments examined to derive
the guidebook presented in Chapter 2. It covers work published up to the creation of
the corresponding book chapter [KM07b] and also lists the knowledge acquired through
these experiments.

A.1 Historical Overview

Research on multihop wireless networks (which were initially called packet radio net-
works) started in the early 1970’s. The ALOHA [Abr70] project at the University of
Hawaii was among the first demonstrations of feasibility for using packet broadcasting
in a single-hop system. Based on the knowledge acquired through ALOHA, the DARPA
funded PRNET project [KGBK78, JT87] was started in 1973. PRNET was a multihop
Packet Radio NETwork system that reached a size of around 50 nodes and allowed
some nodes to be mobile. It contained features still present in todays MANETs, e.g.
a routing protocol employing mechanisms that are currently used by DSR and AODV.
Other PRNET features were the remote debugging capability and the ability to re-
motely load code to the nodes. The PRNET was in daily experimental use for at least
ten years [JT87]. An in-depth discussion of the packet radio network technology in the
early to mid 80’s with a special focus on findings of the PRNET project can be found
in the Proceedings of the IEEE, Special Issue on packet radio networks [LNT87].

The follow-up project of PRNET was SURAN (SURvivable Adaptive Networks, 1983-
1990) [Bey90] which had the goal to develop techniques enabling the operation of a
packet radio network in the presence of electronic counter measures. For the SURAN
project, a number of routing algorithms, an in-lab emulator and a real-world demonstra-
tor based on custom made hardware were developed. For the demonstrator, a total of

149

Appendix A Overview of Existing WMN Experiments

180 custom made nodes were produced, the largest experiment with the demonstrator
involved 22 nodes (some fixed, some car mounted, one airborne). The protocols devel-
oped for the SURAN project were intended for large networks with up to 10000 nodes
but these large-scale settings were not evaluated in real-world tests. The knowledge ac-
quired during SURAN was used by the US army to enhance existing radios with packet
switching capability. A survey on further MANET projects and experiments conducted
by the military can be found in [Per01].

With the broad availability of WLAN hardware and small-scale, low-cost portable de-
vices in the late 90’s, interest in MANETs increased dramatically. In the following we
focus on results from that time up to now.

A.2 Wireless Sensor Networks

Wireless sensor networks consist of small, low-power, low-energy (stationary) nodes used
for monitoring parameters such as temperature, humidity, and motion. Algorithms and
protocols for these networks often focus on energy conservation and techniques for data
aggregation. Nevertheless, sensor networks are wireless multihop networks and therefore
face the same fundamental problems.

In [ZG03] a sensor network consisting of up to 60 nodes was used to measure the packet
delivery rate with respect to distance and time in office and outdoor environments. The
authors identified an area in the shape of a ring close to the maximum transmission
range they call gray area. This area covered 20-30% of the radio range. In this gray
area, packet reception was possible but the packet loss rate had a high variance both in
time and space: loss rate varied between 10% and 50%.

The behavior of basic flooding (i.e., every node rebroadcasts each packet exactly once)
has been examined in detail in [GKW+02]. The authors present a sensor network with
over 150 nodes deployed in a dense grid topology. Contrary to expectations, some of the
nodes did not receive the flooded packet. Furthermore, a treelike representation of the
flooding process reveals that the packet was received by some nodes via backward links
(i.e., by nodes farther away from the source than themselves) or via long links (i.e., the
packet is received over a distance longer than the assumed radio range). In a MANET
setting, this behavior could have severe impact on routing protocols such as AODV or
DSR which rely on flooding as a means to find nodes and discover routes.

150

A.2 Wireless Sensor Networks

The authors of [YCK+02] present a sensor network with up to 91 nodes intended to col-
lect votes from congress participants. The measurements were performed in a laboratory
environment on a grid topology. Routing was performed with a single-destination vari-
ant of DSDV: the network’s traffic sink regularly flooded route requests to the network.
With this, the nodes were able to select the best next hop to the sink based on a link
quality metric. The authors discovered significant end-to-end loss rates over multiple
hops. They implemented passive acknowledgments (i.e., a node retransmits a packet if
it does not hear the same packet being forwarded by its downstream neighbor) to reduce
the losses. In a small setup with 24 nodes, the passive acknowledgments decreased the
loss rate. However, in larger experiments with 48 and 91 nodes the loss rate increased.
The authors conclude that congestion caused by duplicate packets was responsible for
this.

In [HKS+04], a 70 node sensor network intended for the tracking and detection of
vehicles is presented. The authors discovered that asymmetric links can lead to instable
reception rates and that an initial idea to overcome this, link layer handshaking, is
expensive. Therefore, they used a different method to avoid asymmetric links. During
the creation of a diffusion tree, spanning all nodes, the packets which allow the nodes
to detect their parents were sent with a lower transmission power. Thus, the nodes
selected parents which are close. The resulting link is therefore symmetric with a high
probability.

In [CBE03], experiments with up to 55 sensor nodes are performed to determine the
radio characteristics of one indoor and two outdoor environments. The gray areas here
span 50% to 80% of the radio range. Furthermore, 5% to 30% of the links were found to
be asymmetric. The authors also present evidence that asymmetric links may be caused
by differences in hardware calibration: when the positions of two nodes connected by
such a link were swapped, the link asymmetry was inverted in 91% of the tested cases.

One of the largest sensor networks has been deployed in the context of the ExScal
project [Aea05] for intruder detection. The network consisted of more than 1000 sensor
nodes and about 200 IEEE 802.11b nodes that served as backbone network, creating
a 2-tier network structure. Each of the backbone nodes was responsible to relay the
messages of a certain number of sensor nodes to a base station. The authors discovered
that the distance vector protocol initially used transported only 33.7% of the sensor
nodes’ messages to the next backbone node. Therefore, the authors switched to LGR
(Logical Grid Routing). LGR selects the routes according to a spanning tree that is

151

Appendix A Overview of Existing WMN Experiments

computed during a setup phase. In combination with a custom transport protocol, 99%
of the sensor nodes’ packets could be delivered to the next backbone node.

Summarizing, the experiments done with communication in sensor networks show that
physical layer effects must be considered when building multihop wireless networks. The
findings on gray areas, asymmetric links and congestion are particularly interesting, since
the number of nodes used in the experiments was comparatively high.

A.3 Mesh Networks

The most mature wireless multihop networks with respect to real-world deployment are
mesh networks. Mesh networks are composed of stationary nodes equipped with radio
hardware and connected to the power supply system. Commonly, their aim is to provide
multihop access to the Internet.

In the MIT Roofnet project [ROO], two scientific mesh networks with up to 29 (indoor)
and 38 (outdoor) nodes have been deployed. On the 29-node indoor network, the prop-
erties of links between 802.11b-equipped nodes were evaluated [CABM03]: out of 124
existing links between the nodes, there were 28 links where forward and reverse delivery
ratios differed by at least 25%. Furthermore, the impact of different packet sizes on the
delivery ratio of single-hop transmissions has been evaluated and it could be shown that
larger packets have a much lower probability of being delivered than smaller ones. It is
also shown that a purely hop-count based selection of end-to-end routes often results in
suboptimal routes [DACM03, CABM03]. Therefore, the outdoor Roofnet network uses
Srcr [BABM04] as routing protocol, a variant of DSR modified to find routes with high
throughput. In [ABB+04] the links in the outdoor network are examined by letting
each node send a number of 1500 byte packets. The authors show that it is difficult to
strictly distinguish between neighbors and non-neighbors as there are a lot of links with
intermediate or high loss rates. Signal-to-noise ratio and distance exhibit only a weak
correlation to the delivery rate and experiments with a physical layer emulator [JS04]
reveal that multipath fading may be responsible for these loss rates. The end-to-end
performance of Roofnet (here with 37 nodes) is evaluated in [BABM04]. Lossy high
throughput links seem to be a good choice in multihop paths as this provides better
overall throughput than high quality links with a low bandwidth. Furthermore, short-
distance, high-throughput links are preferable to long-distance, low-throughput links in
this respect.

152

A.3 Mesh Networks

In [RPD+05] a three-node multi-radio mesh network is studied. As nodes, Linux work-
stations with up to four 802.11b network interfaces are used. It is shown that the
throughput is reduced by up to 33% if more than two network interfaces are installed
in one node (one interface transmits, the other interfaces are only switched to a passive
state). The authors suspect that radiation leaking from the passive cards and board
crosstalk is responsible for this. Then a two-hop experiment is described in which each
hop can be performed on a different channel as the middle node uses two network in-
terfaces. It is discovered that it is not possible to operate the two network interfaces
at full capacity regardless of the channel used. This became feasible with a minimum
antenna separation of at least 35 db (corresponding to 1 m of antenna separation).

The experiments presented in [DPZ04a] study the impact of four different link-quality
metrics on overall end-to-end TCP throughput in a 23-node indoor mesh network. The
two most important of those metrics are hop count and the Expected Transmission
Count (ETX) metric. ETX uses single-hop broadcasts to determine per hop loss rates
and, based on this information, calculates the path with the lowest overall number of
(re-)transmissions. The nodes in the examined network are Windows XP machines
equipped with 802.11a radios. Routing is performed with a variant of DSR adapted to
the corresponding metric. Initial baseline measurements reveal the existence of asym-
metric links in the network: for about 50% of the one-hop links with two directions,
the reverse and forward bandwidth differs by more than 25%1. In the vast majority of
the presented measurements, the ETX metric achieves the best throughput, followed
by the hop count metric and the other two metrics. The only exception to this is a
TCP throughput measurement from a single mobile node carried around the periphery
of the network to one of the static nodes. Here, the hop count metric exhibits a better
performance as ETX does not adapt fast enough to link quality changes. The testbed
was modified for a follow-up experiment [DPZ04b] to support two network interfaces per
node. Initial baseline measurements on the testbed with single-hop transmissions reveal
that two radios of the same 802.11 dialect (a/b/g) in one node interfere with each other
regardless of the used channel. Similar to the measurements presented above [RPD+05],
throughput drops significantly due to this.

