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Introduction

After enunciating the central dogma of molecular biology in 1958 (Crick,

1958), the RNA was considered to be only an intermediate step that carries

the information from DNA, that stores all genetic information, to proteins

that catalyze the biochemical reactions within the cell. Over the years, it was

recognized that RNA is essential in many biological processes (Meli et al.,

2001; Mattick and Makunin, 2006), where the function of the molecule is

to a large degree determined by its structure.

Moreover, RNA plays an important role in phylogenetic analysis. Es-

pecially, the SSU rRNA is widely used for tree reconstruction, since it is

available for many sequences, “sufficiently” long and it contains enough evo-

lutionary information (Higgs, 2000). For the reconstruction of phylogenetic

trees most methods assume that each site in a sequence evolves indepen-

dently of each other. However, these approaches ignore that these molecules

have complex three dimensional structures. To obtain a “good” phylogeny,

evolutionary models have to incorporate such constraints.

The aim of structure prediction methods is to find these constraints from

a sequence or a set of sequences. This is a quite challenging task since for a

given sequence there are many possible structures. The number of possible

secondary structures S(l) of a RNA molecule with sequence length l can be
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approximated by Waterman (1995):

S(l) ∼

√
15 + 7

√
5

8π
l−3/2

(
3 +

√
5

2

)l

(1)

Beside experimental methods, there exists a broad variety of computational

methods for structure prediction. Computational methods can be categorized

in thermodynamic and comparative methods. Thermodynamic methods pre-

dict the secondary structure given a single nucleotide sequence, whereas com-

parative methods determine a consensus structure based on a set of aligned

sequences (cf Zuker, 2000).

This thesis deals with the statistical inference of dependencies within

a collection of biological sequences. These sequences may be either DNA,

protein or RNA sequences. We will focus on RNA molecules. Dependencies

of a RNA sequence are for example the secondary or tertiary structure.

A special focus of this work is the influence of the phylogeny in detect-

ing dependencies. In chapter 1 we give a brief overview of RNA sequences,

their structure and discuss models of sequence evolution. Then, we discuss

the principles of thermodynamic and comparative structure prediction meth-

ods. Based on simulations, we investigate in chapter 2 how the phylogenetic

relationship contributes to the ability in predicting the structure of RNA.

Furthermore, we introduce two novel comparative methods for structure pre-

diction in chapter 2 and 3. Finally, we apply these methods to synthetic

data, sequences of tRNA and sequences containing a purine riboswitch and

compare the results.
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Chapter 1

Theoretical Background

This thesis deals with the development of tools to determine dependencies

(a definition of dependencies is given in section 1.1.1) from related RNA se-

quences. RNA is a nucleic acid consisting of nucleotides. Nucleotides consists

of three components: a base, a ribose sugar and a phosphate group. The bases

of the RNA are adenine, guanine, cytosine and uracil, adenine and guanine

being purines and cytosine and uracil being pyrimidines. For the purpose of

this thesis we consider RNA molecules as strings from a four letter alphabet

A, where nucleotides are abbreviated by the first letter of their corresponding

base, thus A = {A, C, G, U}.
In this chapter, we will discuss the biological and mathematical requisites

that are needed in chapter 2 and 3. We consider two aspects: the evolution

of sequences and their structural elements. The evolution of sequences can

be modeled by a Markov process as introduced in section 1.1.2. Then we will

discuss structural elements in more detail. To extract structural information

from RNA sequences we use statistical tests. The basics of such tests as well

as classical structure prediction methods are reported in section 1.2. Finally,

some problems relating structure prediction methods are discussed.
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Figure 1.1: Different structural elements of RNA

Circles represent nucleotides and dashed lines represent base pairs (picture taken

from www.sacs.ucsf.edu/Training/rnastruc/RNA.gif).

1.1 Biological Data and Molecular Evolution

1.1.1 RNA secondary and tertiary structure

The representation of RNA molecules as a linear sequence a = a1, a2, . . . , al

is denoted as primary structure. However, these molecules have in general

a complex three dimensional structure. In the case of RNA, the basis of

such structures is the ability of nucleotides to form hydrogen bonds to non

neighboring bases to form base pairs. These base pairs occur between A−U

and C − G, also called Watson-Crick pairs and the wobble pair G − U .

The structural elements of the RNA can be distinguished in stems and

loops. Stems are consecutive base pairs. They form a double helix as known

from DNA. Loops are unpaired regions within RNA. Different combinations

of loops and stems are summarized in Figure 1.1.
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The secondary structure of a RNA sequence can be visualized as planar

graph that satisfies the following condition: If aj pairs with aj′ and ak is

paired with ak′ with j < k < j ′, then j < k′ < j ′ (Waterman, 1995). As

an example Figure 1.2A shows the secondary structure of a tRNA molecule.

Note, that due to this definition of the secondary structure the pseudo knot

shown in Figure 1.1 is not a secondary structural element.

The secondary structure, however, gives no information on the relative

position of each nucleotide in three dimension. This can be exemplified by

the tRNA shown in Figure 1.2. The secondary structure displays a clover

leaf structure whereas the 3D representation, the so called tertiary structure,

constitutes an L-shaped molecule (Figure 1.2C).

For a general description of dependencies within a RNA molecule contain-

ing l nucleotides, the definition of neighborhood systems N = (Nj)j=1,2,...,l is

used. Each Nj contains the positions that interact with position j. It fulfills

the following conditions (Bremaud, 1999)

• j /∈ Nj

• j ′ ∈ Nj ⇒ j ∈ Nj′.

In this thesis, we call two positions “correlated” or “dependent” when they

are neighbors. A special case of dependencies is the secondary structure of

RNA molecules. For illustration, consider the secondary structure of the

tRNA molecule in Figure 1.2A. We can define two sites as dependent if

they are base paired. For example, position 1 and position 72 are dependent,

since N1 = {72} and N72 = {1}. Position 16 is located in a loop and has no

neighbor, i.e. N16 = ∅.
A convenient method to display neighborhood systems are circle plots.

A circle plot displaying the corresponding secondary structure of the tRNA

5
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Figure 1.2: Three representations of a tRNA molecule containing four stem re-

gions. A: Cloverleaf structure (secondary structure). B: A circle plot is another rep-

resentation of the secondary structure. Circles represent nucleotides. Nucleotides

connected by an edge are base pairs (Picture taken from http://www.staff.uni-

bayreuth.de/ btc914/search/index.html). C: The 3d structure (tertiary structure).
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molecule of Figure 1.2A is shown in Figure 1.2B. Each node represents a

position in the molecule and each edge links two neighbors.

1.1.2 Sequence Alignment and Sequence Evolution

Alignments

To analyze a set of sequences we have to know which positions of the se-

quences are homologous. Sequences are related or homologous if they share

one common ancestor. We will display the homology between bases of differ-

ent sequences in form of a sequence alignment D. An alignment is a data ma-

trix where each row corresponds to a sequence and homologous nucleotides

are written in a column. Since sequences are in general not of the same

length the gap character “-” is introduced to account for inserted or deleted

nucleotides. Thus, the alignment D is a n × l matrix with n sequences of

length l. The entries Dij denote the nucleotide at site j of sequence i. The

column of an alignment is also called alignment site.

The nucleotides within an alignment site can differ. These differences can

be explained by substitutions1, i.e. a nucleotide is substituted by another one.

Substitutions can be distinguished in transitions and transversions. Transi-

tions are substitutions from a purine to a purine or from a pyrimidine to a

pyrimidine. Transversions are substitutions from a purine to a pyrimidine or

vice versa. Substitutions can occur due to replication errors of the DNA, as

well as by mutagens like certain chemicals or UV light.

Sequence alignments are the basis of many molecular analysis. The final

goal of inferring a “good” alignment from a collection of nowadays sequences

is very challenging because these sequences differ in the nucleotide compo-

1A substitution is formally defined as a point mutation that is fixed in a population.

In this thesis we will use “substitution” and “point mutation” exchangeable
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AUAGCACAUCACUUAUAC

AUAGCACAUCAUUAC
ACGCACAUCAUUAUC
GUCGUACAUUAUUUUC
GUCGCACAUCGCUUUAC

D D D D D
1 2 3 4 5

D   AUAGCACAUCAU−−−UAC

D   GUCGUACAUUAUUU−U−C
D   GUCGCACAUCGCUU−UAC
D   AUAGCACAUCACUUAUAC

D   A−CGCACAUCA−UUAU−C2

3

4

5

1 D   AUAGCACAUCAU−−−UAC

D
D
D
D
D

1

2

3

5

4

Figure 1.3: Top: RNA sequences from different organisms. Center: The sequence

alignment displays the homology relation of nucleotides. Bottom: Reconstructed

phylogenetic tree based on the sequence alignment
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A U

CG

G C

A U

G C G C

A U

CU U A

Figure 1.4: Example of a compensatory substitution.

After G is substituted a mispair is introduced. This is compensated by a substitu-

tion from C to A.

sition as well as sequence length (Figure 1.3). The different alignment algo-

rithms will not be discussed here. For a summary see Wallace et al. (2005);

Notredame (2002). In this thesis we assume the alignments as given.

Models of Sequence Evolution

If we consider tRNA sequences from different organisms we observe that the

cloverleaf structure is to a high degree conserved (slight deviations exist, e.g.

an additional base pair exists in the stem or a loop is missing (Steinberg

and Cedergren, 1995)), although the nucleotide sequences differ.

In order to keep the structure, especially the base pairs in the stem, we

have to model the evolution of dinucleotides. In more detail: if a nucleotide

at a site j within a stem region is substituted then, the base paired site

j ′ has to be substituted as well (cf Chen et al., 1999). This substitution

is called a compensatory substitutions. The mechanism is shown in Figure

1.4. Displayed is a part of a stem region. If G is substituted by an U , then

a mispair is introduced and the stem is destabilized. To compensate this,

there are two possibilities: First, the neighboring C is substituted to A to

constitute a base pair, or second, a back mutation from U to G occurs.

To model compensatory substitutions we have to consider the evolution of

dinucleotides. For clarity, single nucleotide substitution models are explained

9



first. Afterwards, these models can easily be extended to dinucleotide substi-

tution models.

For a single nucleotide substitution model, we assume that a substitu-

tion at a position within a sequence occurs randomly and independently

from any other position. Moreover, we assume that the nucleotide frequen-

cies π = {πA, πC , πG, πT} do not change over time. Under these assumption

a time-homogeneous stationary Markov process can model the substitution

process (Tavaré, 1986). Each position in the sequence is then described by

a discrete random variable. At the RNA level there are four possible states

corresponding to the nucleotides A, C, G and U . The substitution from one

nucleotide to another is then described by a four times four probability ma-

trix P(t). The components Pjj′(t) specify the probability of a substitution

from nucleotide j to j ′ after a period of time t > 0.

The probability matrix is characterized by a rate matrix Q and is com-

puted as:

P(t) = exp(Qt). (1.1)

Thus, it suffices to describe the substitution process by the rate matrix

Q := Qj,j′ =





rjj′π
′
j if j 6= j ′

−∑j 6=j′ Qjj′ if j = j ′.
(1.2)

with j, j ′ ∈ A. Q provides an infinitesimal description of the substitution

process. An entry Qjj′ is the number of substitutions from nucleotide j to j ′

per unit time. The rjj′ > 0 are rate parameters, that account for transitions

and transversions. Finally, parameters πA, πC , πG, πT describe the frequencies

of nucleotides A, C, G and T , respectively.

A collection of different rate matrices is given in Table 1.1. The most

simple matrix is that of Jukes and Cantor (Jukes and Cantor, 1969) con-

taining one parameter, i.e. each substitution occurs with the same rate α. A

10



A C G U A C G U

JC69 K2P

A - α α α - β α β

C α - α α β - β α

G α α - α α β - β

U α α α - β α β -

HKY TN93

A - βπC απG βπU - βπC α1πG βπU

C βπA - βπG απU βπA - βπG α2πU

G απA βπC - βπU α1πA βπC - βπU

U βπA απC βπG - βπA α2πC βπG -

F81 GTR

A - πC πG πU - aπC bπG cπU

C πA - πG πU aπA - dπG eπU

G πA πC - πU bπA dπC - fπU

U πA πC πG - cπA eπC fπG -

Table 1.1: Rate matrices for different substitution models, JC69: Jukes-Cantor

model (Jukes and Cantor, 1969), K2P: Kimura two parameter model (Kimura,

1980), HKY: Hasegawa-Kishino-Yano model (Hasegawa et al., 1985), TN:

Tamura-Nei model (Tamura and Nei, 1993), GTR: general time reversible model

(Rodriguez et al., 1990). The entries of the main diagonal equals the negative

sum of the entries of the corresponding row.

