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Glossary 

BA  Brodmann area 

CNS  Central nervous system 

DICS  Dynamic imaging of coherent sources 

ECoG  Electrocorticogram 

EEG  Electroencephalogram 

EPSP  Excitatory postsynaptic potential 

ERF  Event-related field 

fMRI  Functional magnetic resonance imaging 

GABA  γ-aminobutyric acid 

GABA/Cr GABA-to-creatine ratio  

IPSP  Inhibitory postsynaptic potential 

LCMV  Linear constraint minimum variance 

LFP  Local field potential 

LMF  Local magnetic field 

MEG  Magnetoencephalography 

MRI  Magnetic resonance imaging 

MRS  Magnetic resonance spectroscopy 

PET  Positron emission tomography 

ROI  Region of interest 
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S1  Primary somatosensory cortex 

S2  Secondary somatosensory cortex 

SOA  Stimulus onset asynchrony 

SQUID  Superconducting quantum interference device 

SSSEP   Steady-state somatosensory evoked potential 

TMS  Transcranial magnetic stimulation 
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Summary 

Sensory perception is known to critically depend on stimulus characteristics and the perceiver’s 

state of consciousness. It is less known, however, that perception is also modulated by ongoing 

fluctuations of neuronal activity, which are continuously present in the awake and alert 

individual. Since the brain is continuously active, incoming sensory information is always 

superimposed on a preexisting level of neuronal activity. Therefore, it is likely that the state of 

the brain prior to stimulus presentation influences subsequent stimulus processing and 

perception. 

The present thesis investigated ongoing neuronal oscillations in the somatosensory cortex, 

which represent a correlate of continuous neuronal activity. Specifically, the connection 

between neuronal oscillations and the processing and perception of suprathreshold 

electrotactile stimuli was examined. The major aim was to determine how varying perception of 

physically identical stimulation was related to different states of oscillatory neuronal activity 

present before stimulation. Three studies were included in this thesis. All studies analyzed 

neuromagnetic brain activity measured by magnetoencephalography (MEG). The first two 

studies examined the connection between the perception of suprathreshold electrotactile 

stimuli presented in rapid succession and oscillatory power (study 1) or oscillatory phase (study 

2) prior to stimulation. To further elucidate the neurochemical basics of oscillatory neuronal 

activity, the relations between oscillatory neuronal activity and local non-modulated 

neurotransmitter concentrations measured by magnetic resonance spectroscopy (MRS) were 

investigated (study 3).  

Study 1 analyzed the connection between oscillatory alpha band (8-12 Hz) power present before 

stimulus presentation and the perception of suprathreshold electrotactile stimuli (i.e., the 

number of perceived stimuli). Subjects responded whether they perceived two electrotactile 

stimuli presented in rapid succession as either one single stimulus or two separate stimuli, along 

with the subjective confidence in their report. Although stimulation was kept physically 

constant within subjects, perceptual reports varied between the perception of one stimulus or 
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two stimuli. Alpha band power before stimulus presentation was decreased in the postcentral 

gyrus and the middle occipital region contralateral to stimulation site when subjects perceived 

stimulation as two separate stimuli. In addition, a negative linear relation was found between 

alpha band power and perceptual response rates. Alpha band power levels also were linearly 

related to confidence ratings. However, the directions of the relations were inversely oriented 

for trials with differing perceptual reports. In addition, event-related fields (ERFs) time-locked to 

stimulus presentation were investigated as a correlate of stimulus processing. ERFs of trials with 

physically identical stimulation differed according to the respective perception of stimulation 

and thus demonstrated characteristics of a decision variable. ERFs were interpreted in light of 

current models of perceptual decision making. The results suggest that alpha band power 

influences how many suprathreshold electrotactile stimuli are perceived and how confident 

subjects are regarding their perception. Thus, alpha band power seems to modulate the quality 

of perception. 

Study 2 investigated the same paradigm as study 1 but focused on oscillatory phase within the 

primary somatosensory cortex (S1). In line with study 1, trials in which physically constant 

stimulation was perceived differently were compared. Before stimulus presentation, oscillatory 

phase angles in the alpha and low beta band (8-20 Hz) significantly differed between trials with 

varying perception, with phase angle differences fluctuating around maximum. Based on these 

results, a model of discrete perceptual cycles was introduced. According to the model, 

oscillatory cycles of a specific frequency sample incoming somatosensory stimuli, thereby 

determining the temporal resolution of somatosensory perception. If two stimuli impinge on 

the somatosensory system together within one cycle, stimulation is perceived as a single 

stimulus. Vice versa, if each of the two stimuli impinges on the somatosensory system during a 

separate cycle, stimulation is perceived as two separate stimuli. The specific frequency 

determining the cycle length was derived from the significant phase angle differences and thus 

was localized in the alpha and lower beta band. Based on the model, group-level and single-

subject perceptual response rates were predicted. The findings provide evidence for a discrete 

mode of perception in the somatosensory domain, which could so far only be shown for the 

visual domain. 
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Study 3 examined the relationship between beta band peak frequency and γ-aminobutyric acid 

(GABA) concentrations in spatially defined cortical areas. Although various parameters of beta 

band activity have been previously linked to GABA concentrations, relationships could mostly 

been shown for movement-related beta band activity and/or pharmacologically modulated 

GABA concentrations. Beta band peak frequencies measured at rest and non-modulated GABA 

concentrations assessed with MRS were estimated for left and right sensorimotor and occipital 

cortices. Within cortices, beta band peak frequencies and GABA concentrations were correlated. 

A positive linear relation between beta band peak frequency and GABA concentration was 

determined for the left sensorimotor cortex. Here, subjects showing a higher beta band peak 

frequency also exhibited a higher local GABA concentration. This spatially specific connection 

demonstrates that previously reported links between beta band activity and GABA 

concentrations are also present at rest and regarding non-modulated GABA concentrations. 

The studies presented in the course of this thesis demonstrate that parameters of ongoing 

neuronal oscillatory activity are related to the processing and perception of suprathreshold 

electrotactile stimuli. Importantly, the findings suggest that the neuronal activity present before 

stimulus presentation influences the quality of perception of suprathreshold stimuli. In addition, 

beta band peak frequencies measured at rest correlated with local non-modulated 

neurotransmitter concentrations. This result provides novel insights into the neurochemical 

basics underlying neuronal oscillations. 
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Zusammenfassung 

Sensorische Wahrnehmung beruht maßgeblich auf den Eigenschaften der präsentierten Stimuli, 

sowie auf dem Bewusstseinszustand der wahrnehmenden Person. Weniger bekannt ist 

allerdings, dass sensorische Wahrnehmung auch durch anhaltende Fluktuationen neuronaler 

Aktivität beeinflusst wird, die kontinuierlich im wachen Zustand auftreten. Da das Gehirn 

kontinuierlich aktiv ist, trifft eingehende sensorische Information immer auf ein bereits 

bestehendes Aktivitätsniveau. Es ist daher wahrscheinlich, dass das zerebrale Aktivitätsniveau 

welches vor der Präsentation des Stimulus vorliegt, die nachfolgende Verarbeitung und die 

Wahrnehmung des Stimulus beeinflusst. 

Kernstück der vorliegenden Dissertation ist die Untersuchung neuronaler Oszillationen im 

somatosensorischen Cortex. Dabei wurde die Verbindung zwischen neuronalen Oszillationen 

und der Wahrnehmung überschwelliger elektrotaktiler Stimuli betrachtet. Zentral war hierbei, 

wie unterschiedliche Wahrnehmungseindrücke, welche durch physikalisch identische 

Stimulation hervorgerufen wurden, mit dem Zustand neuronaler Oszillationen vor der 

Stimulation zusammenhängen. Die vorliegende Dissertation umfasst drei Studien, in denen 

neuromagnetische Hirnaktivität mithilfe der Magnetoenzephalographie analysiert wurde. Die 

ersten beiden Studien untersuchten die Verbindung zwischen der wahrgenommenen Anzahl 

elektrotaktiler Stimuli, die mit kurzem zeitlichem Abstand hintereinander dargeboten wurden, 

und dem Leistungsspektrum (Studie 1) oder der Phase (Studie 2) neuronaler Oszillationen vor 

der Präsentation der Stimuli. Um die neurochemischen Grundlagen neuronaler oszillatorischer 

Aktivität zu ermitteln, wurde die Verbindung zwischen neuronaler oszillatorischer Aktivität und 

lokalen nicht-modulierten Neurotransmitterkonzentrationen analysiert (Studie 3). 

Studie 1 erforschte die Verbindung zwischen der Wahrnehmung überschwelliger elektrotaktiler 

Stimuli und dem Leistungsspektrum im Alpha Frequenzband (8-12 Hz) vor der Stimulation. Die 

Versuchspersonen gaben an, ob sie zwei kurz nacheinander dargebotene elektrotaktile Stimuli 

als einen oder zwei zeitlich distinkte Reize wahrnahmen, sowie die subjektive Sicherheit ihrer 

jeweiligen Antworten. Obwohl die Stimulation in jedem Versuchsdurchgang physikalisch 
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identisch war, wurde die Stimulation wechselnd als ein Stimulus oder zwei Stimuli 

wahrgenommen. Wurde die Stimulation als zwei Reize wahrgenommen, war das 

Leistungsspektrum im Alpha Frequenzband vor dem Zeitpunkt der Stimulation im Gyrus 

Postcentralis und im mittleren okzipitalen Cortex kontralateral zur stimulierten Seite 

vermindert. Zudem zeigte sich ein negativer linearer Zusammenhang zwischen dem 

Leistungsspektrum im Alpha Frequenzband und der Wahrnehmungsrate. Lineare 

Zusammenhänge bestanden auch zwischen dem Leistungsspektrum im Alpha Frequenzband 

und der subjektiven Antwortsicherheit, wobei sich die Richtung dieser Zusammenhänge jedoch 

zwischen Versuchsdurchgängen mit verschiedener Stimuli-Wahrnehmung unterschied. 

Ereigniskorrelierte Felder nach (physikalisch identischer) Stimuli-Präsentation unterschieden 

sich zwischen Versuchsdurchgängen mit unterschiedlicher Stimuli-Wahrnehmung, was eine 

charakteristische Eigenschaft von Entscheidungsvariablen darstellt. Die Ergebnisse wurden 

daher im Rahmen aktueller Modelle zur Entscheidungsfindung interpretiert. Die Befunde von 

Studie 1 zeigen, dass das Leistungsspektrum im Alpha Frequenzband die Wahrnehmung von 

überschwelligen Reizen und darüber hinaus die subjektive Sicherheit der angegeben 

Wahrnehmung qualitativ beeinflusst. 

Studie 2 nutzte dasselbe Paradigma wie Studie 1, fokussierte sich allerdings auf die 

oszillatorische Phase innerhalb des primären somatosensorischen Cortex. Wie in Studie 1 

wurden Versuchsdurchgänge verglichen, in denen physikalisch identische Stimulation zu 

verschiedenen Wahrnehmungseindrücken führte. Vor dem Zeitpunkt der Stimuli-Präsentation 

unterschieden sich die oszillatorischen Phasenwinkel im Alpha und unteren Beta Frequenzband 

(8-20 Hz) signifikant zwischen Versuchsdurchgängen mit unterschiedlicher Stimuli-

Wahrnehmung. Darauf basierend wurde ein Modell erstellt, welches diskrete 

Wahrnehmungszyklen innerhalb der somatosensorischen Modalität beschreibt. Hierbei 

bestimmen Zyklen einer bestimmten Frequenz wie eingehende somatosensorische Stimulus-

Repräsentationen zeitlich erfasst und abgetastet werden, wodurch sich die zeitliche 

Auflösungsfähigkeit somatosensorischer Wahrnehmung ergibt. Falls zwei Stimulus-

Repräsentationen innerhalb eines einzelnen Zyklus auf das somatosensorische System treffen, 

wird die Stimulation als ein einziger Stimulus wahrgenommen. Erreicht jede der zwei Stimulus-
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Repräsentationen das somatosensorische System jedoch während eines einzelnen, separaten 

Zyklus, wird die Stimulation als zwei Stimuli wahrgenommen. Die spezifische Frequenz welche 

diese Zyklen bestimmt, wurde aus den signifikanten Unterschieden der Phasenwinkel abgeleitet 

und lag im Alpha und niederen Beta Frequenzband. Basierend auf dem Modell und den 

empirisch gewonnenen Frequenzen konnten Wahrnehmungsraten für die gesamte Stichprobe, 

als auch für einzelne Versuchspersonen vorhergesagt werden. Die vorliegenden Ergebnisse 

sprechen für eine zeitlich diskrete Wahrnehmung innerhalb der somatosensorischen Modalität, 

was bisher nur für die visuelle Modalität aufgezeigt werden konnte. 

Studie 3 untersuchte die Beziehung zwischen der Frequenz innerhalb des Beta Frequenzbands 

mit dem höchsten Leistungsspektrum (Gipfelfrequenz) und der γ-Aminobuttersäure (GABA) 

Konzentration in lokalen Cortexarealen. Bisher konnten solche Zusammenhänge fast 

ausschließlich für bewegungsassoziierte oszillatorische Aktivität im Beta Frequenzband 

und/oder für pharmakologisch modulierte GABA Konzentrationen aufgezeigt werden. Innerhalb 

des linken und rechten sensomotorischen, sowie okzipitalen Cortex wurden die 

Gipfelfrequenzen innerhalb des Beta Frequenzbands während einer Ruheaufgabe und die nicht-

modulierten GABA Konzentrationen mittels Magnetresonanzspektroskopie (MRS) gemessen 

und miteinander korreliert. Ein positiver linearer Zusammenhang zwischen den 

Gipfelfrequenzen innerhalb des Beta Frequenzbands und den GABA Konzentrationen konnte für 

den linken sensomotorischen Cortex festgestellt werden. Somit konnten zuvor berichtete 

Assoziationen zwischen neuronalen Oszillationen im Beta Frequenzband und GABA 

Konzentrationen auch ohne bewegungsassoziierte Einflüsse und bezüglich nicht-modulierten 

GABA Konzentrationen aufgezeigt werden.  

Die vorliegenden Studien demonstrieren, dass Parameter fortlaufender neuronaler 

oszillatorischer Aktivität im Zusammenhang mit der neuronalen Verarbeitung und 

Wahrnehmung überschwelliger elektrotaktiler Stimuli stehen. Dies legt einen qualitativen 

Einfluss neuronaler oszillatorischer Aktivität auf die Wahrnehmung überschwelliger Stimuli 

nahe. Zusätzlich konnten nicht-motorische Gipfelfrequenzen innerhalb des Beta Frequenzbands 

mit lokalen nicht-modulierten Neurotransmitterkonzentrationen assoziiert werden, was 

neuartige Einblicke in die neurochemischen Grundlagen neuronaler Oszillationen ermöglicht.  
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1 Introduction 

One of the most fundamental functions of the brain is the processing and integration of sensory 

information derived from the outside world. However, the representation of sensory 

information in the brain does not constitute a simple copy of external information converted 

into a different format (Buzsáki and Draguhn, 2004). Accordingly, sensory information is not 

processed mechanistically and identical stimulation can result in different perceptual 

sensations. Which factors give rise to this perceptual variability and how do they influence the 

formation of perception? Since the brain is continuously active, sensory input always impinges 

on an already present level of activity. Therefore, it is likely that the processing and perception 

of sensory input is modulated by the brain state which is present prior to the emergence of the 

sensory event (Hebb, 1949).  

The present thesis investigates neuronal oscillations in the somatosensory cortex, which 

represent indicators of continuously ongoing neuronal activity. More specifically, the 

connection between neuronal oscillations and the perception of electrotactile stimulation is 

analyzed. By focusing on neuronal oscillations present before stimulus presentation, the 

influence of ongoing neuronal activity on subsequent stimulus processing and, ultimately, 

perception is examined. To further elucidate the neurochemical basics of neuronal oscillations, 

the relation between neuronal oscillations and neurotransmitter concentrations is investigated. 

In the course of this introduction, a brief description of the fundamentals of the origin and 

measurement of electrophysiological signals with a focus on MEG measurements and data 

analysis will be presented. Based on this, general concepts of neuronal oscillatory activity will be 

introduced. Subsequently, the human somatosensory system will be described, followed by a 

focus on the generation and the functional role of oscillatory activity in the somatosensory 

system. Finally, the core hypotheses and the studies published within the framework of this 

thesis are presented. 
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1.1 The Origin of Extracellularly Measured Electrophysiological Signals 

Phenomenologically, neuronal oscillations represent cyclic variations in externally measured 

signals assuming to reflect metrics of brain activity. In order to appropriately interpret the 

significance of neuronal oscillations, it is fundamental to know how the respective signals are 

generated in the brain (i.e., which sort of ‘brain activity’ is represented by the measured signal). 

Although the major analyses in this thesis focus on the macroscopic level of neuronal activity, a 

microscopic perspective is necessary to elucidate how cellular-level structures and processes 

give rise to externally measurable signals of neuronal activity. Therefore, the fundamentals of 

neuronal information transfer are briefly recapitulated. The components that significantly 

contribute to externally measurable signals of neuronal activity are highlighted. 

Neuronal information transfer critically depends on changes in the membrane permeability for 

specific ions. When neurotransmitters are released into the synaptic cleft and dock at receptors 

of a postsynaptic cell, the postsynaptic membrane permeability is altered due to a relative 

increase of open ion channels within the membrane. Because of different ion concentrations in 

the intra- and extracellular space, this leads to a transient flow of ions across the postsynaptic 

membrane according to their chemical concentration gradient. In response, an electrical current 

is generated in the postsynaptic cell and its membrane potential deviates from its resting 

potential. In case of an influx of positively charged ions (mostly Na+), electric current is directed 

into the neuron and, given the simultaneous input of a sufficient number of presynaptic 

neurons, eventually gives rise to an excitatory postsynaptic potential (EPSP). Alternatively, an 

influx of negatively charged ions (mostly Cl-) or an efflux of positively charged ions (mostly K+) 

causes a current that is directed from the intracellular to the extracellular medium, resulting in 

an inhibitory postsynaptic potential (IPSP; Hansen et al., 2010). Eventually, an EPSP leads to a 

depolarization of the membrane with the potential shifting towards the neuron’s firing 

threshold. An IPSP leads to a hyperpolarization, thus shifting the potential away from the firing 

threshold. If the postsynaptic membrane potential is sufficiently depolarized and crosses a 

specific spiking threshold, an action potential is generated. The action potential then propagates 

along the neuronal axon to the synaptic knob, determining the release of neurotransmitters into 

the synaptic cleft. Thereby, the process begins anew in the subsequent, downstream neuron.  
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Within a specific brain volume, the contributions of electrical current from all active cellular 

processes superimpose at a given location outside of the active neuron. Here, in the 

extracellular medium, the superimposed currents generate a potential (Ve; measured in Volts), 

defined in respect to a reference potential. Ve can also be compared across two different 

locations, thereby resulting in an electric field (the negative spatial gradient of Ve; measured in 

Volts/distance). This electric field indicates the vectorial electromagnetic forces that act on any 

charged particle. Consequently, every transmembrane current determines an intra- and 

extracellular voltage deflection and a corresponding electric field. Such electric fields can be 

recorded extracellularly, either locally by means of a microelectrode in form of a local field 

potential (LFP), from subdural grid electrodes directly applied onto the cortical surface as an 

electrocorticogram (ECoG), or from the scalp as an electroencephalogram (EEG; Buzsáki et al., 

2012). Furthermore, transmembrane currents induce a magnetic field, which can be recorded 

outside of the head by means of magnetoencephalography (MEG; see section 1.2).  

Since externally measured electric or magnetic fields result from the superposition of any sort of 

transmembrane current, it is of major importance to specify the respective contributions of 

different neuronal processes and neuron types to the extracellular field. This is necessary in 

order to infer which ‘neuronal activity’ is represented by an externally measured signal.  

Currents generated by neuronal activity can be subdivided into two main categories; axonal 

action potentials and dendritic post-synaptic potentials (Hall et al., 2014). While action 

potentials are classically considered as the elemental ‘unit of information’ in neuronal 

information transfer, post-synaptic activity presumably provides the major contribution to 

externally measurable current flow (Hansen et al., 2010; Lopes da Silva, 2013). Partially, this is 

due to the effect of temporal summation. Extracellular currents from many different sources 

have to co-occur and temporally overlap in order to induce a signal strong enough to be 

externally measurable. This temporal overlapping is more likely for relatively slow events (e.g., 

postsynaptic potentials, which last for tens of milliseconds; Buzsáki, 2006) than for short events 

like action potentials. Although action potentials generate currents that can be detected 

extracellularly as spiking activity, the corresponding electrical fields are of short duration 

(< 2 ms). Thus, action potentials are not considered to significantly contribute to LFP activity 



Introduction 

17 

 

with less than 100 Hz (Buzsáki et al., 2012). Furthermore, because of its low electrical resistance, 

the extracellular space acts like a low-pass filter. This allows slowly undulating voltages like 

postsynaptic potentials to propagate farther, compared to fast-rising spikes of action potentials 

(Buzsáki, 2006).  

Additionally, the contribution of postsynaptic currents to externally measured brain signals is 

considered higher than the contribution of action potentials due to different electrical 

properties of the two signals. Dendritic current flow due to postsynaptic potentials can be 

approximated as a current dipole. Current dipoles are represented by two opposite charges with 

a theoretically infinitely small spatial separation (Buzsáki et al., 2012) and can be interpreted as 

the spatial center of gravity of momentary cortical activity (Lopes da Silva, 2013). The two 

opposing charges giving rise to a dipole are created as follows: The movement of positively 

charged ions from the extracellular into the intracellular space (e.g., at an excitatory synapse) 

results in a local extracellular sink. Consequently, an electrical current (labeled primary current) 

builds up along the interior of the postsynaptic cell. In order to balance the extracellular sink, 

passive ohmic currents (labeled volume or return currents) are generated in the surrounding 

extracellular medium. These volume currents give rise to an opposing efflux of ions from the cell 

into the surrounding extracellular space, thereby completing the loop of ionic-flow and 

preventing any buildup of charge (Hämäläinen et al., 1993; Buzsáki et al., 2012). The respective 

location of this efflux is labeled a source. Thus, synaptic activity at a given location of the 

dendritic membrane creates a specific sink-source configuration in the extracellular medium, 

which can be approximated as current dipole. In contrast, axonal currents due to action 

potentials create two parallel current dipoles of equal intensity but opposite orientation (one 

dipole on the leading edge and one dipole on the trailing edge of the action potential peak 

propagating along the axon), resulting in a quadrupolar current dipole. The electric field 

strength of a dipole falls off with distance with the rate of 1/(distance)², whereas for a 

quadrupole, the field strength drops with the rate of 1/(distance)³. Thus, the contribution of 

postsynaptic currents to signals measured at a certain distance can be considered significantly 

higher (Hall et al., 2014). 
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In addition to temporal summation and current properties, the geometry and 

cytoarchitectonical orientation of neuronal sources is highly relevant for the generation of 

externally measurable signals. Although generally all neuron types are considered to contribute 

to the extracellular field, the main contribution to EEG and MEG signals is made by pyramidal 

neurons (Hämäläinen et al., 1993; Hansen et al., 2010; Lopes da Silva, 2013). These cells possess 

characteristically shaped and orientated long apical dendrites and are located exclusively in the 

cerebral cortex, in all layers except layer 1. Approximately, pyramidal neurons constitute about 

70-85 % of the total cortical neuronal population. Therefore, they have been considered the 

principal neuron of the cerebral cortex (DeFelipe and Fariñas, 1992). The cytoarchitectonical 

organization of neurons is relevant for their contribution to the extracellular field, because the 

spatial distance between sink and source determines the ion flow in the extracellular medium 

and thus, the strength of the dipole (Hari et al., 2010; Buzsáki et al., 2012). Active pyramidal 

neurons generate strong dipoles along their main axis due to their characteristic thick apical 

dendrites, as there is a substantial distance between sink and source. Consequently, the 

resulting electric field can be measured across a large distance, which is why it is termed an 

open field. On the contrary, neurons with spherically symmetrically orientated dendrites create 

a closed field and thus contribute far less to the extracellularly measured field (Hansen et al., 

2010). Furthermore, it has to be taken into account that externally measured brain signals 

reflect neuronal population activity; i.e., the summated post-synaptic potentials of a multitude 

of coherently active neurons. Therefore, the collective orientation of the active neurons is of 

major importance. Pyramidal neurons are arranged analogous to a palisade; i.e., the main axes 

of the dendritic trees are positioned parallel to each other and the cells are oriented 

perpendicular to the cortical surface. This geometry allows for the efficient superposition of 

synchronously active dipoles, giving rise to relatively large LFPs (Buzsáki et al., 2012; Hall et al., 

2014). Finally, the gyrification of the cerebral cortex leads to a dense concentration of the apical 

dendrites of pyramidal cells in the concave side of a gyrus. By this, the current density is 

enhanced, which in turn amplifies the externally measurable signal (Buzsáki et al., 2012).  

Taken together, the systematic temporal co-activation of a multitude of neurons, as well as their 

specific spatial organization, generates electrical fields (or, in case of MEG measurements, 
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magnetic fields) of sufficient magnitude to be externally measured. By means of an inserted 

microelectrode these signals can be recorded locally as LFPs. LFPs are mainly generated by the 

superposition of synchronized transmembrane currents, spatially averaged over hundreds to 

thousands of neurons in close vicinity (several hundred μm) of the electrode tip (Katzner et al., 

2009; Wang, 2010). LFPs and their magnetic counterparts, local magnetic fields (LMFs), can be 

seen as microscopic core elements that give rise to EEG and MEG signals. The neuronal sources 

generating the respective signals are considered to be essentially the same (Lopes da Silva, 

2013). However, there are significant differences regarding the measured signals. While EEG 

measures electrical potential differences between electrodes applied on the scalp (Baillet et al., 

2001) and thus can be interpreted as the macroscopic equivalent of a LFP, the signal measured 

by MEG is physically different. This is addressed in more detail in the following section. 

1.2 Magnetoencephalography: Measuring Neuromagnetic Signals 

In contrast to LFPs and EEG, MEG does not measure the electric field determined by neuronal 

currents, but the magnetic field over the scalp induced by these currents. The strength of a 

magnetic field is determined by the distance, strength and geometry of the current distribution. 

Magnetic fields can be calculated with the help of Maxwell’s equations (Maxwell, 1865), given 

that the primary current source and the conductivity of the surrounding medium are known 

(Hämäläinen et al., 1993). Because magnetic fields are always orientated orthogonally to the 

underlying primary currents, only dipoles orientated tangentially to the cortex surface give rise 

to magnetic fields that are measurable outside of the head. In contrast, radially oriented dipoles 

produce silent magnetic fields that cannot be measured outside the head (Hämäläinen et al., 

1993). As a consequence, fissural neuronal activity is considered the major generator of MEG 

signals (see Fig. 1 for a schematic representation). From this and the electric properties of 

different transmembrane currents specified in the previous section, it follows that MEG signals 

primarily originate from dendritic current flow due to synchronous postsynaptic potentials in a 

population of coherently active pyramidal neurons orientated perpendicular to the cortical 

surface (i.e., within cortical fissures; Hämäläinen et al., 1993; Hari et al., 2010; Hall et al., 2014). 
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Figure 1: Schematic representation of the origin of MEG signals. (a) Coronal slice of the human brain. The cortical 

surface is represented by dark color. (b) Close-up on the cortical surface. Primary currents (black arrows) flow 

perpendicular to the cortical surface. Depending on their position in gyri and sulci, the currents flow either 

tangentially or radially relative to the head. (c) Tangentially oriented currents produce externally visible magnetic 

fields that can be measured outside the head. (d) Radial currents produce silent magnetic fields. Consequently, no 

magnetic fields can be measured outside the head. (e) The magnetic field induced by the exemplary dipole q exits 

and reenters the scalp. Adapted from Vrba and Robinson, 2001. 

Neuromagnetic signals as measured by MEG are direct correlates of neuronal activity. 

Therefore, they offer a more direct insight into ‘brain activity’ compared to indirect metrics 

(e.g., functional magnetic resonance imaging (fMRI) blood-oxygen-level dependent contrast and 

positron emission tomography (PET) glucose-metabolism). This advantage is accompanied by a 

high temporal resolution, which is limited only by the sampling speed of the system and can 

reach up to 12,000 Hz in modern MEG systems (Hall et al., 2014). Consequently, neuronal 

activity can be recorded on a millisecond timescale, enabling a detailed investigation of the 

temporal dimension of neuronal processes. In contrast, the spatial localization of the signal 

sources poses an inherent challenge in MEG measurements. This is due to the electromagnetic 

inverse problem; i.e., the estimation of source currents within the head given only externally 

measured signals. Because inverse problems are ill-posed and have no unique solution (i.e., a 

multitude of different source configurations can create a given signal), it is necessary to include 

certain theoretical constraints and assumptions about the underlying sources in the source 

model (Hämäläinen et al., 1993). Accordingly, the localization of neuronal sources in MEG 
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measurements always depends on the validity of the a priori defined assumptions and 

simplifications (e.g., the simplified representation of primary currents as current dipoles; Baillet 

et al., 2001). The topic of source localization is addressed in more detail in section 1.3.3.3. 

Nonetheless, MEG offers a higher spatial accuracy than EEG. Because in both methods, neuronal 

signals are measured outside of the head, the signals have to pass the intermediary layers of 

tissue (e.g., liquor, skull and scalp). These tissues exhibit inhomogeneous electrical conductivity, 

which modulate externally measured signals. Thus, the externally recorded signal represents a 

distorted image of the underlying sources. Since magnetic fields are far less distorted by the 

different tissues than electric fields, the modeling of extra-cranial fields holds a potentially 

higher spatial accuracy for MEG compared to EEG (Baillet et al., 2001; Hall et al., 2014). Under 

favorable conditions, the average spatial accuracy of MEG is considered to be around a few 

millimeters (Hämäläinen et al., 1993). 

Another point determining the spatial resolution of MEG is the distance between sensor and 

signal source. In general, the further the recording sensor is positioned from the current source, 

the greater the spatial averaging of the signal; i.e., the more indistinct the measured signal 

becomes regarding the events at the current source (Buzsáki et al., 2012). This general principle 

holds true also for macroscopic measurements of brain activity, specifically for MEG. Since in 

MEG the sensors are located outside of the skull and thus in considerable distance to the 

current sources (approximately 4-5 cm), the degree of spatial averaging is relatively high. Thus, 

MEG recordings are biased towards the representation of synchronized activity, since non-

synchronized sources are canceled out due to spatial averaging (Uhlhaas et al., 2009). 

Consequently, a large population of neurons has to be synchronously active to generate a visible 

MEG signal. Neuromagnetic signals as measured by MEG typically range from 50-500*10−15 T 

(Hämäläinen et al., 1993). The extent of cortical activity (i.e., the number of synchronously 

active neurons) that is necessary to generate signals of such magnitude is estimated to be 

around 40 mm² of cortical surface (Chapman et al., 1984), which corresponds to approximately 

10,000-50,000 neurons (Murakami and Okada, 2006). 

Because neuromagnetic activity produces signals with low field strength, MEG systems require 

highly sensitive sensors. Currently, the only sensor that is able to reliably measure such small 
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signals is the superconducting quantum interference device (SQUID; Zimmerman et al., 1970). 

To further increase sensitivity, special pickup coils are coupled to the SQUIDS. These coils detect 

the neuromagnetic fields and route the signal to the SQUIDS (see Vrba and Robinson, 2001 for a 

detailed review on SQUID technology). To guarantee such high levels of sensitivity, SQUIDs and 

pickup coils have to possess superconductivity, which is achieved by placing the sensors in liquid 

helium (4.2° K/ -268.95° C at sea level; Reite and Zimmerman, 1978). Modern systems comprise 

several hundred sensors arranged in a head-size shaped cavity. Sensors and cryogenic agent rest 

within a vacuum-isolated container called a dewar, which is placed inside an external casing 

(Fig. 2).  

 

Figure 2: Frontal view of an exemplary MEG system. The photo shows the 

Elekta Neuromag Vector View 306 Channel MEG system (Elekta Oy, Helsinki, 

Finland) of the Institute of Clinical Neuroscience and Medical Psychology at the 

University Clinic of Düsseldorf. The neuromagnetic field is detected by pickup 

coils built into the helmet-shaped cavity. Coils, SQUID sensors and cryogenic 

agent are fitted within the dewar, which is placed in a composite fiberglass-

synthetic made gantry. The subject is seated in a movable chair with the head 

placed within the cavity. Alternatively, the gantry can be tilted backwards to 

measure subjects in a supine position. 

