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Abstract iii 

Abstract 
 

One of the most important questions in human and animal behavior is, without a 

doubt, the question of why we behave the way we do. A major aspect of the discussion 

can be narrowed down to the concept of motivation and incentives.  That means that 

our behavior is often guided by the expectation of a positive reward, whether 

monetary or social. Thus, whenever a reward is available, it is assumed that we behave 

a particular way in order to receive it. One important field of research within 

neuroeconomics and behavioral economics is, therefore, the study of how changes in 

incentives can shape behavior and how social reward is integrated and valuated in our 

decision-making processes.  

 

  Two main drivers—monetary and social reward—influence our behavior and 

decision making. On the one hand, we derive rewards from social interaction, and 

social considerations modulate decision making to a significant degree, e.g. sharing a 

good bottle of wine instead of drinking it alone. The pure value of a bottle of wine 

might be higher when I drink it alone because I get all the wine for myself. However, I 

might have a hangover on the next day. This fact might also affect my decision. It is 

likely that when I opt to share the bottle of wine with my dearest friends, I get less 

wine, but I also experience the wine as being more rewarding. Thus, although the 

absolute reward is lower, the subjective value is significantly higher, adding a social 

reward to the reward of the wine itself. Of course, sharing it with a friend is more 

rewarding than sharing it with a stranger. Thus, my willingness to forego a reward 

(that is, the wine) is dependent on the perceived social distance between me (the 

decision-maker) and the recipient. Overall, we make social decisions constantly and 

can consider them trade-offs between selfish goals and social considerations. At the 

same time, we often use monetary rewards to modulate behavior in favorable ways, 

for instance, bonus systems in companies and monetary incentives for good grades at 

school. The monetary incentive is likely to modulate the amount of effort that one puts 

into a good performance. Overall, these two reward systems can be considered the 

main drivers of human behavior.  

 

The two drivers demonstrate how rewards, either social or monetary, influence 

our behavior and show that these incentives are constantly present. I am investigating 

the effect of changes in these incentives in a series of three studies. In the first study, 

we remove and introduce monetary incentives, leading to changes in the motivation to 
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perform well. We show that the changes in the incentives correlate with changes in 

BOLD activity in the ventral striatum. Thus, the BOLD activity increases when 

monetary incentives are introduced and decreases when monetary incentives are 

removed. Task-related activity does not alter in response to changes in incentives. We 

suggest that the reward system initiates the change in performance, leading to a 

different degree of engagement and motivation to perform.   

 

In the second study, we focus on the social aspect of reward processing and 

investigate a biologically plausible model of prosocial choice by applying a social 

discounting experiment to the fMRI scanner environment. By varying social distance 

and selfish reward magnitude, we show that the temporoparietal junction (TPJ) tracks 

the temptation to be selfish, suggesting that the TPJ balances prosocial and selfish 

considerations. Also, connectivity between the TPJ and the ventromedial prefrontal 

cortex (VMPFC), a region associated with subjective value computation, is higher for 

social decisions than for egoistic ones. We suggest that the TPJ modulates basic value 

signals in the VMPFC, upregulating the value of generous choices. 

 

Another open question in the decision sciences is that of how environmental 

distractions affect decision making, that is, prosocial choice behavior. Therefore, in the 

third study, we investigate the influence of cognitive load on social distance-dependent 

generosity. Previous research indicates ambiguous results for the effect of cognitive 

load. We suggest that the diverse findings could be explained using the social distance 

approach. While generosity decreases at closer social distances, generosity increases at 

larger social distances. The results indicate that this is indeed the case. However, men 

drive the effect. In fact, we find an interaction between the level of cognitive load and 

gender.  

 

With the studies I present in this dissertation, I contribute to the development 

of a multidimensional view of the processing of rewards in general and performance-

based monetary and social distance-dependent social rewards in particular. 
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 Outlook 
 

In this dissertation, I focus on two important drivers of human behavior. On the one 

hand monetary rewards are key drivers in the world today. On the other hand, social 

considerations and prosocial behavior are cornerstones of human society. In the first 

part of this dissertation, I introduce the idea of behavioral economics and 

neuroeconomics. I also introduce important features of functional magnetic resonance 

imaging (fMRI), which allows the investigation of changes in brain activity in a non-

invasive manner.  Moreover, I present the concept of reward and value in human 

decision making and examine monetary rewards from a psychological and economic 

perspective. I present previous work on the neural underpinnings of monetary 

incentives. Ultimately, I introduce social rewards and previous research on the neural 

response to social rewards. 

 

In the second part of this dissertation, I present three studies that were 

conducted to investigate the processing of rewards and the underlying valuation 

processes of monetary and social rewards and discuss the conclusions and impact of 

the studies. I end with a general conclusion, discussing the contribution of the 

dissertation to the scientific community and future research opportunities. 

 

 



 

 

 



PART I 2 

1. Behavioral Economics and Neuroeconomics 
 

 

“Almost all economic models assume that all people are exclusively pursuing their 

material self-interest and do not care about “social” goals per se. This may be true for 

some (may not many) people, but this is certainly not true for everybody” (Fehr & 

Schmidt, 1999, p. 817). 

 

 

In canonical models of economic behavior, the individual is expected to solely have 

self-regarding preferences to maximize his or her own reward (Camerer & Fehr, 2006; 

Camerer & Loewenstein, 2004; Camerer, Loewenstein, & Prelec, 2005). Those theories 

are based on the assumption that humans are rational and unemotional in their 

decision making and decisions are exclusively directed towards optimizing the cost-

benefit function of expected choice outcomes (Becker, 1974; Fehr & Schmidt, 1999). 

Economic theory offers tools to estimate how people will change their behavior in 

response to changes in incentives (Falk, Gächter, & Kovács, 1999; Fehr & Falk, 2002) .  

In this context, all behavior is performed to increase one’s own supply of food, money, 

or even well-being. Indeed, these incentives modulate behavior to a great extent and 

self-interest is undoubtedly a strong motivator that can explain a multitude of 

economic phenomena. However, researchers agree that more factors influence 

behavior. Human beings show non-opportunistic and reciprocal behavior and other 

“anomalies” or “paradoxes” that are not explicable by the traditional concept (Kenning 

& Plassmann, 2005; Tversky & Kahneman, 1981). As a consequence, researchers have 

formalized psychological ideas and ultimately translated them into testable 

predictions. The emerging field of research might be called behavioral economics. It 

aims to develop more realistic theories of economic choice. Therefore, it has added 

parameters to the standard economic models. As a result, the models are more 

complex but more realistic (Camerer & Loewenstein, 2004). The additional parameters 

might include preferences such as fairness, reciprocity, and equality, and they may be 

able to explain complex behavior, such as strategic interactions, that pure self-interest 

cannot explain. Adam Smith was the first to integrate psychological principles into 

economic theory (Smith, 1759). In one instance, he stated that “we suffer more […] 

when we fall from a better to a worse situation, than we ever enjoy when we rise from 

a worse to better” (Smith, 1759, p. 311). Thus, Adam Smith indicated that loss aversion 

was a determinant of behavior and decision making.  
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Tversky and Kahneman (1974) developed a theory that systematically 

integrated psychological principles into economic theory. Prospect theory states that 

not only is the expected utility of an option taken into account (Morgenstern & Von 

Neumann, 1953), but potential losses and gain are also evaluated differently using 

certain heuristics (Tversky & Kahneman, 1974, 1981). Moreover, according to the 

theory, losses are weighted more heavily than gains, changing the expected utility 

from a pure cost-benefit analysis to a subjective value context. Overall, psychological 

principles became more and more important for developing more realistic models of 

economic choice and human decision making. 