11



more general model is the K2P-model of Kimura (Kimura, 1980). It distin-

guishes between transitions and transversions. However, both models assume

that each of the four nucleotides within the sequences is equally distributed

with probability 0.25. More general single nucleotide substitution models

(Hasegawa et al., 1985; Tamura and Nei, 1993; Rodriguez et al., 1990)

incorporate different base compositions. The parameters of each substitution

model are estimated from the data.

A further assumption is that the substitution process is reversible; that

is,

πjPjj′(t) = πj′Pj′j(t). (1.3)

This additional assumption implies that the substitution process has no pre-

ferred direction. From the reversibility assumption it follows that a stationary

distribution π
S exists, where:

π
S = π

SP(t). (1.4)

This means that any initial nucleotide distribution π
i converges to the sta-

tionary distribution as t → ∞ that is,

π
iP(t)

t→∞−→ π
S, (1.5)

where time t is measured in numbers of substitutions per unit time. Therefore

the entries of the rate matrix Q have to be rescaled that the expected number

of substitutions per unit time equals one, i.e. −∑i∈A Qiiπ
s
i = 1 (Strimmer

and von Haeseler, 2003).

As yet, we considered the case of independently evolving nucleotides that

are represented by a four by four rate matrix Q. The assumption of inde-

pendently evolving sites is obviously violated in the stem regions of RNA

sequences, due to compensatory substitution. To model compensatory sub-

stitutions we have to describe substitutions between dinucleotides.

12



The substitution model is then expressed by a Markov process charac-

terized by a 16 × 16 rate matrix where the number of possible states are

the nucleotide words of length two, that is A × A = {AA, AC, . . . , UU}.
Thus, these models (Schöniger and von Haeseler, 1994; Tillier, 1994;

Tillier and Collins, 1998; Muse, 1995; Rzhetsky, 1995; Savill et al.,

2001) describe the substitution of independently evolving dinucleotides and

thus give generally a more realistic description of the sequence evolution. An

example for a dinucleotide substitution model is the SH-model (Schöniger

and von Haeseler, 1994):

Qj,j′ =





πj′ if H(j, j ′) = 1

0 if H(j, j ′) = 2

−∑j 6=j′ Qjj′ if j = j ′.

(1.6)

with j, j ′ ∈ A2 and the Hamming distance H(j, j ′). That is, for this model a

substitution occurs from one dinucleotide to another dinucleotide when they

differ by one nucleotide.

More complex models can be obtained while extending the state space to

Ak. This corresponds to independently evolving sequence fragments of length

k. A summary of different substitution models up to k = 3 is given in Siepel

and Haussler (2004); for a general description of the Markov process for

any k see von Haeseler and Schoniger (1998). Recently different sub-

stitution models were introduced that relax the assumption of independently

evolving sequence fragments (e.g. Jensen and Pedersen, 2000; Gesell

and von Haeseler, 2006; Siepel and Haussler, 2004). These models ac-

count for context dependent substitutions, where a nucleotide is substituted

depending on the nucleotides at other positions of the sequence.

13



Seq1

Seq2

Seq3

Seq4

Seq5

Seq1
Seq2

Seq3

Seq4

Seq5Seq1 Seq2 Seq3 Seq4 Seq5

A

B

C

root

Figure 1.5: Phylogenetic trees of five sequences. A: unrooted tree, B: rooted tree,

C: star tree.

Phylogenetic Trees

Sequence alignments are the basis to reconstruct phylogenetic trees (Figure

1.3). Phylogenetic trees are used to represent the evolutionary relationship

among species. A tree is formally defined as a graph T = G(E, V ) with

no cycles, where V is the set of vertices and E the set of edges connecting

vertices (Semple and Steel, 2003). The branch length of a phylogeny is

measured in numbers of substitutions per site. The distance between two

vertices, say i and i′ will be denoted with t(i, i′) and is called genetic distance.

We distinguish between rooted and unrooted trees (Figure 1.5). In the case of

the rooted tree an internal node is labeled as a root (Figure 1.5B). A special

case of phylogenies are star trees, that is all external nodes of the tree have

one common ancestor (see Figure 1.5C).

Since we have only information about contemporary sequences, the evo-

lutionary history needs to be reconstructed. For the reconstruction of phy-

14



logenetic trees there exist four main methods: distance based methods like

neighbor-joining (Saitou and Nei, 1987), methods based on the parsimo-

nious principle, i.e. maximum parsimony (Fitch, 1971), statistical methods

as maximum likelihood (Felsenstein, 1981) or Bayesian inference (Ran-

nala and Yang, 1996). A detailed description of these methods and further

tree reconstruction methods are given in Felsenstein (2004). In this thesis

we use a maximum likelihood approach (Vinh and von Haeseler, 2004)

to reconstruct the phylogeny of an alignment.

1.2 Structure Prediction Methods

A large number of computational methods have been developed for the pre-

diction of secondary or tertiary structures of RNA sequences. Structure pre-

diction methods try to determine a neighborhood system N from one se-

quence or a sequence alignment. These methods can be classified as thermo-

dynamic methods and comparative methods.

1.2.1 Thermodynamic Methods

Thermodynamic approaches compute the secondary structure for a single

RNA molecule (cf. Zuker, 2000), where the best structure is found by min-

imizing the free energy of the sequence. Moreover, the structure of the RNA

has to obey the base pairing rules. For a sequence Di and a structure Sk(Di)

we can compute the corresponding free energy Ek for a given secondary

structure k. Essential for the determination of the free energy is the use of

thermodynamic parameters that are based on experimental data (cf. Math-

ews et al., 1999). However, the fact that not all thermodynamic parameters

are known with an appropriate accuracy could lead to a reduced accuracy in

the predicted structure.

15



In addition, with thermodynamic methods the probability distribution of

secondary structures for a given sequence can be computed (Zuker, 2000;

Hofacker et al., 2002; Lück et al., 1999). The probability of a particular

structure follows the Boltzmann distribution (cf. McCaskill, 1990), that

is:

P(Sk) =
1

Z
exp

(
− Ek

RT

)
, (1.7)

with the molecular gas constant R, the temperature T (measured in Kelvin)

and the partition function Z =
∑

k exp(− Ek

RT
). The structure with the highest

probability is then the structure with the minimal free energy. Furthermore,

we can obtain suboptimal structures with higher energies. Thus the proba-

bility distribution (Equation 1.7) allows co-occurrence of different structures

in solution that are able to rearrange into each other (Steger, 2003).

As we noted already in Equation 1, the number of possible structures is

enormous, since it grows exponentially with the sequence length. To find the

structure with the minimum free energy within the set of possible structures

different dynamic programming algorithms were suggested (for a review see

Zuker (2000)).

1.2.2 Comparative Methods

In contrast to thermodynamic approaches, comparative methods are based

on the analysis of a collection of RNA molecules, where sequences are repre-

sented in a multiple alignment. Comparative methods aim to determine if two

sites in an alignment are correlated. They predict a consensus structure of

all investigated sequences. Comparative methods detect not only base pairs

in stem regions, but also so-called tertiary dependencies like pseudo-knots,

or base triples (Gutell et al., 1992; Tabaska et al., 1998; Ji et al., 2004;

Dowell and Eddy, 2004). Furthermore, comparative methods are able to

16



suggest a de novo structure from an alignment.

In general, comparative methods are statistical significance tests to prove

or disprove a certain statement. These statements are formulated as a null

hypothesis H0 and an alternative hypothesis H1. For example, to test for

compensatory substitutions between sites j and j ′ the null hypothesis can

be formulated as: Sites j and j ′ evolve independently of each other, whereas

H1 usually states the opposite (Sites j and j ′ do not evolve independently).

To test whether H0 can not be rejected or if it should be rejected in favor of

H1 an appropriate test statistic is computed. The choice of the test statistics

depends on several aspects: Are the data continuous or discrete? How many

parameters are necessary to describe the null hypothesis? Can the data be

grouped? etc. (for a summary on how to select the test statistic see Dytham

(2003)). After selecting the test statistics, the alternative hypothesis is then

accepted with an significance value (or significance level) α, where α equals

the probability of accepting H1 when H0 is true. The significance value is

set before calculating the test statistic and has usually values of 0.05 or 0.01.

Finally, to decide if the null hypothesis is rejected or not the probability of

observing the data under the null hypothesis, the p-value, is computed. If

the p-value is smaller than α, the alternative hypothesis is accepted.

Testing on a null hypothesis may lead to wrong decisions, the type I error

and the type II error. A type I error occurs if we reject the null hypothesis

although it is true and therefore it is also called false positive. The proba-

bility of commiting a type I error equals the significance level α. If the null

hypothesis is not rejected although the alternative hypothesis is true then

this is called a type II error. The probability of a type II error is generally

denoted as β.
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Comparative Methods for Structure Prediction

Comparative methods can be classified in methods that use only sequence

data and methods that additionally incorporate phylogenetic information.

Methods using only sequence data were proposed by Gutell et al. (1992),

Chiu and Kolodziejczak (1991) and Klingler and Brutlag (1993).

These methods investigate whether the number of nucleotide pairs at two

sites in an alignment differ significantly from random expectation. If so, then

both sites are called correlated, i.e. they are subject to structural constraints.

For instance, they may be base paired as part of a helix or they may belong

to other structural elements including pseudo-knots. The null hypothesis for

these methods can be formulated as follows:

H0 : P(Xj, Xj′) = P(Xj)P(Xj′) Xj, Xj′ ∈ {A, C, G, U}. (1.8)

That is, the joint probability P(Xj, Xj′) of observing the nucleotide pair

(Xj, Xj′) at the alignment sites (j, j ′) equals the probability P(Xj)P(Xj′) to

observe these pairs under independence. The alternative hypothesis is:

H1 : P(Xj, Xj′) 6= P(Xj)P(Xj′). (1.9)

In general, the probabilities P(Xj, Xj′) are estimated by the frequencies of

observing the nucleotide pair (Xj, Xj′) in the alignment, whereas P(Xj) are

estimated by the frequencies of observing the nucleotide Xj at site j. As test

statistics Chiu and Kolodziejczak (1991) and Gutell et al. (1992) use

the mutual information score:

I(j, j ′) =
∑

Xj∈A

∑

Xj′∈A

P(Xj, Xj′) log
P(Xj, Xj′)

P(Xj)P(Xj′)
(1.10)
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If site j and j ′ are independent, then I(j, j ′) = 0. Klingler and Brutlag

(1993) used as test statistics the χ2-test on independence:

X2(j, j ′) = n
∑

Xj∈A

∑

Xj′∈A

{P(Xj, Xj′) − P(Xj)P(Xj′)}2

P(Xj)P(Xj′)
. (1.11)

If sites j and j ′ are independent then X2(j, j ′) and 2nI(j, j ′) follow a χ2
α,dof -

distribution. The degrees of freedom (dof) equal nine, i.e. for each site three

(number of parameters - number of restrictions), where the probabilities P(xi)

are restricted by
∑

xi∈A
P(xi) = 1 (Evans and Rosenthal, 2003).

The null hypothesis is rejected in favor of H1 if:

• 2nI(j, j ′) ≥ χ2
α,9 or

• X2(j, j ′) ≥ χ2
α,9,

where χ2
α,9 is the tabulated χ2-value with significance value α.

However, these approaches are only valid if each sequence in the align-

ment can be viewed as an independent sample of the same evolutionary

process. As sequences are generally related by a phylogeny, this assump-

tion is obviously violated, unless the sequences are related by a “star” phy-

logeny. Therefore, such methods are too generous in suggesting correlations

(Lapedes et al., 1999).

In the phylogenetic literature methods abound that construct a phyloge-

netic tree assuming no structural constraints. The resulting tree is compared

to a tree reconstructed under the assumption that structural constraints are

known (Schöniger and von Haeseler, 1994; Muse, 1995; Akmaev et al.,

1999; Gulko and Haussler, 1996; Pollock et al., 1999; Knudsen and

Hein, 1999). These methods determine whether the evolution of sequences

on a phylogenetic tree is better described by a joint evolutionary model rather

than independently evolving sites. Instead of comparing two alignment sites
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as for the χ2-test and the mutual information, these approaches compute

the likelihood L, that is the probability of the alignment D given the phy-

logeny and an evolutionary model. The null and alternative hypothesis for a

phylogeny T are:

H0 : L0 = P(D|T, M0,N0)

H1 : L1 = P(D|T, M1,N1)

with N0 and N1 being neighborhood systems and M0 and M1 are the sub-

stitution models for the different hypotheses, respectively.