Apart from scientific approaches, there are also private mesh networks that mainly serve
as access networks to the Internet. Examples include the efforts to cover the Dutch city
of Leiden [wirb] or the city of Melbourne, Australia [MEL] with a mesh network. Further
information on mesh network implementations can be found at [WIKa, BCG05].

1The radios were allowed to dynamically select their data rate.

153

Appendix A Overview of Existing WMN Experiments

The experiments performed on mesh networks are of particular interest since most of
these networks are in real-world use. Thus very practical issues such as routing metrics
and routing stability is investigated under realistic constraints. As a result the findings
are also useful when considering MANETs.

A.4 Mobile Ad-Hoc Networks

A.4.1 DSR at Carnegie Mellon University, Pittsburgh

The work on the DSR prototype [MBJ99, MBJ00] started in 1998 at the Carnegie
Mellon University. It comprised five mobile nodes installed in cars moving at top speeds
of 40 km/h, a mobile node connected via mobile IP and two stationary nodes installed
671 m apart at opposite ends of the course traveled by the mobile nodes. The nodes
were equipped with 900MHz WaveLAN-I radios with a nominal range of 250m and
GPS for tracking purposes, routing was performed with DSR. To overcome the missing
link layer acknowledgments of the WaveLAN-I radios, acknowledgments on the routing
layer were implemented, lowering the per-hop loss rate from 11% to 5% by means of
retransmissions.

The designers of the DSR prototype identify several tools and utilities which have proven
to be valuable for the analysis and debugging of the prototype [MBJ99]:

• a GPS receiver at each mobile node enabling the tracking of individual nodes

• a visualization tool that displays the status of the nodes and allows a birds view
on the experiment

• tcpdump to track all packets for a detailed post-run analysis2

• a per-packet signal-strength recording

• a per-packet state-tracing, recording the internal states of the used protocols,
namely TCP and DSR

• a MAC filter for emulating movement without actually moving the nodes

2The authors emphasize that the additional processing time due to the usage of tcpdump has influenced
the results of some experiments as this delayed acknowledgments.

154

A.4 Mobile Ad-Hoc Networks

In an initial test of the DSR prototype ping packets were sent from the first stationary
node to the second stationary node via the five nodes circling between them. With a
loss rate of about 5% for the first hop, the overall end-to-end loss rate is reported to be
10%. About 90% of the packets used two and three-hop routes. Due to the variability
in the environment, roughly 10% of the ping packets were exchanged directly between
the two nodes over a distance of 671m producing a loss rate of 22.3%.

During the evaluation of a TCP transfer in a static two-hop scenario [MBJ99, MBJ00],
fluctuating links with a range longer than the specified radio range, a poor quality and a
high variance both in time and space occurred. These links led to poor performance in
the evaluated scenario: three nodes were set up in a chain topology, with the two outer
nodes being positioned such that they were as far away from the middle node as possible
but still able to successfully transmit ping packets to the middle node. Temporarily, the
two outer nodes were able to communicate directly leading to a significant amount of
packet loss. The use of a macfilter prohibiting the use of this one-hop route improved
the throughput by 30%. Therefore, the authors emphasize the necessity of a mechanism
to prevent the use of fluctuating links.

The authors of [MBJ99] also mention some additional general lessons learned:

• packets controlling the routing protocol should be delivered with high priority (e.g.
by implementing multi-level priority queues)

• management of human experiment participants is difficult and time consuming

• wireless signal propagation is highly variable

The DSR prototype implementation was extended to support real-time traffic such as
audio and video [HJ02]. In a network consisting of one mobile and seven fixed nodes
with 802.11 Lucent WaveLAN adapters the mobile node transmitted an audio and a
video stream over up to three hops to one of the fixed nodes. The experiment showed
that the transmission of real-time traffic over an ad-hoc network is possible if the routing
protocol is adapted to the specific scenario.

A.4.2 AODV/DSDV at Sydney Networks and Communications Lab

An experiment conducted with implementations of AODV and DSDV is described
in [CJWK02]. Two routing protocols were tested in a scenario with four fixed and
one mobile node and the roaming node movement pattern. For the experiment Linux
PCs and laptops with 802.11b adapters were used. The maximum transmission rate was

155

Appendix A Overview of Existing WMN Experiments

limited to 1 Mb/s to avoid automatic rate changes by the 802.11b adapters. Further-
more, the adapters were wrapped with metallic anti-static bags to limit the transmission
range to 5m thus allowing in-lab testing3. Two tests were performed in this setup, send-
ing UDP packets from the mobile node to one of the fixed nodes at the end of the chain
and transferring a file with FTP in the other direction. It was discovered that both
routing protocols frequently selected very unreliable links which resulted in poor perfor-
mance. The reason for this problem was that both routing protocols prefer routes with
a low hop count. Implicitly this leads to a preference for unreliable long range links.
The DSDV implementation did not suffer as much as AODV as it used a handshake
before accepting a link. To overcome the unreliable links, the powerwave tool was im-
plemented as a sub-layer below the routing layer: nodes regularly exchange echo packets
with each other to filter those links with a bad signal-to-noise ratio. The authors have
detected two shortcomings in their tool: the high network load due to echo packets and
the insufficient interaction with the routing protocols as they are not informed about
link breakage but have to detect this situation by employing their own timers.

A.4.3 Centibots at Artificial Intelligence Center SRI International, Menlo

Park / University of Washington, Seattle / Stanford University

One of the largest MANETs was deployed within the scope of the Centibots
project [KOV+02]. The goal of the project was to deploy a team consisting of 100
autonomous robots for the surveying of an indoor area. The robots used 802.11b net-
work interfaces, routing was performed with TBRPF, a pro-active link-state routing
protocol. The largest number of robots running at the same time were 72 with a maxi-
mum route length of five hops and a throughput of about 1 Mb/s [Vin04]. The robots
were moving at 30 cm/s in an area of 650 m2. When the experimenters tried to run all
robots at once, the network broke down. The problem was solved by bringing 10 to
18 nodes up at a time. The final reason for this problem was not fully identified, the
experimenters name three potential sources: the network interfaces, TBRPF and the
TBRPF implementation they were using.

A.4.4 GPSR at University of Mannheim

The Fleetnet Router [HFMF03, Mös03, MFHF04] implements the greedy forwarding
strategy of the position-based routing protocol GPSR, i.e. a node selects the neighbor

3Due to the different transmission range, the AODV timers had to be adapted.

156

A.4 Mobile Ad-Hoc Networks

closest to the target as next hop. The target’s position is discovered by flooding a
position request. On reception of the request, the target sends a reply containing its po-
sition. Nodes are installed in cars and have the following components: a Windows-based
application PC, a Linux-based 802.11b router, onboard GPS and GPRS to monitor the
internal state of the node. Furthermore, packets received from nodes farther away
than 220 m are dropped to avoid the fluctuating link problem. In a static three-hop
experiment with the Fleetnet router [MFHF04], it was discovered that the maximum
achievable throughput of 400Kb/s depends on the size of the packets as smaller packets
lead to more collisions. In the same setup with mobile nodes, it has become evident that
unacknowledged broadcasts are often lost. Thus, flooding used to discover the target’s
position took a long time to reach all nodes. Furthermore, the lack of feedback from the
MAC layer about broken links was an issue. In [Mös03], the experimenters evaluated
the router in a static three-hop setup with laptops without the cars and the application
PC and found some additional problems. During one of the test runs, a bursty loss
occurred blocking nearly all packets. The authors suspect interference and attenuation
by large objects between sender and receiver to be responsible for this. Furthermore,
high round trip times occurred for the first packet of each test run. This was due to
process scheduling of Linux.

A.4.5 Routing protocol evaluation at Dartmouth College / Colorado School

of Mines / University of Illinois at Urbana-Champaign / Bucknell

University, Lewisburg

In [GKN+04], an experimental comparison of four MANET routing protocols (APRL,
AODV, ODMRP and STARA) can be found. The network consisted of 40 laptops
equipped with 802.11b cards running at a fixed rate of 2Mb/s. Nodes had GPS re-
ceivers attached to track their position for later emulation and simulation. The nodes
flooded beacons with their own position and timestamped positions of other nodes to
the whole network. Emulation was performed by placing all nodes in the same room
and using packet filtering to emulate a dynamic topology. The experiment itself was
conducted on a rectangular athletic field of size 225×365 meters on which the nodes
were moved around according to the mobile random movement pattern. The results
only take 33 of the 40 nodes into account as seven nodes did not work correctly. The
outdoor experiment revealed that the two reactive protocols AODV and ODMRP deliver
much more messages than the two proactive protocols. However, even those protocols
produced a high overhead and achieved a low absolute delivery rate. The repetition

157

Appendix A Overview of Existing WMN Experiments

of the experiment by means of simulation showed large differences to the real experi-
ment [LYN+04]. This has been extended in [LYN+05] to examine how different radio
layer models affect the simulation results. A simple stochastic radio propagation model
with standard outdoor parameters produces results that are closest to the real exper-
iment while the other models (also those enhanced with the connectivity information
from the experiments) differed more.

A.4.6 DSR at Rice University, Houston

In [STP+05] the authors use unmodified DSR routing code from the ns-2 simulator in
a real network. In order to achieve this, the code is encapsulated in a user-level process
that provides a simulator/real-world packet format converter. Using this technique the
ability to handle real-time video traffic over a mobile ad-hoc network is investigated. The
network used in the experiments consists of four stationary and two remotely controlled
mobile nodes. The communication at each node is performed over 802.11b equipped
Linux laptops that use DSR for routing, the mobile nodes have an additional Windows
laptop that handles the live video. The average packet delivery ratio during the demon-
stration is above 95% at an overall latency of about 30ms, thus validating the presented
implementation technique.