 

Ernst Fehr extended the theoretical framework further and was one of the first 

to integrate social preferences such as fairness and reciprocity as parameters in a 

theory of economic decision making (Camerer & Fehr, 2006; Fehr & Falk, 2002; Fehr & 

Gächter, 1998, 1999, 2000, 2002; Fehr & Schmidt, 1999; Henrich et al., 2001). Social 

interactions, like social contact and closeness, as well as other-regarding preferences 

like fairness, modulate behavior and make us social beings (Fehr & Schmidt, 1999; 

Glimcher & Fehr, 2013; Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 2006). For 

example, sharing a bottle of wine might be more rewarding than drinking it alone. So, 

in absolute measures, we may have less of the reward, i.e., wine, but we experience it 

as more rewarding when sharing it with others. Thus, other-regarding behavior or 

social preferences are a “characteristic of an individual’s behavior or motives, 

indicating that the individual cares positively or negatively about others’ material 

payoff or well-being” (Glimcher, Camerer, Fehr, & Poldrack, 2009, p. 216).  

 

In recent years, Fehr and his colleagues also played key roles in the 

development of the field of neuroeconomics (Eisenegger, Haushofer, & Fehr, 2011a, 

2011b; Fehr & Camerer, 2007; Glimcher & Fehr, 2013; Haushofer & Fehr, 2008; Knoch et 

al., 2006; Morishima, Schunk, Bruhin, Ruff, & Fehr, 2012). Neuroeconomics is the 

interdisciplinary combination of three originally distinct disciplines (Camerer et al., 

2005; Glimcher, 2004; Glimcher et al., 2009; Glimcher & Fehr, 2013; Glimcher & 

Rustichini, 2004; Kenning & Plassmann, 2005; Sanfey, Loewenstein, McClure, & Cohen, 

2006): neuroscience, psychology, and economics. Economics is composed of theories 

that capture generalized behavior, which means that these approaches do not 

incorporate individuals’ variability (Fehr & Falk, 2002). Nevertheless, it offers a 

powerful approach to the econometric reconstruction of individuals’ decision making 

by investigating an accumulated level of decisions (Kenning & Plassmann, 2005).  

Economic theories lack the psychological insights that aim to explain individual 
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decisions. Thus, while economists are primarily interested in the accumulated level of 

behavior, psychologists are interested in the motivation behind individuals’ decisions. 

As a result, behavioral economics aims at integrating psychological approaches into 

economic theory. It seems compelling that the combination of psychology and 

economics makes economic theory more realistic.  

 

The integration of neuroscientific methods into behavioral economics offers the 

opportunity to describe decision-making processes on an additional, more objective 

level: that of brain activity. The origin of every decision we make is in the brain. 

Therefore, it seems natural to study the brain to understand how decisions are formed 

and how options in a decision problem are compared, for example, choosing money 

over food or a Snickers bar over a Mars bar. Over recent years, neuroeconomics has 

garnered attention as it combines methods from neuroscience, theories from the field 

of psychology, and models from economics to model behavior on an individual level. 

However, neurobiological methods offer a possibility for investigating cognitive 

processes at an objective level and for observing brain activities that underlie behavior. 

It has also been shown that the brain computes the values of rewards in a way that can 

be econometrically modulated and tested (Kable & Glimcher, 2007; McClure, Laibson, 

Loewenstein, & Cohen, 2004). Economics offers a possibility for formally describing 

brain mechanisms and cognitive functioning and demonstrates that the 

interdisciplinary approach can contribute to the creation of models of economic 

behavior that are based on more realistic assumptions about human behavior.  

 

 

1.1 Methods used in Neuroeconomics 

 

The earliest insights into the relationship between specific brain regions and cognitive 

functions implicated in decision making came from patients with frontal lobe damage 

(Damasio, Tranel, & Damasio, 1990; Rudebeck, Bannerman, & Rushworth, 2008). The 

studies showed that damage in the frontal regions led to a significant change in 

(economic) decision making. Nowadays, neuroscience offers a variety of methods for 

investigating the underlying cognitive processes and identifying the role of specific 

brain regions in the decision-making process in healthy subjects non-invasively. One 

method that is used on a frequent basis is functional magnetic resonance imaging 

(fMRI), which I briefly describe in the next chapter.  
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1.1.1 Neuroscientific Methods: Functional Magnetic Resonance Imaging 

 

The aim of neuroeconomic research is to understand the underlying principles that 

drive our decision making, for example, how specific features are integrated into one 

value signal. Therefore, it is necessary to be able to look into the functioning brain 

while the subject makes decisions. fMRI offers such insights by depicting the changes 

in blood flow in the brain (Ashby, 2011; Huettel, Song, & McCarthy, 2004). 

 

 Magnetic resonance imaging (MRI) is an imaging technique that relies on the 

physical principles of magnetic fields and radiofrequencies. The imaging procedure is 

based on the magnetic properties of water molecules, which are aligned along the 

magnetic field and then subjected to resonance by radiofrequencies. When the 

radiofrequency is turned off, the molecules revert to their stable initial positions along 

the magnetic field and release some of the electromagnetic energy they absorbed 

before (Faro & Mohamed, 2010). The coil can depict the release of energy and, using 

mathematical calculations, can help determine the origin of the energy. The strength of 

the signal varies for the different tissues in the brain: Different shades of grey indicate 

distinct brain regions (fig. 1; Huettel et al., 2004). 

 

    
Figure 1: Sagittal plane of the T1 weighted MRI image of Tina Strombach’s 
brain. The MRI image shows that the PhD student’s brain is normally 
developed. However, the structure of the brain does not allow any conclusions 
about intelligence or cognitive abilities. The MRI was taken at the Life&Brain 
Center, University Hospital Bonn, 3T Siemens Trio. 
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fMRI is based on these technical principles. The imaging technique depicts the 

relative change in neural activity in the brain. The basic assumption is that the 

activation of a brain region leads to an increase in blood flow. The brain consumes 

more energy (glucose) and oxygen when neurons are active. Thus, if a region is 

implicated in a specific task, it becomes active and its energy consumption increases. 

The increased demand leads to an increase in the blood flow in the active regions to 

supply needed nutrients (Huettel et al., 2004). 

 

 The fMRI image depicts the blood oxygenation level dependent (BOLD) signal. 

One of the main components of the red blood cells (erythrocytes) is hemoglobin. 
Hemoglobin is an iron-containing protein that transports oxygen in the human body. 

