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ABSTRACT

Let F), be the free group on n > 2 elements and Aut(F},) its group of
automorphisms. A well-known representation of Aut(£),) is given by

p1: Aut(F,) — Aut(F,/F)) = GL(n,Z),

where F is the commutator subgroup of F,,. The kernel of p; is called
the classical Torelli group. In [5] Grunewald and Lubotzky construct
more representations of finite index subgroups of Aut(F,). By choosing
a finite group G and a presentation 7 : F,, — G they obtain an integral
linear representation pg . : I'(G,7) — Gg..(Z), where I'(G, 7) is a finite
index subgroup of Aut(F,).

In this thesis I study the special case G = C5 of this construction.
The map pc, » leads to the integral linear representation

o1 :T7(Cy,m) — GL(n — 1,7Z).

Let K, denote the kernel of o_;, which fits into the following exact
sequence
1— K, - T"(Cy,7m) = GL(n —1,Z) — 1. (0.1)

We call the kernel K, a generalized Torelli group. The first main theorem
of this thesis states that K, is finitely generated as a group. In the proof
we give a set of generators explicitly. Note that this theorem corresponds
to the famous theorem of Nielsen and Magnus, which states that the

classical Torelli group is finitely generated.

Further we study the abelianized group K?2°, which becomes by the
exaxt sequence (0.1) a GL(n — 1,Z)-module. Finally we consider higher
quotients of the lower central series

K, = VO(KH) > VI(KR) > 72(Kn) > VS(KH) >

Our second main theorem states the surprising fact that for ¢ > 1 the

quotients v;(K,,) /iy 1 (K,) are finite abelian groups of the form (Z/27Z)%i

with some b, ; € Ny.
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INTRODUCTION

Let F), be the free group on n > 2 elements and Aut(F},) its group of
automorphisms. A theorem of Nielsen says that Aut(F),) is a finitely
presented group. A well-known representation of Aut(F},) is given by

p1: Aut(F,) — Aut(F,/F)) = GL(n,Z),

where F) is the commutator subgroup of F), and p;(y¢) is the automor-
phism of the abelian group F,,/F! induced by ¢ € Aut(F},). The kernel
of py is called the classical Torelli group and is denoted by IA(F),).

A theorem of Nielsen and Magnus ([13], [11]) says that the classical
Torelli group is finitely generated. Taking a free basis zq,...,x, of F},
they prove:

Theorem: The group IA(F,) is generated by the following automor-

phisms
. -1 ) 11
K {zi— T }oand K : {z; — TiTiTRT; Ty }

(values not given are identical to the argument).

By the exactness of the sequence
1 — IA(F,) — Aut(F,) — GL(n,Z) — 1

the abelianized group IA(F,)* becomes a GL(n, Z)-module. It is a well-

known theorem of Formanek (see [6]) that
IA(F,)* @, C=C"®V,
as a GL(n, C)-module, where V}, is a certain irreducible GL(n, C)-module

of dimension dim¢(V,,) = n(n + 1)(n — 2)/2.

In [5] Grunewald and Lubotzky construct more representations of
finite index subgroups of Aut(F,,). Let G be a finite group and = : F,, —

vi



G a surjective homomorphism with kernel R. Define the finite index
subgroup I'(G, ) of Aut(F),) by

DG, 7)== {p € Aut(F,) | p(R) = R, ¢ induces the identity on F,/R}.

Define further R := R/R’ = R to be the abelianization of R. Let
t denote the Z-rank of this finitely generated free abelian group. The
group G acts on R by conjugation. Every automorphism ¢ € I'(G, )

induces a linear automorphism ¢ of R which is G-equivariant. Let
Go.r = Aute(C ®z R) < GL(t,C).

The group Gg., is the centralizer of the group G acting on C®z R through

matrices with rational entries. Define
QG,,T(Z) = {(I) € gG,ﬂ' | (P(R) == R}
Choosing a Z-basis of R, we obtain an integral linear representation

PG, - F(G, 7T) - gG,W(Z)
o = P
In the special case G = {1} this construction leads to the classical rep-
resentation p; : Aut(F,,) — GL(n,Z). Thus the kernel of pg, can be

considered as a natural generalization of IA(F,,). Therefore it is called a

generalized Torelli group.

In my work I study another special case of the construction by Grune-
wald and Lubotzky. Let F,, (n > 2) be the free group generated by
T, Y1, -, Yn—1 and Cy the cyclic group of order two generated by g. More-

over let 7 : F,, — C5 be the surjective homomorphism defined by

m(x):=g, 7(y1) =1, ..., 7(yo—1) = L.

The kernel R of this map is, by the formula of Reidemeister and Schreier,
a free group of rank 2n — 1, which means that t = 2n — 1. By the

construction above we obtain a homomorphism
Py L(Cy,m) — GL(R) = GL(2n — 1, 7Z).

We set
[*(Cy,m) = {p € D(Cam) | det(pr(p)) = 1}.

vil



This is a subgroup of index two in I'(Cy, ). An important feature is that
we are able to present a finite set of generators of I'" (Cy, 7) (see Chapter

4.2). The restriction of pe, » leads to the representation
peyr i TT(Co,m) — GL(R) & GL(2n — 1,7Z).

The Q-vector space Q ®z R decomposes as Q ®z R = V; @ V_1, where
Vi, V_q are the %1 eigenspaces of g, respectively. Set R, := RNV, and
R_{ := RN V_y. It turns out that the Z-rank of R, equals n and the
Z-rank of R_; equals n— 1. Since 't (Cy, 7) leaves R, and R_; invariant,

we obtain representations

o1:TH(Cy,m) = GL(n,Z), o_y:T7(Cy,m) — GL(n —1,Z).

The map o is equivalent to p; restricted to ' (Cy, 7). In contrast the
representation o_; is somewhat less expected and is studied in this work.
In Chapter 4.2 it is shown, that the map o_; is surjective by analysing
the images of the generators of I'"(Cy, 7). Let K, denote the kernel of
0_1, which fits into the following exact sequence

1— K, —»T7(Cy,7m) — GL(n —1,Z) — 1.

By the exactness of this sequence, the index of K, in I'"(Cs, 7) is infi-
nite for n > 3 and two for n = 2. The first main theorem of this thesis
states that K, is finitely generated as a group. The proof, in which the
generators are given explicitly, is provided in Chapter 4.3. As a corollary

we obtain the following theorem.

Theorem: Let n > 2. The group K, is generated by the following

automorphisms:

g {x — 2y}, V2 {y - yir?}

r o xl
Qi - 1,1
Yi = TY; T

for 1 < i < n—1 (values not given are identical to the argument). In

particular K, is finitely generated as a group.

viil



Note that this theorem corresponds to the theorem of Nielsen and Mag-
nus. The idea of the proof is the following. Starting with a finite pre-
sentation of GL(n — 1,Z) and the generator set of I'" (Cy, 7) we are able
to construct a finite number of elements in K,, whose normal closure
coincides with K,,. Then we show that the group generated by these
elements is already a normal subgroup of I'*(Cy, 7). This means that
K, is finitely generated as a group.

As above K2 becomes a GL(n—1,Z)-module. In Chapter 6 we study
the structure of this module.

Proposition:  Let n > 2. Then the group K is generated by |g;],
(] and [¥?] fori=1,...,n—1. The order of o] is either one or two.
For n > 3 the order of [{?] is also either one or two.

In Chapter 6.2 we construct for n > 3 a surjective GL(n—1, Z)-equivariant
homomorphism
(bn : anl S Mnfl - bia

where V,,_1 & M,,_; is a certain GL(n — 1,Z)-module with underlying
abelian group (Z" ' & (Z/2Z)" )& (Z/2Z)" . For the precise structure
of V,,_1 & M,,_, see Chapter 6.1. It is difficult to compute the kernel of
®,,, but I conjecture that the kernel is trivial:

Conjecture: Let n > 3. Then the GL(n — 1,7Z)-equivariant epimor-
phism
(I)n : Vn—l S Mn—l - bi

18 an isomorphism.

Chapter 6.4 is concerned with higher quotients of the lower central
series

K, = ’YO(Kn> > ’Yl(Kn) > 72(Kn) > ’Y3<Kn) R

The second main theorem states the surprising fact that the quotients
Yi(Kp)/vis1(Ky) are finite for ¢ > 1.

Theorem: Letn > 2 and i > 1. Then the group ~v;i(K,)/vir1(Ky)

X



is a finite abelian group of the form (Z/27)" with

0<by; <Bn—3)"" (3" —Tn+4).

In the special case n = 2 we give a finite presentation of K, and
obtain that the group K3P is isomorphic to Z2 @ Z/2Z. Furthermore, in
this case it is possible to compute the exponents b, ;. Here is the result
for by 1,...,bayo:

boi | bao | bas | baa | bas | bag | bay | bag | bag
2 4 6 10 | 14 | 22 | 32 | 48 | 70

More information on the by ; is contained in Chapter 6.3.
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NOTATION

In this thesis we generally apply functions on the left, i.e. the image of
x under a function ¢ is written as p(z). f p: X - Y and ¢ :Y — Z
are two functions, we write ¢ o ¢ : X — Z for the product of ¢ and 1,

Le. (Yop)(r) =1¢(p(z)).

G, H,... Groups
a, 3,7, ... Homomorphisms
TyYy Zyen Elements of a group
[, y] wyr~ty ™!
H=d H is isomorphic to G
H<G H<( H is a subgroup, a proper subgroup of G
(G; |iel) subgroup generated by subsets G; of a group
(X | R) Group presented by generators X
and relators R
F, Free group on n generators
Aut(G) Automorphism group of a group G
Homg (G, H) Set of Q-homomorphisms from G to H

G =n(G) =[G, G
Gab

Derived subgroup of a group G
G/G

7i(Q) i-th term of the lower central series of G

N, Ny, Z,Q,R,C Sets of natural numbers, natural numbers
with 0, integers, rational numbers, real
numbers, complex numbers

Ch, Z/nZ

GL(V) Group of nonsingular linear transformations

GL(n,Z),SL(n, Z)
I

of a vector space V'
General linear and special linear groups

(n x n)-identity matrix

xii



Let us introduce some elementary matrices in SL(n,Z) and GL(n, Z)
for n > 2 and 1 < 4,j < n (our convention is that entries not given are

identical to zero):

e Let E;; € SL(n,Z) be the (nxn)-identity matrix with an additional
1 in the (4, j)-th position (i # j)

1 | |

«— i-th row

|
|
|
o
|
) |
|
e
|
|
|

|
- - - 0 = - — 1 — — — | «<jthrow
|

| | 1
o Let E;j(a) € SL(n,Z) be the (n x n)-identity matrix with an addi-
tional a € Z in the (i, j)-th position (i # j)

1 | |

| |
- - -1 - = =9a - - - «— i-th row
| |

| |
- - -0 = - -1 = - - «— j-th row
| |

xiii



o Let P;; € SL(n,Z) be the following permutation matrix (¢ # j)

1

«— i-th row

«— j-th row

e Let O; € GL(n,Z) be the following diagonal matrix with a —1 in

the (7,7)-th position

«— 1-th row

e Let Oy; € SL(n,Z) be the following diagonal matrix with a —1 in
the (1,1)-th and in the (4,4)-th position (i # 1)

Oh' =

—1

«— i-th row

Xiv



CHAPTER 1

PRESENTATION OF (GROUPS

In this thesis, we often work with finite presentations of groups. The
aim of this chapter is to give an introduction to this subject. In Section
1.1 the definition and notations of presentations are given. Section 1.2 is
devoted to finite presentations of SL(n,Z) and GL(n,Z). These funda-
mental presentations are used consistently in the whole thesis. The last
Section 1.3 is concerned with the following problem. Given a surjective
homomorphism ¢ : G — H of a finitely generated group G onto a finitely
presented group H. What can we say about the kernel of ¢, i.e. is the
kernel finitely generated? If the answer is positive, we give a method to
find a set of generators. These ideas will be very useful in the proof of
the main theorem in Chapter 4.

1.1 BASIC CONCEPTS

A well-known theorem in the theory of free groups states that every group
G is a homomorphic image of some free group. This means that for every
group G, there exists a surjective homomorphism 7 : F' — G of a free
group F' onto GG. This homomorphism 7 is called a presentation of the
group G.

Let R := ker(m) be the kernel of 7. Then R is a normal subgroup
of F'and F/R = G. The elements in R are called the relators of the

presentation.

Now choose a set of free generators for F', say Y, and a subset S C R
with the property that the normal closure of S equals R. Then the image
X :=7(Y) is clearly a set of generators of the group G.

The presentation 7 in combination with the choice of Y and S, de-

termines a set of generators and defining relators for G. We denote this

1



CHAPTER 1. PRESENTATION OF GROUPS

in the following way

G=(Y|S9). (1.1)

In practice it is often more convenient to list the generators of G and the
defining relations s(X) =1 for s € S:

G=(X]|s(X)=1,s€09). (1.2)

Here s(X) denotes the word obtained from s by replacing formally the
generators Y by the generators X of the group G. We refer to (1.1) or
(1.2) as a presentation of the group G.

A group G is said to be finitely generated if there is a presentation
G = (Y | S) such that the set Y is finite. Moreover, it is said to be finitely
presented if there exists a presentation such that both Y and S are finite
sets. This definition is independent of the particular presentation chosen
in the sense of the following proposition.

Proposition 1.1 (B. H. Neumann). Let G be a finitely presented group
and let gq,...,g, be generators of G. Then there are defining relations

ri=1,...,1r, =1 such that
G:<g17...,gn’7’1:17.__’7’m:1>.

Proof. See for example [15]. O

Examples of finitely presented groups, which are interesting for us,
are

e cyclic groups of finite order m:

Cm={g g™ =1),

free groups of finite rank n:

F,={g1,...,9n | no relations ) = (g1,..., gn),

all finite groups,

the special linear group SL(n,Z) with n € N and

the general linear group GL(n,Z) with n € N.



CHAPTER 1. PRESENTATION OF GROUPS

1.2  PRESENTATIONS OF SL(n,Z) AND GL(n,Z)

Let E;; € SL(n,Z) be the (n x n)-identity matrix with an additional 1
in the (4, j)-th position (i # j) and O; := diag(1,...,1,—1,1,...,1) be
the diagonal matrix with a —1 at the (7,4)-th position (see Notation).
The aim of this section is to give finite presentations of SL(n,Z) and
GL(n, Z) with the matrices E;; and O; as generators. Such a presentation
of SL(n,Z) can be found in the literature (see [12]) and is listed below.

However, a finite presentation of this kind of GL(n,Z) seems not to be
published.

Proposition 1.2 (Presentation of SL(n,Z)).

(a) SL(1,Z) = 1.

(b) SL(2,Z) has a finite presentation with the two generators Eiy and
Es1 subject to the following relations

E12E2_11E12E21E1_21E21 =1,
(ByEy Ep)t =1,

(¢) Forn > 3, the group SL(n,Z) has a finite presentation with n(n—1)
generators E;j (i # j) subject to the following relations

[Eij, Bl =1 if j #k, i #1,
|Eij, Ejx] = B, if 1,4,k are pairwise distinct,
(E12E2_11E12)4 =1.

Proof. (a) is clear and (c) can be found in [12]. Let us now prove (b).
We know from [16] Chapter 1.5, that

SL(2,Z) = (X,Y | X* =1,X* =Y?),

where X = (% §)and Y = (% 1). We now apply Tietze transformations
(a good reference for the notion of Tietze transformations is [16]). First

vy (VN0 (U g
1 0)\-10 01

notice that
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yx—ro [0 Ty (0 =y vy
~11)\1 o 11

Thus, we see that

(XY | X*=1,X*=Y?

(X,Y,E19, By | X*=1, X?=Y? Ep=Y"'X, By =YX
(X,)Y,E19,F | X =YF,, X*=1, Y'X2=Y? FE, =YX
= (Y, B, B |(YER) =1, EpYE,, =Y? By =YELY 'ELE)
<Y, Ero, B9y | (YE12)4 =1, EpYFEp = Y2, By = YY—2E12>
(Y,E19,Epn | YER) =1, EpYE,,=Y? Y = EpEY)

(Erg, Ea1 | (E1eEy' Ero)' = 1, EioEy EnoEn By By = 1).

]

Our next aim is to find a finite presentation of GL(n,Z) in terms of

the matrices E;; and O;. To do this, we use the following exact sequence

det

1 — SL(n,Z) — GL(n,Z) — {—-1,1} — 1.
More general, let G' be an extension of H by N, say
1-N5G5H—1.
Assume further that N has the following finite presentation
N={(ny,...,n. | Ri(n1,...,n.),..., Re(nq,...,n;))
and that H has the finite presentation
H={(hy,... hg | Wi(hy, ... hg),...,Wi(hy,... h)).

We wish to find a finite presentation of G.