A.4.7 DSR at University of Colorado, Boulder

The MANET examined in [JBD+05] is composed of 10 nodes out of which some are
mounted on remote-controlled miniature airplanes. The nodes are composed of single
board computers equipped with 802.11b network interfaces and GPS, routing is per-
formed with DSR. The authors demonstrate in this work that it is possible to combine
airborne and ground nodes in a MANET. They achieve a throughput of about 250 kb/s
at a latency of 30ms over up to three hops.

A.4.8 Ad Hoc Networking with Directional Antennas at BBN Technologies,

Cambridge

In [RRS+05], a system for ad-hoc networking with directional antennas is described.
The implementation of this system used the same routing code for the real experiment
as for the simulation. For routing, the link-state routing protocol HSLS was used. An
experiment was conducted with 20 nodes (cars) that drove around a 4×3 km area. Each

158

A.4 Mobile Ad-Hoc Networks

car was equipped with four directional antennas selectable on a packet-per-packet base
and 802.11b as physical layer. According to the authors, their system outperformed
a similar setup (20 cars but with omnidirectional antennas and OLSR) although more
details on this are not available. In a second experiment, a helicopter was added as
aerial node.

A.4.9 Signal strength aware OLSR at Stanford University, Robert Bosch

Research and Technology Center, Palo Alto, University of Cincinnati

In [SBSC03], the authors present and experimentally evaluate a signal strength aware
modification of OLSR, SBRS-OLSR. This OLSR variation estimates, based on the rate
of change of signal strength between two nodes, how long these nodes will be proba-
bly able to communicate. The experiments are based on the roaming node movement
pattern and use four 802.11b-equipped nodes. The mobile node is installed in a car
and moves around a building at 15mph. Then UDP packets are sent from one of the
stationary nodes to the mobile node. By analyzing the throughput over time, the au-
thors show that SBRS-OLSR is more responsive to topology changes than OLSR. The
authors conclude that this is due to the fact that SBRS-OLSR selects another next hop
before the route breaks.

A.4.10 OLSR at INRIA Rocquencourt, CELAR Bruz

The authors of [PAM+05] describe their experiments with OLSR on the CELAR
MANET platform. This is a military test network that consists of a total of 18 nodes
equipped with 802.11b interfaces out of which some nodes are mobile within vehicles.
The OLSR version used implements a link hysteresis mechanism with two predefined
signal strength thresholds: a node is accepted as neighbor if the signal strength is higher
than the high threshold and removed from the neighbor list if the signal strength drops
below the low threshold. The authors start with examining TCP flows over ten ran-
domly placed static nodes. They show that the throughput of concurrent flows is very
unreliable: 1) A one-hop vs. a three-hop flow captures nearly the whole bandwidth.
2) Two concurrent three-hop flows share the bandwidth fairly while the first of two
concurrent two-hop flows gets nearly no bandwidth at all. They furthermore show that
for concurrent UDP and TCP traffic, UDP is highly favored as TCP reduces its data
rate due to its congestion control.

159

Appendix A Overview of Existing WMN Experiments

In the mobile experiment shown, the roaming node movement pattern is used with ten
static and one mobile node mounted in a vehicle. One of the static nodes sends TCP
and UDP traffic to the mobile node. The presented plots show that there is a network
connectivity problem lasting twelve seconds in which a neighbor to the mobile node is
only shortly available with a bad link quality, furthermore there are some short network
outages in this run.

A.4.11 TCP/AODV at University of Calgary

The authors of [GWW04] evaluate the performance of TCP in combination with a
signal-strength aware variant of AODV. Furthermore, they also examine TCP rate-
based pacing (RBP TCP), a mechanism that reduces the burstiness of TCP traffic by
artificially introducing inter-packet delay to improve multihop performance. The signal-
strength aware variation of AODV is intended to provide more stable routes. For this,
AODV-UU is modified to accept control packets only if their signal strength is above a
certain threshold.

A number of indoor experiments with 802.11b equipped laptops running Linux are
performed. In a setup with five nodes and a roaming node movement pattern, the
overall throughput of TCP from the mobile node to the first static node in a chain is
examined. The authors find out that the throughput degrades with higher node speeds
and conclude that there are two reasons for that: 1) The faster the client, the lower
the time spent in the proximity of the server where the throughput is high due to fewer
hops 2) The time spent for route discovery in which no data traffic can be transfered
has a higher percentage on the whole transmission time. In a second experiment, they
evaluate TCP rate-based pacing on a five node indoor string node setup. They find out
that RPB TCP does not perform better than Reno TCP in this setup although prior
simulations suggest this. Several potential reasons are identified: 1) Real-world wireless
propagation is more challenging than simplified simulation models. 2) The simulation
does not take a routing protocol into account. 3) RPB TCP had to be implemented on
the TCP layer instead of the link layer.

A.4.12 AODV/OLSR/P2P at Institute for Informatics and Telematics, Pisa

The routing algorithms AODV and OLSR and CrossROAD, a cross-layer peer-to-peer
(P2P) system for ad-hoc networks are examined in [BCDG05] in setups with up to eight
nodes. These nodes are laptops with 802.11b network interfaces at 11Mb/s. In the first

160

A.4 Mobile Ad-Hoc Networks

part of the experiments, the authors evaluate the performance of AODV and OLSR for
the roaming node, end swap and relay swap movement patterns with four nodes and
node speeds of about 1 m/s. Interesting is the time it took the two routing protocols to
discover new routes in presence of a changing network topology. In the roaming node
scenario, OLSR needs five seconds to discover the two-hop path after the one-hop link
is broken and ten seconds to discover the three-hop path after the loss of the two-hop
path. AODV has a delay of two and seven seconds in the respective situations. In
the reverse situation when the routes get shorter due to the movement, both protocols
directly find the shorter routes. For the end swap scenario, the highest delay for OLSR
are 15 s and 10 s for AODV. The highest delay for the relay swap movement pattern are
15 s for OLSR and 11 s for AODV.

CrossROAD is a cross-layer P2P system that piggybacks its information on the control
packet of a proactive routing protocol. The authors show with experiments on a 8-node
static ad-hoc network that the control traffic for CrossROAD over OLSR is much lower
than for a legacy P2P approach. Furthermore, a 5-node experiment is performed on a
chain topology with the middle node starting to move to one end of the chain, creating
two network partitions. The authors thus demonstrate that CrossROAD can handle
network partitions correctly.

A.4.13 AODV at Uppsala University and Ericsson Research/Switchlab,

Stockholm

The indoor experiments presented in [LLN+02] were conducted with 9 to 37 nodes by
using the APE testbed. The nodes were divided in at most four independently moving
groups which split up and reunited in the course of the experiment according to the
chain on the fly movement pattern. The authors ran several experiments with OLSR
and AODV. By comparing the virtual mobility graphs of the distinct experiments the
authors conclude that their approach of choreographing the movement of the nodes is
suitable to produce comparable test runs.

A four node experiment with APE [LNT02] revealed the existence of communication
gray zones in 802.11b based ad-hoc networks. A node X is said to be in the commu-
nication gray zone of a node Y if it is listed in the neighbor table of Y but Y cannot
forward any data traffic over X. The reason for this lies in the different reception char-
acteristics of broadcasted beacons used for neighbor discovery and unicast data packets
in 802.11b-based ad-hoc networks: 1) 802.11b broadcast packets are normally sent at

161

Appendix A Overview of Existing WMN Experiments

a lower bit rate than unicast packets, thus they can be received over greater distances.
2) Broadcast packets are not acknowledged and can thus be transmitted over unidirec-
tional links. 3) The small size of beacons results in fewer packet losses due to bit errors
and collisions. 4) Fluctuating links lead to entries in neighbor tables about nodes which
are only occasionally reachable. The authors also evaluated the impact of three differ-
ent strategies to overcome gray zones, exchanging neighbor tables, accepting a neighbor
only after the reception of three beacons and discarding beacons received with a low
signal quality. They show that all three strategies improve the packet delivery rate
significantly.

A.5 Summary of Results

Even though the existing experiences with real-world implementations of mobile ad-hoc
networks are quite heterogeneous, there are several observations that can be general-
ized:

• A lot of available links in a wireless network are asymmetric. This has been shown
for sensor networks [CBE03, HKS+04], mesh networks [DACM03, CABM03,
DPZ04a] and MANETs [KNG+04].

• In has been shown for sensor networks that the direction of an asymmetric link
can be switched by switching the positions of the two affected nodes [CBE03].

• Distance may only exhibit a weak correlation to the packet reception rate. In sen-
sor networks, this is known as gray areas [CBE03, ZG03], in MANETs as fluctuat-
ing links [MBJ99, MBJ00, LNT02, LA03, MFHF04]. The problem has also been
verified for mesh networks [ABB+04]. The emulator experiments in [ABB+04]
suggest that this may be an effect of multi-path fading. The size of such gray
areas depends on the environment [CBE03].

• Even simple flooding does not behave as expected [GKW+02].

• Experiments are time-consuming and expensive [MBJ99, Lun02, LYN+05].

• 802.11 radio interfaces have a circular gray zone at the border of the transmission
range in which broadcasts can be received but unicasts cannot [LNT02].

• Current simulators are not accurate because the assumptions on which simulators
are built are too simple, therefore simulation results can differ significantly from
real-world experiments [GKN+04, KNG+04].

162

A.5 Summary of Results

• Packet delivery is influenced by the distance of the nodes from the
ground [ABC+05].

• If multiple TCP connections from one source or to one sink are present, one-hop
connections capture nearly all of the available bandwidth [LA03].

• Switching on all nodes in an ad-hoc network at the same time can overload the
network [Vin04].

• Battery power and wireline power supply are a bottleneck during experi-
ments [Lun02].