The strength of the magnetization of the hemoglobin depends on whether the 

hemoglobin is carrying oxygen or not. The deoxygenated hemoglobin is paramagnetic; 

thus, it is more sensitive to the external magnetic field, while the oxygenated 

hemoglobin is diamagnetic. When a region is active, not only does the proportion of 

oxygenated hemoglobin increase, but the proportion of deoxygenated hemoglobin also 

does. Overall, the ratio of oxygenated to deoxygenated hemoglobin changes. The fMRI 

scanner is able to register this difference. The images that are collected during an fMRI 

scan are thus the relative change in deoxygenated and oxygenated hemoglobin in the 

brain (Huettel et al., 2004). 

  

 To make proper inferences about the changes, it is important to collect 

information about different states of activity in the region of interest. Since we are 

measuring the relative change in the BOLD signal, there must be at least two 

conditions that we can compare. Therefore, we do not measure absolute levels of 

activity. Rather, we investigate a relative change in activity that can be attributed to a 

specific cognitive task. However, it is important to keep in mind that using fMRI does 

not allow one to make causal inferences about the involvement of a brain region in a 

specific task. Using fMRI, we can only show that a specific region contributes to the 

cognitive task, not whether it is also necessary for task completion (Ashby, 2011; 

Huettel et al., 2004). Developments in the analysis tools allow now also inferences 

about neural networks that contribute to a specific task, developing biologically 

plausible models of decision making and other cognitive tasks (Bzdok et al., 2013; 

Eickhoff et al., 2009; Heim et al., 2009; Marreiros, Stephan, & Friston, 2010). 

 

In the following chapter, I present economic theories of decision making. I 

introduce the concept of subjective value and value-based decision making and present 
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neurobiological findings from the field of neuroeconomics. I discuss the effects of 

changes in monetary incentives on behavior and the neural underpinnings.  Secondly, 

as suggested by previous research, I do not restrict myself to the motivational aspects 

of monetary incentives. Rather, I focus on social preferences as one additional 

parameter that influences our behavior. I discuss subjective values in the context of 

social decisions. 
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2. Value-Based Decision Making 
 

Although standard economic theories have developed and integrated other-regarding 

preferences into models of decision making, they still follow the simple idea that 

humans compare options that are available and choose the ones with the highest 

values (Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; Lim, O'Doherty, & Rangel, 

2011; Padoa-Schioppa & Assad, 2006; Rangel, Camerer, & Montague, 2008; Samuelson, 

1937; Tversky & Kahneman, 1974, 1981). However, the computation is not restricted to 

self-oriented reward maximization. In economic and neuroeconomic theory, value is 

conceptualized as a measure of the benefit that people can gain from choosing an 

option (Brosch & Sander, 2013). Decision neuroscience now offers the techniques and 

possibilities to characterize the exact computational properties of the process 

responsible for value computation. Consequently, they allow a focus on how these 

properties are able to generate reward-maximizing choices. The integration of 

additional parameters into the econometric models enhanced the precision of the 

subjective value computation of the options available. Therefore, a subject facing a 

choice determines the subjective value of each available alternative and transfers the 

value into a common currency, allowing a comparison of options with different 

qualities. Ultimately, the alternative with the greatest value is chosen (Bartra, McGuire, 

& Kable, 2013).  

 

The idea that humans compare options and consider their individual value to 

drive a decision is dubbed value-based decision making. In general, there are in 

general two different kinds of values. On the one hand, absolute values are just the 

absolute values of options. That might translate into the amount of money if you have 

to choose between €5 and €10, for example. The decision might be easy, since the value 

of each option is clear and the measures are objective. However, if you have to choose 

between an apple and €2 cash it might get more difficult. If you are really hungry, the 

apple’s value might be very high. However, if you have just had lunch, then you might 

appreciate the €2. Thus, not only does the subjective value integrate the value of the 

option itself, but it also incorporates it into a coherent value that includes your actual 

state of mind and situation. One might consequently argue that all values are 

subjective. Therefore, you must always consider values along with the associated 

circumstances: The value of €2 might be different for a millionaire than it is for a poor 

gamin.  
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To formalize the process of value-based decision making, I am introducing a 

formal model (Rangel et al., 2008). According to this model, decision making can be 

broken down into five basic processes (fig. 2; Rangel et al., 2008). In the first step, the 

subject has to identify the decision making problem. Thus, the subject forms a 

representation is formed, which builds the foundation for the computation of the 

subjective value. That includes the identification of one’s internal states (e.g. the level 

of hunger), external states (such as the threat level), and potential courses of action 

(such as pursuing prey). It might also include identifying the options that are available. 

 

 
Figure 2: Five stages in the value-based decision making process. Previously 
experienced outcomes influence the decision making process by modulating 
the representation, valuation, and selection of the outcomes available. The 
actual outcome is then used again to update the representation, which is a 
constant learning process (reprinted from Rangel et al., 2008, p. 546). 

 

Thus, first of all, one gathers and systematizes the available information 

concerning the decision problem itself and the information about the internal and 

external state of the decision maker. Following that first step, one assigns the different 

options and assigns a value to each one. The valuation process is especially important 

for making an appropriate decision that also meets one’s preferences and satisfies one’s 

expectations. The premise is of course, that these values are reliable predictors of the 

benefit associated with chossing that option. The third step involves the comparison of 

different values in the common currency to make a choice. By building an order from 

the most preferred option to the least preferred one, the decision maker is able to 
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choose the one that has the highest expected subjective value for himself/herself. 

Fourth, after implementation of the decision, the brain measures the desirability of the 

actual outcomes. Fifth, these feedback measures are relevant for updating the 

representation to improve the quality of the outcome of future decisions. The last step 

follows the revelation of the subject’s choice. The information from the evaluation of 

the outcome is entered into a learning feedback loop to improve future decisions and 

facilitate learning from mistakes (Rangel et al., 2008).  

 

The core concept in this framework of decision making is the valuation process. 

In general, it is possible to differentiate between three types of valuation. These entail 

different strategies to evaluate the option or potential course of action at hand, e.g. 

staying versus leaving. They are Pavlovian, habit, and goal-directed systems. 

Pavlovian processes are those that assign value based on a “small set of behaviors that 

are evolutionarily appropriate responses to particular environmental stimuli” (Rangel 

et al., 2008, p. 2). Thus, certain stimuli are associated with specific behavioral responses 

and include certain preparatory behaviors, for instance salivation when food is 

available (Balleine, Daw, & O’Doherty, 2008; P. Dayan, 2008; Peter Dayan, Niv, 

Seymour, & Daw, 2006; O'Reilly, Frank, Hazy, & Watz, 2007; Pavlov, 1941; Rangel et 

al., 2008). In this way, the Pavlovian system approaches rewards and avoids 

punishments. One can reduce the behavior to simple reactions without the evaluation 

of the options available to form the decision. Changing of learned and hard-wired 

association is difficult.  