A higher likelihood indicates that this model fits the data better. However,

models with more parameters have in general a higher likelihood. To test if

the increase in the likelihood is significantly different the Akaike information

criterion (AIC) or likelihood ratio tests (LRT) are applied. AIC is defined as

AIC=ln L + 2 ∗ k (k = number of free parameters of the model). The model

with the lowest AIC is then preferred. Thus, AIC penalizes models with many

parameters. The likelihood ratio compares directly the likelihoods of the null

and the alternative hypothesis and is computed as:

δ = log
L1

L0

(1.12)

The likelihood ratio test can be applied if H0 is nested within H1, i.e. the null

hypothesis is a special case of the alternative hypothesis. If H0 is true then 2δ

is distributed according to a χ2-distribution, with the degrees of freedom that

equals the difference in the number of parameters of the two hypotheses. To

apply AIC and LRT the sequences have to be “extremely” long (Goldman,

1993). Therefore, Cox’s test should be applied (Cox, 1962). That is, the

distribution of δ is simulated based on generated data under H0.

However, the likelihood ratio test cannot always be applied since many

models are not nested (Savill et al., 2001). But they can be compared to a
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unconstrained model (Goldman, 1993; Navidi et al., 1991). The likelihood

for this model is computed as:

L =
v∏

C=1

(NC/l)NC ,

where NC is the number of sites in an alignment that are identical with

nucleotide pattern C, l the alignment length and v the number of different

nucleotide patterns in the alignment.

These tests revealed that dinucleotide substitution models describe the

evolution of stem regions significantly better than single nucleotide substitu-

tion models. However, these tests can only be applied if the structure of the

molecule is known. Only few approaches exist to improve secondary structure

prediction based on the outcome of the tests (Schöniger and von Hae-

seler, 1999). But if there is no information about the secondary structure,

these tests cannot be applied (Akmaev et al., 2000).

1.2.3 False Positive Reduction

To employ significance tests as introduced in section 1.2.2, many sequences

are required. By contrast, thermodynamic methods require only one se-

quence. To improve accuracy, some methods combine both approaches (Lück

et al., 1999; Hofacker et al., 2002; Juan and Wilson, 1999). However,

it is very difficult to determine the appropriate significance level α to reject

the null hypothesis of independently sites. Therefore, more or less arbitrary

significance levels are assigned (Akmaev et al., 1999). Besides the standard

statistical problems, especially too few sequences, that lead to false positive

correlations (Lapedes et al., 1999; Pollock et al., 1999), the influence of

the topology of the tree and of its phylogenetic diversity (Faith, 1992) on

the significance level is not understood. In the following, we use the χ2-test,
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Figure 1.6: Monte Carlo Simulation exemplified for six sequences.

The contingency table contains the number of observed pairs of nucleotides for site

j and j′. For the Monte Carlo Simulation m contingency tables are randomly gen-

erated based on the marginal probabilities P(xj) and P(xj′) (see text for details).

that is widely used for a statistical test to discuss the influence of the number

of sequences and the tree topology in detecting a neighborhood system.

Few Sequences

Statistical tests are approximately valid only for large sample size n (num-

ber of sequences). As a rule of thumb, the expected number of nucleotide

pairs for the χ2-test should be at least five for each of the 16 dinucleotides

(Sachs, 1992). If the number of sequences in the alignment is small, then

this is generally not the case. Moreover, an alignment position might be very

conserved and therefore would not contain all of the four nucleotides.

We use a Monte Carlo Simulation to generate the χ2-distribution based

on the observed data. An example of such a simulation is displayed in Figure
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1.6. We consider two sites j and j ′, with corresponding contingency table

(Figure 1.6A). The entries equal the number of observed nucleotide pairs

within the two sites. For instance, the frequency to observe the pair (A, A)

equals 2. The expected number of the pair AA under independence (the null

model) equals 4/3 (n ∗ P(xj, xj′) = n ∗ P(xj) ∗ P(xj′) = 6 ∗ 2/6 ∗ 4/6 ≈ 1.3).

The X2(j, j
′

) value of the observed base frequencies at sites (j, j
′

) can be

computed according to Equation 1.11. For the observed contingency table in

Figure 1.6 we compute X2(j, j
′

) = 1.5.

The basis of the simulation are m contingency tables (Figure 1.6B). They

are randomly generated with the condition that the frequencies n ∗ P(xj)

and n ∗ P(xj′) are the same for all tables m′ = 1, 2, . . . , m. Thus, the sum of

dinucleotides within the rows and columns of the simulated tables has to be

the same as for the observed contingency table. For each of the m contingency

tables we compute a X2
m′ value,e.g. in Figure 1.6 X2

m′=1 = 1.5. The p-value

pj,j′ of sites j and j ′ (j, j ′ ∈ 1, 2, . . . , l) is then estimated by the proportion

of simulated X2
m′ values greater than X2(j, j ′). That is:

pj,j′ =
#{m′ : X2

m′ ≥ X2(j, j ′)}
m

(1.13)

If pj,j′ is smaller than the significance level α then sites j and j ′ are considered

to be correlated.

One should note that the state space of possible contingency tables can

be small for small number of sequences. For example, in Figure 1.6 there exist

only six possible contingency tables. Moreover, different tables can have the

same X2-value, e.g. for tables m′ = 1, 3 and the observed table the X2-value

equals 1.5 for the remaining possible table X2=6 (e.g. m′ = 4). That is, for

the above example there are only two possible X2-values. The probability

of observing X2 = 1.5 is 0.8, whereas for X2 = 6 the probability is 0.2 (see
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Figure 1.7: Ancestral Correlation

If the genetic distance between the internal node and the leaves of the tree is

short, then they will share the same nucleotides. Therefore, sites j and j ′ from an

alignment could be considered as correlated.

Fisher (1922)). In terms of the simulated tables, we will never reject the null

hypothesis (assuming a significance value of one or five percent), since for a

table with corresponding X2 = 1.5 the p-value is 1 and for a contingency

table with X2 = 6 the p-value is 0.2.

Ancestral Correlation

Whenever we analyze a set of homologous sequences, they are related by a

phylogenetic tree. That is, if we want to estimate a neighborhood system from

an alignment, we have to take into account the evolutionary history (Gold-

man et al., 1996). The influence of the phylogeny when inferring correlated

sites is illustrated in Figure 1.7. A phylogeny containing seven sequences is

shown. If sequences are closely related (exemplarily the right part of the tree)

then it is very likely that homologous nucleotides in these sequences share the
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same nucleotide as their common ancestor. This is because the evolutionary

distance between the sequences is too short for many substitutions to occur.

For example, the common ancestor of site j carries an A and at site j ′ carries

a G, then we will frequently observe nucleotide A at the external sequences

of site j and nucleotide G at the external sequences of site j ′. In a sequence

alignment this would result in an over-representation of the pattern AG and

could lead to the mis interpretation that site j and j ′ are correlated. The

influence of ancestral nucleotides on the nucleotide distribution at an align-

ment site is called “Ancestral Correlation”. To decide if sites j and j ′ are

correlated, or if these sites show ancestral correlation, we have to investigate

the evolution of nucleotides considering the ancestral states at the internal

nodes of the phylogeny.

In a nutshell: To estimate dependencies from a sequence alignment, we

need to distinguish between true dependencies and ancestral correlation. To

do so, we require the sequence alignment as well as the evolutionary history

of the sequences as represented by a phylogenetic tree.
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Chapter 2

Estimating Dependencies using

Subtrees

2.1 Introduction

To estimate a neighborhood system N from a sequence alignment, we will use

the χ2-test as test statistics. As discussed in section 1.2 such tests can strictly

speaking only be applied when the sequences are related by a star phylogeny.

Therefore, we will have a closer look on sequence alignments derived from

star phylogenies. A further advantage of star phylogenies is that the influence

of the tree topology is minimal.

To get reliable results all tests need reasonable amount of data and vari-

ation within the data (Higgs, 2000). Considering a sequence alignment, the

fidelity of the obtained results depends therefore on the number of sequences

and the variation within the alignment positions.

In section 2.2, we will investigate the outcome of the χ2-test depending on

these two quantities. Afterward we discuss the consequences when the χ2-test

is applied to non-star phylogenies. In section 2.3, we will introduce StarDep,

26



a method that predicts the consensus structure of a sequence alignment using

only subtrees instead of the whole topology. We will demonstrate that under

certain criteria these subtrees can be treated as star phylogenies. Thereafter,

we will apply StarDep to synthetic and real data.

2.2 Simulation studies on star trees

We evaluate the ability of the χ2-test to detect dependencies from a se-

quence alignment D, where sequences evolved on a star phylogeny. We are

interested in several questions: How many sequences are necessary to predict

the secondary structure? Is there a relation of branch length to the number

of detected correlated sites? How reliable are our estimates? We will use sim-

ulated data to answer these questions. Since we know the true dependency

structure we can compare it to the outcome of the χ2-test. For the simu-

lations, we assumed a sequence containing 100 base pairs. The base pairs

evolved according to the SH-model (Schöniger and von Haeseler, 1994)

along a star phylogeny with branch length tb. The alignments were generated

using SISSI (Gesell and von Haeseler, 2006). The parameters that are

used for the simulation are summarized in the appendix A.2.

If each site in the alignment evolved independently, then we expect that

the nucleotide distribution π
i(tb) at site i equals:

π
i(tb) = πriP(tb), (2.1)

with πri being the nucleotide distribution at the root r of site i and P(tb) the

transition probability matrix of a nucleotide substitution model (see Equation

1.1). We want to investigate if two sites evolve independently. We state as

null hypothesis:

H0 : π(xi, xi′) = π(xi)π(xi′) ∀xi, xi′ ∈ A (2.2)
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That is, the joint probability of observing nucleotides xi and xi′ equals the

product of observing nucleotide xi and xi′ , independently of each other. In

practice, π(xi) are estimated by the frequency of observing nucleotide xi ∈ A
at the alignment site i and π(xi, xi′) is approximated by the frequency of the

observed dinucleotides at sites i and i′. As test statistic, we apply the χ2-

test on independence with nine degrees of freedom (Equation 1.11): The null

hypothesis is rejected on a significance level α.

2.2.1 Influence of the Branch Length

First, we investigated the influence of the branch length tb in detecting corre-

lated sites. tb ranges from 0.2–3.0. For each tb we simulated 100 alignments,

were each alignment contained 100 sequences and 200 sites. Thereafter, we

applied the χ2-test (Equation 1.11) and the Monte Carlo simulation described

in section 1.2.3 to each alignment. That is, for an alignment containing 200

sites we analyzed all possible
(
200
2

)
pairs of sites. Sites i and i′ were considered

to be correlated when the p-value pi,i′ (Equation 1.13) is less equal the sig-

nificance level α. For each alignment we counted the inferred number of true

positive correlated sites and the number of inferred false positive correlated

sites. The results are shown in Figure 2.1. Displayed are the mean numbers

of true positive and false positive correlated sites for different significance

values α (0.001, 0.01, 0.05).

For α = 0.05 and tb = 0.2 the average number of true positives equals

22. This number increases and equals 100 for tb = 1.2. For α = 0.01 and

α = 0.001 the number of true positives also increases up to 100 and is reached

for 1.6 and 2.4, respectively. The average number of false positive base pairs

is almost constant for each α. For α = 0.05 it ranges between 3.0–5.2, for

α = 0.1 between 0.1–0.5 and for α = 0.001 between 0.0–0.1. However, for a
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Figure 2.1: Number of detected true and false positive correlated sites depend-

ing on the branch length of the star tree for different significance levels α (red:

α = 0.05, green: α = 0.01, blue: α = 0.001. Error bars represent standard devia-

tions.
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significance level of five percent we expect for an alignment of 200 sites about

1000 false positives (
(
200
2

)
×0.05 ). Possibly, the low number of detected false

positives is according to the sampling procedure of the contingency tables (see

section 1.2.3).

Interestingly, in the region where the branches of the star tree are short

(0.2–1.0) the χ2-test missed many true positive correlations. This observation,

however, is not surprising. If the branches have length zero, then all sequences

in an alignment are identical and any test for correlation of pairs of sites is

not applicable. Only if some variability at dependent sites is observed any

test has the chance to suggest correlations.

2.2.2 Influence of the Number of Sequences

To determine the influence of the number of sequences n to detect correlated

sites we analyzed sequence alignments with 10–1000 sequences. These align-

ments were generated on a “short” star tree with branch length 0.2 and a

“long” star tree with branch length 1.0. We used the settings from section

2.2.1, i.e. the analysis is based on 100 alignments containing 100 sequences

of length 200 comprising 100 base pairs. The results for the short tree are

displayed in Figure 2.2 and for the large tree in Figure 2.3.

For the alignments derived from the short star tree, the number of de-

tected true positives increases with increasing n. That is, for n = 10 we found

no correlated site for all significance values (α = 0.001, 0.01, 0.05; see Figure

2.2). For n = 1000 the mean number of true positives equals 11 for α = 0.001,

22 for α = 0.01 and 44 for α = 0.05.