• Emulation tools like a MAC filter are essential to save time during the prepa-
ration of an experiment [MBJ99]. The importance of this is underlined
by the number of implementations existing under different names: power-
wave [CJWK02], APE mackill [ape], MobiEmu [ZL02], Fleetnet packet suppression
mechanism [MFHF04], FRANC virtual networks [CSS03] and the MAC filter used
in [HBRB05].

• Every tool should be tested for its influence on the experiment, e.g., tcpdump is
reported to consume lots of resources and may have an impact on the performance
of the investigated routing protocol [MBJ99].

• Packets for the control of the routing protocol should be delivered with high pri-
ority which can be achieved by implementing multi-level priority queues [MBJ99].

• Current 802.11 drivers do not report broken links to upper layers: to use link-
layer acknowledgments on higher layers, the driver needs to be patched [HJ02,
MFHF04].

• A routing protocol that uses hop count as route metric may select subop-
timal routes. In particular this has been investigated for mesh networks
[DACM03, CJWK02, CABM03, DPZ04a, DPZ04b] but also shown for sensor net-
works [YCK+02].

• Two network interfaces of the same type integrated close to each other in one
computer interfere regardless of the used channel [DPZ04b, RPD+05].

• [DPZ04a]: ”... static and mobile wireless networks can present two very different
sets of challenges, and solutions that work well in one setting are not guaranteed
to work just as well in another.”

163

Appendix A Overview of Existing WMN Experiments

164

Appendix B

Propagation Estimation API

To integrate the results of a Mapkit measurement and the corresponding interpolation
in other programs (see Section 2.3), we provide a simple API. It is implemented C/C++
and can be used by including the analyze.h header file. The functions available via this
file here will be shortly presented.

The function

void readData(char* path);

is used to read the measurement data that serves as basis for the interpolations. The
argument is the path to the measurement-file.

With the function

int getQuality(int x1,int y1, int x2, int y2,int algo);

it is then possible to get the link quality in percent between two arbitrary points in the
experimentation area. Thus, it returns an int-value in the range 0 and 100 between the
two points (x1/y1) and (x2/y2) calculated according to the selected algorithm, refer to
Section 2.3 for details. According to our own experiences, the algorithm that considers
the two closest measurement points as interpolation input performs best, thus we advice
to use algo = 2 as input here. In addition to point-to-point link quality, the library is
also able to return the quality between a single point and all other points in an area
around this point via the function

int** getQualityAround(int x, int y, int width, int height, int algo);

The details of the functions that directly return the measured values can be found in
the analyze.h header file.

165

Appendix B Propagation Estimation API

166

Appendix C

EXC Live-CD

C.1 Structure

The EXC Live-CD is based on a Xubuntu 6.10 Live-CD and therefore has a similar struc-
ture. It consists of an initial ramdisk (initrd) [INI] and a SquashFS file system [SQU].
The initrd is treated by the Linux kernel like a hard disk partition, it contains the files
necessary during startup of the Live-CD and in general has a size of a few megabytes.
The SquashFS filesystem contains all other files and programs and has a size of about
500 MB in the case of the EXC Live-CD. For the adaptation of the Live-CD, new files can
be installed in the initrd as well as in the SquashFS. As the initrd can be re-compressed
within a few seconds due to its small size, often-changed files should be better installed
there. In contrast, newly creating the SquashFS can take 10 - 30 minutes.

C.2 Build Script

The exc-build-scripts allows to easily adapt an existing EXC Live-CD to new needs. It
is based on scripts of the TUn!x [TUN] project that have been extended and combined
to a single, menu-controlled script for the Live-CD. Its usage requires root-privileges.
The menu looks as follows:

167

Appendix C EXC Live-CD

please choose next step

[1] make new Live-CD environment

[2] chroot into Live-CD environment

[3] (re)build squash filesystem

[4] (re)build initrd

[5] create new iso image

[6] steps 3 - 5 in a row

[7] steps 4 - 5 in a row

[8] exit to shell

make new Live-CD environment: is the first step that has to be performed when a
Live-CD should be adapted. After selecting this entry, the user has to specify the path
to an existing ISO-image of the EXC Live-CD. The SquashFS file system in this image
is decompressed in the folder new/, the extracted initrd will be stored in the folder
init/. Furthermore, the script generates the folder live-cd/ that contains a compressed
version of the SquashFS and further files that are not important for the adaptation of
the Live-CD. All other steps of the adaptation process work on this new/ and init/
folders.

chroot into Live-CD environment: this entry allows to log in to the Live-CD via
chroot with root-privileges. Besides changing configuration files, it is also possible to
use the aptitude packet manager [APT] of the Ubuntu-Linux distribution to install new
software.

(re)build squash filesystem: compress the SquashFS in new/ ; this is necessary if
changes have been applied to it. As several gigabyte of data are compressed in this step,
this can take 10 - 30 minutes depending on the available CPU.

(re)build initrd: compress the initrd in init/ ; this is necessary if changes have been
applied to it.

create new iso image: creates a new ISO image based on the SquashFS in new/
and the initrd in init/. The following naming convention is used: exc-year -month-day-
version.iso. The version number is set to the next free number. Example: if there are
already two versions ”exc-2007-06-01-r1.iso“ and ”exc-2007-06-01-r2.iso“, the next ISO
image gets the name”exc-2007-06-01-r3.iso“.

168

C.3 Initrd

C.3 Initrd

As we have used the Live-CD throughout the development of EXC, the experiment con-
trol has been stored in the initrd. The corresponding folder can be found in init/home,
it is copied to the home-folder of the user upon startup of the Live-CD. To update EXC,
it is thus sufficient to copy it to the corresponding folder.

In the home-directory, there is a start.sh shell script that is automatically executed
when the Live-CD is booted. It initializes the WLAN-interface and is able to detect the
used device via its MAC-address. This can be useful if device-specific operations are to
be executed, e.g. mounting the local harddisk for storing trace files. At the end, the
script starts EXC.

Basic changes to the system or to the startup sequence of the Live-CD can be performed
by adapting the scripts in init/scripts/.

169

Appendix C EXC Live-CD

170

Appendix D

Pcapsync

As outlined in Section 4.5, pcapsync provides the synchronization of trace files in libpcap
format [LIB] by using our MLE timestamp synchronization approach. This section
shows how the tool is called from the command line and explains the details of the used
file formats.

D.1 Command Line Parameters

Pcapsync provides the following command line parameters:

pcapsync [-hsgtl] [-o <output directory>] <list of input files>

• h : help, displays a help text.

• s : single mode, produces one synchronized file per input file.

• g : global mode, produces one global file containing all packets. This mode requires
the additional “-o <output directory>” option.

• t : test mode, produces for each input file a file in a format that can be directly
read by the MLE implementation “TSC”.

• l : list changes mode, produces for each input file a file that lists packet sequence
changes resulting from the synchronization. This mode requires the additional
“-s” option.

• o <ouput directory> : redirect the output of pcapsync in the output directory.

Example calls:

171

Appendix D Pcapsync

• pcapsync -s -g -o ./output/ ./source/*.cap: produces for each file in di-
rectory “source” that ends with “.cap” a synchronized file in the output directory
“output” and produces an additional global log file in the current directory.

• pcapsync ./source/*.cap: produces for each file that ends with “.cap” a syn-
chronized file in the current directory.

D.2 File Formats

D.2.1 Text File Accompanying the Global Log File

When global mode (the -g option) is used, the resulting global log file contains only one
entry for each packet, even if this packet has been received multiple times. To document
which packet in the global file has been received by which node, pcapsync produces an
additional text file called global observer.txt. This file lists for each packet the nodes
that have received this packet and uses the format:
<packet ID global log> <source file name> <packet ID source file>

An excerpt from such a file looks as follows:

140 00028AB7BB53.cap 24

141 00028AB7BF6E.cap 23

142 00028AB7BF6E.cap 24

143 00028AB7C0BF.cap 24

144 00028AB7B89B.cap 24

145 00028AB7BB53.cap 25

145 00028AB7BF6E.cap 25

145 00028AB7BF89.cap 26

In this example, the packets with the global ID 140 to 144 all have been recorded by
only one receiver. In contrast, the packet with the global ID 145 has been recorded by
three receivers.

D.2.2 Text File for the List Changes Mode

When synchronizing libpcap trace files with pcapsync, the relative order of packets
can change when they are written back to the output files sorted by the calculated,
synchronized timestamps. This can happen due to the different treatment of outgoing

172

D.2 File Formats

and received packets by libpcap (see Section 4.5) or due to the different synchronization
methods for anchor and non-anchor points1. In the “list changes mode” available via
the -l option, these changes can be documented for each source file in an additional file,
marked with the ending “.swapped”. This file contains lines of the following format:
<initial packet ID> -> <

textitnew packet ID> diff <difference of the IDs>.

Example:

352 -> 351 diff -1

351 -> 352 diff 1

438 -> 437 diff -1

437 -> 438 diff 1

In this “.swapped”-file, it is documented that four packets have changed their relative
position due to the synchronization. The packets 351 and 352 swapped their positions,
and so did the packets with the IDs 437 and 438.

1Non-anchor points are only corrected with rate and offset as there it is not enough information to esti-
mate their timestamping delay while anchor points are corrected with rate, offset and timestamping
delay

173

Appendix D Pcapsync

174

Bibliography

Own Publications

[JKM+] Florian Jarre, Wolfgang Kiess, Martin Mauve, Magnus Roos, and Björn
Scheuermann. Least squares timestamp synchronization for local broadcast
networks. Under review.

[KCWM] Wolfgang Kiess, Nadine Chmill, Ulrich Wittelsbürger, and Martin Mauve.
Modular Network Trace Analysis. Work in progress.

[KFWM04] Wolfgang Kiess, Holger Füssler, Jörg Widmer, and Martin Mauve. Hier-
archical Location Service for Mobile Ad-Hoc Networks. Mobile Computing
and Communications Review, 8(4):47–58, October 2004.