 

The second system that is expected to drive valuation processes is the habit 

system. The habit system is not limited to a set of specific behavioral responses but 

involves learning through repetition and training (Rangel et al., 2008). Trial-and-error 

helps one to learn which potential outcomes are desirable and which ones to avoid 

(Boswell, 1947; Robert & John, 1908). As long as the environment is stable, one can 

connect the association between certain actions or behaviors to a certain value. As a 

consequence, the habit system is relatively slow and dependent on the repetition 

effects. Thus, in situations with novel options and courses of action, the subject is 

dependent on a “generalization” of previously learned habits, which might be 

maladaptive in a given context. Habits are also often used as an explanation for 

abusive behavior like drug addiction (Gerdeman, Partridge, Lupica, & Lovinger, 2003; 

Volkow, Fowler, Wang, Baler, & Telang, 2009; Williamson, Cheng, Etchegaray, & 

Meck, 2008). 
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The last and most commonly referred to system in behavioral economics and 

neuroeconomics is the goal-directed system. This system is the most complex one as it 

assigns values to actions and options by computing action-outcome associations and 

evaluates the rewards in comparison to other options that are available and associated 

with other outcomes. However, it is also the most flexible one, allowing the 

explanation of variance in many kinds of behaviors. Thus, the ideal decision making 

situation occurs when all information is available and one can integrate it into a 

coherent value. In that context, the subject is able to make the best decision that is in 

line with his or her goals. In turn, these goals experience the influence of many factors. 

If you are hungry, for example, your goal might be to get food. However, if you are 

well rested and sated, your goal might be to receive an education. Thus, your goals are 

not static, but vary with your state. It is not possible to explain these changes with the 

habitual system. Once you learn that pressing a certain button delivers food, the goal-

directed system might change your behavior when you are sated. The habit system 

would continue pressing the button, because it delivered food. This would fall under 

positive reinforcement. Thus, the goal-directed system updates the value of the action 

and assigns a current value. One important component of the goal-directed system is 

the computational aspect. The system needs to be capable of integrating different 

aspects into one common (currency) value signal.  

 

These three approaches to valuation processes are all able to explain a 

multitude of behaviors. However, it is assumed that these processes do not work in 

isolation. Rather they interact (de Wit et al., 2012; Loewenstein & O’Donoghue, 2007; 

Schulz, Fischbacher, Thöni, & Utikal, 2014). The question of which system “wins” 

depends on a variety of factors. If you are well rested and your goal is to lose weight, 

you might eat healthy food and do sports, thus following the goal-directed system. 

However, if you are exhausted, tired, and hungry, you are more to follow the habit 

system and buy unhealthy food in the supermarket. Thus, it is likely that multiple 

systems simultaneously active and compete against each other. The following chapter 

will evaluate the valuation process that is part of the goal-directed learning approach 

in more detail and introduce the neural underpinnings of the common currency. 

 

The conceptuality of the stages presented above is especially useful for the field 

of decision neuroscience. In general, the valuation process gains special interest, 

especially since it offers the opportunity to investigate specific valuation processes 

using econometric models and to separate the decision making process into the distinct 

valuation processes and stages. The process is often unconscious, and therefore, 
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neuroimaging methods offer the possibility of investigating the underlying cognitive 

processes during decision making. In recent years, many published studies have 

tackled precisely these problems: 1) how the subjective values of the various options 

under consideration are learned, stored, and represented and 2) how decision are made 

and implemented. 

 

 

2.1 The Neurobiology of Value-Based Decision Making 

 

As indicated above, the valuation process in the goal-directed system is basically a 

transformation to a common currency that one can use to compare different types of 

rewards. As a result, they are comparable when one is deciding between several 

options (Brosch & Sander, 2013; Lim et al., 2011; Rangel et al., 2008).  Over the last 

decade, our knowledge of the underlying mechanisms of those valuation processes has 

increased substantially (Adcock, Thangavel, Whitfield-Gabrieli, Knutson, & Gabrieli, 

2006; Ballard et al., 2011; Balleine et al., 2008; Balleine, Delgado, & Hikosaka, 2007; 

Breiter, Aharon, Kahneman, Dale, & Shizgal, 2001; Brosch & Sander, 2013; Crockett et 

al., 2013; Daniel & Pollmann, 2014; Delgado, Gillis, & Phelps, 2008; Glimcher, 2004; 

Grabenhorst & Rolls, 2009; Haber & Knutson, 2010; Hare, Hakimi, & Rangel, 2014; 

Hare et al., 2008; Knutson & Cooper, 2005; Lim et al., 2011; O’Doherty, 2004; Padoa-

Schioppa & Assad, 2006; Robbins & Everitt, 1996; Schultz, 1998, 2006). One of the major 

purposes of neuroeconomics is to study the neural signal associated with the 

computation and representation of subjective value. As the introduction asserts, one of 

the methods most commonly used to study the neural underpinnings of cognitive 

processes is fMRI.  
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Figure 3: Schematic illustration of the brain. Sagittal plane depicting the VMPFC  
and the VS (adapted from Kalenscher & Strombach, 2013, p. 64). 

 

Previous work on subjective value computation came to the conclusion that (1) BOLD 

signal in a small number of regions, including the striatum and VMPFC scales with 

subjective value of the options available during decision making (Bartra et al., 2013). In 

addition, there seem to be more regions associated with and implicated in the decision 

making process. For example, the dorsolateral prefrontal cortex contributes to the 

decision making process by exerting self control (Crockett et al., 2013; Hare, Camerer, 

& Rangel, 2009); (2) the same regions (striatum and VMPFC) process the act of 

receiving a rewards, implying that they are implicated in the computation of the 

values, decision formation, and the evaluation of the outcome. These steps all 

contribute to decision making in the formal model of Rangel et al. (2008); and (3) 

responses are modality independent. Thus, they respond to rewards from multiple 

domains, for instance, food, money, and social rewards. 

 

In the following chapters, I will introduce two central regions associated with 

reward processing and value-based decision making–the striatum and the VMPFC. 

Both regions have been shown to process value and to contribute to the computation of 

subjective value. However, they also perform slightly different forms of mathematical 

calculations to obtain the aspects of subjective value. 
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2.1.1 The Striatum 

 

The striatum is the primary input structure of the basal ganglia, a group of brain areas 

that also include the globus pallidus, the subthalamic nucleus, and the dopamine 

neuron-containing substantia nigra, located in the midbrain (see fig. 3 & 4; Alexander 

& Crutcher, 1990; Delgado, 2007; Graybiel, 2000). The striatum receives highly 

convergent projections from the prefrontal cortex, as well as afferents from the 

amygdala, the hippocampal formation, and the midbrain (Clithero & Rangel, 2013; 

Haber, 2003; Haber & Knutson, 2010; Robbins & Everitt, 1996). The striatum sends 

information back to the prefrontal cortex via the thalamus, forming a frontal – striatal 

loop (Robbins & Everitt, 1996). The tight connection between the striatum and frontal 

regions allow fast and flexible integration and involvement in motor, cognitive, and 

affective components of behavior. This also makes it highly adaptive for decision 

making processes.  

 

 

 
Figure 4: The basic anatomy of the brain showing the major regions within the basal 
ganglia: the striatum (blue), which is made up of the caudate nucleus and the 
putamen; the pallidum (pink), which is made up of outer and inner segments; the 
subthalamic nucleus (green); and the substantia nigra (yellow) (reprinted from 
Graybiel, 2000, p. 509). 

 

The striatum can be divided into a dorsal (upper) and a ventral (lower) part 

(Alexander & Crutcher, 1990; Graybiel, 2000; Haber, 2003). This can be attributed to 

different aspects of the decision making process. While the ventral region is often 

associated with the expectation of a reward, the dorsal part is more involved in the 

experience of rewards (Balleine et al., 2007; Delgado, 2007).  
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Work on the neurobiology of behavior in non-human primates (macaques) has 

shown that the dopaminergic neurons in the striatum signal rewards (Schultz, 1998; 

Schultz, Apicella, Scarnati, & Ljungberg, 1992; Schultz, Dayan, & Montague, 1997). 