 

A considerable problem is the separation of neuromagnetic signals from external magnetic 

noise. Since the neuromagnetic fields are extremely small, they are superimposed by other 

magnetic signals of higher magnitude, provided that these signals are not specifically filtered 

out and rejected. Noise signals can be of biological (e.g., muscle contraction) or non-biological 

(e.g., moving magnetic objects) origin. Therefore, MEG systems rely on different mechanisms to 

reduce external magnetic noise. One mechanism is provided by the special superconducting 

pickup coils or flux transformers, which guide the magnetic signal to the SQUID sensors. Often, 

the coils are constructed in a specific configuration with two coils positioned in series, either 

horizontally (planar) or vertically (axial). Such gradiometer coils measure the magnetic field 

gradient selectively across the device-dimension (i.e., in longitudinal or latitudinal direction, 
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respectively). Consequently, the system is most sensitive to spatially inhomogeneous signals of 

nearby sources and insensitive to spatially uniform signals of distant sources (Hämäläinen et al., 

1993). In addition, MEG systems are placed in special magnetically shielded rooms. These rooms 

are encased with specific metals suppressing external magnetic noise, thereby shielding the 

sensors. Supplementary to these hardware-based mechanisms of noise reduction, there are 

various software-based processing tools available for noise filtering and cancellation (Vrba and 

Robinson, 2001). 

After briefly describing the origin and measurement of electrophysiological and neuromagnetic 

signals, the next section will focus on the fundamental characteristics, basic functions and 

analysis of neuronal oscillations. 

1.3 Neuronal Oscillations in the Human Cerebral Cortex 

Neuronal oscillations represent rhythmic variations in the synchronous activity of neuronal 

populations over a wide temporal and spatial range. The periodicity of oscillatory signals is 

generated by both cellular mechanisms as well as circuit properties in neuronal networks (see 

section 1.3.1 for details). Within networks, rhythmic synchronization of neurons emerges from 

the dynamic interaction between excitation and inhibition, relying heavily on the influence of 

inhibitory interneurons (Wang, 2010). These variations in neuronal activity can be measured 

locally in form of LFPs or more globally in form of EEG or MEG signals. Regarding the measured 

signal, neuronal oscillations are considered to result from periodic fluctuations in membrane 

potentials mainly caused by postsynaptic potentials (Gray and Singer, 1989) and thus represent 

cyclic changes in neuronal excitability (Fries, 2005; Thut et al., 2012; Jensen et al., 2014). 

Importantly, neuronal excitability can be understood in an afferent and efferent sense; i.e., it 

determines the sensitivity to afferent synaptic input as well as the probability for efferent 

output (Fries, 2005). Although the connection between neuronal excitability and neuronal 

oscillations has already been postulated since the early days of electrophysiology (Bishop, 1933; 

Lindsley, 1952), it has only recently been experimentally verified by studies directly linking 

neuronal firing rates (i.e., neuronal excitability) to specific points in the cycle of ongoing 

fluctuations in LFP and EEG recordings (Lakatos et al., 2005). However, the relationship between 
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the firing pattern of individual cells and oscillatory population activity is of stochastic nature. 

Individual neurons participating in oscillating populations do not have to show strictly oscillatory 

output themselves, since they do not regularly discharge at every single cycle (Singer, 2013). 

 

1.3.1 Characterizing Neuronal Oscillations 

Neuronal oscillations are unambiguously characterized by three specific parameters. The maybe 

most fundamental one is frequency, defined as the amount of cycles elapsed within the time 

span of one second (measured in Hz). Frequency defines different oscillatory bands. In the 

human brain, oscillatory activity covers a wide range from approximately 0.5 Hz to 500 Hz 

(Buzsáki and Draguhn, 2004) and can be divided into delta (<2 Hz), theta (4-7 Hz), alpha (8-

12 Hz), beta (13-30 Hz), low gamma (30-60 Hz), high gamma (60-90 Hz; Singer, 2013) and high 

frequency oscillations (>100 Hz). However, it is important to note that the boundaries between 

different frequency bands are loosely defined and a subject of ongoing debate. The main 

rationale for the distinction of different frequency bands is that they are often associated with 

Synchronization and Oscillations 

Synchronization and oscillations are no phenomena restricted to neuronal activity, but can 

be found in various biological and non-biological systems. A classic example of oscillations in 

biological systems is the cardiac rhythm. In non-biological systems, the swinging pendulum 

of a clock is often used to illustrate oscillatory processes. In general, oscillations can be 

understood as the periodic repetition of similar patterns in the time domain, ranging from 

highly regular to highly irregular periodicity (Singer, 2013). These repeating periodic 

variations (i.e., cycles) produce rhythms, which often interact with the environment and 

thereby generate the effect of synchronicity. Synchronicity is defined as the precise co-

occurrence of events in the time domain; i.e., if multiple events co-occur at the same point 

in time. The state of synchronicity is achieved by synchronization, defined as an “adjustment 

of rhythms of oscillatory objects due to their weak interaction” (Pikovsky et al., 2001). This is 

also visible in the word’s origin from the Greek words Χρόνος (chronos, i.e., time) and σύν 

(syn, i.e., common). Literally, “synchronous” therefore means “occurring in the same time”. 
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different functional brain states (Klimesch, 1999; Kopell et al., 2000). The present thesis focuses 

on oscillations in the alpha and beta band, which are described in detail in the sections 1.5.1 and 

1.5.3, respectively. 

A further important parameter of neuronal oscillations is power. Oscillatory power is defined as 

the square of the Fourier amplitude of a signal (Buzsáki et al., 2012). Power variations are 

considered to result from an increase or decrease in the synchronization of the underlying 

neuronal population. Additionally, power is related to the number of synchronously active 

neurons (Pfurtscheller and Lopes da Silva, 1999). Power can be used to approximate the number 

of EPSPs arriving in a given neuronal population at a given time point (Varela et al., 2001). 

Interestingly, the frequency of neuronal oscillations is inversely related to their power; i.e., 

signals with high frequency usually exhibit a lower power compared to low frequency signals 

(Freeman et al., 2000). Because power is proportional to the number of synchronously active 

neurons, this 1/f power ratio implies an important functional property of neuronal oscillations. 

Generally, oscillations in higher frequency bands (e.g., gamma oscillations) are assumed to be 

restricted to smaller neuronal networks, hence supporting local computation, whereas slow 

oscillations are more often associated with larger cortical networks (Pfurtscheller and Lopes da 

Silva, 1999; Buzsáki and Draguhn, 2004). In line with this, neuronal networks operating at low 

frequency are considered to influence local high frequency networks in a hierarchical, top-down 

fashion (Lakatos et al., 2005; Lakatos et al., 2008). 

Oscillatory phase explicitly defines at which point of a cycle an oscillating signal is at a given time 

point. It represents a cyclic parameter and ranges from 0-2π or alternatively from 0-360°. Phase 

determines the timing of neuronal firing and thus defines discrete windows of excitation and 

inhibition with high temporal resolution (Busch et al., 2009; Mathewson et al., 2011).  

The properties of neuronal oscillations are determined by both cellular and network 

characteristics (Wang, 2010). Oscillatory firing patterns are also known from single neurons 

(Llinas, 1988). This suggests the existence of mechanisms generating oscillatory output that are 

largely independent from network properties. Such intrinsic oscillatory properties of single 

neurons enable them to act as pacemaker, thus shaping oscillatory activity within networks. For 
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single neurons to establish synchronicity in neuronal networks, it is of critical importance how 

neurons temporally adjust their firing according to their phasic synaptic input (Wang, 2010). 

Passive membrane properties like specific leak conductance act as a low-pass filter for incoming 

signals. In contrast, voltage-gated active membrane channels determine the high-pass filtering 

qualities of neurons (Wang, 2010). The combination of these two opposite mechanisms can 

tune neurons towards specific filtering properties and frequency preferences, enabling them to 

select afferent information by its frequency (Buzsáki and Draguhn, 2004). On the other hand, 

synchronous oscillations result from an interaction of excitatory and inhibitory network 

components. Here, synaptic inhibition (either by means of inhibitory interneurons or by 

reciprocal feedback inhibition) is considered a main factor determining the temporal structure 

of network activity (Uhlhaas et al., 2009; Wang, 2010). In line with the significant influence of 

synaptic inhibition on the generation of synchronous oscillations, γ-aminobutyric acid (GABA) is 

considered to have an important impact on the generation of neuronal oscillations (Wang, 

2010). GABAergic inhibitory interneurons are connected to excitatory neurons by feedforward 

and feedback loops and thus are able to temporally adjust ongoing network activity 

(Lopes da Silva, 2013). The influence of GABA on oscillatory activity (with focus on the beta 

band) will be further addressed in section 1.5.4. Finally, physical parameters like synaptic delay 

time and axon conduction speed define the temporal limits of information transfer within 

neuronal networks (Buzsáki and Draguhn, 2004). By this, neuronal oscillations are restricted to 

certain frequency ranges. 

1.3.2 The Functional Role of Neuronal Oscillations 

Oscillatory activity is a fundamental characteristic of neuronal signals (Gray, 1994) and a well 

preserved phenomenon in the evolution of the mammalian brain (Buzsáki, 2006). This suggests 

that neuronal oscillations are important for neuronal information transfer. However, the 

specific functions underlying neuronal oscillations remain speculative. Scientific interest in 

neuronal oscillations has rekindled in the last decades. This is mainly owing to the possibility to 

non-invasively measure neuronal oscillations, thus enabling experiments with human subjects 

on a large scale. The corresponding results show that neuronal oscillations are directly 

connected to perception and behavior (reviewed in Buzsáki, 2006; Thut et al., 2012), which 



Introduction 

27 

 

contradicts their initial evaluation as a mere epiphenomenon of neuronal activity. Due to the 

recent prominence of neuronal oscillations within the neuroscientific community, multiple 

theories addressing the potential functions of neuronal oscillations have been formulated. 

These theories range from particular functions of selective frequency bands in specific cortex 

areas to fundamental mechanisms of information transfer attributed to oscillatory activity. 

Subsequently, a short overview regarding global functions related to oscillatory activity in the 

human brain will be given. The more specific role of neuronal oscillations in the alpha and beta 

band will be described in section 1.5. 

The cerebral cortex is estimated to comprise at least 1010 neurons, densely interconnected by 

approximately 1014 synapses (Hämäläinen et al., 1993). Although the ‘neuron doctrine’ (i.e., the 

concept that single neurons represent the elemental structural and functional units of the brain) 

can be considered as one of the core principles of modern neuroscience (Cajal, 1888; reviewed 

in Yuste, 2015), it is evident that neurons do not work in isolation. Rather, neurons dynamically 

form multiple functionally coherent assemblies across different cortical areas that operate in 

parallel (Hebb, 1949). This leads to the question how such functionally distinct and constantly 

changing assemblies are integrated in order to achieve a coherent representation of the 

perceived environment and, consequently, an effective behavioral output. Since 

synchronization of neuronal assemblies in oscillatory activity is a dynamic process (i.e., the 

properties of oscillations and the participating neurons can change rapidly over time, as 

opposed to ‘hard-wired’ anatomical connections), neuronal oscillations are considered an 

important mechanism enabling dynamic communication between neuronal assemblies 

(Lopes da Silva, 2013). Thus, neuronal oscillations are presumed to represent a link between 

single neuron activity and rigid neuroanatomical connections on the one side and a dynamical 

cognitive workspace and complex behavioral output on the other side (Buzsáki and Draguhn, 

2004).  

Fundamentally, neuronal synchronization allows for the collective subthreshold modulation of 

membrane potentials in defined neuronal populations (Lopes da Silva, 2013). Within 

synchronous populations, coherent modulations determine the periods where neurons are 

responsive to incoming signals and, in turn, are able to emit signals themselves. Because 
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synchronously oscillating neurons are susceptive to afferent input only during narrow time 

windows, the saliency of signals arriving during these time windows is enhanced (relative to 

signals arriving outside of these time windows; Uhlhaas et al., 2009). Likewise, in a synchronized 

neuronal population, outputs are restricted to narrow time windows. In downstream target 

neurons, this results in a coherent summation of signals, thereby amplifying the incoming 

signals and increasing their efficacy (Buzsáki and Draguhn, 2004; Fries, 2009). Thus, activity 

within synchronized assemblies is recursively entrained and the synchronous network is 

internally stabilized. Consequently, the synchronization of neuronal discharges within a network 

allows for the dynamic formation of selective functional relationships (Engel et al., 2001). In 

other words, synchronization within neuronal assemblies increases the chance that the encoded 

information (e.g., sensory representations) is grouped, selectively routed for further joint 

processing and segregated from information encoded in differently synchronized networks 

(Singer, 1999; 2013). Similarly, neuronal oscillations are considered an essential mechanism for 

the dynamic communication between different neuronal assemblies. By synchronizing and 

locking their phases, different neuronal assemblies can align their time windows of high 

excitability. In this way, temporal relations can be systematically coordinated between distinct 

neuronal assemblies. Consequently, communication between phase-locked neuronal 

populations is established (Fries, 2005; 2009). 

1.3.3 Analysis of Neuronal Oscillations Measured by MEG 

The technique of MEG is especially suited for the analysis of neuronal oscillations. Since 

neuronal oscillations rely on the accurate timing of synchronously firing neuronal populations, a 

high temporal resolution is necessary to reliably measure oscillatory signals. Furthermore, the 

high temporal resolution of MEG can be used to investigate oscillatory signals with high 

frequency content. The raw signal output of an MEG measurement is a time series of scalars for 

each sensor, representing variations in magnetic field strength or magnetic field gradient as a 

function of time. Usually, the first analysis step is the preprocessing of the raw signal. 

Preprocessing involves various filtering methods, by which the signal is cleaned from 

components unrelated to neuromagnetic activity. These components are known as artifacts and 

can be of biological (e.g., eye movement) and non-biological (e.g., power line noise) origin 
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(Mitra and Pesaran, 1999; Braeutigam, 2013). Further important preprocessing steps include 

filtering (i.e., restricting the signal to specific frequency components), the rejection of noisy or 

broken sensors and detrending (i.e., correction of linear power changes in the data) (Gross et 

al., 2013). Based on the preprocessed signal, different analysis methods can be applied. The 

respective choice of analysis methods thus depends on the available data, the present 

experimental paradigm and, ultimately, the hypothesis. 

1.3.3.1 Event-related Fields 

Event-related fields (ERFs) are the magnetoencephalographic analogue of the well-established 

electroencephalographic event-related potentials. The core assumption of event-related 

approaches is the existence of neuronal responses that exhibit a systematic temporal 

relationship (i.e., are time-locked) to a given event (e.g., the presentation of a stimulus). Under 

such conditions, the response is labeled an ‘evoked response’. These responses are assumed to 

remain stable over multiple repetitions, but are contaminated by neuronal activity 

systematically unrelated to the event (i.e., the noise). The onset of the event is defined as a 

fixed time point. Multiple repetitions of the event are recorded and temporally aligned with 

regard to the onset time point. Subsequently, the signals are averaged. By this, the activity 

unrelated to the event is averaged out. Consequently, the neuronal responses systematically 

related to the event are enhanced relative to the activity unrelated to the event (i.e., the signal-

to-noise ratio is enhanced). Based on these properties, poststimulus ERFs are often interpreted 

as neuronal correlates of stimulus processing (Jones et al., 2007). Thus, the latency and the 

amplitude of poststimulus ERFs can be interpreted regarding their relation to factors like 

stimulus type or intensity (Braeutigam, 2013).  

1.3.3.2 Spectral Decomposition 

One of the fundamental properties of oscillations is their periodicity. Because they occur 

periodically, it is efficient to transform oscillatory signals from the time domain to the frequency 

domain. This is achieved by means of a Fourier transformation, which decomposes the signal 

into multiple sinusoidal functions, thus allowing an estimation of the signal at a specific 

frequency (reviewed in Mitra and Pesaran, 1999). Contrary to ERFs, which include all frequency 
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components, the output of a Fourier analysis yields phase and amplitude values as a function of 

frequency. Additionally, phase and amplitude values can also be computed as a function of 

time. This is achieved by means of a time-frequency analysis, where a window function is 

translated in time across the signal. Thereby, temporal changes regarding the frequency 

components in the data can be investigated. While ERFs only identify signal components with a 

stable temporal relationship between the neuronal response and the respective event, a time-

frequency analysis can also identify those signal components with a temporal jitter regarding 

the event onset. Time-frequency analyses are especially important for analyzing signal 

components that are present only in specific frequencies and for transient signals not phase-

locked to the respective event (labeled ‘induced’ responses). 

1.3.3.3 Source Reconstruction 

Source reconstruction is applied to estimate the neuronal current sources that underlie the 

externally measured signals. Unfortunately, the task of source reconstruction is intrinsically 

problematic in the sense that it is severely underdetermined. There are far more possible 

neuronal sources (in the order of 10,000) than available sensors (in the order of 100; Baillet et 

al., 2001). The problem arising from this constellation is that a given sensor-level signal can be 

caused from a multitude of neuronal current generators. Additionally, even with theoretically 

optimal data quality and a theoretically infinite number of sensors, the possibility remains that 

there are neurophysiologically relevant currents which cannot be measured by the sensors 

(Braeutigam, 2013). This ‘inverse problem’ (i.e., the estimation of current sources from 

externally measured fields) is ill-posed and has non-unique solutions. Thus, the solution requires 

a priori assumptions in form of physiological constraints and mathematical simplifications 

(Baillet et al., 2001; Vrba and Robinson, 2001). The common approach to solve the inverse 

problem is to first address the ‘forward problem’; i.e., to define which externally measured 

fields result from a given set of neuronal sources. The computation of the forward model 

requires several components. First, it is necessary to construct a head model, which specifies 

the spatial and conductor properties of the subjects’ head. Therefore, the head model 

integrates the geometric information of the respective brain volume and a model of the 

conductor properties of the tissues between brain and scalp surface. Regarding the geometric 
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information, up-to-date measurements usually implement realistic head models, which rely on 

individual anatomical information obtained by magnetic resonance imaging (MRI) 

measurements. Regarding the conductor properties, a simple single-shell model (Nolte, 2003) is 

sufficient for MEG measurements (Baillet et al., 2001). Subsequently, the brain volume is 

spatially discretized by placing a grid of evenly spaced discrete points within the volume. 

Furthermore, the sensor positions relative to each other as well as relative to the brain have to 

be specified. The head model and the sensors are then linked by means of a lead field. The lead 

field specifies which sensor signal pattern is generated by a given source with unitary amplitude, 

given various discrete locations within the source volume. Finally, the source model is 

constructed, which estimates and quantifies the underlying current density distribution (Gross 

et al., 2013). Based on these components, the forward model is calculated. The inverse problem 

is then addressed by taking the inverse of the forward problem; i.e., sensor level signals are 

traced back to source activity. As stated above, the inverse problem has an unlimited number of 

solutions. Therefore, it is necessary to impose certain constraints in order to reduce the number 

of possible solutions. This is done by different computational approaches, e.g., minimum norm 

estimate, least-squares source estimation and beamforming approaches (reviewed in Baillet et 

al., 2001). 

The experiments presented in the course of this thesis make extensive use of the beamforming 

approach. In general, beamformers are used to discriminate between signals from a given point 

of interest and other signal components (Baillet et al., 2001). Therefore, it is assumed that MEG 

sensor activity can be derived from a fixed and finite set of current dipoles within the brain 

volume. Using a spatial filter, neuronal activation is estimated for each dipole location as the 

weighted sums of sensor data, independently of all other locations. The aim is to adjust the 

respective sensor weightings in order to maximally explain the neuronal activation at a certain 

location and to minimize neuronal activation from other locations. After determining the 

respective spatial filter, the underlying neuronal source at a given position can be reconstructed 

from the sensor level activity (Braeutigam, 2013). Different versions of beamformers exist. The 

studies presented in the framework of this thesis apply both dynamic imaging of coherent 

sources (DICS; Gross et al., 2001) and linear constraint minimum variance (LCMV) beamformers 
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(van Veen et al., 1997). DICS beamformers operate on frequency domain data, whereas LCMV 

beamformers operate on time domain data. 

1.4 The Somatosensory System 

The somatosensory system is responsible for three different functions: proprioception, 

interoception and exteroception. Proprioception describes the perception of body posture and 

body movements and is central to provide sensory feedback in order to enable precise motor 

activity. Interoception is the sensory function within the viscera (i.e., the internal organ 

systems). In contrast to the other functions, interoception mainly operates unconsciously, but is 

nonetheless important for the regulation of autonomic processes. Exteroception describes the 

perception of external stimuli on the skin. Exteroception comprises the sense of touch (e.g., 

pressure, vibration), thermoception and pain (Kandel et al., 2000). Since the current thesis 

focuses on electrotactile stimulation, this section will concentrate on exteroception or, more 

specifically, on tactile perception. 

The sensation of touch is mediated by specialized mechanoreceptors, which are sensitive to 

physical deformation due to pressure on or stretching of tissue in their receptive field. From the 

receptors, sensory information is conveyed by dorsal root ganglion neurons (Fig. 3). Although 

the subjective impression is often described as being similar to mechanical stimulation, 

electrotactile stimulation is considered to rely on a different conduction of sensory information. 

The applied electric current is presumed to directly stimulate afferent nerve fibers (Butikofer 

and Lawrence, 1978; Kaczmarek et al., 1991), thus bypassing the mechanoreceptors. Perception 

of electrotactile stimulation ranges from touch to pain, depending on stimulation parameters 

like voltage, current, location of stimulation and hydration of the skin (Kaczmarek et al., 1991). 

Thus, it can be assumed that electrotactile stimulation affects multiple nerve fibers mediating 

different senses of exteroception (e.g., touch and pain; Kandel et al., 2000). The present thesis 

focuses on the processing of electrotactile stimulation in the brain (omitting peripheral 

information transfer) and the included experiments solely involve non-painful electrotactile 

stimulation, which subjects described as highly similar to the perception of touch. Therefore, 

information processing of electrotactile stimuli will be treated synonymously to tactile 
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stimulation at the level of the central nervous system (CNS; i.e., from the level of the dorsal root 

ganglion neuron onward). 

In the dorsal root ganglion neurons, somatosensory information is encoded into action 

potentials, which are transmitted to the CNS (Kandel et al., 2000). The fibers of the dorsal root 

ganglion neurons enter the spinal cord on the ipsilateral side with regard to the stimulation site 

and ascend to the medulla, where they decussate on the contralateral side (Fig. 3). This fiber 

bundle is labeled the medial lemniscus and ascends further to the ventral posterior nucleus in 

the thalamus. From the level of the thalamus, somatosensory information is conveyed to the 

primary somatosensory cortex (S1) in the postcentral gyrus (Fig. 3). Classically, S1 was 

considered to encompass Brodmann Areas (BA) 1-3. However, BA 3b is currently interpreted as 

the primary target for tactile input (Kandel et al., 2000). Here, tactile information from the 

contralateral side of the body is somatotopically organized, thereby representing different body 

parts proportionally to the respective density of receptor innervation (Kandel et al., 2000). 

Consequently, the representation of the fingers in S1 is far larger than the representation of the 

thighs (despite the fact that the thighs cover a bigger surface area), which in turn determines 

the high discriminative sense of touch in the fingers. Notably, S1 incorporates multiple 

somatotopic maps. Basic properties of tactile perception are encoded within BA 3. Higher-order 

processing of tactile information is located in BA 1 and the combination of proprioceptive and 

tactile information occurs in BA 2 (Kandel et al., 2000). The secondary somatosensory cortex 

(S2) lies on the parietal operculum and covers BA 43. S2 receives major input from S1 but is also 

densely interconnected between hemispheres. Functionally, S2 is considered as a higher order 

somatosensory area which is relevant for object recognition by touch, spatial feature 

discrimination and the comparison of somatosensory stimuli (Kandel et al., 2000). 
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Figure 3: The neuronal afferent pathway for tactile information. Red: The medial lemniscus which conveys the 

sensory information of touch. Tactile information is recorded by specific mechanoreceptors in the skin and is 

conveyed to the CNS by means of dorsal root ganglion cells. Within the CNS, the fibers decussate on the level of the 

medulla, ascend further to the ventral posterior nucleus in the thalamus and finally project to the primary 

somatosensory cortex. Adapted and modified from Kandel et al., 2000. 
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1.5 The Functional Role of Neuronal Oscillations in the Alpha and Beta Band 

The characteristics and potential functions of neuronal oscillations in general have been 

previously addressed in section 1.3. Subsequently, the specific functions of alpha and beta band 

oscillations will be presented, along with a particular focus on the somatosensory system. 

1.5.1 Alpha Band Activity 

The alpha band is commonly defined as the frequency band between 8-12 Hz (Womelsdorf and 

Fries, 2007; Raichle, 2010; Lange et al., 2014), resulting in a cycle length of about 80-120 ms. 

Alpha band activity resembles the most prominent rhythm in the human cortex, often visible in 

ongoing unprocessed EEG and MEG recordings. Oscillatory activity in the alpha band occurs 

both spontaneously and continuously in human sensory cortices and is most visible in parietal 

and occipital areas (Manshanden et al., 2002). This prominence also explains why the alpha 

band rhythm was the first neuronal rhythm to be scientifically described by Berger in 1929 

(Berger, 1929). Because of Berger’s finding that the occipital alpha band amplitude increases in 

response to the closing of the eyes (Berger, 1929), high alpha band activity was initially thought 

to be related to states of low arousal (Adrian and Matthews, 1934). In line with this 

interpretation, subsequent studies reported decreases in alpha band power during various 

activities (e.g., voluntary movement) compared to resting baseline (Pfurtscheller and Aranibar, 

1977). Vice versa, alpha band power increases could be demonstrated in sensory cortices 

associated with modalities not essential for the current task (Koshino and Niedermeyer, 1975). 

Based on these findings, alpha band activity was interpreted as an electroencephalic correlate 

of brain idling (Pfurtscheller et al., 1996a). In this sense, brain areas exhibiting high alpha band 

power were understood as currently inactive, whereas brain areas demonstrating low alpha 

power were considered as currently activated and engaged. 

In the last decades, the interpretation of alpha band activity as an indicator of passive idling has 

been largely replaced with a more active role of alpha activity. This novel perspective results 

from studies demonstrating alpha band effects that do not agree with a merely passive 

conception of the alpha rhythm. One point supporting a more active role is the active top-down 

modulation of alpha band activity in response to attentional changes. In bimodal attention 
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tasks, alpha band power increases in occipital sensors when attention is focused on 

somatosensory stimulation, whereas alpha band power increases in sensorimotor sensors when 

attention was focused on visual stimulation (Anderson and Ding, 2011; Bauer et al., 2012). 

Importantly, occipital alpha band power exceeds baseline levels when attention is directed to 

somatosensory stimulation (Anderson and Ding, 2011). This increase above baseline levels 

suggests an attention-related process actively inhibiting visual processing, rather than mere 

passive idling. Likewise, the orientation of attention to a specific spatial location (e.g., the left or 

right hemifield) leads to decreases in alpha band power in sensors over the corresponding 

contralateral brain region (Thut et al., 2006; Busch and VanRullen, 2010; Jones et al., 2010). In 

line with results from multimodal studies, alpha band power in sensory areas ipsilateral to the 

attended spatial location is increased relative to baseline (Jones et al., 2010), thus supporting 

active modulation of sensory information processing. Furthermore, the relative lateralization 

asymmetry of alpha band power is predictive of the reaction time needed to respond to target 

presentation, which suggests alpha band power lateralization indicates spatial attentional focus 

(Thut et al., 2006). These results demonstrate an active top-down influence on alpha band 

activity, which is fundamentally different from passive idling. In agreement with an active role of 

the alpha rhythm, increased alpha band activity is present during the retention interval of 

memory tasks (Başar et al., 2000) and thus associated with active task demands. Here, the level 

of the alpha band increase even expands with increasing memory load (Jensen, 2002). Finally, 

neuromodulatory studies demonstrate that cortical excitability fluctuates along with ongoing 

alpha band rhythm. In a transcranial magnetic stimulation (TMS) study, Romei and colleagues 

(2008a) determined the individual minimal stimulation amplitude by which visual phosphenes 

could be elicited. This minimum stimulation amplitude positively correlated with individual 

alpha band power at rest; i.e., higher stimulation amplitude was necessary to induce visual 

phosphenes during states of high alpha band power (Romei et al., 2008a). Likewise, this relation 

could be demonstrated within subjects on a single-trial basis (Romei et al., 2008b). In line with 

this, the active entrainment of neuronal visual cortex activity to the alpha band rhythm 

impaired the detection of visual near-threshold stimuli. This stimulation effect was specific for 

the stimulated hemisphere; i.e., visual detection was impaired only in the visual field 

contralateral to the stimulated hemisphere. In contrast, visual detection in the ipsilateral visual 
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field was enhanced (Romei et al., 2010). Thus, high alpha band activity exerts an inhibitory 

influence on cortical activity and thereby modulates perception. Taken together, these results 

disagree with the role of alpha band oscillations as a correlate of passive brain idling.  

In response, novel theories have been put forward that suggest a more active role of alpha band 

activity in sensory and cognitive processing. These theories include the inhibition-timing 

hypothesis (Klimesch et al., 2007) and the gating by inhibition hypothesis (Jensen and Mazaheri, 

2010). Both theories view alpha band activity as an active and top-down controlled inhibitory 

mechanism dynamically shaping the functional architecture of the brain. Ongoing alpha band 

activity is understood as a sensory gating mechanism that regulates information processing 

between sensory and higher-order cortex areas. Increased alpha band activity selectively 

inhibits task-irrelevant areas and connections. In contrast, low alpha band activity in task-

relevant cortex areas enables efficient information processing, thereby actively routing the flow 

of information. Thus, an interference of currently irrelevant information is prevented and the 

processing of currently important (e.g., attentionally focused) information is facilitated. 

However, it seems that low alpha band power in sensory cortices is not per se related to an 

enhanced stimulus processing, in the sense that the perceived stimulation agrees with the 

presented stimulation. Rather, low alpha power seems to indicate a higher excitability of 

sensory cortices, which can also result in an increased tendency of illusionary perception (Romei 

et al., 2008a; Romei et al., 2008b ; Lange et al., 2013). 

1.5.2 Alpha Band Activity in the Somatosensory System 

Oscillatory activity within the alpha frequency band in the sensorimotor cortex was first 

mentioned in 1952 (Gastaut, 1952) and was considered a component of the sensorimotor mu 

rhythm (Schnitzler et al., 2000). Sensorimotor alpha band activity is assumed to originate mainly 

from the hand area of the somatosensory cortex (Salmelin and Hari, 1994). Following tactile 

stimulation, somatosensory alpha band activity is suppressed (Bauer et al., 2006). Although it 

can be considered a somatosensory rhythm due to its origin, the somatosensory alpha band 

rhythm is decreased during movement and shows a strong increase after movement (Salmelin 

and Hari, 1994). Most studies investigating the functions of alpha band activity focus on the 
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visual domain. Current theories, however, do not differentiate the role of alpha band activity 

across modalities (Jensen and Mazaheri, 2010). This is confirmed by experimental results 

showing effects in the somatosensory domain that are generally comparable to the visual 

domain. Accordingly, attentional effects on alpha band activity have been documented also for 

the somatosensory modality. After the presentation of attentional cues that reliably signaled if a 

tactile target stimulus would appear at the left or right hand, somatosensory alpha band power 

lateralized (i.e., higher alpha band power was visible in the somatosensory cortex ipsilateral to 

the attended side, and lower alpha power was visible in the somatosensory cortex contralateral 

to the attended side; Haegens et al., 2011a; van Ede et al., 2011). With decreasing reliability of 

the attentional cue, the alpha band lateralization also decreased. Furthermore, the level of 

alpha band lateralization also predicted the behavioral performance (i.e., response accuracy and 

response speed) of the subjects (Haegens et al., 2011a). In line with findings from the visual 

modality, the cue-related ipsilateral alpha band increases exceeded baseline alpha band power 

levels, whereas the contralateral decreases were lower than baseline alpha band power levels 

(Haegens et al., 2012). Taken together, the function of alpha band activity within the 

somatosensory system seems comparable to the role of alpha band activity in the visual 

domain. Likewise, alpha band activity is currently interpreted as a mechanism for sensory gating 

and inhibition of task-irrelevant areas, which can be actively modulated in a top-down manner 

(e.g., by means of attention). 

1.5.3 Beta Band Activity 

Classically, beta band activity is defined as neuronal oscillatory activity in the frequency band 

from 13-30 Hz (Jenkinson and Brown, 2011; Kilavik et al., 2013). Beta band oscillations are most 

prominent over rolandic areas (i.e., the sensorimotor cortex). Historically, beta band activity 

was first described by Berger in 1931. By means of ECoG in epileptic patients, Jasper and 

Penfield were the first to locate the source of beta band activity in the sensorimotor cortex and 

to describe the close connection between beta band activity and movement (Jasper and 

Penfield, 1949).  
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Since then, the link between sensorimotor beta band activity and movement has been 

consistently replicated and extended. Sensorimotor beta band power decreases during 

movement execution and changes in isometric muscle contraction (Doyle et al., 2005; Kilavik et 

al., 2012), both for self-paced and stimulus-triggered movements (Gaetz et al., 2010). Beta band 

decreases in sensorimotor cortices have even been observed as a consequence of motor 

imagery, in the absence of actual movement (Schnitzler et al., 1997; de Lange et al., 2008). 

