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Summary

Polyelectrolyte (PE) stars have emerged as a model of soft colloids interacting
by means of electro-steric repulsions, caused by a combination of electrostatic forces
acting between the constituent particles and an additional, counterion-induced en-
tropic repulsion. In a first step, we study dilute solutions of such aggregates and
confine the geometry by placing the PE-stars within a pair of parallel, flat walls. In
this stage, we neglect any additional external forces. We analyze the conformations
of PE-stars close to one of the walls and examine the effective star–wall interactions
as a function of the center-to-surface distance. Thereto, we employ both extensive
monomer-resolved molecular dynamics (MD) simulations and theoretical considera-
tions. In addition to the aforementioned electrostatic-entropic contributions to the
repulsive star–wall force akin to the well-understood PE-star–PE-star case, we iden-
tify a third, novel mechanism arising from the compression of the stiff PE-chains
approaching the wall. This compression effect is a direct consequence of the impen-
etrable character of the wall.

Based on these effective PE-star–wall interactions, we perform a Derjaguin-type
approximation to derive the cross-interactions between PE-stars and hard, spherical
colloids of larger diameter. Subsequently, we use the received potentials as an input
quantity to an integral equation theory approach, yielding information about the
structural and phase behavior of binary PE-star–colloid mixtures. Thereby, the
results allow us to investigate in detail the influence of contributions to the PE-
star–colloid potentials stemming from chain compression on the possible occurrence
of a fluid–fluid demixing transition.

In a third and last step, we enhance the previous models of PE-stars in a slab-like
arrangement as well as in the vicinity of curved walls by bringing surface charges onto
the substrates. In doing so, we introduce electric fields which favor adsorption of the
PE-stars. We perform systematic MD simulation studies of the formed complexes’
conformations and analyze quantitatively how these conformations can be tuned
by altering characterizing properties of the PE-stars, e.g., the functionality, or the
strength of the electric field. We discover a wide range of different morphologies
for the PE-stars, depending on the particular choice of parameters. The possibility
to precisely and easily steer the configurations renders the adsorbed PE-stars a
convenient system for practical applications, e.g., as tunable microlenses.





Zusammenfassung

Polyelektrolyt-Sterne (PE) haben sich als ein geeignetes Modell für Kolloide
mit weicher Wechselwirkung erwiesen, wobei diese Wechselwirkung im Wesentlichen
durch eine Kombination elektrostatischer Kräfte zwischen den geladenen Monome-
ren und einer von den Gegenionen vermittelten, entropischen Abstoßung herrührt.
Im Rahmen dieser Dissertation untersuchen wir in einem ersten Schritt verdünnte
Lösungen solcher mesoskopischer Teilchen, wobei das zur Verfügung stehende Volu-
men durch zwei parallele, planare Wände begrenzt ist. Zusätzliche externe Kräfte sei-
en dabei zunächst vernachlässigt. Wir analysieren die typischen Konfigurationen der
PE-Sterne für kleine Abstände zu einer der Wände mit Hilfe von Molekulardynamik-
Simulationen (MD) und eines theoretischen Ansatzes. Weiterhin bestimmen wir un-
ter Verwendung der gleichen Methoden die effektiven Kräfte, die eine Wand auf
die geladenen Sternpolymere ausübt, als Funktion des Abstandes zwischen Stern
und Wand. Dabei zeigt sich, dass neben den erwarteten elektrostatischen und entro-
pischen Beiträgen analog der bekannten Wechselwirkung zwischen zwei PE-Sternen
zusätzlich noch ein völlig neuer Mechanismus zum Tragen kommt. Die Tatsache, dass
die Wände undurchdringbar für die Monomere der Arme sind, führt zu deutlichen
Kompressionseffekten und einer zusätzlichen, dieser Kompression entgegenwirken-
den Abstoßung.

Auf Basis der so gewonnenen Erkenntnisse und mittels einer Derjaguin-artigen
Näherung können wir dann die effektive Wechselwirkung zwischen PE-Sternen und
harten Kugel mit deutlich größerem Durchmesser herleiten. Im Anschluss dient diese
Wechselwirkung als Eingangsgröße für eine Integralgleichungs-Theorie, um so die
Struktur und das Phasenverhalten binärer Mischungen von Sternen und Kugeln zu
berechnen und insbesondere den Einfluss der genannten Kompressionseffekte auf
eine mögliche spontane Entmischung zu ermitteln.

Als dritten und letzten Schritt erweitern wir die vorangegangenen Modelle, in-
dem wir Oberflächenladungen auf den planaren oder gekrümmten Wänden zulassen
und somit elektrische Felder einführen, die eine Adsorption der PE-Sterne auf dem
jeweiligen Substrat zur Folge haben. Es kommt zu einer Komplexbildung, die wir
wiederum im Rahmen von MD-Simulationen systematisch untersuchen. Es zeigt sich,
dass eine Vielzahl verschiedener Konformationen der adsorbierten Sterne beobachtet
werden kann und dass außerdem eine gezielte Beeinflussung möglich ist, wenn Para-
meter wie die Funktionalität der Sterne oder die Oberflächenladungsdichte geeignet
gewählt werden. Dies ist eine notwendige Voraussetzung für potenzielle Anwendun-
gen, z.B. als Mikrolinsen-Systeme in der Optik.
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Chapter 1

Introduction

Soft matter is a term describing an enormously rich variety of different materi-
als with the common characteristic that they are composed of mesoscopic parti-
cles, i.e., molecular aggregates with typical sizes ranging from about 1 nm up to
1 µm. Thereby, these entities are dispersed in a solvent whose constituents are of
much smaller extension, i.e., they have atomic dimensions. Soft matter systems
are synonymously referred to as complex fluids, colloidal suspensions, or colloidal
dispersions [1–4]. Here, the terminology ‘colloid’ stems from the Greek language,
combining the words κóλλα (glue) and είδoς (kind), and goes back to Thomas Gra-
ham, a pioneer in this field of research in the second half of the 19th century. Note
that, despite the somewhat misleading denotation as complex fluids introduced to
explicitly distinguish them from atomic systems, we do not necessarily deal with
solutions which are found exclusively in the fluid state. Indeed, although within the
framework of the thesis at hand we are mainly interested in the case of solid spheri-
cal colloids or more fractal and diffuse objects like polymers (see below) dissolved in
liquid solvents, both the disperse phase and the dispersion medium can in principle
adopt any of the three possible states of matter. Examples are aerosols (solid or
liquid in gas), emulsions (liquid in liquid), or foams (gas in liquid). Dispersions with
a solid dispersion phase are also becoming increasingly important, especially within
the realm of material science for the design of new composites [1], but this area of
research is beyond the scope of conventional soft matter physics.

The reason for the literal softness of soft matter, i.e., the essential property to
have a rigidity against applied stress or shear that is several orders of magnitude
smaller compared to atomic materials, can be understood by means of the decisive
structural length scales. Clearly, these length scales are of mesoscopic order, lying
somewhere in-between the microscopic domain and the opposite limit of macroscopic
objects as familiar from everyday life. In general, a material is the harder the
larger its shear modulus is. As is known, for crystalline phases the shear modulus
simply scales as the inverse cube of the typical edge length of an elementary cell

1



2 1. INTRODUCTION

of the lattice1. For colloidal crystals, this edge length is three to four orders of
magnitude larger compared to their atomic counterparts. Assuming a perfect lattice,
we obtain a ratio between the elastic constants of colloidal and atomic systems that
is extremely small, namely only 10−12 to 10−9 [4]. While considerable shear stresses
of about 1011 dyn/cm2 must be applied to shear, e.g., a metallic work piece, one
can deform or even destroy colloidal solids very easily. For non-crystalline states,
the above arguments are obviously not applicable anymore. But in such cases, the
softness of complex fluids can be explained in terms of the low particle density or
of network-forming configurations of polymeric components mechanically stabilizing
the system [4, 5].

In general, complex fluids are of great biological, technical, and industrial rele-
vance. In nature, an abundant number of examples for structures with characteristic
length scales in the mesoscopic regime can be found. Viruses, proteins, and DNA
are prominent representatives, whereby for the latter two cases charges also come
into play. Further soft matter systems are blood, milk, mayonnaise, shaving foam,
soap, hair spray, several other cosmetic products, rubber, or ink [1]. In case of paint
one makes practical use of the phenomenon of shear thinning, i.e., the non-linear
dependence of the viscosity of colloidal dispersions on the shear rate. Special types
of mesoscopic molecules with appropriate geometry can be used as viscosity modi-
fiers in modern engine oils. So-called hydrogels can efficiently absorb and store huge
amounts of water. In the medical and pharmaceutical sector, charged colloids of
specific architecture can be used for drug delivery, for protein encapsulation, and as
immobilization agents [6–9]. Besides the mentioned applications plenty others could
be added immediately.

In typical soft matter systems there exists a broad span of different length and
time scales relevant for the particle species that are involved. From a theoreti-
cal point of view, this pronounced asymmetry between large (slow) colloids and
small (fast) solvent molecules together with the huge number of (internal) degrees
of freedom for the mesoscopic constituents renders a full treatment as a complicated
mixture impractical with conventional instruments of statistical mechanics [10, 11]
or simulational methods [12–14]. Before being able to apply such tools in order to
gain insight into the macroscopic properties of complex fluids, we need to bridge the
gap between the microscopic and the mesoscopic regimes. In practice, the complex-
ity is even further increased due to the nearly always occurring polydispersity in
size, mass or charge within the different species. In this sense, the task to actually
find ways to adequately describe the physics of colloidal dispersions with sufficient
accuracy is the fundamental challenge in colloid science. A common and extremely
powerful strategy is based on the fact that we are usually interested in the static

1This holds since the typical cohesive interaction energies per particle are of the same order for
colloidal and atomic crystals and thus become irrelevant for a comparison of their shear moduli [4].
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and dynamic behavior of the largest, macromolecular aggregates as a whole only,
whereas we do not care about any details concerning the influence of the solvent
molecules or the internal structure of the mesoscopic particles, although they indeed
play an import role. Thus, we may carry out a so-called coarse graining procedure,
whereby we trace out all but the significant degrees of freedom. In doing so, we come
to an effective description with only a reduced number of components considered
(typically a single one) [4,15,16]. All atomistic details are hidden, but they are still
included implicitly in an averaged fashion.

Thereby, the definition of a corresponding Hamiltonian for the effective inter-
action between the large colloids (including all indirect effects mediated by, e.g.,
smaller species present in the system, solvent molecules, internal degrees of freedom
of the colloids, or added salt) beyond their simple, direct interactions can in general
be achieved in an exact manner. This holds at least as long as all the many-body
terms are included. Approximations are necessary only for practical, but not for
intrinsic reasons. Introducing such effective potentials is not only beneficial in sim-
plifying theoretical approaches. It allows for a comparison with experimental results,
too, since in experiments one normally also focuses on the measurement of quantities
reflecting the static or dynamic properties of the mesoscopic particles only. For the
static case, by using refractive index matching techniques in optical microscopy ex-
periments or conveniently adjusting the neutron scattering lengths when performing
corresponding measurements, the colloids are visible alone, whereas all remaining
constituents play the role of a virtually homogeneous background. Hence, scattering
data obtained in this way has to be construed by dint of effective interactions. And
when performing experiments to investigate dynamic problems, the small particles’
degrees of freedom are almost automatically averaged out due to the remarkable
difference in the typical time scales for their rather rapid movement on the one
hand and the experimental observation time on the other hand. What can be seen
is mainly the colloids’ thermal or so-called Brownian motion, induced by frequent
random collisions with the smaller solvent molecules [17]. Altogether, these facts
clearly support the appropriateness of coarse graining strategies.

Besides their practical importance, colloidal dispersions are of great scientific
interest since they exhibit special features rendering them excellent model systems
for fundamental research. While for atoms and small molecules the ensuing inter-
actions are determined by the electronic structure and are thus fixed, the effective
interactions between colloidal particles can be tuned by changing, e.g., the shape or
architecture of the colloids, the solvent, the temperature, or the mixture composition
of the solution. In this sense, their properties can be tuned specifically and system-
atically almost at will [1–3]. Moreover, such systems offer experimental advantages.
In addition to scattering techniques, mesoscopic aggregates can also be studied di-
rectly in real space, e.g., by confocal microscopy. Furthermore, their dynamical time
scales are comparable to experimental ones (see above). Therefore, experiments can
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give immediate insight into the real space behavior of complex fluids.

Polymers are a special type of mesoscopic particles which are composed of a large
number N of repeating building blocks, called the monomers. These monomers are
usually hydrocarbon units, which must interact by means of short-ranged steric
repulsions due to Pauli’s principle. N is normally referred to as the degree of poly-
merization. Several different architectures can be realized, the simplest one among
them is a linear, chain-like arrangement, where the monomeric segments are at-
tached sequentially to each other. Chemically anchoring f such chains to a colloidal
core of finite radius Rd gives rise to spherical polymer brushes (SPB’s). In the limit
in which the brush height Rs greatly exceeds Rd, one talks about star polymers
instead [18, 19]. A lot of work has been performed to understand the properties,
conformations, and effective interactions of such star-branched polymers in detail.
For good solvent conditions, the effective star–star potential was derived theoret-
ically some time ago [20, 21] and its validity could be verified by means of both
computer simulations [22] and scattering experiments [21, 23]. It is ultra-soft and
purely repulsive and features a logarithmic shape for overlapping distances followed
by an exponentially decaying tail. The softness of the potential can be altered by
modifying the number f of polymer chains, also called the functionality: while for
small values of f the stars are diffuse objects, they behave like spherical hard colloids
in the opposite high-f limit. In this sense, they mark a class of colloidal particles
easily allowing for the aforementioned tuning of their mutual effective interactions
and can be viewed as an excellent example of soft, tunable colloids. Accordingly,
they were found to have an extremely rich and versatile equilibrium and dynamical
phase behavior [24].

Polyelectrolytes (PE’s) are a special sub-class of polymers [25]. Akin to the latter,
they can also adopt various geometries, but in addition they carry ionizable groups
along their backbones which dissociate upon dissolution in a polar solvent like, e.g.,
water, leaving behind polyvalent macroions2 and corresponding counterions in the
solution. The latter assure electroneutrality and screen the electric field induced
by the PE’s. Thus, from the point of view of fundamental research, they combine
aspects from two different parts of soft matter physics: polymer theory and the
theory of charged suspensions. The presence of charges and (screened) long-ranged
Coulombic interactions between them crucially influences the static and dynamic
properties of both isolated PE’s and respective solutions. Accordingly, a decisive
new parameter emerges, namely the degree of charging (often also referred to as
charging fraction) α of the PE’s. The vast number of additional phenomena arising
in case of PE’s of different architecture clearly motivates systematic studies.

Consequently, as for neutral polymer brushes and star polymers, a great deal

2We restrict ourselves to the case of macroions carrying charges of the same sign only. We will
not consider so-called polyampholites, where both positive and negative charges are present.
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of theoretical [26–42] and experimental [43–52] effort has been invested in the re-
cent past in order to qualitatively and quantitatively understand the conformations
and the interactions of spherical PE-brushes (SPEB’s) and PE-stars. As already
suggested, the reasons are many-fold. A distinguishing feature of PE-stars is their
ability to absorb the majority of the released counterions into their interior, thereby
creating an inhomogeneous cloud of entropically trapped particles that strongly
hinders coagulation [26–29, 32–35, 53]. PE’s are of great biological relevance, since
typical proteins and DNA molecules belong to this class, even though their geometry
is not star-branched. Grafted PE-chains can provide an electro-steric barrier against
flocculation of the colloidal particles on which the chains are grafted, rendering such
systems very interesting from the point of view of colloidal stabilization. Moreover,
they can act as control agents for gelation, lubrication and flow behavior. Since
PE-stars inherit the neutral stars’ property to bridge between ultra-soft and stiff be-
havior, depending on their functionality, the derivation of the effective interactions
between them has again led to their description as soft colloids and to theoretical
predictions on their structural and phase behavior with emphasis on crystalliza-
tion [33, 36, 54] that have received already partial experimental confirmation [55].
Moreover, certain similarities in the structural and phase behavior of PE-stars and
ionic microgels have been established, demonstrating the close relationship between
the two systems [56, 57].

By and large, the theoretical investigations involving PE-stars have been limited
to the study of either single PE-stars or bulk solutions of the same. However, a
new field of promising applications and intriguing physics is arising when PE-stars
or spherical PE-brushes are mixed with hard colloids or brought in contact with
planar walls. Although the effects of confinement on linear PE-chains have been
intensely studied theoretically [1, 58–68], experimentally [69–77], and by computer
simulations [78–90], to our best knowledge only little work probing the same for
PE-stars was done up to now. Thus, the goal of the thesis at hand is to fill this gap.

The rest of this work is organized as follows. In chapter 2, we bring a PE-star in
close vicinity to a neutral, planar, and purely repulsive wall and analyze the physical
mechanisms giving rise to effective wall–PE-star interactions. In chapter 3, we focus
on the influence of wall curvature and derive effective potentials between PE-stars
and hard, spherical colloids of larger size. Based on these interaction potentials, we
proceed to the full many-body problem of colloid–PE-star mixtures and investigate
the fluid structure. In chapter 4, we take the consequential next step and allow for
the planar or curved walls to carry charges. Subsequently, we examine the induced
adsorption of the PE-stars to the substrate, the complexation characteristics, and
the resulting complex morphologies. In chapter 5, we summarize, conclude, and
give an outlook to possible future work. Finally, in the Appendix we present some
calculations omitted in the main text for sake of clarity and brevity.
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Chapter 2

Polyelectrolyte stars in planar

confinement

In this chapter, we employ monomer-resolved molecular dynamics (MD) simulations
and theoretical considerations to analyze the conformations of multi-arm polyelec-
trolyte (PE) stars close to planar, uncharged walls. We identify three mechanisms
that contribute to the emergence of a repulsive star–wall force, namely: the con-
finement of the counterions that are trapped in the star interior, the increase in
electrostatic energy due to confinement as well as a novel mechanism arising from
the compression of the stiff PE-chains approaching the wall. The latter is not present
in the case of interactions between two PE-stars and is a direct consequence of the
impenetrable character of the planar wall.

2.1 Introduction

As already stated in the introductory chapter 1, to our knowledge almost all theo-
retical investigations involving PE-stars have been restricted to the study of either
isolated PE-stars or bulk solutions of the same, while the influence of confinement
was not looked at. However, for PE-stars or spherical PE-brushes (SPEB’s) which
are in contact to planar walls or mixed with hard, spherical colloids, a vast range
of fascinating new phenomena and promising novel applications is arising. Indeed,
PE-stars can be used to model cell adhesion and are also efficient drug delivery and
protein encapsulation and immobilization agents [6–9]. On the other hand, hydro-
gels, which are physically similar to PE-stars, adsorbed on planar walls, form arrays
of dynamically tunable, photo-switchable or bioresponsive microlenses [91–94]. The
encapsulation properties as well as the characteristics of the microlenses depend
sensitively on the interactions between the PE-stars and the colloidal particles or
the wall, respectively. Therefore, there exists a need to undertake a systematic

7



8 2. PE-STARS IN PLANAR CONFINEMENT

effort in trying to understand these interactions physically and make quantitative
predictions about the ways to influence them externally. In this chapter, we take a
first step in this direction by considering a PE-star in the neighborhood of a planar,
uncharged, and purely repulsive wall. We analyze the mechanisms that give rise to
an effective star–wall repulsion and identify the counterion entropy and the chain
compression against the planar wall as the major factors contributing to this force.
Our findings are corroborated by comparisons with MD simulation results for a wide
range of parameters that structurally characterize the stars. These results provide
the foundation for examining effects of wall curvature and charge.

This chapter is organized as follows: Sec. 2.2 is devoted to the description of the
system we are investigating, the simulation model, and the simulation techniques
used. Moreover, we specify the physical quantities of interest. Our theoretical
approach is addressed in detail in Sec. 2.3. In Sec. 2.4, we quantitatively compare
and discuss the respective results. Finally, we summarize and conclude in Sec. 2.5.

2.2 Simulation model

We start with a definition of the system under consideration including its relevant
parameters and a description of the simulation model used. We study a dilute, salt-
free solution of PE-stars confined between two hard walls parallel to the (x, y)-plane
at positions z = ±τ/2, resulting in an overall wall-to-wall separation τ . We assume
a good solvent that is only implicitly taken into account via its relative dielectric
permittivity ε ≈ 80, i.e., we are dealing with an aqueous solution. Fig. 2.1 illustrates
the situation. To avoid the appearance of image charges [90, 95], we assume the
dielectric constants to be the same on both sides of the respective confining walls.
It turns out, however, that this is not a severe assumption, because the effective
charge of a PE-star is drastically reduced compared to its bare value, due to the
strong absorption of neutralizing counterions [28,32,33,96]. Hence, the influence of
image charges can be expected to be of minor importance.

Clearly, the PE-stars themselves consist of f PE-chains, all attached to a com-
mon colloidal core of radius Rd, whose size is comparable to the monomer size and
is therefore much smaller than the typical center-to-end length of the chains for all
parameter combinations. The introduction of such a core particle is necessary to
place the arms in the vicinity of the center, where the monomer density can take
very high values. The theoretical approach pertains to the limit of vanishingly small
core size. In order to remove effects arising from the small (but finite) value of the
core in the simulation model and to provide a comparison with theory, we will hence-
forth employ a consistent small shift of the simulation data by Rd. This standard
approach has been applied already, e.g., to the measurement of the interactions be-
tween neutral [22] and charged stars [32,33], in order to isolate the direct core–core
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Figure 2.1: Sketch illustrating the geometry of the system: single PE-star (here
with f = 18 arms) in planar confinement. Yellow balls symbolize neutral monomers,
whereas the red spheres along the chain backbones denote monomer ions carrying
a positive charge +e. The dark blue spheres are freely moving counterions, charge
−e, neutralizing the total bare charge of the star.

interaction effects from the scaling laws valid at small inter-star separations.

The PE-chains are modeled as bead-spring chains of N Lennard-Jones (LJ) par-
ticles. This approach was first used in investigations of neutral polymer chains and
stars [97–99] and turned out to be reasonable. The method was also already suc-
cessfully applied in the case of polymer–colloid mixtures [100] or polyelectrolyte sys-
tems [32, 33, 96]. To mimic the above-mentioned good solvent conditions, a shifted
and truncated LJ potential is introduced to depict the purely repulsive excluded
volume interaction between the monomers,

VLJ(r) =

{

4εLJ

[

(

d
r

)12 −
(

d
r

)6
+ 1

4

]

r ≤ 21/6d

0 r > 21/6d.
(2.1)

Here, r is the spatial distance of two interacting particles, d denotes the typical
monomer diameter, and εLJ sets the basic energy scale for the system. In what
follows, we fix the temperature of the system to the value T = 1.2εLJ/kB, where kB

denotes Boltzmann’s constant. The PE-chain connectivity is modeled by employing
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a standard finite extension nonlinear elastic (FENE) potential [98, 99]:

VFENE(r) =







−kFENE

2

(

R0

d

)2
ln

[

1 −
(

r
R0

)2
]

r ≤ R0

∞ r > R0,
(2.2)

with a spring constant kFENE = 7.0εLJ. The divergence length R0 limits the maxi-
mum relative displacement of two neighboring monomers and is set to R0 = 2.0d in
the scope of this work. The described set of parameters determines the equilibrium
bond length, in our case resulting in a value l0 = 0.97d.

When modeling the interactions between the monomers and a star’s colloidal
core, the finite radius Rd of the latter has to be taken into account. All monomers
experience a repulsive interaction with the central particle, in analogy to Eq. (2.1)
reading as

V c
LJ(r) =

{

∞ r ≤ Rd

VLJ(r − Rd) r > Rd.
(2.3)

In addition, there is an attraction between the innermost monomers in the chain
sequence of the arms and the core which is of FENE-type and can be written as
follows [cf. Eq. (2.2)]:

V c
FENE(r) =

{

∞ r ≤ Rd

VFENE(r − Rd) r > Rd.
(2.4)

The chains are charged in a periodic fashion by a fraction α in such a way
that every (1/α)-th monomer carries a monovalent charge +e, with e > 0 denoting
the absolute value of the unit charge. Consequently, there is a total number of
N− = αfN monomer ions per PE-star. To ensure electroneutrality of the system as
a whole, we include the same amount of oppositely charged, monovalent counterions
in our considerations. Since the latter are able to freely move, they have to be
simulated explicitly. Furthermore, they are of particular importance because they
are expected to crucially affect the physics of the system. One example is the
aforementioned fact that they induce a reduction of the stars’ bare total charges.

Two charged beads with spatial distance rij interact by a full Coulomb potential,
i.e., the electrostatic interaction energy is

βVCoul(rij) = β
ZiZje

2

εrij
≡ λB

ZiZj

rij
. (2.5)

Thereby, Zi, Zj = ±1 are the valencies of monomer ions and counterions, respec-
tively, and β = 1/kBT is the inverse temperature. In the above equation, the
so-called Bjerrum length

λB =
βe2

ε
(2.6)
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was introduced. It is defined as the distance at which the electrostatic energy equals
the thermal energy. Thus, it characterizes the interaction strength of the Coulomb
coupling. In the case of water at room temperature, one obtains λB = 7.1 Å. In
our simulations, we fix the Bjerrum length to λB = 3.0d, thus corresponding to
an experimental particle diameter d = 2.4 Å. This is a realistic value for typical
polyelectrolytes [101].