Schultz et al. showed that, in macaques, the dopaminergic neurons in the striatum 

respond more strongly to large rewards and less strongly to smaller rewards, thus 

signaling the size of the expected reward (Schultz et al., 1992). They were among the 

first to investigate the role of the dopaminergic neurons in striatum in reward 

signaling. In a later study, Schulz et al. refined these findings and determined that the 

responses also differed between unexpected rewards and expected rewards (fig. 5).  

 

 

Figure 5: Dopamine neurons respond to errors in the prediction of an outcome (RPE). 
Top: Before learning, the monkey received an unpredicted drop of juice (R). This 
refers to a positive RPE. Middle: After learning, the monkey associated a signal with 
a reward, i.e. a drop of juice. The dopamine neurons react to the signal (CS), but not 
to the reward itself (R). Bottom: After learning, the conditioned stimulus indicates 
the upcoming administration of a reward. The reward fails to occur and the 
dopamine neurons react with a decreased firing rate during the time the reward was 
expected. The dopamine neurons thus code for the negative RPE.   Each panel shows 
a time histogram and raster of impulses from the same neuron in different 
conditions. (reprinted from commSchultz et al., 1997, p. 1594)  

They concluded that the striatum signaled rewards, but more importantly, that 

the signal reflected reward-prediction errors (RPE). Thus, when a reward was 
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administered, the monkeys’ dopaminergic neurons fired as a response to the reward. 

However, when they expected the reward and it was administered, the neurons did 

not respond to it with increasing firing rates any more. The reason for this was that the 

RPE equaled zero. Thus, the expectation was equal to the actual outcome. However, 

when a reward was expected and none was delivered, the firing of the neurons 

reduced as a reaction to the negative prediction. That absence of a signal was likely to 

be implicated in learning processes, reflecting an update in the representation of the 

value of the chosen option.  

 

In humans, almost every study investigating subjective values of rewards 

identifies the VS (Bartra et al., 2013; Daniel & Pollmann, 2014; Delgado, 2007; Delgado, 

Nystrom, Fissell, Noll, & Fiez, 2000; Diekhof, Kaps, Falkai, & Gruber, 2012; Fehr & 

Camerer, 2007; Hare et al., 2009; Hare et al., 2008; Kable & Glimcher, 2007; Kuss et al., 

2013; Lim et al., 2011; O'Doherty et al., 2004; Pagnoni, Zink, Montague, & Berns, 2002). 

This also seems to be independent of the type of reward used in the experiment (Bartra 

et al., 2013). Kable and Glimcher (2007) showed that the VS and the VMPFC reflected 

the subjective value of a reward. By integrating a potential delay into their 

experimental design, they showed that subjects did not track the absolute monetary 

reward in the VS but the subjective value of that reward, discounting the delay from 

the monetary reward value. 

 

Thus, the striatum, and especially the ventral part (ventral striatum, VS), are 

implicated in reward processing and constitute a major input unit to the basal ganglia 

and the dopaminergic reward system. The findings of Schultz et al. show that the 

dopaminergic neurons play an important role in value learning and shaping decisions. 

They do not play this role through hedonic signals but by coding positive and negative 

RPEs. Previous experiences and learned associations are integrated into the value 

signal, and the RPE reflects the deviation of the actual reward from expectations. Thus, 

the striatum is important in several stages of the decision making process. It values the 

options available, measured by the expected outcome, and then evaluates the actual 

outcome, updating value representations when necessary. The projection of inputs 

from regions like the VMPFC, the orbitofrontal cortex (OFC), and the anterior cingulate 

cortex (ACC) to the striatum highlight the central role of the striatum in the reward 

processing network and, consequently, in decision making.  
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2.1.2 The Ventromedial Prefrontal Cortex 

 

The ventromedial prefrontal cortex (VMPFC) is part of the prefrontal cortex and is 

located at the bottom of the cerebral hemisphere (fig. 3). The VS has been identified in 

value-based decision making as often as the VMPFC has been named (Bartra et al., 

2013; Clithero & Rangel, 2013). These findings corroborate to the theory that there is a 

fronto-striatal network strongly implicated in valuation processes and value-based 

decision making. Previous studies identified the VMPFC as being involved in the 

computation of subjective values both during the decision phase and outcome 

evaluation (Grabenhorst & Rolls, 2009; Hare, Camerer, Knoepfle, O'Doherty, & Rangel, 

2010; Hare et al., 2009; Levy & Glimcher, 2012; Padoa-Schioppa & Assad, 2006; Rangel 

& Hare, 2010). In a review paper, Clithero and Rangel (2013) showed that the VMPFC 

was part of several distinct sub-networks, suggesting an involvement in the 

computation of various value-related signals. However, it has been suggested that, 

contrary to the VS, the VMPFC tracks the difference between values of the options in a 

decision making task. A subjective value thus integrates the other options available, 

not just the attended or favored option, but builds relative values (Lim et al., 2011).  

 

 It is likely that the VMPFC receives information from many cortical regions, 

depending on the context of the valuation process. In a study, Hare, Camerer and 

Rangel (2009) showed that activity in the DLPFC increased when self-control was 

exerted, and DLPFC modulated the value signal encoded in the VMPFC. On the one 

hand, that supports the idea that DLPFC is implicated in self-control but also suggests 

that different brain regions can modulate VMPFC activity (Chib, Rangel, Shimojo, & 

O'Doherty, 2009; Crockett et al., 2013; Hare et al., 2010; Hare et al., 2009; Hare et al., 

2014; Kable & Glimcher, 2007; Rangel & Hare, 2010). The VMPFC thus receives input 

from different regions to form the value signal of a given option. To summarize, the 

VMPFC is thus strongly and reliably implicated in the decision process by reflecting 

value. The VMPFC is assumed to be a central orchestrating region, receiving input 

from several brain regions and integrating them into a coherent common value signal. 

Thus, while the VS is mainly associated with RPEs and, thus, the learning mechanisms 

in decision making, the VMPFC reflects the subjective value of a given option, 

integrating different information into one coherent “common currency”. 
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3. Psychological and Economical Theories on Monetary 

Incentives 
 

Initially, everyone would suggest that receiving monetary incentives was considered 

positive, motivating you to perform at your personal best and giving the maximum 

possible on the task you have been paid for. That is also common in the corporate 

world. Workers receive bonuses, stock options, and other monetary incentives to 

encourage them to perform better at their jobs (Camerer & Hogarth, 1999). However, 

that is a rather economic perspective. As I stated in the beginning, standard economic 

theory assumes that people only perform to get food, money, or other positive 

reinforcement for themselves. In this view, performance is tightly coupled with the 

incentives that people receive as compensation. Incentives thus allow modulation in a 

favorable way (Berridge, 2004; Camerer & Hogarth, 1999; Fehr & Falk, 2002).  

 

Psychologists challenge this economical view of the positive effect of incentives. 