Since 7 is surjective, there are ¢i,...,9s € G with 7(g;) = h; for
1 <i < 5. By identifying N with the kernel of 7 in G, it is easy to see
that G is generated by ¢1,...,9s and nq,...,n,. Thus, we have found

generators for G. We start collecting relations in terms of ¢1, ..., gs and
N1y ey My
e The relations Ry(ny,...,n;.),..., Rx(n1,...,n,.)in N are, of course,

also relations in G.
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e Let Wi(g1,...,9s) be the word obtained from W;(hy,..., hs) by
replacing each h; by g;. We have

71-(VVZ'<917 o 795)) - VV’L'(W<91)7 s ,W(gs)) - Wi(hh BRI hs)

Hence W;(g1,...,gs) € ker(nm), i.e. Wi(g1,...,9s) € N. This means
that we can write W;(g1,...,¢gs) as a product of the n;, say

Wi(.gla cee 798) — I/sz‘(nl, e 777,T),
This gives us more relations in G.

e Finally, we mention that, since N is a normal subgroup in G, each

conjugate gmjgi_1 and gi_lnjgi is in N. Thus, we get relations
gingg; t = Vij(na, ..., n,) g, 'ngi = Ugi(na, ..., ny).

The next proposition tells us that the above relations are sufficient for a

presentation of G.

Proposition 1.3 (P. Hall). Let G be an extension of H by N
1-NLGSH- 1.
If N has the finite presentation
N={(ny,...,n. | Ri(ny,...,n.),...,Rp(ng,...,n.))
and H has the finite presentation
H={hy,....,hs | Wi(hy,..., hg),...,Wi(hq,..., hy)),
then G has the following finite presentation

G=(Mny,...,n0,q1,---,9s | Ri(ni,....,n.),..., Re(ng,...,n.),
gﬂhg;l - %j(nlv e 7”7‘)7
gi_lnjgi = Uij(nlv cee 7”7‘)7

Wilgr, - -, gs) = Wilna, ..., n.)),

where g;, Vij(n1,...,n,), Uj(ng,...,n,) and W/i(nl, ..., n,) are as above.
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Proof. For a proof see [10] Chapter 13. But be careful, in the theorem
and in the proof the relations gi’lnjgi = U,;(ni,...,n,) are missing. O

Now we can use Proposition 1.3 and the presentation of SL(n,Z)
given in Proposition 1.2 to compute a finite presentation of GL(n,Z). In
order to do this define Oy := diag(—1,1,...,1) to be the diagonal matrix
with an entry —1 at the first position (see Notation).

Proposition 1.4 (First Presentation of GL(n,Z)).
(a) GL(1,Z) = (0 | Of = 1) = Cs.

(b) GL(2,Z) has a finite presentation with the three generators Ei,
E51 and Oy subject to the following relations

E12E2_11E12E21E1_21E21 =1,
(E12E511E12)4 =1,

(01E12)2 - 17
(01E21)2 - 17
02 =1.

(¢) Forn > 3, the group GL(n,Z) has a finite presentation with n(n —
1) + 1 generators E;j and Oy subject to the following relations

[Eij, B =1 if j #k, i #1,

[Eij, Ejx] = Ey, if i, 7,k are pairwise distinct,
(E12Ey Ep)t =1,

O1E;;O0 E;' = 1ifi,j #1,

(OB =1ifj#1,

(O]_Ei]_)z =1ifi#1,

0? =1.

Proof. (a) is clear.
(b) We have

1 — SL(2,Z) — GL(2,Z) & {-1,1} — 1,
where {—1,1} = (g | ¢* = 1). We now apply Proposition 1.3. Since
det(O;) = —1, we conclude that GL(2,Z) is generated by Fis, F2; and
O:. According to Proposition 1.3 the defining relations corresponding to

these generators are:
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1. The relations of SL(2,Z) (see Proposition 1.2).
2. 02 = 1.

3. The conjugates of the generators Ej» and Ey; by O; and O] ex-
pressed in terms of Fyo and Fsy;. Since O; = Of Lt suffices to con-

sider O F1501 and O7 FE5 07 and express both matrices in terms of

Eijl
-1 0\ (1 1\ (=1 0
E p—
O1E1201 (o 1) (0 1) <0 1)
I e A e B AN AR _ g
0 1 0 1 0 1 12
-1 0\ (1 0\ (=10
1201 = (0 1) (1 1) (0 1)
:—10—10:10_E,1
1 1 0 1 -1 1 21
(c) We have

det

1 — SL(n,Z) — GL(n,Z) — {—1,1} — 1,

where {—1,1} = (g | ¢* = 1). We apply Proposition 1.3 again. By the
same argument as above GL(n,Z) is generated by O; and E;; (i # j).
The defining relations corresponding to these generators are:

1. The relations of SL(n,Z) (see Proposition 1.2).
2. 0% =1.

3. The conjugates of the generators E;; (i # j) by O; and O;" ex-
pressed in terms of E;;. As before, it suffices to consider O, E;;O;.
We show that OlEijOl = Eij if ’l,j # 1:

For this let us write F;; and O; in the following form

(i), o-(21)

7
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where Ais a (n —1) x (n—1)-matrix and [,,_; the (n—1) x (n—1)-
identity matrix. Thus, we have

(1] 0 1|0 -1] 0
e = (1) (ori) (2)
[ —1]o -1] 0
Vo4 0 | Ly
10
- (45)-x

Finally, a short calculation (similar to the one in part (b)) yields

OlElel = Elijl lfj # 1 and
0,E,0, = E;]' if i # 1.

(2

]

In Chapter 4 we will need a special presentation of GL(n,Z). We
obtain this presentation from Proposition 1.4 by applying Tietze trans-
formations. For this let O; := diag(1,...,1,—1,1,...,1) be the diagonal
matrix with a —1 at the (4, 7)-th position (see Notation). We add these el-
ements to the set of generators from Proposition 1.4 and get the following

presentation.

Proposition 1.5 (Second Presentation of GL(n, Z)).

(a) GL(1,Z) = (O, | 02 = 1) = Cb.

(b) GL(2,Z) has a finite presentation with four generators Eya, Eo,
O;1 and Oy subject to the following relations

1.) BBy EyyEy By Eyy =1,
2.) (BpBEy ' Ep)t =1,

3.) (O1E)?* =1,

4.) (O1Ey)? =1,

5.) O0f=1,

6.) By E201E;,Ey20;" =1
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(¢) Forn >3 the group GL(n,Z) has a finite presentation with n(n —
1) + n generators E;; and O; subject to the following relations

[EmaEk’l]_l ij#k‘ Z%l

iy BB =1 if i, 4,k are pairwise distinct,

[E
(E12E21 E12) - 1;

(O El]) =14j#1,
(01 21) =1ifi#1,

1B OlE 1—1Zfi,j7é1;

2
1

L)
2.
3.)
4.)
5.)
6.) O
7) 0
8) E

O1E1] 20 L=1ifj#1.

Proof. Part (a) is clear.
For (b) it suffices to express the new generator Os in terms of the other

generators. Thus, we just have to show that Oy = E,' E2,0,E5Ey”

1 -1 10 -1 0 11 1 0
0 1 2 1 0 1 0 1 -2 1

B -1 -1 -1 0 11 1 0

S l2 1 0 1/\0 1)\-21

(1 =1\ (1 1) [1 o0

o\—2 1 /)\o 1/ \-21

B 1 0 1 0

o\—2 1/ \-21

(1 0

— \o -1/

For (c¢) we have to show that EfleflOlElej_lQOj_l =1if j # 1. The

proof is analogous to the case n = 2. Il

1.3 SOME FACTS ABOUT FINITELY PRESENTED GROUPS

Let G and H be two finitely presented groups and let ¢ : G — H be
a surjective homomorphism. We are now interested in the kernel of .
If H is a finite group, then the index of ker(yp) in G is finite. By the
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following proposition, we conclude that in this case ker(y) is also finitely
presented.

Proposition 1.6. Let G be a finitely presented group and K a subgroup
of finite index in G. Then K is also finitely presented.

Proof. See [16] Chapter 2.3. O

In the case that the index of a subgroup K in a group G is infinite,
it is not easy to decide whether or not K is finitely presented. Actually,
it is already difficult to decide whether K is finitely generated. However,
in the rest of this chapter we supply some results, which we are going to

use later to prove that the Torelli groups are finitely generated.

Let G = (g1,...,9n) be a finitely generated group, H a finitely pre-
sented group and ¢ : G — H a surjective homomorphism of G onto H.
Define h; := ¢(g;) for 1 <i <mn. The set {h; | 1 <7 <n} isthen a set of
generators of H. Since H is finitely presented, it follows by Proposition
1.1 that there exist defining relations Ry, ..., R,, such that

H:<h1,...,hn ’ Rl(hl,...,hn),...,Rm(hl,...,hn».

Notice, that the following diagram commutes

where F,, = (21, ...,x,) is the free group on n generators and g : F,, — G
and h : F,, — H are the homomorphisms which send z; to ¢g; and z; to

h;, respectively.
Proposition 1.7. Let G, H and ¢ : G — H be as above. Then we have

ker(p) = NC(Ri(g1,---59n) -+, Bn(91,- -, 9n)) s

where NC(Ry (g1, -39n)s -+ Bn(g1, - -+, gn)) denotes the normal closure
of Ri(g1s---39n)y -, Rn(g1,- -, 9n) in G.

10
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Proof. Since

O(Rj(g1,- - 9n)) = Ri(p(g1), - -, 0(gn)) = Rj(ha, ..., hy)

for 1 < j < m, it is clear, that NC (R1(g1,.--,9n),- -+, Rm(g1,---,9n)) C
ker(¢). We now show the inverse inclusion

ker(@) - NC (R1<gl7 s ;gn); v >Rm(g17 oo ,gn)) :

Let gy € ker(¢). Remember that the following diagram commutes.

Since ¢ : F,, - G is onto, we find a word w(zy,...,x,) € F, such that
g(w(zy,...,x,)) = go. It follows that

1= (g0) = p(g(w(zr, ..., 20))) = h(w(zy, ..., 2n))
and we conclude that w(xy,...,x,) € ker(h). Hence
w(zy, ..., xy) € NC(Ry(21, ... xpn)y ooy Rin(T1, ... ).
This means that
go = g(w(xy,...,x,)) € NC(R1(g1,---,9n)s---s Bn(g1, -+ gn))-
[l

Corollary 1.8. Let G be finitely generated abelian group. Further let H
and m : G — H be as above. Then we have

ker(p) = (R1(g1,---,9n)s s Rn(g1, -+, gn))-

In particular ker(yp) is finitely generated as a group.

Proof. This is clear, since in an abelian group the normal closure of a
subgroup is just the same subgroup. Il

11
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Proposition 1.9. Let G, H and ¢ : G - H be as above and let K < G
be a subgroup of G with the following properties:

1.) K is a normal subgroup of G,
2) Ri(g1,...,9n) € K for 1 <j<m and

3.) K Cker(p).
Then we have K = ker(yp).

Proof. By 3.) it is sufficient to show that ker(¢) C K:

Pro& 1.7 L) +2)

ker(¢p) NC(Ri(g1,---,9n),---s Rm(g1,---,92)) < K.

The most difficult part when applying Proposition 1.9 might be to
verify, whether or not K is a normal subgroup of G. But if K is finitely
generated as a group, this can be done with the help of the following

lemma.

Lemma 1.10. Let G = (g1,...,gs) be a finitely generated group and let
K = (uy,...,u) be a finitely generated subgroup of G. Then K is a
normal subgroup of G if and only if

giujgi_l € K and gi_lujgl- e K

for1<i<sandl <j<t.

Proof. If K is a normal subgroup of G' then we obviously have g;u;g; le
K and g{lujgi € K. Hence we have to show that if giujgjl € K and
gi_lujg,» e Kforl<i<sand1l<j <t then K is a normal subgroup
of G.

Since g;u;g; '€ K and g; 1Uj g; € K, their inverses are also in K
g]ﬂbj_lgi_1 €K, gi_luj_lgi € K. (1.3)

€; in d; d;
Let g=g,' ... -gfn be an element of G and u = u;* -...-u;’™ be an

element of K with e;,,d;, € {—1,1}. We have to show, that gugt € K.
Since

_ dj, _ d; _
gug™t = guig7t - guimgT!

12
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it suffices to show that gugg_l € K for each j € {1,...,t} and 0 €
{—1,1}. We do this by induction on the length n of g:

In case n = 1 the assertion follows directly from the assumptions
and (1.3). Now suppose that the assertion holds for n and let g =

gt g gfn’ﬁl be of length n + 1. Define h := g;* - ... - gfn*:l
Because h is of length n we can apply the induction hypothesis and get
hulh™ € K, say huSh™ = qul o -uZ:” with dy, € {—1,1}. Then we
have
5 — e 53,—1 €
gu;g b= 9i,' 'hujh ! Yy
€ dy i, —e;
= gi11.<uk11."'.ukl;>'g’i1l
€ di; —e; iy di, €
= G Uk G G e G
e d —e; €y diyy, —e;
(gill 'ukfl "9 1) T (gillukz Y 1) '
This is in K by assumption and (1.3). O

13



CHAPTER 2

COMMUTATOR CALCULUS

In this chapter we first recall some elementary definitions and facts about
commutator calculus. After introducing commutator subgroups, we de-
fine the lower central series

G =7(G) 2 (G) 2 7(G) ...

of a group G. After this, we study the quotients v;(G)/vi+1(G) for i > 0.
For example, we give a set of generators for these quotients if G is a
finitely generated group. At the end of the chapter, we show that if

1 —K—G-2>5 H—1

is an exact sequence, then ;(K)/v;41(K) carries the structure of an
H-module. We will apply this to the generalized Torelli groups K, in
Chapter 6.

We start by recalling the following definition.

Definition 2.1. Let G be a group and let gy, ¢9s,... € G. The commu-
tator [g1, go] is defined by

l91, 92] = 919297 95"
More generally we inductively define

[917 . >9n] = [917 [92, . >9n]]

for n > 3. Commutators of the form [g,...,g,] are called simple com-
mutators. o

Lemma 2.2. Let G be a group and a,b,c € G. Then the following
commutator identities hold:

14
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a) [a,0]" = [b,a],
b) [ab,c] = [a,[b,c]] - [b,¢] - [a,c] = [a,b,c] - [b,c] - [a, ],
¢) la,bc] = [a,b] - [b,[a,c]]-[a,c] =[a,b]-[ba,c]-|a,c].

Proof. Part a) is obvious. The proof of b) and ¢) is given by the following

short calculation:
[ab,c] = abchta et
= abeb e tatebe o heb e raca T e

= |a,[b,c]] - [b,(] - [a,d],

1

[a,bc] = abca e 'b7!
= aba b 'baca e b cac a taca et
= [a,6]-[b,[a,c]] - [a, c].
O

Definition 2.3. Let G be a group and let G1,Gs, ... be non-empty
subsets of G. Define

[Gl?GQ] = <[91792] | g1 € G1792 € G2>

to be the commutator subgroup of G and G5. More generally, we induc-

tively define
[Gl, ey Gn] = [Gl, [Gg, ceey Gn“

for n > 3. o

Remark 2.4. By Lemma 2.2 part a), we have
(G, Go] = [Ga, Gy].
Definition 2.5. Let GG be a group. We define
70(G) =G and %(G) =[G, 7-1(G)] for k> 1.
The resulting series
G =7%(G) 2n(G) 27(G) = ...
is called the lower central series of G. o

15
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By definition, the subgroups 7x(G) are normal in G. Actually they are
fully invariant subgroups of G, i.e. they are closed under every endomor-
phism of G. Notice that v, (G)/vk+1(G) lies in the center of G/vik11(G).
Hence vx(G)/vk+1(G) is an abelian group.

The following proposition is taken from [8] Chapter 10:

Proposition 2.6. Let G be a finitely generated group with generators
Ty ..., Ty, then Ye(G) /ve+1(G) is generated by the simple commutators
[ylv Y2, ... 7yk+1] mod /Yk-i-l(G) ) where Yi € {xla s 7'T7"}'

Lemma 2.7. Let G be a group, [g1, ..., gn] € Yn-1(G) and m € N. Then
91, [92, -, 9™ = 91, [92, -, 9]l moOd 70 (G).

Proof. Induction on m:

The case m = 1 is obvious. Suppose that the assertion holds for m. We

have
[gla [927 cee agn](m+1)] = [glv [927 ce 7971] ’ [927 s ’gn]m]
L':2'2 [gl, [927 .. ,gn]] : [[927 cee 7971]7 [91, [92, c. ,gn]m” : [gla [927 HE ’gn]m]
= [91,[92,-~~,gn]] ’ [g17[g27"'7gn]m]
P2 g9 gn] ™Y mod 7,(G).

Lemma 2.8. Let G be a group and [g1,[92, - - -, 9n)] € Yn-1(G). If
(92, .-, 9.)" =0 mod v,-1(G)
for some m € N, then
91, (92, -+, 9a]]™ =0 mod 7, (G).

Proof. By assumption, we have [ga, ..., ¢,|™ € Yn_1(G). It follows that

m Lem. 2.7

(91,92, gal™ =" g1, [92,- -, 90)" ] =0 mod 7, (G).
N———

€Yn—1 (G)

16
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Lemma 2.9. Let G be a group and g1, 92 € G. Then we have

(91", 92] = [92,91] mod 72(G) and  [g1,95"] = [92,91] mod 7(G).

Proof. Consider following equation

1 = (g0 92) "= (o0, lor % 2] - o7, 9] - [01, 9]
= [91_1792] ' [91792] HlOd VQ(G)

It follows that

97", 92) = g1, g2) " 22 (g2, 91] mod 72(G).