Decreases in beta band activity related to movement have been reported to occur bilaterally in 

both hemispheres (Salmelin and Hari, 1994), while other studies demonstrated a stronger beta 

band decrease contralaterally to the moved effector (Jurkiewicz et al., 2006). After movement 

termination, beta band activity in motor areas typically increases transiently, which is labeled 

beta rebound (Kilavik et al., 2013). Based on the abovementioned results, initial theories 

attributed beta band activity to be a correlate of motor cortex idling (Pfurtscheller et al., 1996b). 

However, the interpretation of beta band activity as a correlate of motor idling does not agree 

with results that show a rapid increase in sensorimotor beta band power when a prepared 

movement is held back (Zhang et al., 2008; Wheaton et al., 2009). Likewise, power increases in 

the beta band are present during states of postural maintenance and stabilization (e.g., object 

holding; Baker et al., 1997; Spinks et al., 2008). Novel theories on the function of beta band 

activity within the motor cortex therefore interpret beta band activity as an internal index 

representing the likelihood for the execution of novel voluntary actions. In this sense, 

suppression of beta band activity is thought to represent the state of readiness of the motor 

system (Jenkinson and Brown, 2011). 

Importantly, sensorimotor beta band decreases are not only present during movement, but also 

during and after tactile stimulation (Cheyne et al., 2003; Gaetz and Cheyne, 2006; Bauer et al., 

2006; Lange et al., 2011). Sources of beta band decreases could be differentiated between 

finger, toe and lip stimulation and thus demonstrated a somatotopical organization in 

somatosensory cortices (Gaetz and Cheyne, 2006). Similar to the beta band rebound after 

motor termination, sensorimotor beta band activity increased after the initial beta band power 

decrease resulting from tactile stimulation (Cheyne et al., 2003; Bauer et al., 2006). These 
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results suggest that beta band activity is also important for the processing of somatosensory 

information and thereby not exclusively related to motor activity.  

The notion that beta band activity is not restricted to motor-related processes is further 

supported by beta band effects reported for cognitive paradigms. In the cognitive domain, beta 

band effects could be demonstrated for a variety of different task dimensions, ranging from 

perceptual decision tasks (e.g., Haegens et al., 2011b) to memory tasks (e.g., Siegel et al., 2009). 

The wide range of task dimensions for which effects in the beta band have been shown make it 

difficult to attribute a single consistent function to oscillatory activity in the beta band. 

Consequently, beta band oscillations have been labeled as the frequency band which functional 

role is least well understood (Engel and Fries, 2010). However, recent theories aim to integrate 

the results from cognitive paradigms along with the results from motor and movement-related 

tasks and give rise to novel holistic interpretations of beta band activity. These theories 

interpret beta-band activity as a correlate of increased top-down control, as compared to 

stimulus driven bottom-up control (Buschman and Miller, 2007; Siegel et al., 2012). A similar 

view was expressed in a seminal paper from Engel and Fries (Engel and Fries, 2010), who 

conceptualized beta band activity as a mechanism generally promoting the status quo. In other 

words, states of high beta band activity are interpreted as a correlate of maintaining the existing 

state, likewise in motor and cognitive domains. In the motor domain this is represented by 

increased beta power during postural maintenance (reviewed in Kilavik et al., 2013) and, vice 

versa, decreased beta band activity as correlate of motor readiness (Jenkinson and Brown, 

2011). In cognitive domains, increased beta band represents involvement and preponderance of 

top-down processes and their respective content compared to stimulus-driven bottom-up 

influence. This interpretation is supported by studies showing progressive beta band decreases 

during evidence accumulation in decisional paradigms (Donner et al., 2009), which represents a 

stimulus-driven process. Vice versa, beta band increases during delay periods in memory tasks 

(Siegel et al., 2009). Here, the delay period is characteristic for top-down controlled 

maintenance of the memory set. Furthermore, beta band activity differentiates between 

endogenously driven and stimulus driven choices in visual search tasks (Pesaran et al., 2008). 
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Taken together, beta band effects are consistently reported and most established for 

movement-related tasks. However, changes in beta band activity are also increasingly 

demonstrated for a variety of sensory and cognitive (i.e., non-motor) paradigms. Because of the 

diversity of these findings, the specific role of the beta rhythm is still a subject of debate. 

Current theories, however, attribute high beta band activity as a correlate of the maintenance 

of the status quo, likewise in motor and cognitive domains. 

1.5.4 Beta Activity and its Connection to GABA-Mediated Inhibition  

As already mentioned in section 1.3, synaptic GABAergic inhibition plays an important role for 

the determination of the temporal structure of neuronal oscillations in general (Wang, 2010). 

This connection between GABAergic inhibition and oscillatory neuronal activity has been 

extensively investigated for the beta band. The generation of beta band rhythms in neuronal 

populations relies on the balance between the excitatory influence of pyramidal neurons and 

the inhibitory influence of interneurons. Here, GABAA-mediated inhibition is considered as the 

central pacemaker within these networks and thus as the determinant of the frequency with 

which the neurons constituting the network oscillate (Whittington et al., 2000a; 2000b). In line 

with these findings, both neuronal modeling approaches and animal models demonstrate that 

GABAergic interneuronal activity is central for the generation of beta band activity in neuronal 

networks (Jensen et al., 2005; Roopun et al., 2006; Yamawaki et al., 2008). In humans, 

pharmacological intervention studies reported effects on sensorimotor beta band activity after 

the administration of GABAergic agents, mostly benzodiazepines (Jensen et al., 2005; Hall et al., 

2010; Muthukumaraswamy et al., 2013). Since the primary effect of benzodiazepines is 

considered to be an increase of the conductance of GABAA-mediated currents (Jensen et al., 

2005), the results from pharmacological studies further support a link between GABAergic 

inhibition and beta band oscillatory activity. Finally, due to the emergence of magnetic 

resonance spectroscopy (MRS), which allows in vivo neurotransmitter concentrations to be 

measured non-invasively, the investigation of the neurochemical underpinnings of oscillatory 

activity has seen substantial progress in the last decade. MRS studies supported previous 

findings on the connection between GABAergic inhibition and beta band oscillations, with 

results indicating linear relationships between beta band power and GABA concentrations ins 
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sensorimotor cortices (e.g., Gaetz et al., 2011). However, the majority of current combined 

MEG-MRS studies only focus on a small set of parameters of oscillatory activity (e.g., solely on 

movement-related beta band activity).  

In summary, there is extensive evidence that GABA-mediated inhibition is an important 

modulator of sensorimotor beta band activity. However, most evidence results from animal 

studies, modeling approaches or studies that modulated GABA concentration by means of 

pharmacological intervention. Although the relationship between local, non-modulated GABA 

concentrations and beta band activity has recently been addressed by studies applying MRS, the 

full range of this relationship has yet to be determined. 

1.5.5 Setting the Stage - Alpha and Beta Band Activity in the Prestimulus Epoch 

The classical experimental approach in neuroscience involves the repeated presentation of a 

stimulus. Then, the brain signals related to stimulus processing and perception (i.e., signals that 

appear temporally after stimulus presentation) are analyzed. Thus, the brain activity during the 

time window before stimulus presentation (subsequently labeled the prestimulus epoch) is 

often not considered for further investigation. This prestimulus neuronal activity, which 

resembles the state of the brain prior to stimulus processing, is usually either subtracted from 

the stimulus-related signal (i.e., the signal is baseline-corrected) or completely ignored. In this 

regard, it is important to note that sensory information is not processed mechanistically in the 

brain; i.e., the same stimulation can be processed differently and thus may result in different 

stimulus perception. This is most evident for bistable, ambiguous or near-threshold stimulation. 

Since afferent sensory input always impinges on a continuously active system, it seems likely 

that the brain state before and during stimulus presentation influences the subsequent stimulus 

processing and perception (Hebb, 1949). To investigate this assumption, it is necessary to 

identify measurable indices of ongoing brain activity. In this regard, ongoing neuronal 

oscillations represent promising candidate measures. Consequently, it is likely that neuronal 

oscillations in the prestimulus period influence the perception of subsequently presented 

stimuli. 
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In line with this assumption, there are consistent results showing that sensory processing and 

perception is modulated and predicted by prestimulus fluctuations of oscillatory activity. The 

influence of prestimulus oscillatory activity on subsequent neuronal processing and perception 

has been most extensively investigated for alpha band activity. For example, perception of near-

threshold stimuli is significantly influenced by prestimulus alpha band power in the visual 

(Ergenoglu et al., 2004; Hanslmayr et al., 2007; van Dijk et al., 2008; Mazaheri et al., 2009; 

Wyart and Tallon-Baudry, 2009) and somatosensory (Linkenkaer-Hansen et al., 2004; Jones et 

al., 2010; Zhang and Ding, 2010) domain. In this regard, low prestimulus alpha band power in 

sensory cortex areas seems to facilitate the perception of near-threshold stimuli (e.g., van Dijk 

et al., 2008), whereas other studies report the highest perception rates to be associated with 

intermediate alpha power levels (e.g., Linkenkaer-Hansen et al., 2004). Although the vast 

majority of studies investigate the effect of prestimulus alpha band activity on near-threshold 

stimuli, there are indications that the influence of prestimulus alpha band power also extends to 

the perception of supra-threshold stimuli (Lange et al., 2012). In addition to power effects, the 

phase of ongoing alpha band oscillations in the prestimulus epoch likewise modulates 

subsequent perception (Busch et al., 2009; Mathewson et al., 2009). Studies report that shortly 

before visual stimulus presentation, prestimulus alpha band phase was concentrated in phase 

angles that significantly differed between trials where a near-threshold stimulus was either 

perceived or missed (Busch et al., 2009). Thus, perceptual thresholds for the detection of visual 

stimuli seem to temporally fluctuate along with alpha band phase. Finally, prestimulus alpha 

band activity not only modulates the perception of sensory stimulation, but also event-related 

potentials evoked by the stimulation (Jones et al., 2010; Anderson and Ding, 2011; Lange et al., 

2012). Since event-related potentials are related to stimulus processing (Jones et al., 2007), this 

modulation of event-related potentials by prestimulus activity demonstrates the influence of 

the prestimulus brain state on neuronal stimulus processing.  

Various studies showing prestimulus alpha band effects could also demonstrate an influence of 

prestimulus beta band activity on the neuronal processing of sensory information. Lange and 

colleagues (Lange et al., 2012) demonstrated that prestimulus beta band power in primary and 

secondary somatosensory cortices predicted the temporal perception of tactile stimulation. 
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Furthermore, high levels of prestimulus beta band power facilitated illusionary perception in 

cross-modal visual-auditory paradigms, the McGurk effect (Keil et al., 2012) and the sound-

induced flash illusion (Keil et al., 2014). Likewise, beta band activity in the prestimulus period 

seems to influence the perception of near-threshold tactile stimuli. For the sensorimotor cortex, 

best perceptual detection rates were associated during intermediate levels of beta band power, 

whereas in parietal areas, the best perceptual detection rates were found during high levels of 

beta band power (Linkenkaer-Hansen et al., 2004). In agreement with results on alpha band 

activity, prestimulus beta band activity also modulated the amplitude of stimulus-related 

evoked components (Jones et al., 2009; Anderson and Ding, 2011). These results demonstrate 

that perception, especially in the somatosensory domain, is markedly influenced by prestimulus 

beta band power. 

However, perceptual variance despite identical stimulation could be potentially explained by 

fluctuations in the activity or output of the sensory organs. Yet, recent studies demonstrated 

that the necessary stimulation amplitude to induce phosphenes by TMS (without any form of 

visual stimulation) where dependent on ongoing alpha band oscillations in the occipital cortex 

(Romei et al., 2008a; 2008b). Because TMS stimulation in such paradigms avoids the stimulation 

of sensory organs, the reported variations in perception cannot be systematically caused by the 

sensory organs. Likewise, top-down related modulations like the covert direction of attention 

are known to significantly influence perception. In turn, such attentional shifts are related to 

changes in ongoing brain activity or, more specifically, alpha band oscillations (see section 

1.5.1). Thus, variances in the perception of identical stimulation are more likely to result from 

ongoing changes in brain activity than from fluctuations in sensory organs. 

In summary, the abovementioned results demonstrate that the state of the brain before 

stimulation is an important factor for the processing and perception of sensory information. 

Specifically, prestimulus oscillatory activity in the alpha and beta band within sensory cortices 

has been repeatedly reported to be related to stimulus processing and perception. 
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2 Aims and Hypotheses 

The studies presented within the scope of this thesis focus on neuronal oscillations in the 

somatosensory cortex. In particular, the studies examine two major aspects of somatosensory 

oscillatory neuronal activity. Primarily, the influence of prestimulus neuronal oscillations on the 

sensory integration and subsequent perception of somatosensory stimulation is investigated. In 

addition, the neurochemical basics of neuronal oscillations in the somatosensory cortex are 

analyzed. 

Prestimulus neuronal oscillations (i.e., ongoing rhythmic fluctuations of neuronal activity, which 

are present prior to stimulus presentation) and their connection to stimulus perception have 

only recently emerged as a topic of neuroscientific investigation (Engel et al., 2001). Most 

studies addressing the influence of prestimulus neuronal oscillations on perception focus on the 

visual domain. Thus, various aspects regarding the functional role of prestimulus neuronal 

oscillations for somatosensory perception remain to be investigated. For example, those studies 

investigating the connection between somatosensory perception and prestimulus neuronal 

oscillations mostly use paradigms with near-threshold stimulation, with subjects reporting 

whether they either perceive somatosensory stimulation or not (e.g., Zhang et al., 2008; Jones 

et al., 2010). Such paradigms allow investigating which neuronal processes are relevant for the 

perception of near-threshold stimulation and in which state these neuronal processes enable or 

prohibit subsequent perception. Here, the respective neuronal processes are interpreted 

analogue to an on/off switch, since stimulation is either perceived or not. Hence, because 

subject responses are restricted to perceived vs. not perceived, such experiments cannot 

determine if neuronal processes influence how (i.e., the quality) stimulation is perceived. Such a 

qualitative influence could modulate the features of the perceived stimulation (e.g., the 

intensity or amount) in contrast to determining if a percept arises at all. 

Furthermore, the fundamental mechanisms giving rise to neuronal oscillatory activity in the 

somatosensory cortex have yet to be fully determined. Here, local neurotransmitter 

concentrations presumably offer valuable insights into the generation of neuronal oscillations. 
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GABAergic inhibition is assumed to represent a key factor for the generation of oscillatory 

neuronal activity, both in general and specifically for beta band oscillations (see sections 1.3.1 

and 1.5.4). Thus, the analysis of local GABA concentrations in somatosensory areas in 

connection to parameters of oscillatory activity should provide useful information on the 

mechanisms underlying somatosensory oscillatory activity.  

The current thesis addresses the question if prestimulus neuronal oscillations influence the 

quality of perception and stimulus processing by investigating mechanisms of sensory 

integration in the somatosensory system. Therefore, suprathreshold electrotactile stimuli were 

presented in rapid temporal succession and subjects should report whether they perceived one 

single stimulus or two separate stimuli (subsequently labeled temporal perceptual 

discrimination). The present thesis aims at elucidating if prestimulus oscillatory activity in the 

alpha and beta band determines the temporal resolution of tactile perception (i.e., how many 

stimuli are perceived in a given time interval). In addition, the connection between 

sensorimotor GABA concentrations and parameters of neuronal oscillatory activity are 

examined. In detail, the included studies focus on: 

Study1:  Investigating the influence of prestimulus oscillatory alpha band activity on the 

subsequent temporal perceptual discrimination of electrotactile stimulation. 

Subjects were presented with two consecutive suprathreshold tactile stimuli 

separated by an individually determined stimulus onset asynchrony (SOA) while 

their neuromagnetic brain activity was measured with MEG. Although the 

physical stimulation parameters remained constant for each subject, the 

stimulation was perceived as one single stimulus in approximately half of the 

trials and as two separate stimuli in the other half of the trials. Prestimulus alpha 

power was contrasted between trials with differing perceptual reports (i.e., 

perceived one stimulus vs. two stimuli). It was hypothesized that low levels of 

alpha band power enhance temporal perceptual discrimination and facilitate the 

perception of two separate stimuli. Furthermore, the study examined the 

influence of prestimulus alpha band power on subjects’ confidence in their 

perceptual reports. Finally, the study compared poststimulus ERFs between trials 
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with different perceptual reports and interpreted the findings in light of current 

decision making models. 

Study2: Identifying the role of prestimulus oscillatory phase within S1 for the discrete 

perceptual sampling of electrotactile stimuli. Prestimulus phase was contrasted 

between trials with differing perceptual reports (i.e., perceived one stimulus vs. 

two stimuli). It was hypothesized that oscillatory phase in the beta frequency 

band in S1 differs between trials with varying perceptual response and thus could 

predict subsequent stimulus perception. Results were integrated into a model 

describing how the temporal resolution of the somatosensory system is defined 

by perceptual cycles in the beta band, which determine discrete perceptual 

sampling in the somatosensory domain. 

Study3: Determining the connection between beta band peak frequency and GABA 

concentration in sensorimotor and occipital cortex areas. Beta band peak 

frequency was measured at rest (i.e., without movement) by means of MEG, 

whereas non-modulated GABA concentration (i.e., not modulated by 

pharmacological agents) was measured by MRS in healthy human subjects. A 

linear relation between beta band peak frequency and GABA concentration in 

sensorimotor cortex areas was hypothesized. 

In summary, the present thesis investigated how prestimulus oscillatory activity in the 

somatosensory system determines temporal perceptual discrimination of tactile stimuli. In 

order to further elucidate the neurochemical basics of neuronal oscillations in the 

somatosensory cortex, the connection between local GABAergic neurotransmitter 

concentrations and sensorimotor oscillatory activity was examined. 

 



Study 1 

48 

 

3 Study 1: Prestimulus Alpha Power Influences Tactile Temporal 

Perceptual Discrimination and Confidence in Decisions (Baumgarten 

et al., 2014, Cerebral Cortex) 

Study 1 (Appendix 1) investigated the influence of prestimulus alpha band power on the 

temporal perceptual discrimination of electrotactile stimuli. Prestimulus alpha band power 

modulates poststimulus evoked responses (Jones et al., 2010; Anderson and Ding, 2011), which 

are related to neuronal stimulus processing (Jones et al., 2007). Accordingly, prestimulus alpha 

band power in sensory cortex areas correlates with reported perception (Linkenkaer-Hansen et 

al., 2004; van Dijk et al., 2008; Romei et al., 2010). Although the connection between 

prestimulus alpha band activity and neuronal stimulus processing or perception has been 

repeatedly demonstrated for visual, but also somatosensory stimulation, various aspects remain 

unclear. The influence of prestimulus alpha band activity on subjective confidence in perceptual 

reports is largely unknown. Furthermore, the majority of studies investigating prestimulus alpha 

band power effects on subsequent perception use near-threshold stimuli (e.g., Linkenkaer-

Hansen et al., 2004; Zhang et al., 2008; Jones et al., 2010). Such paradigms only allow for the 

investigation of perceived vs. non-perceived stimulation but prohibit examining if prestimulus 

oscillations also modulate perception qualitatively (i.e., the perceived amount or intensity of 

stimulation). In order to investigate if prestimulus alpha band activity influences perception 

qualitatively, the present study used suprathreshold stimuli. Subjects thus always perceived the 

electrotactile stimulation, but had to report how many stimuli they perceived, as well as the 

subjective confidence regarding their perception. It was hypothesized that low levels of alpha 

band power enhance tactile temporal discrimination and facilitate the perception of two 

temporally separate stimuli. 

Stimulus perception can be viewed as a process of (perceptual) decision making (Gold and 

Shadlen, 2007). According to this theoretical framework, sensory evidence provided by the 

stimulus is accumulated in a decision variable. If sensory evidence is sufficiently strong, this 

decision variable accumulates over time and at some point crosses a theoretical decision bound, 
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determining the choice of a specific decisional option (Ratcliff and McKoon, 2008; Kiani and 

Shadlen, 2009). Neuronal correlates of decision variables have been found in poststimulus 

event-related potentials (VanRullen and Thorpe, 2001; Philiastides et al., 2006; O'Connell et al., 

2012). Given the known connection between prestimulus oscillatory activity and poststimulus 

evoked responses, study 1 investigated if prestimulus oscillatory activity influences neuronal 

correlates of perceptual decision making. 

3.1 Methods 

Sixteen subjects participated in the study. Suprathreshold electrotactile pulses were presented 

at the left index finger. In the main experimental condition, two subsequent pulses were 

presented, with pulses being separated by a subject-specific SOA (labeled intermediate SOA). 

This intermediate SOA was adjusted so that subjects perceived one stimulus in about half of the 

trials, whereas in the other half subjects perceived two stimuli. Hence, within subjects, 

physically identical stimulation resulted in varying perception across trials. After stimulation, 

subjects were asked to report their respective perception (i.e., one or two stimuli) and their 

confidence in the perceptual report by a button press with the index or middle finger of the 

right hand (Fig. 4). During the experiment, ongoing neuromagnetic activity was recorded by 

means of MEG. 
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Figure 4: Paradigm of study 1. A central fixation dot indicated the start of the trial. After 500 ms, luminance 

decreased and signaled the beginning of a jittered prestimulus epoch (900-1100 ms). Subsequently, electrotactile 

stimulation was applied to the left index finger with varying SOAs. Stimulation was followed by a jittered 

poststimulus interval (500-1200 ms), after which subjects reported their perception and subjective confidence in 

the previous perceptual report by button-press. Adapted and modified from Baumgarten et al., 2014. 

Trials with intermediate SOA were sorted according to their perceptual response (perceived one 

stimulus vs. two stimuli) and grouped in two perceptual conditions. Time-frequency analysis 

with a spectral focus on the alpha band (8-12 Hz) and a temporal focus on the prestimulus 

epoch (900-0 ms before onset of the first stimulus) was performed on neuromagnetic data. 

Power estimates for both perceptual conditions were compared to assess any significantly 

different sensors and time points. Sensor-level power estimates were projected to source-level 

by means of a DICS beamformer approach (Gross et al., 2001). In a post hoc analysis, alpha band 

power in all trials with intermediate SOA was averaged across time points and sensors showing 

a significant difference between perceptual conditions. Trials were divided into five bins 

according to their average alpha band power. Normalized average perception rates were 

calculated for each bin and linear and quadratic functions were fitted to the data. A similar 

approach was selected to assess relationships between alpha band power and confidence 

ratings, although analyses were separated between perceptual conditions. To analyze any 

influence of prestimulus alpha band activity on neuronal correlates of decision variables, a 

model of perceptual decision making was adopted (Fig. 4B of Appendix 1). Decision bounds 
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were defined as poststimulus ERFs computed from unambiguous control conditions with trials 

nearly always perceived as one or two stimuli, respectively. For time points of significant 

difference between the ERFs of the control conditions, amplitude values and confidence values 

of trials with intermediate SOA divided by prestimulus alpha power (high vs. low) and 

perceptual response (one vs. two perceived stimuli) were compared according to the decision 

making model. 

3.2 Results 

In trials with intermediate SOA, alpha band power was significantly lower when subjects 

correctly perceived stimulation as two separate stimuli. Power differences were evident in the 

prestimulus epoch (900-250 ms before onset of the first stimulus) in anterior/somatosensory 

and parieto-occipital sensors contralateral to stimulation site. The underlying cortical sources 

were located in the contralateral postcentral gyrus and the contralateral middle occipital region 

(Fig. 2 of Appendix 1). A significant negative linear relation was found between averaged 

prestimulus alpha power and temporal perception; i.e., the probability to perceive stimulation 

as two separate stimuli increased with decreasing prestimulus alpha power. Likewise, linear 

relations were found between prestimulus alpha power and confidence ratings, however, the 

direction of the relations was opposite in both perceptual conditions. A significant negative 

linear relation was found for trials where stimulation was perceived as two separate stimuli and 

a strong trend towards a positive linear relation was found for trials where stimulation was 

perceived as one stimulus (Fig. 3 of Appendix 1). Poststimulus ERFs showed characteristics of a 

decision variable at ~150 ms after stimulus onset. Poststimulus ERFs of trials with intermediate 

SOA differed with respect to subjects’ perception and prestimulus alpha power (Fig. 4 of 

Appendix 1). Amplitude values of poststimulus ERFs monotonically decreased from two 

perceived stimuli with low alpha power levels to one perceived stimulus with high alpha power 

levels in agreement with the postulated decision making model. Likewise, the distribution of 

average confidence values of trials with intermediate SOA agreed with the proposed model 

predictions (Fig. 5 of Appendix 1).  
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3.3 Discussion 

Study 1 demonstrated that prestimulus alpha band power (8-12 Hz) is related to the temporal 

perceptual discrimination of suprathreshold tactile stimuli. Low prestimulus alpha power in the 

contralateral postcentral gyrus and the contralateral middle occipital region facilitated the 

perception of two separate stimuli. Prestimulus alpha band power was linearly related to 

subjects’ confidence ratings, with the direction of relations inversely orientated depending on 

stimulus perception. Finally, poststimulus ERFs reflected the subjects’ perceptual responses and 

confidence, not sensory evidence. Thus, ERFs represented potential neuronal correlates of 

decisional processes. Amplitude values of poststimulus ERFs were in accordance with the 

proposed decisional model. Confidence values in trials with intermediate SOA could be 

explained by the distance of the respective ERFs to the decision bounds. Finally, poststimulus 

ERFs were modulated by prestimulus alpha band power.  

The present results are in line with theories that interpret alpha band power as a perceptual 

gating mechanism by means of functional inhibition of task-irrelevant areas (Jensen and 

Mazaheri, 2010) and as an indicator of cortical excitability (Thut et al., 2006; Romei et al., 

2008b; Lange et al., 2013). Beyond that, study 1 demonstrates that prestimulus alpha band 

power does not operate like a binary switch alternating between inhibition and excitation. 

Rather, alpha band power gradually influences perception, since it modulates how many 

suprathreshold stimuli are perceived as well as the subjective quality (i.e., confidence rating) of 

the perception. 

Alpha band power significantly differed in the postcentral gyrus (presumably S1) and the 

contralateral middle occipital region. Power differences in the alpha band in S1 are known to be 

present in tasks where identical tactile stimulation results in varying perception (Zhang et al., 

2008; Lange et al., 2012) and agree with the role of alpha band activity as indicator of cortical 

excitability. Power differences in the contralateral middle occipital region were not expected as 

a consequence of tactile stimulation. However, it is known that tasks involving shifts in spatial 

attention cause a suppression of alpha band power in cortical areas not directly related to 

presented stimulus modality (Bauer et al., 2006; 2012). Although spatial attention was not 
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systematically modified in the present study, occipital power differences can be interpreted as a 

correlate of global attention. This is supported by the finding that the poststimulus ERF effects 

related to perceptual decision making could only be replicated for the anterior/somatosensory 

sensor cluster and not for the parieto-occipital sensor cluster when both clusters were analyzed 

separately. 

Finally, prestimulus alpha power modulated the confidence subjects had in their perceptual 

reports. The inversely orientated directions of the relations between prestimulus alpha power 

and the confidence ratings for the two different perceptual conditions can be explained by the 

proposed decision model. Confidence ratings of trials with intermediate SOA were determined 

by the distance from the respective ERFs (i.e., the decision variable) to the decision bounds 

(e.g., low prestimulus alpha band power increased confidence in trials perceived as two 

separate stimuli because the distance between the decision variable and the decision bound for 

two perceived stimuli decreased; Fig. 4B in Appendix 1). Prestimulus alpha power presumably 

modulates the starting point of the decision variable (de Lange et al., 2013). Thus, the 

prestimulus brain state can influence the outcome of perceptual decisions, with increasing 

influence when sensory evidence is weak or ambiguous. 

3.4 Conclusion 

Prestimulus alpha band power is related to the temporal perceptual discrimination of 

electrotactile stimulation. Furthermore, prestimulus alpha band power shows a connection to 

the subjective confidence subjects have in their perceptual reports, which can be explained by a 

decision making model. The results suggest that prestimulus alpha band power qualitatively 

influences stimulus processing and subsequent perception; i.e., by influencing the amount of 

perceived stimuli and the subjective confidence in the perceptual report. 

 



Study 2 

54 

 

4 Study 2: Beta Oscillations Define Discrete Perceptual Cycles in 

the Somatosensory Domain (Baumgarten et al., 2015, PNAS) 

Study 2 (Appendix 2) focused on the role of prestimulus oscillatory phase in S1 for the discrete 

perceptual sampling of electrotactile stimuli. Although subjective experience indicates that 

perception is continuous, there is growing evidence suggesting discrete processing of sensory 

input (e.g., Varela et al., 1981; Chakravarthi and VanRullen, 2012). A discontinuous processing 

mode is thought to rely on discrete perceptual cycles sampling incoming sensory stimulation, 

with discrete stimuli arriving within a single perceptual cycle being perceived as single event 

(VanRullen and Koch, 2003). Since the theory of discrete perceptual cycles assumes that 

perceptual sampling is based on ongoing internal neurophysiological processes providing a 

temporal reference frame (Busch et al., 2009), neuronal oscillations have been considered a 

promising candidate measure for the determination of perceptual cycles. These assumptions 

have been corroborated by studies suggesting that parieto-occipital alpha band phase defines 

cycles of perception in the visual domain (Dugué et al., 2011; Romei et al., 2012; Jensen et al., 

2014). However, it remains to be demonstrated that discrete perceptual sampling is not 

domain-specific for the visual domain but also present in other sensory modalities. 

Furthermore, if discrete perceptual sampling is present in multiple sensory domains, it is critical 

to determine whether different sensory domains operate on the same temporal reference 

frame (i.e., if perceptual sampling in all modalities relies on alpha band cycles). Since different 

modalities operate on different time scales (e.g., Gebhard and Mowbray, 1959), there are 

indications against the notion of a common temporal reference frame. 

Based on findings on perceptual cycles in the visual domain, the present study hypothesized 

that discrete perceptual sampling exists in the somatosensory domain. Prestimulus ongoing 

oscillatory phase in the beta band in S1 was hypothesized to differ across trials in which 

subsequently presented electrotactile stimuli were perceived as either one single or two 

separate sensory events. If the perception of two subsequently presented stimuli as either one 

stimulus or two stimuli would be related to phase angle differences in ongoing neuronal 
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oscillations, this would suggest that oscillatory phase is relevant for the discrete temporal 

sampling of sensory information. 

4.1 Methods 

Study 2 was based on the same data set as study 1 (see 3.1 for details on subjects and 

paradigm). In summary, subjects received suprathreshold electrotactile stimulation of the left 

index finger. In the main condition, subjects received two subsequent pulses separated by a 

subject-specific SOA (labeled intermediate SOA) determined to result in a distribution of ~50% 

of trials perceived as one stimulus and ~50% of trials perceived as two stimuli. 

To focus the analysis of neuromagnetic data on S1, a virtual sensor was constructed by means of 

an LCMV beamformer (van Veen et al., 1997; Fig. 2A of Appendix 2). Based on the resulting 

spatial filter, source level virtual sensor data was reconstructed from single-trial time courses of 

MEG sensor data. Oscillatory phase was calculated for virtual sensor data by applying a discrete 

Fourier transform. For each trial, this resulted in a complex number for every time-frequency 

element, from which phase angles were calculated. Trials with intermediate SOA were sorted 

according to the perceptual response (perceived one stimulus vs. two stimuli) and placed in two 

different perceptual conditions. Perceptual conditions were compared to determine statistically 

significant phase angle differences. To investigate to what extent the respective perception of 

one or two stimuli was associated with different phase angles, trials were divided into six 

equally spaced bins according to their oscillatory phase angle. For each bin, the normalized 

perceptual response rate was calculated. Based on the phase angle differences between 

perceptual conditions, a model of perceptual cycles was derived (Fig. 3 of Appendix 2). Group-

level and single-subject level perceptual response rates were predicted based on this model. 

4.2 Results 

Phase angles in S1 significantly differed between perceptual conditions in the prestimulus epoch 

(530-90 ms before stimulus onset) for frequencies in the alpha and beta band (8-20 Hz; Fig. 2B 

of Appendix 2). Hence, in this time-frequency range phase angle differences between 
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perceptual conditions were significantly larger than randomly distributed phases and fluctuated 

around the maximum phase angle difference (i.e., π). These phase angle differences could not 

be explained by power differences between perceptual conditions. The influence of phase 

accounted for up to 13% points of perceptual variability (Fig. 2D of Appendix 2). The proposed 

model of perceptual cycles (Fig. 3 of Appendix 2) was derived from the resulting phase angle 

differences between perceptual conditions and the theory of perceptual framing (Varela et al., 

1981; VanRullen et al., 2011; 2014). The model states that the temporal resolution of 

perception is defined by an oscillatory cycle of a specific frequency. If two stimuli both impinge 

on the sensory system within one cycle, stimulation is perceived as one single stimulus. If two 

stimuli impinge on the sensory system within two separate cycles (i.e., each single stimulus 

within a separate cycle), stimulation is perceived as two separate stimuli. From the resulting 

phase angle differences, the critical frequency band determining the length of the perceptual 

cycle lies in the alpha and lower beta band. Based on this model, perceptual response rates 

could be successfully predicted on group level (Fig. 4 of Appendix 2) and single-subject level (Fig. 