For the purpose of completing the set of interaction potentials needed to describe
the system at hand, we have to define particle–wall interactions. For technical
reasons (see below), we do not regard the walls as true hard walls, as common in
Monte-Carlo (MC) simulation studies [88, 102]. Following the course of our above
modeling and based on Eq. (2.1), we assume them to be of truncated-and-shifted
LJ-type instead, leading to the following monomer–wall interaction:

V w
LJ(z) = VLJ

(τ

2
− z

)

+ VLJ

(τ

2
+ z

)

, (2.7)

whereas z refers to the z-component of the position vector of the particular bead.
Likewise, the potential function for a star’s core interacting with the confining walls
is yielded by combining Eqs. (2.3) and (2.7):

V wc
LJ (z) = VLJ

(τ

2
− Rd − z

)

+ VLJ

(τ

2
− Rd + z

)

. (2.8)

To finalize this section, we present a short summary of the simulation tech-
niques used. We perform monomer-resolved molecular dynamics (MD) simulations
in the canonical ensemble, employing a rectangular simulation box of total volume
Ω = M2τ that contains a single PE-star. We apply periodic boundary conditions
in the x- and y-directions, while the box is confined with respect to the z-direction.
Here, we always fix M = τ = 120d. This provides a sufficiently large simulation box
to suppress any undesirable side-effects a priori and emulates a dilute solution of PE-
stars (cf. above description of the physical problem under investigation). For the nu-
merical integration of the equations of motion, we adopt a so-called Verlet algorithm
in its velocity form [12–14]. In order to stabilize the system’s temperature, we make
use of a Langevin thermostat [12–14] that introduces additional friction and random
forces with appropriately balanced, temperature-dependent amplitudes. Due to the
periodic boundary conditions and the long-range character of the Coulombic forces,
a straight-forward calculation of the latter pursuant to Eq. (2.5) is not feasible.
Therefore, we have to evaluate the forces using Lekner’s well-established summa-
tion method [103] in its version for quasi two-dimensional geometries. Thereby, the
convergence properties of the sums occurring during the computation are enhanced
by a mathematically accurate rewriting, allowing a proper cut-off. For performance
reasons, the forces have to be tabulated.
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The typical time step is ∆t = 0.002t0, with t0 =
√

md2/εLJ being the associated
time unit and m the monomer mass. In our case, the counterions are taken to have
the same mass and size as the (charged) monomers.

In our simulations, we measure the effective core–wall forces as a function of the
center-to-wall distance D. Furthermore, we examine various other static quantities
and their D-dependence, namely the center-to-end distance Rs, the number of con-
densed counterions, and the density profiles of all particle species involved. For this
purpose, for every particular value of D the system is equilibrated for about 5× 105

time steps. After this equilibration period, we perform production runs lasting be-
tween 1×106 and 2×106 time steps. We carry out the above described measurements
for a variety of arm numbers f (f =10, 18, 30) and charging fractions α (α =1/5,
1/4, 1/3) in order to make systematic predictions for the f - and α-dependencies of
all theoretical parameters. In all cases, we fix the degree of polymerization, i.e., the
number N of monomers per arm, to a value N = 50.

2.3 Theory of the effective PE-star–wall interac-

tion

A PE-star in the neighborhood of a planar, impenetrable wall, undergoes conforma-
tional changes that modify its (free) energy in comparison to the value it has when
the wall is absent or far away from the star. This separation-dependent difference
between the free energies is precisely the effective interaction between the PE-star
and the wall. There are three distinct mechanisms that give rise to an effective
interaction in our case: the change in the electrostatic energy of the star, the change
in the counterion entropy arising from the presence of the geometric confinement as
well as contributions from a compression of the stiff PE-chains against the flat wall.
The former two are intricately related to each other, as the counterion distribution
is dictated by the strong Coulomb interactions, hence they will be examined jointly,
the latter is a distinct phenomenon arising in the presence of impenetrable walls.

2.3.1 The electrostatic and entropic contributions

To obtain theoretical predictions for the electrostatic-entropic contribution to the
free energy for a PE-star close to a flat, hard wall, we employ a mean-field approach,
inspired by and akin to that developed in Refs. [28, 32, 33, 96]. Let ρs = Ns/Ω be
the density of the solution of PE-stars, where Ns denotes the total number of PE-
stars in the macroscopic volume Ω. In general, a single PE-star of total charge
Qs is envisioned as a spherical object of radius Rs, embedded in an also spherical
Wigner-Seitz cell of radius RW. Additionally, the latter contains N− counterions,
restricted to move in the Wigner-Seitz cell only and forming an oppositely charged
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Ω1N1,

,N3 Ω3

,N2 Ω2

RW

Rs

λB

z

D

Figure 2.2: Sketch visualizing the physical situation at hand, namely showing a
PE-star of typical spatial extent Rs, and its counterion background of radius RW .
The three possible counterion states are illustrated: Condensed, trapped, and free.

background of total charge −Qs. The cell’s radius is connected to the star density via
RW = (4πρs/3)1/3. In the case of center-to-wall separations smaller than RW and/or
Rs, we simply cut the counterion cloud and/or the star itself at the confining wall
and treat them as chopped spheres instead of full spheres. Obviously, the compound
system composed of a PE-star and its counterions is electroneutral as a whole. Since
we are interested in the case of dilute PE-solutions only, we can limit ourselves to
the consideration of a single PE-star. Clearly, for center-to-wall distances D > RW

there is no interaction between a PE-star and the wall within the framework of our
theory. Accordingly, we will deal with the case D ≤ RW only. Fig. 2.2 sketches the
physical situation and visualizes the decisive length scales of the problem.

A mechanism crucially influencing the physics of PE-systems is the so-called
Manning condensation of counterions [104–111]. The dimensionless fraction ξ =
λBNα/Rs indicates whether or not such a condensation effect will occur. If it exceeds
unity, counterions will condense on the arms of the stars [104–106]. In our case, this
condition is true for all parameter combinations examined (see below). Hence, the
condensation effect has to be taken into account in our theoretical modeling. For
that reason, we partition the counterions in three different states, an ansatz already
put forward in Refs. [32, 33, 112]: N1 of the N− counterions are in the condensed
state, i.e., they are confined in imaginary hollow tubes of outer radius λB and inner
radius d around the arms of the star. The total volume1 accessible for the counterions
in this state is Ω1 = π(λ2

B − d2)Rsf . A number of N2 counterions is considered to

1Here, the tube overlap in the vicinity of the colloidal core is not taken into account. Accord-
ingly, the resulting reduction of the volume Ω1 with respect to the value given in the main text is
neglected. Anyway, this simplification does not considerably affect the theoretical results.
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be trapped in the interior of the star. These ions are allowed to explore the overall
volume Ωin = Ωcs(D, Rs) of the (possibly chopped) star except the tubes introduced
above, i.e., Ω2 = Ωin − Ω1. Thereby, the volume Ωcs of a chopped sphere can be
derived by straight-forward calculations. With Ωs(Rs) = 4πR3

s/3, one obtains:

Ωcs(D, Rs)

Ωs(Rs)
=







1
2

+ 3
4

(

D
Rs

)

− 1
4

(

D
Rs

)3

D ≤ Rs

1 D > Rs.
(2.9)

Note that the total volume of the star is big compared to the volume of the tubes
surrounding the arms, Ωin � Ω1. Thus, we will make use of the approximation
Ω2 ≈ Ωin in all steps to come. The remaining N3 = N− − N1 − N2 counterions are
able to move freely within the outer shell of volume Ωout = Ω3 = Ωcs(D, RW) − Ωin

surrounding the star, where Ωcs(D, RW) is the total volume of the Wigner-Seitz
cell. The subdivision of counterions in the three different states is also depicted in
Fig. 2.2, showing a star with five arms that are assumed to be fully stretched for
demonstration.

The electrostatic and entropic part Vee(D) of the effective interaction Veff(D)
between the PE-star and the wall, kept at center-to-wall distance D, results af-
ter taking a canonical trace over all but the star center degree of freedom. With
Fee(D; Rs, {Ni}) being the variational Helmholtz free energy for a system where a
single star faces the confining wall, and which contains just the electrostatic and
entropic parts, it is defined as [4]:

Vee(D) = min
Rs,{Ni}

Fee(D; Rs, {Ni}). (2.10)

Basically, the equilibrium values of Rs and {Ni} are determined by the above mini-
mization. We will discuss this point in more detail shortly. Note that we neglected
a second, D-independent term on the right-hand side of Eq. (2.10) representing the
contribution to the free energy for an infinitely large center-to-wall separation. Since
it makes up a constant energy shift only, it does not influence the effective forces
between the star and the wall we are mainly interested in. The electrostatic-entropic
force contributions are obtained by differentiating with respect to D:

Fee(D) = −∂Vee(D)

∂D
(2.11)

Now, we derive expressions for the terms of which Fee(D; Rs, {Ni}) is built-up,
whereby we want to include both the counterions’ entropic contributions and the
electrostatic energy. To keep our theory as simple as possible, we will omit other
thinkable contributions, like elastic energies of the chains [113] or Flory-type terms
arising through self-avoidance [113, 114]. As we will see in Sec. 2.4, our theoretical
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results in combination with chain compression terms to be deduced in what follows,
are capable of producing very good agreement between the theory and the corre-
sponding simulational data; these simplifications are therefore a posteriori justified.
Consequently, the free energy Fee(D; Rs, {Ni}) reads as:

Fee(D; Rs, {Ni}) = Ues +
3

∑

i=1

Si. (2.12)

The electrostatic mean-field energy Ues is assumed to be given by a so-called
Hartree-type expression. Let ρm(r) and ρi(r) denote the number densities of the
monomers and the three different counterion species, respectively, measured with
respect to the star’s geometrical center. These density profiles then determine the
overall local charge density %(r) of our model system. Therewith, we have:

Ues =
1

2ε

∫∫

d3r d3r′
%(r)%(r′)

|r− r′| . (2.13)

It is convenient to separate the total charge density %(r) into two contributions:
%in(r) in the interior of the star, i.e., the volume Ωin, and %out(r) in the outer region,
i.e., the volume Ωout. Let Φin(r) and Φout(r) be the contributions to the electrostatic
potential at an arbitrary point r in space caused by the respective charge densities.
Using this definitions, we can rewrite Eq. (2.13) and get

Ues =
1

2

{
∫

Ωin

d3r [Φin(r) + Φout(r)] %in(r)

+

∫

Ωout

d3r [Φin(r) + Φout(r)] %out(r)

}

. (2.14)

On purely dimensional grounds, we expect a result having the general form

βUes =
N3λB

Rs

· h
(

RW

Rs

,
D

Rs

)

=
N3λB

Rs

[

hin−in

(

D

Rs

)

+ 2hin−out

(

RW

Rs
,
D

Rs

)

+ hout−out

(

RW

Rs
,
D

Rs

)]

, (2.15)

where we introduced dimensionless functions h and hα−β arising from the integra-
tions of the products Φα(r)%β(r) in Eq. (2.14) [with α, β = in, out]. Here, one should
remember that N3 is the number of uncompensated charges of the star and char-
acterizes its effective valency. The specific shape of the h-functions depends on the
underlying charge distributions %in(r) and %out(r) alone.
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In Eq. (2.12), the terms Si represent the ideal entropic free energy contributions
of the different counterion species. They take the form

βSi =

∫

Ωi

d3r ρi(r)
[

ln
(

ρi(r)d
3
)

− 1
]

+ 3Ni ln

(

Λ

d

)

, (2.16)

where Λ is the thermal de-Broglie wavelength. In writing the sum in Eq. (2.12), the
respective last terms in Eq. (2.16) yield an trivial additive constant only, namely
3N− ln(Λ/d), which will be left out in what follows.

Now, we have to quantitatively address the electrostatic and entropic terms
pursuant to Eqs. (2.13) to (2.16). For that purpose, we first of all need to specify
the above introduced number densities2, ρm(r) and ρi(r). Here, we model the arms
of the PE-star to be fully stretched, or to put it in other words, the monomer
density profile inside the star to fall of as ρm(r) = ρm(r) ∼ r−2 [28–30, 32]. This
is a good approximation, as measurements yield a scaling behavior with an only
somewhat smaller exponent ∼= −1.8, indicating an almost complete stretching of the
chains [32,33,109,115–117]. Since the monomer ions are placed on the backbone of
the chains in a periodical manner (cf. Sec. 2.2), their density within the interior of
the star must obviously show an identical r-dependence. Moreover, the profile for
the trapped counterions exhibits the same scaling, due to the system’s tendency to
achieve local electroneutrality [118]. Therefore, it seems to be a good choice to use
an ansatz ρ2(r) = A/r2 for the trapped counterions and %in(r) = B/r2 for the overall
charge density in the inner region. Clearly, these distributions have to be normalized
with respect to the total number of trapped counterions N2 and the effective charge
of the star Q∗

s/e = (N− − N1 − N2) = N3 by integrating over the related volumes,
Ω2 and Ωin. In doing so, we obtain A = N2/(2πRsC) and B = Q∗

s/(2πRsC), with

C = 1 +
D

Rs

[

1 − ln

(

D

Rs

)]

. (2.17)

We presume the condensed counterions to be uniformly distributed within the
tubes surrounding the PE-chains, i.e., we use ρ1 = N1/Ω1. This approach is
supported by simulation results on single PE-chains [108] and was successfully
put forward in previous studies of PE-star systems [32, 33]. In a similar fashion,
we assume an also uniform distribution of the free counterions within the outer
shell Rs < r < RW, i.e., ρ3 = N3/Ω3, implying an associated charge density
%out = −Q∗

s/Ω3.
On this basis, we are able to explicitly calculate the variational free energy in

virtue of Eqs. (2.12) to (2.16). As far as the entropic contributions are concerned,

2Note that, compared to the isolated star case, any influence of the wall to the density profiles
besides a chopping of the volumes available for monomers, monomer ions, and counterions will be
omitted. We will model all densities similar to the approach used in Refs. [32, 33].
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an analytical computation is feasible in a straight-forward manner. For reasons of
clarity, we leave out any intermediate steps and present our final results only:

βS1

N1
= ln

[

N1d
3

π(λ2
B − d2)Rsf

]

− 1, (2.18)

βS2

N2
= ln

(

N2

2πC

)

+
D

RsC
ln2

(

D

Rs

)

− 3 ln

(

Rs

d

)

+ 1, (2.19)

βS3

N3
= ln















N3

2π
3

[

(

RW

Rs

)3

− 1

]

+ πD
Rs

[

(

RW

Rs

)2

+ 1

]















− 3 ln

(

Rs

d

)

− 1. (2.20)

Now, we want to investigate the electrostatic term Ues in more detail. To begin
with, we have to derive expressions for the potential functions Φin(r) and Φout(r).
This computations are rather technical, and within the main text we will therefore
outline the course of action only. For a detailed presentation and explicit description
of the procedure, we refer the reader to Appendices A and B, respectively. In general,
the electrostatic potential Φ(r) due to a charge density %(r) in a dielectric medium
of permittivity ε is given by the expression

Φ(r) =
1

ε

∫

d3r′
%(r′)

|r′ − r| . (2.21)

In order to calculate the integral above for a chopped sphere, yielding the function
Φin(r), we decompose it in infinitesimally thin disks which are oriented perpendic-
ular to the z-axis and cover the whole sphere. The radii of these disks obviously
depend on their position with respect to the center of the sphere. Afterwards, each
disk is object to further decomposition into concentric rings. Provided that the
charge density is spherical symmetric, as is in the case under consideration, the
charge carried by each ring can be easily calculated. The electrostatic potential of a
charged ring is known from literature [119,120], therefore the potential of a disk can
be derived by integrating over all corresponding rings. An analytical determination
of this integral is possible. The potential of the chopped sphere itself can then be
obtained by another integration over all disks. The latter cannot be performed ana-
lytically, thus one has to resort to a simple, one-dimensional numerical integration.
So far, the potential Φout(r) caused by the hollow chopped sphere of volume Ωout

containing the free counterions remains to be acquired. Thereto, we employ the
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Figure 2.3: Star radii vs. the star–wall separation D as obtained by MD simu-
lations, referring to parameters f = 10, α = 1/3. The mean value, averaged with
respect to D, is shown as a horizontal line for comparison.

superposition principle. The hollow region of uniform charge density %out can be
apprehended as a superposition of two chopped spheres with radii Rs and RW, and
charge densities −%out and %out, respectively. In doing so, the problem is reduced
to the calculation of the electrostatic potential of a chopped sphere with uniform
charge density, which can be computed following the method described above for the
inner sphere of volume Ωin. Clearly, with knowledge of both Φin(r) and Φout(r), the
dimensionless functions hα−β and thus the electrostatic energy Ues can be obtained
according to Eqs. (2.14) and (2.15) using numerical techniques.

In principle, the electrostatic-entropic interaction potential Vee(D) is obtained
by adding up the entropic and electrostatic contributions following Eq. (2.12) and
minimizing the Helmholtz free energy Fee(D; Rs, {Ni}) with respect to Rs and {Ni}
[cf. Eq. (2.10)]. However, the star radii are in good approximation unaffected by the
center-to-wall separation D, as confirmed by our simulations. The physical reason
lies in the already almost complete stretching of the chains due to their charging. In
the simulations, the arm-averaged center-to-end radius Rs of a star was measured
according to

R2
s =

1

f

〈

f−1
∑

i=0

(ri,N − rcore)
2

〉

, (2.22)

where ri,N stands for the position vector of the N -th (last) monomer of the i-th arm
(0 ≤ i < f) of the star and rcore the core position. Fig. 2.3 illustrates the weak
D-dependence of Rs for an exemplarily chosen parameter combination. Therefore,
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f α N− (Rs/d)a (N1)
a (N1)

b (Rs/d)c (N1)
c

10 1/5 100 24.0 32 53 – –
10 1/4 120 24.8 44 68 25.3 46
10 1/3 170 27.5 76 107 27.4 72
18 1/5 180 24.6 78 80 – –
18 1/4 216 25.4 104 111 26.6 107
18 1/3 306 28.0 163 183 28.3 159
30 1/5 300 25.1 161 113 – –
30 1/4 360 25.9 208 170 27.2 213
30 1/3 510 28.4 315 294 28.6 309

Table 2.1: Conformational properties as obtained from MD simulations and corre-
sponding fit parameters used in our theoretical approach for different arm numbers
and charging fractions. In addition, results from Ref. [33] are presented for com-
parison. The chain length is fixed to N = 50. For our data, the Wigner-Seitz
radius is RW/d = 74.44. Legend for the symbols: aValues as obtained from our MD
simulations, averaged with respect to D (cf. Sec. 2.3); bFit parameter used when
calculating theoretical predictions for star–wall forces; cSimulation results for iso-
lated PE-stars, taken from Ref. [33] and shown for comparison (note that there are
in part insignificant discrepancies concerning the parameters).

it is convenient not to determine Rs through the variational calculation, but to
use average values 〈Rs〉D as obtained from MD simulations instead. The latter are
comparable to the corresponding radii for isolated PE-stars according to Ref. [33],
see Table 2.1.

The amount of condensed counterions N1 was measured by counting the number
of such particles separated from the monomer ions by a distance smaller than λB

and performing a statistical average. The total number of captured counterions,
Nin = N1 + N2, was measured by counting all counterions within a sphere having
the instantaneous, arm-averaged center-to-end distance as radius and again taking
a time average. Since the {Ni} are related through the equation N− = N1 + N2 +
N3, only two independent variational parameters remain, say N1 and N2. In our
simulations, we have found that the number of condensed counterions, N1, is also
approximately constant with respect to D (see Fig. 2.4). Hence, we will treat N1 as
a fit parameter, held constant for all D and chosen in such a way to achieve optimal
agreement with simulation results. Therefore, Fee(D; Rs, {Ni}) is minimized with
respect to the number of trapped counterions, N2, only, reflecting the possibility of
redistribution of counterions between inside/outside the stars as the distance to the
wall is varied.
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Figure 2.4: Fractions of (a) condensed counterions N1/N− and (b) captured coun-
terions Nin/N− = (N1 + N2)/N− for PE-stars with f = 10 arms and various values
of α. As one can see from the plots, both quantities are in very good approximation
independent on D and the majority of counterions is captured within the interior of
the star.



2.3. Theory of the effective PE-star–wall interaction 21

0 0.5 1 1.5 2 2.5
D/R

s

-20

0

20

40

60

80

100

βV
ee

V
ee

=U
es

+S
U

es
S

0 0.5 1 1.5 2 2.5
D/R

s

-10

0

10

20

30

40

50

60

βS
i

S
1

S
2

S
3

Figure 2.5: Comparison of the entropic and the electrostatic contributions S
and Ues to the electrostatic-entropic part of the effective potential, Vee, exemplarily
shown for f = 10, α = 1/3, and N1 = 107. Obviously, the entropic contribution
dominantly determines the D-dependence of Vee. In the inset, S is decomposed
into the different counterion species’ contributions Si, illustrating that the term S2

governs the functional form of the total entropy. Note that the different contributions
in both main plot and inset were shifted by constants to enhance the readability.

Fig. 2.5 shows a comparison of the entropic and the electrostatic contributions
S and Ues to the electrostatic-entropic effective potential, Vee. As one can see from
the exemplary plot, the total entropic term S is the major contribution to Vee and
therefore determines the functional form of the latter, while the electrostatic term
is of minor importance. At first glance, this may seem to be counterintuitive in a
PE-system, but electrostatics do, in fact, indirectly affect the interaction potential.
Due to the presence of charges, the conformations and thus the radii of PE-stars are
strongly changed compared to the neutral star case, leading to an increased range of
the interaction. In the inset of Fig. 2.5 it can be seen that total entropy of the system
at hand is mainly determined by the contribution S2 of the trapped counterions. As
one can recognize, S3 is only weakly influenced by the star-to-wall separation D,
and S1 is even completely independent of D, as was evident already from Eq. (2.18).
We have to emphasize, however, that even though S1 contributes a constant value
only and therefore does not influence the effective force Fee(D) at all, the number
of condensed counterions N1 nevertheless plays a fundamental role in our problem.
Since N2 = Nin − N1 set the overall scale for of the term S2, N1 becomes relevant
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L=D L>D

(b)(a)

maxL=D=D

d γ

(c)

Figure 2.6: Schematic illustrating the physical mechanism leading to the necessity
to introduce the energy contribution Vc. In analogy to Fig. 2.1, yellow circles denote
neutral monomers and red balls are monomer ions. The bigger black ball is the
colloidal core of the star. Counterions are omitted in the depiction for reasons of
clarity. In part (c) of the figure, the dashed rod replacing the chain bent to the
left is shown mirror-reflected to the right to avoid crowding. For a more detailed
discussion of the compression effect, see main text.

in renormalizing the effective interaction. The treatment of N1 and the net charge,
consequently, as a fit parameter is a common approach for charged systems, known
as charge renormalization [121–123].

2.3.2 The chain compression contribution

In anticipation of Sec. 2.4, we want to point out that significant deviations arise
between the effective star–wall forces as obtained by our computer simulations
and their theoretical counterparts Fee calculated using the formalism presented in
Sec. 2.3.1 for intermediate center-to-surface distances 0.6 . D/Rs . 1.3. Now,
we want to elucidate the physical mechanism leading to these deviations and de-
rive simple expressions for additional contributions to both the total effective forces
and potentials, Fc and Vc. Therewith, we will complete the development of our
theoretical approach.

The need to introduce these supplementary contributions is due to so far uncon-
sidered conformational changes enforced by the presence of the confining wall. Dur-
ing the construction of the mean-field part of our theory, we neglected such changes
by assuming density profiles of monomers and counterions which are undisturbed
compared to the case of isolated stars in fully three-dimensional geometries. The
influence of the wall became manifest in a truncation of the spheres representing star
and associated counterion cloud, only. But in reality, for D in the order of the typical
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length of an arm of the star, the star will undergo strong configurational variations
to avoid the wall since the monomers are not able to interpenetrate it. Thereby,
due to the presence of neighboring arms, it can be energetically favorable for chains
directing towards the wall to compress instead of bending away from the surface,
although this compression leads to an extra cost in electrostatic energy. The latter
obviously originates from a decrease of the ion–ion distances along the backbones
of the chains. Figs. 2.6(a) and 2.6(b) depict the situation. Once a critical value of
the chain length is reached, a further shortening of the chains under consideration
becomes disadvantageous. Electrostatic repulsions and excluded volume interaction
increase more and more strongly, the chains will preferably curve and start to re-
lax in length, see Fig. 2.6(c). The occurrence of such compression–decompression
processes is proven by our simulation runs.