The proof of the second congruence is analogue. Il

The next proposition and the corollaries will be very useful in Chapter
6, where we study quotients of the lower central series of the generalized
Torelli group K,.

Proposition 2.10. Let G be a group. Then there are surjective homo-

morphisms

gi: G @72 (%(G)/1+1(GQ) = %i41(G) /Yix2(G)
(QG/) ®z (@%i+1(G)) = [g,alvi+2(G).

Proof. For a proof see [15] Chapter 5. O

Corollary 2.11. Let G be a group. If there is some m € N such that
1l @) [Am1(G) = 0, then 1(G)/741(G) = 0 for all k > m.

Proof. We show that ,,11(G)/Ym+2(G) = 0. The corollary follows then
by induction. Consider

Em . G*P Xz ('Vm(G)/’Ym—i-l(G)) - ’7m+1<G)/’Ym+2(G)'

Since Y (G) /Ym+1(G) = 0, we obtain
em 1 G @20 = Y 11(G) /Am42(G).

Hence Yin11(G)/Ym+2(G) = 0. 0

17
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Corollary 2.12. Let G be a group with the property that G is finitely
generated. If there is some m € N such that v, (G)/Yms1(G) is finite,
then vi(G) /vk+1(G) is finite for all k > m.

Proof. 1t suffices to show that v,,11(G)/Yms2(G) is finite. For this con-
sider

em : G ®y (Y (G) [ Ym11(G)) = Vi1 (G) /Yma2(G).

By assumption, the group G2" is a finitely generated abelian group, i.e.
G 2 7" & Tors(G™). Since F := 7,,(G) /ym+1(G) is finite, we get

G™ @z (Ym(G) [ 4m11(G)) = (2" & Tors(G™)) @z F
~ (2" @z F) & (Tors(G*) ® F) = F" & (Tors(G*) ® F) ,

which shows that G* @z (7, (G) /Vm11(G)) is also finite. Since &, is onto
this implies that v,11(G)/Ym+2(G) is finite. O

Corollary 2.13. Let G be a group with the property that G* is finitely
generated with n generators. If there is some m € N such that

then Ymi(G) /Ymyiv1(G) 2 (Z)2Z2)% for all i > 1 and

0<b; <t -n

Proof. By Proposition 2.10, there is a surjective homomorphism
e G @z (3(G)/7i41(G)) = Yi41(G) [7i42(G).
By assumption we have
G™ ®z (%(G)/711(G)) = G @5 (2/22)" = (G* ®2 L/2L),
which is isomorphic to (Z/27Z)% with
0<b, <n-t.

Since the kernel of ; is a subgroup of (Z/2Z)"%, we obtain ker(g;) =
(Z/2Z)" with 0 < by, < b}. Hence

Yi+1(G) [542(G) 2 (Z)22)% /(2)22)" = (Z/2Z)"

with
0<b <n-t

The lemma follows then by induction. O

18
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Definition 2.14. Let G be a group.

a) G is called nilpotent, if ~;,(G) = 1 for some 1.

b) G is called residually nilpotent, if
()(G) =1.
i=0

o

Remark 2.15. It follows that the residually nilpotent groups are exactly
those groups GG which satisfy the following condition:

For each g € GG, g # 1, there exists a normal subgroup N, of G such that
g ¢ N, and G/N, is nilpotent.

Proposition 2.16. Let G' be a group with the following two properties:
1. %(G)/vis1(G) 1is torsion-free for all i > 0,

2. G 1is residually nilpotent.
Then it follows that G is also torsion-free.

Proof. Assume that G is not torsion-free, i.e. there exists an element
g€ G\ {1} and n € N, n > 2, such that ¢" = 1. We show by induction
on ¢ that g € v,;(G) for all ¢ > 0.

The case i = 0 is clear, since G = 7,(G). Now suppose that g € 7;(G).
We have to show that g € 7,41(G). By assumption, we have

g" =1 mod v,41(G).
But 7,(G)/7i+1(G) is torsion-free. Hence
g=1 mod 7i41(G),

Le. g € 7i1(G).
Thus, we showed that g € 7;(G) for all i > 0. So g € 2, %(G) =
{1}, contradiction. O
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For the rest of this chapter let G and H be groups and
1—K—G-2%5 H—1

an exact sequence. We want to define a group action of H on the abelian
group v;(K)/7i41(K). To ease the notation, set ; := v;(K). Let h € H
and g € G with ¢(g) = h. Then we define % : H X 7v;/vit1 — 7i/Yis+1 by

ho (k- yip1) == gkg™" - v,

Proposition 2.17. The map * : H X v;/vix1 — 7Vi/Yiv1 defined above
gives us a well defined action of H on ~;/Yiv1, i-e. the abelian group
Yi/Vit1 becomes an H-module.

Proof. For the complete proof, let £k € ~;, h € H and ¢ € G with
©(g) = h. We divide the proof into two steps. In the first step we show
that the map * : H X v;/vi401 — 7i/Yis1 is well defined. In the second
step we prove that the map * : H X 7v; /7,11 — 7i/7Vi+1 gives us an action
of H on 7i/7i1.

1.) The map * : H X 7;/vis1 — 7i/7Vis1 is well defined:

a) xkx~! € ; for all z € G:
Let i, : G — G be the inner automorphism, which sends g
to zgx~! for all ¢ € G. Since K is a normal subgroup, the
restriction i,|x : K — G is an endomorphism of K. In fact

iz|x € Aut(K). The inverse is given by i,-1|x. It follows that

ie|i (i) < Vi
for all ¢ € N, because ; is a fully invariant subgroup of K.

Hence we proved that xkax=t € ;.

b) b (ki - vip1) = hox (kg - yiq1) for ki -y = Ko - Yiga:
Let k’l, k‘Q c v with ]{31 *Yi+1 = ]{32 * Vi1, i.e. k‘;lkl € Vit1- By
a) we have gk, 'k1g™' € 7i41. Hence

hox (ko Yig1) = gkag™" - Yir1 = ghog™ ' gks 'k1g - Vi
= gkig ™" Yip1 = hox (k1 i)
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¢) gikgy " vin1 = gakgy i for gi, g2 € G with (g1) = (g2):
Let g1, 92 € G with ©(g1) = ©(go). It follows that ¢(g, ' g1) =
1,ie g, g1 € ker(p) = K. The element [g; 'go, k'] lies in
vix1- By a) we conclude that

9ok~ gy kgt = g1lor g2, Kot € vina
Thus
ggkggl Yik1 = g2k95192k_192_191k9f1 “Yit1
= g1/€gf1 “Yig1-
2.) The map * : H X v;/viy1 — 7i/7Viy1 gives us an action of H on
Yif Vit
a) 1y * (k-viq1) =k -y
Since ¢(1g) = 1y, we have
Lg* (k- vig1) =1lg - k- 1é1 Yigr = K Yigr

b) (hth) * (k . ryi-i-l) - (hl * (h2 * (k . ’YZ'—I—I)) for hl; hQ c H:
Let g1, g2 € G with ¢(g1) = hy and ¢(g2) = he. It follows that
©(g192) = h1hy. Hence

(hihs) * (k- vi41) = g192kgs 97" Vi
= hy*(92kgs " Yit1)
= (hax (hax (K- yiga))-

¢) hox (k- 7yip1 + ko - Yigr) = hox (k- vig) + hok (k- yi41) for
ki, ko € ;e
Let k1, ks € ;. Then we have

hox (ki Yigr + ko - vip1) = hox (kika - vig1)
= gkikog™" - Yia
= gkig gk - i
= gk1g™ - yig1 + gkag i
= hox (k1) + hox (k2 - yiga)-

O

21



CHAPTER 3

THE CLASSICAL TORELLI GROUPS

Let F, be the free group on n generators. A classical representation of
Aut(F,) is given by

p1: Aut(F,) — Aut(F,/F)) = GL(n,Z),

where F! is the commutator subgroup of F,, and p;(¢) is the automor-
phism of the abelian group F,,/F] induced by ¢ € Aut(F,,). In Section
3.1 we summarize well-known facts about the kernel of p;, which is called
the classical Torelli group TA(F,,). In Section 3.2 we introduce more rep-
resentations of Aut(F,), which lead to generalized Torelli groups 1A;(F,).
Furthermore, we compare the series given by the IA;(F},) with the lower
central series v;(IA(F,)).

3.1 FUNDAMENTALS

Let F, be the free group generated by zq,...,x, (n > 2) and Aut(F),)
its group of automorphisms. Let us introduce the following elements of
Aut(F,). Our convention here is that values not given are identical to
the argument.

o N\ {x;— xjz;} for 1 <i,5 <n with i # j,

o v {zx; — xx;} for 1 <4, 5 <n with ¢ # j,

e 0 {w;— a7} for 1 <i<n,

o m;{xi— xj, xj— x;} for 1 <4, 5 <nwith i # j,

o rij: {x; — xixjxkxj_lxlzl} for 1 < i,7,k < n with i, j, k pairwise

distinct,
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o kon;; : {z; — :vj:vixj’l} for 1 <14,7 <n with ¢ # j.

A theorem of Nielsen (see [14]) says that Aut(F},) is generated by the
automorphisms \;;, v;;, m;; for 1 <4,5 <n with ¢ # j and o, for 1 <7 <
n. In [14] Nielsen did not only show that Aut(F,) is finitely generated,
he actually proved that Aut(F,,) is finitely presented by constructing a
finite set of defining relations. The finite presentation of Aut(Fy) is given

in the next proposition.

Proposition 3.1. The automorphism group Aut(Fy) has the following

finite presentation

Aut(Fg) = <’7T12,0'1,V12 | 7T%2 = 1, O'% = ]., (0'1 @) 7T12)4 = 1,
Jfloyﬁloafloyﬁloaloy12oaloV12: 1,
(1/12 O T2 001 0O 7T12)2 = 1,

(Ul O T2 © V12)3 = ]_>
Proof. See [16] Chapter 3.5. O

A classical representation of Aut(F),) is given by
p1: Aut(F,) — Aut(F,/F)) = GL(n,Z),

where F! is the commutator subgroup of F,, and p;(y¢) is the automor-
phism of the abelian group F,/F! induced by ¢ € Aut(F,). Let us

consider the images of the generators of Aut(F;,) under p;:

p1(Nij) = Eji, p1(vi;) = Eji,
p1(o;) = Oy, Pl(ﬂij) = Pj;.

For the definition of E;;, O; and F;; see the Notation at the beginning.
Because E;; and O; generate GL(n,Z) by Proposition 1.5, we see that
p1 is onto. The kernel of p; is called the classical Torelli group and is
denoted by IA(F},). Thus we have an exact sequence

1 — IA(F,) — Aut(F,) — GL(n,Z) — 1. (3.1)

Since Aut(F},) is finitely generated and GL(n,Z) is finitely presented, it
is clear by Proposition 1.7 that IA(F},) is finitely generated as a normal
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subgroup of Aut(F,). By (3.1) the group IA(F,) has infinite index in
Aut(F,). Hence there is no reason why IA(F,,) should be finitely gener-
ated as a group. Indeed our intuition tells us that it should be infinitly
generated. But in contrast a theorem of Nielsen and Magnus ([13],[11])
asserts the opposite, namely that the classical Torelli group IA(F},) is a
finitely generated group. Actually explicit generators are given:

Theorem 3.2 (Nielsen/Magnus).

(a) The group TA(Fy) is generated by the automorphisms
konyy : {z) = meryzy 'y and  kongy : {wy — zya0w '}
In particular TA(F,) = Inn(F).
(b) Forn >3 the group IA(F,,) is generated by the automorphisms
kongj : {w; — zjma; '} (i # ),
Kijk © {x; — mimjxkxj_lx;l} (1, 7, k pairwise distinct).

The idea of the proof is to apply Proposition 1.9 and Lemma 1.10
(see [13] and [11]).

Define now Aut*(F},) to be the subgroup of Aut(F,) whose image
under p; lies in SL(n,Z) , i.e.

Aut™(F,) := {¢ € Aut(F,) | det(pi(¢)) = 1} = ker(det opy).

The subgroup Aut™(F,) is a normal subgroup of index two in Aut(F,).
By Nielsen (see [16]) Aut™(F,) is generated by the automorphisms \;;
and v;; for i = 1,...n with ¢ # j. Hence p; : Aut™(F,) — SL(n,Z) is

onto and we obtain the exact sequence

1 — IA(F,) — Aut™(F,) — SL(n,Z) — 1.

3.2 SERIES OF [A(F),)

Let us consider the lower central series of the group TA(F},)
TIA(F,) = v(IA(F,)) > n(IA(F,)) > »(IA(F,)) > ... . (3.2)
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There is another central series of IA(F},), which is more studied than the
lower central series (3.2). Let us now construct this series.
For this let

Fo=%(F) > n(F) > 7(F) > ...

be the lower central series of the free group F),. Since the group ~;(F},)
is a characteristic subgroup of F,, we obtain homomorphisms

pi Aut(Fn) — AUt(Fn/%,(Fn))v

where p;(¢) is the automorphism of the abelian group F,, /~;(F;,) induced
by ¢ € Aut(F},). Notice that for i = 1 this coincides with the classical

representation p;. Define
IA;(F,) = ker(p;).

The automorphisms in IA;(F},) are those, which induce the identity on
Fo./vi(Fy,). The groups IA;(F,,) are called generalized Torelli groups. In
fact, we have IA(F,) = IA(F,).

By this construction, we obtain the following central series (see [1])
IA(F,) =TA(F,) > 1Ay (F,) > TA3(F,) > ... . (3.3)

The next proposition collects some results about this much investigated

series.

Proposition 3.3.

a) 1A, (F,)/TAi1(F,) is torsion-free abelian (see [1]).
b) 1As(F,) = 7 (IAL(E,) (see [3)).

¢) N2 IAi(Fy) = 1 (see [1]).

d) 1A(F,) N Inn(F,) = s (In(F,)) & 31 (F,) (see [6]).

&) (IA(F,) < TAu(F) (see [1]).

By this proposition, we see that the two central series (3.2) and (3.3)
fit together in the following way
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IA(F,) > IA(F,) > IA(F,) > IA(F,) >
I Il Vi VI
WIA(E)) > m(A(F)) > %(IA(F)) > w(IA(F,)) >

In the case n = 2 Andreadakis showed in [1] that these two series
coincide, i.e. IA;(Fy) = ~_1(IA(Fy)) for all i« € N. This leads to the
following conjecture.

Conjecture 3.4. Let n > 3. Then we have
LA;(Fy) = 71 (IA(F))

for all i € N.

From Proposition 3.3 we obtain the following corollary.

Corollary 3.5. Let n > 2. The classical Torelli group TA(F,) is torsion-
free and residually nilpotent.

Proof. By Proposition 3.3 part c¢) and e) we have (.2, IA;(F,) = 1 and
7i(IA(F,)) <1A;41(F),). But then it follows that

NUAE) = 1,

i.e. IA(F},) is residually nilpotent. Now we apply Proposition 2.16 to see
that IA(F},) is torsion-free. O

Formanek constructs in [6] the following Aut(F,)-equivarient homo-

morphisms

g0 IA(F,)/TA 1 (Fy) — Homg(F/[Fy, Fu), vi(Fa) /v (Fn))
D -TA 1 (Fn) = (2 [Fy, B — q)(x)xil Yir1(Fn)),

where the action of Aut(F,) on the groups IA;(F,)/IA;1(F,) and
Homgy (F,,/[Fy, ., v:(Fy)/vie1(Fn)) is given by conjugation. The action
is trivial when restricted to IA(F,). Thus the g; are Aut(F),)/IA(F,)-
homomorphisms, i.e. GL(n,Z)-homomorphisms. The construction of
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these GL(n, Z)-homomorphisms is similar to the construction of the so-

called Johnson homomorphisms in the theory of mapping class groups
(see [9]).

In the case i = 1 the homomorphism ¢; is an ismorphism (see [3],[6]):

IA((F,)/TAy(F,) = Homg(F,/[Fy, Ful,(Fn)/v2(FL))
Homy (Z", Ao(ZM)),

1%

where Ay(Z") is the second exterior power of Z". Since we have [Ay(F,,) =
7 (IA(F,)) by Proposition 3.3, we obtain

IA(F,)™ = Homg(Z", Ao (Z")).
After tensoring with C, we obtain
IA(F)*®,C2C"aV,

as a GL(n,C)-module, where V}, is a certain GL(n, C)-module of dimen-
sion dim¢(V;,) = n(n+1)(n — 2)/2 which is irreducible even as SL(n, C)-
module (see [6]).
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CHAPTER 4

GENERALIZED TORELLI GROUPS

This chapter is concerned with the main subject of the thesis. In Section

4.1 we describe the construction of the representations
/)G,n . P(Gv 7T) - gGJr(Z)u

where I'(G, ) is a subgroup of Aut(F,,) with finite index. This construc-
tion is introduced by F. Grunewald und A. Lubotzky in [5]. Section 4.2
deals with the special case G = C5. We introduce the representation

o :T7(Cy,m) — GL(n — 1,7).

We show that the map o_; is surjective by analysing the images of the
generators of I'" (Cy, 7). Hence the kernel K, of o_; fits into the following

exact sequence
1— K, —»T7(Cy,7m) — GL(n —1,Z) — 1.