[KM07a] Wolfgang Kiess and Martin Mauve. A Survey on Real-World Implementa-
tions of Mobile Ad-Hoc Networks. Elsevier Ad-Hoc Networks, 5(3):324–339,
April 2007.

[KM07b] Wolfgang Kiess and Martin Mauve. Real-world evaluation of mobile ad-
hoc networks. In Marco Conti, Jon Crowcroft, and Andrea Passarella,
editors, Multi-hop Ad hoc Networks from Theory to Reality, pages 1–22.
Nova Science Publishers, Hauppauge, NY, USA, 2007.

[KOM08] Wolfgang Kiess, Thomas Ogilvie, and Martin Mauve. The EXC Toolkit for
Real-World Experiments with Wireless Multihop Networks. In EXPON-
WIRELESS ’08: Proceedings of the 3rd Workshop on Advanced Experimen-
tal Activities on Wireless Networks Systems, June 2008. Accepted.

[KOTM] Wolfgang Kiess, Thomas Ogilvie, Andreas Tarp, and Martin Mauve. On
the Repeatability of Experiments with Wireless Multihop Networks. Work
in progress.

[KOTM07] Wolfgang Kiess, Thomas Ogilvie, Andreas Tarp, and Martin Mauve. The
EXC toolkit: conducting realistic experiments with wireless multi-hop net-
works. In MobiSys 2007: The 5th International Conference on Mobile
Systems, Applications, and Services 2007, Demo Session, June 2007.

175

Bibliography

[KRM07] Wolfgang Kiess, Jedrzej Rybicki, and Martin Mauve. On the nature of
Inter-Vehicle Communication. In WMAN ’07: Proceedings of the 4th Ger-
man Workshop on Mobile Ad-Hoc Networks, pages 493–502, March 2007.

[KTM05] Wolfgang Kiess, Andreas Tarp, and Martin Mauve. Real-World Evaluation
of Ring Flooding. In MobiCom ’05 Poster Session, September 2005.

[KTM06] Wolfgang Kiess, Andreas Tarp, and Martin Mauve. Real-World Evalua-
tion of Ring Flooding. Mobile Computing and Communications Review,
10(4):11–12, October 2006.

[KZM07] Wolfgang Kiess, Stephan Zalewski, and Martin Mauve. Improving System
Clock Precision With NTP Offline Skew Correction. In MedHocNet ’07:
Proceedings of the 6th Annual Mediterranean Ad Hoc Networking Workshop,
pages 159–164, June 2007.

[KZTM05] Wolfgang Kiess, Stephan Zalewski, Andreas Tarp, and Martin Mauve.
Thoughts on Mobile Ad-hoc Network Testbeds. In REALMAN ’05: Pro-
ceedings of the 1st International Workshop on Multi-hop Ad Hoc Networks:
from Theory to Reality, pages 93–100, July 2005.

[MKS+08] Daniel Marks, Wolfgang Kiess, Björn Scheuermann, Magnus Roos, Martin
Mauve, and Florian Jarre. Offline time synchronization for libpcap logs.
In WMAN ’08: WMAN Fachgespräch 2008, April 2008. Accepted.

[RSK+07] Jedrzej Rybicki, Björn Scheuermann, Wolfgang Kiess, Christian Lochert,
Pezhman Falahi, and Martin Mauve. Challenge: Peers on wheels — a
road to new traffic information systems. In MobiCom ’07: Proceedings of
the 13th Annual ACM International Conference on Mobile Computing and
Networking, pages 215–221, September 2007.

[SKR+08a] Björn Scheuermann, Wolfgang Kiess, Magnus Roos, Florian Jarre, and Mar-
tin Mauve. Error bounds and consistency in maximum likelihood time
synchronization. Technical Report TR-2008-001, Department of Computer
Science, Heinrich Heine University Düsseldorf, Germany, 2008.

[SKR+08b] Björn Scheuermann, Wolfgang Kiess, Magnus Roos, Florian Jarre, and Mar-
tin Mauve. On the time synchronization of distributed log files in networks
with local broadcast media. IEEE/ACM Transactions on Networking,
2008. Accepted.

176

Bibliography

Other References

[802] IEEE Standard for Information technology-Telecommunications and infor-
mation exchange between systems-Local and metropolitan area networks-
Specific requirements - Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2007.

[ABB+04] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris.
Link-level measurements from an 802.11b mesh network. ACM SIGCOMM
Computer Communication Review, 34(4):121–132, 2004.

[ABC+05] G. Anastasi, E. Borgia, M. Conti, E. Gregori, and A. Passarella. Un-
derstanding the real behavior of mote and 802.11 ad hoc networks: an
experimental approach. Pervasive and Mobile Computing, 1(2):237–256,
July 2005.

[Abr70] N. Abramson. The ALOHA system - another alternative for computer com-
munications. In Proceedings of the Fall 1970 AFIPS Computer Conference,
pages 281–285, November 1970.

[ACDM] David Applegate, William Cook, Sanjeeb Dash, and Monika Mevenkamp.
QSopt linear programming solver. Version 1.01. http://www2.isye.
gatech.edu/~wcook/qsopt/.

[ADH] Ad-hockey and ns faq. http://www.monarch.cs.rice.edu/ns-faq/faq.
html.

[Aea05] Anish Arora and Rajiv Ramnath et al. ExScal: Elements of an extreme
scale wireless sensor network. In RTCSA ’05: Proceedings of the 11th
International Conference on Embedded and Real-Time Computing Systems
and Applications, pages 102–108, August 2005.

[AGSR02] J. Allard, P. Gonin, M. Singh, and G. G. Richard. A user level frame-
work for ad hoc routing. In LCN ’02: Proceedings of the 27th Annual
IEEE International Conference on Local Computer Networks, pages 13–19,
November 2002.

[All87] David W. Allan. Time and frequency (time-domain) characterization,
estimation, and prediction of precision clocks and oscillators. IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC-
34(6):647–654, November 1987.

[ape] How to build, install and run the APE testbed. TeX-file in the APE
distribution, http://apetestbed.sourceforge.net/.

[APT] Aptitude paket management tool. http://www.debian.org/doc/
manuals/reference/ch-package.en.html.

177

Bibliography

[Ash95] Paul Ashton. Algorithms for off-line clock synchronization. Technical
Report TR COSC 12/95, Department of Computer Science, University of
Canterbury, December 1995.

[BABM04] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Morris. Archi-
tecture and evaluation of an unplanned 802.11b mesh network. In Mobi-
Com ’04: Proceedings of the 10th Annual ACM International Conference
on Mobile Computing and Networking, pages 31–42, September 2004.

[BCDG05] E. Borgia, M. Conti, F. Delmastro, and E. Gregori. Experimental compari-
son of routing and middleware solutions for mobile ad hoc networks: Legacy
vs cross-layer approach. In E-WIND ’05: Proceedings of the 2005 ACM
SIGCOMM Workshop on Experimental Approaches to Wireless Network
Design and Analysis, pages 82–87, August 2005.

[BCG05] Raffaele Bruno, Marco Conti, and Enrico Gregori. Mesh networks: Com-
modity multi-hop ad hoc networks. IEEE Communications Magazine,
43(3):123–131, March 2005.

[Bey90] David A. Beyer. Accomplishments of the DARPA SURAN program. In
MILCOM ’90: Proceedings of the IEEE Military Communications Confer-
ence, pages 855–862, September 1990.

[CABM03] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris.
A high-throughput path metric for multi-hop wireless routing. In Mobi-
Com ’03: Proceedings of the 9th Annual ACM International Conference on
Mobile Computing and Networking, pages 134–146, September 2003.

[CBE03] Alberto Cerpa, Naim Busek, and Deborah Estrin. SCALE: A tool for simple
connectivity assessment in lossy environments. Technical Report 21, Center
for Embedded Networked Sensing, University of California, Los Angeles
(UCLA), September 2003.

[CGM03] Carlos T. Calafate, Roman Garcia Garcia, and Pietro Manzoni. Optimiz-
ing the implementation of a MANET routing protocol in a heterogeneous
environment. In ISCC ’03: Proceedings of the 8th IEEE International
Symposium on Computers and Communication, pages 217–222, July 2003.

[CJWK02] Kwan-Wu Chin, John Judge, Aidan Williams, and Roger Kermode. Imple-
mentation experience with MANET routing protocols. ACM SIGCOMM
Computer Communication Review, 32(5):49–59, November 2002.

[CM99] S. Corson and J. Macker. Mobile ad hoc networking (MANET): Rout-
ing protocol performance issues and evaluation considerations. RFC 2501
(Informational), January 1999.

[cra] CRAWDAD, the Community Resource for Archiving Wireless Data At
Dartmouth. http://crawdad.cs.dartmouth.edu/.

178

Bibliography

[CSS03] David Cavin, Yoav Sasson, and Andre Schiper. FRANC: A lightweight java
framework for wireless multihop communication. Technical report, EPFL,
Lausanne, April 2003.

[DACM03] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and
Robert Morris. Performance of multihop wireless networks: shortest
path is not enough. ACM SIGCOMM Computer Communication Review,
33(1):83–88, 2003.

[DHHB87] Andrzej Duda, Gilbert Harrus, Yoram Haddad, and Guy Bernard. Esti-
mating global time in distributed systems. In ICDCS ’87: Proceedings of
the 7th International Conference on Distributed Computing Systems, pages
299–306, September 1987.

[DPZ04a] Richard Draves, Jitendra Padhye, and Brian Zill. Comparison of routing
metrics for static multi-hop wireless networks. In SIGCOMM ’04: Proceed-
ings of the 2004 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages 133–144, September
2004.

[DPZ04b] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio,
multi-hop wireless mesh networks. In MobiCom ’04: Proceedings of the 10th
Annual ACM International Conference on Mobile Computing and Network-
ing, pages 114–128, September 2004.