S2 of Appendix 2). 

4.3 Discussion 

Study 2 suggests that somatosensory perception operates in a discrete mode and that 

somatosensory stimulation is sampled by discrete perceptual cycles. These perceptual cycles are 

determined by the alpha and, in particular, the lower beta band. This result was based on the 

finding that alpha and beta band phase angles in S1 predicted whether two suprathreshold 

stimuli were perceived as one single stimulus or two separate stimuli. Accordingly, a model was 

put forward which explained the mechanisms of discrete sampling by means of perceptual 

cycles. Perceptual response rates could be predicted successfully based on the model 

propositions. 

In general, studies addressing the topic of discrete perceptual sampling remain scarce, with 

present studies mainly addressing the visual domain (Varela et al., 1981; Chakravarthi and 

VanRullen, 2012). The present results demonstrate that discrete perceptual sampling is no 

domain-specific visual phenomenon, but is also present in the somatosensory domain. In the 
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visual domain, discrete cycles in perception and attentional updating are considered to be 

determined by alpha band cycles (Busch and VanRullen, 2010; Jensen et al., 2014). The present 

model is in line with these findings, albeit somatosensory perception seems to be defined by 

alpha and, in particular, beta band cycles. These domain-specific characteristics are in 

agreement with a prominent role of beta band oscillations in somatosensory processing (Jones 

et al., 2010; Haegens et al., 2011b; Lange et al., 2012), whereas alpha band oscillations are 

central for visual perception (Romei et al., 2008b; Wyart and Tallon-Baudry, 2009). 

Furthermore, these domain-specific differences are in accordance with studies investigating 

steady-state somatosensory evoked potentials (SSSEPs). SSSEP amplitudes are highest for a 

stimulation frequency of approximately 18-26 Hz (i.e., in the beta band; Snyder, 1992; 

Tobimatsu et al., 1999; Haegens et al., 2011b). By such a stimulation frequency, every single 

tactile stimulus would be placed within a separate beta cycle. This in turn would increase SSSEP 

amplitude and facilitate perception. 

The present results indicate that the phase of ongoing neuronal oscillations differs between 

perceptual conditions and is central to the temporal sampling of sensory information. However, 

the present study does not claim that specific phase (i.e., the peak or trough of a cycle) is either 

beneficial or hindering for perception. Effects of specific phase on perception have previously 

been addressed for different modalities (e.g., Varela et al., 1981; Busch et al., 2009; Mathewson 

et al., 2009; Dugué et al., 2011; Ng et al., 2012;), whereas evidence for the influence of 

oscillatory phase on the temporal sampling of sensory information remains scarce and only 

focuses on the visual domain (e.g., Varela et al., 1981). 

Taken together, there is notable evidence that sensory information is processed in a phasic 

mode. The question remains, however, why subjective experience does not match such a 

discrete sampling mode, but rather resembles a seamless perceptual stream. The mechanisms 

of how the brain transforms discretely sampled sensory information into this seamless percept 

still remain to be revealed. Nonetheless, there are reports of situations where these 

mechanisms fail to work (Dubois and VanRullen, 2011), for example in akinetopsia (Horton and 

Trobe, 1999; Tsai and Mendez, 2009) and after the ingestion of lysergic acid diethylamide 

(Abraham, 1983; Kawasaki and Purvin, 1996). 
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4.4 Conclusion 

Study 2 investigated the relationship between oscillatory phase in S1 and the perceptual 

sampling of electrotactile stimulation. Oscillatory phase angles in the alpha and lower beta band 

significantly differed between perceptual conditions. Based on these results, a model of 

perceptual cycles was presented. This model states that cycles in the alpha and lower beta band 

represent neurophysiological correlates of somatosensory perceptual cycles. The results 

demonstrate that discrete perceptual sampling is no domain-specific visual phenomenon, but 

also exists in the somatosensory domain. 
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5 Study 3: Beta Peak Frequencies at Rest Correlate with 

Endogenous GABA/Cr Concentrations in the Left Sensorimotor 

Cortex (Baumgarten et al., submitted) 

Study 3 (Appendix 3) investigated the relationship between beta band peak frequency (i.e., the 

frequency within the beta band exhibiting the highest power) and GABA concentration in 

sensorimotor and occipital cortices. Prominent beta band activity can be measured in the 

human sensorimotor cortex both at rest and after movement (Murthy and Fetz, 1996; Salmelin 

and Hari, 1994; Kilavik et al., 2013). Furthermore, beta band power and phase is related to 

somatosensory perception (e.g., Bauer et al., 2006; Gaetz and Cheyne, 2006; Baumgarten et al., 

2015). Although the majority of studies addressing beta band activity focus on beta band power, 

beta band peak frequency has been shown to be a functionally relevant parameter (Kilavik et 

al., 2012). For example, beta band peak frequency differs during movement or stimulation of 

lower versus upper limbs, thus distinguishing between different somatotopic representations 

(Neuper and Pfurtscheller, 2001). 

GABAergic inhibition is generally considered an important factor for the generation of neuronal 

oscillations in neuronal networks (Wang, 2010). Specifically for the beta band, GABAA-mediated 

inhibition is assumed to act as the central pacemaker within neuronal networks, thereby 

determining the oscillatory frequency within the network (Whittington et al., 2000a; 2000b). 

The connection between beta band activity and GABA concentration is further supported by 

animal studies and computational neuronal models (Jensen et al., 2005; Roopun et al., 2006; 

Yamawaki et al., 2008). Direct experimental evidence for this link in humans results from 

pharmacological modulation studies demonstrating that GABAergic compounds modulate beta 

band power (Jensen et al., 2005; Hall et al., 2010; Gaetz et al., 2011; Muthukumaraswamy et al., 

2013) and peak frequency (Jensen et al., 2005) both at rest and during movement. Although 

these pharmacological modulation studies provide causal evidence for the influence of 

GABAergic agents on beta band activity, these studies do not provide information about 

selective regional GABA concentrations. Thus, the quantitative relation between local GABA 
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concentration and measures of oscillatory activity remains to be determined. Recently, in vivo 

estimation of neurotransmitter concentrations in spatially defined cortical areas has become 

possible by means of MRS. Studies applying MRS that targeted sensorimotor cortex areas 

demonstrate linear relationships between sensorimotor GABA and post-movement beta band 

power, although no relationship could be determined for post-movement beta band peak 

frequency (Gaetz et al., 2011). 

Taken together, current studies consistently report a general relationship between GABA 

concentration and beta band power. Results regarding beta band peak frequency however, are 

less consistent. In addition, most studies addressing this topic measured beta band activity 

related to motor activity, with few findings available for beta band activity at rest. Study 3 thus 

investigated if beta band peak frequency during rest (i.e., without movement) is correlated with 

non-modulated GABA concentration in sensorimotor and occipital cortices. It was hypothesized 

that a linear relation between beta band peak frequency and GABA concentration is present in 

sensorimotor cortices, but not in occipital control regions. 

5.1 Methods 

15 healthy subjects participated in the study. The subjects were selected from a sample of 

healthy controls that was previously reported in a study from Oeltzschner et al. (2015). An 

assessment of handedness was conducted by means of a bi-manual performance test. 12 

subjects were categorized as clearly right-handed and 3 subjects showed no clear hand 

preference. MRS data was recorded for three voxels (3*3*3 cm³) in MRS regions of interest 

(ROIs) placed in the left and right sensorimotor and occipital cortex (Fig. 1A of Appendix 3). For 

the subsequent analysis of neurotransmitter concentrations, the GABA-to-creatine ratio 

(GABA/Cr) was selected (Mullins et al., 2014). GABA/Cr values were compared across MRS ROIs 

by means of a one-factor repeated measures ANOVA. Ongoing neuromagnetic data was 

recorded via MEG during two sessions. In the first session, subjects visually focused a fixation 

dot (eyes open condition; EO), whereas in the second session subjects closed their eyes but 

remained awake (eyes closed condition; EC). In addition, both conditions were merged into a 

combined condition (EC+EO). MEG ROIs corresponding to the respective MRS ROIs were defined 
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by a selection of left and right sensorimotor and occipital sensors (Fig. 2A of Appendix 3). For 

each subject, peak frequencies in the beta band (15-30 Hz) were computed for each MEG ROI. 

Beta band peak frequencies were compared across MEG ROIs by means of a two-factor 

repeated measures ANOVA (main factors: MEG ROI and condition). Potential relationships 

between neurotransmitter concentrations and parameters of oscillatory activity were assessed 

by correlating GABA/CR concentration and beta band peak frequency for each condition (EC, 

EO, EC+EO) within corresponding ROIs.  

5.2 Results 

For GABA/Cr concentrations, no significant differences were found between the three MRS ROIs 

(Fig. 1B of Appendix 3). For beta band peak frequencies, a significant main effect for the factor 

MEG ROI was found, with beta peak frequencies significantly higher in both left and right 

sensorimotor sensors than in occipital sensors (Fig. 2C of Appendix 3). No significant differences 

were found for the factor condition. Likewise, no significant interaction between the factors 

MEG ROI and condition was found. Significant positive linear relations between GABA/Cr 

concentration and beta band peak frequency, computed for all conditions (EC, EO, EC+EO), were 

found for the left sensorimotor cortex (Fig. 3A of Appendix 3). After partializing out the effect of 

handedness, relations for the left sensorimotor cortex remained significant for beta band peak 

frequency computed for the conditions EO and EC+EO. For the right sensorimotor and occipital 

cortex, no significant relations between GABA/Cr concentration and beta band peak frequency 

were found.  

5.3 Discussion 

Study 3 demonstrated a significant positive linear relationship between non-modulated 

GABA/Cr concentration and beta band peak frequency measured at rest in left sensorimotor 

cortex areas. Thus, subjects with higher GABA/Cr concentration exhibited higher beta band peak 

frequencies in the left sensorimotor cortex. For right sensorimotor and occipital cortex areas, no 

relationship was found. The present results are in agreement with previous studies generally 
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indicating a connection between beta band activity and GABA concentration (e.g., Roopun et al., 

2006; Hall et al., 2010; Gaetz et al., 2011; Muthukumaraswamy et al., 2013). Importantly, the 

current results provide evidence that the connection between beta band activity and GABA 

concentration is also present at rest.  

The significant difference of beta band peak frequencies between sensorimotor and occipital 

sensors is in line with the prominent role of beta band activity in the sensorimotor cortex (see 

chapter 1.5.3 and Salmelin and Hari, 1994; Kilavik et al., 2013). This offers a possible explanation 

why no significant relation between beta band peak frequency and GABA/Cr concentration was 

found for occipital areas. However, this interpretation cannot explain why no relation could be 

determined for the right sensorimotor cortex. Although handedness was considered a probable 

cause for the hemispherically asymmetric relation, results remained virtually unchanged after 

correcting for handedness. Nonetheless, handedness is known to determine asymmetries in 

hand representation within the sensorimotor cortex (Volkmann et al., 1998; Sörös et al., 1999; 

Triggs et al., 1999), which in turn might result in hemispheric differences in GABA/Cr 

concentration and/or beta band generators. The fact that GABA/Cr values were not found to be 

different for left and right sensorimotor cortices might relate to the rather large voxel size of the 

MRS analysis. These voxel sizes did not allow for a separate estimation of neurotransmitter 

concentration for motor and somatosensory cortex. Consequently, MRS measurements in the 

right sensorimotor cortex might have quantified GABA/Cr concentrations that are relatively 

more unrelated to beta band generators, compared to the left sensorimotor cortex. This issue 

has to be addressed by studies using more spatially fine-grained analyses and investigating both 

left and right-handed samples of equal size. 

Of further interest is the connection of GABA concentration and beta peak frequency on a 

functional and behavioral level. Higher GABA concentration in sensorimotor areas has been 

related to lower frequency discrimination thresholds for tactile stimulation (Puts et al., 2011). 

Thus, higher GABA concentrations resulted in a higher temporal resolution regarding tactile 

perception. These findings were interpreted as that due to higher levels of inhibition, neurons in 

the somatosensory cortex would be able to adjust their firing pattern to cycles of the respective 

stimulus frequencies, thereby lowering frequency discrimination thresholds. This can be related 
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to the influence of somatosensory beta band activity on the temporal sampling of tactile stimuli 

demonstrated in study 2 (Baumgarten et al., 2015). Here, beta band phase predicted tactile 

temporal discrimination, and the specific frequency within the beta band showing the largest 

phase angle differences successfully predicted perceptual response rates (Fig. S2 of Appendix 2). 

Thus, current findings suggest that GABA concentrations and beta band activity within the 

sensorimotor cortex are related to the temporal resolution of tactile perception.  

5.4 Conclusion 

Study 3 investigated if local non-modulated GABA/Cr concentrations are related to beta band 

peak frequencies at rest in sensorimotor and occipital cortex areas. Positive linear relations 

between GABA/Cr concentration and beta band peak frequency were found for the left 

sensorimotor cortex. These results suggest that the previously reported connection between 

GABA concentration and beta band power also extends to beta band peak frequency. The 

findings further provide evidence that sensorimotor beta band activity is linked to local 

sensorimotor GABA concentration. Finally, the results demonstrate that the previously reported 

connection between beta band activity and GABA concentrations are also present at rest and 

regarding non-modulated GABA concentrations. 
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6 General Discussion 

The present thesis focused on neuronal oscillatory activity in the somatosensory cortex. The 

first two studies aimed at investigating the role of ongoing neuronal oscillatory activity in the 

alpha and beta band during the prestimulus interval for the temporal perceptual discrimination 

of electrotactile stimuli. Empirical evidence for the relationship between different parameters of 

prestimulus neuronal oscillatory activity and stimulus processing and perception was presented. 

Based on these experimental findings, theoretical models were provided that elucidated 

potential mechanisms of how the current brain state (in form of ongoing prestimulus oscillatory 

activity) determines perception. The third study examined the connection between parameters 

of oscillatory activity measured at rest and local non-modulated neurotransmitter 

concentrations. Locally specific connections between beta band peak frequency and non-

modulated GABA concentrations were demonstrated. 

Study 1 and 2 relied on a simple, yet efficient paradigm. By presenting subjects with stimulation 

that was physically constant but produced varying perceptual reports across trials, a comparison 

between trials with different perceptual reports eliminated systematical stimulation effects. 

Here, varying perception resulted from ambiguity in the temporal dimension due to individually 

selected SOAs. The primary impact is the finding that prestimulus oscillatory activity is not only 

central to neuronal stimulus processing and perception, but that neuronal stimulus processing 

and perception are gradually modulated by prestimulus oscillatory activity. This gradual 

influence is reflected in a qualitative modulation of perception, which study 1 and 2 

demonstrated for the temporal perceptual discrimination of consecutive electrotactile stimuli. 

Hence, prestimulus oscillations do not only determine whether a (near-threshold) stimulus is 

perceived or not, but also how (suprathreshold) stimuli are perceived.  

Both study 1 and 2 were based on the same experimental paradigm and raw data sets. Yet, it is 

important to note that they investigate two different parameters of neuronal oscillatory activity 

(oscillatory power and phase). Although both studies find the respective parameter to differ 

between trials with constant stimulation but varying perception, there are fundamental 
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differences between the respective analysis approaches. Study 1 focused on the alpha band and 

investigated power differences over all sensors. In contrast, study 2 applied a virtual sensor 

approach and solely focused on neuromagnetic activity originating from S1. Furthermore, the 

power effects demonstrated in study 1 begin earlier (900 ms before stimulus onset) than the 

phase angle effects of study 2 (530 ms before stimulus onset). This is likely due to the intrinsic 

differences between power and phase. Oscillatory phase provides fine grained windows of 

excitation and inhibition (Busch et al., 2009; Mathewson et al., 2011) and is therefore suited as 

correlate of quickly fluctuating processes (i.e., perceptual cycles). Power changes, however, 

reflect the size and synchronization of an active neuronal population (Pfurtscheller and Lopes da 

Silva, 1999). This is further supported by theories attributing (alpha) power differences as a 

neuronal correlate of top down mechanisms like attention (Jensen and Mazaheri, 2010).  

Of further interest is the question why prestimulus power and phase effects presented in the 

first two studies are not present up to the time point of stimulus presentation. Here, one could 

argue that prestimulus effects which influence subsequent perception should be most visible 

immediately before stimulus presentation. However, this phenomenon has been frequently 

reported across modalities and for power as well as phase effects (e.g., Busch et al., 2009; Lange 

et al., 2012; Hanslmayr et al., 2013). Although so far no definitive reason for this well-replicated 

finding is known, it can be speculated about different causes. One reason could be that 

prestimulus effects immediately before stimulus presentation are masked by neuronal activity 

related to stimulus processing. Since such stimulus-related activity can be considered to have a 

higher signal-to-noise ratio than ongoing prestimulus activity, a masking of the prestimulus 

signal from the stimulus-related signal would appear reasonable. Alternatively, it could be 

assumed that prestimulus effects in the alpha and beta frequency band are modulated by an 

underlying rhythm with lower frequency. For example, activity in the alpha and beta band could 

be locked to the phase of underlying ongoing theta oscillations (4-7 Hz) with cycle durations 

around 140-250 ms (Singer, 2013). Consequently, power or phase in the alpha and beta band 

should fluctuate according to the phase of underlying rhythm. Provided that the underlying 

rhythm is also systematically related to stimulus perception, power or phase differences 

between perceptual conditions in the alpha and beta band should likewise fluctuate according 



General Discussion 

66 

 

to the phase of underlying rhythm. Power or phase differences between perceptual conditions 

would therefore reach significance only during those time points when the phase difference 

between perceptual conditions in the underlying theta rhythm is maximal. This would 

determine that power or phase differences in the alpha and beta band would be discernible 

periodically, instead of being present throughout the prestimulus period. Interestingly, recent 

studies reported that behavioral performance and neuronal correlates of stimulus processing in 

a visual change detection tasks fluctuated at a 4 Hz rhythm (Landau and Fries, 2012; Landau et 

al., 2015).  

Taken together, the first two studies show that the prestimulus brain state as expressed in 

ongoing neuronal oscillations influences how subsequently presented stimulation is perceived. 

The results of the study 1 are in agreement with current theories on the role of alpha band 

activity as a sensory gating mechanism that regulates information processing (Klimesch et al., 

2007; Jensen and Mazaheri, 2010). However, study 1 critically extends current theories by 

showing that prestimulus alpha band changes also qualitatively influence perception. Study 2 

demonstrates that beta band activity is not only central to movement-related tasks and the 

maintenance of the status quo, but also influences the perception of somatosensory 

stimulation. Importantly, study 2 provides empirical support for the theory of discrete 

perceptual sampling of sensory information, a concept which had already been proposed 

decades ago (e.g., Stroud, 1956; Varela et al., 1981) but since then has received surprisingly 

little scientific interest. Finally, study 2 could demonstrate that discrete perceptual sampling is 

no domain-specific visual phenomenon and that perceptual cycles exist also in the 

somatosensory modality.  

Finally, the present thesis demonstrates a connection between non-modulated 

neurotransmitter concentrations and neuronal oscillatory parameters at rest. Study 3 presented 

linear positive relations between GABA/Cr concentrations and beta band peak frequency in the 

left sensorimotor cortex. By investigating beta band peak frequency not related to motor 

activity and local non-modulated GABA concentrations, study 3 extended previous findings 

regarding the connection of beta band activity and GABA concentrations. However, a significant 

relation was only found for the left sensorimotor cortex. Future studies are necessary to clarify 
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if the connection between beta band peak frequency and GABA concentration generally exhibits 

hemispheric asymmetries and which factors (e.g., handedness) contribute to this imbalance. 

In sum, the present thesis makes important scientific contributions regarding the functions and 

neurochemical basics of somatosensory neuronal oscillations. Novel findings regarding the role 

of prestimulus low frequency band oscillatory activity for somatosensory stimulus processing 

and perception are demonstrated. The included studies show that ongoing variations in the 

state of the brain are connected to the way how somatosensory stimulation is perceived. In 

addition, parameters of oscillatory activity at rest are related to local non-modulated 

neurochemical concentrations. Finally, the thesis emphasizes that MEG and current analysis 

techniques represent powerful tools to investigate ongoing brain activity and the temporal 

dimension of stimulus processing. 
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7 Outlook 

The abovementioned results demonstrate comprehensive evidence for the role of prestimulus 

oscillatory activity for the processing and perception of suprathreshold electrotactile 

stimulation. Additionally, locally specific connections between neuronal oscillatory activity and 

non-modulated neurotransmitter concentrations are presented. Various avenues regarding 

potential future research options emanate from these findings. 

An important limitation of the presented studies is their correlative nature. Strictly speaking, 

since ongoing oscillatory activity was not experimentally modified, it cannot be deduced that 

prestimulus activity causally influenced subsequent perception. However, previous studies in 

which oscillatory parameters were experimentally manipulated were able to demonstrate that 

perception is causally modulated by oscillatory power (e.g., Romei et al., 2008a; 2008b; 2010) 

and phase (e.g., Neuling et al., 2012; Romei et al., 2012). Taking these findings into account, it 

seems highly likely that prestimulus oscillatory activity also causally influences the perception of 

suprathreshold stimuli. To further strengthen this assumption, however, future studies are 

needed in which similar paradigms are combined with neuromodulatory mechanisms. Potential 

established mechanisms include TMS (e.g., Romei et al., 2008a; 2008b; 2010) as well as 

transcranial alternating current stimulation (Zaehle et al., 2010) and transcranial direct current 

stimulation (Neuling et al., 2012). Nonetheless, it has to be considered that such 

neuromodulatory approaches create additional difficulties and artifacts in MEG measurements. 

An additional option to experimentally manipulate oscillatory parameters is provided by sensory 

stimulation. Sensory stimulation has been shown to reset oscillatory phase in sensory cortices 

(Lakatos et al., 2007; Romei et al., 2012). Attentional cueing by sensory stimulation cyclically 

influences perceptual detection, which in turn is attributed to underlying oscillatory phase 

(Landau and Fries, 2012; Landau et al., 2015). Thus, the reset of oscillatory phase in S1 by a 

somatosensory stimulus would theoretically enable to more directly test the theory of 

perceptual cycles addressed in study 2. The time interval between the phase resetting 

stimulation and the presentation of the first stimulus should determine at which phase of the 

perceptual cycle the first stimulus impinges on the somatosensory system. The phase of the 
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perceptual cycle at which the second stimulus would arrive can be derived from the SOA and 

the perceptual cycle length. According to the theory of somatosensory perceptual cycles 

presented in study 2, temporal perceptual discrimination rates should be a cyclic function of the 

temporal distance between reset stimulus and first target stimulus. These cyclic fluctuations 

should be present within a frequency of the beta band. 

Study 1 examined the relationship between ongoing prestimulus alpha band power and 

poststimulus ERFs, which were interpreted as neuronal correlates of stimulus processing. In line 

with this approach, it would also be interesting to investigate the effect of prestimulus 

oscillations on different parameters representing stimulus processing, in particular gamma band 

activity (Fries, 2009). Although stimulus-induced gamma band activity has been demonstrated 

mostly for visual stimulation (e.g., Hoogenboom et al., 2006), recent studies also reported 

gamma band activity in somatosensory cortex areas in response to tactile stimulation (e.g., 

Rossiter et al., 2013; Jamali and Ross, 2014). 

In addition, it would be interesting to investigate the influence of prestimulus oscillations on the 

perception of more naturalistic stimuli (e.g., mechanical stimulation instead of electrotactile 

stimulation). Although naturalistic stimuli are more demanding in terms of their presentation, 

the potential results could emphasize the influence of ongoing neuronal oscillations on 

everyday perception. Despite concerns that naturalistic stimulation might result in smaller and 

more smeared effects of stimulus processing, there is evidence that such an approach is feasible 

(e.g., Smith et al., 2006). 

Furthermore, network analyses of those brain areas involved in temporal perceptual 

discrimination would offer an intriguing possibility to study the neuronal networks involved in 

perceptual decision making. Since current decision making models generally assume the 

decision process to consist of separate, functionally and temporally distinguishable 

subprocesses (e.g., evidence accumulation, response preparation; Gold and Shadlen, 2007), 

network analyses could yield important results on how the brain encodes and integrates these 

subprocesses to form a specific decisional outcome. For time series data with high temporal 

resolution (as provided by MEG), various established connectivity metrics are available (Lachaux 
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et al., 1999; Schoffelen and Gross, 2009). As demonstrated by the results of study 1, differences 

between perceptual conditions are not restricted to sensory cortices. This is further supported 

by findings reporting that global network features indicating the integration of the 

somatosensory cortex into a distributed network differ between hits and misses in a tactile 

detection task (Weisz et al., 2014). 

Finally, future studies addressing the connection between parameters of oscillatory activity and 

local neurotransmitter concentrations would benefit from smaller MRS voxel sizes. Smaller 

voxels would allow for the differentiated analysis of functionally distinct cortical areas (e.g., 

motor vs. somatosensory cortex) and thus allow for a more fine grained spatial analysis of 

neurotransmitter distribution. Currently, smaller voxel sizes are possible, but come at the cost 

of a longer measurement duration or higher field strength (Puts and Edden, 2012). However, 

with the emergence and increasing use of 7T MRI scanners, smaller MRS voxels in combination 

with feasible measurement time might become possible in the near future.  

Taken together, the findings presented in the scope of this thesis provide important information 

about the functional role and neurochemical basics of somatosensory neuronal oscillations. 

However, compared to the existing knowledge regarding neuronal oscillations and the many 

questions that remain to be addressed, the present findings resemble only a small piece in the 

ongoing endeavor to elucidate the general purpose of neuronal oscillations in the brain. 
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Abstract
Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold
stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of
suprathreshold tactile stimuli and subjects’ confidence regarding their perceptual decisions. We investigated how prestimulus
alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus
onset asynchronies (SOAs) to human subjects, and determined the SOA forwhich temporal perceptual discrimination varied on
a trial-by-trial basis betweenperceiving 1 or 2 stimuli, prior to recording brain activitywithmagnetoencephalography.We found
that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual
discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in
correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields
(ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus
parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power
fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that
prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings.

Key words: alpha oscillations, MEG, perceptual decision making, prestimulus fluctuations, tactile stimulation

Introduction
Decision making can be understood as a process in which sen-
sory evidence is accumulated in a decision variable. If sensory
evidence is sufficiently strong and available for a sufficiently
long time, the decision variable accumulates until a decision
bound for either decision is reached (see Gold and Shadlen 2007
for a review). In some situations, however, sensory evidence is
ambiguous, providing equal sensory evidence for each decisional
option. In other situations, sensory evidence isweakor presented
insufficiently long for the decision variable to reach a decision
bound. Consequently, decisions have to be made based on in-
complete or equivocal sensory evidence, frequently causing
incorrect decisions and low confidence in the decision. In add-
ition, decisionmaking is not only determined by sensory evidence,

but also by trial-to-trial fluctuations of neuronal activity, usually
interpreted as internal noise (Ratcliff and McKoon 2007; O’Con-
nell et al. 2012).

Recent studies, however, demonstrated that fluctuations of
neuronal activity can have a functional role for the perception
of weak and ambiguous stimuli. Specifically neuronal oscillatory
activity in the alpha band (∼8–12 Hz) has drawn much attention.
Prestimulus alpha power is modulated by attention (e.g., Foxe
et al. 1998; Worden et al. 2000) and prestimulus power and
phase in early sensory areas are correlated with perception
(Linkenkaer-Hansen et al. 2004; van Dijk et al. 2008; Mazaheri
et al. 2009; Wyart and Tallon-Baudry 2009; Jensen and Mazaheri
2010; Romei et al. 2010; Keil et al. 2014). Furthermore, it has
been shown that prestimulus oscillatory activity can influence
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poststimulus evoked responses (Başar et al. 1984; Brandt and
Jansen 1991; Mazaheri and Jensen 2008; Jones et al. 2009, 2010;
Anderson andDing 2011; Lange et al. 2012). The influence of pres-
timulus oscillatory activity on decision variables remains largely
unknown. In addition, the influence of prestimulus oscillatory
activity on subjective confidence in perceptual decisions is un-
known. Subjective confidence represents ameasure of the degree
to which a decision maker believes in the correctness of his deci-
sions and thus provides an insight into decisional processes on a
fine-grained scale (Kiani and Shadlen 2009). Moreover, it remains
unexplained how the brain forms decisions when sensory evi-
dence is insufficient to reach a decision bound, for example,
due to sensory ambiguity.

To test how prestimulus alpha-band power biases perceptual
decisions and the underlying neuronal decision variable in hu-
mans, we presented electrical stimuli with different stimulus
onset asynchronies (SOAs) and compared 2 subjectively ambigu-
ous experimental conditions in which physically identical tactile
stimuli were perceived differently on a trial-by-trial basis. We
used magnetoencephalography (MEG) and a forced-choice tem-
poral perceptual discrimination task to investigate whether fluc-
tuations of prestimulus neuronal oscillatory activity are related
to the trial-to-trial variability of decisions and how prestimulus
oscillatory activity influences the decision variable. We hypothe-
sized that prestimulus alpha power correlates with temporal per-
ceptual discrimination rate, with lower alpha power levels
related to increased veridical temporal perceptual discrimin-
ation. Further, we expected that characteristics of the decision-
making process would be evident in neural activity in the form
of poststimulus event-related fields (ERFs). This should result in
differences of neuronal activity for trialswith different decisional
outcomes, despite identical physical stimulation. Additionally,
we hypothesized that prestimulus alpha power would influence
this decision-related neuronal activity.

Materials and Methods
Subjects

Sixteen, right-handed subjects (7 males, age: 26.1 ± 4.7 years
[mean ± SD]) participated in the study after providing written in-
formed consent in accordance with the Declaration of Helsinki.
All participants had normal or corrected-to-normal vision and

reported no somatosensory deficits or known history of neuro-
logical disorders.

Experimental Design and Paradigm

The experimental task was designed to compare 2 conditions
with identical physical stimuli, differing only in the participant’s
perception. Each trial started with the presentation of a start cue
(500 ms; Fig. 1). Next, the cue decreased in luminance, indicating
the prestimulus period (900–1100 ms), after which the subjects
received either 1 or 2 short (0.3 ms) electrical pulses, applied by
2 electrodes placed between the 2 distal joints of the left index
finger. The amplitude of the pulses was determined individually
to a level clearly above subjective perception threshold, but below
pain threshold (4.1 ± 1.2 mA [mean ± SD]). Note that all compari-
sons of conditions were performed at the within-subject level.
Therefore, only conditionswith identical stimulation parameters
were compared (for details, see MEG Data Acquisition and Ana-
lysis). The electrical pulses were applied with varying SOAs:
short (0 ms, i.e., only one stimulus was applied), long (100 ms),
and 3 SOAs individually determined in a premeasurement.
These 3 individual SOAs included a SOA for which subjects re-
ported to perceive one electrical pulse in ∼50% of the trials,
whereas in the other ∼50% of the trials 2 pulses were perceived
(SOA: 25.9 ± 1.9 ms (mean ± standard error of the mean [SEM])).
Subsequently, this condition will be labeled the intermediate
SOA. The remaining 2 SOAs encompassed the intermediate
SOA by ±10 ms and were included to minimize learning effects
and response biases. A training phase of ∼5 min containing all
possible SOAs preceded the experiment to familiarize subjects
with the paradigm. The electrical stimulation was followed by a
jittered poststimulus period of 500–1200 ms to minimize motor
preparation effects, during which the fixation dot remained vis-
ible. Next, a written instruction indicated the start of the first re-
sponse window. Subjects first reported whether they perceived
the stimulation as 1 single or 2 temporally separate sensations.
Responseswere given by button-presseswith the index ormiddle
finger of the right hand, while button configurations were rando-
mized from trial to trial to minimize motor preparation effects.
Subjects were instructed to report within 3000 ms after presenta-
tion of response instructions. Due to the jittered poststimulus
epoch (500–1200 ms) which determined the beginning of the sub-
sequent response window, response speed was not taken into

Figure 1. Experimental task. Sequence of events: A central fixation dot serves as start cue, after 500 ms a decrease in luminance signals the start of the prestimulus epoch,

consisting of a jittered period of 900–1100 ms. Tactile stimulation is applied to the left index finger with varying SOAs (0 ms, intermediate – 10 ms, intermediate,

intermediate + 10 ms, 100 ms). After a jittered poststimulus period (500–1200 ms), written instructions indicate the first response window and subjects report their

perception of the stimulation by button-press. Subsequently, written instructions indicate the second response window and subjects report their decisional

confidence by button-press.