Our main theorem states that K, is finitly generated as a group. Gen-
erators of K, are given explicitly. This is done in Section 4.3. Note that
our main theorem corresponds to the theorem of Nielsen and Magnus
(see Theorem 3.2).

4.1 CONSTRUCTION OF THE REPRESENTATION pg .,

The representations, which we describe here, are introduced by F. Grune-
wald und A. Lubotzky in [5].

Let G be a finite group and = : F,, - G a surjective homomorphism
of the free group F), onto G, i.e. 7 is a presentation of G. Moreover, let
R := ker(7) be the kernel of 7. Then R is a finitely generated free group.
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By the formula of Reidemeister and Schreier (see [16] Chapter 2.4) we
obtain that R is free on

G- (n—1)+1
generators. Now we define
[(R) = {p € Aut(F) | ¢(R) = R} < Aut(F,)
and
I'(G,7) :={p € I'(R) | ¢ induces the identity on F,,/R} < Aut(F,).

Both subgroups I'(R) and I'(G, 7) have finite index in Aut(F},) (see [2]).
Define further
R:= R/[R, R] = R*™.

The action of F,, on R by conjugation leads to an action of the group G
on R. The group R is called the relation module. Every automorphism

¢ € I'(R) induces a linear automorphism ¢ € Aut(R). By a result of
Gaschiitz (see [7]), we have

[(G,7)={p eT(R) | ¢: R— Ris G-equivariant}.

The relation module R is a finitely generated free abelian group. Let
t:= |G| (n—1) + 1 denote the Z-rank of R. We define

QGJ = AutG((C X7, R) < GL(t, (C)

The group Gg., is the centraliser of the group G acting on C®z R through
matrices with rational entries. We set

Gor(Z) :=1{® € Gsr | ®(R) = R}.
Choosing a Z-basis of R we obtain an integral linear representation

pG,W:F(Gﬂr) - gG,w(Z)
® = P
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4.2 'THE REPRESENTATION 0_1

The next constructions are taken from [5] Section 6. Let F,, (n > 2) be
the free group generated by x,vq,...,y,_1. Later we will see that the
generator x will play a special role. That is the reason why we denote the
generators this way. Let us introduce the following elements of Aut(F;,).
Our convention is that values not given are identical to the argument.

o b {r—yzx}ande : {z—ay}tfori=1...n—1,
o o, {yi— xy;} and ¥ : {y; —myx} fori=1,...n—1,
o N\ {yi— yuit and v - {y; — yiy; fori =1,...n—1 with i # j.

A theorem of Nielsen (see Chapter 3) asserts that these elements generate
Aut™(F,). Let us introduce further

o rj  {x = xly;, ukl}s R Qv yily el for 1< 5k <n—1
with i, j, k pairwise distinct,

o 7 {yi— yilx,y;]} for 1 <i4,j <n—1withi#j,

e kong, : {yi — aywt}, kong : {r — yry; '} and kon;; : {y; —

yjyl-y;l} for 1 <i,5 <n—1withi# j.

The set consisting of the ki, Kiji, Tij, kon,,, kon,; and kon;; generates
the group IA(F},,) by Theorem 3.2.

Now let G := (5 the cyclic group of order two generated by ¢ and
7 F, — C5 be the following presentation

m(x) =g, m(y1) =1,...,7(yn—1) = 1.

The kernel R of this presentation consists exactly of those elements of F,
with an even number of ’s. By the formula of Reidemeister and Schreier
this is a free group of rank 2n — 1. Free generators are given by

2 —1 -1
T Yty oy Yn—1, 1L ..., TYn1T .

The corresponding relation module R has then the following Z-basis

2 T —1 —1
T Yy e oo 3 Yn—1, TY1T ~y ..., TYp 1T .
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By the construction described in Section 4.1 we obtain the integral linear
representation

Py L(Cy, ) — GL(R) = GL(2n — 1, 7Z).

Set now

I7(Co,m) = {p € T(Ca,m) | det(pi(p)) = 1}.
Lemma 4.1. The index of T7(Cq, ) in Aut*(F,) is 2" — 1.

Proof. See [5], [2]. O

The restriction of pg, » on I'M(Cy, 7) leads to the integral linear rep-

resentation

peor i TT(Co,m) — GL(R) & GL(2n — 1,7Z).

The Q-vector space Q ®7 R decomposes as Q ®z R = V; ®V_;, where
Vi, V_; are the £1 eigenspaces of g respectively. Set R; := RNV} and
R 4 := RNV_4. Introduce

v =1 FayeT w=1 —oyet (i=1,...,n—1).

Then 22, vq,...,0,_1 is a Z-basis of Ry and wy, ..., w,_, is a Z-basis of
R_,. Since I'(Cy, ) leaves R; and R_; invariant, we obtain, with the
above Z-basis chosen, representations

o1 :T7(Cy,m) — GL(n,Z), o_1:TH(Cy,m) — GL(n —1,7Z).
The representation o is equivalent to p; restricted to ' (Cy, 7). A proof

for the case n = 2 is in [2], but the general case is analogous.

In contrast the map o_; somewhat less expected. The goal of this
chapter is to understand the map o_;. We especially want to study the

kernel of o_1, which we call a generalized Torelli group.

We adopt from [5] the following proposition, which presents us a set
of generators for I'"(Cy, 7). To give the generators of I'(Cy, ) is an

important feature, which is not possible for an arbitrary group G.
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Proposition 4.2. Let n > 2 be a natural number. The group T (Cy, )

1s generated by the automorphisms

b 5i7 €, 90227 ¢12: konix; kOIlm' (]— S l S n— ]-):
(] )\ij; Vij; /ﬂj, Tz’j; kOl’lZ‘j (1 S ’l,j S n — 1,2 #]),

o ki (1<i,5,k <n—1, i, j,k pairwise distinct).

Lemma 4.3. Let n > 2. The group TA(F,) is contained in T (Cy, 7).

Proof. This is clear by Theorem 3.2 and the generators of I't (Cy, 7) given
in Proposition 4.2. ]

If we take a close look on the set of generators for I't(Cy, ) given in
Proposition 4.2, we see that there are some redundant generators, i.e. we
can express some generators in terms of others, which yields the following
set of generators.

Corollary 4.4. Generators for TT(Cy, ) are

o forn =2 the automorphisms 1, ¥? and kony,,
e for n > 3 the automorphisms ¢;, V?, kon;, (i =1,...,n —1) and

Vij (2,]21,,n—1,Z7éj)

Proof. We are going to prove the following relations:
Forn>2and1<i<n-1:
6 = kony,' og; o kony,
kOHm' = (SZ o 81»_1,

2 2 2
¢; = kon;, oy

Forn>3and 1<4,5 <2,1+# jJ:

-1
kon;; = [kon,, ,0d,],

>\ij = kOIlZ'j Olij,

Tij = koni;,1 ov;; 0 kon, oyigl,

U I |
Rij = &;0E&;0¢; 08]-.
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Forn>4and 1<14,5,k <n—1, 1,7 k pairwise distinct:

-1 -1
Fdijk = Vij O Vs © Vij e} Vik‘ .
Let us now prove these formulas in detail:
-1 .
e 0; = kon; = og; o kon,,:
kon; &; kon;c1
xr = = XY oy
kon;,, 1 €& 1 koni_xl ’
Yi F— TYiX = Ty = Y
_ -1,
e kon,, =d;0¢; :
-1
& -1 b =1
r =y, = Yy, ’
2 _ 2 2.
* ;= kong, oy}
11;22 9 kon?z 9
e kon;; = koni_m1 0d; o kon;, oéj_lz
—1
9, 1 kon, -1 d;
x |—>1 y; . =y =
8; kon;, 19 —1. -1
Yi = Y = YT = YTy Y,
koni;1
x
-1
kon_ 1 ’
= YiYiY;

o )\;; = kon,; oy;;:

kon; ;

{yi 3 viy; = ?ijz'}’
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-1 —
e 7;; = kon;, ov;; o kony, oyijl:

-1
Vij —1 kong, 1,1 Y —1, -1
Yi = Yy, = XYl Y, = TYY;T Y

—1
1T

= gy lyy } )

o kij=¢g0g50g og; "

1 1
x TY; LY; Y; LY5Y;i Y,

= ayayyy Y } ,

-1 -1,
([ ] Kijk == Vij O V. © Vij (0] Vz'k: .

1

V‘_l — V;' — — V; — —
{yi I VT T S TH VN Vs T
Vij -1, -1
= YR Y }
0

Now that we have found this improved generator set of I' (Cy, ), let
us consider the images of these generators under o_;.

Proposition 4.5. We have

o-1(&i) = In-1, o_1(vij) = Eji (i # J),
0—1(1/122) = In-1, 0—1(k0Hz‘m) =0;

for 1 <i,j <n—1. In particular o_; is surjective onto GL(n — 1,Z).

Proof. We consider the images of o_; with respect to the Z-basis wy, ..., w,_;

of R_;. We have

L 0—1(&) = In—1:

o_1(e)(wp) = eilyw) —cilzypr™) =T — Iyiykyi_lm_l

= Uk — (xyz-:c—l + ryprt — xyix—l)

= Ur —axypx~ ! =w, for all k.
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® O',1<I/l'j) = E]z

o1 (vig)(we) = vig(yr) — vig(ryer™) = Jx — zypz™!
= wg forall k # 1,

o 1(vig)(wi) = vii(yi) — vi(zysr™) = Giyy — vyay;o

= Uity — <a:yix—1 + xyja:—1> = w; + wj.

o 0 1(¢7) = I

o1 () (wr) = VI(ye) — Y eyer) = T — zypr!
= w, forall k#71,

o1 (W) (wi) = Ui (i) — P (wyr™t) = ya? — TG
= g +a?- (myim—l + P) = w;.

e 0_(kon;,) = O;:

o_1(kon;,)(w;) = kong,(yx) — kon, (zyrr=") = 7, — zypr!
= wy forall k# 1,

o_1(kong)(w;) = kong(y;) — kong, (zy;x=1) = xy;a—t — 22y;272

= zyxt— <P+E—P) = —w;.

The surjectivity of o_; follows directly from Proposition 1.5. O

4.3 THE KERNEL OF o0_;

The kernel of o_; can be considered as a generalization of IA(F},). Hence
we call ker(o_1) a generalized Torelli group. By Proposition 4.5 we obtain
the following exact sequence

1 — ker(o_1) — I'"(Cy,7) = GL(n — 1,Z) — 1.

By this sequence we see that the index of ker(o_;) in I'"(Cy, 7) is infinite
for n > 3. For n = 2, the index of ker(o_;) in I't(Cy,7) is two and
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it follows by Proposition 1.6 that, in this case, ker(o_;) is a finitely
generated group. But there is no obvious reason why ker(o_;) should be
a finitely generated group for n > 3. However the result of Nielsen and
Magnus, which says that IA(F,,) is finitely generated as a group (Theorem
3.2), makes the finite generation of ker(o_;) more likely. Indeed we are
going to prove that ker(o_) is finitely generated as a group for all n > 2
(see Theorem 4.14).

Definition 4.6. Let n > 2. Define K,, < I't(Cy, ) to be the subgroup

generated by the following automorphisms

g - {x — zy;}, 8; + {x — yx},
1/%'2 : {yz — inQ}'

fori=1,...,n—1. o

Notice that K, is a finitely generated group by definition. The next
goal will be to prove that the group K, is the kernel of o_; for all n > 2.
To prove this we will apply Proposition 1.9. We know by Corollary 4.4
the generators of I'"(Cy, 7) and by Proposition 4.5 the images of these

generators under o_;, namely

o-1(ei) = In-1, o_1(vy;) = Ej;,
Ufl(wi% = In-1, Ufl(kOHm) = 0,.

A presentation of GL(n — 1,7Z) in terms of these generators is given in

Proposition 1.5. So our strategy is the following:

e Show that the group K, is a normal subgroup in I'"(Cy, ) (see
Lemma 4.12).

e Let R(E;;,Oy) be the set relations of GL(n — 1,Z) as given in
Proposition 1.5. Then show that R(v;;, kong,) € K, (see Lemma
4.13).

e Show that K,, < ker(o_1) (see Lemma 4.7).

Then we can apply Proposition 1.9 and conclude that K,, = ker(o_1).
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Lemma 4.7. We have
K, <ker(o_q).

Proof. We have by Proposition 4.5
071(51') =TI, and 0—1(%2) = In—1-
Hence it suffices to show that o_1(9;) = I,,_1:

o_1(0;) Cor_14 o_1(kon;,! og; o kony, )

= 0'_1(kOIlix)_1 : 0'_1(51‘) : U_l(konm) = 1p_1.

O

The proofs of the Lemmas 4.12 and 4.13 become easier, if we introduce
some more elements in K,,. This will be done in Definition 4.8 and
Definition 4.10.

Definition 4.8. Let n > 2. Define «; and ; for 1 <7 <n —1 to be the
following elements of Aut(F},)

x — x ! 5 r — x !
(67 s i . _ .
yi — oy e yi = oy

Proposition 4.9. Let n > 2. Then the automorphisms «; and (3; (i =

<

1,...,n—1) are in K, and satisfy o? = id and ? = id. In particular,
K, is not torsion-free.

Proof. We have

—2 2
o; = 1/]1 ogiogbi o 0j,

2 12 1
Bi = Wiod oyiog .

We prove these formulas now in detail:

-2 -2
d; i -1 & -1 Y, -1
T = YT = YT = T —
—2 -2 Y
di i -2 & “1,-1,.-1 % —-1,.—1
Yi > Yi > YT r Yy, X TY;, X
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o Bi=120d topiog
-1

e _ P2 o 5t B 2 _
T N :L,yl 1 AR T 1yi 1 N T 1 RAN T 1

—1 -1

i )7 2 9; -1 P7 -1, —1
Yi =Y = YT = Ty X = T Y, X

N

Finally we show that a? = id and $? = id:
T
Yi

Bi _1
r = x

By —1, -1
Yi — T Y,

{L’il

~1,.-1
TY; T

IERE
Ie 12

xr
x—1<xyi—1x—1)—1x =y )

Is s

T
plely ) e =y )

Definition 4.10. Let us define some more elements in Aut(F,,) for n > 3.

& Ay = gyt oAy = 2 Yyt
ooy iy Y, idj Ay =y Yyt

- yi = ay; e
kon;;,. L (-
yj — wy;w
Lemma 4.11. The following automorphisms are in K,

o forn>2and1 <i<n-—1:

kon,; : {x + ywy; 'Y, ©? : {yi — 2y},
kOH?z Ay — Py,

o form>3and1<i,j<n—1,1i+#j:

Kk o {x — xyjyky]fly,;l}, kong; : {y; yjyiy;1}7
b {yi = viyjey;a—t}, Z Ay — eyt
icj : {yz = yiijilij}f Zcé : {yl = xijilyjyi}:
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o form>4and 1 <i,j,k<n-—1,1,7, k pairwise distinct:
Kagr - {ys = vy vE L

Proof. The following relations, which we are going to prove below, hold
in K,,.
Forn>2and1<i<n-—1:

—1
kOIlm' = (51 og,
2
kOl’lix = Q; 0 61‘,
2 2 2
¢; = kong, o7

Forn>3and 1 <14,5<n-—1,i#J:

kon;., = a;of,
/{ij = €iO€jO€i_1O€j_1,
kon;; = fioe;lofiod
Go= 5;1 o2 ogj o,
ij = koni_j1 O@/J? o kon,; o ZC] o ;/){2,
o= a0 (¢5) o,

G5 = Bio(gh) tob
Forn>4and 1 <14,j5,k <n—1and 1, j, k pairwise distinct:

_ — -1 - ~1 d — -1
Kijr = kongjogjo (kon, )" ogjokon;;, okony o o (kon;,) " o

-1 - -1 -1 -1
g; okong;, o((jy)” okong,oe; " okon, ;.