In what follows, we will use a simplified picture and model the affected arms
as rigid, uniformly charged rods of common length L and diameter d for both the
compressed and the bent regime. In the former case, we assume the rods to have
orientations perpendicular to the wall surface. In the latter case, we will account for
the bending only via the re-lengthening of the rods and their change in orientation
with respect to the z-axis. Fig. 2.6(c) visualizes this approximation, whereby the
shaded straight chain represents the imaginary rod that replaces the bent arm within
the framework of our modeling. With Z = +1 being the valency of the monomer
ions, the total charge of one such rod is just ZeαN , leading to an L-dependent
linear charge density, η, given by η = ZeαN/L. We consider the self-energy of one
rod, as a function of its respective length L, to be made up of a purely repulsive
contribution which is electrostatic in nature and arises due to like-charge repulsions,
and a second harmonic term with an effective spring constant keff describing the
binding of the chain monomers in a coarse-grained fashion. Thus, we have [124]:

βUrod(L) = βUrep(L) + βUattr(L)

= β
η2

ε
L ln

(

L

d

)

− β
keff

2
L2

=
Z2α2N2λB

L
ln

(

L

d

)

− β
keff

2
L2. (2.23)

From Eq. (2.23), we then obtain the corresponding force Frod(L) = −∂Urod/∂L that
acts on the ends of the rod parallel to its direction (a negative/positive sign of Frod(L)
corresponds to a force that tends to compress/stretch the rod.) The competition
of a repulsive and an attractive part results in a finite equilibrium length L0 of the
rod, i.e., Frod vanishes for L = L0. Clearly, L0 is related to the above introduced
spring constant keff by the following condition:

keff =
1

L0

∂Urep

∂L

∣

∣

∣

∣

L0

. (2.24)
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Now, let Dmin and Dmax determine the range of center-to-surface distances for
which the above described processes take place. Moreover, D0 denotes the criti-
cal length for which the transition from the compressing to the bending regime is
observed. According to our MD results, we will fix Dmax/Rs = 1.3, D0/Rs = 0.9,
and Dmin/Rs = (2D0 − Dmax)/Rs = 0.5. In addition, we require L0 = Dmax in
what follows. We know from our simulation runs that it is a reasonable first-order
approximation to assume the length of the affected chains as a function of D to be:

L(D) =



















Dmax D ∈ [0, Dmin[

2D0 − D D ∈ [Dmin, D0[

D D ∈ [D0, Dmax[

Dmax D ∈ [Dmax,∞[.

(2.25)

By using this empirical fact, we implicitly include effects due to chain bending and
entropic repulsions of neighboring chains, even if we did not consider corresponding
energy contributions explicitly in Eq. (2.23). Therewith, a promising estimate for
the chain compression contribution to the total effective force is:

Fc(D) =

{

feff
D

L(D)
Frod(L(D)) D ∈ [Dmin, Dmax]

0 else.
(2.26)

Here, feff is the total number of affected chains. Assuming that the chains are
regularly attached to the colloidal core, we expect a linear relation between feff

and f , namely feff = f/f0. Simulation data indicate f0 = 4 to be a good choice
for all parameter combinations under investigation. Since Frod is always directed
parallel to the corresponding rod, the pre-factor D/L(D) = cos γ results from simple
geometrical considerations [cf. Fig. 2.6(c)].

Based on Eq. (2.26), we obtain the corresponding energy term Vc by a simple
integration:

Vc(D) =

∫ D

∞

Fc(D
′) dD′. (2.27)

Finally, the total effective forces and interaction potentials are obtained as the
sum of the electrostatic-entropic and compression terms: Feff = Fee + Fc and Veff =
Vee + Vc, respectively. Fig. 2.7 shows a concluding comparison of the full effective
potential Veff(D) and the same without the inclusion of the compression term Vc(D).
According to the plot, the theoretically predicted total potential is purely repulsive
and ultra-soft. As we will see in Sec. 2.4, the total effective forces show a striking
step-like shape for intermediate distances. This is in contrast to the well-known case
of star–star interactions [32, 33].
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Figure 2.7: Comparison of the total and the electrostatic-entropic contributions
to the effective potential, Veff(D) and Vee(D), for f = 10, α = 1/3, and N1 = 107.
The inset shows the functional form of the compression term Vc(D). The main
text provides an explanation for the need of the latter contribution and contains an
explicit derivation.

2.4 Comparison and discussion

In this section, we test our theoretical model against corresponding simulation results
to confirm its validity. Using standard MD techniques, a straight-forward measure-
ment of (effective) interaction potentials is not possible. Thereto, one would have
to apply more sophisticated methods [24]. But since the mean force acting on the
center of a PE-star can be easily received from computer experiments [4,22], we will
focus on a comparison of such effective forces and corresponding theoretical predic-
tions. To be more precise, when choosing the colloidal center of a star at a fixed
position rcore as effective coordinate in our simulations, the effective force can be
measured as the time average over all instantaneous forces fcore acting on the core
(cf. also the simulation model in Sec. 2.2) by means of the expression

F(rcore) = −∇
rcore

Veff(rcore) = 〈fcore〉 . (2.28)

In all considerations to come, we will deal with absolute values of the forces
only. It is obvious from the chosen geometry that the effective forces are on average
directed perpendicular to the confining wall, i.e., parallel to the z-axis. Thus, the
mean values of the x- and y-components vanish, leading to the relation Feff =
|Feff | = Feff ,z. For symmetry reasons, the effective forces and potentials depend on
the z-component of rcore alone, whereas rcore,z = D. Consequently, the forces are
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(b)(a)

Figure 2.8: Simulation snapshots of a PE-star with functionality f = 18 and
charging fraction α = 1/3. The center-to-wall distances are (a) D/Rs = 0.107 and
(b) D/Rs = 1.07. The color coding for the particles is the same as in Fig. 2.1.

connected to the potential by the following simple equation:

Feff(rcore) = Feff(D) = −∂Veff

∂D
. (2.29)

Therewith, predictions for the effective forces can be computed starting from the-
oretical results for the corresponding potential (see Sec. 2.3, Fig. 2.7). This allows
for the desired comparison to MD data.

Fig. 2.8 shows typical simulation snapshots for two different values of the center-
to-surface separation D, illustrating the conformational changes a star undergoes due
to the presence of the confining wall. In part (b) of the figure, one may particularly
note the PE-chains directed perpendicular to the wall. These arms are object to
the compression–decompression mechanism described in detail in Sec. 2.3.2 and
sketched in Fig. 2.6. Moreover, the snapshots qualitatively visualize our quantitative
finding that the majority of counterions is captured within the interior of a PE-star
(cf. Fig. 2.4). We want to point out that, compared to the bulk case [32, 33], the
counterion behavior in this regard is not significantly changed by introducing (hard)
walls. In this context, we also refer to Table 2.1, where the number of condensed
counterions N1 as obtained from our MD runs is shown for different parameter
combinations together with corresponding values for isolated PE-stars in unconfined
geometries.

Fig. 2.9 is the core piece of this chapter and finally presents both our simulational
and theoretical results for the effective star–wall forces. As can be seen from the
plots, we find a very good agreement for all combinations of arm numbers and charg-
ing fractions. The theory lines exhibit a remarkable step-like shape for intermediate
values of the center-to-surface distance D arising due to the introduction of the
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Figure 2.9: Effective star–wall forces with the colloidal core of the respective
stars taken as effective coordinate, obtained from both computer simulations and
our theoretical approach. The fit parameters N1 used are specified in the legend
boxes. Here, we show results for stars with functionalities f = 10 (first row),
f = 18 (second row), and f = 30 (third row). In all cases, we are considering
charging fractions α = 1/5 (first column), α = 1/4 (second column), and α = 1/3
(third column). In the rightmost picture of the first row, we additionally included
a theoretic line calculated without taking the compression term Vc into account
to illustrate the need of such a contribution. Since the theoretical model has, in
contrast to the simulation model, no (hard) colloidal core, all simulation data have
to be displaced by the core radius Rd.
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chain compression term Fc. The latter had to be added to the electrostatic-entropic
forces Fee to account for conformational changes induced by the spatial proximity
of the star to the planar wall. In doing so, the functional form of the theoretically
predicted forces accurately renders the results found by our computer experiments.
When using the respective star’s radius as basic length scale for the plots, the posi-
tion of the step is independent of the parameters considered. In this sense, the effect
is universal and there is no influence by specific details of the system. Note that
the distinct kink is an artifact resulting from the special construction of Fc, it does
not have any physical meaning. Again, it should be emphasized that the described
behavior is in contrast to the well-known star–star case [32, 33]. The difference be-
tween both systems mainly lies in the fact that a star is strictly forbidden to access
the region of the wall, while it is allowed to interpenetrate another star-branched
macromolecule to a certain degree. To put it in other words, a wall is impenetrable,
while a second star is a diffuse, soft object. Here, we also want to point out that the
step is no hysteresis or metastability effect, as in our MD simulations the center-
to-surface separation D is varied by pulling the stars away from the wall instead
of pushing them towards it. This procedure prevents any coincidental trapping of
individual PE-chains.

The particular values of the fit parameter N1 used to calculate the theoretical
curves in Fig. 2.9 are given in the corresponding legend boxes. Obviously, N1 sig-
nificantly grows with both the charging fraction α and the arm number f , as is
physically reasonable. Table 2.1 compares the fit values used to their counterparts
obtained by our simulations. Thereby, one recognizes systematic deviations, i.e., the
fit values are always slightly off from the numbers computed using the MD method.
Both quantities are of the order of 50% to 60% of the total counterion number,
for all functionalities f and charging fractions α. The discrepancies emerge due to
the different meanings of the quantities star radius Rs and number of condensed
counterions N1. Within the scope of the simplified theoretical model, a PE-star is a
spherical object of well-defined radius, while we observe permanent conformational
fluctuations of the simulated stars. Thus, the MD radius does not identify a sharp
boundary, but determines a typical length scale only. In this sense, the star can be
viewed as a fluffy object. Most of the time, there are monomers, monomer ions and
condensed counterions located at positions outside the imaginary sphere of radius
Rs, and such counterions are not counted when measuring N1, thus the theory value
typically exceeds the simulational one. With increasing arm number f and charging
fraction α, there is less variation in length of different arms of a star, resulting in
smaller deviations between the theoretically predicted N1 and its MD equivalent.
Table 2.1 confirms this trend.

A last remark pertains to the behavior for small center-to-surface distances D.
Since our simulation model includes a colloidal core of finite radius Rd, the forces
obtained from MD runs diverge for vanishing wall separations due to the core–
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wall LJ repulsion which mimics the excluded volume interaction. In contrast, our
theoretical model has no core, for this reason the predicted forces remain finite for
the whole range of distances. According to this, our theoretical approach is basically
not capable of reproducing a divergence of the forces, even in case of close proximity
to the confining wall.

2.5 Conclusions

We have measured by means of MD simulations and analyzed theoretically the
effective forces emerging when multi-arm PE-stars approach neutral, impenetrable
walls. The forces have the typical range of the star’s center-to-end radius, since
osmotic PE-stars reabsorb the vast majority of the counterions and are thereby
almost electroneutral; longer-range forces that could arise due to the deformation
of the diffuse counterion layer outside the corona radius are very weak, due to the
small population of the free counterion species. The dominant mechanism that
gives rise to the soft repulsion is the entropy of the absorbed counterions and the
reduction of the space available to them due to the presence of the impenetrable
wall. At the same time, a novel, additional mechanism is at work, which stems
from the compression of a fraction of the star chains against the hard wall. For
star–wall separations that are not too different from the equilibrium star radius,
the chain compression gives rise to an additional repulsive contribution to the force.
At close star–wall approaches, the compressed chains ‘slip away’ to the side, orient
themselves parallel to or away from the wall and thus the compression process ceases
and the additional contribution to the force vanishes.

The compression force could play a decisive role in influencing the cross-inter-
action between PE-stars and spherical, hard colloids of larger diameter. Indeed,
for this case, the cross-interaction can be calculated by using the results of the
present chapter as a starting point and performing a Derjaguin approximation. It
will be interesting to see how the cross-interaction and, in particular, compression
contributions to the same affect the structural and phase behavior of such PE-star–
colloid mixtures. This issue is subject of chapter 3.
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Chapter 3

Fluid–fluid demixing transitions in

colloid–polyelectrolyte star

mixtures

In this part of the thesis, we derive effective interaction potentials between hard,
spherical colloidal particles and star-branched polyelectrolytes (PE’s) of various
functionalities f and smaller size than the colloids. The effective interactions are
calculated using a Derjaguin-like approximation, which is based on potentials acting
between PE-stars and planar walls as derived in chapter 2. By virtue of the obtained
colloid–PE-star cross-interactions we subsequently calculate the demixing binodals
of the binary colloid–PE-star mixture, employing standard tools from liquid-state
theory. We find that the mixture is indeed unstable at moderately high overall con-
centrations. The system becomes more unstable with respect to demixing as the
star functionality and the size ratio grow.

3.1 Introduction

Though a great deal has been learned regarding the behavior of one-component
solutions of PE-stars, the question of the influence of these ultra-soft colloids on
solutions of hard colloids has not been investigated thus far. At the same time and
as already said throughout the course of this thesis, the behavior of PE-stars in the
vicinity of planar or curved hard surfaces (such as a larger colloidal particle) is an
issue of considerable interest, due to the possibility of manipulating the conformation
of the PE-star by suitably changing the surface’s geometry or physical characteristics
[92, 93, 125]. In chapter 2, the properties of PE-stars close to hard, planar walls
were investigated in detail by means of computer simulations and theory, see also
[126, 127]. It has been found that the geometrical constraint of the planar wall

31
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does not affect the ability of the PE-stars to absorb the vast majority of their
counterions. In addition, a new mechanism giving rise to a wall–star repulsion
has been discovered, which rests on compression of stiff star chains against the
neighboring wall. Now, we proceed to the full, many body problem of a collection
of PE-stars and neutral colloids, which can be seen as curved walls. Basing on the
results of the previous chapter, we analyze the structure of the mixture and find that
it is unstable against demixing as the concentration becomes sufficiently high. This
studies serve, thereby, as the reference point for our investigations on the effects
of adding charge to the colloidal particles in chapter 4. It is specular to recently
published work on mixtures of charged colloids with uncharged polymers [128], since
in our case the colloids are neutral and the (star-branched) polymers are charged.

The rest of this chapter is organized as follows: in Sec. 3.2, we introduce the
colloid–colloid and PE-star–PE-star effective interactions and we derive the cross-
interaction, based on our results on the PE-star interaction potential with a planar
wall. In Sec. 3.3, we present our method for calculating structure and thermo-
dynamics by employing the aforementioned interactions in combination with two-
component liquid integral equation theory. In Sec. 3.4, we present our results for
various regimes of the parameter space as well as the overall phase diagrams of the
mixture. Finally, in Sec. 3.5 we summarize and draw our conclusions.

3.2 Effective pair potentials

The system under investigation is a binary colloid–PE-star mixture. The colloids
are coded with the subscript ‘c’ and the PE-stars with ‘s’. The mixture contains Nc

spherical, neutral colloids with diameter σc (radius Rc) and Ns PE-stars in aqueous
solution. As already explained in detail in chapter 2, the stars can be character-
ized by their degree of polymerization N , functionality f , and charging fraction α.
Thereby, the f chains of each star are charged in a periodical manner in such a way
that every (1/α)-th monomer carries a charge e > 0. As a result, every star carries
a total bare charge Qs = eαfN , leaving behind N− = αfN monovalent, oppositely
charged counterions in the mixture due to the requirement that the system must
remain electroneutral as a whole. With σs referring to the diameter of the stars, i.e.,
twice the average center-to-end distance Rs of the arms, we define the size ratio q
between the two species as

q =
Rs

Rc
=

σs

σc
. (3.1)

Within this work, we will only consider PE-stars that are smaller than the colloids,
hence q < 1. The degree of polymerization of every arm, N , and the charging ratio
α play a crucial role because they determine the number of released counterions N−

mentioned above. The latter are, in turn, mainly responsible for the emergence of
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the star–star [26,32,33] and the star–colloid effective repulsions [126,127], due to the
loss of entropy they experience when two such objects approach close to each other,
see also Eq. (3.3) in what follows. Here, we fix N = 50 and α = 1/3 throughout.
Generalizations to other values of α and N can follow by appropriately taking into
account the dependence of N− on these parameters. Thereby, the two remaining
single-molecule parameters that we vary are the functionality f of the stars and the
size ratio q.

The relevant thermodynamic parameters are the partial number densities ρi =
Ni/Ω (with i = c, s) of the respective species and the absolute temperature T .
Alternatively, we can work with the concentrations xi = Ni/Ntot and the total
number density ρ = Ntot/Ω, with Ntot = Nc + Ns being the total particle number in
the overall volume Ω of our model system. Again, we will consider constant, room
temperature (T = 300 K) throughout this chapter, since this is the temperature
for which the star–star effective interactions [32, 33] and the PE-star–planar wall
potentials (see chapter 2 or Refs. [126, 127]) have been derived, based on the value
λB = 7.1 Å for the Bjerrum length in aqueous solvents. As usual, we use the inverse
thermal energy β = 1/(kBT ), with kB denoting Boltzmann’s constant.

The starting point for all considerations to follow are the effective pair potentials
between the constituent mesoscopic particles, having integrated out all the monomer,
solvent and counterion degrees of freedom. When introducing this set of interactions
as an input quantity into the full two-component integral equation theory described
in more detail in Sec. 3.3, we can in principle completely access the structure and
thermodynamics of the system at hand.

3.2.1 The colloid–colloid and PE-star–PE-star interactions

The effective colloid–colloid interaction at center-to-center distance r is simply taken
to be a pure hard sphere (HS) potential, namely:

βVcc(r) =

{

∞ r ≤ σc

0 else.
(3.2)

A lot of work concerning effective PE-star–PE-star interactions was done in the
recent past by Jusufi and co-workers [32, 33]. They employed monomer-resolved
molecular dynamics (MD) simulations and analytical theories and found an ultra-
soft, bounded, density-dependent effective interaction governed by the entropic re-
pulsions of counterions trapped in the interior of the stars. The good agreement
between simulations and theory even allowed them to put forward analytic expres-
sions for the full pair potential at arbitrary star separations. The effective potential
has a weak density-dependence, but this disappears when the star density exceeds its
overlap value ρ∗

s . In this case, all counterions are absorbed within the stars, whose



34 3. DEMIXING IN COLLOID–PE STAR MIXTURES

0 0.2 0.4 0.6 0.8 1 1.2
r/σ

s

0

20

40

60

80

100

120

140

160

180

200

βV
ss

f=10
f=18
f=30

α=1/3

Figure 3.1: Star–star effective interaction according to Eq. (3.3), i.e., for densities
ρs beyond the corresponding overlap concentration ρ∗

s . As expected, the potential
vanishes for r > σs, It is tunable by changing the PE stars’ functionality f .

bare charges are therefore completely compensated. Thus, the effective potential
vanishes identically for center-to-center distances r > σs. For overlapping distances
r ≤ σs, there is no dependence on the concentration anymore and only the trapped
counterions’ entropy contributes to the star–star interaction, for this reason reading
for r ≤ σs ≡ qσc as [32, 33, 36, 54]:

βVss(r)

2N2
= ln







N2

2π
[

1 + r
qσc

(

1 − ln
(

r
qσc

))]







+

r
qσc

ln2
(

r
qσc

)

1 + r
qσc

(

1 − ln
(

r
qσc

)) − ln

(

N2

4π

)

. (3.3)

In Eq. (3.3) above, N2 is again the number of spherically trapped counterions of
a single star. It does not coincide with the number of released counterions, N−,
because the number N1 of Manning-condensed counterions [104] does not contribute
to the effective interaction and must be excluded: thus N2 = N− − N1. Extensive
simulations [32, 33, 126, 127] have shown that the relative population of counterions
in the two possible states is essentially independent of r. Thus, we fix N1 to the
value measured in our MD simulations made during the investigation of PE-stars in
planar confinement in chapter 2 (see also [126, 127]). The fraction N1/N− typically
grows with increasing α and covers ranges between 30% and 50%.

Clearly, the interaction Vss(r) of Eq. (3.3) vanishes, along with its first derivative
with respect to r, at r = qσc, guaranteeing the smooth transition to the region
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r > qσc, in which Vss(r) = 0. The latter feature is, strictly speaking, valid only for
star densities exceeding the overlap value ρ∗

s [36]. For ρs < ρ∗
s , a Yukawa tail exists,

emerging from the Coulomb interaction between the non-neutralized PE-stars and
screened by the free counterions. For the purposes of simplicity, we ignore this
small contribution, because the number of released counterions from multi-arm PE-
stars constitutes, at all densities, a tiny fraction of the total number of counterions
N− [33], as confirmed by the very small values of experimentally measured osmotic
coefficients of PE-star solutions [37]. Finally, in order to give a better impression
what the functional form of the effective PE-star–PE-star interaction Vss(r) looks
like, Fig. 3.1 exemplarily shows it for different values of the functionality f .

3.2.2 The cross-interaction

In order to complete the set of effective pair potentials needed to describe the binary
mixture within the framework of a full two-component picture, we have to specify the
colloid–PE-star cross-interaction. Thereby, we proceed along the lines of Ref. [100]
to derive the desired potential for small q-values based on results for the effective
repulsion as obtained in chapter 2 for the case where a PE-star is brought within a
distance z from a hard, flat wall, cf. also [126, 127].

To begin with, let Vsw(z) be the star–wall interaction and Fsw(z) = −∂Vsw(z)/∂z
the corresponding force for a PE-star with all its counterions absorbed, i.e., for
densities ρs beyond the overlap density ρ∗

s (see also previous Sec. 3.2.1). Then,
for the geometry shown in Fig. 3.2(a), the force is related to the osmotic pressure
Π(s) exerted by the star on the surface of the wall via integration of the normal
component of the latter along the area of contact [26]:

Fsw(z) = 2π

∫ ∞

0

dy y Π(s) cos ϑ = 2πz

∫ ∞

z

ds Π(s). (3.4)

Using the above Eq. (3.4), we can directly obtain the functional form for the osmotic
pressure Π(z), provided that the functional form for the star–wall force Fsw(z) is
known:

Π(z) = − 1

2π

d

dz

(

Fsw(z)

z

)

. (3.5)

The same ideas can in principle be applied for a PE-star in the vicinity of a
spherical, hard colloid, i.e., a hard sphere. Again, integrating the osmotic pressure
along the area of contact between both objects yields the force acting on the centers
of the mesoscopic particles. Pursuant to the geometry of the problem, see Fig. 3.2(b),
and paying regard to the underlying symmetry, we get as result for the colloid–PE-
star cross force F ∗

cs(z):

F ∗
cs(z) =

πσ2
c

2

∫ θmax

0

dθ sin θ Π(s) cos ϑ. (3.6)
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Figure 3.2: PE-star (smaller, dashed sphere) interacting with (a) a planar wall
or (b) a hard colloidal particle (bigger, solid-gray sphere).

Here, the upper integration boundary θmax can be acquired by the condition that
Π(s) must vanish identically for all θ > θmax. It is possible to eliminate the polar an-
gles ϑ and θ emanating from the centers of the PE-star and the colloid, respectively,
in favor of the distance s between the star center and the point on the colloid’s
surface that is determined by the aforementioned angles. In doing so, we use geo-
metrical relations evident from the sketch in Fig. 3.2(b), and finally obtain:

F ∗
cs(z) =

πσc

2 (σc + 2z)2

∫ smax

z

ds
[

(σc + 2z)2 − σ2
c + 4s2

]

Π(s). (3.7)

Again, we may obtain the maximum integration distance smax (without any need
to calculate θmax before) simply by demanding that Π(s) must be equal to zero for
all s > smax. For such values of s, the integrand as a whole obviously vanishes
and there are no contributions to the result of the integration anymore. Presumed
the functional form for the osmotic pressure is known, such identification of smax is
rather easily feasible.

Since we want to consider small values q ≤ 0.3 of the size ratio only, the stars
discern the colloidal surface to be rather weakly bent compared to a flat wall, i.e., the
radius of curvature is large in terms of the star radius Rs. Therefore, it is a reasonable
approximation to assume that the osmotic pressure remains almost unchanged with
respect to the situation where a PE-star is brought in contact with a planar wall.
Consequently, we may combine Eqs. (3.5) and (3.7) to obtain a sound estimate for
the effective force F ∗

cs(z) as a function of distance of the star center and the colloid’s
surface. Note that in our special case smax is of the order of the star radius Rs. This
fact becomes evident from Eq. (3.5) if one takes into account that the typical range
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for the star–wall force Fsw(z) as derived in chapter 2 is also approximately Rs or
at the utmost slightly bigger due to effects of a chain compression at the hard wall
(see below) [126, 127]. Clearly, the corresponding potential is received by a simple,
one-dimensional integration:

V ∗
cs(z) =

∫ z

∞

dz′ F ∗
cs(z

′). (3.8)

In Fig. 3.3 we show the shape of V ∗
cs(z) for q = 0.2 and different values of the

stars’ functionality f . In order to demonstrate the importance of the compression
term adding to the star–wall force Fsw besides electrostatic-entropic contributions
[126, 127], we additionally included colloid–star potentials calculated on the basis
of the electrostatic and entropic star–wall forces alone. Since there are striking
deviations, we can clearly expect such devolved compression effects to influence the
phase behavior of the mixture.

Finally, we need to express the effective potential as a function of the particles’
center-to-center separation r instead of the center-to-surface distance z. Thereby,
we have to take into account that the star center is strictly forbidden to penetrate
the volume of the colloid. Thus, the total cross-interaction features a hard core plus
the soft, purely repulsive tail as obtained from the above Eq. (3.8) and finally writes
as:

Vcs(r) =

{

∞ r ≤ σc/2
V ∗

cs(r − σc/2) else.
(3.9)

3.3 Determination of the structure and thermo-

dynamics of the mixture

In this section, we describe the basic principles of liquid integral equation theory for
binary mixtures1 and how to subsequently access the thermodynamics of the system.
In general, the pair structure of the system at hand (and analogously any other
two-component system) is fully described by three independent total correlation
functions hij(r) with i, j = c, s. Hereby, we already allowed for the symmetry
with respect to exchange of the indices, i.e., hij(r) = hji(r). Closely related to the
total correlation functions are the so-called direct correlation functions (dcf’s) cij(r).
Following the same symmetry argument again, there exist only three independent
dcf’s. In what follows, we will denote the Fourier transforms of hij(r) and cij(r) as
h̃ij(r) and c̃ij(r), respectively.