2 | Cerebral Cortex

 at U
niversitats-U

nd Landesbibliothek on O
ctober 19, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


account. If no responsewas given after 3000 ms or the subject re-
sponded before the presentation of the instructions, a warning
was presented visually. The respective trial was discarded from
analysis and repeated at the end of the block. After reporting
their subjective perception, written instructions indicated a se-
cond responsewindow. Here, subjects rated their subjective con-
fidence level regarding their first response. The confidence level
was assessed via a 4-point rating scale, ranging from “very
sure” to “very unsure.” Once both responses were given, the
next trial started. With the exception of the aforementioned
warning signal, no further feedback was given. All visual stimuli
were projected on the backside of a translucent screen (60 Hz re-
fresh rate) positioned 60 cm in front of the subjects.

Each SOA was presented in 50 trials. To increase statistical
power, the intermediate SOA was presented 4 times as often as
the other SOAs (i.e., 200 trials). 80 trials constituted one block
with each block containing 10 repetitions (40 for the intermediate
condition) of each SOA presented in pseudorandom order. Blocks
were repeated 5 times, interrupted by self-paced breaks of
∼2 min, resulting in an overall 400 trials. The approximate total
duration of the MEG measurement was ∼45–50 min (400 trials
with a trial length of ∼6 s on average [4–8.6 s], interrupted by up
to 4 self-paced breaks of ∼2 min).

Stimulus presentation was controlled using Presentation
software (Neurobehavioral Systems, Albany, NY, USA). Before
MEG recording, each subject received instructions of the task
but remained naïve to the purpose of the experiment and the dif-
ferent SOAs used.

Behavioral Data Analysis

Behavioral data were analyzed with regard to correct responses
and compared across conditions by means of a paired sample
t-test. Prior to this, a Kolgomorov–Smirnov test was applied to en-
sure that the respective distributions did not differ from a Gauss-
ian distribution. Further, we investigated learning/fatigue trends
in the perceptual responses and confidence ratings by dividing
experimental trials in 12 bins and computing the average tem-
poral perceptual discrimination rate (i.e., perceived 2 stimuli or
1 stimulus) as well as the average confidence rating over subjects
for each bin. Subsequently, we fitted a linear regression to the
data in order to determine a linear trend.

MEG Data Acquisition and Analysis

Data Recording and Preprocessing
Ongoing neuromagnetic brain activity was continuously recorded
at a sampling rate of 1000 Hzusing a 306-channelwhole headMEG
system (Neuromag ElektaOy, Helsinki, Finland), including 204 pla-
nar gradiometers (102 pairs of orthogonal gradiometers) and 102
magnetometers. Data analysis in the present study was restricted
to the planar gradiometers. Additionally, electro-oculogramswere
recorded for offline artifact rejection by applying electrodes above
and below the left eye as well as on the outer sides of each eye.
Subjects’ head position within the MEG helmet was registered
bya head position indication system (HPI) built up of 4 coils placed
at subjects’ foreheadandbehindboth ears. A 3-TMRI scanner (Sie-
mens, Erlangen,Germany)wasused to obtain individual full-brain
high-resolution standard T1-weighted structural magnetic reson-
ance images (MRIs). The MRIs were offline aligned with the MEG
coordinate system using the HPI coils and anatomical landmarks
(nasion, left and right preauricular points).

Data were offline analyzed using custom-made Matlab (The
Mathworks, Natick, MA, USA) scripts, the Matlab-based open
source toolbox FieldTrip (http://fieldtrip.fcdonders.nl; Oostenveld
et al. 2011), and SPM8 (Litvak et al. 2011). Continuously recorded
data were segmented into trials, starting with the appearance of
the first fixation dot and ending with the second response of the
subject. All trials were semiautomatically and visually inspected
for artifacts,whereas artifacts caused bymuscle activity, eyemove-
ments, or SQUID jumps were removed semiautomatically using a
z-score-based algorithm implemented in FieldTrip. Excessively
noisy channels were removed as well and reconstructed by an in-
terpolation of neighboring channels. In addition, power line noise
was removed from the segmented data by using a band-stop filter
encompassing the50, 100, and150 Hzcomponents. Further prepro-
cessing steps were applied according to the respective analyses.

Time–Frequency Analysis

For exploratory reasons, we first performed a time–frequency
analysis on all frequencies between 2 and 40 Hz for all time
points (−900 to 500 ms, Fig. 2A). We focused our analysis on the
effects of alpha power (8–12 Hz) in the prestimulus epoch (−900
to 0 ms) on perceptual decisions, that is, the responses to the

Figure 2. Results of the statistical comparison of correctly (perceived 2 stimuli) versus incorrectly (perceived 1 stimulus) perceived trials with intermediate SOA. (A) Time–

frequency representation on sensor level averaged over all sensors. t = 0 indicates onset of sensory stimulation. (B) Time series of topographical representations on sensor

level averaged over the alpha band (8–12 Hz). Significant sensors (P < 0.05) are marked by white circles. The lower right inset illustrates alpha power differences averaged

across the whole time window (−900 to −250 ms; white dots represent channels of the anterior/somatosensory sensor-cluster; black crosses represent channels of the

parieto-occipital sensor-cluster used for following analyses. See text for details on the separation of the clusters). (C) Source reconstruction projected on the MNI

template brain for the significant effect in the alpha band (see B) viewed from the top (top row) and the right (bottom row). Source plots are masked to highlight

significant clusters (P < 0.05). P-values in B and C are cluster corrected to account for multiple comparison corrections. The left color bar applies to A, the right color

bar applies to B and C. For both color bars, blue colors indicate lower spectral power in correctly perceived trials compared with incorrectly perceived trials.
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temporal perceptual discrimination task. First, the linear trend
and mean of every epoch were removed from each trial. Time–
frequency representations for each trial were computed byapply-
ing a Fourier transformation on adaptive sliding time windows
containing 7 full cycles of the respective frequency f (Δt = 7/f ),
moved in steps of 50 ms and 2 Hz (van Dijk et al. 2008; Mazaheri
et al. 2009; Lange et al. 2012). Data segments were tapered with a
single Hanning taper, resulting in a spectral smoothing of 1/Δt.
Spectral power was averaged over the alpha band separately for
each trial. Alpha power was estimated independently for each
of the 204 gradiometers. Subsequently, gradiometer pairs were
combined by summing spectral power across the 2 orthogonal
channels, resulting in 102 pairs of gradiometers. We sorted the
trials with respect to the SOA for each subject separately. For all
trials with intermediate SOA, we separated and compared trials
with reports of 1 perceived stimulus to trials with 2 perceived
stimuli.With this approach, wewere able to compare 2 sets of de-
cisional outcomes, which differed only in the subjects’ temporal
perceptual discrimination of the stimuli, though not regarding
their physical properties. Due to the fact that, only for the inter-
mediate condition, a sufficiently high number of trials for both
decisional outcomes (perceived 1 stimulus or 2 stimuli) were
available, only trials with intermediate SOA entered the analysis.
In the following, trials in which stimulation was perceived as 2
temporally separate stimuli will be labeled correctly perceived
trials, whereas trials in which stimulationwas perceived as 1 sin-
gle stimuluswill be labeled incorrectly perceived trials. To test for
statistically significant power differences between sets, weused a
cluster-based nonparametric randomization approach (Maris
and Oostenveld 2007). In a first step, we compared averaged
alpha power between both sets of decisional outcomes (correct
and incorrect, i.e., perceived 2 stimuli or 1 stimulus) for each sub-
ject independently in all channels and all time points in the pres-
timulus time window (−900 to 0 ms). Comparison between sets
was performed by subtracting the power of both sets and dividing
the difference by the variance (equivalent to an independent
sample t-test). This step serves as a normalization of interindivi-
dual differences (Hoogenboomet al. 2010; Lange et al. 2011, 2013).
The comparison was done independently for each time sample
and channel, resulting in a time-channelmap of pseudo-t-values
foreachsubject. For group-level statistics,weanalyzed the consist-
ency of pseudo-t-values over subjects by means of a nonparamet-
ric randomization test identifying clusters in time-channel space
showing the same effect. Neighboring channels were defined on
the basis of spatial adjacency, with spatial clusters requiring a
minimum amount of 2 neighboring channels. Spatially and tem-
porally adjacent pseudo-t-values exceeding an a priori-defined
threshold (P < 0.05) were combined to a cluster. t-values within a
cluster were summed up and used as input for the second-level
cluster statistic. Next, we computed a reference distribution by
randomly permuting the data, assuming no differences between
statistical conditions and exchangeability of the data. This process
of random assignment was repeated 1000 times, resulting in a
summed cluster t-value for each repetition. The proportion of ele-
ments in the reference distribution exceeding the observed max-
imum cluster-level test statistic was used to estimate a P-value
for each cluster. This statistical approach effectively controls for
the Type I error rate due to multiple comparisons across time
points and channels (Maris and Oostenveld 2007).

Source Reconstruction

To identify the cortical sources of the statistically significant ef-
fects displayed on sensor level, we calculated source-level

power estimates by means of an adaptive spatial filtering tech-
nique (DICS, Gross et al. 2001). To this end, a regular 3D grid
with 1 cm resolution was applied to the Montreal Neurological
Institute (MNI) template brain. Individual grids for each subject
were computed by linearly warping the structural MRI of each
subject onto the MNI template brain and applying the inverse
of the warp to the MNI template grid. For one subject, no individ-
ual structural MRI was available; hence, we used the MNI tem-
plate brain instead. A lead-field matrix was computed for each
grid point employing a realistically shaped single-shell volume
conduction model (Nolte 2003). Subsequently, the cross-spectral
density (CSD) matrix between all MEG gradiometer sensor pairs
was computed for the alpha band by applying a Fourier trans-
formation on timewindows of interest. Timewindows of interest
were based on the significant clusters of the group analysis on
sensor level (Fig. 2B). Using the CSD and lead-field matrix, com-
mon spatial filters were constructed for each individual grid
point. To this end, we pooled trials with intermediate SOA over
both sets of decisional outcomes and computed a common spa-
tial filter for each subject. CSD matrices of single trials were pro-
jected through those filters, resulting in single-trial estimates of
source power (Hoogenboomet al. 2010; Lange et al. 2012), and fur-
ther sorted according to decisional outcome. In linewith the ana-
lysis on sensor level, power was contrasted between both sets of
decisional outcomes. Similarly to the sensor-level analysis, the
resulting individual source parameters were statistically com-
pared across subjects by means of a nonparametric randomiza-
tion test (Maris and Oostenveld 2007) which effectively controls
for the Type I error rate. Group results were displayed on the
MNI template brain in form of t-values. Finally, cortical sources
were identified using the AFNI atlas (http://afni.nimh.nih.gov/
afni), integrated into FieldTrip.

Since the time–frequency analysis and the source reconstruc-
tion demonstrated 2 spatiotemporally different activation clus-
ters (see Results and Fig. 2B,C), we performed the subsequent
analyses on 2 different sensor sets. First, we based the analyses
on all channels showing a significant alpha power difference be-
tween correctly (perceived 2 stimuli) versus incorrectly (per-
ceived 1 stimulus) perceived trials with intermediate SOA (as
shown in Fig. 2B). Second, we based the analyses on 2 spatio-
temporally separated sensor-clusters (see inset in Fig. 2B), 1 an-
terior/somatosensory sensor-cluster (MEG-sensors: MEG0712 + 13,
MEG0722 + 23, MEG1042 + 43, MEG1112 + 13, MEG1122 + 23, MEG
1132 + 33, MEG1142 + 43, MEG1312 + 13, MEG1342 + 43, MEG1832 +
33, MEG2012 + 13, MEG2022 + 23, MEG2212 + 13, MEG2222 + 23,
MEG2232 + 33, MEG2242 + 43, MEG2412 + 13, MEG2422 + 23, MEG
2612 + 13, MEG2642 + 43), and 1 parieto-occipital sensor-cluster
(MEG-sensors: MEG2312 + 13, MEG2322 + 23, MEG2342 + 43, MEG
2432 + 33, MEG2442 + 43, MEG2512 + 13, MEG2522 + 23).

Correlation of Prestimulus Power, Perceptual Decisions,
and Confidence Ratings

To examine the relationship between prestimulus power and
perceptual decisions, we averaged spectral power over time, fre-
quency, and sensors and correlated averaged power values with
perceptual decisions. To this end, we selected the sensors and
time points showing a significant difference between decisional
outcomes (see above, Fig. 2B). Note that this approach resembles
a post hoc statistical analysis in the sense that sensor selection
was based on those sensors showing a significant difference in
the alpha band (see above, Fig. 2B). Averaging was done separate-
ly for each subject and trial, using a fixed time–frequency-sensor
triplet resulting from the significant time-channel clusters
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derived from group-level statistics and the predetermined alpha
frequency (8–12 Hz). Trials of each subject were sorted from low
to high alpha power and divided into 5 bins (Linkenkaer-Hansen
et al. 2004; Jones et al. 2010; Lange et al. 2012, 2013). For each bin
and subject, we calculated the average temporal perceptual dis-
crimination rate and normalized the resulting value for each
bin to the individual average temporal perceptual discrimination
rate across all bins by first subtracting and then dividing by the
individual averaged temporal perceptual discrimination rate
across all trials. This resulted in a percentage change relative to
the normalized mean across all bins for each subject (Linken-
kaer-Hansen et al. 2004; Lange et al. 2012, 2013). For each bin,
average power and SEM were computed over all subjects. Linear
and quadratic functions were fitted to the data to determine
the best fit (Linkenkaer-Hansen et al. 2004; van Dijk et al. 2008;
Jones et al. 2010; Lange et al. 2012, 2013). Average temporal per-
ceptual discrimination rates in the respective bins were statistic-
ally compared by applying a one-way repeated-measures ANOVA
and post hoc t-tests.

Additionally, we investigated the correlation of prestimulus
power and confidence ratings. The analysis was conducted as
stated above, with the following exceptions. To separately deter-
mine the relation between prestimulus power and confidence
rating for correctly and incorrectly perceived trials, we divided
the trials with intermediate SOA regarding their decisional out-
come, that is, correctly and incorrectly perceived trials were ana-
lyzed separately. For each bin, we calculated the average
confidence rating and normalized the result in each bin to the
average confidence rating across all trials with the respective de-
cisional outcome. Finally, the average confidence ratings were
averaged over subjects. Likewise, linear and quadratic functions
were fitted to the data.

Further, we separated the significant channels in 2 clusters
(anterior/somatosensory vs. parieto-occipital; see above and
inset of Fig. 2B) based on their spatiotemporal characteristics
and performed the correlation analysis with power values aver-
aged over the channels of these separated sensor-clusters.

Relation Between Decision Variable, Prestimulus Power,
and Poststimulus ERFs

To examine the neural dynamics of perceptual decision making
under conditions with suboptimal evidence accumulation and
ambiguous stimulus perception, we studied the relation of post-
stimulus ERFs, prestimulus alpha power and decisional outcome.
Perceptual decisions can be conceptualized as a process inwhich
sensory evidence for a decision accumulates over time in a deci-
sion variable until a decision bound is reached, followed by a par-
ticular response selection (Gold and Shadlen 2007; Ratcliff and
McKoon 2007; Kiani and Shadlen 2009). Recent works in human
electrophysiology suggest that such decision variables are re-
flected in poststimulus event-related potentials (e.g., VanRullen
and Thorpe 2001; Philiastides and Sajda 2006; Philiastides et al.
2006; O’Connell et al. 2012). Since event-related potentials/fields
resemble a population-based measure of neuronal activity (Hari
and Kaukoranta 1985), this is further supported by studies that
identify signals from multiple neurons as basis of behavioral de-
cisions (Britten et al. 1996). We hypothesized that, in trials with
intermediate SOA, the total accumulation of sensory evidence
would remain below any decisional bound due to insufficient
sensory information in favor of any decision, therefore requiring
forced-choice decisions. We aimed to assess these decision vari-
ables in poststimulus ERFs. Additionally, confidence levels
should be a function of the distance of the decision variable to

the decision bounds, with closer proximity of the decision vari-
able to the respective decision bound resulting in higher confi-
dence. Moreover, we hypothesized that prestimulus alpha
power modulates the distance of the decision variable to the re-
spective decision bounds.

To compute ERFs, preprocessed data were filtered between
2 and 40 Hz, the mean of each epoch was removed from each
trial, and these datawere averaged across trials. For each subject,
ERFs were computed for all sensors that showed a significant dif-
ference between decisional outcomes (as shown in Fig. 2B). Add-
itionally, we separated the significant channels in 2 spatial
clusters (anterior/somatosensory vs. parieto-occipital, see inset
of Fig. 2B) based on their spatiotemporal characteristics and cal-
culated ERFs for all sensors of the respective sensor-cluster sep-
arately. To avoid cancelation effects when averaging across
sensors and subjects, the signals of the 2 orthogonal sensors of
each gradiometer pair were combined by taking the root mean
square of the signals in the time domain (e.g., van Dijk et al.
2008; Lange et al. 2012), resulting in 102 gradiometer pairs. Post-
stimulus ERFswere baseline corrected by subtracting themean of
the prestimulus period (−900 to 0 ms). First, we determined po-
tential poststimulus decision boundaries in the poststimulus
ERFs. To this end, we computed ERFs for the 2 conditions with
0 and 100 ms SOA as they provided the most unambiguous per-
ception of 1 and 2 stimuli. Only trials with correct responses
(i.e., perceived 1 stimulus for trials with SOA 0 ms and perceived
2 stimuli for trials with SOA 100 ms) were included in this ana-
lysis, with conditions subsequently labeled as 0ms-1 and
100ms-2. We statistically compared the ERFs in the poststimulus
period (0–300 ms) to identify time periods that maximally discri-
minated between these 2 reference conditions with 0 and 100 ms
SOA. We used a nonparametric statistical test which effectively
controls for the Type I error rate due to multiple comparisons
across time points in line with the procedure described above
(for details, see Time–Frequency Analysis). In brief, we calculated
the difference between both ERFs for each subject, followed by a
group-level statistic testing the consistency of the differences
across subjects against a reference null distribution based on
1000 random sets of permutations regarding the 2 experimental
conditions.

Next, we examined whether the ERFs reflect a decision vari-
able that is independent of sensory input, but differing according
to subject’s decisional outcome. To this end, we sorted trials with
intermediate SOA in trials with correct and incorrect responses.
We hypothesized that due to their ambiguity and insufficient ac-
cumulation of sensory evidence, the decision bounds (i.e., ERFs of
conditions 0ms-1 and 100ms-2) will not be reached in trials with
intermediate SOA. Nonetheless, because of the implemented
forced-choice task, subjects are forced to make the decision
with a particular level of uncertainty. We hypothesized that con-
fidence levels should be a function of the distance of the decision
variable to the decision bounds, with closer proximity of the
decision variable to the respective decision bound resulting in
higher confidence. Moreover, we hypothesized that prestimulus
alpha power has a distinguishable effect on the decision variable.
Since prestimulus alpha power significantly influenced temporal
perceptual discrimination and confidence ratings (Fig. 3A,B), an
effect of prestimulus alpha power should be visible in the poststi-
mulus decision variable. We hypothesized that prestimulus
alpha power modulates the distance of the decision variable to
the respective decision bounds (Fig. 4B). To this end, we averaged
prestimulus alpha power across those time points and sensors
that showed a significant difference between decisional outcomes
(see above, Fig. 2B) and grouped the trials with intermediate SOA
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into correct and incorrect trials with either high and low presti-
mulus alpha power. This resulted in 4 different conditions: low
prestimulus alpha power and perceived 2 stimuli (subsequently
labeled low α-2), high prestimulus alpha power and perceived 2
stimuli (high α-2), low prestimulus alpha power and perceived 1
stimulus (low α-1), high prestimulus alpha power and perceived
1 stimulus (high α-1). We then computed poststimulus ERFs for
each of these conditions.

To quantify the relation between these conditions, we chose 2
parallel approaches to determine a time window of interest. In
the first approach, we averaged ERF amplitudes for each condi-
tion over those time points showing a significant difference be-
tween the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms; see
above and Fig. 4A; see Supplementary Fig. 1 for the complete
ERF time courses of all conditions). In the second approach, we
determined the time point ofmaximumamplitude difference be-
tween the conditions 0ms-1 and 100ms-2 within those time
points showing a significant difference between the conditions
(150 ms). Please see the Discussion section for a further discus-
sion on the selection criteria for the time window of interest.
We averaged ERF amplitudes for each condition over the 10 ms
that precede this time point of maximal difference (i.e., 140–
150 ms). The rationale of this approach was that decision vari-
ables are thought to increase until a decision bound is reached
and decline again afterwards to baseline (Kiani and Shadlen
2009; O’Connell et al. 2012). Thus, the time point of maximal dif-
ference between the reference conditions and the preceding time

window should be the best predictor of the decision process (see
model in Fig. 4B).

For the additional analyses based on separated sensor-clus-
ters, significant differences between the conditions 0ms-1 and
100ms-2 could be demonstrated from 139 to 172 ms (see Fig. 4D)
and the point of maximum amplitude difference was located at
151 ms for the anterior/somatosensory sensor-cluster. For the
parieto-occipital cluster, no significant differences between the
conditions 0ms-1 and 100ms-2 could be demonstrated (see
Fig. 4F). To ensure that the absence of significant differences for
the parieto-occipital cluster did not result from low statistical
power due to a lower number of channels in this cluster (parie-
to-occipital cluster: 7 channel pairs, anterior/somatosensory
sensor-cluster: 20 channel pairs), we further compared the condi-
tions 0ms-1 and 100ms-2 for a random selection of 7 channel
pairs from the anterior/somatosensory sensor-cluster. The re-
sults of this analysis reproduced the significant differences be-
tween the conditions 0ms-1 and 100ms-2 (139–169 ms; data not
shown) as well as a significant negative linear correlation for
the ordered averaged ERFs (i.e., 100ms-2, low α-2, high α-2, low
α-1, high α-1, 0ms-1; r = −0.96, P < 0.01 for time window 139–
169 ms; r =−0.87, P < 0.05 for time window 139–149 ms; data not
shown). Based on these results, we conclude that the absent sig-
nificant difference between the conditions 0ms-1 and 100ms-2
for the parieto-occipital cluster cannot be generally explained
by the smaller number of channels in this cluster, but instead
must be mainly attributed to the absence of decision-related
ERF components in the parieto-occipital sensor-cluster.

For both sensor sets (all significant sensors and the anterior/
somatosensory sensor-cluster), we subsequently ordered the
conditions regarding the expected averaged ERF amplitudes
(100ms-2, low α-2, high α-2, low α-1, high α-1, 0ms-1) and fitted
a linear regression to the data to determine a linear trend
(Fig. 5). Due to the a priori difference of the conditions 100ms-2
and 0ms-1, we performed an additional analysis in which we ex-
cluded these conditions from the regression analysis. Hence, the
regression analysis was additionally calculated for the ordered
intermediate conditions (low α-2, high α-2, low α-1, high α-1)
only. Averaged ERF amplitudeswere statistically comparedbyap-
plying a one-way repeated-measures ANOVA. Because no time
window showing a significant difference between the conditions
0ms-1 and 100ms-2 was found for the parieto-occipital sensor-
cluster, we refrained from performing this analysis for the parie-
to-occipital sensor-cluster.

Finally, we calculated the average confidence ratings per sub-
ject for each condition and averaged the mean confidence levels
per condition over all subjects. Since confidence levels should be
a function of the distance of the decision variable to the respect-
ive decision bounds (i.e., low α-2 and high α-2 to 100ms-2; low α-1
and high α-1 to 0ms-1, see Fig. 4B), we calculated themean power
difference of each intermediate condition (i.e., low α-2, high α-2,
low α-1, high α-1) from the respective decision bounds averaged
over the time window showing a significant difference between
the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms) and the
timewindow preceding the point of maximum amplitude differ-
ence between the conditions 0ms-1 and 100ms-2 (i.e., 140–
150 ms, Fig. 5C). We plotted the distance of the decision variables
to the respective decision bounds and related it to the mean con-
fidence levels per condition over all subjects. Subsequently, we
fitted a linear regression to the data to determine a linear trend.
Additionally, we performed this analysis with amplitude values
calculated for the time windows based on the anterior/somato-
sensory sensor-cluster (i.e., 139–172 ms; 141–151 ms, Fig. 5F).
Due to the fact that, for the parieto-occipital sensor-cluster, no

Figure 3. Results of the post hoc correlation analyses of averaged prestimulus

alpha power (8–12 Hz) for significant sensors (as shown in Fig. 2B) and (A)

normalized average temporal perceptual discrimination rate or (B) normalized

confidence ratings, separated for correctly and incorrectly perceived trials.

Insets show results of the linear regression analyses (black and gray lines).

Higher number bins indicate higher spectral power. Error bars represent SEM.

**P < 0.01, *P < 0.05.
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timewindow showing a significant difference between the condi-
tions 0ms-1 and 100ms-2 was found, we refrained from perform-
ing this analysis for the parieto-occipital sensor-cluster.

Results
Behavioral Results

Subjects performed a forced-choice temporal perceptual dis-
crimination task (Fig. 1) and had to report how many electrical
stimulations applied to their left index finger they perceived.
For SOAs of 0 and 100 ms, subjects made only negligible errors
(SOA 0ms: 92.3 ± 1.8% [mean ±SD] correct reports; SOA of 100 ms:
93.8 ± 2.7% correct reports). For intermediate SOAs, subjects cor-
rectly perceived stimulation in approximately half of the trials
(56.7 ± 3.2% correct reports). The response distribution of each
condition did not significantly differ from aGaussian distribution
(P > 0.05). Statistical testing revealed highly significant differ-
ences regarding temporal perceptual discrimination rates be-
tween the intermediate condition and the 0 ms (t(15) = 10.086,
P < 0.0001) aswell as the 100 ms condition (t(15) = 11.811, P < 0.0001).
Overall, the absolute influence of learning/fatigue is negligible.
No significant linear trends indicating learning or fatigue effects
couldbedetermined foraverage temporalperceptualdiscrimination

rate (r = 0.49, P > 0.05, Supplementary Fig. 2A) or confidence rat-
ings (r = 0.55, P > 0.05, Supplementary Fig. 2B).

Time–Frequency Analysis

We studied the role of prestimulus alpha-band oscillations (8–
12 Hz) on temporal perceptual discrimination. We focused on
trials with intermediate SOA and compared alpha power in the
prestimulus period (−900 to 0 ms) between correctly and incor-
rectly perceived trials. The exploratory time–frequency analysis
confirmed a prominent alpha effect in the prestimulus period
(Fig. 2A). Prestimulus alpha power was found to be statistically
significantly decreased if subjects correctly perceived the stimu-
lation as 2 stimuli comparedwith incorrectly perceived trials (P <
0.05, Fig. 2B). Significant differences were most evident for anter-
ior/somatosensory and parieto-occipital sensors contralateral to
stimulation site between −900 and −250 ms. Particularly, the
topographical location of the effect shifted over time, with sig-
nificant decreases in both contralateral anterior/somatosensory
and parieto-occipital sensors at the beginning of the prestimulus
epoch (−900 to −500 ms), compared with a decrease of power in
more posterior sensors in the later prestimulus epoch (−400 to
−250 ms). Note that, although both sensor-clusters show a

Figure 4. Results of the analysis of poststimulus ERFs. (A) Statistical comparison of poststimulus ERF amplitudes (averaged over all significant sensors, as shown in Fig. 2B)

of correctly perceived trials with 0 ms (0ms-1) and 100 ms (100ms-2) SOA. Significant differences are indicated by shaded area (145–171 ms). The dashed line represents

the point ofmaximumamplitudedifference between the reference conditions 0ms-1 and 100ms-2 (150 ms). The blue arrowhighlights the timepoint of stimulation for the

0ms-1 condition, while the red arrows highlight the time points of stimulation for the 100ms-2 condition. (B) Predicted poststimulus ERFs. Decision model illustrating

the hypothesized order of poststimulus ERFs. Conditions 0ms-1 and 100ms-2 reflect the decision bounds for perceiving 1 and 2 stimuli, respectively. The other

conditions are predicted to be between these bounds in the presented order. Distance to the bound is hypothesized to reflect confidence in the decision (indicated by

gray-shaded background). The dashed line represents the point of maximum amplitude difference between the reference conditions 0ms-1 and 100ms-2. Beyond

this point, the decision variables are thought to decline again to baseline. (C) MEG data of poststimulus ERFs. Close-up on the time window of significant difference

(145–171 ms; shaded area) between poststimulus ERF amplitudes of 0ms-1 and 100ms-2 (averaged over all significant sensors, as shown in Fig. 2B). Shaded area and

dashed line as in A. Color scheme as in B. (D) Same as A, but now for amplitude values averaged over the anterior/somatosensory sensor-cluster (as shown in Fig. 2B;

time window: 139–172 ms; time point of maximum amplitude difference: 151 ms). Blue and red arrows as in A. (E) Same as C, but now for amplitude values averaged

over the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 139–172 ms; time point of maximum amplitude difference: 151 ms). Shaded area

and dashed line as in D. (F) Same as A, but now for amplitude values averaged over the parieto-occipital sensor-cluster (as shown in Fig. 2B). Blue and red arrows as in

A. No statistically significant differencewas found. Significance values in A–F are cluster corrected to account for multiple comparison corrections. t = 0 indicates onset of

sensory stimulation, that is, the first stimulus of every stimulation.
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significant alpha power decrease in the prestimulus epoch, the
decision-related effects of alpha power visible in the poststimu-
lus ERFs could only be demonstrated for the anterior/somatosen-
sory sensor-cluster (see Relation between Decision Variable,
Prestimulus Power, and Poststimulus ERFs and Fig. 4).

Source Reconstruction

To identify the underlying cortical sources of the aforementioned
significant effect, we applied a beamforming approach. We iden-
tified one source mainly located in contralateral postcentral
gyrus (Brodmann area 3, Fig. 2C). A second cluster was found in
the contralateral middle occipital region, encompassing Brod-
mann areas 19, 21, and 39.

Correlation of Prestimulus Power, Perceptual Decisions,
and Confidence Ratings

To determine more precisely the relation of prestimulus alpha
power and subjective perception, we performed a correlation
analysis. We computed single-trial power averaged over alpha
frequencies and significant sensor-time points (time window:
−900 to −250 ms, see Fig. 2B). Trials were sorted from low to
high power and divided into 5 bins. Response probabilities for
each bin were calculated as the percentage change in temporal
perceptual discrimination rate from the mean, normalized per
subject to the individual mean temporal perceptual discrimin-
ation rate over all bins.

We found a significant negative linear relationship between
prestimulus alpha power averaged over all sensors showing a sig-
nificant alpha power difference between correctly (perceived 2
stimuli) versus incorrectly (perceived 1 stimulus) perceived trials
with intermediate SOA and subjects’ perceptual decisions (r =
−0.94, P < 0.05, Fig. 3A). In other words, probability of correctly
perceiving the stimulation as 2 temporally separate stimuli was
greater during trials with lower prestimulus alpha power. A
one-way repeated-measures ANOVA revealed a significant main
effect (P < 0.05). Post hoc t-tests revealed significant differences
between bin1 versus bin4 (t(15) = 3.049, P < 0.01), bin1 versus bin5
(t(15) = 3.096, P < 0.01), bin2 versus bin4 (t(15) = 2.545, P < 0.05), and
bin3 versus bin4 (t(15) = 2.142, P < 0.05). No significant quadratic re-
lationship between prestimulus alpha power and subject’s per-
ceptual decisions was found (r = 0.94, P = 0.11). In addition, we
performed the same analysis with power values averaged over
the sensors of the spatiotemporally separated sensor-clusters
(anterior/somatosensory vs. parieto-occipital). For the anterior/
somatosensory sensor-cluster, both linear (r = −0.97, P < 0.01)
and quadratic (r = 0.99, P < 0.05) fits for the relationship between
prestimulus alpha power and subjects’ perceptual decisions
were significant. A one-way repeated-measures ANOVA revealed
an effect on trend level (P = 0.1). Post hoc t-tests revealed signifi-
cant differences between bin1 versus bin4 (t(15) = 2.74, P < 0.05),
bin1 versus bin5 (t(15) = 2.14, P < 0.05), and bin2 versus bin4 (t(15) =
2.32, P < 0.05). Similarly for the parieto-occipital sensor-cluster,
both linear (r = −0.96, P < 0.05) and quadratic (r = 0.99, P < 0.05)
fits for the relationship between prestimulus alpha power and

Figure 5.Averaged amplitude values and confidence ratings of poststimulus ERFs. (A) Amplitude values (based on all significant sensors, as shown in Fig. 2B) averaged over

the timewindow showing a significant difference between poststimulus ERF amplitudes of 0ms-1 and 100ms-2 (145–171 ms, see Fig. 4A,C). (B) Amplitude values (based on

all significant sensors, as shown in Fig. 2B) averaged over the time window preceding the point of maximal amplitude difference (150 ms) between poststimulus ERF

amplitudes of 0ms-1 and 100ms-2 (140–150 ms, see Fig. 4A,C). (C) Average confidence ratings per condition in relation to mean power difference to the respective

decision bound (based on all significant sensors, as shown in Fig. 2B) for the time window 140 to 150 ms (see Fig. 4A,C). (D) Same as A, but now for amplitude values

based on the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 139–172 ms, Fig. 4D,E). (E) Same as B, but now for amplitude values based on

the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window: 141–151 ms, see Fig. 4D,E). (F) Same as C, but now for mean power difference based on

the anterior/somatosensory sensor-cluster (as shown in Fig. 2B; time window 141–151 ms, Fig. 4D,E). In A, B, D, and E conditions are ordered according to the

hypothesized decision model (Fig. 4B). Insets in A, B, D, and E show results of the linear regression analyses (black lines) based on all 6 conditions (i.e., 100ms-2, low α-

2, high α-2, low α-1, high α-1, 0ms-1). Note that the additional regression analyses excluding the 100ms-2 and 0ms-1 conditions similarly demonstrate a significant

negative linear correlation (P < 0.05; regression lines not shown) for the ordered intermediate ERFs (i.e., low α-2, high α-2, low α-1, high α-1) for all 4 time windows

(145–171, 140–150, 139–172, 141–151 ms). Insets in C and F show results of the linear regression analyses (black lines).
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subjects’ perceptual decisions were significant. No significant ef-
fect was found by a one-way repeated-measures ANOVA (P =
0.15). Post hoc t-tests revealed significant differences between
bin1 versus bin4 (t(15) = 2.47, P < 0.05).