We prove now all these formulas in detail:

e kon, = d;oc;
See proof of Corollary 4.4,

/81 -1 (€7
r = T x

B 1 1 o« g e
yi = alyte = ey e ) e = 2Py
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2 _ 2 2.
* ;= kong, oy’

See proof of Corollary 4.4,

° konijx = ;O BJ

ﬂj -1 (o7}
r = =
Bj (o7} -1 _.—1
Y; = Y = XY, T )
Bj 1 - o 1 _
Ui N lyjlx Qi :Eyjlar 1
o k. =c,0e.0e toeTl
Kij = €; 0 € O g; £
See proof of Corollary 4.4,
_ -1 -1,
okon,;j_ﬁioej o io5j :
—1 —1
1 y] y] 1
95 Bi 1 -1 &) -1, -1 -1 B
Yi Y =T Y, T & YT Y Ty, =
c _ —1 -2 . 2.
® (j=¢; oty ogony:
_ —1
P2 €j ¥ &j
r = x = xy; =Ty = T
—2 —1
»? 2 & P 1 &j -1
Yi ‘= gt e YiXYy;xy; v Yl TYxky; v Yy Y5

a __ -1 2 L ~fC -2,

o (i = kony; othi o kony;o(; 0"
—2

¥; o S 1, -1 kong 1, -1

Yi b Ui =YY YT =YY YT

L ..‘71}
= Yy ry;x = YiY;jxYy;x ’

b __ c\—1
° Zj—ozio(ij) o oy
Qg -1 (C’LCJ)_I -1 Qg
T L A — e = X
-1
o 11 (6 1 -1,-1 % -1
Yi = 2y, X = TY;T "Y;ry; T = T Y;jTY;Y;
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d idj_ﬁzo< l{lj)_loﬁz
Bi _1 (%)—1 _1 Bi
Xz = T — xr —
Bi 1 -1 @ -1 -1,,—1 Bi
Yi = Yy, T = XYY Y, X

X

ry;x Yy

)~ tokong, oéj_l:

=1 ~1_4d — \—1, .1 - d
® Kijk = konij okon,, "o iko(konijx> 0¢; Okonijwo( ik
-1 _
x (?J—> _132 kgk _1$ (C’flk—)> 1 _1:13
Y i Yi
' 9; ' kon,, -1 (st -1,.-1,, 1
Yi = Y = YrYiYy = TY T "YiYy
—1 _
9; kon, ()~
kon;jl oy Ti: .
J
kon; et
Jj -1 -1 -1 -1 J -1, -1, -1 -1,,—1
= XY Y XYy T Yy Y Y Y Yy
- —1
konijgc 1 € 1
Ty, =Ty
- y-1
(kon}if) . d .
(kon;, )~ 11 11 Sk -1, —1
= YiZY T “YilY; Yy = YiYkYiY; Yy
(kon5,) ! ¢t
Y; Yj
kon ! kon_ !
2 g TR
1 —1
kon, . . 1 1 konij . 1
= YiYiYxlY; Yk = YiYiYelY; Yi
koni_k1 koni—].1
— —

Yj

Yj

Lemma 4.12. The group K,, is a normal subgroup in T (Cy, 7).

Proof. By Lemma 1.10 it suffices to conjugate the generators of K,, with

the generators of I'"(Cy, 7) and their inverses. The generators of K, are
by definition €;, §; and 2 (1 < ¢ < n—1) and the generators of I (Cy, )
are, by Corollary 4.4, the automorphisms &;, ¥?, kon;, (1 <i <n —1)

and v;; (1 <i,j <n—1,14+# j). Since ¢; and ¢? are automorphisms in
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K, as well as in ['*(Cy, 7), it suffices to conjugate with v;;, v;;', kon;,

ij
-1
and kon_ .

In order to reduce the formulas in the proof, let us note here:

e We do not need to conjugate with kon;xl. To see this, suppose that
kon;,, oar © koni;1 € K, for some o« € K,,. Since kon?l, e K, for

n > 2, by Lemma 4.11, it follows that

~1 =2 -1 2
kon; ' o« o kon,, = kon;,* o( kony, oavo kon, ) o kon;,
— ~ v ~——

€Kn €Kn €Ky

is also in K,.

e Notice that the automorphisms &;, d; and 1)? commute with vj if
j # 1 and k # i. Hence we do not need to conjugate ¢;, d; and v?
with v, if j # ¢ and k # 4.

First we list the results and prove the formulas below.
1.) vijogiov; =g oe; € Ky,
Vj; 0€&; O ijl =¢g; € Kn,

—1 ~1
Vij OEiOVij:éinéfj EKn,
Z1
Vji OE;OVj = ¢&; c Kn,
-1 2 -2
kon,, og; o kon; = konj, od; o kon,~ € K,

-1 _ ~1
konj, og; o kon, = ¢; okon;;” € K,

2.) yijoéioyigl =0;00; € K,
Vj; 0 0; 0 Vj_il =0, € K,,
I/igl 0d;ov = (5]-_1 0d; € Ky,
I/j_il 0d;ovj =0; € I,
kon;,, 0d; o kon;c1 =g € K,,

-1 —1
konj:p 061' o kOIlja3 = 51 ©qQy o konji o € Kn7

3.) Vij © P? o 1/131 = koni_j1 oh? o kon;; € K,
vjio?o I/j_il =920 komj_i1 owj_z okonj; € K,
Vigl o 1)? o v;; = kon;; oyh? o konfj1 € K,,
ijloi/}?ovji :wfo%z € Ky,
kong, o9p? o kon,! = ¥? € K,,,
kon,, 09?7 o konj_xl =? € K,.
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We check these formulas now in detail:

-1

® Ujj0E 0V =g 0¢&;!
—1
Vij €; Vij
X =z = 2y = XYY,

A T T PR S Y

-1
([ ] l/jiosz-oyji = &;.
-1
Vii = Vi
r = x = XY XY
—1 Y
v

yi S oyt S gyt By

-1 —1
.Vij O€Z‘OVZ']‘:€Z‘O€]- .
-1
Vij & Vij 1
r = X = 2y — xyiyj
-1 s
Vij € Yij
Yi = Yiy; v YiYy; Y

1 .
® Vji o0g; 0 Vj, = E;-

Vji & ji
1 = Y = Ty

Vji €5 ji

xr
Yy; — Yy — Yy — Y

- -2
e kon,, og; o kon;,! = kon?, o; o kon},*:
-1

kon,, g4 kon, ;. 2 _
T — T = TY; — T4Y;x
kon !

T

y o~ Ty S oyl lymy, 5 ay Ty

kon, 5;
xX — xT = Y,

—2, .9 G 1, —1,.—1
Y T Tyt e XY, T YTYx

I’Qyil'il

~1,.-1 -1
LY; X "YillYix
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-1 _ -1,
e konj, og; o konjx =¢;0 konﬂ :
-1
kOIl]-]: 58 kOIl]'x
T — x = ZY; = ay;
kon;zl konj,

y, = Tty S oy yry, =y

R S T T VAR T T

-1 _ . ..
° Vijoéioyij =0;00;
-1
Vij 5 Vij
rom =T e Yy
—1 9
Vij

-1 1) 1 A
Yi = Yy, = YiY; = Y

° yjio@ouj;l = 0;:
—1

Vi 8; Vji
r = = YT YT
—1 )
Vi 1 i 1 Vi
Yi = Yi¥ YiY%i - Yj

-1 o1 .
° v o5iouij—5j 0 0;:
—1
Vij &; Vij 1
T = T = YT = yiyj €T
—1 Y
Vij 8; Vij
Yi = YiYy; v Yy Ui
Y -1 o) 5 le) L. — 5
Vj; i O Vj; = 05t
—1
Vji d; Vii
r = T = Y = YL
—1
Vji 0; Vii ’
Yi oYY v Yy Y
e kon,, od; o koni;1 =&y
koni_gcl 61 koniac
T = = YT = Y

—1
ko, -1 d; 1 kon;,, ’
Yi = T Y = T YT Y
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e kon;, od; okon =0;00q; o kon; ! oqy:
—1
kon 5 kon g
xS =g =y

kon,, -1 di 1,1 konjo 1 g 1
y, = xTyjr o= Ty gy — oy ayaT ye

kon
(e
€T > x_l A x_l
= 1
aj 1 kon . 1 1 1
yp > owyy =Y Y Y
ay d;
= @ =YX
o s T R O U D) ’
= T Y TY;T Yk T Y TY;T YT

2 -1 __ -1 2 .

Vig

—1
Vij 1 ¥ _ - —
{yz- T RV T yiijgyjl}

{ kon, ; -1 ¢i2 2 -1 kon;jl 2 -1 }
Yi 0 YiYiY; =YYy, = YilYiTTY; ’

—1
yji d}? 2 V]'L 2
Yi Y YiT FS Y B
vt 2 o

konj; w;z kon;zl
Yi Yi =Y = Yi
kon; 1/1;2 kon ;!

2
? 2

= YL

2 )

P; 9 _1
=y 2y

e v ' oy} oy = konyjoh? o kon

j ¢ - koni i

l/

{ Vij P2 2 ”i;l -1.2 }:

yi oy e yatyy e s wty

{yz oy B gty o gty }
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-1
° v o )7 o vy :w?owiz:

Vji V7 9 Vi 9
Yi = Yi = YT = YL

Vji ¥7 2 Z'j_il 2 ’
yi &/ Yy o Yy e Yir

e kon,, o1)? o konj,' = ¢

1
' kon -1, V7 -1, .3 kong 2
Yi = T "Yir /T Y = Y; X )

e kon,, oyp? o konj_‘,]c1 =%

)
kon !

Jx w? 2 konjx 2
Yi =Y = Ui = UiZ
—1
konjz 1 1/11_2 1 kon;

]

Lemma 4.13. Let n > 2 and let GL(n — 1,7Z) be presented as in Propo-
sition 1.5 and let R(E;j, Oy) be the corresponding set of relations. Then

R(vj;, kony,) € K,.

Proof. Let us begin with the case n = 2. But there is only one relation
in the group GL(1,Z), namely O? = 1. Thus we just have to show that
kon?, € K,. But this is clear by Lemma 4.11.

Let us now consider the case n = 3. According to Proposition 1.5
the group GL(2,7Z) is generated by FEia, E9;, O; and Oy subject to the
following relations

E12E21 E12E21E12 E21 - 1
(E12E21 E12) - 17

(01E1)? =1,
1En)? =1
0 =1,

L)

2.)

3.)

4.) (O
5.)

6.) By E501E1Ey 05" =
Hence we have to show

-1 -1

1.) va10vy oV OV 0y O Vg € K,
-1 4

2) (1/21 O Vg O V21) S Kg,
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kon

kony, ovs)? € K3,
kOIllm OV12)2 € K3,

2
1z

€ Ks,

1.) vy 0 V1_21 O /91 O V19 O 1/2_11 ovip =1d € K3:

1,2 —2 ~1
Vyy O Uiy © kony, ovgy o 15" o kon,,, € K.

1
V12 Vo —1 Vi2 —1 V21
Yi = YiYy2 = iyl = Y1yl = 1Y2
-1
V12 Vo -1 V12 —1 V21 —1
Y2 Y2 YUy U = Y
-1
Vig V21
= Y1 =y
-1
W gyl 2
Y2 Yo

2) (1/21 e} V1_21 @) 1/21)4 = kOIllg e} kOl’lQl @) kOHl_Ql e} k0n2_11 € Kg:

In order to compute (y210y1_2101/21)4 first we define y := v9; OI/1_210V21.
Then we have:

V21 Vig -1 V21 —-1
Y = o — W = Y1Ys = Y
V21 V1_21 —1 V21 -1 ’
Yo = Yol — Y2Y1Ys = Yal1Ys
X _ X 1
T Sy Y
X = X -1 X -1 -1 -1 J
Yo = Y2hYs = Yol1Ys Y1 Yo
X2 1 1 x> -1 1 1
4 _ i = Y2y Yo = YohYo Y1Y2Yr Yo
X x> 1 -1, -1 X 1 -1 1, -1
Yo = YoY1Ys Y1 Yo = YerYs Y1 Y2 Y2Y1 Yo

In the last step we show that y* = kon;, o kony; o kon, o kony;':

kon,; 11 konle -1 kona1
yl — yl — y2 y1y2 —
kongl1 _1 konfz1 1 -1 konai
Y2 = Y Y2 = Yo Y Y2Ury2
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-1 -1 konj 2 -1 -1, -1

Y1Ys Y1Y2Y; = Yoy Y1Y2Yy Yo
-1, —1 —1  konga -1, —1 -1, —1 )

1Yo Y1 Y2Y1Y2Y; = Y2Y1Ys Y1 Y2Y1Y2Y1 Yo

3.) kony, ovyy o kony, ovyy € Kj:
In order to show this let us be a little bit more general. For this
let n > 3. We are going to show now

_ 2 c -1
kon;, ov;; o kony, ov;; = konj, o kon;; onl o komj1 e K,

for2<j;<n—-1:

Vi1 konig -1 Vi1 1
Yy Y — Y1 =TT

Vi1 konig -1 Vi1 -1
Y — Yy o Y TYix = YY1 TN

kon _
=" 2y 2
konq _9
= YY1
kon* ¢ kon ;
g1 g1 onyi
- konjfl1 2

4 -1, 1,1 konjy
Yj = Y Yy & Y YT Thiryr v YT Y1y

22y 22

lx -2
= Yiryiryrx

4.) kony, ovyy o kony, ovyy € Kj:
Let us be more general again. We show for n > 3 that

2 a —1
kony, ovy; o kony, ovy; = konj, o kony; o(j; o konj; € K,

for2<i<n-—1:

V14 konyy ~1 V14 -1
Yi = iy v XN Y b XY Y
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— kon ! -1 T -1 -1 kony; -1

T Y =Y Ny Y Yy Yy e Y Y
2

="y lya Ty }

kon?, € Ks: This is clear by the case n = 2.

1 2 —2 ~1 .
Vyy O Vi 0 kony, ovgy o 145" o kon,,, € Kj:
Let us here be more general again. We want to show that

vt

2 -2 -1
1 OV 0 kon, ovj; o 2T konjx e K,

forn > 3 and 2 < j < n — 1. Checking this formula is the most
complicated part of the complete proof. For this we mention first
that the following equation holds

-1 —92 2 -1

kon;, ovy;” oy o kony, ovy; o vy

_ 2 -2 2 51 2 -1

= [ okonj; o0 okony ogp 04700, o okony; ody okony; o

-2 1 b a2 - -1
p; - o konyy o(j o ¢f o konyj, o(CY;) T 095 € Ky

for 2 < j < n — 1. For the proof see the next two pages:
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So we proved that
konj,! oyl_j2 o vj; o konj, oz/fj o I/j_ll € K,. (4.1)

But we have to show that

-1 _ 2 -2 -1
Vs ovjj okony, ovjy ovy” okony, € K,

The inverse of (4.1)

1

N -2 -1 - 2
Y =vj o0 vyj o konjx oVt O Uy 0 kony,

is also in K. Since K, is a normal subgroup in I'*(Cy, 7) we have

X :=konj, o(vj; 0 (v;;' oY o) owy? )okon € K,.

But now we see that X = ujll

This is what we wanted to show.

oyl okonlxoy]loy1 okon € K,.

Finally we consider the case n > 4. According to Proposition 1.5 the
group GL(n — 1,Z) is generated by E;; and O; (1 <i,5 <n—1,1i# j)
subject to the following relations

L) [Ey, B =1ifj#k, i #1,

2) By, BplBy! = 1if i # j #k #1,
3.) (BEywEy )t =1,

4) (O1By)? = 1if j #1,

5.) (O1E;)? =1ifi #1,

6.) O1E;O B V=1ifd,j#1,

7) 0? =1,

8.) By B0 By E20; = 11if j # 1.

This means we have to show

) (Vi) € Ky if j #k, i #1,
[V]l,ij]OVkZ e K,ifi£j#k#1,
(vo1 0 vpy' o va)t € Ky,

(kony, ovj)? € K, if j #1,

(kony, ovy;)* € K, ifz' # 1,

kon,, ovj; o kony, ovy; Ve K, ifi,j#1,
konlm € K,,

-1
Vi oyljokonlxoujloylj okon e K,ifj#1.

0~ O U W N
\._/\_/\_/\_/\_/\_/\_/\_/
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In the case n = 3 we have proved already 3.), 4.), 5.), 7.) and 8.). So
there are only 1.), 2.) and 6.) left to show:

1.) yjioylkoyj’iloyljcl for j # k,i #I:
° VjiOVZkOijlouljﬂl:idEKn for j # 1,1 # k:

—1 -1

Vi, -1 Y -1 Vi Vji
Y = Uiy = Y =Y = U
—1 —1 Y
Vig Vii ) -1 Vi
Yy = Y =YY =YY, = Y

o vioyov;o =id € K, for j #1,i =k

;! -1 vl -1 Yy Vji

u = Yy =y, = U = Y
1/7.1 I/i1 . Vs ’
i Jt —1 V0 -1 Jt

Yy =Y = YY; = YY; = Y

o VjiOijOVj_il Ol/j_kl = Kjir € Ky, for j = 1,1 # k:
1 —1
% _ v L Vik L
{ yi e uye ey e R YUY Y
YRy Y } :

-1 -1 __ - - .
e vjovjov, ov, =id € K, for j =1,1 = k:

This is clear!

R N )
2.) vj oo Vi; OV OV = Kiji € Ky
—1 -1 —1
Vi 1 Yk -1, -1 Y -1 -1
Ye = YrY; = YkY; Y, = YkYiY; Y,
_ —1 -1
Vkil YLy Vii _1
Yi — Y5 = Y =YY,
Viej -1, -1 Vi -1, —1
= YkYiY%iY; Y, = YkYiY%iY; Y,
Vkj -1 Vji ’
= Yl =Y

- 2
6.) kony, ovj; o kony, oyﬂ1 = konj, € K,:

—1
14

ji konj -1 Vji -1 koni, 2 _9
—1
Vii _1 konjg 1 Vj; koniz
Yi Y5y, =YY, = Y =Y
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Theorem 4.14. Let n > 2 and let 01 : TT(Cy,m) — GL(n — 1,2Z) be
the map defined above and let K,, < T (Cy, ) be the subgroup generated

by the following automorphisms:

g {x — xy;}, 0 - {x — yx},
%‘2 : {?Jz = yi$2}

for 1 <i<n-—1. Then ker(oc_y) = K,,. In particular the generalized
Torelli group ker(o_4) is finitely generated as a group.