1A further generalization of the theoretical approach from ν = 2 to ν > 2 components in
the mixture is straight-forward. But since we are only interested in binary systems within the
framework of this chapter, we limit ourselves to that special case in order to keep all delineations
as concise as possible.
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Figure 3.3: Effective colloid–PE-star potentials with and without provision for
compression effects as a function of the center-to-surface distance z. Here, we have
chosen the parameters q = 0.2 and (a) f = 10, (b) f = 18, and (c) f = 30. In the
legend boxes, the numbers of condensed counterions N1 used as fit parameters in
chapter 2 are specified for sake of completeness.
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The above-mentioned connection between the total and direct correlation func-
tions is quantitatively incorporated via the multi-component generalization of the
well-known and commonly used Ornstein-Zernike (OZ) relation, which in its Fourier
space representation reads as [121, 129, 130]:

H̃(k) = C̃(k) + C̃(k) · D · H̃(k). (3.10)

Here, H̃(k) and C̃(k) are symmetric (2×2)-matrices whose elements are constituted
by the total and direct correlation functions, respectively, and D is a diagonal (2×2)-
matrix containing the partial densities characterizing the composition of the system
under investigation, i.e.,

[

H̃(k)
]

ij
= h̃ij(k), (3.11)

[

C̃(k)
]

ij
= c̃ij(k), (3.12)

[D]ij = ρiδij. (3.13)

Evidently, Eq. (3.10) can be rewritten yielding the equivalent matrix relation

H̃(k) =
[

1 − C̃(k) ·D
]−1

· C̃(k), (3.14)

with the identity matrix 1 and the matrix inverse [1 − C̃(k) · D]−1. Defining
∆(k) ≡ ρsρc[c̃ss(k)c̃cc(k) − c̃2

cs(k)] and E(k) ≡ ρsc̃ss(k) + ρcc̃cc(k) and returning
to a component-by-component notation, Eq. (3.14) can consistently be expressed in
the following fashion:

h̃ij(k) =
c̃ij(k) − ρ−1

i · ∆(k) · δij

1 + ∆(k) − E(k)
. (3.15)

The linear algebraic system of Eq. (3.15) provides three independent equations
coupling six yet unknown functions h̃ij(k) and c̃ij(k). In order to completely deter-
mine that set of functions, we therefore need to supply three additional relations
to close and subsequently solve the system of equations. There are several popular
choices for these so-called closures, e.g., the Percus-Yevick (PY) or hypernetted-
chain (HNC) approximations in their respective two-component generalizations.
While the former is known to generate reliable results for short-range interactions,
the latter furnishes very accurate estimates for the pair structure in case of long-
range, soft potentials. Neither the PY nor the HNC closure are thermodynamically
consistent, however, and in our case this is a crucial factor, since we are interested in
the calculation of phase boundaries, which should not depend on the route chosen to
calculate the free energies. Thus, we resort to the Rogers-Young (RY) closure [131],
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in which thermodynamic consistency can be enforced. In its multi-component ver-
sion the RY-closure reads as:

gij(r) = exp [−βVij] ·
{

1 +
exp [χij(r)fij(r)] − 1

fij(r)

}

, (3.16)

where gij(r) = hij(r) + 1 are the so-called radial distribution functions and we
introduced new auxiliary functions χij(r) = hij(r) − cij(r). Vij(r) refers to the
pair interactions between species i and j as presented in Sec. 3.2. It may be again
emphasized that the main benefit we gain from using the modified relation (3.16)
is closely related to the hybrid character of the latter. Due to the fact that any
closure constitutes an approximation, we in general obtain different results for the
partial and total isothermal compressibilities as calculated via either the virial or
the fluctuation route (see below), as already mentioned above. But the three mixing
functions emerging in Eq. (3.16) and given by

fij(r) = 1 − exp [−ζijr] , (3.17)

with ζij being the so-called self-consistency parameters, now allow us to address
this problem and to appropriately match the isothermal compressibilities. Since it
is sufficient to apply a single consistency condition only, namely the requirement
of equality of the system’s total virial and fluctuation isothermal compressibilities,
the usual approach is to employ just one individual parameter ζij = ζ for all com-
ponents. Hence, only a single mixing function fij(r) = f(r) remains. However,
multi-parameter versions of the RY closure have nevertheless also been proposed
some years ago [132], accordingly demanding the equality of all the partial com-
pressibilities. It is easy to check that for ζ = 0 and ζ = ∞ the multi-component PY
and HNC closures, respectively, are recovered from Eq. (3.16)2.

Now, we have to address in more detail the issue of calculating the total isother-
mal compressibility following the different routes. At first, we concern ourselves with
the virial compressibility κv

T . The total pressure P of the system at hand, including
both ideal and excess contributions, takes the form [130]:

βP = ρ − 2πρ2

3

∑

i

∑

j

xixj

∫ ∞

0

dr r3 V ′
ij(r) gij(r), (3.18)

with V ′
ij(r) = −∂Vij(r)/∂r being the different pair potentials’ derivatives with re-

spect to the inter-particle distance r. Provided the pressure pursuant to Eq. (3.18)

2When using the RY closure, the correlation functions obviously – besides their inherent density
dependence – parametrically depend on the mixing parameter ζ, i.e., hij = hij(r; ρc, ρs, ζ) and
cij = cij(r; ρc, ρs, ζ). The same must obviously hold for all quantities deduced from these two
functions. Note that we will nevertheless drop both the ρi’s and ζ from the respective parameter
lists in order not to overcrowd our notation.
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is known, κv
T can be obtained by differentiating with respect to the total density ρ

while the partial concentrations xi are kept fixed:

ρkBTκv
T =

[

∂(βP )

∂ρ

∣

∣

∣

∣

{xi}

]−1

. (3.19)

In order to evaluate the fluctuation compressibility κfl
T , we initially introduce the

three partial structure factors Sij(k). As the correlation functions and the radial
distribution functions, respectively, they also describe the structure of the system:

Sij(k) = δij +
√

ρiρjh̃ij(k). (3.20)

While for the one-component case the compressibility can simply be obtained as
the (k = 0)-value of the static structure factor, i.e., S(k = 0) = ρkBTκfl

T , things
are a bit more complicated for binary (or multi-component, ν > 2) mixtures. Here,
in generalization of the one-component situation, the compressibility can finally be
written using the following expression [16, 133, 134]:

ρkBTκfl
T =

Sss(0)Scc(0) − S2
cs(0)

xcSss(0) + xsScc(0) − 2
√

xsxcS2
cs(0)

. (3.21)

Based on the knowledge of the partial correlation functions hij(r) and structure
factors Sij(k) as obtained by (numerically) solving the OZ relation, Eq. (3.10),
and using the RY closure, Eq. (3.16), we can in principle completely access the
thermodynamics of the system at hand. In order to calculate the binodal lines, a
very convenient quantity to consider is the concentration structure factor Scon(k). It
is a linear combination of all the partial structure factors, whereby the corresponding
pre-factors are determined by the different species’ concentrations xi, namely:

Scon(k) = xcx
2
sScc(k) + xsx

2
cSss(k) − 2(xcxs)

3/2Scs(k). (3.22)

Now, let P be the total pressure according to the above Eq. (3.18) and g(xs, P, T ) =
G(xs, Ntot, P, T )/Ntot the Gibbs free energy G(xs, Ntot, P, T ) per particle. Then, the
second derivative of the former is connected to the concentration structure factor
Scon(k) by means of the sum rule [135–137]

βg′′(xs, P, T ) ≡ β
∂2g(xs, P, T )

∂x2
s

=
1

Scon(0; xs)
, (3.23)

where we have added the concentration xs as a second argument to Scon(k) to em-
phasize this dependence. This differential equation has to be integrated along an
isobar for any prescribed value of the pressure P ∗ ≡ βPσ3

c = const., to obtain the
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Gibbs free energy from the structural data, Scon(k = 0; xs). A detailed analysis
of the limiting behavior of g′′(xs) shows a divergence as 1/xs for xs → 0 and as
1/(1 − xs) for xs → 1 [137]. In order to avoid any technical difficulties when nu-
merically integrating, we a priori split the Gibbs free energy g(xs) into a term that
arises from its ideal part and a remainder, which we call excess part3, gex(xs):

βg(xs) =(1 − xs) ln(1 − xs) + xs ln(xs)

+ 3(1 − xs) ln(Λc/σc) + 3xs ln(Λs/σc) + βgex(xs), (3.24)

with the thermal de-Broglie wavelengths Λc,s of the colloids and the stars, respec-
tively. Taking the second derivative in the above Eq. (3.24) again, we obtain:

βg′′(xs) =
1

xs
+

1

1 − xs
+ g′′

ex(xs). (3.25)

Thus, the ideal part of the Gibbs free energy is exclusively responsible for the ap-
pearance of the aforementioned divergences at the integration boundaries and the
modified second-order differential equation

βg′′
ex(xs) =

1

Scon(0; xs)
−

(

1

xs
+

1

1 − xs

)

(3.26)

for the excess Gibbs free energy alone is obviously free of any diverging terms. We
can therefore easily solve it numerically. Subsequent addition of the analytically
known ideal term gid(xs) = (1 − xs) ln(1 − xs) + xs ln(xs) directly yields the total
Gibbs free energy per particle that we are interested in. The two terms involving
the thermal de-Broglie wavelength are linear in xs; they only provide a shifting of
the chemical potentials and can be dropped.

Thermodynamic stability requires that g(xs) is convex [138]. In case we en-
counter some xs-region where g′′(xs) < 0 the binary mixture features a fluid–fluid
demixing transition. In that sense, Eqs. (3.23) and (3.26), respectively, allow us to
investigate the thermodynamics and the phase behavior of the system at hand by
providing a tool to compute the Gibbs free energy (per particle). The corresponding
phase boundaries can be calculated using Maxwell’s common tangent construction,
which guarantees that the chemical potentials, µi, are the same between both coex-
isting phases. Since we are in a situation where we moreover fixed the pressure P ∗ of
the mixture and its absolute temperature T , all conditions for phase coexistence are
clearly fulfilled. Concretely, the common tangent construction amounts to solving
the coupled equations

g′(xI
s) = g′(xII

s ) (3.27)

3The ‘excess’ part gex(xs) in Eq. (3.24), includes a term ln(ρσ3

c
) that arises from the original

ideal part but which does not cause any divergences at the limits xs → 0 and xs → 1, which we
seek to remove. Thus we readsorb it into a redefined excess part, which can be integrated without
problems.



3.3. Determination of the structure and thermodynamics of the mixture 43

0 0.2 0.4 0.6 0.8 1 1.2
ρ

c
σ

c

3

0

0.05

0.1

0.15

0.2

0.25

0.3

ρ sσ s3

P*=40.0
P*=50.0
P*=60.0

Figure 3.4: Position and shape of isobars P ∗ = βPσ3
c = const. in the (ρc, ρs)-

plane as computed starting from solutions of the OZ relation, exemplarily shown for
(f = 30)-arm PE-stars and a size ratio q = 0.2. For the higher values of the pressure,
namely P ∗ = 50.0 and P ∗ = 60.0, there are parts of the density plane emerging
where it is not possible to numerically solve the integral equations anymore, thus
the isobars display ‘gaps’ that are indicators of the ensuing coexistence region.

and
g(xI

s) − xI
sg

′(xI
s) = g(xII

s ) − xII
s g′(xII

s ) (3.28)

for the concentrations xI,II
s of the coexisting phases I and II.

In integrating Eq. (3.25) and adding the ideal terms, one obtains the Gibbs free
energy per particle, g(xs) modulo an undetermined linear function C1xs + C0 with
the constants C1 and C0 to be fixed by appropriate boundary conditions. As is clear
from Eqs. (3.27) and (3.28) above, such a linear term is anyway immaterial from the
determination of phase boundaries and, in practice, it can be ignored on the same
grounds that the terms involving the thermal de-Broglie wavelengths in Eq. (3.24)
have been dropped. Nevertheless, the constants C1 and C0 can be determined as
follows. Taking into account that the Gibbs free energy G(xs, Ntot, P, T ) is an ex-
tensive function but in its natural argument list there is only one extensive variable,
namely the number of particles Ntot, Euler’s theorem [10] asserts the function g to
have the form:

g(xs) = xsµs(xs) + (1 − xs)µc(xs). (3.29)

For both limiting one-component cases, i.e., if no stars (xs = 0) or no colloids
(xs = 1) are present in the system, the following relation holds true:

βg = f̂ + ρf̂ ′ = ln(ρ) + f̂ex + ρf̂ ′
ex, (3.30)
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Figure 3.5: Examples of the second derivative of the Gibbs free energy per
particle, g′′(xs), plotted against the star concentration xs for stars with functionality
f = 30, PE-star–colloid size ratio q = 0.2, and two different pressures P ∗ = βPσ3

c .
Symbols are calculated from the OZ relation, lines were obtained by cubic spline
interpolation. Note that the xs-interval where we are not able to numerically solve
the integral equations grows distinctly upon increasing the pressure, i.e., as we move
away from the critical point. Moreover, the plot illustrates the limiting behavior of
g′′(xs) as 1/xs for xs → 0 and as 1/(1−xs) for the opposite case xs → 1, respectively.

where f̂ = βF/Ntot denotes the Helmholtz free energy per particle and f̂ ′ its deriva-
tive with respect to the density ρ; the subscript ‘ex’ refers to the excess part of
f̂ . On the other hand, f̂ ′

ex is connected to the excess pressure Pex [as known from
Eq. (3.18) above] via the equation

f̂ ′
ex = βPex/ρ

2. (3.31)

Following Eq. (3.31), f̂ex can be obtained by integrating the ratio Pex/ρ
2 with respect

to ρ and applying the additional boundary condition f̂ex(ρ → 0) = 0. Once the
Helmholtz free energies for the pure colloid and PE-star systems are known this
way, the corresponding chemical potentials µc(0) and µs(1) can be calculated and the
conditions g(0) = µc(0) and g(1) = µs(1) for any arbitrary pressure P [cf. Eqs. (3.29)
and (3.30) above] yield C0 and C1. Note that for the pure colloidal system, xs = 0,
we can avoid the integration route to compute the pressure by using the accurate
Carnahan-Starling expressions for hard spheres [139]. The pressure obtained this
way turns out to be consistent with the one calculated from the Rogers-Young route,
based on Eq. (3.18) and our results for the radial distribution function g(r).



3.3. Determination of the structure and thermodynamics of the mixture 45

0 0.2 0.4 0.6 0.8 1
x

s

-3

-2

-1

0

1

2

βg
(x

s)

0.9 0.95 1

Figure 3.6: Gibbs free energy per particle g(xs) vs. the star concentration xs,
plotted for f = 30, q = 0.2, and P ∗ = 50.0. The curve was obtained via inte-
grating the interpolated function g′′(xs) twice according to the procedure delineated
in the main text, whereby we subtracted an arbitrary linear function afterwards.
The corresponding inset shows g(xs) with an differently scaled xs-axis in order to
highlight the concave parts of the function and to show Maxwell’s common tangent
construction in detail.

Note that when crossing the spinodal line in the density plane the long wave-
length limits of the partial structure factors, Sij(k → 0), take non-physical values.
This behavior expresses the system’s physical instability against a possible fluid–
fluid phase separation. Thereto, it is no longer feasible to (numerically) solve the
integral equations once we reached the spinodal; in fact, integral equation theories
themselves break down before the spinodal is reached, yet after the binodal [140].
Consequently, depending on the total pressure and above a certain threshold value
of the same, P > Pthr, the concentration structure factor Scon(0; xs) is unknown
over some interval ∆xs(P ). Hence, we need to appropriately interpolate Scon(0; xs)
in order to obtain the second derivative of the Gibbs free energy per particle for all
0 ≤ xs ≤ 1 and, in this way, to allow for the integration of the differential equations
(3.23) or (3.26), respectively. Along the lines of Ref. [137], we perform this necessary
interpolation using cubic splines. In order to illustrate the whole procedure, Fig. 3.4
exemplarily depicts the shape of the isobars in the (ρc, ρs)-plane as obtained via the
integration route for various pressures P ∗ and a representative parameter combi-
nation, while for the same values of f and q Fig. 3.5 shows the function g ′′(xs) as
computed from the OZ equation together with its cubic spline interpolation, again
for two different pressures P ∗. Moreover, in Fig. 3.6, we plotted the corresponding
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Gibbs free energy g(xs) for a pressure P ∗ = 50.0. In addition, the inset depicts
Maxwell’s common tangent construction used to calculate the star concentrations
for the coexisting fluid phases.

It may be emphasized that the results for the binodal do not depend on the
concrete interpolation scheme, at least as long as the numerical methods used to
solve the OZ relation are able to precisely reach the spinodal, i.e., the points where
the structure factors diverge for k → 0. Admittedly, this is not always strictly the
case since the numerical schemes we employed to calculate correlation functions and
corresponding structure factors, respectively, may break down slightly before the
spinodal is reached. Accordingly, small inaccuracies induced by the interpolation
procedure arise which grow with increasing width of the gap region ∆xs(P ), or
to put it in other words, with increasing pressure P , i.e., if we move away from
the critical point. As long as the aforementioned interval where no solution of the
integral equations can be found is rather small, we expect the interpolation to be
reliable, while for higher pressures the received binodals are of more approximate
character. Nevertheless, they still show a very reasonable behavior. We are going
to discuss the results for the phase diagrams in detail in Sec. 3.4.3.

3.4 Results

3.4.1 Low colloid-density limit

Based on the radial distribution functions gij(r) as obtained by the OZ relation
closed with the RY closure, Eqs. (3.10) and (3.16), we may map our two-component
mixture onto an effective one-component system of the colloids alone. In doing so,
the PE-stars are completely traced out, resulting into an effective colloid–colloid
interaction where the pure hard sphere potential is masked by additional depletion
contributions originating in the presence of the stars and the forces they exert on
the colloids. To put it in other words, the colloid–PE-star interactions cause spatial
correlations of the PE-star distribution in the vicinity of the colloids, and it is exactly
these correlations that determine the resulting shape of the depletion potential. Note
that the latter in general parametrically depends rather on the PE-stars’ chemical
potential µs or, equivalently, the density ρr

s of a reservoir of stars at the same chemical
potential µr

s = µs, than on their density ρs in the real system. Hence, it is in principle
more convenient to switch to a reservoir representation (ρc, ρ

r
s) of the partial densities

instead of the original system representation (ρc, ρs) when considering such effective
interactions. Clearly, if the colloid density ρc takes finite values, it must hold ρs 6= ρr

s.
But since we will consider the limiting case of low colloid densities ρc → 0 only in
what follows, we have ρr

s = ρs again, i.e., reservoir and system representation of the
partial densities coincide.
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Concretely, the desired mapping4 can be achieved by a so-called inversion of the
full, two-component results of the integral equations in the low colloid-density limit
ρc → 0 [137, 141, 146–148]. It can be shown from diagrammatic expansions in the
framework of the theory of liquids [129] that in this limit the pair correlation function
for any fluid reduces to the Boltzmann factor g(r) = exp[−βv(r)]. Here, v(r) denotes
the pair potential the fluid’s constituent particles interact by. According to this
relation, the effective colloid–colloid potential Vdepl(r), depending parametrically on
both the partial colloid and star densities ρc and ρr

s = ρs, is obtained as follows:

βVdepl(r) = lim
ρc→0

ln [gcc(r; ρc, ρ
r
s)] . (3.32)

Fig. 3.7 shows examples for the effective colloid–colloid interaction Vdepl(r) for
different functionalities f of the stars, partial star densities ρr

s = ρs, and PE-star–
colloid size ratios q. As one can see from the plots, for distances r > σc the resulting
depletion interaction mediated by the stars is attractive and features a slightly os-
cillating behavior, while for inter-particle separations r ≤ σc the bare hard sphere
repulsion remains. In particular, Fig. 3.7(a) illustrates that the addition of PE-stars
to the mixture results in both a significant increase of the depth of the attractive
potential well and a further enhancement of the aforementioned oscillations but does
in no way affect the range of the attraction. As can be read off from Fig. 3.7(b), the
latter is determined by the size ratio q alone and grows linearly with the diameter of
the stars. Furthermore, there is a measurable, but weak, dependence of the interac-
tion strength on the functionality of the PE-stars: the higher the arm number f the
stronger becomes the effective attraction between two colloids [cf. Fig. 3.7(c)]. All
these trends are in perfect agreement with the common understanding of the phys-
ical mechanisms leading to the appearance of such an effective attraction: due to a
depletion of the PE-stars in the spatial region between a pair of colloids, and depen-
dent on the colloids’ mutual distance, they are hit asymmetrically by the stars from
the inside and the outside. Consequently, the unbalanced osmotic pressure pushes
the colloids together. Clearly, the absolute value of this force must grow when
increasing the star density ρs, simply because there are more collisions between PE-
stars and colloids. For higher functionalities f , the colloid–PE-star cross-interaction
becomes more repulsive (see Sec. 3.2.2), i.e., the stars push the colloids harder, thus
also leading to a strengthened effective colloid–colloid attraction. And finally, the
diameter of the PE-stars determines whether or not they fit into the spatial region

4Note that the most accurate way to compute effective interactions between two colloidal parti-
cles in the presence of (smaller) PE-stars is to employ direct computer simulations [137,141–144].
Another way to the depletion potential would in principle be offered by Attard’s so-called super-
position approximation (SA) [145]. But since we want to perform the mapping onto an effective
one-component system in order to gain some qualitative understanding of the physics of our sys-
tem only but stick to the full two-component picture to quantitatively calculate the binodals of
the mixture, we turn down such alternative methods within the scope of the thesis at hand.
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Figure 3.7: Effective colloid–colloid depletion potentials Vdepl(r) as obtained by
an inversion of the OZ relation. For details concerning the procedure, see main text.
We have investigated the influence of (a) the partial star density ρr

s = ρs, (b) the
PE-star–colloid size ratio q, and (c) the functionality f of the stars on the functional
form of the interaction potential. It is evident from the plots that the presence of
the stars induces an attraction between the colloids in addition to their bare hard
sphere repulsion which takes over for distances r ≤ σc.
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between a pair of colloids for a given distance of the two. Hence, the size ratio q
controls if the stars are expelled from the said region of space, or to put it in other
words, for what scope of inter-colloidal separations depletion actually takes place.
Thus, the range of the effective force can be altered by changing q.

The occurrence of oscillations of the effective potential Vdepl(r) obviously means
that the attractive minimum is followed by a repulsive barrier whose height is set by
the concentration of PE-stars in the mixture (see above). In particular, it grows upon
addition of stars to the system and such behavior could, in case of distinctly high and
broad maxima, in principle lead to micro-phase separation, i.e., cluster formation
[149–153]. But for the physical system we examine and the range of parameters
we investigate, the barrier remains anyway rather low and narrow. Micro-phase
separation is therefore not likely to happen. Instead, the type of effective colloid–
colloid attractions at hand, i.e., an attractive potential valley together with a nearly
vanishing or at least less-pronounced repulsive barrier, forces the system to develop
long-range fluctuations upon an increase of the PE-star concentration, consequently
favoring the possibility of a fluid–fluid demixing transition of the two-component
mixture. Such behavior is frequently observed in, e.g., colloid–polymer mixtures
[154–156]. Thus, when considering the phase behavior of our system by calculating
its binodals, we expect to find evidence for macro-phase separation. This anticipated
result will be confirmed by the results of the following section.

3.4.2 Structure of the mixture

Before switching over to a presentation of the demixing binodals as obtained via
the procedure described in detail in Sec. 3.3, i.e., initially calculating the Gibbs
free energy g(xs) with both the temperature T and the pressure P kept fixed and
subsequently identifying the sought-for coexisting fluid phases using Maxwell’s com-
mon tangent construction for the concave parts of that function (see, in particular,
Figs. 3.5 and 3.6), it is useful to study partial pair correlation functions gij(r) and
corresponding structure factors Sij(k) (i, j = c, s) first. Since these quantities com-
pletely describe the pair structure of the system, we are able to gain detailed insight
into the physics and phase behavior of the mixture and to discover, in addition to
the findings of the previous Sec. 3.4.1, more evidence that it is reasonable to expect
a mixing–demixing transition.

Fig. 3.8 shows the partial radial distribution functions gij(r) for typical parame-
ters, namely a colloid–PE-star mixture with a size ratio of q = 0.3 and the PE-stars
having f = 30 arms each. We show results for different mixture compositions, i.e.,
varying the partial densities for both species as indicated in the plots. Figs. 3.8(a)
and (b), on the one hand, depict the decisive length scales of the problem or, equiv-
alently, the typical ranges of the underlying pair potentials as set by the sizes of
colloids and PE-stars, respectively. The distinct height of the colloid–colloid con-
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Figure 3.8: Partial radial distribution functions gij(r) (i = c, s) for PE-stars with
f = 30 arms, star–colloid size ratio q = 0.3, fixed PE-star density ρsσ

3
s = 0.27, and

colloidal densities of (a) ρcσ
3
c = 0.05 or (b) ρcσ

3
c = 0.29. For the same value of the

stars’ partial density, the remaining two parts of the figure illustrate the detailed
shape and the ρc-dependence of (c) the star–star correlation function gss(r) and (d)
the cross-correlation function gcs(r). For an in-depth discussion and interpretation
of the results, we refer the reader to the main text.
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tact value gcc(σc) and its further rise upon increasing the PE-star density (not shown
in our figures) is an obvious manifestation of the mainly attractive character of the
effective colloid–colloid interactions. In this respect, we again refer the reader to
Sec. 3.4.1 and, in particular, Eq. (3.32) mathematically describing the inversion
procedure for the OZ relation. On the other hand, when taking a closer look to the
whole set of pair correlation functions we find various signs pointing towards the
supposable occurrence of a demixing transition. The main peaks of both gss(r) and
gcc(r) gain in height when adding colloids to the system, while the peak height of
the cross-correlation function gcs(r) remains essentially the same [see Figs. 3.8(a),
(b) and (d)]. In addition, Figs. 3.8(c) and (d) show an enhancement in the star–
star pair correlations and an concurrent depletion in the colloid–star correlations for
raising colloid densities. The intervals of distances affected are remarkably broad,
both the range of the enhancement and the depletion are of the order of the colloid
size, not the much smaller star size. Altogether, these features show the tendency of
colloids as well as stars to seek spatial proximity of their own species while avoiding
the other one, and we may expect macroscopic regions rich in the one and poor in
the other species to be formed provided the partial densities, in particular of the
colloids, are sufficiently high.