In a similar analysis, we investigated the correlation between
prestimulus alpha power and subjects’ level of confidence re-
garding their perceptual decisions. We found a significant nega-
tive linear relationship between prestimulus alpha power
averaged over all sensors showing a significant alpha power dif-
ference between correctly (perceived 1 stimuli) versus incorrectly
(perceived 1 stimulus) perceived trials with intermediate SOA
and confidence ratings for correctly perceived trials (r =−0.88, P <
0.05, Fig. 3B) and a strong trend toward a significant positive lin-
ear correlation for incorrectly perceived trials (r = 0.81, P = 0.095).
No significant quadratic relationship between prestimulus
alpha power and subjects’ confidence ratings was found (correct
trials: r = 0.95, P = 0.1; incorrect trials: r = 0.94, P = 0.11). For the
anterior/somatosensory sensor-cluster, a significant negative
linear relationship between prestimulus alpha power and confi-
dence ratings for correctly perceived trials (r = −0.92, P < 0.05)
could be demonstrated, while no significant effect was found
for incorrect trials (r = 0.6, P = 0.28). For quadratic relationships be-
tween prestimulus alpha power and subjects’ confidence ratings,
no significant fit was found (correct trials: r = 0.92, P = 0.14; incor-
rect trials: r = 0.8, P = 0.35). Finally, no significant linear or quadrat-
ic relationship between prestimulus alpha power and confidence
ratings could be demonstrated for the parieto-occipital cluster,
neither for correct (linear: r = −0.49, P = 0.41; quadratic: r = 0.59,
P = 0.65) or incorrect trials (linear: r = 0.73, P = 0.17; quadratic:
r = 0.94, P = 0.11).

Relation Between Decision Variable, Prestimulus Power,
and Poststimulus ERFs

We investigated if poststimulus ERFs show characteristics of a
decision variable and the influence of prestimulus alpha power
on these variables. We analyzed poststimulus ERFs by applying
a boundary-crossing decision-making model (Philiastides et al.
2006; O’Connell et al. 2012). To this end, we estimated decision
bounds for the unambiguous perception of 1 and 2 stimuli by cal-
culating poststimulus ERFs from all correct trials of the 0 and
100 ms SOA conditions, subsequently labeled 0ms-1 and
100ms-2. Statistical comparison revealed a significant difference
between both ERF amplitudes between 145 and 171 ms (P < 0.05),
indicating that the 2 signals significantly diverge during this time
window (Fig. 4A). The spatial distribution of the stimuli-evoked
ERFs for those time points showing a significant difference be-
tween the conditions 0ms-1 and 100ms-2 (i.e., 145–171 ms) re-
vealed highly similar patterns of activity over conditions
(Supplementary Fig. 3).

According to our hypothesis, these ERFs should reflect the
lower and upper boundaries for decisions toward 1 and 2 stimuli,
respectively. ERFs of trials with intermediate SOA should be lo-
cated in between these boundaries and the distance toward the
respective boundary should reflect the perceptual decision as
well as the confidence in the decision (Fig. 4B). The results dem-
onstrate that, despite physically identical stimulation, the ERFs
of trials with intermediate SOA differ with respect to subjects’
perception and prestimulus alpha power (Fig. 4C). In line with
our hypothesis, we found a significant negative linear correlation
for the ordered averaged ERFs (i.e., 100ms-2, low α-2, high α-2,
low α-1, high α-1, 0ms-1), indicating a monotonic decrease
in amplitude from the 100ms-2 condition to the 0ms-1 condition
(r =−0.93, P < 0.01 for time window 145–171 ms, Fig. 5A; r =−0.96,

P < 0.01 for time window 140–150 ms, Fig. 5B). An additional re-
gression analysis which excluded the 100ms-2 and 0ms-1 condi-
tions also revealed a significant negative linear correlation for the
ordered averaged intermediate ERFs (i.e., low α-2, high α-2, low
α-1, high α-1), indicating a monotonic decrease in amplitude
from the low α-2 condition to the high α-1 condition (r = −0.97,
P < 0.05 for time window 145–171 ms, see also captions Fig. 5;
r =−0.98, P < 0.05 for time window 140–150 ms, see also captions
Fig. 5). A one-way repeated-measures ANOVA revealed a strong
trend toward a significant main effect (P = 0.065) for the analysis
of the time window 145–171 ms. No significant effect was found
for the time window 140–150 ms.

For the additional regression analysis performed on the an-
terior/somatosensory sensor-cluster (Fig. 4D,E), a significant
negative linear correlation for the ordered averaged ERFs (i.e.,
100ms-2, low α-2, high α-2, low α-1, high α-1, 0ms-1) could be de-
monstrated (r = −0.99, P < 0.001 for time window 139–172 ms,
Fig. 5D; r = −0.97, P < 0.01 for time window 141–151 ms, Fig. 5E).
The negative linear correlations remained significant under ex-
clusion of the 100ms-2 and 0ms-1 conditions (r =−0.99, P < 0.001
for time window 139–172 ms, see also captions Fig. 5; r = −0.97,
P < 0.05 for time window 141–151 ms, see also captions Fig. 5).
A one-way repeated-measures ANOVA revealed a significant
main effect for both time windows (P < 0.05 for time window
139–172 ms; P < 0.05 for time window 141–151 ms). Because no
timewindow showing a significant difference between the condi-
tions 0ms-1 and 100ms-2 was found for the parieto-occipital
sensor-cluster (see Fig. 4F), we refrained from performing the re-
gression analysis for the parieto-occipital sensor-cluster.

We further related the average confidence ratings per condi-
tion to the distance of the decision variables to the respective de-
cision bounds. According to our hypothesis, the average
confidence ratings per condition should increase with closer
proximity of the decision variables to the respective decision
bounds (see Fig. 4B). While for the time window from 145 to
171 ms, no significant linear relation between confidence ratings
and distance of the decision variables to the respective decision
bounds could be demonstrated (r = 0.43, P = 0.57), a strong trend
toward a significant negative linear relation (r =−0.95, P = 0.053)
was evident for the time window from 140 to 150 ms (Fig. 5C).
For the critical time windows based on the anterior/somatosen-
sory sensor-cluster, a significant negative linear relation could
only be demonstrated for the time window from 141 to 151 ms
(r = −0.96, P < 0.05, Fig. 5F). For the time window from 139 to
172 ms, no significant linear fit was found (r = −0.24, P = 0.84).
Regarding the time windows before the point of maximum
amplitude difference (140–150 ms for all significant sensors,
141–151 ms for the anterior/somatosensory sensor-cluster), in
agreement with our hypothesis a closer distance to the reference
conditions resulted in higher confidence ratings. Because no time
window showing a significant difference between the conditions
0ms-1 and 100ms-2 was found for the parieto-occipital sensor-
cluster, we refrained from performing this analysis for the parieto-
occipital sensor-cluster.

Discussion
We investigated the influence of prestimulus alpha activity on
the temporal perceptual discrimination of suprathreshold tactile
stimuli, the confidence in perceptual decisions and the under-
lying neuronal decision variable. Subjects received 1 or 2 tactile
stimuli with different SOAs. In a forced-choice task, subjects re-
ported their perceptual decision and their confidence in this
decision.
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Subjects frequently misperceived stimulation as 1 stimulus
for trials with intermediate SOA, indicating perceptual ambiguity
despite physically identical stimulation. For these trials with
intermediate SOA, correct perception of 2 separate stimuli was
correlated with a decrease of alpha power (8–12 Hz) relative to in-
correctly perceived trials. This effect was evident before onset of
stimulation (−900 to −250 ms) mainly in the contralateral post-
central gyrus (presumably primary somatosensory cortex) and
the contralateral middle occipital region. Additionally, prestimu-
lus alpha power correlated with subjects’ confidence ratings. For
correctly perceived trials, high confidence ratings correlated with
low prestimulus alpha power. Contrarily, for incorrectly per-
ceived trials, high confidence ratings correlated with high presti-
mulus alpha power. Finally, poststimulus ERFs at ∼150 ms
revealed characteristics of a decision variable. In summary, we
found: 1) Poststimulus ERFs at ∼150 ms reflect perceptual deci-
sions and subjects’ confidence in their decisions rather than
pure sensory evidence. 2) ERFs for all conditions were in line
with an accumulation-to-bound model in which sensory evi-
dence is accumulated in a decision variable (Gold and Shadlen
2007). In trials with ambiguous, intermediate SOA, ERFs of cor-
rectly perceived trials were closer to the putative categorical de-
cision bound for perceiving 2 stimuli while incorrectly perceived
trials were closer to the categorical decision bound for perceiving
1 stimulus. 3) Due to their perceptual ambiguity, stimuli with
intermediate SOA provided only incomplete sensory evidence,
resulting in incomplete evidence accumulation and hence ERFs
did not cross the decision bound. 4) Incomplete evidence accu-
mulation resulted in lower confidence as reflected in the ERFs.
5) The variability of ERFs, decisions, and confidence ratings is
biased by fluctuations of prestimulus alpha power. 6) Finally,
the above-mentioned results could be replicated only for the an-
terior/somatosensory sensor-cluster after separating the sensors
of interest. Therefore, it appears that mainly the somatosensory
cortex areas account for the decision-related components visible
at ∼150 ms.

We estimated the poststimulus categorical decision boundar-
ies by calculating significant differences between ERFs of the ref-
erence conditions 0ms-1 and 100ms-2. One might argue that
these conditions differ not only by subjects’ decisions but also
by sensory evidence (1 stimulus vs. 2 stimuli), and thus, our puta-
tive decision variable might reflect sensory input rather than de-
cisional processes. However, we demonstrate that ERFs around
∼150 ms for trials with intermediate SOA, that is, with constant
stimulation, correlate with perceptual decisions rather than sen-
sory input.

Several studies have reported an inverted U-shaped relation-
ship between prestimulus alpha power and perceptual perform-
ance, with intermediate alpha levels resulting in best
performance levels (Linkenkaer-Hansen et al. 2004; Zhang and
Ding 2009; Lange et al. 2012). On the contrary, other studies em-
phasize a linear relationship, with lower power levels being re-
lated to better performance (Thut et al. 2006; Hanslmayr et al.
2007; Schubert et al. 2008; van Dijk et al. 2008; Mathewson et al.
2009; Jones et al. 2010). In the present study, linear as well as
quadratic fits were applied to the data. For most analyses, both
linear and quadratic fits were significant for the correlation of
prestimulus alpha power and perceptual decisions for the anter-
ior/somatosensory and the parieto-occipital sensor-cluster. This
demonstration of both linear and quadratic dependencies hin-
ders a final conclusion on this matter. It remains to be seen if fu-
ture studies can clarify the relevant factors in terms of
neuroanatomical region or experimental conditions favoring
one dependency over the other.

Notably, themajority of previous studies used near-threshold
stimuli and relied on conditions where stimuli are either per-
ceived or not perceived. Thus, subjects had to report whether or
not stimulation is perceived, irrespective of its content. Here, we
contrasted 2 different perceptual qualities with suprathreshold
intensities, since subjects had to report whether they perceived
1 stimulus or 2 stimuli. Our paradigm therefore focuses on tem-
poral discrimination and employs temporal ambiguity, with
identical suprathreshold stimulation resulting in varying percep-
tual decisions. Hence, the present study provides critical exten-
sions to the aforementioned studies.

Our results are in line with several studies reporting a correl-
ation of prestimulus alpha power and detection or discrimination
of near-threshold stimuli (e.g., Linkenkaer-Hansen et al. 2004;
Zhang and Ding 2009; Jones et al. 2010). We critically extend
these studies by demonstrating that alpha power influences
also the temporal resolution of perception. Although formerly in-
terpreted as correlate of cortical idling (Pfurtscheller et al. 1996),
alpha activity has recently been suggested to gate neuronal pro-
cessing by functional inhibition of task-irrelevant areas (Jensen
and Mazaheri 2010; Jensen et al. 2012) and/or by modulating cor-
tical excitability (Thut et al. 2006; Romei, Brodbeck et al. 2008;
Romei, Rihs et al. 2008; Lange et al. 2013), resulting in more effi-
cient neuronal stimulus processing in task-related neuronal
groups. By using 2 clearly suprathreshold stimuli, we demon-
strate that prestimulus alpha power extends the role of a simple
binary switch between inhibition and processing. Rather, it mod-
ulates the quantity (1 stimulus or 2 stimuli, e.g., Lange et al. 2013;
Keil et al. 2014) and the subjective quality (i.e., confidence) of per-
ception continuously. This continuousmodulation is reflected in
confidence ratings, providing amore fine-grained scale of the de-
cision process.

Prestimulus alpha power can bemodulated by attention or ex-
pectation (Foxe et al. 1998; Worden et al. 2000; Jones et al. 2010;
Anderson and Ding 2011; Haegens et al. 2012). In line with
these results, recent studies demonstrated that prestimulus
alpha power is predictive of perceptual performance in atten-
tion-based tasks (Kelly et al. 2009; O’Connell et al. 2009). While
we did not explicitly modulate attention in our study, we suggest
that spontaneous fluctuations of attention or arousal modulate
prestimulus alpha power and thus influence perception and con-
fidence. Further, it seems that such fluctuations are distinguish-
able from general training effects, sincewe did not find significant
learning/fatigue trends for either perception or confidence.

We found alpha power to differ significantly in the prestimu-
lus period in the contralateral postcentral gyrus and contralateral
middle occipital region. Differential alpha-band activity in the
postcentral gyrus (presumably primary somatosensory areas)
has been found for other tactile tasks (e.g., Zhang and Ding
2009; Jones et al. 2010; Lange et al. 2012). Here, we extend the
role of the postcentral gyrus to temporal perceptual discrimin-
ation of 2 subsequently presented stimuli. Since we applied
only tactile stimuli and a tactile decision task, the significant
alpha-band effect in visual areas might seem surprising. How-
ever, our results are in line with findings from a tactile spatial at-
tention task, showing that in the absence of visual stimulation,
attention to tactile stimulation resulted in suppression of
alpha-band power in occipital areas (Bauer et al. 2006). Similarly,
a recent study indicates that task-relevant spatial attention in
one sensory domain affects oscillatory activity in other domains
(Bauer et al. 2012). In accordance to these findings, a recent study
demonstrated that parieto-occipital activation in the alpha band
is linked to spatial attention across modalities (Banerjee et al.
2011).
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In linewith these results, the power differences in the contra-
lateralmiddle occipital region can also be interpreted as correlate
of global attention, thus not restricted to the somatosensory do-
main. This is supported by classical findings which localize the
central generator of alpha rhythms in parieto-occipital areas
(e.g., Salmelin and Hari 1994; Manshanden et al. 2002), independ-
ent of task requirements. The explanation is further strength-
ened by our findings that the decision-related ERF components
could only be found for the anterior/somatosensory sensor-
cluster, but not in the parieto-occipital cluster. This indicates
that the parieto-occipital sensor-cluster, although showing sig-
nificant power differences between perceptual conditions, is
not central for decision-related processes. The influence of pres-
timulus alpha on decision variables is also in line with a recent
EEG study (Lou et al. 2014). In this study, the influence of presti-
mulus activity is seen as top-down attention-based modulation,
indicating that the sensory evidence is comprised of stimulus in-
formation and attentional state.

We demonstrate that prestimulus alpha power does not only
correlate with perceptual decisions, but also with the subjective
quality of such decisions. If alpha power was low, subjects were
more confident with their decisions, but notably only for correct-
ly perceived stimuli. Contrarily, if stimulation was perceived in-
correctly, low alpha power correlated with low confidence. This
seemingly contradictory result can be explained by a decision
model. It has been proposed that sensory evidence is accumu-
lated over time in a decision variable until a decision bound is
reached (e.g., Shadlen and Newsome 2001). Here, we used such
a decision-to-bound model to examine poststimulus decision
variables. We hypothesized that due to the ambiguity of sensory
evidence the decision variable does not cross a decision bound.
Further, fluctuations of prestimulus alpha power should influ-
ence the decision variable and the confidence in perceptual deci-
sions, if sensory evidence was insufficient to reach a decision
bound. We identified this proposed pattern of a decision variable
in poststimulus ERFs at ∼150 ms. Despite identical stimulation,
poststimulus ERFs of trials with intermediate SOA differed ac-
cording to the decisional outcome. While neither condition
reached the categorical decision bound, the distance of the deci-
sion variable to the respective decision bounds determined the
decisional outcome.

We identified perceptual decision-related components in
the somatosensory domain, that is, differences in ERF amp-
litudes for conditions with physically similar stimulation para-
meters that discriminated between perceptual reports, as early
as ∼150 ms. Other recent studies addressing perceptual deci-
sion making in the visual domain report decision-related
neural activity at later time points (∼300 ms) and relate earlier
components to low-level stimulus processing mechanisms
(Philiastides et al. 2006; Lou et al. 2014). Such stimulus process-
ing mechanisms can hardly fully explain our results, since our
stimulation parameters remained constant for trials with inter-
mediate SOA. An early decision-related component is further
supported by studies where early components around ∼75–
80 ms were shown to discriminate between high-level proper-
ties such as semantic category and components around
∼150 ms discriminate between target and nontarget conditions
(and hence task-specific decision-related demands), independ-
ent of visual category (VanRullen and Thorpe 2001). In line with
these results, the present components around ∼150 ms can be
interpreted as a correlate of the subjects’ perceptual recognition
and subsequent decision, not merely as stimulus-related bot-
tom-up processing. However, it is important to keep in mind
that somatosensory processing presumably does not end after

the aforementioned component, but it appears that at this
time point sufficient information for a perceptual decision is
accumulated.

Kiani and Shadlen (2009) recorded neuronal activity in mon-
key lateral intraparietal cortex during a decision-making task. If
the monkey chose to opt out, that is, at low confidence levels,
neural activity was at an intermediate level between decision
bounds. We used a more detailed confidence rating and found
that subjects’ confidence correlated with the distance to a deci-
sion bound. This suggests that categorical decision making and
confidence estimation can be a simple and fast inherent property
of the same process (e.g., Kepecs et al. 2008; Kiani and Shadlen
2009), rather than a serial process requiring additional steps or
higher (meta) cognitive functions (e.g., Grinband et al. 2006;
Yeung and Summerfield 2012).

Additionally, we found poststimulus ERFs to interact with
prestimulus alpha levels. Low prestimulus alpha levels shifted
the decision variable towards the decision bound for 2 perceived
stimuli, independent of decisional outcome. For correctly per-
ceived intermediate SOA trials, low prestimulus alpha power in-
creased confidence, because the distance between the decision
variable and the decision bound for 2 perceived stimuli de-
creased. Contrarily, for incorrectly perceived intermediate SOA
trials, low prestimulus alpha power decreased confidence, be-
cause the distance between the decision variable and the deci-
sion boundary for 1 perceived stimulus increased. The influence
of prestimulus alpha power on poststimulus ERFs is in line with
recent studies (Jones et al. 2009, 2010; Anderson and Ding 2011;
Lange et al. 2012). The influence of prestimulus activity on deci-
sions and the underlying decision variable is also in line with a
recent study demonstrating that prestimulus firing rates bias
decisions (Carnevale et al. 2012). While this study considers
prestimulus activity as noise fluctuations, we argue that presti-
mulus alpha power is a functionally relevant marker of cortical
excitability that can fluctuate over time or that can be endogen-
ously or exogenously modulated by, for example, attention,
arousal, or expectation (e.g., Foxe et al. 1998; Worden et al.
2000; Thut et al. 2006; Jones et al. 2010; Anderson and Ding
2011; de Lange et al. 2011).

In line with a recent study (de Lange et al. 2013), we suggest
that prestimulus alpha power biases the starting point of the de-
cision variable. Thus, the decision variable is the combination of
the internal brain state (prestimulus activity) and the sensory
evidence provided by the stimulus. If sensory evidence is weak
or ambiguous, prestimulus activity can effectively bias deci-
sions and confidence ratings by shifting the decision variable
closer to either decision bound. The fact that prestimulus activ-
ity influences the decisional process implies that the decision-
making process starts before stimulus presentation (Carnevale
et al. 2012; de Lange et al. 2013). Such prestimulus fluctuations
can also explain why decisions, confidence ratings, or response
times can vary despite physically identical stimulation.

In conclusion, our results demonstrate that the brain state,
characterized by alpha power, substantially modulates temporal
perceptual discrimination of tactile stimuli despite identical
physical stimulation, as well as confidence in perceptual deci-
sions. Moreover, these fluctuations in prestimulus alpha power
are visible in poststimulus ERFs mainly determined by somato-
sensory areas, reflecting the physiological correlate of evidence
accumulation in a decision variable for perceptual decisions
based on insufficient and suboptimal evidence. We conclude
that alpha-band activity continuously modulates the quality of
processing underlying perceptual decisions, resulting in differ-
ences in temporal perceptual discrimination.

Prestimulus α Power Influences Perceptual Decisions Baumgarten et al. | 11

 at U
niversitats-U

nd Landesbibliothek on O
ctober 19, 2014

http://cercor.oxfordjournals.org/
D

ow
nloaded from

 

http://cercor.oxfordjournals.org/


Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.

Funding
J.L. was supported by the German Research Foundation (LA
2400/4-1).

Notes
We thank Erika Rädisch for help with the MRI recordings. Conflict
of Interest: None declared.

References
Anderson KL, Ding M. 2011. Attentional modulation of the som-

atosensory mu rhythm. Neuroscience. 180:165–180.
Banerjee S, Snyder AC, Molholm S, Foxe JJ. 2011. Oscillatory

alpha-band mechanisms and the deployment of spatial
attention to anticipated auditory and visual target locations:
supramodal or sensory-specific control mechanisms?
J Neurosci. 31:9923–9932.
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Supplementary Figures 
 
Figure S1. Results of the analysis of poststimulus ERFs. Statistical comparison of poststimulus 

ERF amplitudes (averaged over all significant sensors, as shown in Fig. 2B) of correctly perceived trials 

with 0 ms (0ms-1) and 100 ms (100ms-2) SOA. Significant differences are indicated by shaded area 

(145 to 171 ms). Significance values were cluster corrected to account for multiple comparisons 

corrections. t = 0 indicates onset of sensory stimulation, i.e. the first stimulus of stimulation. 

 

Figure S2. Analysis of behavioral parameters across the experiment. A) Average temporal 

perceptual discrimination rate (1 = incorrectly (perceived one stimulus) vs. 2 = correctly (perceived 

two stimuli) perceived trial) per bin for all trials with intermediate SOA. B) Average confidence rating 

(4 = very high confidence, 3 = rather high confidence, 2 = rather low confidence, 1 = very low 

confidence) per bin for all trials with intermediate SOA. Insets show results of the linear regression 

analyses (black lines). Error bars represent SEM. 

 

Figure S3. Topographical representation of poststimulus ERFs for different conditions (100ms-2, 

0ms-1, low α-2, high α-2, low α-1, high α-1, intermediate trials hits, intermediate trials misses) 

averaged over the time window of significant difference (145 to 171 ms) between poststimulus ERF 

amplitudes of correctly perceived trials with 0ms and 100ms SOA (averaged over all significant 

sensors, as shown in Fig. 2B). 
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Whether seeing a movie, listening to a song, or feeling a breeze on
the skin, we coherently experience these stimuli as continuous,
seamless percepts. However, there are rare perceptual phenomena
that argue against continuous perception but, instead, suggest
discrete processing of sensory input. Empirical evidence supporting
such a discrete mechanism, however, remains scarce and comes
entirely from the visual domain. Here, we demonstrate compelling
evidence for discrete perceptual sampling in the somatosensory
domain. Using magnetoencephalography (MEG) and a tactile tem-
poral discrimination task in humans, we find that oscillatory alpha-
and low beta-band (8–20 Hz) cycles in primary somatosensory cortex
represent neurophysiological correlates of discrete perceptual cycles.
Our results agree with several theoretical concepts of discrete per-
ceptual sampling and empirical evidence of perceptual cycles in the
visual domain. Critically, these results show that discrete perceptual
cycles are not domain-specific, and thus restricted to the visual do-
main, but extend to the somatosensory domain.

somatosensory perception | beta oscillations | MEG | oscillatory phase

The sensory system continuously receives and processes nu-
merous stimuli. Subjective experience implies that conscious

perception, and thus cortical processing, of this stimulation is
also continuous. This view of continuous cortical processing, how-
ever, has been challenged by several studies proposing that the brain
operates discontinuously within a framework of discretely sampled
“perceptual cycles” (1–4). This process of perceptual cycles is
thought to create a temporally defined window, with discrete stimuli
falling inside this window being consciously perceived as a single
event (4). Discrete sampling of sensory information allows for the
possibility of transforming perceptual input into temporal code (5,
6), metabolic efficiency (7), and the efficient organization of in-
formation, thereby preventing information overload (6). Over the
past decades, however, there has been an ongoing discussion about
the nature of perception. Several studies have argued against the
theory of discontinuous perceptual cycles (8, 9). In recent years, the
hypothesis of a discontinuous cyclic perception received new support
by electroencephalography (EEG) and magnetoencephalography
(MEG) studies investigating neuronal oscillations. This novel
support is attributable to the theory that serial perceptual sam-
pling is thought to depend on the temporal relationship between
external stimuli and some ongoing internal neurophysiological
process (4) providing a temporal reference frame (5), with neu-
ronal oscillations representing a probable candidate measure for
this underlying process.
There is growing evidence that oscillatory power and phase

influence cortical processing (10, 11) and perception (3, 12–14).
Most of these studies investigated perception of single near-
threshold stimuli. Although these studies demonstrate that
neuronal oscillations play a critical role in defining neuronal
states, which, in turn, influence perception and neuronal pro-
cessing (5, 15, 16), these studies do not provide direct evidence
for or against the theory of perceptual cycles. Recent studies,
however, argued that parietooccipital alpha oscillations (∼8–12 Hz)
might define cycles of perception (6, 15, 17–19). However, they only
provide evidence for discrete perceptual sampling in the visual
domain. To claim that discrete perception is not domain-specific, it

is critical to demonstrate discrete and cyclic perception also for
other sensory modalities and whether different modalities work via
the same mechanism (e.g., whether alpha cycles generally define
critical perceptual cycles for all modalities). Because sensory
modalities work on different time scales, there is some indication
that the mechanisms might differ.
We investigated whether discrete perceptual cycles exist in the

somatosensory domain. Contrary to most studies in the visual do-
main, we used discrete rather than continuous stimuli, which dif-
fered only in perceptual impact, yet not in physical stimulation
parameters. By this method, we could study whether two succes-
sively presented stimuli are perceived as either one single or two
separate sensory events, depending on their temporal relationship
to discrete perceptual cycles defined by the ongoing neuronal os-
cillatory phase. This setup allowed us to test the theory of discrete
perceptual sampling critically in the somatosensory domain, and
thus whether cycles of perception represent a mechanism of con-
scious perception that exists beyond the visual domain.

Results
Behavioral Results. Subjects received one or two electrical pulses
separated by a specific stimulus onset asynchrony (SOA; no-
menclature is provided in Materials and Methods) and had to
perform a forced-choice temporal perceptual discrimination task
(Fig. 1), wherein they had to report whether they perceived one
or two stimuli. Subjects made negligible errors for the conditions
0 ms and 100 ms [SOA 0 ms: 97.7 ± 0.4% (mean ± SEM) reports
of correctly perceiving one stimulus, SOA 100 ms: 94.6 ± 2.3%
reports of correctly perceiving two stimuli]. Individually de-
termined, intermediate SOAs yielded correct perception of two
stimuli in ∼50% of the trials (58.0 ± 3.1% reports). For the
condition intermediate − 10 ms, subjects perceived two stimuli in
25.6 ± 4.7% reports, and for intermediate + 10 ms, subjects
perceived two stimuli in 79.1 ± 4.7% reports. A one-way repeated

Significance

Our sensory system constantly receives multiple inputs, which are
usually perceived as a seamless stream. Thus, perception is com-
monly regarded as a continuous process. Alternatively, a few
phenomena and recent studies suggest that perception might
work in a discrete and periodic sampling mode. In a human mag-
netoencephalography study, we challenged the common view of
continuous perception. We demonstrate that neuronal oscillations
in the alpha band and low beta band determine discrete percep-
tual sampling windows in primary somatosensory cortex. The
current results elucidate how ongoing neuronal oscillations shape
discrete perceptual cycles, which constitute the basis for a discon-
tinuous and periodic nature of somatosensory perception.
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measures ANOVA comparing average hit rates between conditions
demonstrated a highly significant difference [F(4,60) = 141.25, P <
0.001]. Post hoc t tests revealed significant differences between the
condition 0 ms vs. intermediate − 10 ms [t(15) = 5.14, P < 0.01], 0 ms
vs. intermediate [t(15) = 18.34, P < 0.001], 0 ms vs. intermediate +
10 ms [t(15) = 15.79, P < 0.001], 0 ms vs. 100 ms [t(15) = −37.15, P <
0.001], intermediate − 10 ms vs. intermediate [t(15) = 7.36, P <
0.001], intermediate − 10 ms vs. intermediate + 10 ms [t(15) = −7.15,
P < 0.001], intermediate − 10 ms vs. 100 ms [t(15) = −13.1, P <
0.001], intermediate vs. intermediate + 10 ms [t(15) = −5.35, P <
0.001], intermediate vs. 100 ms [t(15) = −12.54, P < 0.001], and
intermediate + 10 ms vs. 100 ms [t(15) = −3.79, P < 0.01].

Phase Angle Contrast. To study the influence of oscillatory
phase angles on perception, we sorted trials with intermediate
SOA according to perceptual response (perceived one or two
stimuli), resulting in two perceptual conditions (intermediate1 vs.
intermediate2). We computed phase angles for each condition in
source space by means of a virtual channel in the primary so-
matosensory cortex (S1) (Fig. 2A) and contrasted the phases of
intermediate2 with intermediate1 (Fig. S1). The analysis revealed
a significant positive cluster (P < 0.05; Fig. 2B) in the prestimulus
epoch (−0.53 to −0.09 s) for frequencies in the alpha band and

lower beta band (8–20 Hz). Notably, the effect was more
prominent and temporally extended in the beta band (14–20 Hz,
−0.53 to −0.09 s) compared with the alpha band (8–12 Hz, −0.39
to −0.24 s). That is, the phase difference between perceptual
conditions differed significantly more in this time-frequency range
compared with randomly distributed phases. For frequencies in
the lower beta band, phase difference fluctuated around maximum
(i.e., π) in the prestimulus period (Fig. 2C). To exclude any bias
due to power differences, we analyzed power differences between
perceptual conditions for those time-frequency elements exhibit-
ing significant phase differences (analysis parameters are provided
in ref. 14). The results did not reveal any significant power dif-
ferences (P > 0.05, uncorrected). Regarding phase angle differ-
ences, we found an additional significant negative cluster (P <
0.05; Fig. 2B) between 2 and 28 Hz and between −0.1 and 0.24 s.
Here, phase differences were significantly smaller compared with
randomly distributed phases. This effect presumably resembles the
phase resetting after stimulus presentation (18, 20).