A different result emerges for the number of false positives. For alignments

that ranges between 10–100 sequences this number is relative high compared

to the number of detected true positives. For example, for n = 100 and
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Figure 2.2: Number of detected true and false positive correlated sites depending

on the number of sequences in the sequence alignment for different significance

levels (red: α = 0.05, green: α = 0.01, blue: α = 0.001). The length of the branches

of the star tree equals 0.2 substitutions per site. Error bars represent standard

deviations.
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α = 0.05 we observed on average 10 false positives. In comparison the average

number of true positives equals 20. However, for increasing n the number of

false positives decreases for all significance values.

We observed a distinct picture for alignments that were derived from long

star trees with branch length tb = 1.The results are displayed in Figure 2.3.

For the investigated significance values α the mean number of detected true

positives reaches 100 already for n = 200. The number of false positives

is very large for small n. For example, for n = 20 and α = 0.05 the false

positive detected correlations exceeded the number of detected true posi-

tives (FP=120, TP=75). Nevertheless, for alignments with more than 100

sequences this number decreased.

The differences in the detection rates of true positives between short

and long phylogenies can again be attributed to the low variability in the

short star tree. Even if we investigate alignments with 1000 sequences, only

44 out of 100 base pairs (α = 0.05) were detected for the short star tree.

Consequently, we will not be able to detect the dependency structure for

alignments even if we investigate many sequences. Furthermore, for align-

ments with only a few sequences the number of false positive correlations is

very large.

2.2.3 Ancestral Correlation and χ2-Test

As yet, we have analyzed the outcome of the χ2-test applied to alignments

that evolved on star phylogenies. Now we are interested in the performance

of the χ2-test in detecting correlated pairs when the tree topology is not a

star tree. That is, we investigate alignments that are derived from bifurcating

trees with 100–1000 sequences. The topologies were randomly generated and

branch lengths of each topology were drawn from an uniform distribution.
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Figure 2.3: Number of detected true and false positive correlated sites depending

on the number of sequences in the sequence alignment for different significance

levels (red: α = 0.05, green: α = 0.01, blue: α = 0.001). The length of the branches

of the star tree equals 1.0 substitutions per site. Error bars represent standard

deviations.
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Thereafter, the branch length of the bifurcating trees were rescaled to com-

pare the bifurcating trees to the star trees of section 2.2.2. That is, the total

branch length of a bifurcating tree with n sequences equals the total branch

length of the star tree with n sequences. For example: A star tree with 100

sequences has total branch length 100, the corresponding bifurcating tree has

then also total branch length 100. Thus, the total number of substitutions

that occurred on both trees is the same.

Our results are based on 100 simulations for each n and are summarized in

Figure 2.4. Displayed are the mean numbers of detected true and false positive

correlated sites, depending on the number of sequences. The number of true

positives is 99 for the alignment containing 100 sequences. For alignments

with a higher number of sequences this number equals 100 (α = 0.05). A

similar picture is obtained for a significance level of α = 0.01 Thus, the

prediction of true positives is comparable to that of star phylogenies (see

Figure 2.3).

A different picture emerges for the number of false positive pairs. For

the significance value α = 0.05 the number of false positives exceeds the

number of true positives for all n. Although for α = 0.001 the number of

false positives decreases to 90, it is still high compared to the detected true

positives.

A comparison of the differences in detecting true and false positives for

star and bifurcating trees is displayed in Table 2.1. The number of true

positives are equal for both trees, whereas the number of false positives is for

the bifurcating tree always considerably higher compared to the star tree.

In conclusion, if star phylogenies are investigated, then the ability of the

χ2-test in detecting correlated sites depends on the number of the investigates

sequences and the branch length of the tree. The more sequences and the
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Figure 2.4: Number of detected true positive correlated sites (red line) and false

positive correlated sites (green line) depending on the number of sequences in the

sequence alignment for significance level α = 0.05 (top) and α = 0.01 (bottom).

Error bars represent standard deviations.
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nr.of seq. TPstar TPbf FPstar FPbf

100 98 99 5 420

200 100 100 0 680

600 100 100 0 570

1000 100 100 0 210

Table 2.1: Number of detected true positives (TP) and false positive (FP) for the

star and bifurcating (bf) trees using the χ2-test

longer the branch length the number of detected true positive dependencies

increases. The number of false positives is small.

If the χ2-test is applied to non-star phylogenies, a different result is ob-

tained. Although the number of true positives is comparable to that of the

star trees, we observe an inflation of false positives due to ancestral correla-

tion. In the following section we introduce a method to detect dependencies

from non-star phylogenies using the χ2-test.

2.3 StarDep-Detecting Dependencies

using Star Trees

The results from the previous section revealed that the application of the

χ2-test to non-star phylogenies may lead to a high number of false posi-

tive correlated pairs if it is applied to bifurcating trees. In this section we

will introduce StarDep, a method that detects correlated sites from sequence

alignments. As reported in section 1.2.3 it is often difficult to assign an appro-

priate significance value α. StarDep comprises a method that automatically

determines a significance value. This method is based on minimum p-values

(Ge et al., 2003). StarDep analyzes subtrees of the phylogeny. We will show
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that these subtrees can be considered as star trees (section 2.3.3). Before

describing StarDep in detail, we give a brief motivation.

2.3.1 Motivation

We will explain our method by means of Figure 2.5. Displayed is a phy-

logeny (Figure 2.5A) that is based on an alignment of 20 sequences. The

phylogeny can be subdivided into five groups (T1 − T5). The genetic dis-

tance between pairs of sequences within a group shall be “small” whereas

the distance between sequences from different groups shall be “large”. Since

the sequences are closely related within a group, we expect high ancestral

correlation. Moreover, the application of the χ2-test would result in a high

number of false positive correlated sites (see also Figure 2.4). To reduce the

influence of ancestral correlation we will select sequences where the genetic

distance between pairs of sequences exceeds a threshold tS (a definition of

tS is given in section 2.3.2). Assuming that the distance between each group

is “large enough”,we can choose a sequence from each group resulting in a

subtree of the original phylogeny. Obviously, there exist many possible sub-

trees that fulfill this condition. Two examples are displayed in Figure 2.5B.

Moreover, we can assume for large tS that no ancestral correlation is present.

This allows the usage of the standard χ2-test to detect correlated sites.

The analysis of subtrees may lead to the problem that the number of

the selected sequences can be small. This may result in many false positive

correlations (see also Figures 2.2 and 2.3).

In section 2.3.4 we will show that one subtree is not sufficient to obtain

accurate results by means of detecting a high number of true positive and

a low number of false positive correlated sites. Therefore, we will analyze

alignments from many subtrees. That is, from each alignment derived from
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Figure 2.5: (A) The phylogeny of 20 sequences containing five subgroups (T1−T5).

(B) Two possible subtrees. The genetic distance between pairs of sequences of the

subtrees has to be larger than tS. The alignments derived from these subtrees are

subject to a further analysis (see text for details).

the corresponding subtree we compute the number of true and false posi-

tive correlated pairs. Afterward, we use a summary statistics to display the

results.

2.3.2 Estimating Time to Stationarity

In this section, we will define the meaning of “large” genetic distance. There-

fore, we consider the sequences Di and DS, where Di is the ancestral sequence

of DS. We are interested in the question: How large has the genetic distance

38



t(Di,DS) between these two sequences to be, that DS carries no information

on the ancestral sequence? That is, when can we not reconstruct the ancestral

sequences Di? For large genetic distances and high substitution rates it is

shown that this reconstruction is impossible (cf Mossel, 2003). The article

of Mossel (2003) also introduces a bound for the probability to determine

the ancestral state.

Here we use a different approach. We assume that the ancestral sequence

cannot be reconstructed when the base composition of DS equals the sta-

tionary distribution. The nucleotide distribution after t time units equals:

π(t) = π
iP(t) with π

i the initial distribution of sequence Di and π(t) the

nucleotide distribution of sequence DS (see Equation 1.5). As we discussed

in section 1.1.2 when π(t) reaches the stationary distribution π
S, then all

information about the initial distribution is lost. However, this case can only

be obtained when t approaches infinity (see also Equation 1.5). Since this is

not possible we will follow another strategy and ask for which time we can

assume π(t) not to be significantly different from the stationary distribution.

Thus, we state as null hypothesis:

H0 : π
S = π(t) = π

iP(t). (2.3)

The time for which we cannot reject the null hypothesis is then denoted by

tS, the time to stationarity.

In this context, the choice of the initial distribution π
i is problematic.

For different initial distribution the estimated time tS may differ dramati-

cally. Therefore, it seems more appropriate to estimate for different initial

distributions the corresponding tS and then select the maximum to be the

time to stationarity. We decided to choose as initial distribution the four

cases where the initial sequence consists only of one nucleotide. The initial

distributions are denoted by π
i
A, π

i
C , π

i
G, π

i
U , respectively. Exemplary, the
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initial distribution π
i
A has then the form π

i
A = (1, 0, 0, 0). Intuitively, this

four distributions consider the case that we start with a certain nucleotide.

For these four cases we obtain:

π(t, ρ) = π
i
ρP(t), (2.4)

with the nucleotide distribution π(t, ρ) that evolved for a time t starting with

the root nucleotide ρ ∈ A.

To test whether π(t, ρ) equals the stationary distribution we assign the

following null hypothesis

H0 : π(t, ρ) = π
S. (2.5)

Since there are four initial distributions we have to reject four null-hypothesis.

That is, we are looking for the times tρ where we cannot reject the null-

hypothesis for a given significance level α. We choose the maximum of the

four times to be the time to stationarity tS, i.e.

tS = max{tA, tC , tG, tU} (2.6)

As test statistic we use the χ2-test with three degrees of freedom. For l

nucleotides that is

X2(t, ρ) = l
∑

j∈A

(πj(t, ρ) − πS
j )2

πS
j

. (2.7)

We obtain tρ if X2(t, ρ) ≤ 7.8 (Bronstein and Semendjajew, 1996), the

critical value for a χ2-distribution with three degrees of freedom and a signif-

icance level α = 0.05. Finally, tS is computed according to Equation 2.6. The

time tS is a measure of how long a sequence needs to evolve until it reaches

stationarity. Thus ancestral correlation is not present for sequences i, i′ when

the genetic distance t(Di, Di′) is larger than tS, that is

t(i, i′) > tS (2.8)
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Figure 2.6: The computed time to stationarity tS, measured in numbers per

substitutions per site, depending on the number of nucleotides. tS was estimated

using the HKY substitution model (Hasegawa et al., 1985) (see text for details).

One should note, that Equation 2.7 depends on the sequence length l. Figure

2.6 visualizes this influence. Displayed is the estimated time to stationar-

ity depending on the number of nucleotides. We used the HKY-model sub-

stitution model (Hasegawa et al., 1985) with the stationary distribution

π
S = (0.2, 0.3, 0.3, 0, 2) and the transition transversion ratio of 1.2. With

increasing l, tS also increases. For example, if l equals 1000 then tS is about

2.5. That is, the genetic distance between two sequence equals 2.5 substitu-

tions per site. From the evolutionary point of view this is a relatively large

number of substitutions. Therefore, it is unclear if the introduced method is

an appropriate measure for tS. Moreover, the estimation of tS depends on

the substitution model. The influence of these models on tS is difficult to

determine since the space of possible parameter compositions is infinite.
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Figure 2.7: A: A bifurcating phylogeny containing four sequences.

B: If the genetic distance between pairs of sequences is greater than tS then this

phylogeny can be considered as star like.

2.3.3 Subtrees are equivalent to Star Trees

If we select a subtree, where the genetic distance between pairs of sequences

is larger than ts then this tree can be considered as a star tree with n leaves

and branch length tS/2. To see this, we will use the example shown in Figure

2.7. Displayed is a phylogeny containing four sequences, where the genetic

distance between each pair of sequences is larger than tS. Furthermore, we

assume that the sequences evolved according to a Markov process with tran-

sition matrix P(t) (see section 1.1.2).

We will consider the evolution from sequence Seq1 to Seq2. The genetic

distance between the two sequences is t1,2 = tS/2 + t1 + t2 + t3 + tS/2, re-

spectively. The nucleotide distribution of Seq1 is denoted by π
1. Using the

Chapman Kolmogorov equation P(t + s) = P(t)P(s) (Bremaud, 1999) and

the stationarity assumption of the Markov process π
S = π

SP(t) (see Equa-

tion 1.4) we obtain:

π
1P(t1,2) = π

1P(tS/2)P(ti)P(tS/2) = π
1P(tS)P(ti) ≈ π

SP(ti) = π
S,

(2.9)

where ti = t1 + t2 + t3 is the sum of the length of the internal branches. The
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result of Equation 2.3.3 is that the internal branches of the phylogeny do not

need to be considered at all. The same conclusion holds for all other pairs of

sequences. Moreover, this description leads to the star phylogeny in Figure

2.7 where the length of every branch equals tS/2. Note: that Equation holds

only if the multiplication of the transition matrices is commutative. For the

Markov Process as introduced in section 1.1.2 this is true.