Fig. 3.9 illustrates the typical shape of the partial structure factors Sij(k). Here,
we chose the parameters as follows: the PE-star functionality is f = 18, we set the
size ratio to q = 0.2, fixed the density of the stars as ρsσ

3
s = 0.12, and considered

several values of the colloidal density ρcσ
3
c . When comparing the three main plots of

the figure, the first finding is that the locations of the different Lifshitz lines [157,158]
in density space strongly vary. These lines mark the crossover of respective structure
factors between a regime where they display a local minimum in the long wavelength
limit k → 0 and a region where the behavior changes to developing a local maximum
for the same k-values. While for the given number of stars in the system the star–
star Lifshitz line is obviously immediately crossed for practically arbitrary low colloid
concentrations [Fig. 3.9(b)], we need an noticeably increased partial colloid density
lying in the range of about 0.25 . ρcσ

3
c . 0.5 for the colloid–star structure factor to

experience such crossover [Fig. 3.9(c)]. In case of the colloid–colloid structure factor,
the corresponding values of the colloid density are even higher, about ρcσ

3
c ≈ 0.7 for

the parameters used here [Fig. 3.9(a)]. Another indication of the demixing transition
we are searching for within the scope of this chapter and that is expected to occur
upon adding more and more colloids and stars to the binary mixture is the tendency
of all partial structure factors to diverge in the aforementioned long wavelength
limit, i.e., Scc(k → 0) → +∞, Sss(k → 0) → +∞ and Scs(k → 0) → −∞, thus
demonstrating that we approach the spinodal line. The inset in Fig. 3.9(b) was
included in order to again demonstrate the huge difference in the structural length
scales of the two species present in the mixture. The pre-peak in the cross structure
factor Scs(k) is without any direct physical interpretation, while pre-peaks in the
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Figure 3.9: Examples of the partial structure factors (a) Scc(k), (b) Sss(k), and (c)
Scs(k) for PE-star functionality f = 18, size ratio q = 0.2, fixed density of the stars
ρsσ

3
s = 0.12, and several values of the colloidal density ρcσ

3
c , i.e., different mixture

compositions. Please note that the line styles in the main plot of part (b) refer to
the same parameters as explained in the legends of parts (a) and (c), respectively.
The inset in (b) addresses a comparison between the colloid–colloid and the star–
star structure factors for the aforementioned star density and a typical value of the
colloid density (indicated in the plot) and thereby illustrates the huge difference in
the structural length scales of the two species.
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Figure 3.10: The same as Fig. 3.9, but now for fixed colloid density ρcσ
3
c = 0.5

and several values of the PE-star density ρsσ
3
s .
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Figure 3.11: Comparison of the cross structure factors Scs(k) for f = 30 and
the two different size ratios investigated, q = 0.2 and 0.3. The PE-star partial
densities were chosen to be almost the same in both cases, i.e., ρsσ

3
s = 0.27 and

0.24, respectively. The corresponding colloid densities are (a) ρcσ
3
c = 0.29 and (b)

ρcσ
3
c = 0.05. Upon varying the size ratio, the peak positions shift and the (k = 0)-

values of the partial structure factors shown change significantly while there is no
remarkable effect on the height of the different peaks.
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intra-species structure factors would evince micro-phase separation [149–153]. Since
the latter peaks are completely absent in our case, we may once more conclude that
the system is expected to macro-phase separate instead of forming clusters. Fig. 3.10
also shows results for the partial structure factors Sij(k), but in contrast to Fig. 3.9
now for fixed colloid density ρcσ

3
c = 0.5 and varying values of the PE-star density

ρsσ
3
s . As expected, the observed trends are clearly the same.
Finally, Fig. 3.11 depicts the q-dependence of the cross structure factors for

f = 30 and two different values of the colloid density ρcσ
3
c [parts (a) and (b)]. For

both size ratios investigated, the star densities ρsσ
3
s are chosen to be almost the

same5. As is obvious from the plots, a change in q only affects the peak positions
and the depth of the local minimum for k → 0, but there is no significant influence
on the peak heights of the functions. This is in agreement with the findings for the q-
dependence of the effective colloid–colloid interactions (see Fig. 3.7), and essentially
means that the size ratio q is crucial for determining the typical structural length
scales, but hardly for how pronounced this structure is.

3.4.3 Fluid–fluid phase equilibria

After having found plenty of evidence in our analysis so far for a mixing–demixing
transition taking place for certain ranges of partial densities ρiσ

3
i , we finally come

to a more quantitative description based on the corresponding binodals obtained as
explained above. In Fig. 3.12 we show the demixing binodals for size ratios q = 0.2
[Fig. 3.12(a)] and q = 0.3 [Fig. 3.12(b)] and for different PE-star functionalities f ,
as denoted in the legend boxes. In addition, we connected some of the point pairs
used to compute the binodals and representing coexisting colloid-rich and colloid-
poor phases by tie lines. Concerning the mutual positions of the binodals in the
density plane, it can be seen that they shift towards higher PE-star concentrations
upon increasing the size ratio q and/or decreasing the PE-star functionality f . This
characteristic behavior is in agreement with previous studies of binary mixtures of
colloids and neutral polymer stars [137]. The filled triangles in Fig. 3.12 denote rough
estimates for the positions of the respective critical points determined graphically
by taking the tie lines into account. The critical points move towards slightly lower
colloid densities when lowering the arm number of the PE-stars, whereas altering
the size ratio has q has no significant effect.

The star densities ρsσ
3
s that bring about a demixing instability are typically

higher for the case q = 0.3 than for the case q = 0.2. This looks counterintuitive at
first sight, since one expects that larger PE-stars will destabilize the mixture earlier.

5They are not exactly the same since such results are not systematically available due to the fact
that we originally solved the OZ relation together with the RY closure for points in the density plane
where the star density takes ‘smooth’ values when scaled with respect to the colloidal diameter σc,
not their own diameter σs.
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Figure 3.12: Demixing binodals calculated according to the procedures introduced
in the main text for (a) q = 0.2 and (b) q = 0.3, and different values of the PE-stars’
functionality f . In order to illustrate the coexisting colloid-poor and colloid-rich
phases, we additionally show several tie lines. In this connection, please note that
we in fact used much more such point pairs in order to obtain the binodal lines
and not only the shown ones. Based on the full sets of coexisting fluid phases we
computed, we made rough estimates for the positions of the respective critical points
in the ρc-ρs plane, represented by the filled triangles.
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In order to put the numbers in their appropriate context, it is useful to employ
the picture of the effective colloid–colloid potential, which includes a star-induced
attraction. Here, the range and depth of this attraction steer the occurrence of the
demixing binodal, which is equivalent to a separation between a colloidal fluid and
a colloidal gas. The natural length scale in this picture is the colloid diameter σc;
concomitantly, the physically relevant density in making comparisons between the
q = 0.2 and the q = 0.3 cases should be scaled with the colloid size: ρsσ

3
c = q−3ρsσ

3
s .

It can be easily seen that the additional pre-factor q−3 renders the rescaled star
densities for q = 0.3 indeed lower than the ones for q = 0.2, in agreement with the
intuitive expectations.

The volume terms for the integrated out counterions [159–161] do not affect
the phase boundaries, since under the assumption of full absorbing in the stars’
interiors, they are simply proportional to the number Ns of the latter [36] and
thus they cause a trivial shift of the stars’ chemical potential, without affecting the
osmotic pressure of the solution [4]. Finally, we mention that we did not consider the
competition between the demixing binodals and the crystallization of the colloids.
The investigation of the system’s solid states lies beyond the scope of this work.
The trends found for the f - and q-dependences are comparable to the colloid–star
polymer case mentioned above. Although the underlying pair potentials are different
to a certain degree, a closer inspection to the full phase diagrams in Ref. [137] can
give hints regarding the stability of the binodals against pre-emption by the freezing
lines. Provided the positions of the freezing lines are not too different here, it seems
to be reasonable to assume, based on such a comparison, that our demixing lines
will survive at least for the larger size ratio between stars and colloids. Nevertheless,
the existence of a demixing binodal, even in the case that the latter is pre-empted
by crystallization, has important consequences for the time scales involved in the
dynamics of crystallization [162, 163].

3.5 Conclusions

We have put forward a coarse-grained description of mixtures between neutral,
spherical, hard colloids and multi-arm PE-stars of size smaller than the colloidal
particles. Effective interactions between the constituent particles have been em-
ployed throughout, allowing for a mesoscopic description that leads to valuable
information on the structure and thermodynamics of the two-component mixture.
The cross-interaction, which has been derived here, is sufficiently repulsive to bring
about regions of instability in the phase diagram and leading thereby to macro-
scopic, demixing phase behavior. This, in turn, can be rationalized by means of
the depletion potentials between the colloids, which are induced by the stars, and
feature attractive tails akin to those encountered in usual colloid–polymer mixtures.
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The form of the cross-interaction plays a crucial role in determining stability
and can, by suitable tuning, completely change the behavior of the mixture from
macroscopic phase separation to micro-phase structuring with a finite wavelength.
In this respect, a very promising direction of investigation is to allow for the colloids
to carry a charge opposite to that of the arms of the PE-stars. As we are going
to see in chapter 4, there is a rich variety of resulting complexation morphologies
between the two constituents.



Chapter 4

Complexation of polyelectrolyte

stars with charged substrates

Within this chapter, we study the complex formation of star-branched polyelec-
trolytes (PE’s) with oppositely charged substrates of different geometries by means
of monomer-resolved molecular dynamics (MD) simulations. In case of planar sur-
faces, we identify five different morphological states with continuous crossovers be-
tween them, ranging from almost undisturbed, spherical configurations for low sur-
face charge densities to fully collapsed, two-dimensional starfish-type arrangements
in the complementary limit of strong electrostatic attractions. Thereby, the PE-
stars lose the ability to reabsorb the vast majority of their counterions. The general
behavior is stable against variation of the PE-star density and addition of acces-
sory wall counterions, although there are quantitative changes. For weakly curved
surfaces, i.e., PE-stars near charged colloids of larger radius, our results prove the
fundamental trends to persist as long as the size ratio is sufficiently small.

4.1 Introduction

In chapters 2 and 3, we studied the impact of planar and curved confinement on
the typical conformations and other properties of star-branched PE’s. Thereby, we
determined the purely repulsive, effective interaction between PE-stars and neutral,
flat walls by dint of both simulational techniques and mean-field theory [126, 127].
Based on the results, the cross-interaction between PE-stars and hard, uncharged
colloids of larger diameter was calculated, granting access to a computation of the
structural and phase behavior of binary colloid–PE-star mixtures [164]. A conse-
quential next step is to drastically change the features of the confining surfaces by
allowing for them to carry charges of opposite sign with respect to the PE-stars,
thus inducing a complexation process of morphological nature.

59
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In the recent past, a great deal of work was already devoted to investigations
of the adsorption of linear PE’s to planar, charged substrates, charged colloids or
cylinders, proteins, and dendrimers. All these efforts were motivated by the high
biological and technical relevance of such processes. Hereby, theoretical [1, 58–68],
experimental [69–77] and simulational methods [78–90], were employed to study a
rich variety of problems. This includes, e.g., the complexation and coagulation char-
acteristics, the dependence of the resulting configurations on size and charge ratios,
a possible change of the complexation tendency upon variation of chain rigidity,
overcharging phenomena, the functional form of effective interactions between the
substrate and the attracted PE’s, and the stability of the composed entities. Many-
body effects like induced flocculation, PE multi-layering, and phase separation into
colloid-poor and colloid-rich, complexated phases also attracted a lot of interest.
However, there is no systematic comparison of theory and experiment yet that is
devoted to the adsorption onto colloidal particles (for a discussion of this problem,
see Ref. [165]).

For star-branched PE’s, to our best knowledge only very little work probing the
complex formation with charged substrates was done up to now [166, 167]. We are
going to deal with PE-stars instead of linear PE’s not only because this is a natu-
ral extension of our previous work, but also since this particular architecture offers
a number of distinct advantages. As already stated in the previous chapters, by
modifying the functionality, PE-stars show the unique property of being tunable,
soft colloids and bridging between ultra-soft and stiff behavior. This character, to-
gether with the ability of PE-stars to absorb a large amount of counterions, renders
the complexation process very different from that of linear PE chains. By suitably
changing, e.g., the PE-star functionality or the surface charge density of the sub-
strate, we can thus generate a large variety of complex morphologies. In the extreme
limit of very strong PE-star–wall attractions, this complexation can be expected to
reach as far as a full collapse onto two-dimensional configurations, which we are
going to call ‘starfishes’ in what follows. Indeed, the existence of the latter already
found experimental corroboration [166]. Moreover, it is known that the configura-
tions of PE-stars can also be influenced by other stimuli. The addition of multivalent
counterions can induce a collapse of PE-stars in solution or in the adsorbed state on
mica surfaces, and they can subsequently be switched from the collapsed back to an
expanded state by laser light [167]. In case of colloid–PE-star mixtures, new types
of supra-colloidal aggregates might also be created, gaining insight and control over
the phase behavior and the transport properties of such solutions.

From a technical and application-oriented point of view there is also a strong
interest in undertaking efforts to understand how shape and structure of complexes
built of PE-stars and planar or curved surfaces can be influenced externally. Since
PE-stars show far-reaching fundamental similarities to ionic hydrogels, which were
found to form arrays of dynamically tunable, photo-switchable or bioresponsive mi-
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crolenses [91–94], theoretical predictions regarding possibilities to precisely steer
these lenses would allow for the design and tailoring of single such functional units
or even entire functional surface coatings and nano-devices.

The chapter at hand is organized as follows. In Sec. 4.2, we describe the phys-
ical systems under investigation and the necessary modifications to the simulation
model as originally introduced in chapter 2. In Secs. 4.3 to 4.7, we present results for
density profiles, the equilibrium center-to-surface separation, the effective forces act-
ing between a PE-star and the substrate, and the surface charge dependence of the
PE-star radii, in each case for planar charged walls. Moreover, we develop quantita-
tive criteria to classify the observed complex morphologies and draw corresponding
‘phase’ diagrams illustrating the diffuse regions where continuous crossovers between
different types of configurations take place. Sec. 4.8 is devoted to an analysis of the
influence of wall curvature on the physical behavior. Finally, in Sec. 4.9, we sum-
marize our findings and conclude.

4.2 Physical setup and simulation model

4.2.1 Planar charged substrates

In order to explore the complexation of PE-stars and charged, planar substrates, we
go back to the geometry and the simulation model as described in Sec. 2.2, including
all the basic simulational parameters and essentially using the same techniques.
To give a brief summary, we consider a dilute, salt-free solution of PE-stars, each
modeled to consist of f bead-spring chains of LJ particles with typical diameter d.
These chains are grafted to a common colloidal core of finite radius Rd, and the
resulting macromolecular entities are confined in a slit-pore of width τ . The total
volume of the simulation box is denoted as Ω = M 2τ , and we set M = τ = 120d,
exactly as in the case of neutral confining walls. We only implicitly incorporate a
good, aqueous solvent via its relative permittivity ε ≈ 80. As before, we suppose the
dielectric constants of the solvent and the planar substrates (typical experimental
values 2 . εp . 5) to be the same, since a dielectric discontinuity would result in
the appearance of additional image charges [90, 95]. Based on previous experience
[102, 168] we expect, however, that image charges play a subdominant role in the
phenomena, and for the sake of simplicity we again ignore them altogether.

In what follows, we are going to study two different setups, referred to through-
out as systems I and II, respectively, and depicted in Fig. 4.1. In case of system
I, symmetrically charging both confining walls, located at positions z± = ±τ/2,
by homogeneous surface charge densities ±σ0/2 with σ0 ≥ 0 yields a capacitor-
like geometry. Due to construction, the overall system made up of the PE-stars,
their associated counterions, and the surfaces charges is electroneutral. Assuming
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Figure 4.1: Sketch of the geometry for planar, charged substrates: PE-star in
slab-like confinement, whereby an additional external electric field Eext is applied
by bringing surface charges onto the walls. We study two different physical setups,
denoted as systems I (left) and II (right), respectively. As in Fig. 2.1, yellow balls
are neutral monomers, while the red balls along the backbones of the chains indi-
cate positively charged monomer ions and dark blue spheres depict counterions to
the star. In case of system II, the light blue spheres are positively charged wall
counterions.

infinitely large plates, i.e., for the case of an ideal parallel-plate capacitor, the re-
sulting external electric field is constant, namely Eext = −(2πσ0/ε)ẑ. Accordingly,
each charged particle of valency Zi, i.e., charge Zie (with e > 0), is exposed to an
external potential reading as

Vext(z) =
2πσ0Zie

ε
z. (4.1)

Alternatively, in case of system II, for a given value of σ0 we generate exactly
the same electric field and corresponding potential by bringing a surface charge
density −σ0 onto the lower wall, only. In contrast to system I, we then need to
introduce N+ = M2σ0/e positively charged wall counterions, i.e., coions with respect
to the PE-star, to compensate for the unbalanced surface charge densities of the two
plates. Thereby, akin to the star counterions, the wall counterions are modeled as LJ
beads of the same diameter d and mass m as the monomers, carrying a monovalent
charge +e. Clearly, comparing results as obtained for both setups renders possible
a systematic analysis of the wall counterions’ influence on the complexation process
and the resulting PE-star morphologies.
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For both setups, we carry out simulations for PE-stars with fixed degree of poly-
merization N = 50, fixed charging fraction α = 1/3, and a variety of different
functionalities f (f = 10, 18, 30, 50), equivalent to a tuning of their behavior be-
tween ultra-soft and stiff. By restricting our studies to the case of fairly highly
charged PE’s, we expect a pronounced tendency to form stable complexes even for
rather small strengths of the external electric field. We strongly vary the latter,
considering values of the surface charge density σ0 spanning two orders of magni-
tude, namely σ0d

2/e = 0.005, 0.01, 0.03, 0.05 and 0.1. In case of water as solvent
and assuming constant room temperature, the Bjerrum length is λB = 7.1 Å [cf.
chapter 2, Eq. (2.6)]. Thus, setting the Bjerrum length in our simulations to a
value λB = 3d accords to an experimental particle diameter d = 2.4 Å [101], and
with e = 1.602 × 10−19 C being the absolute value of the elementary charge, we
can translate the above charge densities from reduced to SI units1. The maximum
charge density used is thus about σ0 ≈ 0.28 C/m2, corresponding to one elementary
charge per 60 Å2, a realistic value under experimental conditions [169].

In general, we expect the scanned region in (f, σ0)-space to feature a rich variety
of PE-star morphologies. As already mentioned above, these might range from
weakly disturbed, more or less spherical conformations for small strength of the
external field and large functionalities to a fully collapsed starfish-limit for highly
charged surfaces and small arm numbers. Thereby, it is a priori unknown what
intermediate states might exist and how they may look like. Moreover, central
questions are which criteria are appropriate to quantitatively distinguish the possible
states, how sharp the necessarily continuous morphological crossovers between them
are, and how precisely one can steer the adopted conformations by changing the
decisive parameters. Besides gathering information on the fundamental shapes of
the stars, it is also of great interest how several other properties are affected and
may change compared to their respective counterparts for free PE-stars or PE-stars
in neutral confinement. Particularly, this includes the relative center-to-end radii
Rs(σ0)/Rs, with Rs ≡ Rs(σ0 = 0), and the ability of the PE-stars to absorb the
majority of their counterions. In addition, we also monitor the equilibrium center-
to-surface separation, the effective interaction between the charged substrate and
the PE-stars, and density profiles of all the particle species present in the system,
in either case as a function of both f and σ0. In doing so, we hope to gain deeper
insight into the competition between entropic and electrostatic contributions to the
total free energy.

In order to guarantee that we reach true equilibrium configurations for the PE-
stars instead of metastable states corresponding to local minima of the free energy

1Although we use the Gaussian cgs system of units throughout this thesis, the SI system is most
convenient to compare our data to experimental values. In Gaussian units, the absolute value of
the elementary electron charge is e = 4.803× 10−10 g1/2 cm3/2 s−1, and translating the maximum
surface charge density considered here consequently yields σ0 = 0.83× 105 g1/2 cm−1/2 s−1.
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Figure 4.2: Sketch of the geometry for a curved, charged surface: a large colloid
of radius Rc > Rs (gray sphere), i.e., size ratio q < 1, carries a negative total charge
Qc, leading to a radial electric field Ec. For a description of the color coding of
the particle species, see also the caption of Fig. 4.1. The unit vector n̂ marks the
instantaneous direction of the axis connecting the centers of colloid and PE-star.

and to explicitly check for hysteresis effects, we started simulation runs from both
(hemi-)spherical and starfish-like initial configurations. Furthermore, we performed
very long simulation runs, lasting about 2× 106 time steps for equilibration and up
to 6× 106 time steps to gather statistics. Thereby, as in chapter 2, the typical time
step was ∆t = 0.002t0, with t0 =

√

md2/εLJ. It arises that there are only extremely
weak hysteresis effects, to be discussed in the following sections.

4.2.2 Curved charged substrates: charged colloids

To take into account the influence of wall curvature, we need to modify the simu-
lation model. We do not consider a confined system anymore, but switch over to
a fully three-dimensional system, incorporated in our MD simulations via periodic
boundary conditions for all spatial directions. Besides a cationic f -arm PE-star
with its N− monovalent counterions of charge −e as described in Secs. 2.2 and 4.2.1,
respectively, the cubic simulation box of total volume Ω = M 3 now also contains
a larger spherical colloid of radius Rc. Fig. 4.2 sketches the geometry and gives an
impression of the physical situation. As in chapter 3 of this thesis, we accordingly
define the size ratio between the PE-star and the colloid as the fraction

q =
Rs

Rc
=

σs

σc
. (4.2)



4.2. Physical setup and simulation model 65

The colloid is modeled akin to the core particle of the PE-star, i.e., we provide for
its finite radius by using a shifted version of the LJ-type excluded volume repulsion
for the colloid–monomer interaction:

V c
LJ(r; Rc) =

{

∞, r ≤ Rc

VLJ(r − Rc), r > Rc.
(4.3)

Since we want to study electrostatically driven complexation, the colloid is assumed
to carry a negative total charge Qc = −Zce, compensated for by N+ = Zc positively
charged, monovalent counterions. We presume the charge distribution to be spheri-
cally symmetric, therefore the colloid behaves from the electrostatic viewpoint like a
point particle with the entire charge Qc concentrated in its center and the resulting
electric field reads as Ec(r) = (Qc/r) r̂. Consequentially, the Coulomb interaction
between the colloid and any charged bead i of valency Zi = ±1, with r denoting
their mutual distance, is described according to Eq. (2.5):

βVCoul(r) = λB
ZcZi

r
. (4.4)

To evaluate the resulting forces, we again make use of Lekner’s summation technique,
but now in its version for three-dimensional geometries [103].

In contrast to the case of planar charged substrates, the systematic investigation
of colloid–PE-star complex formation has just been initiated in the framework of
this thesis and is subject of ongoing work. Thus, we present exemplary results only,
namely for stars with constant degree of polymerization N = 50, fixed charging
fraction α = 1/3, and functionalities f = 10, 18 and 30. For all values of f , the
colloid–star size ratio is chosen to be q = 0.5 with the star radii as given in Table
2.1, i.e., the star is smaller than the colloid. In either case, the colloidal charge is
set to be Qc/e = −700. Assuming all the charges of the colloid to be placed on the
surface, we may define a surface charge density analogous to Sec. 4.2.1:

σ0 = − Qc

4πR2
s

q. (4.5)

Then we have σ0d
2/e ≈ 0.02, or, equivalently expressed in SI units2, σ0 ≈ 0.06 C/m2,

with the exact value depending on the functionality f .
Due to the huge radius of the colloid, we need to increase the edge length of

the simulation box to M = 384d. Since the colloid is supposed to act as a curved
substrate and its spatial position is thus fixed during the simulation runs, there is
no necessity to change the typical time step compared to the previous subsection
or chapter 2: ∆t = 0.002t0, with t0 =

√

md2/εLJ. The equilibration time is chosen
to be teq = 1 × 106∆t, and afterwards we average all the quantities of interest over
about 4 × 106 time steps to guarantee good statistics.