Phase Angles and Perception. To analyze the extent by which
perception was influenced by phase, we computed for each
subject the momentary phase for each single trial for both per-
ceptual conditions at the time point showing the largest statis-
tical phase difference effect (Materials and Methods). Trials were
placed in one of six different phase bins and aligned for each
subject so that the highest probability for perceiving two stimuli
corresponded to a zero phase angle. For each subject, we cal-
culated the normalized perceptual response rate per bin, and we
then averaged normalized response rates across subjects (Fig.
2D). Although this analysis resembles a post hoc test (because it
is based on the time-frequency points of maximal phase differ-
ence determined in the previous analysis), it quantifies the
magnitude by which phase influences perception, as well as the
grade by which performance varies over different phase bins.
A one-way repeated measures ANOVA comparing normalized
perceptual response rates between bins demonstrated a highly
significant difference [F(4,60) = 6.53, P < 0.001]. Post hoc t tests
revealed significant differences between bin 1 vs. bin 3 [t(5) =
−4.17, P < 0.01], bin 1 vs. bin 5 [t(5) = −4.21, P < 0.01], bin 1 vs.
bin 6 [t(5) = −4.13, P < 0.01], bin 2 vs. bin 3 [t(5) = −2.77, P <
0.05], and bin 2 vs. bin 5 [t(5) = −3.16, P < 0.01]. The results
indicate a monotonic decrease of mean response rate from zero
phase angle to π, with the response rates differing by 13% points
between the lowest (−π, 38%) and highest (1/3 π, 51%) phase
bins (with exclusion of the zero phase bin).

Beta-Band Cycles Determine Perceptual Cycles. Fig. 3 illustrates a
model derived from the analysis of phase angle contrasts and the
theory of temporal framing (3, 19, 21). The model proposes that

Fig. 1. Experimental paradigm. The sequence of events begins with pre-
sentation of a central fixation dot (500 ms). Luminance decrease signals start at
the prestimulus epoch (900–1,100 ms), after which tactile stimulation is applied to
the left index finger with varying SOAs (0ms, intermediate− 10ms, intermediate,
intermediate + 10 ms, 100 ms). Stimulation is followed by a jittered poststimulus
period (500–1,200 ms), after which written instructions signal subjects to report
their respective perception of the stimulation by pressing a button.

Fig. 2. Virtual sensor location and phase angle differences. (A) Virtual sensor location based on the voxel of maximum activity of the contrast M50 vs. prestimulus
baseline. The voxel is highlighted on a slice plot of the Montreal Neurological Institute (MNI) template brain (MNI coordinates: 50 −10 50). (B) Time-frequency plot
showing the results of the statistical analysis of phase angle differences between intermediate2 vs. intermediate1. Significant clusters (P < 0.05, corrected) are
highlighted. Red colors indicate higher phase differences compared with randomly distributed phases. t = 0 indicates onset of the first stimulus. (C) Phase angle
difference (black solid line) between intermediate2 (Intermed2) and intermediate1 (Intermed1) for an exemplary 14-Hz band. The upper dashed line indicates the
maximum phase angle difference (π). (Insets) Phase angles for intermediate2 (blue lines) and intermediate1 (red lines) for exemplary time points (Left, t = −420 ms;
Right, t = −50 ms) (D) Relationship between the momentary phase (Materials and Methods) and the normalized perceptual response rate. The probability of
perceiving two stimuli significantly depends on the phase angle and differs maximally between opposite phase angles (ANOVA, P < 0.001).
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the temporal resolution of perception is defined by one cycle of a
specific frequency. If presented within one cycle, the two stimuli
are merged into one perceptual event and perceived as one
single stimulus (Fig. 3A, white rectangles). If presented within
two separate cycles, they will be perceived as two temporally
separate perceptual events (Fig. 3A, black rectangles). Although
the neural representation of the first stimulus can arrive at any
point in the oscillatory cycle (21) for ongoing oscillations, the
arrival of the second stimulus is determined by the SOA. For a
cycle length twice as long as the respective SOA, a stimulus ar-
riving in the first half of the cycle determines the arrival of the
second stimulus in the same cycle (one perceived stimulus). Vice
versa, a stimulus arriving in the second half of the cycle de-
termines the arrival of the second stimulus in a subsequent cycle
(two perceived stimuli). From the results of the phase angle
contrast analysis, we derive that this critical frequency band lies
in the alpha band and, particularly, the lower beta band between
8 and 20 Hz (Fig. 2B). Given these model preconditions, we can
make two predictions. First, if the SOA between two stimuli
equals half the length of the cycle of the critical frequency (e.g.,
25 ms for a 20-Hz oscillation), mean phases for the perception of
one stimulus (range: 0 to π for the example in Fig. 3A) and two
stimuli (range: π to 2π) should differ maximally (∼π). More
precisely, perception rates should critically depend on the phase
at which the first stimulus arrives (Fig. 3 B–D). That is, if the
stimulus arrives at a given phase φ, perception rates should differ
significantly from φ + π. Second, if the critical frequency is
known, we can predict behavioral response rates for different
SOAs. The first prediction is confirmed by the analysis of phase
angle contrast (Fig. 2 B and C). Based on these results, the post
hoc phase binning analysis shows a monotonic decrease in per-
ception over bins, and, thus, the dependence of perception rates
on phase (Fig. 2D). The second prediction will be tested and
presented below.

Prediction of Perception. Based on the model (Fig. 3), we pre-
dicted response rates for the different SOAs and computed lin-
ear regressions between predicted and behaviorally measured
response rates. We computed predictions based on (i) group-
level effect frequencies determined from MEG experimental
data (8–20 Hz; Fig. 2B), (ii) based on single subject-level
individual frequencies determined from MEG experimental
data (Fig. S2 and Table S1), and (iii) based on frequencies
determined from behavioral experimental data (i.e., the in-
termediate SOAs):

i) Based on group-level effect frequencies (8–20 Hz; Fig. 2B),
the linear regression analysis for behavioral response rates
and predicted response rates (Fig. 4) resulted in a highly
significant correlation coefficient (r = 0.93, P < 0.01). The
resulting slope estimate (0.83 ± 0.1) did not differ signifi-
cantly from 1 [t(4) = −1.8, P > 0.05].

ii) Linear regression analysis of the individual behavioral and
predicted individual response rates resulted in a significant
correlation coefficient in all 16 subjects (r ranging from 0.69
to 0.96, P < 0.05). For 12 of 16 subjects, the resulting slope
estimate did not differ significantly from 1 [t(4) ranging from
−2.6 to 2.4, P > 0.05; Fig. S2 and Table S1]. We additionally
predicted group-level response rates by averaging the indi-
vidual response rates over subjects. The resulting predictions
were virtually similar to the predictions based on the aver-
aging over group-level effect frequencies (i) (Fig. 4). The
resulting slope estimate (0.78 ± 0.1) did not differ signifi-
cantly from 1 [t(4) = −2.23, P > 0.05].

iii) Predictions based on frequencies determined from behavior-
al experimental data yielded results highly similar to those
results determined from MEG experimental data (details are
provided in SI Results).

Discussion
We investigated the neuronal mechanisms of varying conscious
perception in the somatosensory domain. The results argue against
a continuous perceptual mechanism and provide evidence that
somatosensory perception operates in a discrete mode, with sen-
sory input being sampled by discrete perceptual cycles in the alpha
band and, in particular, the lower beta band (8–20 Hz).

Beta-Band Cycles Determine Discrete Perceptual Sampling. We found
that phase angles in S1 in the alpha band and lower beta band (8–
20 Hz) before stimulus onset predicted whether subjects perceived
two constant electrical stimuli with an SOA of ∼25 ms as one or two
stimuli (Fig. 2B). Notably, this effect was most prominent in the
lower beta band (14–18 Hz). We put forward a model proposing
that somatosensory stimulation is discretely sampled and that the
underlying perceptual cycles are determined by ongoing oscillatory
alpha and beta cycles (Fig. 3). If multiple discrete stimuli fall within
one perceptual cycle, the temporally fine-grained information is lost
and the distinct stimuli are fused to a single percept, a phenomenon
that has been labeled perceptual or temporal framing in the visual
domain (3, 19, 21). The model was confirmed by two theoretical
predictions. First, beta oscillations were found to be antiphasic
(phase difference of π) for perception of one vs. two stimuli for
intermediate SOAs (∼25 ms; Fig. 2 B–D). Based on these results,
response rates were shown to depend on the specific phase at which
the first stimulus arrives (Fig. 2D). Second, the model predicts be-
havioral performance on group (Fig. 4) and single-subject (Fig.
S2) levels.
Based on behavioral response rates, the model predicted a the-

oretical critical sampling frequency of ∼23 Hz. The experimentally
observed frequency range based on statistical analysis of phase
angles revealed a significant effect between 8 and 20 Hz. Whereas
the upper end of the experimental frequency range is close to the
theoretically assumed frequency, the experimental frequency band
also includes lower frequencies. A potential reason for this un-
derestimation of the critical sampling frequency might be a de-
creased signal-to-noise ratio for higher frequencies. Noninvasive
measurement (e.g., via EEG/MEG) of phase has been assumed to
be especially susceptible to various interferences (e.g., delays in
synaptic transmission) at higher frequencies (5). Likewise, phase
differences in lower frequency bands could also resemble processes
different than perceptual sampling (e.g., attentional processes) (22).
This idea is in line with the different temporal distributions of phase
angle differences for alpha- and beta-band frequencies. Finally, the
presented model does not claim to cover all portions of the decision
process determining the final response but, instead, focuses on early
perceptual components. For example, the present data are derived

Fig. 3. Model for perceptual cycles. (A) Red and blue lines illustrate two per-
ceptual cycles. Two stimuli can occur within one (white rectangles, one stimulus
perceived) or two (black rectangles, two separate stimuli perceived) perceptual
cycles. (B) Same as in A, but for stimulus pairs with a longer SOA. The blue
background illustrates the time frame in which the occurrence of the first
stimulus results in one perceived stimulus (○), and the gray background illus-
trates the time frame in which the occurrence of the first stimulus results in two
perceived stimuli (●). (C) Same as in B, but for stimuli with a shorter SOA. Note
different lengths of blue and gray time frames. (D) Same as in B, but for ex-
amples of three different SOAs. Intermediate SOAs (rectangles) result in time
frames for one (blue arrows) or two (gray arrows) perceived stimuli of approx-
imately equal length. For longer SOAs (●), the time frame for two perceived
stimuli (gray arrows) is bigger than for one perceived stimulus (blue arrows). For
shorter SOAs (♦), the time frame for two perceived stimuli (gray arrows) is
smaller than for one perceived stimulus (blue arrows).
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from S1, thus not taking into account other cortical areas involved
in the decisional process.

Discrete Perceptual Sampling Is Not a Domain-Specific Mechanism.
The theory of discrete perceptual cycles was introduced decades
ago (1, 2). However, it has been controversially discussed (8, 9).
Recently, the discussion on discrete perceptual cycles has gained
new momentum by studies using EEG, which allows one to study
potential neuronal mechanisms of discrete perceptual cycles
noninvasively (5, 17, 22). Nonetheless, empirical evidence to
support the theory of discrete perceptual cycles remains scarce
and focuses mainly on the visual domain (3, 17), whereas evi-
dence for discrete cycles in other domains is largely missing (19).
The present study is thus, to our knowledge, the first to dem-
onstrate the existence of perceptual cycles in the somatosensory
domain, indicating that the cyclic characteristic of perception is
not a domain-specific visual mechanism (19).

Modality-Specific Differences. For the visual domain, EEG studies
propose discrete cycles in perception and attentional updating
defined by the alpha cycle (3, 17, 22). Our model agrees with
these studies, albeit we propose perceptual cycles to be defined
by alpha-band and, decisively, beta-band frequencies in the so-
matosensory domain. Although the significant group-level phase
angle differences cover a rather broad band between 8 and 20 Hz,
the major effect can be found in a narrower band between 14
and 18 Hz (Fig. 2B). Because subjects exhibit different individual
intermediate SOAs, different individual frequencies for the dis-
crete perceptual cycles are also to be expected (thereby blurring
the group-level effect). In fact, the analyses based on individually
determined frequencies confirmed that the individual narrow-
band frequencies represent an appropriate predictor for indi-
vidual response rates (Fig. S2). These domain-specific differ-
ences agree with a more prominent role of alpha oscillations in
the visual domain for perception and neuronal processing (23,
24), whereas there is experimental evidence for a specific role of
beta oscillations in the somatosensory domain (10, 13, 25–27).
The present findings are in line with studies investigating steady-
state somatosensory evoked potentials (SSSEPs). These studies
found that the largest SSSEP amplitudes can be achieved by a
stimulation frequency of ∼18–26 Hz (i.e., in the beta band) (27–
29). Stimulation at this frequency would place every stimulus in
a separate beta cycle, therefore enhancing SSSEPs and, conse-
quently, facilitating perceptual detection (26). Finally, the pro-
portion perceiving two stimuli differed by 13% between the
lowest (−π) and the highest (1/3 π) phase bins (with exclusion of
the zero phase bin). This difference agrees with ranges reported
for visual stimuli (5, 15). Thus, both visual and somatosensory

perception seems to be influenced by phase with a comparable
magnitude.

What About Absolute Phase Angles? Varela et al. (3) reported that
the phase of occipital alpha oscillations determines whether
subjects perceive two sequential visual stimuli as one or two
stimuli. The respective phase for perceiving one vs. two stimuli
was anticyclic (i.e., the phase difference was π). Although later
studies failed to replicate this result (19, 30), our results support
the finding by Varela et al. (3), because we find a phase differ-
ence of π between phases for perceiving one vs. two tactile
stimuli. In contrast to Varela et al. (3), however, we do not claim
that the specific phase (the peak or trough) is important for
perception but, rather, whether two stimuli fall within a single cycle
or separate cycles. The majority of studies investigating the influence
of oscillatory phase on perception analyzed absolute phase angles
within an oscillatory cycle at a specific moment, which are either
favorable or unfavorable for subsequent perception (5, 11, 12, 15,
31). Thus, a potential concern might be that our results could be
explained by favorable or unfavorable phases within one cycle. In
such a framework, one stimulus might be presented at a favorable
phase and the other stimulus might be presented at an unfavorable
phase, thus leading to the erroneous perception of only one stimulus.
The above-mentioned studies, however, used near-threshold stimuli.
We presented stimuli with clearly suprathreshold intensities that are
presumably perceived independent of the specific phase. Although a
hypothesis proposing an influence of (un)favorable phases would
predict that ∼50% of the stimuli with SOA 0 ms would be missed,
subjects correctly perceived almost all stimuli. Similarly, such a
framework would predict a higher percentage of trials with SOA
100 ms to be perceived as one stimulus than found in our behavioral
data. Therefore, the present results cannot be explained by favor-
able or unfavorable phases within one oscillatory cycle.

Differentiating Effects of Phase and Power. Recent studies dem-
onstrated an influence of oscillatory power for perception of
single (near-threshold) tactile stimuli, as well as for the tem-
poral discrimination of two tactile stimuli (10, 25). The majority
of these studies [including a previous study by our group on the
dataset presented in this study (14)] found prestimulus power
differences in the alpha band (8–12 Hz), whereas the present
phase angles differed mostly in the lower beta band (14–18 Hz).
Further, we found no significant power differences in those
time-frequency elements showing significant phase angle dif-
ferences between perceptual conditions. It is thus unlikely that
the presented phase effect was biased by power differences.
Indeed, there is experimental evidence for an influence of both
oscillatory power (10) and phase (12, 31) for neuronal pro-
cessing and perception, and recent studies could demonstrate
that these measures act largely independently (5, 22). This
differentiation is further supported by results showing that
phase is able to transport more units of information per time than
power changes (32) or spike counts (33), and represents a suitable
candidate measure to encode fast-changing stimulus features (21).

Contradicting Subjective Experience. There is accumulating evi-
dence that our brain processes incoming stimulus information in
a phasic mode (3, 17). However, personal experience does not
intuitively match with a discrete sequencing approach but, rather,
resembles a seamlessly updated percept. This divergence might
explain why relatively few studies address this topic, although the
concept of discrete perceptual sampling has been put forward at
least since the middle of the 20th century (1, 2). It remains an
open question how the brain transforms discretely sampled
sensory information into a subjectively seamless impression. Al-
though the mechanisms for such perceptual “smoothing” are
unknown, there are, at least for the visual domain, several re-
ports where the mechanisms fail to work (34). For example, in
akinetopsia, subjects report perceiving a sequence of snapshots
rather than a continuous motion (35, 36). Similarly, the ingestion of
lysergic acid diethylamide often results in a perceptual disturbance

Fig. 4. Model prediction of response rates. Proportion of “perceived two
stimuli” reports for conditions with different SOAs for model predictions
based on averaged individual response rates (gray bars), significant group-
level frequencies (8–20 Hz, white bars), and behavioral data (black bars).
Predicted responses based on frequencies were calculated per frequency bin
and then averaged over all respective frequencies. Hit rates are presented as
mean ± SEM.
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wherein visual motion is perceived as a sequence of discrete sta-
tionary images (37, 38).

Conclusions
The present study demonstrates an influence of oscillatory phase
on the temporal perception of two stimuli. We propose the ex-
istence of discrete perceptual cycles for the conscious perception
of subsequently presented tactile stimuli. The perceptual cycles
are determined particularly by frequencies in the beta band
acting as the specific physiological correlate for perceptual cycles
for the somatosensory modality. In combination with previous
studies investigating similar paradigms in the visual domain (3,
30), the present results support the theory of temporal framing
(1–3, 19, 21) and indicate that perceptual cycles are no domain-
specific visual phenomenon, albeit modality-specific frequencies
that define perceptual cycles seem to be present.

Materials and Methods
Subjects. The subjects, stimuli, paradigm, and MEG recording of the present
study were previously reported in detail (14). Here, we present a comprehensive
overview. Sixteen right-handed volunteers [seven males, age: 26.1 ± 4.7 y
(mean ± SD)] participated in the study. Subjects provided written informed
consent before the experiment in accordance with the Declaration of Helsinki
and approved by the Ethical Committee of the Medical Faculty, Heinrich-Heine-
University Düsseldorf.

Experimental Paradigm. Details on the paradigm can be found in the study by
Baumgarten et al. (14). A comprehensive overview is provided in Fig. 1 and SI
Materials and Methods.

MEG Data Recording and Preprocessing. Electromagnetic brain activity was
continuously recorded using a 306-channel, whole-head MEG system (Neu-
romag Elekta Oy). Analysis was restricted to the gradiometers. Individual
structural MRI scans were acquired using a 3-T MRI scanner (Siemens). Offline
analysis of the data was carried out using custom-made MATLAB (Math-
Works) scripts and the MATLAB-based open-source toolboxes FieldTrip
(fieldtriptoolbox.org) (39), CircStat (40), and SPM8 (41). Continuously
recorded data were segmented into trials. All trials were semiautomatically
and visually inspected for artifacts, whereas artifacts caused by muscle ac-
tivity, eye movements, or technical artifacts were removed semiautomatically
using a z-score–based algorithm implemented in FieldTrip.

Virtual Channel Construction. To focus on S1,we analyzed oscillatory activity in a
predefined region of interest in source space (“virtual sensor”). Details regarding
the construction of the virtual sensor are provided in SI Materials and Methods.

Phase Angle Contrast. Oscillatory phase was calculated for the virtual sensor.
We sorted trials with respect to the SOA for each subject separately, resulting
in five different conditions defined by the length of the SOA (0ms, intermediate−
10 ms, intermediate, intermediate + 10 ms, and 100 ms). Subsequently, we
separated intermediate trials by perceptual response (perceived one vs. two
stimuli, subsequently labeled intermediate1 vs. intermediate2). Because
trial numbers are known to influence phase measures crucially (42), trial
numbers were equated across conditions in each analysis by determining the
condition with the lowest number of trials per subject and randomly
selecting the same number of trials from the remaining conditions. To ex-
clude potential effects due to a specific trial selection, we performed trial
selection by means of random subsampling 100 times, and subsequently
computed the median of the resulting phase parameters over these 100
repetitions (because F values were not normally distributed). The time point
t = 0 was defined as the onset of the first stimulus. The oscillatory phase was
calculated for each time-frequency element (−650 to 240 ms, 2–40 Hz) of
each single trial by applying a discrete Fourier transform (DFT) on fixed
sliding time windows with a length of 500 ms, moved in steps of 10 ms. Data
segments were tapered with a single Hanning taper, resulting in a spectral
smoothing of 2 Hz. For each subject s, trial r, frequency f, and time point t,
we normalized the complex outcome Fs,r,f,t of the DFT by dividing it by its
absolute (abs) value, thus normalizing the signal by its amplitude:

Fnorms,r,f ,t =
Fs,r,f ,t

abs
�
Fs,r,f ,t

� [1]

From these normalized values, we computed for each subject s, trial r, fre-
quency f, and time point t, the normalized phase:

Φnorm
s,r,f ,t = atan

0
@Im

�
Fnorms,r,f ,t

�

Re
�
Fnorms,r,f ,t

�
1
A [2]

where Im and Re are the imaginary part and real part, respectively, of
the DFT.

To analyze statistically whether phase angles differed between perceptual
conditions, we compared phase angles between the intermediate1 and in-
termediate2 conditions for each time-frequency element at the within-
subject level by means of the Watson–Williams multisample test for equal
means [CircStat toolbox (40)]. This test for circular data is equivalent to a
two-sample t test for equal angular means. For each randomized trial se-
lection, we compared phase angles for each subject independently for each
time-frequency element, resulting in 100 F values for each time-frequency
element. We took for each time-frequency element the median of all 100 F
values, resulting in a time-channel map of F values for each subject, which
constitutes the test distribution. To assess the consistency of phase angle
differences over subjects, we performed a nonparametric randomization
test identifying clusters in time-frequency space demonstrating a similarly
directed phase angle difference relative to a null distribution (43). We
computed this null distribution under the null hypothesis that phases are
randomly and uniformly distributed, showing no difference between con-
ditions. That is, for each subject, we assigned to each condition random
phases (equaling the number of trials for each subject) and then repeated
the above-mentioned statistical analysis. We compared (random) phase
angles between both conditions for each time-frequency element at the
within-subject level by applying the Watson–Williams test. This procedure
was repeated 100 times (each time with new, randomly chosen phases),
resulting in 100 F values for each time-frequency element. Subsequently, we
took the median of all 100 F values for each time-frequency element,
resulting in a time-channel map of F values for each subject, which consti-
tutes the null distribution. We then statistically compared the F values of the
test distribution with the F values of the null distribution for each time-
frequency element by means of a dependent-samples t test, resulting in a
time-frequency map of t values. Positive t values for a specific time-fre-
quency element demonstrate a larger phase angle difference compared
with randomly distributed phase angles, and vice versa for negative t values
(44). To investigate whether the phase angle differences between percep-
tual conditions were significantly different from randomly distributed pha-
ses, we applied a cluster-based randomization approach (14). This statistical
approach effectively controls for the type I error rate due to multiple com-
parisons across time points and channels (43).

To ensure that phase angle differences are not biased by power, we analyzed
power differences between perceptual conditions for those time-frequency
elements exhibiting significant phase differences. The respective analysis pa-
rameters are discussed in ref. 14. To visualize phase angle differences on the
group level, we computed phase angle differences for each time-frequency
element. We computed the circular distance between the over-trial averages of
the intermediate2 and intermediate1 conditions for each subsampling run, and
subsequently averaged circular distances over all subsampling runs on the sin-
gle-subject level and over subjects (Fig. 2C).

Phase Angles and Perception. To determine towhat extent perception of one or
two stimuli is associatedwith different phase angles,we selected for each subject
the time-frequency point showing the largest statistical phase angle effect
(maximum Watson–Williams test F value) within the time-frequency range of
the aforementioned phase contrast effect (8–20 Hz, −0.53 to −0.09 s; Fig. 2B).
This analysis resembles a post hoc test based on previous results. For each
subject, the momentary phase for the respective time-frequency point was
computed for each single trial for both perceptual conditions. Subsequently,
the trial was placed in one of six different, equally spaced phase bins (bin
width = 1/3 π), ranging from −π to +π. For each subject, we calculated the
normalized perceptual response rate per bin. We adjusted phase distributions
for each subject so that the bin showing maximum perception of two distinct
stimuli was aligned to a phase angle of zero (a similar procedure is described in
refs. 5 and 11). This process was repeated for each of the 100 specific ran-
domized trial selections. Subsequently, we computed the median of the nor-
malized perceptual response rates for each bin across the 100 repetitions for
random trial selection and averaged response rates over subjects (Fig. 2D). To
assess an effect of phase angle on perceptual response rates, a one-way re-
peated measures ANOVA and post hoc paired sample t tests were conducted.
Due to the realignment, we excluded the bin centered on zero from the
statistical analyses.
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Prediction of Perception. Based on the model (Fig. 3), we predicted response
rates for the different SOAs and computed linear regressions between
predicted and behaviorally measured response rates. We used different
approaches to predict response rates, with each approach based on a slightly
different method to determine the critical frequency: (i) based on group-
level effect frequencies determined from MEG experimental data (Fig. 2B),
(ii) based on single-subject individual frequencies determined from MEG

experimental data (Fig. S2 and Table S1), and (iii) based on frequencies
determined from behavioral experimental data (i.e., the intermediate SOAs).
The approaches are described in detail in SI Materials and Methods.
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SI Results
To compare the predictions of perception based on MEG ex-
perimental data (Results and Fig. 4) with a model based on the
behavioral experimental data, we computed the critical fre-
quency determined by the average intermediate SOA of 25.9 ms
(22.4 Hz) and predicted response rates for this frequency. The
linear regression analysis between predicted and behavioral re-
sponse rates resulted in a highly significant correlation coefficient
(r = 0.99, P < 0.01). The resulting slope (1.05 ± 0.04) did not differ
significantly from 1 [t(4) = 1.29, P > 0.05]. Finally, we computed
critical frequencies determined from behavioral experimental data
on the single-subject level (i.e., based on individual intermediate
SOAs and behavioral response rates) and averaged the resulting
critical frequencies over subjects (23.9 ± 2.0 Hz). Linear regression
analysis resulted in a highly significant correlation coefficient (r =
0.99, P < 0.01). The resulting slope estimate (1.08 ± 0.04) did not
differ significantly from 1 [t(4) = 2.12, P > 0.05]. Thus, theoretically
and experimentally determined frequencies yielded highly similar
results: Both reveal significant correlation values and slopes not
significantly different from 1.

SI Materials and Methods
Experimental Paradigm. Each trial began with a precue period
(500 ms; Fig. 1). After 900–1,100 ms, either one or two electrical
pulses (0.3 ms) were applied to the subject’s left index finger, with
the pulse amplitude determined individually to a level above the
subjective perception threshold [4.1 ± 1.2 mA (mean ± SD)].
SOAs between the electrical pulses varied from short (0 ms) to long
(100 ms), and comprised an individually determined SOA for which
subjects reported the perception of one electrical pulse in ∼50% of
the trials, whereas two pulses were perceived [SOA: 25.9 ± 1.9 ms
(mean ± SEM)] in the other ∼50% of the trials, subsequently la-
beled intermediate SOA. Two additional SOAs encompassed the
intermediate SOA ± 10 ms (subsequently labeled intermediate +
10 ms and intermediate − 10 ms, respectively). After a jittered
poststimulus period (500–1,200 ms), a response window indicated
that subjects should report their perception (one or two stimuli)
by pressing a button with the right hand. No feedback was given.

Virtual Channel Construction.To focus the analysis on S1, we analyzed
oscillatory brain activity in a predefined region of interest in source
space. This “virtual channel” was determined by localizing the in-
dividual sources of the evoked responses (M50 component) to left
index finger stimulation, because this component is known to
originate from S1 (45, 46). To determine the virtual channel, all
trials on the sensor level were filtered between 2 and 40 Hz and
the mean of every epoch was removed from each trial. We then
pooled all trials (irrespective of SOA) for each subject and
computed the individual event-related fields. Next, we identified
the individual M50 component by focusing on the time window
of 20–70 ms after stimulation onset. Source localization was per-
formed by means of a linearly constrained minimum variance beam
former (47) on 3D grids with a resolution of 1 cm. Individual subject
grids were computed by linearly warping the structural MRI of
each subject onto the Montreal Neurological Institute (MNI)
template brain and applying the inverse of the warp to the regular
MNI template grid. For one subject, the MNI template brain was
used instead of the individual structural MRI, because no indi-
vidual MRI was available. A lead-field matrix was computed for
each grid point using a realistically shaped single-shell volume
conduction model (48). Covariance matrices across all MEG
sensors were calculated based on the average across all trials to

determine the source of evoked responses. Using the covariance
matrices and lead field matrices, separate individual spatial filters
of both prestimulus and poststimulus activity were constructed for
each grid point. We calculated for each subject the ratio of M50
activity (20–70 ms) relative to baseline activity (−400 to −350 ms)
for each grid point. Next, we averaged the source activity for each
grid point over subjects and determined the grid point with max-
imum M50 activity. This grid point was selected as the location of
the virtual sensor (Fig. 2A). The corresponding label was identified
with the help of the Analysis of Functional NeuroImages atlas
(afni.nimh.nih.gov/afni).
Single-trial time courses for this virtual channel were computed

from MEG sensor data. We computed covariance matrices across
all MEG sensors, based on averaged nonoverlapping trials, from
−900 to 500 ms after trials were filtered between 2 and 40 Hz, and
the mean of every epoch was removed from each trial. Covariance
matrices were used to construct a spatial filter for the selected grid
point of maximum M50 activity. The largest of the three dipole
directions per spatial filter was used for further analysis (49). We
applied this spatial filter on the MEG sensor data to reconstruct
the single-trial time series in the virtual channel:

sourceTSs,r = sfs p sensorTSs,r,c, [S1]

with sensorTSs,r,c defining the time series data on the sensor level
for each subject s, trial r, and channels c projected through the
spatial filter sfs to obtain the time series data on source level
(sourceTSs,r) for each subject s and trial r. MEG sensor data were
first segmented to trials with a length of 1,400 ms (−900 to 500 ms)
and then detrended, demeaned, and filtered (2–250 Hz). The re-
sulting source-based time signal was then used as input for the
oscillatory phase estimation.

Prediction of Perception. Predictions of response rates and linear
regressions between predicted and behaviorally measured re-
sponse rates were based on three different approaches: (i) group-
level effect frequencies determined from MEG experimental
data (8–20 Hz; Fig. 2B), (ii) single subject-level individual fre-
quencies determined from MEG experimental data (Fig. S2 and
Table S1), and (iii) frequencies determined from behavioral ex-
perimental data (i.e., the intermediate SOAs). These approaches
are in detail:

i) As the critical frequency of the model, we chose the fre-
quencies showing a significant group-level phase angle
difference between the conditions intermediate2 and in-
termediate1 (8–20 Hz; Fig. 2B). We calculated the cycle
length for each frequency and then divided the length of the
respective SOA by the cycle length, thus calculating for each
cycle the ratio of time points for which the two stimuli would
fall into one cycle (one perceived stimulus) or into two cycles
(two perceived stimuli) (Fig. 3). Thereby, we calculated the
predicted response rate per frequency bin, and subsequently
averaged predicted response rates over all frequencies show-
ing a significant group-level phase angle difference between
perceptual conditions (8–20 Hz). Finally, we computed the
mean response rate and SEM across all frequencies. We sta-
tistically compared these predicted response rates with the
group-level average of the measured behavioral response rates
(Fig. 4) by first computing the correlation coefficients of the
linear regression for the predicted and behavioral response
rates under the premise of a y-axis intercept at (0,0). The
correlation coefficient assesses the goodness of correlation
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between the predicted response rates and the behavioral
response rates. Next, we compared the resulting slope esti-
mate with the slope resulting from an ideal fit (i.e., 1) by
means of a one-sample, two-tailed t test. By this approach,
we were able to test if the predicted response rate linearly
agrees with the behavioral response rate over the different
SOAs or if a systematic over- or underestimation is present
(which would lead to a significant difference between slope
estimate and ideal slope).

ii) Additionally, we predicted response rates on a single-sub-
ject level. According to our model, subjects with different
intermediate SOAs should exhibit different critical frequen-
cies, which, in turn, determine their respective perceptual
cycles and predict individual response rates. To determine
individual critical frequencies, individual F values resulting
from the Watson–Williams test were summed up over all
time points of the significant group-level effect (−0.53 to
−0.09 s) separately for each frequency of the significant
group-level effect (8–20 Hz). For each subject, the frequency
showing the maximum F values was selected as the individ-
ual critical frequency, for which we calculated predicted in-
dividual response rates according to the analysis on the
group level (discussed above). Similarly, we computed and

compared the slopes of the linear regressions for the indi-
vidual predicted and individual behavioral response rates.
To compare the individual response rate predictions with
the group-level predictions based on the frequencies show-
ing significant group-level phase angle differences (discussed
above in i), we averaged predicted individual response rates
over subjects and compared the slope of the linear regres-
sion for the predicted and behavioral response rates accord-
ing to the aforementioned analysis.

iii) To compare the predictions based on the critical frequen-
cies determined from MEG experimental data with a
model based on the behavioral experimental data, we cal-
culated the critical frequency based on the average inter-
mediate SOA length and group-level behavioral response
rates (Fcrit = ratio of perceived two stimuli reports/mean
length intermediate SOA p 1,000). We then predicted re-
sponse rates and computed the resulting slope (discussed
above). Likewise, we computed individual critical frequen-
cies determined from behavioral experimental data (based
on individual intermediate SOAs and individual response
rates). We averaged the resulting individual critical fre-
quencies over subjects, and likewise predicted response
rates and computed the resulting slope.