Proof. Apply Proposition 1.9 together with Lemma 4.12, Lemma 4.13
and Lemma 4.7. O

From now on we will write always K, for the kernel of o_;. In the
next corollary we give another set of generators for K,,, which is only a
little bit different from that given in Theorem 4.14.

Corollary 4.15. Let n > 2. The group K, is generated by the following
automorphisms:

i {z — zy}, v {y - yr?}
bl T x !
Yy o= wy et

Proof. By Proposition 4.9 it is clear that «; € K,,. Furthermore we have

for1 <i<n-—1.

Si=vYloe; to?oaqy,

which shows, together with Theorem 4.14, that K,, is generated by ¢;,
Y? and o for 1 <i <n— 1. O
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CHAPTER 5

SOME MATRIX GROUPS

In this chapter we study some matrix groups, which will occur in Chapter
6 and Chapter 7. For this purpose, let n > 2 and define

(2 = {MeGL(n,2Z)| M=1, mod?2}
ri() - {M € SL(n,Z) | M = (io*o> mod 2},
Ti(2) — {MGSL(n,ZHME(i y = 0) mon}.

In this chapter we determine generators for these groups. The idea

of the proof is to use the Euclidean algorithm in Z.

5.1 A MODIFIED EUCLIDEAN ALGORITHM

Recall the classical division algorithm, that is, for a,b € 7Z there are
q,r € Z with
a=qgb+r and |r| <]|b|.

The next lemma will modify this algorithm a little bit. Actually it says
that ¢ can be chosen in 27Z.

Lemma 5.1 (Modified divsion algorithm). Let a,b € Z\{0} with a & bZ.
Then we can find q,r € Z with the following properties:

1. a=qgb+r,

2. g€ 27,
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3. |r| < |b].
Proof. Let a,b € Z \ {0}. By the classical division algorithm there are
q,r" € 7 with
a=q¢b+r" and |r| < bl

The case " = 0 is impossible since a ¢ bZ. Hence 1’ # 0 and we have
0 < |r'| < |b]. If ¢’ is even we stop here and set r :=r" and ¢ := ¢'.

If ¢’ is odd we consider the four cases:
If 7" and b are both positive, we have 0 < r’ < b. Subtraction of b yields
—b <1 —b<0. Set now r : =1 —band g = ¢ +1. Then we have
|| < [b], q is even and

g+r=(G+1)b+r—-b=¢b+1" =a.
The other three cases are similar. O
We can now imitate the Euclidean algorithm with our modified di-

vision algorithm. For this let 79,7 € Z \ {0}. If o & r1Z there are by
Lemma 5.1 ag € 2Z and ry € Z with

ro =aogry + 12 and  |re| < |r].

If r1 € roZ we stop the process. Otherwise there are a; € 2Z and r3 € 7Z
with
ri=aire+1r3 and |rs| <|ral.

We iterate this process. The sequence |ry| > |ra| > |r3| > ... > 0 must
stop after a finite number of steps, say after j iterations:

?”OICL0T1+7’2

rr=airy + 13 (5 1)

Tj—1 = 175+ Tjt
with r; € Z, a; € 27 and
71| > |ra| > |r3] > ... > |rju] > 0.
Since the algorithm stops after j steps, we have
T € rjp1l.

We call this algorithm the modified Fuclidean algorithm.
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Lemma 5.2. Let ro,m € Z \ {0}. If we apply the modified Euclidean
algorithm to ro and r1 and the algorithm stops after j steps then

Tjy1 = + ng(To, 7“1)-

Proof. The proof is analogous to the proof of the same result with the

normal Euclidean algorithm (see for example [4]). O

Together with (5.1) we can calculate ged(rg,71) in the following way:

o =To — QoT1
s =T1— Q1"

(5.2)

+ged(ro, 1) = rjp1 = 1jo1 — a;_17y,

with a; € 2Z. We remark that if we iterate this and use the fact that
ged(ny, ..., ng_1,nx) = ged(ged(ny, ..., mg_1),nx), we can use the modi-
fied Euclidean algorithm to compute the greatest common divisor of more
than two integers.

5.2 GENERATORS FOR THE MATRIX GROUPS

We apply now the modified Euclidean algorithm to find generators for
the matrix groups mentioned above.

We start with the group
I.(2):={M e GL(n,Z) | M =1, mod 2}.

This group is called the principal congruence subgroup of level two. Note

that the following sequence is exact

1—-T,(2) — GL(n,Z) — GL(n,Z/2Z) — 1.

For any a € Z let E;j(a) be the identity matrix with an additional
entry a in the (7,7)-th position, i # j. For E;;(1) we just write Ej;.
Moreover let O; := diag(1,...,1,—1,1,...,1) the matrix with a —1 at
the (i,7)-th position (see Notation).
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Proposition 5.3. Let n > 2. Then the group T',(2) is generated by the
matrices E;;(2) for 1 <i,j <n withi# j and O; for 1 <i <n.

Proof. Define
G:=(E;;2) (i,7=1,...,n;i#j), O; (i=1,...,n))

to be the group generated by the matrices E;;(2) and O;. We have to
show that G equals I',(2) = {M € GL(n,Z) | M = 1 mod 2}. It
is clear that G is a subgroup of I',(2). So we only have to show that
every element in I',,(2) can be written as a product of matrices in G, i.e.
G =T,(2). Note that

E;ij(2a) = (E;(2))°

for all @ € Z. This means that all elementary matrices with an even entry
in the (7, 7)-th position are in G.
Now let M = (a;;) € I',(2). Since det(M) = £1 we have

ng(CLH, e ,anl) =1.

We want now to compute ged(asy,...,a,1) via the modified euclidean
algorithm (see (5.2) and the remark) in the first column of M. For
this notice that if we multiply the matrices F1;(2a) (resp. Fi(2a)) with
1 = 2,...,n from the left to M, we add the 2a-fold of the i-th row to
the first row of M (resp. add the 2a-fold of the first row to the i-th row
of M). In this way we can transfer the modified Euclidean algorithm
to M to compute +gecd(asq,...,an1) (a good reference is [2]). Since
ged(aqy, - .., an1) = £1, we finally find ¢; € G (the product of all Ey;(2a)
and F;1(2a) needed for the modified Euclidean algorithm) with

! !
1 ay, ... ay,
!
a * ...k
21
g1+ M = .
! * *
anl DY

with suitable a};, a}; € 2Z. The £1 must occur in the upper left corner,
since otherwise the matrix g; - M would not be in I',(2). In fact, we can
assume that there is a +1, since otherwise we can just multiply with O;.
We now use the +1 to eliminate the a},’s and a},’s. In order to do this
set

fi:=Fy(—ay)-...-Eny(—d,) € G,

nl
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hl = E12 (—a/12) ot Eln (—a’ln) € G.

With these matrices we have

1 0 . 0

0 *
fl'(gl'M)'h1=

0 * ... %

We repeat this argument with the second row and column using the
matrices Fy;(2a), Ein(2a) and Oz and so on. Finally we have f;, g; and
hi € G (i=1,...,n) with

n—1 n

H(fn—z ' gn—z‘) - M - th = In,

i=0 j=1
which is equivalent to
n—1 -1 n -1
M = (H(fn—z ) gn—z)> : (H h]> €q.
i=0 j=1

This shows that every element in I',(2) can be written as a product of
matrices in G, which completes the proof. Il

Define now
LH2):={M eSL(n,Z) | M =1 mod 2}.

Further let Oy; = diag(—1,1,...,1,—1,1,...,1) be the diagonal matrix
with entry —1 in the (1, 1)- and (7, )-place for i = 2,. .., n (see Notation).
With the same argument as above we get the following corollary.

Corollary 5.4. The group I'}(2) is generated by the matrices E;;(2) for
i,j=1,....,n withi# j and Oy; fori=2,...,n .

We are now going to give generators for the following two subgroups
of I'F(2):

ri(2) — {A €SL(n,Z) | A= <10*0> mod 2},

*

Ti(2) = {AGSL(n,ZHAE(i 0 = 0) mon}.
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Proposition 5.5.

a) The group T (2) is generated by the (n — 1)* matrices

Ej(2) (2<j<n) and E; 2<i<n,1<j<n,i#j).
b) The group f}:(Q) is generated by the 2(n — 1) matrices

Proof. For a proof of part a) with n > 3 see [2]. The case n = 2 is

included in part b) since we have
[3(2) = T3(2).
We are now going to prove part b). First note that the matrices
Eij(2) (2<j<n) and E; (2<i<n) (5.3)

are in fv}l(Q) by definition. For the moment, we define G to be the sub-
group of I'L(2) which is generated by the matrices given in (5.3). Our
aim is to show that 'l (2) = G.

Before doing this we list some other matrices which are in G:

o £i(2)eGforall<ij<n(i#j):
The matrices E1;(2) (2 < j < n) are by definition in G and the
matrices F;;(2) = E% are also in G. Hence we have to show that
Ei;(2) e Gfor2<i,j,<n(i#j) and n > 3.

Prop. 1.2 (c) _

= EyEyEy By

- EUEllel]Elel_JlEl_]l
Prop. 1.2 (c _ _
Prop. 1.2 (c)

EqyELELE? € G

e O, cGforall2<i<n:
We have
Oy = (E;' - En(2)’ € G.
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We will prove this just for n = 2 and ¢ = 2. The other cases are
analogue.

e - (9 9)
— (_11 _21)2:<_01 _01)'

Let M = (a;;) € ﬁ@) Since det(M) = 1, we have
ng(CLlh Ce ,aln) =1.

For each a € Z the matrices E1;(2a) = (E1;(2))* and E;(2a) = E¥
(2 <i<n)arein G. If we multiply the matrices Ey;(2a) (resp. Fy;1(2a))
from the right to M, we add the 2a-fold of the first column to the i-th
column of M (resp. add the 2a-fold of the i-th column to the first column
of M). In this way we can transfer the modified Euclidean algorithm
to the first row of M in order to compute + ged(aqy,...,a1,). Since
ged(aqy, ... a1,) = 1 we finally find ¢ € G (the product of all Ey;(2a)
and F;(2a) needed for the modified Euclidean algorithm) with

+1 dfy ... di,
!/
a x ... %k
21

M-g=
al * *
-

with suitable a}; € Z and a); € 2Z. The £1 must occur in the upper
left corner, since otherwise the matrix ¢; - M would not be in 1:2(2) We
can assume that there is a 41, since otherwise we can just multiply with
O1 2.
We use now the +1 to eliminate the a},’s and a},’s. In order to do this
set

fi=En(=dy)- ...  En(—ay) €G,

h:= E5(—aly) ... By, (—a),) € G

With these matrices we have

10 0

0 * ... *
frM-g)-h=|_ = A

0 =x *
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By Corollary 5.4 and its proof, the matrix A is a product of the
matrices F;;(2) with 2 <i,7,<n (i # j) and Oy; with 2 <14 < n. Hence
A € G by the above remark.

It follows that
M=f1'"Ant.gleq.

This shows that every element M in fz(2) can be written as a product
of matrices in G, which completes the proof. Il
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CHAPTER 6

LOWER CENTRAL SERIES QUOTIENTS OF K,

Let K, be the kernel of o_; (see Chapter 4) and
K, = 70<Kn) > ’VI(Kn) > 72(Kn> >

be the corresponding lower central series. In this chapter we study the
quotients v;(K,,)/vit1(K,) for ¢ > 0. By Chapter 2 these are mod-
ules over GL(n — 1,Z). In Section 6.1 we supply some facts about
modules over SL(n,Z) and GL(n,Z). Section 6.2 is concerned with
K = v(K,) /7 (K,). For n > 3 we construct an epimorphism

(I)n . anl EB Mnfl - Ksb7

where V,, 1 & M, is a certain GL(n — 1,Z)-module with underlying
abelian group (Z" ' & (Z/2Z)" ') @ (Z/2Z)"'. The precise structure
of V,,_1 & M, _; is described in Chapter 6.1. The special case n = 2
is discussed in Section 6.3. In this case it is possible to give a finite
presentation of K, and identify the isomorphism type of K3". The last
Section 6.4 is about the quotients v;(K,,)/vit1(K,) for i > 1. Our second
main theorem states the surprising fact that these quotients are finite
groups of the form (Z/27)% with

0<by; <(Bn—3)""(3n*—Tn+4)

(see Theorem 6.25).

6.1 MODULES OVER SL(n,Z) AND GL(n,Z)

Let M = Z" be the SL(n,Z)-module with the action given by matrix
multiplication. To be more precise let ey, .. . e, denote the standard basis
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of M. Then the SL(n, Z)-action is given by

Eji e = e+ €j7
Ej-e, = e fork#i,
Eil e = € — €j,

Ej’kl-ei = ¢ fork #u1.
We call this action on M the standard SL(n, Z)-action.

Proposition 6.1. Let M = Z" be the SL(n, Z)-module with the standard
action and let S < M be a submodule of M with S # 0. Then the index
of S in M 1is finite.

Proof. Let eq,...e, be the standard basis of M and let v € S with v # 0.
Then there are aq,...,a, € Z with

v= Zaiei (a; #0 for some j).
i=1

For 1 <k <n, k # j, consider now
(Eyj-v)—v = (Z a;(Ey; - ei)) -
i=1
= (Z aiei> + ajer — v = ajey.

i=1

Thus ajer, € S for 1 <k <mn, k # j. Since

(Eji - ajer) —ajer = aj(Ej-er) —aje

= aj(er +e;) —aje; = aje;,

we see that aje, € S for all 1 < k < n. Hence the index of S in M is at
most (a;)" < oo. O

Let now M = (Z/2Z)" be the GL(n, Z)-module with the action given

by matrix multiplication. If eq,..., e, denote the standard generators of
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M, this means

Ej--ei = ei—l—ej,
Ej e = € fOI‘]C?éi,

—1 o o
Eji e = ei_ej_€i+€j7
-1 .
Ey e = ¢ for k # 1,
Oi-ei = —e =e,

Oj-e; = e¢; forj#i.
We call this action on M the standard GL(n, Z)-action.
Furthermore, we consider the GL(n, Z)-action on M given by
A-z:= ANy

for v € M and A € GL(n,Z). We call this action on M the dual standard
GL(n,Z)-action. In terms of the generators ey, ...e, the dual standard
GL(n, Z)-action is given by

Eij-ei = (B;Y) ei=E;'=e;—e;=ei+¢,
Eyi-e; = (E_jl)t e = Ej_k1 =¢; for k # 1,
Elgl ce; = (Eij)'-e;=Ej;=e+e;,
E,;jl e = (Ey) -e;=Ej=¢ fork#i,
Oi-e; = (07 -e;=0;-¢; =¢;,
Oj-¢i = (O e;=0;-¢;=¢; forj#i.

Proposition 6.2. Let M = (Z/2Z)" be the GL(n,Z)-module with the
standard action. Then M is also a GL(n,Z/27Z)-module with the ac-
tion induced by standard GL(n,Z)- action. The same holds for the dual
standard action.

Proof. Let eq,..., e, denote the standard generators of M. By the ex-
actness of the sequence

1—-T,(2) — GL(n,Z) — GL(n,Z/2Z) — 1
it suffices to show that I',(2) acts trivial on M. By Proposition 5.3
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Hence it suffices to show, that E;;(2) and O; act trivial on the generators:

EJ(Q) e = EJZZ e = Eji . (61' + ej) =e; + 2€j = €,
Epx(2)-e = Ejzk-ei:ei for k # 1,
Oj € = € for all ]

The proof with the dual standard action is analogous. O]

Proposition 6.3. Let M = (Z/2Z)" be the GL(n,Z)-module with the
standard action. Then M is irreducible as a GL(n,Z)-module. Actually
M is irreducible as a SL(n,Z)-module. The same holds for M together
with the dual standard action.

Proof. Let eq,..., e, denote the standard generators of M. The action
of the elementary matrices F;; on ey,...,e, is then given by
Eji-el- = €i+ej

Ej,-e; = e for k#1.

Assume now there is a submodule S < M with S # 0. We have to show
that S = M. Since S # 0, there exists an element v € S, v # 0, say

n
vV = E a;e;
i=1

with a; € {0,1} and a; = 1 for some j. We have

(Egj-v) —v = <Zai(Ekj-ei)> —v = (Zai(z) +e,—v=e¢, €S,

i=1 =1

for all k£ # j. But then
(Ej '61)—61:(61+€j)—61:€j e S.

Hence S = M.
The proof for M together with the dual standard action is analogous. [

Finally, we will define another GL(n,Z)-module, which will arise in
the next section. We are going to specify the action of GL(n,Z) on this
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new module in terms of generators and then extend it linearly. Before
doing this let us take a look at the general situation:

Let G be finitely presented group and A be a finitely generated abelian
group, say
G:<g1,...,gn ‘ Rl,...,Rm>,
A: <61,...,65,d1,...,dt, ‘ [ei,ej] :0, [ei,dj] :0, [dl,d]] :0,
al'dl :07...,at'dt20>
with ay,...,a; € N\ {1}. The ¢; are then the free generators of A and
the d; are the torsion generators. In order to define an action of G on A

we proceed in the following way:
First we define the action in terms of the generators

gi-eji=uv; €A, gil-ej =0, €A,

gi-dji=wy; €A, gldj=wy € A

Of course there are restrictions for this definitions (see below). Then we
extend the action linearly, i.e. for x =3 ;_, byey + Z;zl c;d; (by,c; € Z)
we define

s t
g w=> b(gie)+ Y ¢ilgr-dy) (e e{-1,1})
k=1 Jj=1

and for g = g;| ... g;* (g; € {—1,1})

gw::gfll-(~-(gf:~x)...).