[DRK+06] Pradipta De, Ashish Raniwala, Rupa Krishnan, Krishna Tatavarthi, Jatan
Modi, Nadeem Ahmed Syed, Srikant Sharma, and Tzicker Chiueh. MiNT-
m: an autonomous mobile wireless experimentation platform. In Mo-
biSys ’06: Proceedings of the 4th International Conference on Mobile Sys-
tems, Applications, and Services, pages 124–137, June 2006.

[DRSC05] Pradipta De, Ashish Raniwala, Srikant Sharma, and T. Chiueh. MiNT:
A miniaturized network testbed for mobile wireless research. In INFO-
COM ’05: Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, pages 2731–2742, March 2005.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network
time synchronization using reference broadcasts. In OSDI ’02: Proceedings
of the 5th USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 147–163, December 2002.

[FS01] Andras Farago and Violet R. Syrotiuk. Merit: A unified framework for
routing protocol assessment in mobile ad hoc networks. In MobiCom ’01:
Proceedings of the 7th Annual ACM International Conference on Mobile
Computing and Networking, pages 53–60, July 2001.

[GKHS05] Sachin Ganu, Haris Kremo, Richard Howard, and Ivan Seskar. Addressing
repeatability in wireless experiments using ORBIT testbed. In TRIDENT-
COM ’05: Proceedings of the 1st International Conference on Testbeds and

179

Bibliography

Research Infrastructures for the Development of Networks and Communi-
ties, pages 153–160, February 2005.

[GKN+04] Robert S. Gray, David Kotz, Calvin Newport, Nikita Dubrovsky, Aaron
Fiske, Jason Liu, Christopher Masone, Susan McGrath, and Yougu Yuan.
Outdoor experimental comparison of four ad hoc routing algorithms. In
MSWiM ’04: Proceedings of the 7th ACM International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages
220–229, October 2004.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and
S. Wicker. Complex behavior at scale: An experimental study of low-
power wireless sensor networks. Technical Report UCLACSD-TR 02-0013,
Computer Science Department, UCLA, July 2002.

[GLA01] J.J. Garcia-Luna-Aceves. Wireless internet gateways (WINGs) for the
internet. Technical report, University of California, Santa Cruz, 2001.

[gnu] Gnuplot, a portable command-line driven interactive data and function
plotting utility. http://www.gnuplot.info/.

[Goo] Google Maps. http://maps.google.com/.

[GTK] GTK+ : The GIMP Toolkit. http://www.gtk.org/.

[GWW04] Abhinav Gupta, Ian Wormsbecker, and Carey Williamson. Experimental
evaluation of TCP performance in multi-hop wireless ad hoc networks. In
MASCOTS ’04: Proceedings of the The IEEE Computer Society’s 12th
Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications System, pages 3–11, October 2004.

[HBRB05] Marc Heissenbttel, Torsten Braun, Tobias Roth, and Thomas Bernoulli.
GNU/Linux implementation of a position-based routing protocol. In
REALMAN ’05: Proceedings of the 1st International Workshop on Multi-
hop Ad Hoc Networks: from Theory to Reality, pages 25–33, July 2005.

[HFMF03] Hannes Hartenstein, Holger Füßler, Martin Mauve, and Walter Franz.
Simulation results and proof-of-concept implementation of the FleetNet
position-based router. In PWC ’03: Proceedings of the IFIP-TC6 8th Inter-
national Conference on Personal Wireless Communications, pages 192–197,
September 2003.

[HJ02] Yih-Chun Hu and David B. Johnson. Design and demonstration of live
audio and video over multihop wireless ad hoc networks. In MILCOM ’02:
Proceedings of the IEEE Military Communications Conference, pages 1211–
1216, October 2002.

[HKS+04] Tian He, Sudha Krishnamurthy, John A. Stankovic, Tarek Abdelzaher,
Liqian Luo, Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce
Krogh. Energy-efficient surveillance system using wireless sensor networks.

180

Bibliography

In MobiSys ’04: Proceedings of the 2nd International Conference on Mobile
Systems, Applications, and Services, pages 270–283, June 2004.

[HM05] Andre Herms and Daniel Mahrenholz. GEA: A method for implementing
and testing of event-driven protocols. In MeshNets ’05: Proceedings of the
1st International Workshop on Wireless Mesh Networks, July 2005.

[Ian06] Gianluca Iannaccone. Fast prototyping of network data mining applica-
tions. In PAM ’06: Proceedings of the Passive and Active Measurement
Conference, March 2006.

[INI] Initrd - initial ram disk. http://www.ibm.com/developerworks/linux/
library/l-initrd.html.

[JBD+05] Sushant Jadhav, Timothy Brown, Sheetalkumar Doshi, Daniel Henkel, and
Roshan Thekkekunnel. Lessons learned constructing a wireless ad hoc
network test bed. In WiNMee ’05: Proceedings of the 1st International
Workshop On Wireless Network Measurement, April 2005.

[JMH03] David B. Johnson, David A. Maltz, and Yih-Chun Hu. The dynamic
source routing protocol for mobile ad hoc networks. Internet-Draft, draft-
ietf-manet-dsr-09.txt, April 2003. Work in progress.

[JS04] Glenn Judd and Peter Steenkiste. Repeatable and realistic wireless ex-
perimentation through physical emulation. ACM SIGCOMM Computer
Communication Review, 34(1):63–68, 2004.

[JSF+06] David Johnson, Tim Stack, Russ Fish, Dan Flickinger, Leigh Stoller, Rob
Ricci, and Jay Lepreau. Mobile emulab: A robotic wireless and sensor
network testbed. In INFOCOM ’06: Proceedings of the 25th Annual Joint
Conference of the IEEE Computer and Communications Societies, pages
1–12, April 2006.

[JT87] John Jubin and Jane D. Turnow. The DARPA packet radio network pro-
tocols. In Proceedings of the IEEE, volume 75, pages 21–32, January 1987.

[KEPS04] Richard M. Karp, Jeremy Elson, Christos H. Papadimitriou, and Scott
Shenker. Global synchronization in sensornets. In LATIN ’04: Proceedings
of the 6th Latin American Symposium on Theoretical Informatics, pages
609–624, April 2004.

[Ker06] Markus Kerper. Eine Plattform zur methodischen Vermessung und Mod-
ellierung der Funkausbreitung in einem Experimentierszenario. Bachelor’s
thesis, October 2006. (in german).

[KGBK78] Robert E. Kahn, Steven A. Gronemeyer, Jerry Burchfiel, and Ronald C.
Kunzelman. Advances in packet radio technology. In Proceedings of the
IEEE, volume 66, pages 1468–1496, November 1978.

181

Bibliography

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router. ACM Transactions on Computer
Systems, 18(3):263–297, 2000.

[KNG+04] David Kotz, Calvin Newport, Robert S. Gray, Jason Liu, Yougu Yuan, and
Chip Elliott. Experimental evaluation of wireless simulation assumptions.
In MSWiM ’04: Proceedings of the 7th ACM International Symposium on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages
78–82, October 2004.

[Kni] KNIME, The Konstanz Information Miner. http://www.knime.org/.

[KO87] Hermann Kopetz and Wilhelm Ochsenreiter. Clock synchronization in
distributed real-time systems. IEEE Transactions on Communications,
36(8):933–940, 1987.

[KOV+02] Kurt Konolige, Charles Ortiz, Regis Vincent, Andrew Agno, Michael, Erik-
sen, Benson Limketkai, Mark Lewis, Linda Briesemeister, Enrique Rus-
pini, Dieter Fox, Jonathan Ko, Benjamin Stewart, and Leonidas Guibas.
DARPA software for distributed robotics. Technical report, DARPA, De-
cember 2002.

[KZG03] Vikas Kawadia, Yongguang Zhang, and Binita Gupta. System services
for ad-hoc routing: Architecture, implementation and experiences. In
MobiSys ’03: Proceedings of the 1st International Conference on Mobile
Systems, Applications, and Services, pages 99–112, May 2003.

[LA03] A. Laouiti and C. Adjih. Mesures des performances du protocole OLSR.
IEEE SETIT, March 2003. (in French).

[lab] LabVIEW for Measurement and Data Analysis. http://zone.ni.com/
devzone/cda/tut/p/id/3566.

[LIB] Libpcap File Format. http://wiki.ethereal.com/Development/
LibpcapFileFormat.

[LLN+02] Henrik Lundgren, David Lundberg, Johan Nielsen, Erik Nordström, and
Christian Tschudin. A large-scale testbed for reproducible ad hoc protocol
evaluations. In WCNC ’02: Proceedings of the IEEE Wireless Communi-
cations and Networking Conference, pages 337–343, March 2002.

[LNT87] B. Leiner, D. Nielson, and F. Tobagi, editors. Proceedings of the IEEE
(Special Issue, packet radio networks), volume 75, January 1987.

[LNT02] Henrik Lundgren, Erik Nordström, and Christian Tschudin. Coping with
communication gray zones in IEEE 802.11b based ad hoc networks. In
WoWMoM ’02: Proceedings of the 5th ACM International Workshop on
Wireless Mobile Multimedia, pages 49–55, September 2002.

[Lun02] David Lundberg. Ad hoc protocol evaluation and experiences of real world
ad hoc networking. Master’s thesis, University Uppsala, 2002.

182

Bibliography

[LYN+04] Jason Liu, Yougu Yuan, David M. Nicol, Robert S. Gray, Calvin C. New-
port, David Kotz, and Luiz Felipe Perrone. Simulation validation using
direct execution of wireless ad-hoc routing protocols. In PADS ’04: Pro-
ceedings of the 18th Workshop on Parallel and Distributed Simulation, pages
7–16, May 2004.