2As in Sec. 4.2.1 and for sake of completeness, we also specify the value of the surface charge
density σ0 in Gaussian units: σ0 ≈ 0.17× 105 g1/2 cm−1/2 s−1.
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4.3 Density profiles

To begin with, we will focus on the two planar geometries, systems I and II, in
Secs. 4.3 to 4.7. In general, a convenient means in analyzing the conformational
properties of PE-stars near charged, flat walls is to measure one-particle density
profiles for all particle species. Let ρα(r) (α = m, mi, +,−) denote the local number
densities of monomers, monomer ions, and positively and negatively charged free
ions, respectively, at a position r between the confining plates. Due to geometry
and the resulting external electric field, ẑ marks a preferred direction in the system.
For this reason, the spatial arrangement of the PE-stars can be expected to exhibit
a cylindrical symmetry around an axis parallel to ẑ and running through the star
center. The lateral structure is of less significance and we consider the density in a
coarse-grained fashion with the x- and y-dependencies integrated out:

cα(z) =

∫ ∞

−∞

∫ ∞

−∞

dx dy ρα(r). (4.6)

Due to the electrostatic attraction, for both setups I and II the PE-star is expected
to form a complex with the lower plate. Therefore, it is useful to express the density
distributions as a function of the distance D = |z− − z| = z − z− from the latter,

c∗α(D) = cα(D + z−). (4.7)

In our simulations, we can easily obtain cα(z) or c∗α(D), respectively, via partitioning
the system in thin rectangular slabs of width ∆z parallel to the (x, y)-plane, counting
the number of particles of species α in each slab, averaging the same during the
simulation runs, and subsequently normalizing the profile by dividing by ∆z and
the respective total particle number Nα.

Fig. 4.3 shows typical results for the monomer density c∗m(z) of (f = 30)-arm
PE-stars as received for (a) system I and (b) system II. As one would anticipate, the
monomer density features a pronounced global maximum as σ0 increases, i.e., its
height grows and the peak becomes more narrow. In addition, the peak position D0

noticeably moves towards the wall. While D0 is of the order of the star radius Rs for
weak external fields, we reach the closest possible approach D0 ≈ d, as determined
by the typical bead size, for σ0d

2/e = 0.1. This behavior obviously reflects the
PE-star–wall complexation process.

The insets in both panels of Fig. 4.3 display the same profiles but have rescaled
axes in order to shed light on the structure beyond the dominating main peaks,
in particular for the high-σ0 regime. As can be seen, the profiles c∗m(D) basically
consist of only one broad peak for small values of σ0, mirror-symmetrical with respect
to the position of the maximum, at least for system I. This shape corresponds to
still almost spherical PE-stars. Upon ramping up the external field, a secondary
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Figure 4.3: Monomer density profiles c∗m(D) as a function of the distance D with
respect to the lower wall, both for (a) system I and (b) system II. We show data as
obtained for f = 30 and different values of the surface charge density σ0. The insets
have rescaled axes in order to illustrate the structure of the density distributions
beyond their dominating global maxima.
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peak of rising height develops close to the surface and at the same time the first
peak shrinks, expressing the progressing distortion of the PE-star. At a certain
point, depending on the setup, the second peak exceeds the first one in height,
thus becoming the new global maximum of the density distribution. This trend
continues with a further increase of the external field’s strength. Thereby, the right
peak degenerates completely and the resulting tail may even vanish for the highest
surfaces charge densities investigated here (solid lines in the plots). Then, we have
reached a fully collapsed, starfish-like conformational limit, were all the monomers
are located within a small region close to the confining wall, at the utmost only
about three monomer diameters away from the latter.

A comparison between the results for the two setups shows that there are the
same typical shapes occurring, but the dependence on σ0 differs. In case of system
II, the presence of additional positive ions seems to support configurational changes
for small surface charge densities σ0, leading to an earlier onset of deviations from
sphericity. For instance, for σ0d

2/e = 0.01, the left peak already exceeds the right
one, while it is hardly developed for the capacitor-type geometry I. By contrast, in
the high-σ0 regime, the wall counterions obviously obstruct conformational changes.
We observe a small persisting tail of the monomer distribution, i.e., the star is
prevented from reaching the starfish limit.

The intriguing role of the wall counterions can be understood by considering
the competition between entropy and electrostatics and the tendency of the system
to achieve local charge neutrality. In general, there is always a gain in entropy if
positively charged, bound monomer ions are adsorbed to the substrate instead of
the unbound wall counterions, thus releasing the latter. Such entropic contributions
add to the purely electrostatic PE-star–wall attraction and effectively strengthen
it, noticeable in particular for weak electric fields and, accordingly, PE-stars loosely
attached to the wall. But for higher values of σ0, electrostatic interactions become
dominant in the system. The monomer ions alone cannot compensate for the surface
charges anymore and a considerable fraction of wall counterions is adsorbed anyway,
thus screening the wall charges. Thereby, the effective attraction between PE-star
and substrate is diminished, and in this sense the positively charged ions now inhibit
complexation.

The argumentation of the preceding paragraph is corroborated by the measured
distributions c∗+(D) for the wall counterions as exemplarily shown in Fig. 4.4, again
for f = 30 and the whole range of surface charge densities σ0. As expected, the
profiles for σ0d

2/e . 0.01 feature very diffuse and flat maxima for small D, revealing
the release of ions from the lower wall due to an entropy gain resulting from their
replacement by the PE-star. Upon an increase of σ0, a sharply bordered layer
of adsorbed ions forms, as identifiable by the emerging peak. Accordingly, the
described screening of the external field sets in, weakening the tendency of the PE-
stars to form tightly bound complexes with the confining wall.
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Figure 4.4: Wall counterion density profile c∗+(D) for system II as a function of
the distance D with respect to the lower wall. As in Fig. 4.3, the results pertain to
a PE-star with f = 30 arms and the whole range of surface charge densities σ0.

Fig. 4.5(a) and (b) show counterion profiles c∗−(D) for systems I and II, respec-
tively. The parameters are again the same as above. Since the monomer ions are
distributed regularly along the backbones of the PE-chains and their density profiles
must hence have the same functional form as shown in Fig. 4.3, one would expect
the counterion density to follow the monomer profiles due to Coulombic attrac-
tions. Indeed, for both systems the results exemplify that this is true only in case of
walls carrying small amounts of surface charges. As soon as σ0 reaches intermediate
values, the behavior changes drastically. The number of trapped ions is reduced
considerably with increasing σ0, apparent from the shrinkage of the corresponding
peak in the density profile. In the limit of very high surface charge densities, the
vast majority of counterions is repelled from the interior of the star. This is in
strong contrast to the case of free PE-stars [32, 33] or PE-stars in neutral confine-
ment [126, 127] (cf. also chapter 2), where always only small fractions of ions are
released from captivity.

The origin of this phenomenon can be understood as follows. Since the lower
wall carries surface charges of opposite sign with respect to the monomer ions, it
contributes significantly in establishing local electroneutrality. Thus, less star coun-
terions are needed for this purpose. In addition, a release of ions from a trapped
state is also entropically beneficial, as already discussed above in connection with the
positively charged wall counterions. Furthermore, negatively charged star counteri-
ons are simply repelled electrostatically by the wall. For completely flat starfish-type
configurations, all monomer ions are located close to the substrate and, provided the
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Figure 4.5: Star counterion density profiles c∗−(D) as a function of the distance
D with respect to the lower wall for (a) system I and (b) system II. The other
parameters are the same as in Figs. 4.3 and 4.4. The inset in part (a) was included
to point out the articulate peak developing close to the upper wall.
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Figure 4.6: Fraction Nin(f, σ0)/N− of trapped star counterions as a function of the
surface charge density σ0 for (a) setup I and (b) setup II. For reasons of comparison,
we included corresponding values for a free star (σ0 = 0), which were taken from
chapter 2 (f = 10, 18, 30) and Ref. [33] (f = 50), respectively. The dashed lines are
guides to the eye in order to point out the monotonic decrease.



72 4. COMPLEXATION OF PE-STARS WITH CHARGED SUBSTRATES

surface charges are distributed over the plane sufficiently dense, the compensation
of charges is almost perfect, even without any absorbed star counterions.

Note that, because of the shift of configurational crossovers towards higher sur-
face charge densities for system II, the release of star counterions is consequentially
also ‘delayed’ in this case, as is obvious from the height of the respective peaks in
Fig. 4.5. Moreover, the spatial distribution of the non-captured ions crucially de-
pends on which system we are considering, too. For the capacitor-like setup I, the
external field causes an accumulation near the upper plate and a depletion within the
‘bulk’ region in-between the walls, more and more pronounced as the field strength
grows. The inset in Fig. 4.5(a) visualizes in detail what happens. For system II, due
to the screening of the external field by the wall counterions and since the upper wall
is neutral, there is no such inhomogeneous arrangement. Instead, a plateau value of
the counterion density is reached far away from the lower surface, Fig. 4.5(b).

In order to highlight the release of star counterions from the star interior, we mea-
sured, as in the case of neutral walls, the total fraction Nin(f, σ0)/N− of trapped ions
as a function of the surface charge density. For each value of σ0, this measurement
was implemented by counting all ions located within an imaginary sphere having
the star’s instantaneous, arm-averaged center-to-end radius and subsequently tak-
ing the time average (see also chapter 2). Fig. 4.6 shows data obtained for different
functionalities f , again for both setups under consideration. The dashed lines serve
as guides to the eye, clarifying the monotonic decrease. The results clearly confirm
the above findings and point out another important trend. Since PE-stars with
lower arm numbers experience a weaker steric repulsion by the wall due to their
easier deformability (compare Refs. [126, 127] or chapter 2), they reach the starfish
limit somewhat earlier. Here, this is apparent from the faster decay of the curves
for lower f .

4.4 Equilibrium center-to-surface separation

A simulational measurement of a PE-star’s average equilibrium center-to-surface
distance 〈D(f, σ0)〉 as a function of surface charge density and functionality allows
to draw conclusions concerning the deviation of the configuration from sphericity.
Fig. 4.7 shows such data for system I (main plot) and system II (inset), respectively.
Again, the dashed lines were included as guides to the eyes. The obtained values
for 〈D(f, σ0〉) are in any case smaller than the typical radius Rs of a free PE-star,
or, equivalently, the typical range of the steric PE-star–wall repulsion arising from
excluded volume effects and the concomitant deformation of the counterion cloud of
the star (see chapter 2). Accordingly, the PE-stars are indeed, albeit in part weakly,
bound to the lower wall for all values of σ0 and f considered within the scope of this
chapter.
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Figure 4.7: Relative equilibrium center-to-surface separation 〈D(f, σ0)〉 /Rs as
a function of the surface charge density and for different functionalities. Results
shown in the main plot are for the capacitor-like geometry (system I), while the
data in the inset belongs to system II. The black, dashed lines are guides to the eye.

Since an amplification of the external field induces a tighter binding of the PE-
stars to the substrate, the star–wall distances drop monotonically when increasing
the surface charge density. On the other hand, the equilibrium separation grows
monotonically for increasing functionality of the PE-stars, because their behavior
changes from ultra-soft to stiff upon increasing the arm number. In the limit of high
σ0 and low f a plateau value for the distances is reached. It pertains to starfish-type
configurations and is mainly determined by the radius of the PE-stars’ colloidal core,
with only a slight dependence on the arm number. A comparison of the two setups
again verifies that the presence of additional wall counterions favors the formation
of complexes for weak electric fields. In case of system II and for the low-σ0 regime,
the measured center-to-wall separations are systematically smaller than in system I
for all f .

Fig. 4.8 displays the distribution P (D) of the instantaneous center-to-surface
distance D during the production runs of our MD simulations and the changes for
different surface charge densities σ0, part (a), or the PE-star functionalities f , part
(b). For all sets of parameters, P (D) is approximately of Gaussian form with the
maximum indicating the mean separation 〈D(f, σ0)〉, but typical height and width
differ strongly. The former reflects the depth of the minimum of the total effective
star–wall interaction, thus describing the stability of the binding of the respective
complex: the higher the peak is, the deeper is the potential well and the more stable
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Figure 4.8: Distribution P (D) of a PE-star’s instantaneous center-to-surface
distance D, exemplarily for the capacitor-like geometry of system I. The two panels
of the figure illustrate the influence of (a) the surface charge density σ0 (for f = 30)
and (b) the functionality f (for σ0d

2/e = 0.05) on the shape of the profiles P (D).
Their approximately Gaussian form persists, but position, width, and height vary
strongly when changing the arm number and the strength of the external electric
field.
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is the star attached to the substrate. The latter reveals how strong the core position
of a PE-star is vibrating around its equilibrium value and expresses the broadness
of the attractive potential well. For a wider maximum, fluctuations around the
average center-to-surface distance are more pronounced. The detected trends are
perfectly consistent with our previous findings. For increasing σ0 or decreasing f
the effective interaction develops a deeper and more narrow minimum due to the
stronger external electric field or the weaker steric star–wall repulsion (see Fig. 4.8).
Hence, the PE-star approaches the surface more closely, the bonding is intensified
and thermal fluctuations of the core position almost diminish in the starfish limit.

4.5 Effective PE-star–wall forces

In analogy to Sec. 2.4, we measured effective PE-star–wall forces [4,100] for system
II as a function of the PE-stars’ center-to-surface distance D. Exemplary results for
f = 18 and σ0d

2/e = 0.01 are shown in Fig. 4.9. The general, non-monotonic shape
of the force-vs.-distance curve, featuring a divergence of steric origin as D → 0,
a minimum, and an almost saturation-like flattening for large distances D, can be
understood in terms of the interplay between two counteracting contributions adding
to the total effective force, explained in detail in what follows.

For very small D, steric star–wall repulsions analogous to our findings for neu-
tral walls in chapter 2 dominate the behavior. But with increasing distance this
repulsion reduces rapidly. Additionally, there are electrostatic attractions present
acting between the PE-star and the charged substrate. Indeed, their strength also
decreases as D grows due to stronger screening effects induced by the positive wall
counterions and the reduction of the PE-star’s net charge due to counterion cap-
turing. However, this decay is much slower. Accordingly, there exists a certain
value of D for which the two contributions exactly balance each other. The total
effective force vanishes, thus determining the star’s equilibrium distance 〈D(f, σ0)〉.
As already discussed, it is large for low surface charge densities and high function-
alities. In Fig. 4.9, its value as obtained independent from the force measurements
(compare also Fig. 4.7) is marked by a black cross and a corresponding error bar.
Upon a further increase of D, electrostatic forces dominate and the total effective
force becomes attractive with rising absolute value, since the fast decline of the re-
pulsive part still over-compensates for the weakening of the electrostatic attraction
due to stronger screening. Since the steric repulsion has a typical range of about
the star radius Rs, the latter is an upper boundary for the position of the minimum
of the overall force. For stronger external electric fields, this position shifts towards
smaller center-to-surface distances. Beyond the minimum, Feff directly inherits the
property of the electrostatic force to decay in strength due to screening induced by
the wall counterions present for system II, i.e., its absolute value decreases again.
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Figure 4.9: Effective force Feff acting between a PE-star and a charged, planar
wall as a function of the center-to-surface separation D, exemplarily shown in case
of system II for f = 18 and a surface charge density σ0d

2/e = 0.01. The red data
points are results as obtained by our MD simulations, while the dashed, black line
is a guide to the eye. The black cross with its corresponding error bar marks the
star’s measured equilibrium position for the given parameter combination.

Nevertheless, the force still remains attractive with respect to the lower wall. In
the limit of very large D, almost all wall counterions will be situated between the
substrate and the star, perfectly screening the external field, and the majority of
star counterions will be trapped in the interior of the star. The attraction must
therefore disappear.

For system I, the distance-dependence of the force for very small D must also
be dictated by the strong steric repulsion between the PE-star and the lower hard
wall. But for larger D, we expect a different and less intricate behavior compared
to system II. Due to the lack of additional wall counterions, there is hardly any
screening of the external electric field. Therefore and since above a certain value
of D there is only little deformation of the PE-star and consequentially the num-
ber of trapped counterions does not change significantly anymore, the electrostatic
attraction pulling the PE-star towards the lower wall does not become weaker with
increasing distance. This is in contrast to what we found for system II. Hence, it
is unlikely to observe any pronounced, non-monotonic behavior of the total force.
Instead, once electrostatic forces dominate and steric repulsions become irrelevant,
the total force will remain almost constant.

Finally, in order to verify that for system II and D & Rs, i.e., beyond the
minimum of the force curve, the functional form of the latter is solely determined
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(D − Rd)/Rs Nscr βRsFscr βRsFeff

1.39 113 -174 -213.3
1.75 92 -130 -109.4
2.11 74 -77 -78.5

Table 4.1: Comparison of simulation results for the effective PE-star–wall forces
and estimates for the same according to Eq. (4.11) as obtained assuming the wall
counterions to mainly govern the behavior, here exemplarily for f = 18.

by the attraction due to the screened external electric field and the wall counterions
thus crucially influence the physics, we present a simple approximative approach
to assess Feff(D) for the high-D regime. Let Nscr(D) be the average number of
positively charged ions located in-between the lower plate and the PE-star, i.e., with
z− ≤ z ≤ D − Rs, as measured in our simulations. Exactly these ions screen the
electric field affecting the star. We define an (uniform) effective, distance-dependent
surface charge density:

σ
(scr)
0 (D) = σ0 −

Nscr(D)

M2
. (4.8)

Therewith, an allowedly somewhat crude approximation for the resulting field ex-
erting an attractive force on the PE-star reads as:

Escr(D) = −2πσ
(scr)
0 (D) ẑ. (4.9)

As ascertained in Sec. 4.3, for large values of D the weakly deformed PE-stars
still maintain the ability to absorb the vast majority of their counterions due to
Manning condensation [104–106] and ion capturing. The net charge Q∗

s is reduced
considerably compared to its bare value Qs = αfNe,

Q∗
s = (αfN − Nin)e ≡ N∗

s e. (4.10)

Together with Eq. (4.9), a rough estimate for the (dimensionless) effective force
dragging the PE-star center is then given by

βRsFscr(D) = −2πRsN
∗
s

(

λB

e

)

σ
(scr)
0 (D). (4.11)

For the parameters pertaining to the data shown in Fig. 4.9, we now check the
above estimates against actual results. Table 4.1 shows a corresponding comparison
for three different center-to-surface distances, including the respective numbers of
positive ions evoking the screening. Note that, in case of (f = 18)-arm stars, we
have Rs/d = 28.0 and N ∗

s = 68 (see also Table 2.1). As can be seen, our guess is
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not capable of quantitatively reproducing the effective forces, but we have at least
qualitative agreement and the general trends are expressed correctly. Consequently,
we can conclude that the high-D effective star–wall forces for system II are indeed
merely arising from Coulombic interactions and the behavior is thus determined by
the screening of the external field due to the wall counterions.

4.6 Configurational phase behavior

As already detected in the previous sections by means of several quantities mea-
sured during our simulation runs, PE-stars in planar confinement under the influ-
ence of a homogeneous, external electric field experience conformational changes
when varying, e.g., the PE-star functionality or the surface charge density. The pos-
sible morphologies range from almost spherical configurations, where the PE-stars
are loosely bound to the charged substrate, to the opposite extreme of starfish-like,
two-dimensional, fully collapsed situations. However, we did so far not present any
detailed conclusions concerning possible intermediate configurations or the struc-
tural crossovers between different morphologies. Clearly, since we are dealing with
continuous configurational changes of single (macro-)molecules, there are no real
phase transitions in the sense of statistical mechanics. The latter are defined only
within the thermodynamic limit, but a single PE-star consists of a finite number
of particles. There are no sharp boundaries separating areas in the (f, σ0)-plane
belonging to a certain class of morphology, but just diffuse crossover regions. Nev-
ertheless, we are going to refer to the crossovers as ‘transitions’, synonymously, and
call the different classes of typical configurations morphological ‘phases’ or ‘states’
in what follows for sake of brevity. Thereby, one should always keep in mind how
such terminology has to be understood in our case.

Figs. 4.10 and 4.11 show characteristic snapshots for systems I and II, respec-
tively, at all points in the (f, σ0)-plane where we carried out simulations, exemplar-
ily demonstrating that there indeed are several, distinct classes of arrangements.
In particular, a closer inspection reveals the existence of three states besides the
aforementioned limiting cases, to be discussed in what follows.

When increasing the strength of the external field, deviations from sphericity
must occur. As expected, the average center-to-surface distance of the stars de-
creases (cf. Fig. 4.7), but for not too high surface charge densities and not too
low functionalities the colloidal core does not reach the closest approach possible,
which is determined by its finite hard core radius and the range of the additional
LJ repulsion acting between the central particle and the wall. In other words, the
electrostatic attraction is not yet strong enough to overcome the steric star–wall
repulsion also for small D. Hence, there are no arms lying flat on the substrate. In-
stead, only the outer ends of the chains in the lower hemisphere attach to the plane,
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forming acute angles with the surface normal ẑ, while the distribution of arms in the
upper hemisphere remains more or less undisturbed. The resulting configurations
are jellyfish-like, as realized for, e.g., f = 30 and σ0d

2/e = 0.01 in case of both
setups. The binding to the substrate is still rather weak and the star’s position
fluctuates considerably around its mean value, see also Fig. 4.8.

Upon a further growth of σ0 or for a lower arm number f , the stars are pulled
directly onto the wall, with their center-to-surface distance now of the order of
the core particle’s diameter. About f/2 arms fully stick to the wall, whereas the
remaining chains are still distributed evenly within a hemisphere, as, e.g., for f = 50
and σ0d

2/e = 0.05 in both systems I and II. The minimum of the effective potential
is rather deep and narrow, thus the anemone-like looking complex is very stable.

For external electrostatic forces even stronger compared to the steric PE-stars–
wall repulsion, a bigger fraction of chains folds down to the charged surface. Before
ending up in the starfish limit, there are antenna-type configurations appearing,
where only a small number of arms sticks out approximately perpendicular to the
plane. There is nearly no movement of the star center along the z-axis anymore,
as illustrated in Fig. 4.8. The stability of the adherence to the wall is extremely
high, already comparable to the case of full collapse. For both setups, such antenna
conformations can be observed for, e.g., PE-stars with f = 18 arms and a surface
charge density σ0d

2/e = 0.03.

A comparison of the snapshot collections for the situation without and with wall
counterions, Figs. 4.10 and 4.11, respectively, shows that the arising morphologies
and the general trends for the crossovers between them are very much the same.
Only the locations of typical crossover regions characterizing the configurational
transitions are shifted, as could be expected from our above findings. In this sense,
the additional ions do influence the morphological behavior of the PE-stars. In
what follows, we will now introduce quantitative criteria to distinguish the occur-
ring classes of conformations and to subsequently describe transitions between them
(Secs. 4.6.1 and 4.6.2). The final goal is to draw corresponding morphological phase
diagrams (Sec. 4.6.3).

4.6.1 Morphological criterion

The different PE-star morphologies – besides the respective equilibrium center-to-
surface distances 〈D(f, σ0)〉 and the stability of the adhesion to the substrate –
mainly differ with respect to the spatial arrangement of the constituent PE-chains,
particularly the typical directions the latter are pointing at. Thus, a quantitative
criterion to distinguish the ensuing configurational states must conveniently reflect
such information. The current orientation of an individual arm, arbitrarily labeled
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Figure 4.10: Collection of exemplary snapshots for system I and all points in the
(f, σ0)-plane where we carried out MD simulations. There is a distinct dependence
of the morphology of the formed complexes on the PE-star functionality f and the
surface charge density σ0, ranging from almost spherical conformations for weak
fields and highly-branched stars to flat, starfish-like arrangements in the opposite
limit of strong external fields and low arm number.
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Figure 4.11: The same as Fig. 4.10, but for system II instead of the capacitor-
type geometry I, including positively charged wall counterions (light blue). From
a comparison of the setups it becomes clear that the general trends concerning the
morphological behavior are the same, but the configurational transitions are shifted
with respect to their f - and σ0-dependence.
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i with 0 ≤ i < f , can be described by its instantaneous center-to-end vector,

Ri = ri,N − rcore, (4.12)

where ri,N denotes the position of the N -th (last) monomer in the chain sequence of
chain i and rcore specifies the location of the colloidal core of the star. Calculating
the inner product of Ri/|Ri| and the surface normal ẑ of the lower, attracting plane
yields the cosine of the angle θi between the two. Hence, calculating the time average
during our simulation runs characterizes the average orientation of each arm:

〈cos θi〉 =

〈

Ri

|Ri|
· ẑ

〉

. (4.13)

Note that, since the PE chains are formally grafted on the colloidal core’s sur-
face without any fixed position of their innermost monomers and the arms may thus
exchange positions during sufficiently long simulation runs by virtue of thermal fluc-
tuations, one could suppose the averaging to yield 〈cos θi〉 = 0 for all i independent
on the actual PE-star morphology. Due to the very high values of the monomer
density close to the center even for the smallest functionalities f considered here,
such swapping processes can not take place. Therefore, as long as there is no angular
momentum exerted on the star leading to a rotation of the entire star, we obtain
〈cos θi〉 = 0 if and only if chain i lies flat onto the plane.

It is important to remark that sets of averaged cosines for a PE-star as introduced
above not only express orientational data for the individual arms, but also implicitly
measure the mean PE-star–wall separation for the given parameters. More precisely,
ignoring chain bending or compression and pursuant to simple geometrical relations,
it approximately holds:

−min
i

〈cos θi〉 =
〈D(f, σ0)〉
Rs(f, σ0)

(4.14)

Consequently, plotting −1 ≤ 〈cos θi〉 ≤ 1 as a function of the normalized arm index
0 ≤ i/(f−1) ≤ 1 comprehensively depicts the shape of a PE-star and is a convenient
quantity to describe the morphology. In order to guarantee optimal comparability
of the resulting graphs, we (re-)assign the indices i in such a way that the values
of 〈cos θi〉 are arranged in descending order. This is possible without tampering the
data since the labeling was anyway completely arbitrary.