2.3.4 Reduction of false positive Correlations

Consider now a phylogenetic tree T with n sequences. Assuming we also

know tS. Thus, we can select a subtree T1 ⊆ T where the genetic distance

between pairs of sequences is greater than tS. Since T1 can be considered as

star like we can apply the χ2-test to the sequences derived from T1.

This approach can be applied only if pairs of sequences in T exist whose

pairwise genetic distance is greater or equal than tS otherwise T1 contains no

sequences. Moreover, T1 should comprise many sequences since few sequences

increase the number of false positives. Although we could apply the Monte

Carlo simulation (section 1.2.3), many false positives will be detected.

To reduce false positives we will use many subtrees from the full phylogeny

T , resulting in T1, T2, . . . , Tv subtrees (see also Figure 2.8). From each subtree

we obtain the corresponding alignment Dk (k = 1, 2, . . . , v; Dk ⊆ D ). For

each alignment Dk , the p-value pk
i,i′ for site i and i′ is computed according

to Equation 1.13. That is for, site i and i′ we get v p-values. The average

p-value for each pair of sites is given by:

p̄i,i′(D) =
1

v

v∑

k=1

pk
i,i′ (2.10)

Intuitively, a small average p-values points to correlations that are present

in all alignments. On the other hand, false positive pairs that are present in
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Figure 2.8: Assigning dependent pairs: From the phylogeny T the subtrees

T1, T2, . . . , Tv are derived. The genetic distance between pairs of sequences in the

corresponding subtree is greater or equal than tS . For sites i and i′ the p-value

is computed for each alignment D
0
1,D

0
2, . . . ,D

0
v and their average p̄ii′ . The mini-

mum of the average p-values equals the significance level α. If the average p-value

p̄jj′(D) of sites j and j ′ is less equal α then they are considered to be correlated.

See text for details.

one alignment should not be observed in another alignment. Thus having a

high p-value in most subtrees. As discussed in section 1.2.3, the estimated

p-values can be large and the average p-value can be large, too. Thus, we are

not able to decide whether p̄i,i′ is significant.

To assign a significance value α, we generate an alignment D0 based

on the substitution model M and the phylogeny T using Seq-Gen (Ram-

baut and Grassly, 1997). D0 constitutes an alignment of independently

evolving sites. With D0
k we denote the alignment derived from the subtree

Tk (k = 1, 2, . . . , v).
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As before, we apply the χ2-test to each pair of sites of the alignment D0
k

and compute the average p-value p̄i,i′(D
0). We end up, with a collection of

l(l−1)/2 average p-values. These average p-values characterize a distribution

under the null hypothesis of independently evolving sites. Thus, the minimum

of the average p-values describes therefore this pair of sites that can still be

explained by independent evolution. We choose this value as the significance

level α:

α = min
i6=j

{p̄i,j(D
0)}. (2.11)

Two sites in D are considered to be correlated if the average p-value of these

sites is smaller than α, i.e. p̄i,i′(D) < α.

2.3.5 Estimating Dependencies on Star Like Trees:

StarDep

Now we are ready to explain our strategy to detect correlated sites in more

detail. The objective of StarDep is the estimation of a neighborhood system

from a sequence alignment D (see also Figure 2.9). StarDep comprises several

steps summarized in Figure 2.9. First, the phylogeny T̂ and the parameters of

the single nucleotide substitution model M̂ are estimated from the sequence

alignment D (Figure 2.9A) using IQPNNI (Vinh and von Haeseler, 2004).

Based on T̂ and M̂, we generate a sequence alignment D0 with sequence

length l (Figure 2.9B).

Using the parameters of the substitution model we can compute ts (Sec-

tion 2.3.2). ts allows the selection of star like subtrees. The corresponding

alignments are used for the inference of correlated sites. To obtain the sub-

trees, we create an n × n adjacency matrix d, with entries

dij =
�
(t(i, j) > tS).
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d is derived. If the genetic distance between two sequences is greater than tS

then dij equals one, otherwise is is zero. From d maximal cliques are determined

corresponding the subtrees that are used to a further analysis.

That is, if the genetic distance of two sequences is larger than tS then dij

equals one, otherwise it is zero. Finding the subtrees corresponds to the prob-

lem of finding maximal cliques of an undirected graph (Lauritzen, 1996).

As a clique we define the set of sequences where the pairwise genetic distance

of this sequences is greater ts. A maximal clique is a clique that cannot be

extended by an additional sequence. An example of maximal cliques for a

phylogeny of five sequences is given in Figure 2.10.

From dij we find the maximal cliques using the cliques function of the

ggm package as implemented in R (Marchetti and Drton, 2006). We end

up with a collection of maximal cliques, where each clique corresponds to a

subtree. We draw randomly p subtrees T1, T2, . . . , Tp from the set of maximal

cliques to a further analysis, where subtrees have to contain at least three

sequences. To each alignment Dp derived from Tp we apply the χ2-test to all

pairs of sites. This results in the average p-values p̄ii′ (Figure 2.9D see also

Section 2.3.4). If this value is below the significance value α, then these sites

are considered to be correlated. The significance value α is estimated from

D0 according to Equation 2.11.
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2.4 Application

2.4.1 Performance on Synthetic Data

We evaluated the ability of StarDep to detect the neighborhood system of a

RNA-molecule from a multiple sequence alignment. To this end, we carried

out a simulation. We assumed the secondary structure of an artificial molecule

as displayed in Figure 2.11. The molecule is 200 bases long and contains

seven base paired regions (I-VII), where region VII represents a pseudo-

knot. The base paired regions (54 base pairs) evolved according to the SH-

model (Schöniger and von Haeseler, 1994, see Equation 1.6) and the

92 remaining sites evolved according to the HKY model (Hasegawa et al.,

1985). The parameter of the substitution models are summarized in appendix

A.2. This molecule evolved on three different phylogenetic trees with 100

leaves using SISSI (Gesell and von Haeseler, 2006). The trees were

randomly generated, where the branch length were drawn from a uniform

distribution with mean 0.1, 0.2 and 0.3. The result of such a simulation,

D1
data, D2

data, D3
data respectively, is then subject to a further analysis. We

started with the estimation of the phylogenies T g and the parameters of the

substitution model Mg (Hasegawa et al., 1985) from the three alignments

(g = 1, 2, 3). The total branch length of the estimated trees is 16.8, 31.1 and

56.8. Based on the substitution models we computed tS
p using Equation 2.7

(see also Table 2.2). Figure 2.12 displays the graph χ2(t, ρ) depending on t,

exemplary for ρ = A for alignment D1. For t = 0, χ2 is about 500, with

increasing t this number decreases. For all t ≥ 1.53 the X2(t, ρ) is less than

the critical value 7.8. Thus tA equals 1.53. For tC , tG and tU , we computed 1.4,

1.3 and 1.4, respectively. The maximum of these four values equals tS
1 = 1.53.

For the other two trees (g = 2, 3) we obtained tS
2 = 1.5 and tS3 = 1.51.
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A) schematic representation B) circle plot, bases are represented by vertices and

correlated pairs by edges.

Since the sequences of the three alignments evolved according to the same

substitution model these values should be identical. The differences within

these values are due to slight differences that can be traced back to slight

differences in the estimation of the parameters of the substitution model.

Using tSg , we draw randomly 100 maximum cliques (subtrees) from each

phylogeny T g
p (p = 1, 2, . . . , 100). The number of sequences of the subtrees

derived from T 1 ranges from 3 to 5, for T 2 from 12-17 and for T 3 from 25

to 29. We compute the significance values as explained in Section 2.3.5. The

resulting estimates are α1 = 0.46, α2 = 0.04 and α3 = 0.002.

Finally, we compute the average p-values (Equation 2.10). Two sites

within Dg are called correlated, when p̄g
i,i′ < αg

Since we know the true dependency structure of the investigated molecule,

we can compare it to the outcome of StarDep. The results are summarized

in Table 2.2. For alignment D1 we detected two true positive correlated

sites, for alignments D2 and D3, we obtain 23 and 43, respectively. For all
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Figure 2.12: Graph of X2(t, ρ) vs t (see Equation 2.7) exemplary for ρ = A.

For a significance level α = 0.05 the critical value χ2
α,3 of a χ2-distribution with

three degrees of freedom equals 7.8 (horizontal line). For t > tS the distributions

π(t) is not significant different from the stationary distribution π
S (see text for

details)

three alignments no false positive correlated site was detected. The increase

of detected true positive correlations with increasing total branch length

reflects the results from Figure 2.1, i.e if the total branch length are too

small, then it is difficult to detect correlations. The influence of the number

of used subtrees p for estimating correlated sited is shown in Figure 2.13,

exemplary for D2. Displayed are the number of true positive (green line)

and false positive (red line) correlated sites. The number of true positives is

almost constant for all p. We detected 23 out of 54 true positive correlated

sites for p = 100. The number of false positives decreases with increasing

p, i.e. for p = 1 it is about 239, for k ≥ 100 it is zero. We conclude that
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tree tbl tS nr. of seq. α TP FP nr.of.bp.

T 1 16.8 1.53 3-5 0.46 2 0 54

T 2 31.1 1.5 12-17 0.04 23 0 54

T 3 56.8 1.51 25-29 0.002 43 0 54

Table 2.2: Results of StarDep applied to alignments derived from three different

phylogenies. ’tbl’ is the total branch length of the phylogenies, ’tS ’ is the estimated

time to stationarity, ’nr. of seq.’ is the range of number of sequences in the subtrees,

α is the estimated significance level obtained for 100 subtrees. TP and FP are the

number of detected true- and false positive correlated sites and ’nr.of.bp.’ is the

number of base pairs.

the number of false positives can be reduced when we include many subtrees

in our analysis. This observation is not surprising. If correlations are present

than they should be verified in each alignment derived from the subtree. False

positives correlations however that are present in one alignment are probably

not present in another alignment (see Figure 2.13). Thus, the average of the

p-values reflects the correlations that are present in all alignments.

2.4.2 Results of the tRNA Alignment

We applied StarDep to a sequence alignment of 135 eubacterial tRNA se-

quences (alignment length 99; see also appendix A.1). Transfer RNA are small

molecules with a well-defined secondary structure. The cloverleaf structure

(Sprinzl et al., 1998) is displayed in Figure 2.14A (see also Figures 1.2). It

contains four helical regions containing 22 base pairs represented as lines in

the circle plot. To estimate the structure of the alignment, we performed all

steps outlined in StarDep. Based on the alignment, we used IQPNNI (Vinh

and von Haeseler, 2004) to reconstruct the phylogeny as well as the pa-

rameter of the substitution model M (base frequencies, transition transver-
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Figure 2.13: The number of detected true (red) and false (green) positive cor-

related sites dependent on the investigated subtrees (displayed for D
2). The used

significance value α2 is based on 100 subtrees. The number of true positives remains

relative constant, whereas the false positives decrease to zero.

sion ratio). We used the HKY-model (Hasegawa et al., 1985). Using M we

obtain for tS = 1.6. We select randomly 100 subtrees from T as described.

The number of sequences of the subtrees ranges from three to eight. For

the significance level, we obtained α = 0.41. Site i and i′ are then called

correlated if the p-value is less equal than α

The resulting estimates of StarDep are shown in Figure 2.14B. The de-

tected dependencies are in good agreement with the expected secondary

structure of the tRNA. We detected 15 from 22 base pairs from the expected

secondary structure. Moreover, we detected two structural elements that are

related to the three dimensional structure of the tRNA (between positions

16–71; and positions 27–48; see also Gutell et al. (1992)) .
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However, seven base pairs of the secondary structure were not detected.

Two base pairs were not detected since the corresponding positions were

constant.

2.4.3 Results of the Purine Riboswitch

Additionally, we investigated an alignment of 111 bacterial sequences (Graef

et al., 2005) that include a purine riboswitch (see appendix A.1). The se-

quences comprise 106 nucleotides where the riboswitch is located from po-

sition 19 to position 90. Riboswitches are genetic regulatory elements found

in the 5’ untranslated region of messenger RNA (Batey et al., 2004). The

secondary structure of the Bacillus subtilis riboswitch (Batey et al., 2004)

consists of three helices that contain in total 20 base pairs. The circle plot

of the secondary structure is displayed in Figure 2.15. After estimating the

parameters of the substitution model tS was estimated to be 1.54. Using this

value, we found only one maximal clique with three sequences. As shown in

Figures 2.2 and 2.3 this is not a sufficient number to estimate a neighborhood

system. Thus StarDep could not be applied to this data.