Psychological theories state that intrinsic motivation should be generally high enough 

to produce steady effort (Camerer & Hogarth, 1999; Deci, Koestner, & Ryan, 1999). 

Thus, even in the absence of financial or other non-monetary rewards, people will 

engage in a task and fulfill expectations out of the intrinsic drive to perform well. 

Psychological theories state that it is more likely that performance is even reduced 

when monetary incentives are present. Thus, contrary to the economic view, 

psychological approaches state that monetary incentives have a negative effect on 

performance (Deci, 1971; Deci et al., 1999; Mobbs et al., 2009). This detrimental effect of 

the incentives is especially visible when the intrinsic motivation to perform is initially 

high. Then the motivation to perform is crowded out by the external motivator, i.e., the 

performance-contingent reward (Arkes, Dawes, & Christensen, 1986; Ashton, 1990; 

Camerer & Hogarth, 1999). For example, you are painting pictures during your leisure 

time. A gallery shows interest in your pictures and even sells some for a reasonable 

price. After a while, you only paint the pictures because of the monetary perspective, 

not because you enjoy doing it. Thus, the initially intrinsic motivation to paint has been 

crowded out by the monetary incentive. 

 

Psychologists agree that higher incentives might produce higher levels of effort. 

However, the increase in effort does not necessarily lead to an increase in performance 

(Baumeister & Showers, 1986; Camerer & Hogarth, 1999; Mobbs et al., 2009). A study 

by Baumeister (1984) showed that when the importance of an external incentive is 
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highlighted, performance drops because of the increased pressure to perform well. 

Baumeister refers to the fact that the incentives lead to a shift in attention to the 

internal performance process. This is often the case in important sports championships.  

 

Setting aside the discrepancies about the directionality of the effect the 

incentives have on performance, psychologists and economists agree that removing the 

monetary incentive harms performance tremendously. Thus, although psychological 

and economic theories disagree about the effect of the introduction of monetary 

incentives, they agree that removing the incentives leads to disengagement in the tasks 

and therefore reduced performance on a given tasks (Camerer & Hogarth, 1999).  

 

 A meta-analysis by Camerer and Hogarth reviewed previous studies in the 

search for commonalities. It came to the conclusion that “for easy and hard jobs, and 

intrinsically motivated workers, marginal changes in incentives will not improve 

performance much. However, for boring jobs, unmotivated workers, or tasks in which 

variance is bad, incentives are likely to have a positive effect” (Camerer & Hogarth, 

1999, p. 35). Thus, there is no coherent opinion on the effect of incentives on 

performance. Neuroscience might offer alternative approaches to investigate the effect 

of performance-based incentives. Neuroimaging techniques offer an opportunity to 

investigate the underlying mental processes and to study the unconscious processes 

that might drive changes in behavior. Thus, while performance is a direct measure of 

behavior, the neural correlates are a proxy of the underlying cognitive processes. 

Therefore, the following chapter will discuss neuroimaging studies on the effect of 

incentives on behavior.  

 

 

3.1 Neural Correlates of Monetary Incentives 

 

From a neuroeconomical point of view, it seems natural to assume that a change in 

performance due to a change in incentives arises from changes in activity in a 

dedicated brain region. Thus, if a monetary incentive is introduced, the neural 

representation transforms as a reaction to the change and modifies performance.  

 

 As indicated earlier, the VMPFC and the VS are central parts in the processing 

of value. Therefore, these regions are also assumed to be involved in the processing of 

performance-based incentives. The VS is sensitive to rewards and RPEs, and these 
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reinforcements are often confounded with motivation, which drives performance 

(Arana et al., 2003; Berridge, 2004; Miller, Shankar, Knutson, & McClure, 2014). 

Therefore, the aim is to differentiate between valuation and motivational processes. 

When a reward is applied, the motivation to perform increases. Therefore, a positive 

firing rate in the VS might indicate the initiation of higher levels of motivation on a 

higher level of cognitive processing, leading to goal-directed behavior (Soutschek, 

Stelzel, Paschke, Walter, & Schubert, 2014). Previous studies found that higher 

expected rewards translate into higher effort exertion (Berridge, 2004; Schmidt, 

Lebreton, Cléry-Melin, Daunizeau, & Pessiglione, 2012). Certain reward amounts 

anticipated after successful performance on given tasks elicit increases in activity in the 

VS proportional to reward amounts. Also, the degree of signal change correlates to the 

degree of performance enhancement (Miller et al., 2014; Pessiglione et al., 2007; 

Schmidt et al., 2012). An interaction between these common motivational signals in the 

VS and different task-specific systems underpinning behavioral performance is 

suggested to drive motivational processes and to modulate performance on specific 

tasks (Schmidt et al., 2012). Schultz et al. (Schultz, 1998; Schultz et al., 1992; Schultz et 

al., 1997) indicate that the brain and particularly dopaminergic neurons in the striatum 

respond to errors in the prediction of rewards and use the information to update future 

behavior. That might also be an important underlying premise when studying the 

effect of incentives. While the constant application of rewards does not necessarily 

affect motivational processes, the change in incentives is associated with a change in 

the underlying neural correlates and, ultimately, in the performance on a behavioral 

level. Thus, the main focus in research on incentives is the disentanglement of the 

simultaneous processes of an upcoming reward, the implementation of motivational 

signals, and learning, which requires constant updates on decision-outcome 

relationships (Gilbert & Fiez, 2004).  

 

The value of the incentive and, thus, the degree of the incentive and the 

motivation that it initiates are also processed in regions associated with subjective 

value, i.e., the prefrontal regions in general and the medial prefrontal cortex in 

particular (Arana et al., 2003). The medial regions were shown to react more to 

subjective value computation and choice behavior, while the lateral fraction responded 

primarily to the suppression of a desired outcome in a decision. In an fMRI study, 

Kouneiher et al. (2009) showed that connectivity between several prefrontal regions 

associated with subjective value computations changed as a function of motivational 

factors, e.g., monetary incentives. However, these changes were rather slow, reacting 

not to single trials but to changes between blocks (Kouneiher et al., 2009). Therefore, 
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motivation was suggested not to change on-line but as a prudent process, reflecting 

incentive-induced fluctuations over time.  

 

Paradoxically, the option to earn very large rewards has been shown to 

diminish performance. Baumeister (Baumeister, 1984; Baumeister & Showers, 1986) 

showed that the crowding out effect led to lower levels of performance when 

incentives were present. Neuroimaging studies suggested that the VS was a core 

component in these processes. An fMRI study indicated that monetary incentives led 

to increased midbrain activity, associated with reduced performance (Mobbs et al., 

2009). The association between midbrain activity and the decrease in performance was 

suggested to be an “overmotivation” signal for the high reward and the perceived 

pressure to perform well. The suggested mechanism driving this process was that 

incentives were first encoded as potential gains associated with successful task 

performance. However during task completion, the VS encoded potential losses that 

might arise from failure in the task (Chib, De Martino, Shimojo, & O'Doherty, 2012; 

Mobbs et al., 2009). Thus, the VS contributed to the detrimental effect of monetary 

incentives by mediating the interaction between incentives and behavioral 

performance.  