Note that these definitions lead to a well defined action of G on A if and
only if the following relations are satisfied

a) gi'(gi_l'ej>:€j7 gi_l'(gi'ej)zej and

gl(gz_ld]):d]a gz_l(gzdj):d],
b) aj-(gi-dj) =0forall 1 <j <t (c€{-1,1}),

C) Ri-ej:ejandRi~dj:djfor1§i§m.
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Remark 6.4. Let x = Y5, byex + 3., ¢;d; with by,c; € Z. By the
above construction we have

S

g-x=Y bilg-ex)+ > cilg-dy)

k=1 j=1
forall g e G.
We are now going to apply this method to define another GL(n, Z)-

module V,,. The module V,, will play an important role in the next

section.

Lemma 6.5. Let V,, := 72" @ (Z/2Z)" as an abelian group with standard

generators ey, ...,e, and dy,...,d,. If we define on the generators
Eji-e;=e;+ej, Ej_il-ei:ei—ej,
Ep-ei=e (k#1), Ej_kl-ei:ei (k #1),
O1-e1=d; —ey,
Or-e,=¢;+d; (i#1),
E;i-d; = d; + dj, EG - dy = di + dj,
Ejp-di=d; (k#1), Eyl-di=di (k#1),

01 . dl = dl for all ¢

we obtain a GL(n,Z)-action on V.

Proof. We have to show that these definition extends to an action, i.e.
we have to check the points a) - ¢) (see above).

First note, that by the above formulas the action defined on the
generators dy, ... ,d, of the group (Z/2Z)" coincides with the standard
GL(n, Z)-action. Hence it is clear that the points a) - ¢) hold for dy, . .. , d,.

Furthermore note that the SL(n,Z)-action defined on the generators
€1,...,e, of Z" coincides with the standard SL(n,Z)-action. Hence we
just have to look on relations containing the generator Oy:

a) It suffices to show that 0,0, - e; = ¢; for all i:
We have
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o fori#1

0101 e = 01 . <€Z+dz) :€1+2d1 = €,

o fori=1

0101 ce1 = 01

b) Here is nothing to show.

c) It suffices to show that R -e; = e;, where R is one of the following

relators

1.
2.
3.
1) 02,

1) We show that OlEszlEl;

for all k:

o fork#1,j

OlEijOlEigl * €k

e fork=1
O\E;0\E;}!
o for k=

OlEijOlEi;I C €5

2.) We show that (O1F;)* - e

We have

cep =

'(dl—el):dl—d1+€1:€1.

) O1E;O0E;; it i, j # 1,
) (OlElj)2 lf] 7& ]-7

) (O1E;)*if j # 1,

)

ey =epifi,j #1,

= O1Ejj - (ep + di) = e + 2dy, = ey,

O\Eij - (dy—e1) =dy —dy + €1 = e,

= O1E;0, - (e; — &)

= O1E;-(ej+d; —e; +d;)

= O-(ej+e+dj+d—e+d;)
= O1-(ej+d;) =ej+2d; =e,.

i =¢; foralli (j #1):
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o fori#1,j
(OlElj)Q - €
o fori=

(O1E15)* - ¢

o fori=1

i = OlElj . <€Z' + dz) =e; + 2d1 = €,

= O1E;0; - (e + 1)

= O1Ey-(ej+d; —e +dy)

= =0Oi(ej+er+d;+dy—er +dy)
= O1-(ej+d;) =¢; +2d; = ¢y,

(OlElj)2 el = OlElj . (dl — 61) = d1 — dl +e; =e;.

3.) We show that (O1E;1)* -

e; =e; forall i (j #1):

(OlEj1)2 € = OlEjl . (ei + dz) = €; + de = €4,

We have
o fori #1
o fori=1

(OlEj1)2 * €1

= OlElel . (61 + ej)

= OlEﬂ . (dl — €1 + Bj + d])
01'(d1+dj—61—€j+€j+dj)

= Op- (dl - 61)

= dy—di+e =ey,

]

Lemma 6.6. Let V,, be the GL(n,Z)-module defined above. Then we

have for all 1
Oi © €

Oj-ei
0;-d;

= di_ei7
= e+di (i #7]),
— 4

70



CHAPTER 6. LOWER CENTRAL SERIES QUOTIENTS OF K,

Proof. Notice that
O; = Ey;'E; O, EyE;

by Proposition 1.5. Hence we obtain
o for j # 1,1

By EZ O EyEy” e = B By - (e +dy) = ¢ + dj,

o for j=1
By ERO\ByEy" - ey = B E{O1Ey; - (e1 — 2¢;)
= EfilE121Ol (—e1 —2¢) = EfilEfl (1 — dy — 2¢;)
= By (er—dy) = e —dy,
o for j =1

E'ELO\ELE; - e; = B  EZ0: - (e; + e1)
= E'EL-(ei+di+di—e)=FEy' - (di+di—e1 —€;)

= dl — €;.
O
6.2 'THE ABELIANIZED GROUP K?2P
By Chapter 4 the following sequence is exact
1— K, - T"(Cy7m) = GL(n —1,Z) — 1. (6.1)

Define K2 := K,,/[K,, K,|, where [K,, K,] is the commutator subgroup
of K,. By Theorem 4.14 K?" is a finitely generated abelian group. Fur-
thermore K" is a GL(n — 1, Z)-module by Proposition 2.17. To be more
precise let A € GL(n —1,Z) and a € I'"(Cy, 7) with 0_1(a) = A. Then
the action of A on an element [k] € K2 is given by

A-lkl:==[aockoa™].

We are now interested in the structure of the GL(n — 1,Z)-module K2P.
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Lemma 6.7. In K, < T7(Cy, ) the following relations hold for n > 3
and 1 <i,7<n—1 withi+# j:

(U2)2 = () 0 d2 o ¢ 052
P?”OOf. ( l2)2 :( a) O¢2 ,¢—2

O ¢ P2 (O 4
Yi Y =YY YT e Yiyaye = Y
P2 P Ly P2 (¢a)~t '
Yyi o Yir =y =Y =Y
So the resulting automorphism is (¢?)2. Il

Lemma 6.8. In K2 the following relations hold

(a) formn > 2:
[konzi] = [0:] — [ei], [kon,] =0,
[07] = [¥7], [od] = [e3] + [6:] — 2[47],
2[ai] =0, o] = —[Gi]-
(b) forn > 3:
2[¢z2] =0, [az] = [51] + [5%]7
Kk = 0, [konj, | = fou] + [ay],
G5 =[] =651 = [¢5] = 0, [kony] = [a].
(c) forn>4:
[ffz‘jk] = 0

Proof. (a) Let n > 2. With the help of formulas in the proof of Proposi-
tion 4.9 and Lemma 4.11 we can conclude that

ai] = [V oei 0 0 8)] = [ei] + [0:] — 2[47],
—[&i] = 18] + 207,
[WF] = [es] = [0:] + 23] = 0,
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Since o = id by Proposition 4.9, we have

0 = [o?] = 2[c].

]

(b) Now let n > 3. Again we use the formulas in the proof of Lemma 4.11:

a; o (¢5) 7t o aq] = 2[e] — (5] =0,

= [B:0(¢) ™ 0 A =208 — [c] =0
Now Lemma 6.7 yields
7] = (2] = [(C)~" 00 0 Gy 0w ?] = 0.
And hence we get together with part (a)
o] = e + [5] — 2[2) = [ei] + (5] (6.2)
Further

kong;,] = o 0 4] = [l + [8;] 2 o] =[] = [ou] + [ay],
[kju] = g oo ogr '] =0,

kon;;] = [Bioej o B0 = —[g5] = [6;] = —[ay] = [a)].

(c) Finally let n > 4. We have to show that [k;;;] = 0:

[Kijx) = [kony; ogjo(kon;jx)_logjokon;jx o kon;k1 o ﬁgo(kon;ﬂ)_lo
1

-1 - d\— -1 “1y
g; okong;, o(¢fy,) " o kong, og; " o kon ;] = 0.

]

By Corollary 4.15, the group K, is generated by &;, «; and ? for
i=1,...,n— 1. This leads us to the following generator set of K2

Proposition 6.9. Let n > 2. Then the group K is generated by |g;],
(o] and [¥?] fori=1,...,n— 1.

e Forn > 2 the order of [ay] is either one or two.
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e Forn > 3 the order [¢?] is either one or two.

Proof. Corollary 4.15 and Lemma 6.8. O

In Section 6.3 we will give a finite presentation of the group K, and
continue the discussion about K3 there. In particular we will identify
the isomorphism type of K3P. For the rest of this section assume n > 3.
We describe the GL(n — 1, Z)-action on K* with the help of Lemma 6.8
and the formulas in the proof of Lemma 4.12 (in the cases, which are not
listed, the action is trivial):

e The action of GL(n — 1,Z) on the [g;]’s:

Eij-lel = [ioeiov ]| =gl
Eji-le) = [wjoeiov;]=le]+ gl
Ejt-la] = [vi'ociov] =&l
Ei' [a] = vl ogiovy] =leioe;'] = [a] — [&)]
O;-[e;] = [kon;, og;0 koni;l] = [kon?x 00; o konif] = [0;]
= [ai] — [&]]
O;-[ei] = [konj, og; 0 kon;xl] =[g;io kon;il] = 2[g;] + [04]

Ei;-[6] = [vjiodio yj_il] = [0;]

Eji- (6] = [viyodiovy;]=1[d]+1[0]

Bt (0] = [v'odiovy] =[]

Ej_i1 0] = [Vigl od;ovyl =[67"0d] = [6] — [5)]
O;-[6] = [kon od; okon;'] = [g/]

O, -[6;] = [kon;, od; o konj_xl] =[d;0oa;0 komj_i1 oq]

= 2[5 + [&:] = —[ed]
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e The action of GL(n — 1,Z) on the [a4]’s ([a;] = [e5] + [0:]):

Eij-lea] = [a] +16:] = [a]

Eji-lea] = [e] + [g5] + 03] + [05] = [eu] + o]
Ejtlad] = e +[0:] = [a]

Bt laa] = [ei] = gl + 6] =[] = [aa] = [oy]
O; -] = 0] +[&i] = [ai]

Oj- ] = —[0i] = [ai] = —[eu] = [eu]

e The action of GL(n — 1,Z) on the [¢)?]’s:

Eij-[7] = [vjiow]ov;'] =1 okonj;' ot o kony
= [¥i]+ [¥7]
Eji-[7] = [vyo9} ovy'] = [konj;' o? o kony] = [¢7]
E; -7 = i 0w ovl =[] + [¥]]
Ei [ = vyt 0w ovyl =[]
O; - [?] = [kong, ovp? o kony,!'| = [42].

Proposition 6.10. Let n > 3. Further let
Vi1 =Z" 1 @ (Z)22)"
be the GL(n — 1,7Z)-module defined in Lemma 6.5 and
M,_, = (Z)27)"!

be the GL(n — 1,Z)-module with the dual standard action. Then there
are surjective GL(n — 1,7Z)-equivariant homomorphisms

(I)n : Vn—l S Mn—l - bi
for alln > 3.
Proof. Let eq,...,e,_1 and dy,...,d,_; denote the standard generators

of V,_y and fi,..., f,_1 the standard generators of M, ;. Define &,
V., ® M — K2 by

€ = [82] )
di = [az] )

Ji — W?]

1)
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for: = 1,...,n — 1. By the above formulas it is clear that ®, is a
GL(n — 1,Z)-homomorphism. Since [g;], [c;] and [?] generate K by

Proposition 6.9, the map ®,, is surjective. ]

Definition 6.11. Define
Ay = (o, ..., 1)
to be the subgroup of K" generated by the ay,
Pri= (1,00 )

to be the subgroup of K2 generated by the ? and

En i =(e1,. -, En_1)
to be the subgroup of K2® generated by the ¢;. o

Remark 6.12. Actually, we see by the above formulas that, A, and
P, are GL(n — 1,Z)-submodules of K?*. The subgroup &, is only a
SL(n — 1, Z)-submodule of K2

Proposition 6.13. Let n > 3. Further let M = (Z/2Z)""*. Then we
have

e The submodule A,, < Kf{b 15 either isomorphic to M with the stan-
dard action or to 0.

o The submodule P, < Kf}b 18 either isomorphic to M with the dual

standard action or to 0.

Proof. Let M = (Z/2Z)"! be the GL(n—1, Z)-module with the standard
action and let eq, ..., e,_1 denote the standard generators of M. Define

fo: M — A,

to be the homomorphism, which sends e; to [o;]. By the above formulas it
is clear, that f,, is GL(n—1,Z) equivariant. Hence ker(f,,) is a submodule
of M. Since M is irreducible as GL(n — 1,Z)-modules by Proposition
6.3, we obtain

ker(f,) = 0 or ker(f,) = M.

So f, is an isomorphism or f, is the zero-map.
The proof for P, is analogous. O
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Proposition 6.14. Let n > 3. Further let M = Z" ' together with the
standard SL(n—1,Z)-action. The subgroup &, of K2 is as a SL(n—1,7Z)-

submodule either isomorphic to M or to some finite SL(n— 1, Z)-module.

Proof. Let eq,...,e, 1 denote the standard basis of M. Define
o M — &,

to be the homomorphism, which sends e; to [¢;]. By the above formulas
fn is a SL(n— 1, Z)-homomorphism. Hence ker(f,,) is a submodule of M.
By Proposition 6.1 we have either

ker(f,) =0 or  ker(f,) has finite index in M.

In the case ker(f,) = 0, the homomorphism f, is an isomorphism and
&, is isomorphic to M as SL(n — 1,Z)-module. In the case ker(f,) has
finite index in M, we obtain

En = M/ ker(fn),

which is a finite SL(n — 1,Z)-module. O

The results of Propsition 6.13 and Proposition 6.14 are all we know
about the structure of K, for n > 3. But our conjecture is that

e the submodule A, < K2 is isomorphic to (Z/2Z)"! with the
standard GL(n — 1, Z)-action,

e the submodule P, < K?" is isomorphic to (Z/2Z)"! with the dual
standard GL(n — 1, 7Z)-action,

e the SL(n — 1,Z)-submodule &, of K2 is isomorphic to Z"~! with
the standard SL(n — 1, Z)-action.

Moreover we conjecture the following.
Conjecture 6.15. Let n > 3. The GL(n — 1, Z)-homomorphism
®, V1 @M, —» K®

18 an isomorphism for each n.

7
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6.3 THE SPECIAL CASE n = 2

In the case n = 2 we get by Theorem 4.14 an exact sequence
1 — Ky — I'(Cy,m) — GL(1,Z) — 1.

Thus we see that the index of K in I't(Cs, ) is two. Since by Lemma
4.1 the index of I'"(Cy, 7) in Aut(F3) is six, we conclude that the index
of Ky in Aut(F) is twelve.

By Proposition 3.1, we know the following finite presentation of Aut(F3).

AU_t(FQ) = <7T1270'1,V12 | 71'%2 = 1’ 0‘% = ]_7 (0-1 O7T12)4 — 1,

011oyﬁloafloyﬁl00101/1200101/12: 1,
(v 0mpg 00y 0 7r12)2 =1, (opompao 1/12)3 =1).

By applying the Reidemeister rewriting process (see for example [16]

Chapter 2.3) we can calculate a finite presentation of K,. We used the

computer algebra system MAGMA to do this. For the program, see the
Appendix in Chapter 8. Here is the result.

Proposition 6.16. The group Ky has the following finite presentation
Ky = (e, 0,97 | ai=1, [ag,6] =1
lan, i) o la, 9] = 1, [er! 9] o [e1, 977 = 1).
Starting from this presentation we can compute the isomorphism type
of the abelianized group K3P.

Corollary 6.17. The abelianized group K3 has the following finite pre-
sentation

Kgb = <€1,O./1,77/J% | Oé% = 1, [041781] = ]_,
[alaw%] = 17 [517¢%] = 1>

In particular, we have
K ~27297/27.

The GL(1,Z)-action is given by

O1-[e] = [oa] +2[¥3] — [e1],
Op-laa] = o],
O1- 7] = [¥i].
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By Proposition 2.6, the abelian group v, (K3)/72(K?2) is generated by

1, an] - (K), e, 9f] - 12(Ky), o, 9] - 72 (Ky).

But [e1,a1] = [a1,61]7' = 1 by Proposition 6.16 and so the group
71(K2)/72(K2) is generated by [e1, 7] - 72(K3) and [on, 97] - 72(K>).

Lemma 6.18. The simple commutators [e1,13}] and [ay, 93] have order
one or two modulo v2(K3).

Proof. We know from Proposition 6.16 that [e]*,¢?] o [e1,97%] = 1. Tt
follows by Lemma 2.9 that
L= ler", di]ofer, o "] = (¥, ed] o [, e1]  mod 72(K2).

]

A short calculation with MAGMA (see Appendix) shows that the order
of [e1,9%] and [ay,9?] is two modulo ,(K3). In fact we obtain the
following proposition.