2.5 Discussion

In this chapter, the simulation studies showed some problems that one has

to be aware of when estimating a neighborhood system from a sequence

alignment. We investigated the ability of the χ2-test in detecting correlated

sites depending on the number of sequences n and the branch length tb of the

star tree. In general, we conclude that for increasing values of n and tb the

number of detected true positives also increases (see Figures 2.2, 2.3, 2.1).

whereas the number of false positives is decreasing. However, if tb is small,
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Figure 2.14: Circle plot of the tRNA

A: expected secondary structure of a tRNA sequence (Sprinzl et al., 1998) B: esti-

mated secondary structure using StarDep. Dashed lines represent tertiary structure

elements (Gutell et al., 1992).
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Figure 2.15: Secondary structure of the riboswitch alignment.

than it is difficult to detect dependencies even if n is large. For example,

if tb = 0.2 and n = 1000 only 40 percent of the true dependencies were

detected. Although, our investigations are focused on star phylogenies, these

conclusions are also true for non star phylogenies (see Table 2.2).

Moreover, we investigated the influence of ancestral correlations in de-

tecting dependencies. We demonstrated that the disregard of the internal

branching (ancestral correlation) of the phylogeny may lead to incorrect re-

sults by means of false positive correlated sites (Lapedes et al., 1999, see

also Figure 2.4).

In the second part of this chapter, we introduced StarDep, a method

to predict a neighborhood system of a sequence alignment. For the anal-

ysis StarDep uses subtrees instead of the full phylogeny. We showed that

sequences derived from these subtrees can be treated as independent sam-

ple and therefore the χ2-test can be applied. Furthermore, we introduced
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an heuristic to reduce false positive correlations. It is based on minimum

p-values (Ge et al., 2003). In simulation (Table 2.2) and the example of the

tRNA (Figure 2.14), we showed that the accuracy can be improved by means

of reducing false positive correlated sites.

The investigated subtrees rely on the estimation of tS, the minimal genetic

distance between pairs of sequences. If tS is large compared to the pairwise

genetic distances of the sequences StarDep cannot be applied as shown for

the riboswitch alignment.
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Chapter 3

Estimating Dependencies using

Phylogenies

3.1 Introduction

In the previous chapter, we introduced StarDep. This method can be ap-

plied when genetic distances between pairs of sequences are large. Here, we

introduce INFDEP (Inferring Dependencies) a method that allows statisti-

cal inference of correlated sites within a multiple sequence alignment where

sequences evolved on a phylogeny. In contrast to StarDep, it includes the

full phylogeny instead of subtrees in detecting the neighborhood system.

INFDEP combines is a comparative method that includes an automated

procedure to filter false positive correlations.

INFDEP is based on two summary statistics. The first statistics investi-

gates pairs of sites and suggests potential correlations. The second statistics

investigates the frequencies of nucleotides at a site and detects sites that

cause false positive correlations. In section 3.2, we will explain the two test

statistics. Subsequently, INFDEP is explained in more detail.
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Based on simulated data we will evaluate the performance of the inte-

grated approach. Finally, we apply the method to the alignment of the tRNA

and the alignment comprising a purine riboswitch (Graef et al., 2005).

3.2 INFDEP-Inferring Dependencies using

phylogenetic Trees

First, we introduce some notations: With D = (D1, . . . ,Dl) we denote a

sequence alignment of length l with n sequences. That is, Di (i = 1, . . . , l)

denotes an n-dimensional pattern over the alphabet A = {A, C, G, T} of

nucleotides. Di represents the nucleotides at the ith site of the alignment for

each of the n sequences. Thus, for n sequences 4n patterns are possible.

With Dik we denote the nucleotide at site i in sequence k (k = 1, . . . , n).

D constitutes the data we want to investigate.

We assume that the n sequences are related according to a phylogenetic

tree T where the leaves represent the sequences in the alignment and the

branch lengths of T reflect the amount of evolution. For the time being, we

also assume, that this tree is rooted. The evolution of the nucleotides is then

specified by a model of sequence evolution M (Tavaré, 1986; Rodriguez

et al., 1990) consisting of a rate matrix and a stationary distribution. The

rate matrix typically belongs to the class of general time reversible models

with stationary distribution π = (πx)x∈A. However, since the sequences are

related by a tree, the base composition at any site in an alignment may de-

viate dramatically from the stationary distribution. Obviously, the degree of

deviation depends on the branch lengths θ (generally scaled in expected sub-

stitutions per site) of the tree and the nucleotide (R = u) at the root of the

tree. Following standard computations and the assumption of independently
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and identically distributed sites we can then compute the probability to ob-

serve alignment D (Felsenstein, 2004). To reduce the notational burden,

we denote by

P(p|u) ≡ P(p, T, θ, M |R = u) for p ∈ An (3.1)

the probability to observe pattern p = (pk)k=1,2,...,n, if nucleotide u is present

at the root of the tree. Assuming the independence of sites, it follows im-

mediately that the joined probability to observe the pair of patterns p,q is

given by

P(pq|uv) = P(p|u)P(q|v). (3.2)

Thus (pq) ∈ An × An = A2n, whereas (uv) ∈ A2. Furthermore, we de-

note with n1(p) = (n(x,p))x∈A the base composition of pattern p and with

n2(pq) = (n(xy,pq))x,y∈A the contingency table of the patterns p and q,

where

n(x,p) ≡
n∑

k=1

�
(pk = x), x ∈ A (3.3)

n(xy,pq) ≡
n∑

k=1

�
(pk = x, qk = y), x, y ∈ A. (3.4)

The indicator function
�
(z) equals one if the argument z is true and is

zero otherwise. That is to say, n1(p) counts the number of times the let-

ters A, C, G, T occur in pattern p, while n2(pq) counts the number of times

a pair of nucleotides occurs. The expectation Nd(b) is given by

Nd(b) =
∑

a∈And

P(a|b)nd(a), where





b ∈ A if d = 1

b ∈ A2 if d = 2 .
(3.5)

N1(b) is the nucleotide composition we expect conditional on the tree and

the root, whereas N2(b) is the expected composition of nucleotide pairs re-

spectively. Thus, Nd(b) may be substantially different from the stationary
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distribution. To measure the deviation, we define for an arbitrary pattern a

either in An or A2n and a fixed root assignment b a χ2-type distance:

∆d(a|b) =
∑

x∈Ad

(Nd(x|b) − nd(x, a))2

Nd(x|b) for d = 1, 2. (3.6)

The collection of ∆d(a|b)-values for every a ∈ And characterizes sequence evo-

lution under independence. Therefore, we use functions ∆d(a|b) as a statistic

to test the null-hypothesis of independently evolving sites. To this end, we

need to determine the distribution of the ∆d(a|b) for each b ∈ Ad. Since

an analytical formula of the χ2-type distributions seems not feasible, we use

Monte Carlo simulations to approximate ∆d. Thus, we simulate the evolu-

tion of m nucleotide patterns along the phylogeny T with respect to the root

nucleotide. The expected nucleotide composition (Equation 3.5) is then ap-

proximated by Nd(b) ≈ 1
m

∑m
a=1 nd(a) and the ∆ds are computed according

to Equation (3.6). Thus, we get an approximation of the null-distribution of

∆d(a|b) for each b. That is, if d = 1 we get four approximated distributions

and for d = 2 we get 16 distributions. The p-value of the actually observed

data ∆d(Di|b) is then estimated by the proportion of simulated ∆d(a|b)-
values equal to or larger than ∆d(Di|b) for any fixed b and i = 1, 2, . . . , l.

Thus, we obtain for the nucleotide pattern Di at position i four p-values

P(Di|R = u) one for each nucleotide at the root, and 16 p-values for the pair

of positions P(DiDj|R = uv).

3.2.1 The EPWD test – Estimating Pairwise

Dependencies

To classify alignment positions Di and Dj as correlated, we require that the

null-hypotheses of independently evolving sites is rejected for the 16 possible

root assignments on significance level α. That is to say, if we assign at the
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root of Di the nucleotide Ri = u and at the corresponding root of Dj the

nucleotide Rj = v, then the p-values P(DiDj|Rij = uv) have to be smaller

than α for all assignments of root nucleotides u, v ∈ A, in other words:

max
(u,v)∈A2

{P(DiDj|Rij = uv)} < α. (3.7)

We call Di and Dj correlated if inequality 3.7 is true. Inequality 3.7 is based

on the idea that only one P(DiDj|Rij = uv) ≥ α suffices to retain the

null-hypothesis, i.e. explains co-occurrence of both patterns by means of in-

dependent evolution. The collection of correlated sites for alignment D and

a specified α is denoted by

Cα
2 (D) = {(i, j)|Di,Dj (fulfill inequality 3.7)}. (3.8)

The set

Cα
1 (D) = {i|Di ∈ Cα

2 (D)} (3.9)

contains all alignment sites that appear to be correlated. We call this test

EPWD (estimating pairwise dependencies). Note that Cα
1 (D) and Cα

2 (D) can

be visualized in a circle plot graph, where Cα
1 (D) represents the nodes of the

graph and Cα
2 (D) defines the edges (Figure 2.11).

In a nutshell: EPWD describes a contingency test taking the tree T and

the branch lengths θ into account. However, as we will discuss in the fol-

lowing, including the tree into the analysis does not suffice to reduce the

number of false positive dependencies. Therefore, we need an additional step

to further reduce the number of false positive pairwise correlations. To this

end, we introduce a second test.

3.2.2 The PWA test – Positions without Ancestry

Here we measure the base composition at an alignment position and ask for

the probability that a given base composition deviates from the expected nu-
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cleotide composition. With {∆1(p|u)}p∈An u ∈ A, we denote the distribution

of the χ2-type distances (see Equation 3.6). Consider the four distributions

∆1(p|A), ∆1(p|C), ∆1(p|G), ∆1(p|T ). For a pattern Di from the data, we

can compute the p-values for each distribution. That is, we compute the pro-

portion of {∆1(p|u)}, u ∈ A that is larger than {∆1(Di|u)}. Intuitively one

would expect to find one large p-value and three small p-values. The large

p-value is the reverberation of the original ancestral root nucleotide, whereas

the root nucleotides providing small p-values are probably not the true an-

cestral states. To capture this variation in p-values we compute the empirical

standard deviation σ(p) for the four p-values P(Di|u). If σ(Di) is small, then

the information about the ancestral nucleotide state is lost or not present.

To estimate the p-value for σ(Di) we determine the empirical distribution

of σ(p). That is, we draw m nucleotide pattern (typically m = 1000−10, 000)

from the distribution P(p) =
∑

u∈A πuP(p|u). For each pattern p the four

p-values are computed according to Equation 3.6 (∆1(p|u) u ∈ A). Subse-

quently the corresponding standard deviation is computed. Finally the p-

value P(σ(Di)) is estimated as

P(σ(Di)) =
|{σ(p)|σ(p) < σ(Di)}|

m
. (3.10)

If P(σ(Di)) < β then the pattern Di at site i is regarded as false positive

site. Site i is then deleted from Cα
1 (D) and all pairs (i, j) ∈ Cα

2 (D) are called

false positive correlations and thus are ignored. Finally, Cβ(α)
2 (D) denotes the

set of correlated pairs that are retained given α and β.

Thus, the PWA test detects sites that are rejected according to the null

hypothesis of independently evolving nucleotides starting with a certain root

nucleotide. We want to emphasize that the exclusion of a pattern strongly

depends on the tree topology. For example on a phylogeny with generally

long branches it is unlikely to observe a pattern where all sequences have
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the same nucleotide. Consequently, the PWA test would reject this site. In

contrast the same pattern would probably be kept when all sequences are

closely related and consequently the probability of observing constant sites

is higher.

3.2.3 The INFDEP Method (Inferring Dependencies)

Now we are ready to explain our strategy to determine the collection of cor-

related sites more precisely. We denote with correlated sites the outcome of

INFDEP, whereas the true dependencies (from the multiple sequence align-

ment) are called dependent sites. The objective of INFDEP is that the num-

ber of correlated sites equals the number of dependent sites.

INFDEP starts with the estimation of the phylogenetic tree T̂ and the pa-

rameters for the nucleotide substitution model M̂ from the alignment Ddata.

The substitution model M̂ comprises as parameters the base frequencies and

the ratio of transitions and transversions. Based on (M̂, T̂ ), we generate an

alignment D0 under independence using Seq-Gen (Rambaut and Grassly,

1997). From this alignment the distributions ∆1 and ∆2 are estimated ac-

cording to Equation 3.6.

D0 constitutes an alignment of independently evolving sites, thus Cα
2 (D0)

should be empty. However, the EPWD-test yields a set of (false positive)

pairwise correlations Cα
2 (D0) for a given α.

Now, we apply the PWA-test to adjust β(α) such that Cβ(α)
2 (D0) = ∅.

This value is denoted by β∅(α). This procedure is repeated for “every” α,

(0 < α < 1).