 

In addition, several other regions might play a role in the processing of 

incentive motivation. Research reliably indicated that the dorsolateral prefrontal cortex 

(DLPFC) was involved in executive and self-control (Crockett et al., 2013; Gilbert & 

Fiez, 2004; Hare et al., 2010; Hare et al., 2009; Hare et al., 2014; Hare, Malmaud, & 

Rangel, 2011). It is likely that these processes are also affected by changes in incentives. 

Neurophysiological studies in nonhuman primates showed that task incentives can 

affect performance via increased activity in DLPFC neurons, demonstrating greater 

accuracy on rewarded trials (Kobayashi, Lauwereyns, Koizumi, Sakagami, & 

Hikosaka, 2002; Leon & Shadlen, 1999; Roesch & Olson, 2003). The studies suggest that 

DLPFC signals the “effort” that is put into solving the task or the facilitation of the 

cognitive processes needed for task fulfillment but not the pure anticipation of 

incentives (Gilbert & Fiez, 2004). 

 

To summarize, the VS seems to be the core component in incentive motivation 

processing. However, the VMPFC and other subjective value-related regions are likely 

to be involved in the process by integrating motivational signals or mediating the 

signals to task-related regions. The mechanism suggested involves the VS serving as 
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the initiative node in the network modulating activity in task- and subjective value-

related regions. This ultimately leads to changes in the performance in the task. 
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4. Social Reward and Social Decision Making 
 

The previous chapter focused on individual decisions and, thus, on actions that only 

affected the participant and not his/her social environment. However, we live in a 

highly complex social world in which many decisions are made in the context of social 

interactions (Rilling & Sanfey, 2011). Our society is built upon the premise that 

everyone contributes to the common good, e.g., to pay for pensions, unemployment 

benefits and infrastructure. So cooperation and social exchange are important 

cornerstones of human society. In our personal lives, many actions also take place 

within a social context, for example, collaborating with colleagues on a project at work 

or sharing lunch with a friend. The pursuit of others’ approval and acceptance may 

reflect the desire to fulfill social needs. The prerequisite for that is the ability to form 

relationships and social networks (Baumeister & Leary, 1995; Fareri & Delgado, 2014b; 

Van Winden, Stallen, & Ridderinkhof, 2008).  

 

Axelrod and Hamilton (1981) stated that, against the idea of survival of the 

fittest individual, cooperation is much more common within, but even between, 

species. They highlighted the significance of forming social groups. From a value-

based decision-making perspective, it seems natural to assume that social interaction, 

cooperation, or prosocial behavior is processed as some kind of value. In other words, 

we experience pleasure when interacting with other people and behavior is not solely 

driven by material self interest (Fehr & Fischbacher, 2002), indicating that a reward 

that another person consumes appears in our own utility function to some extent 

(Camerer & Fehr, 2006). This principle refers to social preferences, which means that 

we care positively or negatively for the well-being of other people.  

 

  “A person exhibits social preferences if the person does not only care about the 

material resources allocated to her but also cares about the material resources allocated 

to relevant reference agents” (Fehr, Fischbacher, & Gächter, 2002, p. C2). The standard 

economic theories as presented in the introduction and highlighting pure self-interest 

have no valid explanation for the emergence of cooperation and competition in 

markets and organizations. Social preferences like fairness shape the functioning of 

competition and cooperation (Fehr & Fischbacher, 2002; Fehr et al., 2002). 
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4.1 Social Preferences 

 

One of the core social preferences is reciprocity. Reciprocity implies responding to 

“actions that are perceived to be kind in a kind manner, and to actions that are 

perceived to be hostile in a hostile manner” (Fehr et al., 2002, p. 2). What exactly is 

regarded as kind or hostile is based on the (un-)fairness of the consequences and the 

intentions associated with the actions of the opponent. “Fair” can be considered an 

equitable distribution of payoffs, relative to the set of possible payoff distributions. 

Thus, a fair split of a reward might be 50/50. The difference between cooperation and 

reciprocity is the anticipation of future material benefit in cooperation. Cooperation, 

thus, implies an interest in the maximization of the material output from the 

interaction with another actor (Falk, Fehr, & Fischbacher, 2003; Fehr & Gächter, 1998). 

Thus, people expressing high reciprocity will behave prosocially if they have 

previously experienced prosocial behavior from the interaction partner.  

 

Closely related to the social preference of reciprocity, is inequity aversion. As the 

term implies, a person with high aversion for inequity will be generous toward another 

person if the other person’s material payoff is below the equitable benchmark. 

However, the former will feel envy if the latter’s payoff is higher than the equitable 

level (Fehr & Schmidt, 1999). Thus, although the underlying reasons for prosocial 

behavior might differ, people with high reciprocity and inequity aversion preferences 

behave in a similar manner to maintain a fair share of the resources available. Social 

preferences are thus strong influences in our decision-making processes, highlighting 

the importance of incorporating them into theories of decision making and economic 

models. 

 

 

4.2 Neural correlates of social decision making 

 

The most prominent question in social neuroscience is whether the same regions are 

involved in the computation of social and non-social value. Ruff and Fehr suggested 

two distinct models for how social values might be integrated into the valuation 

process (Ruff & Fehr, 2014, compare fig. 6). As outlined before, the VS and the VMPFC 

are core elements of the reward-related brain network. Therefore, one idea is that the 

same regions process different kind of rewards, implying that there is a common 

currency that makes options with different qualities comparable (“extended common 
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currency schema”, fig. 6a).  An alternative approach is that there are two distinct brain 

systems that process either social or non-social rewards (“social-valuation-specific 

schema”, fig. 6b).  While the common currency idea implies that there are some regions 

involved in both types of reward, the social-valuation-specific schema states that there 

are two distinct networks, which are specialized for specific input (Ruff & Fehr, 2014).  

 

 
Figure 6: Two schemas for neural value computation in social versus non-social 
context. Two different ideas might be plausible about how values of different 
kinds are computed might be plausible. (a) The “extended currency schema” 
suggests that there is one common node in the brain that reflects integrated 
values and, thus, reflects social and non-social reward values. However, the 
information that is relevant for the value computation might differ between 
social and non-social choices and may therefore be provided by distinct brain 
regions that are either specific to social or to non-social information 
processing. Social and non-social rewards can thus result in identical activity in 
reward-related brain areas, but differ in their connectivity with other brain 
regions. (b) The “social-valuation-specific schema” is based on the social brain 
hypothesis. The hypothesis states that there are specific regions in the brain 
that selectively respond to social stimuli. Therefore, it is suggested that there 
are two rather identical processes, using similar neural computations, that 
either process social or non-social rewards. That includes the idea that there 
are specific and distinct brain regions that either process social or non-social 
valuation (reprinted from Ruff & Fehr, 2014, p. 3). 

 

 The social-specific-valuation-specific schema was built upon the idea that there 

is social-specific cognition and, thus, a dedicated network that is only responsive to 

social stimuli. The study of the visual system and findings indicating that some 

regions, such as the temporoparietal junction and the fusiform face area, only 

responded to social stimuli like faces or bodies (Gauthier et al., 2000; Kanwisher & 

Yovel, 2006; Morishima et al., 2012; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014) 



PART I 26 

led to the conclusion that specific regions involved in representing the intentions, 

emotions or actions of other people and the control of social and non-social behavior 

should differ fundamentally in terms of neural architecture. However, more recent 

neuroeconomical studies challenge this approach by suggesting a common region that 

reflects different kinds of values (Chib et al., 2009; Hare et al., 2010; Hare et al., 2009). 