[LYN+05] Jason Liu, Yougu Yuan, David M. Nicol, Robert S. Gray, Calvin C. New-
port, David Kotz, and Luiz Felipe Perrone. Empirical validation of wireless
models in simulations of ad hoc routing protocols. Simulation: Transac-
tions of The Society for Modeling and Simulation International, 81(4):307–
323, April 2005.

[MBJ99] David A. Maltz, Josh Broch, and David B. Johnson. Experiences designing
and building a multi-hop wireless ad hoc network testbed. Technical Report
CMU-CS-99-116, School of Computer Science, Carnegie Mellon University,
1999.

[MBJ00] D. Maltz, J. Broch, and D. Johnson. Quantitative lessons from a full-scale
multi-hop wireless ad hoc network testbed. In WCNC ’00: Proceedings of
the IEEE Wireless Communications and Networking Conference, pages 992
– 997, September 2000.

[Meh92] Sanjay Mehrotra. On the implementation of a primal-dual interior point
method. SIAM Journal on Optimization, 2(4):575–601, 1992.

[MEL] Melbourne wireless. http://www.melbournewireless.org.au.

[MFHF04] Michael Möske, Holger Füßler, Hannes Hartenstein, and Walter Franz. Per-
formance measurements of a vehicular ad hoc network. In VTC ’04-Spring:
Proceedings of the 59th IEEE Vehicular Technology Conference, pages 2116–
2120, May 2004.

[MFNT00] Michael Mock, Reiner Frings, Edgar Nett, and Spiro Trikaliotis. Continuous
clock synchronization in wireless real-time applications. In SRDS ’00:
Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems,
pages 125–132, October 2000.

[Mil92] D. Mills. Network time protocol (version 3) specification, implementation
and analysis. RFC 1305 (Draft Standard), March 1992.

[Mil94a] David L. Mills. Internet time synchronization: The network time protocol.
In Zhonghua Yang and T. Anthony Marsland, editors, Global States and
Time in Distributed Systems. IEEE Computer Society Press, 1994.

[Mil94b] David L. Mills. Precision synchronization of computer network clocks.
ACM SIGCOMM Computer Communication Review, 24(2):28–43, 1994.

[Mös03] Michael Möske. Real-world evaluation of a vehicular ad hoc network using
position-based routing. Master’s thesis, Department of Computer Science,
University of Mannheim, July 2003.

183

Bibliography

[MST99] Sue B. Moon, Paul Skelly, and Donald F. Towsley. Estimation and removal
of clock skew from network delay measurements. In INFOCOM ’99: Pro-
ceedings of the 18th Annual Joint Conference of the IEEE Computer and
Communications Societies, pages 227–234, March 1999.

[NJG02] Michael Neufeld, Ashish Jain, and Dirk Grunwald. Nsclick: Bridging
network simulation and deployment. In MSWiM ’02: Proceedings of the
5th ACM International Symposium on Modeling, Analysis and Simulation
of Wireless and Mobile Systems, pages 74–81, September 2002.

[NKSW02] Jürgen Nagler, Frank Kargl, Stefan Schlott, and Michael Weber. Ein
Framework für MANET Routing Protokolle. In 1. deutscher Workshop
über Mobile Ad-Hoc Netzwerke (WMAN), pages 153–165, March 2002. (in
German).

[NS2] The ns-2 network simulator. http://www.isi.edu/nsnam/ns/.

[NW99] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,
Berlin, 1999.

[Ogi07] Thomas Ogilvie. Control of MANET-experiments with a graphical inter-
face. Bachelor’s thesis, University of Düsseldorf, Germany, March 2007.

[OPEa] OpenDX - Open Data Explorer. http://www.opendx.org/.

[opeb] The OpenEmbedded Project. http://www.openembedded.org/.

[opec] OpenZaurus: Linux distribution for sharp zaurus palmtops. http://www.
openzaurus.org.

[ORB] The ORBIT testbed. http://www.orbit-lab.org.

[OT05] Evgeny Osipov and Christian Tschudin. A path density protocol for
MANETs. In REALMAN ’05: Proceedings of the 1st International Work-
shop on Multi-hop Ad Hoc Networks: from Theory to Reality, pages 69–76,
July 2005.

[PAM+05] Thierry Plesse, Cedric Adjih, Pascale Minet, Anis Laouiti, Adokoe Plakoo,
Marc Badel, Paul Muhlethaler, Philippe Jacquet, and Jerome Lecomte.
OLSR performance measurement in a military mobile ad hoc network. El-
sevier Ad-Hoc Networks, 3(5):575–588, September 2005.

[PBRD03] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc on-demand distance
vector (AODV) routing. RFC 3561 (Experimental), July 2003.

[Per01] Charles E. Perkins. Ad Hoc Networking. Addison Wesley Professional,
2001.

[Plu82] David C. Plummer. Ethernet address resolution protocol: Or converting
network protocol addresses to 48.bit ethernet address for transmission on
ethernet hardware. RFC 826 (Standard), November 1982.

184

Bibliography

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. In WMCSA ’99: Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages 90–100, February
1999.

[QRB] QtRuby bindings. http://developer.kde.org/language-bindings/
ruby/.

[QTT] Qt Development Framework. http://www.trolltech.com/products/
qt/.

[RABR05] Krishna Ramachandran, Kevin Almeroth, and Elizabeth Belding-Royer.
A novel framework for the management of large-scale wireless network
testbeds. In WiNMee ’05: Proceedings of the 1st International Workshop
On Wireless Network Measurement, April 2005.

[RBM05] Kay Römer, Philipp Blum, and Lennart Meier. Time synchronization
and calibration in wireless sensor networks. In Ivan Stojmenovic, editor,
Handbook of Sensor Networks: Algorithms and Architectures, pages 199–
237. John Wiley & Sons, September 2005.

[RBRA04] Krishna Ramachandran, Elizabeth Belding-Royer, and Kevin Almeroth.
DAMON: A distributed architecture for monitoring multi-hop mobile net-
works. In SECON ’04: Proceedings of the 1st IEEE Communications
Society Conference on Sensor and Ad Hoc Communications and Networks,
pages 601–609, October 2004.

[RH00] Ram Ramanathan and Regina Hain. An ad hoc wireless testbed for scal-
able, adaptive QoS support. In WCNC ’00: Proceedings of the IEEE Wire-
less Communications and Networking Conference, pages 998–1002, Septem-
ber 2000.

[Riv92] R. Rivest. The MD5 message-digest algorithm. RFC 1321 (Informational),
April 1992.

[ROO] The MIT roofnet project. http://www.pdos.lcs.mit.edu/roofnet/.

[RP00] Elizabeth M. Royer and Charles E. Perkins. An implementation study
of the AODV routing protocol. In WCNC ’00: Proceedings of the IEEE
Wireless Communications and Networking Conference, pages 1003–1008,
September 2000.

[RPD+05] Joshua Robinson, Konstantina Papagiannaki, Christophe Diot, Xingang
Guo, and Lakshman Krishnamurthy. Experimenting with a multi-radio
mesh networking testbed. In WiNMee ’05: Proceedings of the 1st Interna-
tional Workshop On Wireless Network Measurement, April 2005.

185

Bibliography

[RRS+05] Ram Ramanathan, Jason Redi, Cesar Santivanez, David Wiggins, and
Stephen Polit. Ad hoc networking with directional antennas: A complete
system solution. IEEE Journal on Selected Areas in Communications,
23(3):496–506, March 2005.

[RSO+05] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo,
R. Siracusa, H. Liu, and M. Singh. Overview of the ORBIT radio grid
testbed for evaluation of next-generation wireless network protocols. In
WCNC ’05: Proceedings of the IEEE Wireless Communications and Net-
working Conference, pages 1664–1669, March 2005.

[SBSC03] Jatinder Pal Singh, Nicholas Bambos, Bhaskar Srinivasan, and Detlef
Clawin. Proposal and demonstration of link connectivity assessment based
applications to routing in mobile ad-hoc networks. In VTC ’03-Fall: Pro-
ceedings of the 58th IEEE Vehicular Technology Conference, pages 2834–
2838, October 2003.

[SFT+05] Björn Scheuermann, Holger Füßler, Matthias Transier, Marcel Busse, Mar-
tin Mauve, and Wolfgang Effelsberg. Huginn: A 3D visualizer for wireless
ns-2 traces. In MSWiM ’05: Proceedings of the 8th ACM International
Symposium on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, pages 143–150, October 2005.

[SKR99] Peter Showbridge, Miro Kraetzl, and David Ray. Detection of abnormal
change in dynamic networks. In IDC ’99: Proceedings of Information,
Decision and Control, pages 557–562, February 1999.

[SOSK05] Manpreet Singh, Maximilian Ott, Ivan Seskar, and Pandurang Kamat. OR-
BIT measurements framework and library (OML): Motivations, design, im-
plementation, and features. In TRIDENTCOM ’05: Proceedings of the 1st
International Conference on Testbeds and Research Infrastructures for the
Development of Networks and Communities, February 2005.

[SQU] Squashfs - a compressed read-only filesystem for Linux. http://squashfs.
sourceforge.net/.

[SRP] Jos F. Sturm, Oleksandr Romanko, and Imre Pólik. SeDuMi. Version
1.1R2. http://sedumi.mcmaster.ca/.

[STP+05] Amit Kumar Saha, Khoa To, Santashil PalChaudhuri, Shu Du, and
David B. Johnson. Physical implementation and evaluation of ad hoc net-
work protocols using unmodified simulation models. In ACM SIGCOMM
Asia Workshop, April 2005.

[TCP] Tcpdump: a tool for network monitoring, protocol debugging and data
acquisition. http://www.tcpdump.org.

[TK94] Barry N. Taylor and Chris E. Kuyatt. Guidelines for evaluating and ex-
pressing the uncertainty of NIST measurement results. Technical Note
1297, National Institute of Standards and Technology (NIST), 1994.