Finally, we obtain a collection of (α, β∅(α)) pairs, that serve as “selec-

tor pairs” to determine correlated sites in biological data Ddata. The set

Cβ∅(α)
2 (Ddata) comprises the collection of site-pairs (i, j) that could not be
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rejected for the given “selector pair”. Thus, Cβ∅(α)
2 (Ddata) contains the corre-

lated sites. In a typical application, we start with small values of α, adjust

β∅(α) accordingly and compute the number of correlated sites. Then we in-

crease α gradually, adjust β∅(α), and again compute the number of correlated

sites. This is repeated until no new correlated sites are found. The union

Cβ∅(α1)
2 (Ddata)∪Cβ∅(α2)

2 (Ddata) . . . then constitutes our collection of correlated

sites.

The sensitivity to detect dependent sites can be further increased when

correlated pairs are removed from the alignment. Subsequently, for the result-

ing shortened alignment a new phylogeny is reconstructed. Then INFDEP is

again applied as explained. The renewed tree reconstruction is necessary since

the removal of the correlated pairs may substantially change the topology as

well as the estimated parameters of the substitution model.

3.3 Application

3.3.1 Performance of INFDEP on Synthetic Data

We evaluated the ability of INFDEP to detect the dependencies of a RNA-

molecule given a multiple sequence alignment. To this end we carried out a

simulation. We assumed the secondary structure of an artificial molecule as

displayed in Figure 1. The molecule is 200 bases long and contains seven base

paired regions (I-VII), where region VII represents a pseudo-knot. The base

paired regions (54 base pairs) evolve according to the doublet substitution

model (Schöniger and von Haeseler, 1994) and the 92 remaining sites

evolve according to the HKY model (Hasegawa et al., 1985). This molecule

evolved on a phylogenetic tree with 100 leaves using SISSI (Gesell and von

Haeseler, 2006).
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The result of such a simulation, Ddata, is then subject to a further analysis.

We performed all steps outlined in INFDEP. From Ddata the phylogenetic tree

T̂ and the parameter for the nucleotide substitution model M̂ (Hasegawa

et al., 1985) were inferred using IQPNNI (Vinh and von Haeseler, 2004).

Based on (M̂ , T̂ ), the alignment D0 (length 1000) and the distributions ∆1,

∆2 were generated under the assumption of independent sites using Seq-

Gen (Rambaut and Grassly, 1997). Figure 3.1 displays the 16 ∆2(pq, uv)

distributions according to Equation 3.6. These distributions result from the

independent evolution of pairs of sites assuming that at the root of T̂ are

the nucleotides u and v. Each distribution is based on 2,000 generated dinu-

cleotide patterns that evolved on tree T̂ . Then for α = 0.01, 0.05, 0.1, . . . , 0.45

the corresponding β∅(α) is determined, by first computing the set of poten-

tially correlated sites Cα
2 (D0) and subsequently Cα

1 (D0). β∅(α) is then the

minimal p-value P(σ(Di)) (see Inequality 3.10) of site i ∈ Cα
1 (D0) where the

set of correlated sites Cβ∅(α)
2 = ∅.

To estimate the number of correlated sites from Ddata we compute the set

of potentially correlated sites Cα
2 (Ddata). In Equation 3.10 we set β = β∅(α)

to detect sites that cause false positive correlations and end up with the set

of correlated sites Cβ∅(α)
2 (Ddata).

The results of INFDEP are summarized in Table 3.1. The left part of

Table 3.1 displays the analysis of D0 that leads to the estimation of the “se-

lector pairs” (α, β∅(α)). Since D0 constitutes an alignment of independently

evolving sites, the number of correlated sites |Cα
2 (D0)| (Table 3.1 column 2)

are in fact artifacts. Furthermore, we compute the percentage of correlated

sites (column 3) with respect to the total number of pairs, i.e
(
1000

2

)
. The

parameter β∅(α) (Table 3.1 column 4) balances the effect of being too liberal

with the acceptance of correlated sites as outcome of the EPWD-test. Recall,
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Figure 3.1: The Null Distributions of ∆2 for all possible Root Nucleotides.

Two positions Di and Dj are called correlated if ∆2(DiDj , uv) is larger than

the critical value cα for all ∆2. The x-axis represents the ∆2 values according to

Equation 3.6

β∅(α) is the smallest value such that the number of “truly” correlated sites

Cβ∅(α)
2 (D0) = ∅ (Table 3.1 column 4). To this end we notice that for increasing

α the cardinality of potentially correlated sites and β∅(α) also increases.

The right part of Table 3.1 displays the analysis of the data Ddata. We

also compute the number of potentially correlated sites (column 6) and sub-

sequently the corresponding percentage with respect to the total number of

possible correlations
(
200
2

)
(column 7). We use the estimated selector pairs

(α, β∅(α)) to detect the number of correlated sites Cβ∅(α)
2 (Ddata). The second

last column in Table 3.1 illustrates that the number of correlated sites in

Cβ∅(α)
2 (Ddata) increases with α up to a maximum of 22 true pairs for α = 0.1.

For larger α the number of elements declines until Cβ∅(α)
2 (Ddata) is empty. The

last column shows the cumulative number of correlated sites as α increases.

We conclude the analysis of Ddata with a total number of 46 correlated
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Figure 3.2: Dependency Graphs of Simulated Data.

In the first row are shown the potentially correlated pairs Cα
2 exemplary for two

choices of α = 0.1, 0.15 (EPWD-test). The second row displays the finally obtained

dependencies Cβ∅(α)
2 after applying the PWA test. The cumulated graph is obtained

after superimposing all dependency graphs.

sites compared to 54 base pairs. Figure 3.2 visualizes the INFDEP method.

The top row displays the potentially correlated sites exemplary for α = 0.1

and α = 0.15 and the bottom row shows the “surviving” correlations after

the PWA test is applied. Superimposing the different dependency graphs lead

to the cumulated circle plot (right part).

Since we know the true dependency structure, we can compare it to the

result of our analysis. From 54 originally dependent pairs, we detected 45

correlated sites and one false positive correlation (arrow in Figure 3.2).

The accuracy of the method is improved when correlated sites, already

detected as being correlated, are excluded from the alignment. Subsequently

INFDEP is applied to the reduced alignment. We obtained four more corre-
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Figure 3.3: Percentage of the Potentially Correlated Pairs.

Displayed is the set Cα
2 with respect to the total number of pairs

(l
2

)
as function

of α (for D
0 (l = 1000) and Ddata (l = 200))

lations in the Ddata alignment, resulting in a total of 50 correlated sites (49

true positives and one false positive).

Interestingly, the number of potentially correlated sites |Cα
2 | shows with

increasing α a much higher increase for Ddata than D0 (Figure 3.3). This

difference in accumulating potentially correlated sites may already indicate

that dependencies between sites are present.
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D0 data Ddata

α |Cα
2 (D0)| perc. D0 β∅(α) |Cα,β∅

2 (D0)| |Cα
2 (Ddata)| perc. Ddata |Cα,β∅

2 (Ddata)| |⋃Cα,β∅

2 (Ddata)|
0.01 0 0 0.0 0 1 0.005 1 1

0.05 0 0 0.0 0 8 0.04 8 8

0.1 13 0.003 0.05 0 76 0.38 22 27

0.15 114 0.023 0.16 0 232 1.16 15 36

0.2 469 0.094 0.18 0 552 2.77 18 42

0.25 1278 0.256 0.37 0 1072 5.38 6 44

0.3 2887 0.578 0.48 0 1752 8.80 5 46

0.35 6180 1.237 0.67 0 2528 12.70 2 46

0.4 11544 2.311 0.71 0 3437 17.27 2 46

0.45 19338 3.871 0.8 0 4558 22.90 0 46

Table 3.1: Results of INFDEP obtained from the Alignments D
0 (sites evolved independently) and Ddata (containing

dependencies).

|Cα
2 (D0)| and |Cα

2 (Ddata)|: are the number of potentially correlated pairs after applying the EPWD test for the corresponding

significance value α. perc. D
0 and perc. Ddata gives the percentage of the potentially correlated pairs with respect to the

total number of possible dependencies
(l
2

)
(for Ddata l = 200; for D0 l = 1000). β∅(α) is adjusted that the number of true

dependencies |Cα,β∅

2 (D0)| equals zero Finally |Cα,β∅

2 (Ddata)| equals the number of true dependencies and |⋃ Cα,β∅

2 (Ddata)| is

cumulated number of true dependencies.
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3.3.2 Influence of Tree Topology

We test the influence of the underlying tree on our capability to detect the

dependency structure of the alignment. To this end, we investigated the RNA

molecule with the secondary structure from the previous section (Figure

2.11), i.e. 54 base pairs and 92 independently evolving sites.

Our analysis is based on six bifurcating trees with same topology but

different mean branch length. The topology was generated using the ape

package (Paradis et al., 2004) that is included in the R environment (R

Development Core Team, 2004). The branches of the tree were ran-

domly drawn from a uniform distribution. Finally, the branches are rescaled

resulting in six different trees T0.05, T0.1, T0.2, T0.3, T0.4, T0.5 with mean branch

length 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 respectively.

To assess the sensitivity of INFDEP, we simulated 100 data sets for each

tree using the doublet model (Schöniger and von Haeseler, 1994) for

the base paired regions and the HKY model (Hasegawa et al., 1985) for

independently evolving sites. Each data set was then analyzed by INFDEP.

Thereafter we count the number of true positive correlated sites and the

number of false positive correlated sites.

The results are summarized in the box plot in Figure 3.4. For alignments

derived from the tree with the shortest mean branch length 0.05 the number

of inferred true positive correlated sites ranges from zero to three with median

zero. For alignments derived from trees with larger mean branch length the

number of true positives increases. Exemplary, for tree T0.4 the median is 48

(range 41–54) and for T0.5 the median is 47 (range 40–54).

A different result emerges for the number of detected false positive sites.

Here we observe no obvious trend depending on the branch length, since the

median of the false positives is for all of the trees between one and two (see

also Figure 3.4).
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Figure 3.4: Number of Detected True Positive and False Positive Correlations vs

Mean Branch Length.

Investigated are trees with mean branch length of 0.05, 0.1, 0.2, 0.3 and 0.5 sub-

stitutions per site. Lines in the box display the lower quartile, the median and the

upper quartile. The whiskers are set to 1.5 times the interquartile range.
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General conclusions are difficult because INFDEP strongly depends on

the total branch length of the underlying tree. The sensitivity of INFDEP

increases with increasing mean branch length from zero for tree T0.05 to about

90% for trees T0.4 and T0.5, whereas the number false positives is small for

all trees. Moreover in 20%-41% of the simulated data no false positives were

observed.

The relation between the number of detected false positives and the

branch length can be explained by a lack of power of INFDEP. Assuming

the case of a tree with zero branch length then no statistical method has the

ability of detecting correlated sites, since no substitution occurred. With in-

creasing branch length of the tree the number of substitution of independently

evolving sites as well as substitutions between correlated sites accumulate.

This accumulation of different substitution patterns allows a better detection

of correlated sites.

3.3.3 Results of the tRNA Alignment

We apply INFDEP to the tRNA sequences alignment (Sprinzl et al., 1998,

see also section 2.4.2). For the analysis, sites that had more than 90% gaps

were excluded. The proposed secondary structure is shown in Figure 3.5A.

The resulting estimates of the pairwise dependency structure is shown in

Figure 3.5B. The dependencies finally obtained are in good agreement with

the expected tRNA secondary structure. We obtain 13 base pairs from the

secondary structure and additionally a tertiary structure element. However,

compared to StarDep, INFDEP detects two base pairs less for the secondary

structure and one base pair less for the tertiary structure. After excluding

sites that were base paired, we repeat INFDEP with the reduced alignment,

but no new dependencies were detected.
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A

B

Figure 3.5: Circle plot of the tRNA

A: expected secondary structure B: estimated secondary structure using INFDEP.

Lines in the circle plot represent base pairs of nucleotides. Excluded positions are

marked with crosses.
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3.3.4 Results of the Purine Riboswitch

We apply INFDEP to the sequence alignment that include a purine ri-

boswitch (Graef et al., 2005, see also section 2.4.3). The secondary structure

of the Bacillus subtilis riboswitch (Batey et al., 2004) consists of three he-

lices that contain in total 20 base pairs. The circle plot of the secondary

structure is displayed in Figure 3.6A.

Based on the alignment, we performed all steps outlined in methods (sec-

tion 3.2.3). For the full alignment, INFDEP detected nine correlated pairs

that are shown as continuous lines in Figure 3.6B.

Subsequently, the corresponding 18 sites were excluded from the align-

ment. For the resulting reduced alignment we re-applied INFDEP. Recall that

for the reduced alignment the tree is reconstructed again. Although the dif-

ferences in the total branch length of the reconstructed trees T̂full and T̂reduced

are relative small (21.2 and 20.7 resp.) there are relatively large differences

in parameters of the substitution model. That is, the estimated parameters

for the HKY model (base frequencies, transition transversion ratio) differ by

10–20 percent between the full and reduced alignment.