Proposition 6.19. The group v1(K3)/v2(K>) is isomorphic to (Z/27)*.
In particular the order of v1(Ks)/v2(Ks) is finite.

If we apply now Corollary 2.13, we see that all quotients ;(K3) /i1 (K2)
are of the form (Z/27)%¢ for i > 1. Moreover we obtain the following
proposition.

Proposition 6.20. Let i > 1. Then the group v;(Ks)/vir1(Ks2) is a
finite abelian group of the form (Z)27)%%i with

0<by,; <372,

Proof. Apply Corollary 2.13 together with Proposition 6.17 and Propo-
sition 6.19. [l

We computed the numbers by; for ¢ = 1,...,9 with the help of
MAGMA (see Apendix). Here is the result.

ba1 | bao | bag | baa | bags | bag | Doz | bag | bag
2 4 6 | 10 | 14 | 22 | 32 | 48 | 70
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Remark 6.21. After computing one value of the by;’s, say by ;,,we can
improve the estimation of the by;’s (i > ip) by Corollary 2.13. This is

illustrated in the following table.

ba1 | b22 | D23 b2,4 b5 b2, b7 bag ba2,9
2 | <6 | <18 <54 <162 | <486 | <1458 | <4374 | < 13122
2 4 1 <121 <361 <108 <324 <972 | <€2916 | <8748
2 4 6 <18 | <54 | <162 | <486 | <1458 | <4374
2 4 6 10 <30 | <90 | <270 | <810 | <2430
2 4 6 10 14 <42 | <126 | <378 | <1134
2 4 6 10 14 22 < 66 <198 < 594
2 4 6 10 14 22 32 <96 < 288
2 4 6 10 14 22 32 48 <144
2 4 6 10 14 22 32 48 70

Finally, we give a conjecture about the numbers by ;, which is based
on an observation about the known values of by 1 — by .

Conjecture 6.22. The number by ; is given by the following formula

b2,i = {

6.4 HIGHER QUOTIENTS OF THE LOWER CENTRAL
SERIES

for 7 odd

for 7 even.

bai—1 +bai—s
bai—1 + by +2

In this section we consider quotients of the lower central series of K,, for
n > 3. We use the notation 7" := ~,;(K,).
states the surprising fact that the the quotients 7' /47 | (¢ > 1) are finite
abelian groups of the form (Z/27)% with

Our second main theorem

0<bn; <(Bn—3)""-(3n —Tn+4).
By Corollay 4.15 we know that K, is generated by &;, a; and v? for

i =1,...,n — 1. Hence by Proposition 2.6 the abelian group ~j/~% is
generated by the following elements
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lei 5] -5 (2 <), [ei 5] - 3,
[51'72/}]2‘] '/7507 [Oé,',()éj] '750 (Z < j)?

Since [¢?] and [a;] have order one or two in K2" (by Proposition 4.9 and
Lemma 6.8), the elements [e;, ;] 74, [e5, 93] 7%, [, a5] -5, [, 3] -9,
[107,4%] - 73 have all finite order in 7} /74 by Lemma 2.8. In fact they
have order one or two.

Lemma 6.23. Let n > 2. Then the following relations hold in K, for
1<ij<n—1:

) e dy] = 1, [esr ol = 1 and [2,42) = 1,
b) [ai,v7] = konj, and [ai, v3] = 7 (i # j),
¢) |ai, aj] = konZ, okonj_x2 (1 #£ 7).

Proof.  a) [g;,0;] = 1:
6t

—1
J -1 2 1. -1 9 -1 &
xr yj €r y]. TY; [ xyj = x (
[Si, Cti] =1:
-1
g -1 & -1 a; -1 &
r — x Y =Ty, [
@ N —1,-1 % & ’
Yi — Y, T = 2y, X =Y = Y
2 2 .
[ i) j] =1
-2 —2 2
TZ}j ¥ -2 wj -2 ¢z‘2
Yi = Y Yix = Y =Y
-2 —2 2 )
wj —92 ¥ —92 wj d’%
Yy = yix = YT =Y =Y
21 2,
b) [ai)wi] - konim‘
—2
"Z)i Qy —1 ¢12 -1 (7}
X N — @ [ — T
—2
i 2 o AN S DU S S S I
Yi =YX = Ty, r = T Y T = IYT
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[0%%2'] = 1/};4:

¥ 2
J a; -1 J —1 o
x N — X =z —
—92 2
wj Qg -1 _—1 ¢]- -1 -1 Q;
Yi Y = XY, X e o T A =Y )
-2 2
¢j —92 (e2 2 wj 4 Q; —4
y; oy = YT = YT = YT
_ 2 -2,
¢) [ai, aj] = kony, okon;™:
Qj -1 o7 @y —1 oy
r = [ = T — x
Yi > Yi =2y, L A lyi Ly & ;1:2%-3: 2
o -1 -1 X -1,,—1 ) 2 -2 & -2 2
yj — Zlfyj xr L A yj xr = T ijL' [ AR yjflf

]

Proposition 6.24. For n > 3 the group v{'/~4 is generated by

[52',053'] ’ 73 (7’ 7é j)? [517¢?] ’ 71217

where each of these generators has order one or two. In particular v} [~
is a finite abelian group of the form (Z/27,)°2 with

0 < bpo <3n®—Tn+4.

Proof. By the above remark we know that the abelian group 7"/~ is
generated by the following elements

[eirgs] -3 (0 <), [ei, ] -3,
[5i7¢]2‘] '737 [aivaj] "73 (Z < j)’

By Lemma 6.23 we have
o [ei il - 73 = 0 and [¢7,95] - 73 = 0,

o [ai, )-8 = [, V7103, o] 45 = [, 7198 — oy, ¥3] -5 (i # ).
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Thus it suffices to show that [e;, ;] is a sum of [e;, a;], [e5,97] and [ay, 7]

modulo ~5.
€&l = 5i05‘05-_106-_1L'Giga)62'05-05‘05._105._106._1
J J ) j j j i j j
Prop. 4.9 B

= [51'753'0(5]-] rop: [€i7€jo¢]205jlow]2'oaj]

L. 2.2 _
= [€i7€j] © [5“77/)]2] o [5i,5j 1] o [81,77/}]2] o [5i7 ij]

L. 29

lei, g5] 0 [517%2'] olese] o [Eiﬂ/f?] o [&4, o]

[€i7¢]2]2 o [gi, ;] mod 73

I

This means

leies] s = e ay] -5
For the estimation of the b, 2, we count the numbers of generators:
We have (n — 1)(n — 2) generators of the form [g;, ;] - 75 (i # j) and
2(n —1)* generators of the form [g;, 93] -5 or [ay,¥3]-~5. It follows that
there are at most

(n—1)(n—2)+2(n—1)>=3n>—Tn+4
generators. Hence we obtain
0 < bpa <3n®—Tn+4.

]

Our second main theorem states the surprising fact that the quotients
~i(Ky)/vis1(K,) are finite groups for all ¢ > 1.

Theorem 6.25. Let n > 2 and i > 1. Then the group ~v;(K,)/Yi+1(Kn)
is a finite abelian group of the form (Z/27)% with

0<bn; <(Bn—3)"""-(3n> —Tn +4).

Proof. For the case n = 2 see Corollary 6.20. For n > 3 apply Corollary
2.13 to Proposition 6.24 and Proposition 6.9. O]

By Proposition 4.9 the group K, is not torsion-free. Thus by Propo-
sition 2.16 there are two possibilities:
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Proposition 6.26. Let n > 3. Then we have either

e there is a natural number iy € Ny such that i /77 |, is not torsion-

free or

o K, is not residually nilpotent, i.e. (\ieqVi(Kn) # 1.
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CHAPTER 7

FURTHER RESULTS

In this chapter we present some results concerned with the relationship
between the classical Torelli group IA(F,) and the generalized Torelli
group K,.

7.1 TA(F,-1) AS A SUBGROUP OF K,

Let n > 3 and F,, be the free group generated by x, y1,...,y,_1. Define

plo) =@ } < Aut(F,).

A1 =1 ¢ € Aut(F),)
' { e(yi) € W1, Yn-1)

Let G,,-1 < F, be the subgroup generated by vi,...,y,-1, which
is a free group on the n — 1 free generators y,...,y,_1. Define ¢ :
Aut(G,—1) — A,—1 to be the homomorphism which sends an automor-
phism ¢ € Aut(G,,_1) to the automorphism defined by

{e—z, yi—on), -y Yno1— @©Wn1)}-

Then the homomorphism ¢ is obviously an isomorphism. From now on
we will identify A,,_; with Aut(G,_1).

The group Aut+(Gn,1) is generated by the automorphisms A;; and
vij for 1 <4,5 <n—1,1i# j and we see that Aut™(G,_1) < T7(Cy,7)
by Corollary 4.4. Let TA(G,_1) denote the classical Torelli group of
Aut(G,,_1). By Theorem 3.2 the group [A(G,,_1) is generated by

kong; : {yi — yway; 'Y and ki {y — viviuey; ue )

By Lemma 4.11 we have IA(G,,_1) < K,,.
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Proposition 7.1. Let n > 3. Then the following diagram commutes

K, TH(Cy, 7) — > GL(n — 1,2)

TA(Gp1)— Aut* (G,_y) 2> SL(n — 1, 7).

Proof. 1t suffices to show that the right square in the diagram commutes.
We know from Chapter 3.1 that

p1(vij) = Eji and  pi(Ag;) = Eji.
Furthermore we have by Proposition 4.5

L. 4.4

U—I(Vij) = Ej‘ and U—I(Aij) 0_1(k0ni;1 05j @) kOl’lm 05]‘ o Vij)

== O;l . In—l : Oz . In—l . Eji - E]z
Since Aut*(G,,1) is generated by v;; and \;; the Proposition follows. [

The inclusion ¢ : IA(G,,_1) — K,, induces a homomorphism
L IA(G, )™ — K (7.1)
We compute the images of the generators of TA(G,,_1)* under ¢

L[kOIlZ‘j] = [kOHZ‘j
Urigr] = [rie] =0,
Hence we proved the following proposition.

Proposition 7.2. Let n > 3 and ¢ : IA(G,_1)®® — K2 be the map
defined in (7.1). Then we have

Im(:) = A,

where A, = (o,...,an-1) (see Chapter 6.2). In particular Im(e) is
either isomorphic to (Z/2Z)"~* or to 0.
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7.2 THE RELATION BETWEEN [A(F,) AND K,

In this section we assume that n > 2. Let F}, be the free group generated
by z,y1,...,y,—1 and Inn(F;,) be its group of inner automorphisms. For

each w € F,, we have an induced inner automorphism i(w), where

i(w)(y) = wyw™

for all y € F,,. Since the center of F), is trivial, the map i : F,, — Inn(F),)
is an isomorphism, i.e.
Inn(F,) = F,.

Hence we obtain the following generators for Inn(F},).

Proposition 7.3. The group Inn(F,,) is generated by the inner automor-
phisms i(x), i(y1), -, 1 (Yn_1)-

Notice that for n = 2 we obtain
[A(Fy) = Inn(Fy) = F.
Hence TA(F,) is a free group on two generators.
Lemma 7.4. We have

Inn(F,) <TA(F,).

Proof. We show that the generators of Inn(F},) given by Proposition 7.3
are in [A(F,):

i(r) = konyo...okon, 1, € IA(F),)
i(y;) = kongjo...okon;j ;o0

kon; q;0...0kon, ; okon,; € IA(F),)
for1<j<n-1. O
Notice that by Lemma 4.3 we have
Inn(F,) <TA(F,) < TH(Cy, 7).

We are now going to analyze the representation o_; restricted to Inn(F,).

Let us first consider the images of the generators of Inn(F},) under o_;.
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Lemma 7.5. We have

o_1(i(z)) = —L-1  and  0_1(i(y;)) = In

for 1 < j < n—1. In particular the image of Inn(F,) under o_; is
1somorphic to Cs.

Proof.
o_1(i(x)) = o_y(kony,o...okon, 1,)
e O1:0q-...-0pq = —1,_4,
o_1(i(y;)) = o_y(konyjo...okon;_q,o0

kon,q jo...0kon, 1 ;okon,;)

I 1.
[l

If we identify Inn(F,) with F,, itself and the image of Inn(F,) under
o_1 with Cy = (g | ¢* = 1), we obtain by Lemma 7.5

g_1 . Fn — CQ.
This map is determined by
r—gq, nn—1, ... Yp1— 1L

If we compare this map with 7 : F,, — C5 defined in Chapter 4.2, we
see that they are identical. Thus we recover here the map 7 : F,, — C5,
which was the starting point of the whole. Recapitulatory we have the
following proposition.

Proposition 7.6. Let n > 2. Then the following diagram commutes

1 R E,——=(C, 1

1 —Inn(F,) N K, — Inn(F,) —> Cy — 1.

1R

Notice that, since R is a free group on 2n — 1 generators, the group

Inn(F,) N K, is also free on 2n — 1 generators.
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Corollary 7.7. Let n > 2. The group IA(F,) N K, contains a free group
on 2n — 1 generators. In fact for n = 2 the group IA(Fy) N Ky is a free

group on three generators.

Proof. This follows immediately from the fact that
Inn(F,) <TA(F,)

for all n > 3 and
IHH(FQ) = IA(FQ)

]

Until here we considered the restriction of o_; to Inn(F},) < T'"(Cy, 7).
We are now going to study the map o_; restricted to IA(F},). Thus let
us first calculate the images of the generators of IA(F,,) under o_;.

Lemma 7.8. Let n > 2. We have

Ufl(K'ijk) — 17 a,l(konij) = 1,
U_l(liij) = 1, 0_1(k0nm) = Oz’;
U_l(kOIlm') = 1, U—1<Tij) == E]_z2

Proof. The automorphisms &;;x, kon,;, k;; and kon,; are in the kernel of

o_1 by Lemma 4.11 and Theorem 4.14. We know from Proposition 4.5

that o_;(kon;;) = O;. Hence it suffices to show that o_;(7;;) = Ej_iz:
o_1(7;5) Cor_14 o_1(kony,' ov;; o kony, ov;")

-1 -2
Oi'Eji'Oi'Eji :Ejz‘ :

L. 4.5

]

It follows that the image of o_; restricted to IA(F,) is generated by
2 . . . . . o,
B for 1 <id,j <n—1(i#j)and O; for 1 <i <n—1. By Proposition
5.3 this image equals

(2 ={MeGL(n—-1,Z) | M =1,14 mod 2}.
Hence we obtain the following exact sequence
1 —IA(F,)NK, —IA(F,) Z5T,_1(2) — 1.

89



CHAPTER 7. FURTHER RESULTS

Notice that for n = 2 this sequence coincides with the sequence given in
Proposition 7.6.

On the other hand we can restrict the map p; : Aut(F,) — GL(n,Z)
to K, < Aut(F,). Thus let us calculate the images of the generators of
K, under p;.

Lemma 7.9. Let n > 2. We have

pi(ei) = p1(6;) = Eipn and  pi(¢7) = BY,
for1<i<n-—1.
Proof. This is clear by Chapter 3.1 O

It follows that the image of p; restricted to K, is generated by Efj
for 2 < 7 < nand F; for 2 <1 < n . By Proposition 5.5 this group
equals

ﬁ(z):{AGSL(n,znAE(iO — 0) mon}.

Thus we obtain an exact sequence

1= IA(F) N K, — K, 25 TL(2) — 1.
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APPENDIX

Aut<p,q,u>:=Group<p,q,u | p"2,9"2, (p*q)"4,
wkqruxgru” -1xq"-1*xu"-1xq" -1, (p*q*p*u) "2, (uxp*q)"3>;

K2:=sub<Aut | u , p*u’*2%p , p¥uxqg*uxp*q >;

H<a,b,c>:=Rewrite(Aut,K2);

Result:
> H;
Finitely presented group H on 3 generators
Generators as words in group Aut
a=p*u*p*u/\—1*q*p
b=qgqx*p*xux*gq*u'-1x*p
Pp*ux*xq*u*xp=*gq
Relations
c"2 = Id(H)
a* c* a'-1 % ¢ = Id(H)
b2 * ¢ * b"-2 x ¢ = Id(H)
cxa'-1*Db*xa*xbxaxcx*Db'-1xa'-1x*Db'-1=1Id(H)

C
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K2<a,b,c>:=Group<a,b,c | a2, b*xaxb"-1xa’-1,
(c"-1%a) 2% (c*a)”"2, (c-1%b) 2% (cxb"-1)"2>;
N2:=NilpotentQuotient (K2,2);

gammal2<a,b>:=CommutatorSubgroup (N2) ;

Result:
> gammal?2;
GrpGPC : gammal2 of order 2”2 on 2 PC-generators
PC-Relations:
a"2 = Id(gammal?2),
b"2 = Id(gammal2)

Here is an alternative, which can also be used to compute higher
quotients:

K2<a,b,c>:=Group<a,b,c | a"2, b*axb"-1¥a"-1,
(c"-1%a) 2% (c*a)”"2, (c-1%b) 2% (cxb"-1)"2>;
N1,pil:=NilpotentQuotient(K2,1);
N2,pi2:=NilpotentQuotient (K2,2);

f := hom< N2->N1 | [ pi2(g)->pil(g)

g in Generators(K2)]>;

Kernel(f);
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