186

Bibliography

[TRA] Trace graph - Network Simulator NS-2 trace files analyser. http://www.
tracegraph.com/.

[TSM07] Thi Minh Chau Tran, Björn Scheuermann, and Martin Mauve. Detect-
ing the presence of nodes in MANETs. In CHANTS ’07: Proceedings of
the 3rd ACM MobiCom Workshop on Challenged Networks, pages 43–50,
September 2007.

[TUN] The TUn!x linux distribution. http://pluto.htu.tuwien.ac.at/
Hauptseite.

[ULO] Ulogd: a userspace logging daemon for netfilter/iptables related logging.
http://www.netfilter.org/projects/ulogd/.

[VBP04] Darryl Veitch, Satish Babu, and Attila Pàsztor. Robust synchronization of
software clocks across the Internet. In IMC ’04: Proceedings of the 4th ACM
SIGCOMM Conference on Internet Measurement, pages 219–232, October
2004.

[Vin04] Regis Vincent. Re: Centibots: communication among robots. Personal
Communication, June 2004.

[VRC97] Paulo Veŕıssimo, Lúıs Rodrigues, and Antonio Casimiro. Cesiumspray: a
precise and accurate global time service for large-scale systems. Real-Time
Systems, 12(3):243–294, 1997.

[WIKa] Wikipedia, wireless community network. http://en.wikipedia.org/
wiki/Wireless_community_network.

[wikb] List of ad hoc routing protocols at wikipedia. http://en.wikipedia.org/
wiki/Ad_hoc_routing_protocol_list.

[WIRa] The wireshark network protocol analyzer. http://www.wireshark.org/.

[wirb] The Wireless Leiden foundation. http://wirelessleiden.nl.

[WiS] The Wi-Spy spectrum analyzer. http://www.metageek.net/Products/
Wi-Spy.

[YCK+02] M.D. Yarvis, W.S. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and
Alan Mainwaring. Real-world experiences with an interactive ad hoc sen-
sor network. In Proceedings of the International Workshop on Ad Hoc
Networking, pages 143–151, August 2002.

[zau] The zaulux project. http://www.cn.uni-duesseldorf.de/projects/
ZAULUX.

[ZG03] Jerry Zhao and Ramesh Govindan. Understanding packet delivery perfor-
mance in dense wireless sensor networks. In SenSys ’03: Proceedings of
the 1st International Conference on Embedded Networked Sensor Systems,
pages 1–13, November 2003.

187

Bibliography

[ZL02] Yongguang Zhang and Wei Li. An integrated environment for testing
mobile ad-hoc networks. In MobiHoc ’02: Proceedings of the 3rd ACM
International Symposium on Mobile Ad Hoc Networking and Computing,
pages 104–111, June 2002.

[ZLX02] Li Zhang, Zhen Liu, and Cathy Honghui Xia. Clock synchronization algo-
rithms for network measurements. In INFOCOM ’02: Proceedings of the
19th Annual Joint Conference of the IEEE Computer and Communications
Societies, pages 160–169, June 2002.

188

Index

A

AD metric . 123, 136
validation . 125

AD plot. .124
Allan deviation. .69
ALOHA . 149
anchor point 58, 66, 71, 103, 172

identification . 99
antennas

directional . 158
omnidirectional 158

AODV.44, 84, 149 f, 161
APE 12, 14, 54, 118, 161
aptitude . 168
ARP. 100

B

baseline measurement 153
baseline measurements 15
broadcast . . . 20, 59, 100, 102 f, 125, 136

repeatability125, 128, 130, 133, 136

C

Centibots . 156
Cholesky factorization.78
click modular router 10, 18, 40
clock

model . 61, 69
resets . 69
resolution 69, 89
stability

Allan deviation 69
experiment 65
temperature 65

clock synchronization

offline . 59
online . 58

comprehension 30, 117
connectivity . 71
consistency. .82
control network interface 44
convex hull .59
correctness . 30, 117
CRAWDAD. .34

D

data processing pipeline 107
delay tolerant network.1
domino effect . 29
drift . 83

clock- . 61, 91
drift file . 61
DSR.44, 149 f, 153 f, 158
DTN . 1

E

EDAT. 62, 105, 118
automated caching 112
automated caching performance115
batch processing 111
graphical user interface 108
operator folding.108

emulation . 15, 21, 32
emulation network interface 48
emulator . 11, 149
end-to-end throughput 17, 153
ETX. 153
event. .68
EXC.37, 118, 125, 144

architecture . 41
control scripts.42

189

Index

emulation . 47
event handler framework 41
Live-CD 51, 167
monitor GUI . 46
monitor routing 45
node GUI 46, 125
plug-in mechanism 42
remote method invocation.44
semi-automatic 43
topology visualization 53
trace files . 45

experiment analysis 13, 30, 34, 105
data mining 106
parsing 106, 114
processing . 106
visualization 13, 106

experiment control 33
automatic 12, 38
manual . 12, 38
semi-automatic 39, 43

main phase 43
setup phase 43

tools . 12
experiment run 15, 37

duration . 15
type . 119

experimentation strategy
in-detail-evaluation 14
proof-of-concept.14

ExScal . 151

F

fading . 6
multipath . 152

firewall. .103
Fleetnet . 9, 156
flooding 17 f, 44, 150, 156

ring- . 17
frequency

clock- . 61
FTP . 45, 84

G

gamma distribution.84, 89

Google Maps . 26
GPS . 24, 47, 75, 154
graph edit distance.119
gray area . 150 f
gray zones . 161

H

Huginn . 13, 106

I

IEEE 802.11 84, 99, 125
link layer reliability 100

implementation frameworks 10
initrd . 167
interior-point method 76
intrusion detection systems.103

J

jitter . 18

K

KNIME. 106

L

LAD regression . 74
latency . 17, 20, 158
least squares regression94
LGR. 151
libpcap . 69, 99, 171

tracing behavior.99, 172
linear programming.74, 76
linear regression 59, 64
link

asymmetric 6, 151, 153
backward- . 150
difference . 121
fluctuating . 155
fluctuation . 121
long-. .150
quality . 120, 128
quality fluctuations 139

links
intermediate 128, 132

190

Index

mobile . 130, 132
perfect . 128, 132
unstable . 128
zero . 128

M

MAC filter 12, 154, 163
MANET . 1
Mapconfig . 23
Mapkit . 24, 165
Matlab. .78
maximum likelihood estimation . . 72, 76
maximum likelihood timestamp syn-

chronization 66, 103,
118

Mehrotra predictor-corrector 76
mesh network . 152
mesh node . 23
microwave interference 127
MiNT-m . 54
MLE timestamp synchronization. . . .see

maximum likelihood timestamp
synchronization

mobile ad-hoc network.1, 154
Mobile Emulab. .54
monitor . 40, 48
monitor routing . 45
monitoring . 33

in-band 12, 29, 44
out-of-band 12, 33, 44
tools . 12

movement pattern
chain on the fly 7 f, 161
circling node . 7
end swap. .7
mobile random 8
mobile string . 8
relay swap . 7
roaming node.7, 130, 160

N

n-hop neighborhood 21
neighborhood stability 20
network anomaly detection 119

network diameter 21
normalization constraints.75
ns-2. .18, 30, 84, 158
nsclick. .16, 18
NTP daemon . 61
NTP skew correction 61
ntpd see NTP daemon

O

off-the-shelf
network hardware 6, 150
simplex solver79
software . 57

offset
clock- . 61

offset ambiguity . 75
offset, clock- . 70
OLSR. .159
OpenDX . 106
operator. .39, 107

data format . 109
fingerprint . 112

ORBIT . 6, 54, 119
ORBIT measurements framework and

library . 13

P

packet delivery ratio 17
pairwise synchronization 59
passive acknowledgment.150
pcapsync 92, 99, 118, 171

command line parameters 171
example calls 171
global log file 101, 172
normalization 101
packet order 172

PDR see packet delivery ratio
peer-to-peer .160
phases of an experiment 31
placement

grid . 6, 150
random . 7 f
string . 6

positioning service 24, 47

191

Index

presence detection.48
PRNET. .149
promiscuous mode 68, 84
propagation delay 70, 85
propagation estimation 21

interpolation . 25

Q

QSopt . 76, 78 f

R

radio propagation model 157
random waypoint mobility model 84
rate

clock- . 61
rate ambiguity . 75
receive time . 70
received copies . 20
received signal strength 17
reference clock . 75
relevant links . 124
reliability . 19
repeatability 30, 33, 117, 136
reproducibility . 30
ring flooding . 17
robotic surveillance systems 8, 156
Roofnet . 152
routing

performance metrics 17
position-based 156
protocol . 44

S

satellite networks.70
SeDuMi . 78
semi-automatic experiment 37
SER integration 16, 31, 158
shared research infrastructure . . . 31, 54
signal-to-noise ratio . . . 17, 128, 152, 155
SIM-TD . 144
simplex method 74, 76
skew

clock- . 61

slot . 120
sparse matrix storage 76, 78 f
spectrum analyzer 127 f
SQL . 106, 111
SQLite . 111
SquashFS . 167
SRI . 54
SURAN. .149

T

TCP . 84
testbed 14, 31, 37, 54, 144
timestamping delay 57, 59, 70
topological repeatability118 f, 133
topological similarity 118, 136, 141
trace file upload

APE . 13
EXC . 45

TraceGraph . 13, 107
tracing tools . 13
true clock . 61, 69
TSC register . 69
TTL . 17
tun/tap interface . 44

U

unicast . 8, 136
repeatability 137

V

VANET.1, 144, 154, 156, 158 f
vehicular ad-hoc network 1
virtual mobility 17, 118
visualization tools 14
Volkswagen AG . 144

W

whoisthere . 48
Wi-Spy spectrum analyzer 127
wireless sensor network 1, 150
worst-case error . 81
WSN. .1

192