Fig. 4.12 shows representative results for system I and all five classes of mor-
phologies as yet only qualitatively identified based on simulation snapshots, ranging
from almost spherical configurations, part (A), to starfish complexes, part (E). The
respective functionalities f and surface charge densities σ0 are given within the dif-
ferent panels of the figure. The shapes of the curves vary strongly, indeed rendering
them an appropriate tool for a quantitative characterization of the configurational
states and the continuous transitions between them.
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Figure 4.12: Representative graphs visualizing the criterion to distinguish pos-
sible types of PE-star configurations. Plotting 〈cos θi〉 in descending order against
i/(f−1) yields five different classes of functional shapes, each belonging to a separate
morphology: sphere (A), jellyfish (B), anemone (C), antenna (D), and starfish (E).
The sketch in part (F) of the figure was included in order to clarify the basic differ-
ences between the intermediate states (B) to (D). The two curves in part (D) show
results obtained starting our simulation runs from different initial configurations.
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The typical appearance in both limiting cases, i.e., sphere and starfish, is rather
obvious. In the former situation, the values of 〈cos θi〉 are evenly covering the en-
tire interval [−1, 1], since the PE-chains are uniformly distributed over the entire
solid angle Σ = 4π. Accordingly, the resulting graph must approximately coincide
with a diagonal running from the upper left to the lower right corner of the plot,
see Fig. 4.12(A). In the starfish case, all the arms are adsorbed to the substrate
completely and over their full length. The resulting function is constant, equal to a
small negative number (almost zero), as mainly determined by the finite radius of
the core particle, compare Fig. 4.12(E).

In order to exemplify the functional form of the 〈cos θi〉-vs.-i plots for the inter-
mediate states (B) to (D), the sketch in Fig. 4.12(F) was included. As illustrated,
the graph bends away from the diagonal upon increasing the strength of the external
electric field. This process starts from the high-i end of the re-ordered abscissa and
propagates towards lower values of i. For jellyfish-type configurations, the primary
shape remains for i/(f−1) . 0.5, while a negative plateau value is reached for higher
i. The latter is defined by the aperture angle of the cone opening towards the lower
plate on whose surface the ‘tentacles’ of the jellyfish are located approximately. In
particular, the absolute value of the plateau is articulately greater than zero, since
the affected PE-chains do not lie flat, and smaller than one. Note that the outlier
to the extreme right in Fig. 4.12(B) directly confirms the occurrence of compression
effects as suggested in chapter 2 [126, 127]. Individual chains are rather stiff due to
their charging and strong bending is thus not favorable. Since all arms belonging to
the plateau have about the same length given by the star radius Rs(f, σ0), any arm
with a value of 〈cos θi〉 significantly smaller than the plateau value must clearly be
compressed for geometrical reasons.

For anemone-like conformations, the left branch of the graph describing the
morphology is still unchanged and runs along the diagonal, i.e., about f/2 arms are
sticking out of the lower plane evenly distributed in a hemisphere with its center close
to the substrate. The plateau value for i/(f − 1) & 0.5 approaches zero, because
the other half of the chains is already confined to the surface [Fig. 4.12(C)]. For
growing surface charge densities σ0, more and more chains fold down, the width of
the plateau increases, and the plateau value approaches zero even closer. To the left
of the plateau follows a step-like jump up to a narrow region with higher values of
〈cos θi〉, since a little number of arms still points upwards, now almost perpendicular
to the substrate: an antenna-type arrangement is reached [Fig. 4.12(D)].

As already suggested in Sec. 4.2.1, for several different parameter combinations
(f, σ0) we performed simulation runs starting from two alternative initial configu-
rations, namely hemispherical and starfish-like conformations. This allows for an
careful check if true equilibrium states are reached and if any hysteresis may in-
fluence the f - and σ0-dependence of the PE-stars’ morphological phase behavior.
Fig. 4.12(D) exemplarily shows a comparison of such results. Open circles refer to a



4.6. Configurational phase behavior 85

hemispherical initial configuration, filled diamonds to a starfish-type one. In general,
we can conclude that there is no significant dependence on the initial conditions and
hysteresis effects are clearly negligible.

Fig. 4.13 is devoted to a comparison of corresponding plots for systems I and II,
or, equivalently, the question how the existence of positively charged wall counteri-
ons affects the f - and σ0-dependence of the conformational behavior. The results
immediately support and verify the findings and conclusions of Sec. 4.3. There are
no fundamental changes, but for weak external fields the wall counterions induce an
earlier onset of the PE-star–wall complexation process and shift the conformational
transitions towards lower surface charge densities σ0 and higher functionalities f .
For the parameters in Fig. 4.13(a), though the morphology can be classified as spher-
ical for both setups, the deviations from sphericity are more pronounced in case of
the system II. In Fig. 4.13(b), the type of morphology indeed changes. While for
the capacitor setup I we observe a jellyfish configuration, the adhesion to the plane
is distinctly stronger for system II and we identify an anemone-like structure. By
contrast and as expected, in the high-σ0 regime the impact of the additional ions is
exactly the other way around, exemplarily illustrated by Fig. 4.13(c). For system I,
we already arrived at the starfish-limit, but for the alternative setup II the PE-star
is yet prevented from a full collapse into a two-dimensional state.

Finally, we study the density-dependence of the PE-star morphology which is
important from a technological point of view with regard to possible applications.
Only if the complexation processes and thus the configurational phase behavior are
stable against variation of the PE-star density, at least within a certain range, it is
practically possible to make use of our results in order to create PE-star arrays onto
a charged substrate and to precisely tune their physical properties. For this purpose,
Fig. 4.14 compares 〈cos θi〉-vs.-i plots as obtained for system II, exemplarily chosen
values of f and σ0, and two different PE-star densities per surface unit area,

λs =
Ns

M2
. (4.15)

Here, Ns denotes the number of PE-stars in our simulation box and M is the edge
length of the confining plates, compare also Secs. 2.2 and 4.2. Note that all other
plots throughout this chapter show results as obtained for λsR

2
s = 0.05.

There are no major differences upon changing the density as long as sufficient
dilution is guaranteed, i.e., for the density remaining below its corresponding over-
lap value λ∗

sR
2
s (f, σ0) = 1/π. Only for higher PE-star concentrations completely

new effects like PE multi-layering on the surface might occur [88, 102]. However,
even in the dilute case the (diffuse) crossover regions will in part shift slightly upon
increasing the density. Fig. 4.14(a) illustrates a case where the morphological struc-
ture of the PE-star–wall complex alters from anemone-like to jellyfish. In contrast,
in part (b) the configurational classification as antenna-type persists, but the num-
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Figure 4.13: Differences in the morphological phase behavior between setups I
and II, illustrated by means of three exemplarily chosen parameter combinations.
It emerges that the presence of positively charged, freely moving wall counterions
indeed influences the f - and σ0-dependence of the found configurational structures.
The observations are in full agreement with previous conclusions based on the mea-
surement of all particle species’ density profiles.
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Figure 4.14: Density-dependence of the PE-star morphology, here for function-
ality f = 18 and surface charge densities (a) σ0d

2/e = 0.01 and (b) σ0d
2/e = 0.05.

In each case, results for two different values of the star density per substrate unit
area, λsR

2
s , as indicated in the legend boxes are shown. As long as the density re-

mains sufficiently low, there are no substantial changes. The anyway diffuse phase
boundaries experience a slight shift.

ber of arms sticking out of the attracting plane grows. In general, the basic trend
when increasing the density is always the same. The binding of the PE-stars to
the substrate becomes weaker and complex formation is impeded, accordingly the
crossovers between different morphological classes happen at higher surface charge
densities σ0 and smaller arm numbers f .

4.6.2 Two-dimensional order parameter

In general, it is desirable to introduce a (possibly multi-dimensional) order param-
eter describing the morphological phase behavior of PE-stars near charged, planar
substrates instead of plotting 〈cos θi〉 in descending order vs. the normalized arm
index i/(f − 1). An appropriate possibility to define such order parameter is to fit
the latter graphs with the function

h(x; x0, y0) =

{

(y0 − 1) x
x0

+ 1 for 0 ≤ x ≤ x0

y0 for x0 < x ≤ 1.
(4.16)

Here, x0 and y0 are the fit parameters. The procedure is exemplarily demonstrated
in the inset of Fig. 4.15. Due to their typical shapes, the graphs are reasonably
approximated by h(x; x0, y0) for all conformational states (cf. also Fig. 4.12).

Performing the fit for all points in the (f, σ0)-plane where we carried out simula-
tions thus yields the fit parameters as a function of the functionality and the surface
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Morphology O1 O2

Sphere 1 1
Jellyfish β 1
Anemone 0 1
Antenna 0 γ
Starfish 0 0

Table 4.2: Ideal values for the two-dimensional order parameter O = (O1, O2),
with positive numbers β < 1 and γ < 1. In reality, the values for the different
classes of morphologies are not as sharply circumscribed, since the configurational
crossovers are continuous.

charge density, x0 = x0(f, σ0) and y0 = y0(f, σ0). Indeed, we do not consider x0 and
y0 themselves to describe the configurational behavior of the PE-stars, but use the
more convenient definitions

O1 =

∣

∣

∣

∣

y0 −
Rd

Rs(f, σ0)

∣

∣

∣

∣

(4.17)

and

O2 =
2x0

1 − y0

, (4.18)

acting as components of the two-dimensional order parameter O = (O1, O2). In
Eq. (4.17), the shift of y0 by Rd/Rs(f, σ0) arises from geometry and is due to the
finite radius of the core particles, preventing the arms from sticking to the substrate
entirely flat even for fully collapsed configurations. Theoretically, we should always
have 0 ≤ O1 ≤ 1 and 0 ≤ O2 ≤ 1. In practice, since the left, descending branch
of the 〈cos θi〉-vs.-i plots as measured in our simulations might lie above the dashed
diagonal to a certain extent, the value of O2 may exceed the upper boundary a little.
The ideal values for the two-dimensional order parameter for the five morphological
phases are summarized in Table 4.2.

Fig. 4.15 shows results as obtained based on our simulation data. Here, open and
closed symbols pertain to systems I and II, respectively. The dashed ellipses indicate
the attribution of data points to different configurational classes. They partly over-
lap, symbolizing that in reality areas in the (O1, O2)-plane belonging to a certain
state are not always as sharply circumscribed as Table 4.2 suggests, but smeared out
to some extent. Nevertheless, the separation is sufficiently clear, only in case of the
transition sphere–jellyfish the interpenetration is distinct and the crossover region
is rather broad due to very pronounced conformational fluctuations as typical for
weakly bound complexes. On the other hand, the domain occupied by data points
for starfish-type configurations is extremely small and well-defined, since the strong
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Figure 4.15: Two-dimensional, continuous order parameter (O1, O2) as calculated
based on the 〈cos θi〉-vs.-i plots. Open and closed symbols pertain to systems I and
II, respectively. Dashed ellipses indicate the attribution of data points to different
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definition of the order parameter. For a detailed description, see main text.
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2
s = 0.05. Dashed lines serve as guide to the eye, separating

different classes of morphologies and showing fundamental trends how configurations
change upon variation of f and σ0. Exemplary snapshots are shown for either case,
the corresponding parameter combinations are marked by uppercase letters A to E.
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confinement to the surface by virtue of the external electric field efficiently sup-
presses fluctuations of the monomer positions. Hence, the corresponding graphs for
〈cos θi〉 in very good approximation show ideal behavior as depicted in Fig. 4.12(F).

4.6.3 Configurational phase diagrams

Figs. 4.16 and 4.17 are the core pieces of this chapter, showing configurational phase
diagrams as obtained based on the quantitative criteria introduced above for setups
I and II, respectively. The PE-star density per surface unit area was chosen to be
λsR

2
s = 0.05, the lower one of the values compared in Fig. 4.14. In either plot,

data points again belong to positions in the (f, σ0)-plane where we carried out MD
simulations. Note that the σ0-axis is scaled logarithmically. Dashed lines serve as
guides to the eye, separating regions pertaining to different classes of morpholo-
gies and illustrating the basic trends for configurational changes upon variation of
the PE-star functionality f and the surface charge density σ0, i.e, the location of
the crossover regions. To visualize the decisive differences of the structural states,
representative snapshot are shown for each of these and for both systems under in-
vestigation. The corresponding parameter combinations are marked by uppercase
letters A to E [corresponding to parts (A) to (E) in Fig. 4.12].

In general, the larger the functionality f , the more strongly PE-stars resist com-
plex formation. Consequently, stronger external fields are needed to reach a given
degree of complexation, i.e., a certain morphological structure. The phase diagrams
reflect this characteristic in the positive slope of the dashed boundaries. Above a
critical arm number, with the concrete value depending on the setup, the punish-
ment in terms of free energy is too high to reach the starfish limit for realistic surface
charge densities, i.e., for σ0d

2/e . 0.1. In contrast, for very small f , the PE-stars
are rather blurred objects [32, 33], accordingly the steric star–wall repulsion is very
soft [126, 127] and completely flat configurations are easily obtained for very small
fields. Thus, for low values of σ0, all boundaries are running nearly in parallel to the
horizontal axis. From an application-oriented point of view, it is important to state
that the crossover regions symbolized by the dashed lines are sufficiently narrow to
render the phase diagrams useful for an exact tailoring of the structural properties
of PE-stars adsorbed to a charged substrate. In this connection, cf. also Fig. 4.15,
where the overlap of ellipses depicting the belonging to different phases is finite but
rather small.

Comparing results for setup II to their counterparts for setup I again reveals that
the presence of additional cationic wall counterions compensating for unbalanced
surface charges does not bring about fundamental changes, but causes a shift of the
boundary regions separating areas for different morphological states. For entropic
reasons, stronger complexation is favored if the external field is weak, while it is
disfavored in the high-σ0 regime due to screening effects. Therefore, on the one
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hand, the region in the (f, σ0)-plane for which PE-stars adopt a jellyfish-type shape
shrinks considerably for the benefit of anemone-like configurations. As discussed,
the latter feature a tighter and much more stable binding to the substrate. On the
other hand, the antenna domain grows at the expense of the starfish phase. Because
of screening of the external field, it becomes much more difficult to reach the fully
collapsed state for highly branched PE-stars. In particular, the critical value of
the functionality above which starfish arrangements cannot be observed anymore
decreases from f ≈ 50 for system I to f ≈ 30 for system II. Accordingly, for larger
values of σ0 the slopes of the phase boundaries are reduced considerably.

4.7 Surface charge dependence of the star radii

So far, we focused on the shapes of the complexes formed upon adsorption of PE-
stars onto planar, charged substrates and their classification by morphological crite-
ria, disregarding any quantitative description of the structures’ spatial extent. Now,
we turn our attention to a measurement of the PE-stars’ typical, arm-averaged
center-to-end radii as a function of the surface charge density [cf. also Eq. (2.22)]:

Rs(f, σ0) =
1

f

〈

f−1
∑

i=0

(ri,N − rcore)

〉

. (4.19)

As depicted in Fig. 2.3, for PE-stars near neutral walls there is hardly any depen-
dence of the radius Rs ≡ Rs(σ0 = 0) on the center-to-surface separation D. Due to
the lack of any mutual attraction between individual monomers and the substrate,
the conformations adopted by the star remain hemispherical even for closest prox-
imity to the wall and there is no collapse taking place. The solid angle available for
the spatial distribution of the arms is at worst halved compared to a free star, then
effectively doubling the functionality. Since the chains are anyway fairly stretched
because of the charges sitting along their backbones, for not too high arm numbers
the f -dependence of the center-to-end radii is very weak and the resulting change
in size is negligible.

In contrast, the presence of an external electric field does not only induce a
monotonic decrease of the average distance 〈D(f, σ0)〉 between the center of a PE-
star and the lower wall (cf. Fig. 4.7), but also leads to a complexation as analyzed
above in detail, accompanied by pronounced configurational changes. In particu-
lar, the gradual collapse culminating in starfish-like morphologies for high surface
charge densities σ0 causes a dramatic increase of the number of arms per occupied
solid angle. For the purpose of placing more and more chains in a two-dimensional
configuration onto the substrate one would expect an onward stretching and thus
a noticeable growth of the arm-averaged center-to-end radius to be required due to
steric and electrostatic inter-arm repulsions.
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Figure 4.18: Relative radius Rs(f, σ0)/Rs of PE-stars of different functionality,
plotted as a function of the surface charge density σ0 for (a) system I and (b)
system II. The black, dashed lines are guides to the eye. The respective insets show
exemplary conformations for f = 18 and σ0d

2/e = 0.1, illustrating the strongly
varying typical sizes.
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Fig. 4.18(a) confirms this expectation for the capacitor-type geometry I. The rel-
ative radii Rs(f, σ0)/Rs grow as a function of the surface charge density σ0, arriving
at a plateau value once the starfish limit is reached. Then, there is no reason for a
further stretching of the PE chains, since the configuration will not fundamentally
change anymore even if we continuously step up the strength of the external field.
For what values of σ0 the saturation of the radii sets in crucially depends on the
PE-star functionality. The higher f the larger surface charge densities are needed, in
accordance with the morphological phase diagram shown in Fig. 4.16. The plateau
value itself also rises as f grows, since it is much more difficult to place a larger
number of chains in a two-dimensional arrangement. Compared to the situation
without an applied external field, i.e., for σ0 = 0, the PE-stars expand up to almost
twice their original size when they are fully adsorbed to the wall.

In case of system II, the corresponding graphs exhibit a completely different,
non-monotonic shape, as illustrated in Fig. 4.18(b). For weak external fields the
radii grow analogously to the situation without additional wall counterions, but
there is no saturation effect for the high-σ0 regime. Instead, for a critical value of
σ0 sensitively depending on the functionality f of the PE-stars, the radii reach a
maximum and shrink again upon a further increase of the surface charge density.
The mechanism leading to such behavior is as follows. For very high values of σ0,
the resulting electric field in-between the walls is strong even though there is screen-
ing by the collapsed PE-star. Thus, it might be favorable to additionally bind a
certain fraction of wall counterions to the lower plate since the gain in electrostatic
energy over-compensates for the loss in entropy caused by the restriction of their
mobility (compare Sec. 4.3 and, in particular, Fig. 4.4). All the positively charged
ions close to the surface arrange in such a way that their mutual Coulombic repul-
sion is minimized, thereby the stretching of the PE-star’s arms is reduced and its
radius decreases. This phenomenon becomes more pronounced for stronger external
fields or, equivalently, more wall counterions close to the surface. Clearly, for fixed
charging fraction α the bare charge of a PE-star grows linearly with its functionality
and consequently higher surface charge densities are needed to see the effect as f
grows.

Finally, in order to clarify the differences in the typical PE-star configurations,
the insets of Fig. 4.18(a) and (b) show exemplary simulation snapshots for setups I
and II, respectively. In both cases, the functionality is f = 18 and the surface charge
density was chosen to be σ0d

2/e = 0.1. The wall counterion-induced shrinking of
the starfish-type complexes is obvious.
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Figure 4.19: Exemplary simulation snapshots for PE-stars near a larger, charged
colloid. The functionalities are (a) f = 10, (b) f = 18, and (c) f = 30. For
all parameter combinations the size ratio is q = 0.5 and the colloid carries a total
charge Qc/e = −700. Obviously, the possible morphological states are similar to
those observed for the case of planar, charged substrates.

4.8 Influence of wall curvature

The consequential next step is to take into account the influence of wall curvature,
i.e., to study the adsorption of PE-stars to curved, charged substrates. As already
stated in Sec. 4.2.2, a systematic and detailed investigation of PE-star–colloid com-
plexation processes has just been initiated in the scope of this thesis and is subject
of ongoing work. Here, we present exemplary results for selected sets of parameters
in order to give an introductory overview of basic phenomena and general trends. In
particular, we discuss differences emerging compared to the case of planar substrates
and outline possible reasons for the same.

First of all, Fig. 4.19 shows representative MD snapshots for three different PE-
star functionalities f = 10, 18 and 30, fixed size ratio q = 0.5 between the star and
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the colloid, and fixed total charge of the colloid Qc/e = −700. As manifest, we find
a formation of PE-star–colloid ‘bombs’, induced by electrostatic attractions between
the colloid and the oppositely charged monomer ions. In general, for not too small
values of q, there is no obvious reason why the conformational phase behavior (with
the terminology ‘phase’ used in the same sense as in Sec. 4.6) of the PE-stars should
differ fundamentally from the case of planar substrates, and the found configurations
indeed look very similar to morphologies observed in case of the planar systems I
and II, respectively. Based on the snapshots, we may perform a first, qualitative
classification of the resulting shapes of the PE-stars. Here, we have (a) starfish,
(b) antenna, and (c) again antenna. In the latter case, there are considerably more
arms sticking out and although clearly an antenna-type configuration, the state point
thus seems to be located somewhat closer to a possible anemone–antenna crossover
region.

Since there are both positively and negatively charged free ions present in the
system, depicted in Fig. 4.19 as light blue and dark blue small spheres, respectively,
it is reasonable to draw a comparison with system II. For this purpose, we firstly
need to translate the total charge of the colloid to a corresponding surface charge
density. As shown in Sec. 4.2.2, assuming all the Zc elementary charges to sit onto the
colloid’s surface, we obtain a value of about σ0d

2/e ≈ 0.02, depending on the actual
functionality via the f -dependent PE-star radius. Pursuant to the morphological
phase diagram in Fig. 4.17, for such surface charge density and f = 10 as well
as f = 18 the morphological phases found for complexation at planar and curved
surfaces agree. Indeed, for f = 30, we expect a PE-star near a flat substrate to be
of mere anemone-type, in contrast to the findings of Fig. 4.19(c). The reason for
this different attribution can easily be understood by geometrical arguments. Due
to its curvature, there is less energetic punishment when placing a given number of
PE chains onto the colloid’s surface. Accordingly, a stronger adsorption compared
to a planar substrate is favored. For fixed surface charge density more arms fold
down and the binding of the star to the colloid is stronger.

4.8.1 Density profiles

Along the lines of Sec. 4.3, we measure one-particle density distributions of all the
particle species, ρα(r) (α = m, mi, +,−), with the origin of the coordinate system
coinciding with the core position of the star. Due to the underlying geometry, we
do not consider a representation with the x- and y-dependencies integrated out, but
perform an alternative coarse-graining procedure. Thereby, we average over both
the azimuthal and the polar angle, namely:

cα(r) =

∫ 2π

0

∫ π/2

−π/2

dφ dθ sin θ ρα(r). (4.20)
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Figure 4.20: Double-logarithmic plot of the monomer and monomer ion density
profiles cα(r) (α = m, mi) as a function of the distance r from the core position of
the PE-star, exemplarily for a star with f = 18 arms, a colloid carrying the total
charge Qc/e = −700, and a size ratio q = 0.5. The slope of the scaling regime is
also shown (dashed line). The value γ = −1.84 evinces the stretching of the chains.

Even though the PE-stars are deformed upon complex formation, the rotational
symmetry with respect to the axis connecting the relative centers of star and colloid
is preserved. Moreover, a geometrical estimate easily shows that, provided the size
ratio q is not too large and the chains are not too long, there is no significant
difference in the center-to-end length of a fully adsorbed PE-chain and its respective
contour length. Hence, the averaging does not bring about a significant loss in
information. Again, a computation of cα(r) during simulation runs is straight-
forward. Partitioning the system in shells of equal width ∆r around the core of the
star, calculating the average number of particles in each shell, and normalizing by
dividing by the changing volume of the shells directly yields the desired result.

Fig. 4.20 illustrates such angle-averaged monomer and monomer ion density
profiles for a PE-star with f = 18 arms, a colloid carrying Zc = 700 elementary
charges −e, and a star-to-colloid size ratio q = 0.5. The axes are scaled in a
double-logarithmic fashion. Clearly, both curves must resemble each other, since
the monomer ions are distributed regularly along the backbones of the chains. The
slope of the scaling regime is found to be γ ≈ −1.84, reflecting the stretching of
the arms. It is almost unchanged compared to the value ∼= −1.8 for isolated PE-
stars [32, 33, 109, 115–117], i.e., the presence of the colloid and the subsequent dis-
tortion of the PE-star’s spatial arrangement does not bring about dramatic changes
of the typical extension of individual arms.
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Furthermore, distinct oscillations stand out, particularly in case of the monomer
ion density profile, while for isolated PE-stars similar features can be found only
to a minor degree. Such behavior results from the fact that the movement of a
considerable fraction of PE-chains is obviously constrained to the colloidal surface
by strong attractive electrostatic forces. Clearly, this trapping almost completely
suppresses fluctuations of the discrete monomeric positions, and especially of the
inter-monomer bond angles. These fluctuations would otherwise lead to a blurring
of the density distributions, smearing out the oscillatory shape of the curves.