Fig. S1. Time-frequency plot showing the phase angle differences between intermediate2 vs. intermediate1. Red colors indicate a higher angular difference.
Black outlines represent the extent of the significant group-level phase angle difference effect. t = 0 indicates the onset of the first stimulus.
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Fig. S2. Single-subject predicted and behavioral response rates. Proportions of perceived two stimuli reports for conditions with different SOAs for model
predictions based on the individual critical frequency determined from MEG experimental data (white bars) and for individual behavioral data (black bars). Hit
rates are presented as means. Individual critical frequencies are determined from MEG experimental data, the slopes specify for which the best fit between
predicted and behavioral response rates can be achieved, and P values specify if the respective slope differs significantly from 1.
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Abstract 18 

Neuronal oscillatory activity in the beta band (15-30 Hz) is a prominent signal within the human 19 

sensorimotor cortex. Computational modeling and pharmacological modulation studies suggest 20 

an influence of GABAergic interneurons on the generation of beta band oscillations. 21 

Accordingly, studies in humans have demonstrated a correlation between GABA concentrations 22 

and power of beta band oscillations. It remains unclear, however, if GABA concentrations also 23 

influence beta peak frequencies and whether this influence is present in the sensorimotor 24 

cortex at rest and without pharmacological modulation. In the present study, we investigated 25 

the relation between endogenous GABA concentration (measured by magnetic resonance 26 

spectroscopy) and beta oscillations (measured by magnetoencephalography) at rest in humans. 27 

GABA concentrations and beta band oscillations were measured for the left and right 28 

sensorimotor and occipital cortex. A significant positive linear correlation between GABA 29 

concentration and beta peak frequency was found for the left sensorimotor cortex, whereas no 30 

significant correlations were found for the right sensorimotor and the occipital cortex. The 31 

results show a novel connection between endogenous GABA concentration and beta peak 32 

frequency at rest. This finding supports previous results that demonstrated a connection 33 

between oscillatory beta activity and pharmacologically modulated GABA concentration in the 34 

sensorimotor cortex. Furthermore, the results demonstrate that for a predominantly right-35 

handed sample, the correlation between beta band oscillations and endogenous GABA 36 

concentrations is evident only in the left sensorimotor cortex.  37 



3 
 

Introduction 38 

Oscillatory activity in the beta (15-30 Hz) frequency range is a prominent signal in the human 39 

sensorimotor cortex, both at rest and during motor activity [1–4]. Beta band activity differs 40 

across areas and depends on motor output (see [5] for a review). For example, beta band power 41 

in sensorimotor cortex decreases during movement, whereas beta band power increases 42 

following movement [6]. 43 

The majority of studies on beta band activity investigated the role of power (e.g., [7,8]). In 44 

addition to power, there is increasing evidence that beta peak frequency (i.e., the frequency 45 

within the beta band with the highest power) is an important and functionally relevant 46 

parameter of oscillatory activity [9]. Beta peak frequency differs across distinct recording sites 47 

within the sensorimotor cortex [1]. Furthermore, beta peak frequency differs during movement 48 

and stimulation of lower and upper limbs, thereby distinguishing between different 49 

somatotopic representations [10]. Finally, beta peak frequency seems to be an important factor 50 

for the communication between cortical areas and muscles during movement. For example, 51 

neuronal activity in the motor cortex and electromyographic activity during movement is 52 

coherently coupled at ~20 Hz [11]. This 20 Hz motor cortical activity is thought to optimize 53 

motor output by maximal recruitment of motor neurons at a minimum discharge in the 54 

pyramidal tract [11]. 55 

Animal and modeling studies provide evidence for an essential role of GABAergic interneuronal 56 

activity for the generation of beta oscillations in the sensorimotor cortex [12–14]. For example, 57 

a study using modeled neuronal networks found increases in the power of beta band 58 
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oscillations to result from an increase in the synaptic conductance of GABAA-mediated inhibition 59 

[12]. Further, studies demonstrated increases in human beta power [7,8,12,15,16] as well as 60 

decreases in beta peak frequency [12] (but see [16,17]) as a result of pharmacological 61 

GABAergic modulation. Such modulations of beta power were evident at rest [7,12] as well as 62 

after motor output [8,15,17]. 63 

While the abovementioned studies demonstrated a causal link between GABA administration 64 

and changes in beta band power and peak frequencies, the concentration of GABA and its direct 65 

modulation in sensorimotor cortex was not measured. Thus the quantitative relation remains 66 

unclear. Magnetic resonance spectroscopy (MRS) offers a non-invasive method for in vivo 67 

quantification of endogenous neurotransmitter concentrations in spatially restricted cortical 68 

regions [18]. While this approach has initially been applied to estimate GABA concentrations 69 

especially in occipital cortical areas (e.g., [19,20]), recent studies also focused on the 70 

sensorimotor cortex (e.g., [16,21,22]). These studies demonstrated a linear relationship 71 

between sensorimotor GABA concentration and post-movement oscillatory beta power. In 72 

contrast, no relationship could be demonstrated between sensorimotor GABA concentration 73 

and post-movement oscillatory beta peak frequency [16]. Taken together, there are consistent 74 

results supporting a general relationship between GABA concentration and beta band power in 75 

sensorimotor cortex areas. Contrarily, the results concerning beta band peak frequency are less 76 

consistent. Therefore, the question remains whether beta peak frequency is related to GABA 77 

concentrations and if such a potential relation is present at rest (i.e., without movement) and 78 

for endogenous (i.e., non-modulated) GABA concentrations.  79 
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Here, we investigated whether the peak frequency of ongoing beta band oscillations is 80 

correlated to endogenous GABA concentration in the sensorimotor cortex at rest. Beta peak 81 

frequencies were determined by magnetoencephalography (MEG) and individual GABA 82 

concentrations were measured by means of MRS. Peak frequencies were determined for the 83 

left and right sensorimotor cortex, as well as for a control region in the occipital cortex. For 84 

these three regions of interest (ROIs), we linearly related peak frequencies to GABA 85 

concentrations estimated for analogue cortical areas.  86 
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Materials & Methods 87 

Subjects 88 

15 subjects (7 male, age: 59.9 ± 9 years (mean ± SD)) participated after providing written 89 

informed consent in accordance with the Declaration of Helsinki and the Ethical Committee of 90 

the Medical Faculty, Heinrich-Heine-University Düsseldorf. All participants had normal or 91 

corrected to normal vision and reported no sensory impairments, known history of neurological 92 

disorders or use of neuro-modulatory medication. The subjects were selected from the healthy 93 

controls of a sample that was previously reported in [23]. 94 

Behavioral data 95 

Individual handedness was assessed by comparing bi-manual performance (hand dominance 96 

test (HDT) [24]). Categorization based on the performance measure resulted in 12 clearly right-97 

handed subjects (HDT score: 29.8 ± 8.1 (mean ± SD)) and 3 subjects with no clear hand 98 

preference (HDT score: -6.8 ± 9.7). 99 

Magnetic resonance spectroscopy (MRS) data 100 

Spectroscopy 101 

MRS data were recorded using a 3T whole-body MRI scanner (Siemens MAGNETOM Trio A TIM 102 

System, Siemens Healthcare AG, Erlangen, Germany) in connection with a 12-channel head 103 

matrix coil. Subjects were instructed to lie in the scanner, relax and refrain from any further 104 

activity. For the determination of neurotransmitter concentrations, MRS voxels (3x3x3 cm³) were 105 

placed in left and right sensorimotor cortices and occipital cortex (Fig 1A). For both 106 

sensorimotor cortices, voxels were centered on the respective ‘hand knob’ within the Gyrus 107 
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praecentralis [25], thus covering both motor and somatosensory cortex. The occipital MRS voxel 108 

was medially centered on the occipital lobe with the inferior boundary of the voxel aligned with 109 

the Tentorium cerebelli. For all subjects, voxel placement was performed with the focus to 110 

include a maximum portion of cortical volume, as well as a minimal volume of non-cerebral 111 

tissues to avoid any additional lipid contamination of the spectra. MRS voxels will be addressed 112 

as MRS ROIs (in contrast to MEG ROIs) subsequently. 113 

After the localization of target volumes by means of T1-weighted planning sequences, MEGA-114 

PRESS spectra [26] were acquired (number of excitations = 192, TR = 1500 ms, TE = 68 ms, V = 115 

3x3x3 cm³, bandwidth = 1200 Hz, 1024 data points). Spectral editing was performed by J-116 

refocusing pulses irradiated at 1.9 ppm and 7.5 ppm using Gaussian pulses with a bandwidth of 117 

44 Hz. Processing of MEGA-PRESS data was performed with the MATLAB-based tool GANNET 118 

2.0 [27], including frequency and phase correction of the single acquisitions as well as Gaussian 119 

fitting of the 3 ppm GABA resonance. For subsequent analyses, the GABA-to-creatine ratio 120 

(GABA/Cr) was used [28]. 121 

GABA/Cr estimates were not available for every MRS ROI in each subject (see results section for 122 

further details). Therefore, we applied two different statistical tests: 1) GABA/Cr concentrations 123 

were compared across the left, right and occipital MRS ROIs by means of a one-factor repeated-124 

measures ANOVA (with listwise deletion of values for all MRS ROIs of a single subject if a value 125 

was missing in one MRS ROI). 2) We additionally computed pairwise comparisons between MRS 126 

ROIs by means of paired-sample t-tests corrected for multiple comparisons by means of the 127 

Holm-Bonferroni procedure (see [29] for a similar procedure). Although this comparison also 128 

implemented listwise deletion of missing values, the respective deletions are determined for 129 
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each comparison separately, resulting in fewer deletions compared to the abovementioned 130 

ANOVA. This served to achieve a higher statistical power since more subjects could be included 131 

in the respective t-test comparisons. 132 

 133 

MEG data 134 

Experimental Design 135 

Subjects were seated in the MEG with all visual stimuli projected on the backside of a 136 

translucent screen (60 Hz refresh rate) positioned 57 cm in front of the subjects. Resting-state 137 

neuromagnetic activity was recorded during two sessions with a respective duration of 5 138 

minutes, with subjects being instructed to relax and refrain from any additional activity. In the 139 

first session, subjects had to focus a dimmed fixation dot (diameter: 0.5 degree) presented in 140 

the middle of the translucent screen (eyes open condition (EO)). After completing the first 141 

session, subjects were verbally informed regarding the beginning and the instructions of the 142 

second session. In the second session, subjects had to close their eyes (eyes closed condition 143 

(EC)) but remain awake during the measurement. Stimulus presentation was controlled using 144 

Presentation software (Neurobehavioral Systems, Albany, NY, USA). 145 

Data Recording and Preprocessing 146 

Continuous neuromagnetic brain activity was recorded at a sampling rate of 1000 Hz using a 147 

306-channel whole head MEG system (Neuromag Elekta Oy, Helsinki, Finland), including 204 148 

planar gradiometers (102 pairs of orthogonal gradiometers) and 102 magnetometers. Data 149 

analysis in the present study was restricted to the planar gradiometers. Electro-oculograms 150 

(EOGs) were recorded for offline artifact rejection by applying electrodes above and below the 151 
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left eye as well as on the outer sides of each eye. Further, an electro-cardiogram (ECG) was 152 

recorded for offline artifact rejection by means of two electrodes placed on the left collarbone 153 

and the lowest left rib. 154 

Data were offline analyzed using custom-made Matlab (The Mathworks Inc., Natick/MA, USA) 155 

scripts and the Matlab-based open source toolbox FieldTrip (http://fieldtriptoolbox.org; [30]). 156 

Continuously recorded data were divided into two epochs according to the respective session 157 

(EO and EC), starting 3 s after beginning and ending 3 seconds before the end of the respective 158 

task. Data were band-pass filtered at 1 Hz to 200 Hz and power line noise was removed by using 159 

a band-stop filter encompassing the 50, 100, and 150 Hz components. Data were detrended and 160 

the mean of every epoch was subtracted. Continuous data were segmented into trials of 1 s 161 

duration with a 0.25 s overlap. Subsequently, trials were semi-automatically and visually 162 

inspected for artifacts. Artifacts caused by muscle activity, eye movements or SQUID jumps 163 

were removed semi-automatically using a z-score based algorithm implemented in FieldTrip. 164 

Excessively noisy channels were removed. To further eliminate cardiac and ocular artifacts, an 165 

independent component analysis was computed. Mutual information was calculated between 166 

the resulting components and the EOG and ECG channels [31,32]. Components were sorted 167 

according to their level of mutual information and subsequently visually examined regarding 168 

their topography and time course. Those components showing high mutual information with 169 

EOG and ECG channels as well as topographies and time courses typical for cardiac and ocular 170 

artifacts were rejected. Afterwards, removed channels were reconstructed by an interpolation 171 

of neighboring channels. After artifact rejection, 292 ± 34.5 (mean ± SD) trials in the EC 172 

condition and 304 ± 35.4 trials in the EC condition remained for further analysis. Subsequent 173 
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analyses were performed separately for the EO and EC condition as well as for a combined data 174 

set created by appending the EO and EC condition (EC+EO). 175 

Frequency Analysis and Peak Frequency Determination 176 

To determine individual peak frequencies, we performed a frequency analysis encompassing all 177 

frequencies of the beta-band (15 to 30 Hz; [6,33]) by applying a Fourier transformation over the 178 

entire trial duration. Trials were tapered with a single Hanning taper, resulting in a spectral 179 

resolution of 1 Hz. Within each condition, spectral power was averaged over all trials for each 180 

frequency separately. Power was estimated independently for each of the 204 gradiometers. 181 

Subsequently, gradiometer pairs were combined by summing spectral power across the two 182 

orthogonal channels, resulting in 102 pairs of gradiometers. 183 

Since GABA-concentrations were assessed for three different MRS ROIs (left and right 184 

sensorimotor cortex, occipital cortex; see Fig 1A and methods section (MRS data, Spectroscopy) 185 

for details), we determined corresponding MEG ROIs by selecting 6 sensor pairs in the left and 6 186 

sensor pairs in the right hemisphere covering the respective sensorimotor cortices (Fig 2A). The 187 

selection of sensors was based on previous studies [34,35]. In addition, we selected 6 posterior 188 

sensor pairs covering the occipital cortex [36]. 189 

Individual beta peak frequencies were determined within each MEG ROI separately for each 190 

subject. For each subject, the frequency showing the maximum power within the predefined 191 

beta-band (15-30 Hz) was selected as the individual peak frequency. Beta peak frequencies 192 

were statistically compared between the three MEG ROIs and the three conditions by means of 193 

a two-factor repeated-measures ANOVA (main factors: MEG ROI (left sensorimotor, right 194 
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sensorimotor, occipital) and condition (EO, EC, EC+EO)). In case of violations of sphericity, 195 

Greenhouse-Geisser corrected values were reported. 196 

Correlation of MRS and MEG data 197 

In order to examine the relationship between GABA/Cr concentrations and resting-state 198 

neuromagnetic brain activity, we linearly correlated individual GABA/Cr concentrations within 199 

the respective MRS ROIs with the beta band peak frequencies determined for the corresponding 200 

MEG ROIs. We computed correlations within each ROI (e.g., between left sensorimotor MRS ROI 201 

and left sensorimotor MEG ROI), thus resulting in 3 correlations for each condition (EO, EC, 202 

EC+EO). In addition, we corrected the respective correlations for the HDT handedness scores by 203 

means of partial correlation (Pearson).   204 
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Results 205 

GABA/Cr concentrations 206 

GABA/Cr values were determined in left sensorimotor, right sensorimotor and occipital MRS 207 

ROIs (Fig 1). Due to cancellation of the measurements or distorted spectra, GABA/Cr 208 

concentrations could not be estimated for the left sensorimotor, right sensorimotor and 209 

occipital MRS ROI in 4, 2, and 1 subjects, respectively (see Table 1 for a summary of GABA/Cr 210 

estimates). For the remaining subjects, a one-factor repeated-measures ANOVA yielded no 211 

significant difference between GABA/Cr concentrations in the 3 MRS ROIs (F(2, 16) = 2.06, p = 212 

0.16; Fig 1B). Likewise, paired-sample t-tests yielded no significant differences in GABA/Cr 213 

concentration between MRS ROIs (p > 0.017, after correction for multiple comparisons). 214 

 215 

MEG data 216 

Beta peak frequencies could be determined in all subjects (Fig 2B; Table 2). A two-factor 217 

repeated measures ANOVA comparing beta peak frequencies for the factors MEG ROI (left 218 

sensorimotor, right sensorimotor, occipital) and condition (EO, EC, EC+EO) demonstrated a 219 

highly significant main effect for the factor MEG ROI (F(1.43, 19.97) = 7.27, p < 0.01; Fig 2C). 220 

Post hoc t-tests revealed a significant difference between peak frequencies in left sensorimotor 221 

MEG ROI vs. occipital MEG ROI (p < 0.01) and between peak frequencies in the right 222 

sensorimotor MEG ROI vs. the occipital MEG ROI (p < 0.05). For the factor condition, no 223 

significant main effect was found (F(2, 28) = 1.17, p > 0.05). Since no significant results could be 224 

found for the factor condition, we chose the combined condition EC+EO for visualization 225 
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purposes in Fig 2B. Likewise, an ANOVA did not reveal a significant interaction between the 226 

factors ROI and condition (F(2.06, 28.77) = 0.49, p > 0.05). 227 

Correlation of MRS and MEG data 228 

We computed linear correlations between GABA/Cr concentrations determined in MRS ROIs 229 

and beta peak frequencies determined in MEG ROIs, separately for each of the three ROIs (left 230 

sensorimotor cortex, right sensorimotor cortex, occipital cortex). Correlation analyses revealed 231 

significant linear correlations in the left sensorimotor ROI (EO: r = 0.62, p < 0.05, EC: r = 0.62, p < 232 

0.05, EC+EO: r = 0.73, p < 0.05; Fig 3A). No significant correlations were found in the right 233 

sensorimotor ROI (EO: r = -0.14, p > 0.05, EC: r = -0.07, p > 0.05, EC+EO: r = -0.13, p > 0.05; Fig 234 

3B). Similarly, no significant correlations were found in the occipital ROI (EO: r = 0.24, p > 0.05, 235 

EC: r = 0.09, p > 0.05, EC+EO: r = 0.35, p > 0.05; Fig 3C). Since, within each ROI, correlations were 236 

highly similar across conditions, we selected the combined condition EC+EO for visualization 237 

purposes in Fig 3. Further, correlations within the respective ROIs statistically remained highly 238 

similar when correlations were restricted to those subjects for whom valid MRS spectra could 239 

be determined for all 3 MRS ROIs (see section MRS data above). 240 

We only found correlations between GABA/Cr concentrations and beta peak frequencies to be 241 

significant for the left sensorimotor ROI. Because the majority of the subjects (12/15) were 242 

classified as right-handed by means of the HDT performance measure, we additionally 243 

investigated the influence of handedness on the relationship between GABA/Cr concentration 244 

and beta peak frequency. Therefore, we partialized out the effect of handedness (assessed by 245 

the HDT performance measure) on the correlations between GABA/Cr concentration and beta 246 

peak frequencies. We found a significant correlation between GABA/Cr concentration and beta 247 
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peak frequencies for the left sensorimotor cortex for the EO and EC+EO conditions (EO: r = 0.69, 248 

p < 0.05, ECEO: r = 0.77, p < 0.01), and a strong trend towards significance for the EC condition (r 249 

= 0.6, p = 0.07). No significant correlations were found for the right sensorimotor and occipital 250 

cortex.  251 
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Discussion 252 

Using magnetoencephalography (MEG) and magnetic resonance spectroscopy (MRS) in healthy 253 

human subjects, we investigated the relationship between beta peak frequencies at rest and 254 

endogenous (i.e., non-modulated) GABA/Cr concentrations in the left and right sensorimotor 255 

and occipital cortex. The results show significant positive linear correlations between peak 256 

frequencies in the beta-band (15-30 Hz) and GABA/Cr concentrations for the left sensorimotor 257 

cortex, i.e., higher beta peak frequency was related to a higher GABA/Cr concentration.  258 

The present study is one of the first to investigate the connection between beta peak frequency 259 

at rest (i.e., without movement or a movement-related task) and non-modulated GABA/Cr 260 

values in the sensorimotor cortex. Previous studies that have addressed the general question if 261 

sensorimotor beta activity is related to the GABAergic system, applied pharmacological 262 

GABAergic modulators [7,8,12,15,17] and/or investigated movement-related sensorimotor beta 263 

activity [8,15–17]. By focusing exclusively on non-modulated (i.e., no movement-related and 264 

pharmaco-induced manipulation) parameters, the present study was able to show a correlation 265 

between GABA/Cr concentrations and beta peak frequency at rest. 266 

Beta peak frequencies differed across measurement sites. While left and right sensorimotor 267 

cortices showed clear peaks in the beta-band in all subjects (Fig 2B), beta peaks were less 268 

prominent in the occipital cortex, with five subjects showing no clear peak. This is in agreement 269 

with the specific role of beta band activity for the sensorimotor cortex [1,4], while beta band 270 

activity in occipital regions is less common. Less clear peaks in the beta band for the occipital 271 

ROI might be a reason why correlations between GABA/Cr concentrations and beta peak 272 
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frequencies were only found for the sensorimotor cortex. This interpretation, however, cannot 273 

account for the lack of a significant correlation in right sensorimotor areas, since we found clear 274 

peaks in the right sensorimotor cortex for all subjects. Because GABA/Cr concentrations across 275 

MRS ROIs did not differ significantly, it is also unlikely that GABA/Cr concentrations are 276 

responsible for the unilaterality. Since 12 of 15 subjects in the present study were classified as 277 

right-handed, handedness might be an explanation for the unilaterality of the correlation. 278 

However, correlations remained significant even after correcting for handedness. This finding 279 

suggests that handedness alone is unlikely to account for the differences between left and right 280 

sensorimotor cortices. Handedness, however, is known to lead to asymmetries with respect to 281 

hand representations in the sensorimotor cortex [37–39]. Such asymmetries might lead to 282 

regional differences in GABA/Cr concentration and/or generators of beta frequencies in left and 283 

right sensorimotor areas. The rather large size of the MRS ROIs poses an additional challenge, 284 

since for such voxel sizes it is not possible to separately measure GABA/Cr concentrations for 285 

motor and somatosensory cortex. Although smaller voxel sizes are possible [21], they result in 286 

extended measurement time for a comparable signal to noise ratio. Thus, although GABA/Cr 287 

concentrations did not significantly differ between left and right sensorimotor MRS ROIs, our 288 

method might have measured more GABA/Cr concentrations that are unrelated to beta 289 

frequency generations in right sensorimotor cortex (i.e., more “noise”). More fined-grained 290 

analyses might resolve this problem and shed further light on the relation between GABA 291 

concentration and beta peak frequencies. In addition, it would be interesting to assess both left 292 

and right-handed populations in future studies to further elucidate the effect of handedness on 293 

GABAergic concentrations in sensorimotor cortices.  294 
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A general limitation of GABA measurements via MRS is that this method in unable to 295 

differentiate between synaptic and extra-synaptic GABA concentrations [22]. Nonetheless, 296 

GABA concentrations measured by MRS might primarily reflect extra-cellular GABA 297 

concentrations, i.e., the general GABAergic tone [40]. Contrary to intra-cellular GABA 298 

concentrations, extra-cellular GABA concentrations would include synaptic concentrations. Beta 299 

band oscillations would be primarily related to synaptic GABA concentrations, since this 300 

represents the synaptically active neurotransmitter pool [15]. Thus, our results represent 301 

correlations with the overall GABA/Cr concentration of a given voxel, not exclusively for the 302 

synaptically active GABA concentration. Despite all potential limitations, we were able to 303 

demonstrate a significant positive correlation between GABA/Cr concentration and beta peak 304 

frequency. In addition, various studies using parameters similar to the present study proved 305 

that GABA MRS in sensorimotor and occipital cortices yields feasible results (reviewed in [22]). 306 

The general feasibility of GABA MRS is further supported by studies that link MRS-derived 307 

neurotransmitter concentrations to functional and behavioral measurements [21]. 308 

Neuronal oscillations are thought to depend on the balance between excitatory (i.e., 309 

glutamatergic synaptic input) and inhibitory (i.e., GABAergic synaptic input) network 310 

components [12,41,42]. For beta band activity in the sensorimotor cortex, a connection 311 

between GABAergic tone and beta band oscillations is supported by studies reporting increases 312 

in somatosensory beta band power as an effect of GABAergic modulation by means of 313 

GABAergic agonists (e.g., benzodiazepine) [7,12,15,17]. The relation between GABAergic 314 

agonists and beta peak frequencies, however, is less clear. While, Jensen and colleagues [12] 315 

reported a small decrease (~1.6 Hz) in resting-state beta peak frequency in bilateral 316 
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sensorimotor cortices after the administration of benzodiazepine, Baker and Baker [17] found 317 

no modulation of beta peak frequency after the administration of benzodiazepine. The 318 

GABAergic agonist benzodiazepine is considered to enhance the synaptic GABAergic drive [12]. 319 

Simplified, an enhanced GABAergic drive could be related to an increased GABAergic 320 

concentration, which would contradict the positive correlation between beta peak frequency 321 

and GABA/Cr levels in the left sensorimotor cortex observed in the present study. Yet, various 322 

differences between the studies have to be taken into account. First, Jensen et al. [12] and 323 

Baker and Baker [17] measured the influence of pharmacological GABA modulations on beta 324 

peak frequencies on the within-subject level. The present study measured non-modulated GABA 325 

concentrations and investigated correlations on a between-subject level. Further, while we 326 

report a correlation for the left sensorimotor cortex, Jensen and colleagues [12] averaged beta 327 

peak frequency over bilateral sensorimotor cortices (thereby not investigating lateral 328 

differences). Finally, we measured mostly right-handed subjects, so that an influence of 329 

handedness cannot be excluded. The abovementioned studies do not report handedness of 330 

their subjects, making a direct comparison difficult. 331 

Gaetz and colleagues [16] found no correlation between beta peak frequency during post-332 

movement beta-rebound and endogenous GABA concentrations for the left motor cortex. Post-333 

movement beta-rebound, however, is intrinsically different from resting state beta activity, as 334 

measured in our study. Any differences found between our study and Gaetz et al. [16] might 335 

thus be related to different tasks. Taken together, the few existing studies focusing on the 336 

connection between beta peak frequency and GABA concentrations in sensorimotor cortex 337 
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areas strongly vary in experimental setting and assessed parameters, thereby complicating a 338 

comparison to our results. 339 

For future studies, it would be interesting to determine how sensorimotor beta peak frequency 340 

and GABA concentration both relate on a behavioral level. There is evidence that higher 341 

sensorimotor GABA concentrations correlate with slower reaction times in a motor sequence 342 

learning task [43]. Here, slower reaction has been interpreted as a result of higher levels of 343 

inhibition. Furthermore, higher concentrations of sensorimotor GABA have been related to 344 

lower discrimination thresholds in a tactile frequency discrimination task [21]. The authors 345 

associated higher GABA concentrations with a potentially higher temporal resolution of tactile 346 

perception, which would enable neurons to more closely tune their responses to the stimulus 347 

cycles. Such an adjustment of neuronal response to stimulus frequency is considered as the 348 

underlying mechanism of the connection between sensorimotor GABA levels and frequency 349 

discrimination and to result in lower frequency discrimination thresholds. The influence of 350 

oscillatory beta activity on behavioral parameters is less clear. Studies relating individual beta 351 

peak frequencies to measures of functional performance apart from motor-related tasks are 352 

scarce. Differences in the phase of ongoing beta band oscillations in the somatosensory cortex 353 

have been shown to predict the temporal perception of subsequently presented tactile stimuli 354 

[44]. Here, the specific beta band frequency showing the biggest phase differences predicted 355 

the temporal resolution of tactile perception. Perfetti and colleagues [45] found beta power 356 

variations to successfully predict mean reaction time in a visually guided motor task, with a 357 

decrease of beta power in left sensory-motor areas corresponding to faster reaction times. In 358 

line with this, lower beta-power levels during the time of stimulus presentation were related to 359 
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a faster reaction towards this stimulus [46]. Taken together, these results suggest an 360 

involvement of GABA concentrations and beta band activity within the sensorimotor cortex in 361 

the temporal dimension of tactile perception. Thus, further research should investigate if GABA 362 

concentration and beta band activity show similar connections to behavioral parameters 363 

assessed in parallel. 364 

In conclusion, the present study shows a significant linear correlation between beta peak 365 

frequency at rest and non-modulated endogenous GABA concentration measured by spectrally 366 

edited MRS. Significant correlations were restricted to the left sensorimotor cortex area. While 367 

previous studies revealed connections between GABA concentrations and beta band power, our 368 

results provide a novel connection between GABA concentrations and peak frequencies in the 369 

beta band. In line with previous results from studies using pharmacological modulation of GABA 370 

concentrations, these results support a specific role of GABAergic inhibition in the generation of 371 

oscillatory beta-band activity within the sensorimotor system.  372 
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Figures 373 

 374 

Fig 1. Localization of MRS ROIs and average GABA/Cr concentrations across MRS ROIs. A) Placement of 375 

the occipital voxel in the sagittal plane (1), placement of the left sensorimotor voxel, centered on the 376 

hand knob, in the axial (2) and sagittal (3) planes. B) Average GABA/Cr concentrations for the left and 377 

right sensorimotor and occipital MRS ROIs. Error bars represent standard deviations. No significant 378 

difference between voxels was found (p >= 0.16). 379 

 380 

 381 

Fig 2. Sensor selection for respective MEG ROIs, individual beta peak frequencies and average 382 

beta peak frequencies across MEG ROIs. A) Sensors for left sensorimotor MEG ROI (orange 383 

triangles), right sensorimotor MEG ROI (blue dots) and occipital MEG ROI (black diamonds). B) 384 

Individual beta peak frequencies for all 15 subjects (EC+EO condition) for left sensorimotor MEG 385 

ROI (orange lines), right sensorimotor MEG ROI (blue lines) and occipital MEG ROI (black lines). 386 
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C) Average beta peak frequencies separately for all conditions (EO, EC, EC+EO) and all MEG 387 

ROIs. Error bars represent standard deviations. *: p < 0.01; **: p < 0.05. 388 

 389 

 390 

Fig 3. Correlation of beta peak frequencies and GABA/Cr concentration. (A) Beta peak 391 

frequencies calculated for the left sensorimotor MEG ROI and the EC+EO condition correlated 392 

with GABA/Cr estimates from the left sensorimotor MRS ROI. (B) Same as (A), but now for right 393 

sensorimotor MEG and MRS ROI. (C) Same as (A), but now for occipital MEG and MRS ROI. 394 

Subject GABA/Cr      

  

Left 
Sensori-
motor 

Right 
Sensori-
motor Occipital 

1 0.1097 0.1083 0.1054 

2 0.0798 0.0713 0.1197 

3 0.1035   0.1087 

4 0.0995 0.1011 0.1056 

5 0.0844 0.0886 0.0940 

6   0.0914 0.1213 

7   0.0730 0.1134 

8   0.1004 0.1166 

9     0.1110 

10 0.0948 0.1045 0.1073 

11 0.0920 0.1187 0.1083 

12 0.1078 0.0962   

13 0.1085 0.1014 0.1034 

14 0.0781 0.0908 0.0783 

15 0.0862 0.1079 0.1000 

Mean 0.0949 0.0964 0.1066 

SD 0.0117 0.0135 0.0110 

Table 1: GABA/Cr values per MRS ROI 395 

 396 
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Beta peak frequency (Hz) 

Subject Left Sensorimotor Right Sensori-motor Occipital 

  EO EC ECEO EO EC ECEO EO EC ECEO 

1 19 19 19 19 19 19 19 19 19 

2 17 17 17 18 16 17 17 17 17 

3 24 18 24 24 18 24 15 17 16 

4 19 16 19 19 19 19 16 15 15 

5 18 18 18 18 30 30 15 15 15 

6 18 18 18 18 18 18 17 19 19 

7 19 19 19 19 19 19 15 15 15 

8 18 19 20 18 17 17 16 15 16 

9 17 18 18 17 20 17 17 17 17 

10 19 19 19 19 19 19 15 15 15 

11 17 17 17 15 17 17 16 16 16 

12 25 25 25 25 25 25 15 22 22 

13 18 21 21 18 15 15 20 20 20 

14 16 15 16 17 15 16 15 17 15 

15 19 19 19 19 20 19 15 15 15 

Mean 18.87 18.53 19.27 18.87 19.13 19.4 16.2 16.93 16.8 

SD 2.47 2.29 2.46 2.53 3.87 3.98 1.57 2.17 2.21 

Table 2: Beta peak frequencies per MEG ROI and condition 397 

398 
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