In the reduced alignment we detected four additional dependencies (dashed

lines in Figure 3.6). Repeating INFDEP for an again reduced alignment did

not lead to new correlated pairs.

The resulting circle plot of the estimated pairwise dependency structure

is in good agreement with the secondary structure of the Bacillus subtilis

(Batey et al., 2004). We obtain 13 from 20 base pairs. No false positive

base pair was suggested. However, seven base pairs were not detected. Four

of the seven base pairs were not found because at least one of the two sites are

conserved. For example the dependency between sites 25 and 84 is present

in the secondary structure. These sites form a Watson Crick base pair where
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at site 25 we observe in all 111 sequences an Uracil and at site 84 always

an Adenine. However, a constant site is unlikely under the null hypothesis of

independently evolving sites given the tree and the substitution model. These

sites are rejected by the PWA test. The remaining three base pairs were not

detected, since the p-value P(σ(Dfull)) was below the corresponding β∅(α).

3.4 Discussion

We introduced INFDEP as a method to detect correlated sites from a se-

quence alignment. In contrast to (Gutell et al., 1992; Klingler and

Brutlag, 1993; Tabaska et al., 1998) we also include the phylogeny of

the sequences into the analysis. Moreover, no prior knowledge about the sec-

ondary structure of the molecule is needed.

INFDEP introduces the selector pairs (α, β∅(α)) that are derived from

the EPWD test and the PWA test, respectively. That is, the EPWD test

suggests correlated site pairs for a given significance value α, whereas the

PWA test rejects sites with significance value β∅(α). Moreover, we vary α

between zero and one and use not one fixed α as in classical test theory. The

advantage of INFDEP is that it is self-consistent, i.e. no threshold is needed

to be set in advance to assess significance.

The fundamental part of INFDEP is the PWA test. This heuristic enables

the detection of sites that cause false positive correlations. However, the

applied statistics especially the standard deviations of the p-values in the

PWA test are not common use and need to be investigated in more detail.

Besides, the PWA test may be too liberal in rejecting sites, especially

when dependent sites are constant. This is the case for some sites in the ri-

boswitch alignment. This observation, however is not surprising. If a tree has

75



                 
         
         

                        
  

 
  

  
  
  
 
  
  
  
  
 
  

  
   

        1

10

20

30

40

5060

70

80

90

100

                 
         
         40                        

  
 

  
  

  
  
 
  
  
  
  
 
  

  
   

        
10

20

30

5060

70

80

90

100
1

B

A

Figure 3.6: Dependency Graphs of Riboswitch Sequences.

A: The secondary structure of the riboswitch of bacillus subtilis (Batey et al.,

2004).

B: The estimated dependency structure. Sites indicated by a dash contain more

than 50 gaps. Triangles display sites that are to 90 % conserved. Straight lines are

detected correlated sites using the full alignment Dfull. Dashed lines are correla-

tions using the reduced alignment Dreduced (see text for details).
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total branch length zero, then all sequences in an alignment are identical and

a test for correlations of pairs of sites is not applicable. Only if some vari-

ability of dependent sites is observed all comparative tests have the chance

to suggest correlations. In such cases the dependency is easily detected by

visual inspection. Hence, we recommend to investigate the potentially corre-

lated pairs found by the EPWD test in more detail especially when they are

situated in base paired regions.

However, the simulations and the analysis of the tRNA alignment and

the riboswitch alignment showed that we are able to infer the underlying

dependency structure of a sequence simply from an alignment.

It should be noted, that the ability of INFDEP to detect correlations

depends on the total branch length of the underlying tree. For the trees with

short total branch length the detection is harder than for trees with large

total branch length. This can be explained by few substitutions of base pairs

that occur on trees with short total branch length. Thus the differences in

the sequences are not sufficient to distinguish between the evolution of base

pairs or independent sites.

We could show that the number of detected true positive correlated sites

can be increased when correlated sites are excluded from the alignment. With

the resulting reduced alignment INFDEP is repeated. Hence, we could in-

crease the number of detected true positive correlations for the simulated

data as well as for the riboswitch alignment.

For the evolution of the nucleotides, we used the HKY model but more

general models can also be applied as well as rate heterogeneity.

So far our test is designed to detect dependencies between pairs of sites.

In general, INFDEP could be used for higher order correlations which would

correspond to the case d > 2. For higher order correlations one has to face

the difficulty that the investigated alphabet considerably increases with Ad.
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Summary

The focus of this thesis was the statistical inference of structural elements

within RNA sequences. Our analysis is based on comparative methods that

incorporate phylogenies relating the RNA sequences.

In the first part of chapter 2 we elucidated some problems that arise when

the phylogenies are not considered in the analysis. Therefore, we investigate

alignments derived from star trees. We observed that the ability in detecting

correlations depends on the number of sequences and the branch length of

the tree. Furthermore, we investigated the influence of ancestral correlation

caused by the internal branchings of bifurcating trees in detecting correlated

sites. We showed that the number of false positives is drastically increased

as compared to star phylogenies.

In the second part of chapter 2 we introduced a novel strategy called

StarDep to detect pairwise correlations. StarDep is based on the analysis

of subtrees of the full phylogeny. We could show that this method gives

encouraging results for synthetic and real data. The limitation of StarDep is

that it can be applied only when the genetic distance between sequences is

large.

In chapter 3 we introduced INFDEP. This method allows detection of

correlated site incorporating the full phylogeny. In simulation and on real

data this method was able to detect the expected secondary structure. An
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essential part of this work was the improvement of the accuracy by means of

reduction false positive correlations, that were discussed in chapters 2 and 3.

In the direct comparison, StarDep performed better than INFDEP for

the tRNA alignment. StarDep detects 17 true positive base pairs (15 of the

secondary structure, two from the tertiary structure) and INFDEP detects

14 (13 secondary structure; one tertiary structure). However, INFDEP can

be applied to any sequence alignment, whereas StarDep can only be applied

to alignments where the pairwise genetic distance between sequences is large.

This was shown for the riboswitch alignment, where StarDep could not be

applied.
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Appendix A

Parameter Settings and Data

A.1 Data

Purine Riboswitch Sequences

The sequences of the purine riboswitch can be obtained from the NCBI home-

page (http://www.ncbi.nlm.nih.gov/ ). The accession numbers are given in the

following table. The purine riboswitch is a subsequence of these sequences.

The first and last number of the accession number is the start and end posi-

tion of this subsequence.

NC 000964 625975-625913 NC 006510 282596-282660

NC 002570 806889-806949 NC 006510 274273-274337

NC 002662 1159525-1159585 NC 006510 272489-272553

NC 002973 617828-617764 NC 007530 260657-260721

NC 003030 1002192-1002253 NC 007530 262617-262681

NC 003030 2824935-2824875 NC 007530 295347-295405

NC 003030 2905032-2904968 NC 007530 1497710-1497768

NC 003098 1634841-1634899 NC 007530 342338-342274
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NC 003366 422836-422900 NC 007530 3605407-3605343

NC 003366 2871183-2871121 l77246 1 1237-1334

NC 003366 2618403-2618343 ap001509 1 53309-53408

NC 003454 1645802-1645741 ap001512 1 93774-93675

NC 003909 382608-382548 u51115 1 15589-15688

NC 003923 410562-410627 d88802 1 12464-12366

NC 004193 786783-786846 ap001509 1 209873-209971

NC 004368 1163472-1163414 ap004595 1 169586-169684

NC 004461 2433029-2432964 ap004596 1 203843-20394

NC 004557 2551374-2551314 ap004595 1 186670-186768

NC 004567 2410494-2410555 ap004595 1 160373-160472

NC 004567 2968812-2968751 al596170 1 223345-223247

NC 004605 1369737-1369799 al596165 1 154156-154057

NC 004668 2288408-2288348 al591975 1 251119-251020

NC 004722 298790-298848 al591981 1 205922-205824

NC 004722 259617-259681 ap003359 2 80811-80910

NC 004722 343829-343765 ae016752 1 24569-24470

NC 005362 1949403-1949463 ae007775 1 3557-3458

NC 005363 3414621-3414681 ae007768 1 1788-1690

NC 006086 857680-857738 ae007602 1 8615-8714

NC 006274 265891-265955 ap003186 2 121422-121519

NC 006274 3685834-3685770 ap003186 2 211688-211589

ba000043 1 282580-282681 cp000002 2 4024215-4024313

ae017333 1 4024498-4024398 ae017333 1 2295789-2295694

ae017333 1 696847-696940 ae017333 1 692988-693082

d83026 1 18553-18454 ap003193 2 214121-214023
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u51115 1 11655-11754 ap003194 2 163701-163603

ap001509 1 79475-79574 ae015944 1 141656-141558

j02732 1 196-295 ae013027 1 8237-8336

ap001509 1 51442-51541 ae016954 1 153893-153795

ae017024 1 260641-260743 ae006347 1 1212-1310

ae017265 1 94745-94643 af327738 1 2512-2607

ae017269 1 211313-211415 ae014241 1 16113-16017

ae016998 1 259601-259703 ae007476 1 6452-6548

ae016999 1 36564-36462 ae010036 1 1276-137

ae017265 1 8580-8682 ae010606 1 4680-4581

ae017010 1 138243-138141 bx842655 1 288908-289004

ae017265 1 48309-48411 ap005088 1 167671-167771

ae017265 1 6624-6726 ae016809 1 202495-202592

ae016998 1 298774-298876 ba000043 1 274257-274360

NC 006322 4024340-4024404 ae017002 1 301083-301185

NC 006322 696854-696918 z99107 2 14363-14263

NC 006322 692997-693061 z99107 2 86081-86183

NC 006322 2295770-2295708 z99115 2 111605-111505

NC 006371 1538878-1538816 z99123 2 194901-195003

NC 006448 1185097-1185155 z99107 2 82145-82247

NC 006449 1182964-1183022 ab008757 1 115-16

NC 003995 794076-794177
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tRNA sequences

The tRNA sequences were obtained from the tRNA compilation homepage

(Sprinzl et al., 1998):

http://www.staff.uni-bayreuth.de/ btc914/search/index.html The accession num-

bers are given in the following table.

RA1140 RG1381 RL1540 RR1141 RV1660 RG1140

RA1180 RG1540 RL1660 RR1540 RV1661 RG1180

RA1540 RG1580 RL1661 RR1660 RV1662 RG1310

RA1660 RG1660 RL1662 RR1661 RV2120 RG1380

RA1661 RG1661 RL1700 RR1662 RW1140 RK1660

RA1662 RG1662 RL2020 RR1663 RW1141 RL1140

RC1140 RG1700 RL2100 RR1664 RW1250 RL1141

RC1660 RG1701 RL2101 RS1140 RW1251 RL1142

RD1140 RH1140 RL2120 RS1141 RW1540 RQ1140

RD1580 RH1660 RM1140 RS1180 RW1660 RQ1660

RD1660 RH1700 RM1540 RS1540 RX1140 RQ1661

RE1140 RI1140 RM1580 RS1541 RX1180 RR1140

RE1660 RI1141 RM1660 RS1542 RX1300 RT1661

RE1661 RI1180 RN1140 RS1660 RX1540 RV1140

RE1662 RI1540 RN1660 RS1661 RX1580 RV1180

RE2140 RI1580 RN1720 RS1662 RX1581 RV1540

RF1140 RI1660 RN1721 RS1663 RX1660 RY1660

RF1540 RI1661 RP1140 RS1664 RX1661 RY1661

RF1580 RI1662 RP1180 RT1140 RX2060 RY2120

RF1660 RK1140 RP1540 RT1141 RX2100 RZ1665

RF2020 RK1141 RP1700 RT1180 RY1140

RF2060 RK1540 RP1701 RT1540 RY1540

RF2120 RK1541 RP1702 RT1660 RY1541
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A C G U

A 0.003 0.0049 0.0042 0.1539

C 0.0049 0.0035 0.2508 0.0032

G 0.0042 0.2508 0.0018 0.0762

U 0.1539 0.0032 0.0762 0.0052

Table A.1: The dinucleotide distribution used for the SH-model (Equation 1.6),

e.g. πAU = 0.1539

A.2 Simulated Data

The alignments of the synthetic data from chapter 2 and chapter 3 were

generated using SISSI (Gesell and von Haeseler, 2006). The base paired

regions (stems) were generated using the SH-model (see Equation 1.6). The

dinucleotide frequencies πd = {πAA, πAC . . . πUU} are displayed in Table A.1.

Positions that were not base paired evolved according to the HKY single

nucleotide substitution model (Table 1.1 with nucleotide frequencies:

πs = {πA, πC , πG, πU} = {0.166, 0.262, 0.333, 0.239}.
The transition and transversion parameters equal one.
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