4.8.2 Configurational phase behavior

In order to quantitatively describe the morphological behavior of the complexes
formed by a PE-star and an oppositely charged colloid of larger diameter, i.e., for a
size ratio q < 1, we again need a convenient mathematical criterion. It must at the
same time express both the equilibrium center-to-surface distance 〈D(f, q, Qc)〉 and
the typical orientations of all the individual PE-chains, labeled i, or more precisely
speaking of their respective center-to-end vectors Ri. We achieve this by appropri-
ately modifying the criterion introduced in Sec. 4.6.1. Thereby, we have to take into
account that, due to geometry, ẑ is not a preferred direction anymore. Instead, let

n̂ =
rcore − rc

|rcore − rc|
(4.21)

be a unit vector defining the axis instantaneously connecting the centers of PE-star,
position vector rcore, and colloid, position vector rc. Therewith, for each arm we
calculate the time-averaged cosine of the enclosed angle θ′

i between Ri and n̂:

〈cos θ′i〉 =

〈

Ri

|Ri|
· n̂

〉

. (4.22)

Note that the limiting plateau value for arms completely attached to the surface
over their full length is in general not close to zero anymore, as it was for the case
of planar substrates. On purely geometrical grounds, we obtain

cos θ′p = −Rs(f, q, Qc)

2Rc
, (4.23)

whereby we already took into account that, because of the grafting to the core
particle, an outright collapse of one or more PE-chains requires the center-to-surface
distance of star and colloid to be small. Furthermore, we have to point out that
cos θ′p is not equal to half the size ratio q/2, since the relation Rs(f, q, Qc) ≥ Rs

always holds. It rather depends on the set of parameters under consideration, i.e.,
it varies with f , q, and Qc.
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Figure 4.21: Illustration of the conveniently modified criterion to classify PE-
star morphologies in case of complexation with an oppositely charged colloid of
larger radius. For arms fully attached to the colloidal surface the plateau value
reached deviates from zero and can be calculated by geometrical considerations.
The exemplarily chosen parameter combinations are specified within the plots.
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As before, we plot 〈cos θ′i〉 in descending order as a function of the normalized arm
index i/(f − 1), with the indices (re-)assigned accordingly. Fig. 4.21 depicts results
obtained in this manner for the same parameters as already used in Fig. 4.19. Except
for the baseline shift, the general shapes of the curves conform to analogous data
for planar walls as shown in Figs. 4.12 to 4.14. Furthermore, they quantitatively
confirm the above qualitative classification based on an inspection of exemplary
snapshots. In this sense, the modified criterion indeed serves as a convenient tool to
distinguish ensuing configurational phases when studying PE-star–colloid complex
formation. In principle, by systematically scanning the (f, q, Qc)-space and for each
state point attributing the conformations to one of the possible morphological classes
a corresponding phase diagram might be drawn. This will be the subject of future
work.

4.9 Conclusions

We have investigated via extensive, monomer-resolved molecular dynamics (MD)
simulations the complex formation of star-branched PE’s and oppositely charged
surfaces of different geometries. We analyzed in detail the complexation character-
istics, the resulting morphological behavior, and, particularly, their dependence on
physical parameters like the functionality of the PE-stars and the surface charge
density.

For planar, charged substrates, we found a gradual collapse of the PE-stars
upon increasing the strength of the external field or decreasing the functionality.
Thereby, the PE-stars typically run through five distinct classes of morphologies,
ranging from spherical arrangements with rather large center-to-wall distances to
fully adsorbed starfish-type configurations. In the latter case, all the monomers are
located in close proximity to the attracting wall and the PE-stars lose the ability
to act as super-absorber for their counterions. Such behavior is in strong contrast
to the case of PE-stars near neutral walls, whose properties are surprisingly robust
against variation of the center-to-surface separation.

Transitions between different configurational states are continuous, featuring dif-
fuse crossover regions. We developed convenient quantitative criteria, i.e., continu-
ous order parameters, to reliably distinguish and classify the ensuing conformations.
Thus, we were able to generate corresponding morphological phase diagrams by a
systematic examination of the relevant parameter space. It emerged that one can
indeed precisely steer the shape of the PE-stars. A closer study of the role of
additionally included wall counterions revealed that there is in fact a noticeable,
quantitative influence on the blurred phase boundaries, but no fundamental change
in the basic trends. Moreover, the general behavior of the PE-stars was found to
be stable against variation of the density (per unit surface area) of the PE-stars, at



102 4. COMPLEXATION OF PE-STARS WITH CHARGED SUBSTRATES

least as long as sufficient dilution is guaranteed, rendering the system appropriate for
technical applications like the use as microlens arrays or the tailoring of functional
surface coatings.

For weakly curved surfaces, i.e., charged colloids of a size larger than the PE-
star radius, we observed the constitution of ‘bomb’-like complexes with the star
sitting on the colloidal surface. We modified the morphological order parameter to
fit the new situation, and exemplarily demonstrated its ability to characterize the
configurational properties of the arising structures. In general, we expect curved
substrates to favor a stronger adsorption compared to the case of planar walls.
Thereby, the calculation of a full conformational phase diagram lies beyond the
scope of this thesis and is subject of ongoing work.



Chapter 5

Conclusions and outlook

Within the realm of this thesis, we have investigated the influence of confinement
on the conformations and the structural and phase behavior of star-branched poly-
electrolytes (PE’s), whereby we varied both the geometry of the confining walls and
their surface properties. In general, we performed our studies by means of monomer-
resolved molecular dynamics (MD) simulations, a theoretical mean-field approach,
and liquid integral equation theory.

In chapter 2, we measured in our simulations and analyzed theoretically the
repulsive forces exerted by flat, impenetrable, hard walls on multi-arm PE-stars. We
found that the presence of the confining planes does not crucially affect the ability
of the osmotic PE-stars to reabsorb the majority of the released counterions. Thus,
the stars remain almost electroneutral. This holds even for very close proximity to
the wall. Therefore, only a weakly populated counterion cloud emerges outside the
spatial region occupied by a PE-star. For that reason, long-range contributions to
the effective forces stemming from a distortion of the diffuse counterion layer are
negligible and the total forces have a typical range of the order of the PE-star radius.

A detailed analysis of the mechanisms giving rise to the soft star–wall repulsions
showed that, akin to the well-understood PE-star–PE-star case [32, 33], the func-
tional form of the force-vs.-distance curves is mainly governed by the entropy of the
absorbed counterions and the reduction of the volume available to them due to the
star approaching the wall. But at the same time, we discovered a novel, additional
mechanism to be at work. Due to the presence of neighboring arms, it can be fa-
vorable for a fraction of the stiff PE-chains to compress within a certain range of
center-to-surface distances instead of bending away from the wall. This compres-
sion effect is a direct result of the impenetrable character of the wall. Clearly, such
compression leads to an additional repulsive contribution to the total force. Only
for PE-stars very close to the wall the compressed chains must ‘slip away’ to one
side again and re-orient themselves. Consequentially, the compression process stops
and the corresponding force contribution vanishes.
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In chapter 3, we dealt with binary mixtures between PE-stars and neutral, spher-
ical, hard colloids of much larger diameter than the stars. Based on our above
findings for the effective interaction between PE-stars and planar walls, we put
forward a Derjaguin-type approximation to calculate the effective PE-star–colloid
cross-interaction, whereby the compression contribution turned out to decisively in-
fluence the resulting potential. Knowledge of the latter, together with corresponding
intra-species interaction potentials as known from the literature [32,33,36,54], then
allows for a mesoscopic description of the two-component mixture by dint of an
integral equation theory approach, yielding information on structure and thermo-
dynamics of the system. As we could verify, the cross-interaction obtained here
is sufficiently repulsive to bring about regions of a fluid–fluid demixing instabil-
ity. This macroscopic phase separation can be understood by the occurrence of
depletion effects and corresponding effective potentials between the colloids in an
one-component description, featuring attractive tails which are induced by the pres-
ence of PE-stars in the mixture. These potentials are very similar to the effective
colloid–colloid depletion interactions encountered in colloid–polymer mixtures [137].

In chapter 4, we have changed the properties of the confining walls drastically
and introduced surface charges of opposite sign with respect to the PE-stars. The
emanating electric fields induce an adsorption of the PE’s to the substrates and
thus the formation of complexes. Thereby, we investigated in detail the characteris-
tics of such complexation processes and the resulting morphological behavior of the
PE-stars via MD simulations. In particular, we studied the stability of the arising
configurations, their dependence on externally controllable physical parameters like
the functionality of the PE-stars and the surface charge density, and how sharp the
necessarily continuous crossovers between different morphological states are. In or-
der to rationalize the configurational phases (with the terminology used in the sense
of Sec. 4.6) and the corresponding crossovers, we developed quantitative morpho-
logical criteria appropriate to distinguish and classify the ensuing conformations.

In case of planar charged walls, when increasing the external electric field or,
for fixed surface charge density σ0, decreasing the functionality f , the PE-stars
undergo a gradual collapse. This ranges from almost spherical arrangements for
low values of the surface charge density and high arm numbers to completely flat,
two-dimensional, starfish-type configurations in the opposite limit. In-between these
two extreme states we were able to identify three additional and well-discriminable
intermediate classes of morphologies. In this sense, the complexation process is
very much different from that for linear PE-chains, where no such intermediate
states can be found [165]. We showed that, if we approach regions in (f, σ0)-space
where a fully collapsed situation is reached, the average center-to-surface separation
decreases, fluctuations of the same diminish almost completely, and the binding of
the stars to the substrate becomes more and more stable. In addition, the PE-
stars were found to lose the ability to act as super-absorbers for their counterions.
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This particular behavior is in strong contrast to the above case of PE-stars near
neutral walls, where the properties of the PE-stars are surprisingly robust against
variation of the center-to-surface separation. By systematically scanning the relevant
parameter space we generated morphological phase diagrams and it emerged that
one can indeed precisely and easily steer the shape of the PE-stars. Thereby, we
demonstrated that the addition of freely moving wall counterions to the solution
or the variation of the PE-star density can lead to noticeable, quantitative changes
in the location of the diffuse state boundaries, but the fundamental trends persist.
This renders the system convenient for several possible applications, e.g., the use as
microlens arrays or the design and tailoring of specialized surface coatings [91–94].

For PE-stars in the vicinity of charged colloids with a size larger than the star
radius (similar to chapter 3), we also observed an adsorption to the weakly curved
surface, resulting in ‘bomb’-like compounds. We exemplarily substantiated the ap-
plicability of the conveniently modified morphological criteria in this case, but a
calculation of the full conformational phase diagram lies beyond the scope of this
thesis and is subject of ongoing work. Nevertheless, we want to point out again that
the available data, as in case of planar substrates, suggest an adsorption process
and ensuing morphologies very different from that for linear PE-chains [165].

Besides completing systematic studies of the morphological behavior of PE-stars
near larger colloids carrying opposite charges, there are several other possible di-
rections of research arising through and motivated by the thesis at hand. As far
as binary PE-star–colloid mixtures are concerned, the specific form of the cross-
interaction can in general be expected to distinctly determine the structure of the
mixture and its stability. It might be possible to enforce micro-phase separation
with finite wavelength, i.e., cluster formation, instead of macroscopic phase separa-
tion by suitably tuning it. In this respect, a detailed investigation of the effective
forces between a PE-star and an oppositely charged colloid seems to be promising.
Moreover, for both planar and curved, charged substrates, it is an evident question
what influence salt might have on the complexation phenomena found in chapter 4,
since a strong screening of the electric fields due to additional ions can be expected
to hinder a collapse of the PE-stars. A related problem is the investigation of the
effects of multivalent counterions instead of monovalent ones, as was assumed within
the framework of our considerations. Another issue that has already attracted atten-
tion in the colloid–PE-chain context and which is also interesting in our case is that
of charge inversion, also termed overcharging of the colloid due to the associating
PE [60–63]. For PE-stars with a total charge smaller than that carried by a colloid
this requires the formation of multi-complexes, i.e., a situation where more than one
star is adsorbed to the colloid. Such multi-complexes are also interesting from a
morphological point of view, not only against the background of charge inversion.
And finally, since we have only regarded static properties up to now, a promising
field of analysis are the coagulation kinetics for the wall–PE-star or colloid–PE-star
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complexation processes. In the past, a great deal of work was already devoted to
this topic for other systems of oppositely charged particles [165, 170].



Appendix A

Calculation of the electrostatic

potential Φin

Consider a sphere of radius Rs, with a spherical cap chopped off at a plane perpen-
dicular to the z-axis and a distance D away from the center. The latter is at the
same time taken to be the origin O of the coordinate axes. This chopped sphere
of total volume Ωin is assumed to carry a total net charge Qs, whereby the charge
density %in(r

′) decays as (r′)−2 with the separation r′ from midpoint and is instantly
cut-off at the borders. As shown in the main text, a simple normalization condition
yields

%in(r
′) =

Qs

2πRs(r′)2

{

1 +
D

Rs

[

1 − log

(

D

Rs

)]}−1

, (A.1)

i.e., the charge density and all deduced quantities depend on the geometry through
cos θ0 = D/Rs. In chapter 2, we briefly outlined the procedure used to obtain the
corresponding electrostatic potential Φin(r) [see Eq. (2.14)], now we explicitly show
the technical details for the calculation, akin to derivations put forward in Ref. [33]
for a very similar problem. Fig. A.1 sketches the geometry at hand and introduces
some notation used in what follows.

In general, the electrostatic potential Φ(r) due to a charge density %(r) in a
dielectric medium of permittivity ε is given by the expression

Φ(r) =
1

ε

∫

d3r′
%(r′)

|r′ − r| . (A.2)

In order to perform the above integration for a chopped sphere, we follow a divide and

conquer paradigm and firstly decompose the sphere in a succession of infinitesimally
thin discs (height dz′) perpendicular to the z-axis and with their respective centers
C = (x′, y′, z′) located along the same. Clearly, the radius a of one such disc depends
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dz’

c= z’

22a=(R −c )s
1/2

θ0

inρ  ∼1/r 2
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z
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r

sD
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χ

C

Figure A.1: Sketch of a chopped sphere, illustrating the basic geometry and the
procedure used to calculate of the electrostatic potential Φin(r).

on its distance c = |z′| with respect to the point O and reads as

a =
(

R2
s − c2

)1/2
. (A.3)

Each such disc carries an elementary charge dQdisc(z
′), which by straight-forward

computations can be proven to have a value

dQdisc(z
′) =

Qs

Rs
log

(

Rs

c

) {

1 +
D

Rs

[

1 − log

(

D

Rs

)]}−1

dz′. (A.4)

The contribution dΦdisc(r; z
′) of one disc to the electrostatic potential at a point

P thus also depends parametrically on the disc center location z ′. Employing cylin-
drical coordinates r = (ρ, φ, z) and due to azimuthal symmetry, we have

dΦdisc(r; z
′) = dΦdisc(ρ, z; z′). (A.5)

For the steps to come, it is convenient to translate the sought-for potential to a
shifted system of coordinates with the origin O′ and the disc center C coinciding.
We introduce the vector s = (ρ, φ, z − z′) connecting C and the observation point
P ; its magnitude is obviously related to the original coordinates by

s =
[

ρ2 + (z − z′)2
]1/2

. (A.6)

Consequently, the cosine of the angle χ enclosed by the z-axis and the vector s is

cos χ =
z − z′

s
=

z − z′

[ρ2 + (z − z′)2]1/2
. (A.7)
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Therewith, denoting the function which expresses the potential dΦdisc in the new
system of axes as dΨ, we may write:

dΦdisc(ρ, z; z′) = dΨ(s, χ; z′). (A.8)

As we will see, dΨ(s, χ; z′) can be obtained analytically for each disc following
from its further decomposition into concentric rings with radius ξ and charge dq(ξ; z ′)
centered at point C. Note that, due to the inhomogeneous charge density ∼ (r′)−2

inside the chopped sphere all the discs also have inhomogeneous charge densities as
a function of ξ themselves, namely

%disc(ξ; z
′) =

dQdisc(z
′)

π

1

ξ2 + c2

{

log

[

1 +
(a

c

)2
]}−1

. (A.9)

Consequently, the charge carried by a ring with radius ξ results as

dq(ξ; z′) =
2 dQdisc(z

′) ξ

ξ2 + c2

{

log

[

1 +
(a

c

)2
]}−1

dξ. (A.10)

In general, the electrostatic potential of a charged ring is known from literature
[119, 120]. For our special case and the geometry at hand it can be written as

dφring(s, χ; ξ; z′) =

{

dφ<
ring(s, χ; ξ; z′) s < ξ

dφ>
ring(s, χ; ξ; z′) s > ξ.

(A.11)

Thereby, with Pm(x) being the Legendre polynomial of order m and taking into
account the relation P2k+1(0) = 0, the term dφ<

ring(s, χ; ξ; z′) is then given by

dφ<
ring(s, χ; ξ; z′) =

2 dQdisc(z
′) dξ

ε

{

log

[

1 +
(a

c

)2
]}−1

×
{

∞
∑

k=0

P2k(0)P2k(cos χ)
s2k

ξ2k (ξ2 + c2)

}

. (A.12)

Analogously, we receive for dφ>
ring(s, χ; ξ; z′) the expression

dφ>
ring(s, χ; ξ; z′) =

2 dQdisc(z
′) dξ

ε

{

log

[

1 +
(a

c

)2
]}−1

×
{

∞
∑

k=0

P2k(0)P2k(cos χ)
1

s2k+1

ξ2k+1

(ξ2 + c2)

}

. (A.13)
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Using Eqs. (A.11) to (A.13), an integration over all the corresponding rings, i.e.,
from ξ = 0 to ξ = a, directly yields the desired function dΨ(s, χ; z ′):

dΨ(s, χ; z′) =

∫ ξ=a

ξ=0

dφring(s, χ; ξ; z′). (A.14)

Again, we get a split definition and the resulting potential is

dΨ(s, χ; z′) =

{

dΨ<(s, χ; z′) s < a

dΨ>(s, χ; z′) s > a,
(A.15)

with the two different parts reading as

dΨ<(s, χ; z′) =
2 dQdisc(z

′)

εc

{

log

[

1 +
(a

c

)2
]}−1

×
{

∞
∑

k=0

P2k(0)P2k(cos χ)A<
k (s; z′)

}

(A.16)

and, accordingly,

dΨ>(s, χ; z′) =
2 dQdisc(z

′)

εc

{

log

[

1 +
(a

c

)2
]}−1

×
{

∞
∑

k=0

P2k(0)P2k(cos χ)A>
k (s; z′)

}

. (A.17)

Here, we introduced the short hand notation

A<
k (s; z′) = Ck (s; z′)

(c

s

)2k+1

; (A.18)

A>
k (s; z′) = Ck (s; z′)

(c

s

)2k+1

+ Dk (s; z′)
(s

c

)2k

, (A.19)

with the additional abbreviations

Ck(s; z
′) =

(−1)k

2
log

[

1 +
(a

c

)2
]

+

k
∑

j=1

(−1)k+j

2j

(a

c

)2j

; (A.20)

Dk(s; z
′) =(−1)k

[

arctan
(a

c

)

− arctan
(s

c

)]

−
k

∑

j=1

(−1)j+k

2j − 1

[

(a

c

)1−2j

−
(s

c

)1−2j
]

. (A.21)
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Based on the above findings, the total potential Φin(r) caused by the chopped
sphere at an arbitrary observation point P can obtained by carrying out a z ′-
integration in the following fashion:

Φin(r) =

∫ z′=D

z′=−Rs

dΨ (s; χ; z′) . (A.22)

This integral cannot be calculated analytically and we thus have to employ an one-
dimensional numerical integration scheme instead. For this purpose, we need to
rewrite all k- and j-sums in Eqs. (A.15) to (A.21) in such a way that they be-
come manifestly convergent. More precisely speaking, the functions A<

k (s; z′) and
A>

k (s; z′) defined in Eqs. (A.18) and (A.19), respectively, have to be expressed in
terms of new variables x < 1 raised to positive powers in order to gain formulas suit-
able for the numerical integration. Thereby, it is necessary to expand, depending on
whether we have s < c or s > c, the logarithmic or the inverse tangent functions.
The corresponding results are given below.

Case I: c < a < s.

A>
k (s; z′) = Ek(s; z

′) + Fk(s; z
′), (A.23)

where

Ek(s; z
′) =

(−1)k

2
log

[

1 +
(a

c

)2
]

(s

c

)2k+1

; (A.24)

Fk(s; z
′) =

k
∑

j=1

(−1)j+k

2j

( c

a

)2(k−j)+1 (a

s

)2k+1

. (A.25)

Case II: c < s < a.

A<
k (s; z′) = Gk(s; z

′) + Hk(s; z
′) + Ik(s; z

′), (A.26)

where

Gk(s; z
′) =

(−1)k

2
log

[

1 +
(s

c

)2
]

(s

c

)2k+1

; (A.27)

Hk(s; z
′) =

k
∑

j=1

(−1)j+k

2j

( c

s

)2(k−j)+1

; (A.28)

Ik(s; z
′) =

∞
∑

j=k+1

(−1)k+j

2j − 1

( c

s

)2(j−k)−1
[

(s

a

)2j−1

− 1

]

. (A.29)
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Case III: s < c < a or s < a < c.

A<
k (s; z′) = Jk(s; z

′) + Kk(s; z
′) + Lk(s; z

′), (A.30)

where

Jk(s; z
′) =

∞
∑

j=k+1

(−1)j+k+1

2j

(s

c

)2(j−k)−1

; (A.31)

Kk(s; z
′) = (−1)k

(s

c

)2k [

arctan
(a

c

)

− arctan
(s

c

)]

; (A.32)

Lk(s; z
′) =

k
∑

j=1

(−1)j+k+1

2j − 1

(s

c

)2(k−j)+1
[

(s

a

)2j−1

− 1

]

. (A.33)

Case IV: a < s < c.

A>
k (s; z′) = Mk(s; z

′), (A.34)

where

Mk(s; z
′) =

∞
∑

j=k+1

(−1)j+k+1

2j

(a

s

)2j (s

c

)2(j−k)−1

. (A.35)

Case V: a < c < s. For this special case, we can directly use the result for
A>(s, χ; z′) as given in Eq. (A.19), since the fractions a/c and c/s appearing in the
sums are already smaller than unity and there is no additional rewriting necessary.



Appendix B

Calculation of the electrostatic

potential Φout

Consider a hollow sphere of inner radius Rs and outer radius RW, with a spherical
cap chopped off at a plane perpendicular to the z-axis and a distance D away from
the center O. This spherical shell of volume Ωout is assumed to carry an uniform
charge density, i.e.,

%out(r
′) =

{

%out r′ ∈ Ωout

0 r′ 6∈ Ωout.
(B.1)

In order to calculate the corresponding potential Φout(r) [cf. Eq. (2.14)], we can
make use of the superposition principle in the following fashion. As shown in Fig.
B.1, the hollow region can be apprehended from the electrostatic point of view as
the superposition of two solid chopped spheres with radii Rs and RW and uniform
charge densities %in = −%out and %out, respectively. The resulting effective charge
density then exactly equals the initial one given by Eq. (B.1). By this means, the
problem is reduced to the calculation of the electrostatic potential of a chopped
sphere with a homogeneous distribution of charges. This task can be solved easily
using the method presented in Appendix A for the somewhat more involved case of
an inhomogeneous charge density ∼ (r′)2. The electrostatic potential dΦdisc(r; z

′)
of one of the discs the sphere is fractionalized into is in principle still obtained in
exactly the same way, we simply need to replace Eqs. (A.4), (A.10), (A.16), and
(A.17) by their respective counterparts valid for constant charge densities.

When regarding a chopped sphere of radius Rs carrying a total net charge Qs,
the expression for the charge dQdisc(z

′) of a cut-out disc with radius a = (R2
s −c2)1/2

follows from elementary calculations and reads as

dQdisc(z
′) =

3Qsa
2

4R3
s

{

1

2
+

3

4

(

D

Rs

)

− 1

4

(

D

Rs

)3
}−1

dz′. (B.2)
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D

Figure B.1: Sketch of two superimposed chopped spheres. When choosing their
respective uniform charge densities as %in = −%out and %out, the total electrostatic
potential is that of a hollow chopped sphere with a homogeneous charge density %out.

Accordingly, when decomposing such disc in concentric rings of radius ξ, each of
them is charged by an amount dq(ξ; z′). Here, we obtain

dq(ξ; z′) =
2ξ dQdisc(z

′)

a2
dξ. (B.3)

Therewith, we then receive for the sought-for potential dΨ(s, χ; z ′)

dΨ<(s, χ; z′) =
2 dQdisc(z

′)

εa

∞
∑

k=0

P2k(0)P2k(cos χ)

×
{

4k + 1

2(k + 1)(2k − 1)

( s

a

)

− 1

2k − 1

(s

a

)2k
}

(B.4)

and

dΨ<(s, χ; z′) =
2 dQdisc(z

′)

εs

∞
∑

k=0

P2k(0)P2k(cos χ)

2(k + 1)

(a

s

)2k

. (B.5)

There is no need for a supplementary rewriting of the above formulas (B.4) and
(B.5), since the convergence of all the sums is obvious. The simple substitution
Rs → RW directly yields the result for a chopped sphere of radius RW.
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(2000).

[48] Q. de Robillard, X. Guo, M. Ballauff, and T. Narayanan, Macromolecules 33,
9109 (2000).

[49] X. Guo and M. Ballauff, Phys. Rev. E 64, 051406 (2001).

[50] N. Dingenouts, R. Merkle, X. Guo, T. Narayan, G. Goerick, and M. Ballauff,
J. Appl. Crystallogr. 36, 578 (2003).

[51] M. Heinrich, M. Rawiso, J. G. Zilliox, P. Lesieur, and J. P. Simon, Eur. Phys.
J. E 4, 131 (2001).

[52] A. V. Korobko, W. Jesse, S. U. Egelhaaf, A. Lapp, and J. R. C. van der
Maarel, Phys. Rev. Lett. 93, 177801 (2005).

[53] O. V. Borisov and E. B. Zhulina, Eur. Phys. J. E 4, 205 (1998).



118 BIBLIOGRAPHY

[54] C. N. Likos, N. Hoffmann, A. Jusufi, and H. Löwen, J. Phys.: Condens. Matter
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[170] A. Fernandéz-Barbero and B. Vincent, Phys. Rev. E 63, 011509 (2000).





Acknowledgments

Herewith, I want to express my deepest gratitude to the various people who, dur-
ing the last three years, contributed to the making of this thesis by their help and
support.

First, I want to thank Prof. Dr. Christos N. Likos for the great opportunity to
work with him. It was an enormous honor and a tremendous pleasure to have had
him as my teacher and supervisor. His patient guidance and the innumerable, in-
spiring scientific discussions were invaluable in writing my thesis.

I am also very grateful to Prof. Dr. Hartmut Löwen for his support by numerous
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