The general common currency approach, thus, suggests that there is a value-specific 

region and that the processing of social and non-social values is similar. However, the 

input for these value computations might come from distinct regions. Thus, in this 

context, the TPJ might be an input region, providing information for value 

computation.  

 

The idea of a common currency implies that the same regions are involved in 

social and non-social valuation processes. Lin et al. (2012) suggested that the VS and 

VMPFC computed the value of the options available to make a decision. The authors 

suggested that the same concept might be applied to social and non-social rewards, 

thus analogously weighting egoistic and prosocial considerations to make a decision. 

To do that, it is necessary to convert the options with different qualities into a common 

value signal. Lin et al. come to the conclusion that this is indeed the case. Thus, the 

subjective value and the experiences utility of a selected option are represented in the 

VMPFC, while the RPE correlates with VS activity. That entails strong support for a 

neural signal that converts options of different qualities into a coherent common 

currency, also allowing comparison between different kinds of rewards. The core 

regions in social reward processing are analogous to monetary reward processing, i.e. 

the VMPFC and the VS. These findings were confirmed in a multitude of experimental 

studies (Chib et al., 2009; Fareri, Chang, & Delgado, 2012; Fareri & Delgado, 2014a; 

Fareri, Niznikiewicz, Lee, & Delgado, 2012; Hare et al., 2010; Izuma, Saito, & Sadato, 

2008, 2010; Levy & Glimcher, 2011; Lin et al., 2012; Morishima et al., 2012; Sanfey, 

Rilling, Aronson, Nystrom, & Cohen, 2003; Smith, Clithero, Boltuck, & Huettel, 2014; 

Winecoff et al., 2013) and meta-analytic reviews (Bartra et al., 2013; Bhanji & Delgado, 

2014; Carter & Huettel, 2013; Clithero & Rangel, 2013; Declerck, Boone, & Emonds, 

2013; Levy & Glimcher, 2012; Rilling & Sanfey, 2011; Ruff & Fehr, 2014). To summarize, 

based on the neuroimaging studies, monetary and social reward values are processes 

in overlapping brain regions. However, it is likely that the various forms of input for 

the computation of a common currency come from different regions in the brain, 

depending on the kind of input (Crockett et al., 2013; Hare et al., 2010; Hare et al., 2009; 

Park, Kahnt, Rieskamp, & Heekeren, 2011; Smith et al., 2014).  
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One core candidate for the input region for social information in value 

computation is the TPJ. The TPJ has often been tied to tasks associated with the theory 

of mind, which refers to the ability to put oneself in someone else’s shoes (Frith & 

Frith, 2005; Schurz et al., 2014; Stone, Baron-Cohen, & Knight, 1998), and social 

cognition, for instance, mentalizing (Van Overwalle, 2009), perspective taking 

(Aichhorn, Perner, Kronbichler, Staffen, & Ladurner, 2006; Strang, Utikal, Fischbacher, 

Weber, & Falk, 2014), or the detection of social agents in the environment (Schultz, 

Friston, O’Doherty, Wolpert, & Frith, 2005; Tankersley, Stowe, & Huettel, 2007). The 

TPJ is, thus, capable of processing diverse contextual cues about the social 

environment. This might influence our interpersonal interactions and guide social 

decisions (Smith et al., 2014). Previous research showed that social valuation relied on 

the interaction between regions like the VMPFC and specific regions, including the 

TPJ, that were modulated by social information (Carter, Bowling, Reeck, & Huettel, 

2012) and that the strength of the connectivity between these two regions relied on the 

subjective value of the social reward (Hare et al., 2010; Smith et al., 2014; van den Bos, 

Talwar, & McClure, 2013). For these reasons, it is likely that there is 1) a common 

currency used to make decisions involving options with different qualities, and 2) the 

VMPFC receives input from interacting brain systems, contributing to the computation 

of subjective value.    



PART II 28 

 

 



Concluding Remarks on the studies 29 

1. Concluding Remarks on the studies 
 

In the second part of my dissertation, I present three studies on the processing of 

changes in monetary incentives and varying social reward. In all three studies, 

monetary reward is used as an objective measure of a reward. However, the subjective 

value of the social or monetary reward is dependent on the environmental and 

situational circumstances. The first study uses fMRI to study the effect of the 

introduction and removal of performance-contingent rewards. The second study is also 

an fMRI study, and it presents novel findings on the neural correlates of social 

discounting and the role of the TPJ in prosocial choice behavior. Finally, the third 

study is purely behavioral and uses the social discounting paradigm to systematically 

study the effect of cognitive load on prosocial behavior.  

 

On the following pages, I present the scope of the studies, discuss potential 

conclusions, and evaluate the contributions the studies make to the scientific 

community. There are detailed descriptions of the studies and discussions in the 

appendix.  

 

 

2. Study 1: Neural Underpinnings of Performance-Based 

Incentives 
 

Strombach, T., Hubert, M., and Kenning, P. (in press). Neural underpinnings of 

performance-based incentives. Journal of Economic Psychology. 

 

 

The study addresses a central question in the contemporary corporate world, i.e., the 

modulatory effect of performance-based incentives. In today’s economy, incentives are 

among the most commonly used motivators to drive employees’ performance (Colin  

Camerer & Hogarth, 1999). However, it is not well understood how these performance-

contingent incentives modulate the neural underpinnings of the cognitive processing 

of a given task (Albrecht, Abeler, Weber, & Falk, 2014; Murayama, Matsumoto, Izuma, 

& Matsumoto, 2010). We investigate the extent to which performance-based incentives 

change the neural representation and perception of a specific task. In this study we 

combine economic theory with a psychological framework and use the advantages of 
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neurobiological methods to get a more profound understanding of an economic 

phenomenon, i.e., the effect of monetary incentives. We hypothesize that the changes 

in monetary incentives affect cognitive processing on three different levels: 1) reward 

related areas should process the newly introduced reward, 2) task-related areas 

become more active as a response to the monetary reward, and 3) effort-related regions 

should reflect a higher effort by increased activity. To do that, we change the monetary 

incentives for making the correct decision in an arithmetic calculations task. In a first 

block, without incentives, then with incentives for correct performance and in a third 

block incentives were removed again. 

 

We use the direct measure of performance and measure the underlying 

cognitive processes by using fMRI simultaneously. We find that incentives induce 

changes in reward-related brain regions but not in task-related neural representations. 

Interestingly, when monetary incentives are introduced, blood oxygenation level-

dependent activity increases in the VS, which is sensitive to reward (Clithero & Rangel, 

2013; Delgado, 2007), and decreases in the VMPFC (Chib et al., 2009; Hare et al., 2009), 

which has been reliably shown to be involved in the calculation of subjective values. 

This corroborates the idea that the VS and VMPFC are central regions in motivation 

and reward processing (Albrecht et al., 2014; Bartra et al., 2013; Clithero & Rangel, 

2013). We suggest that pay-for-performance does not directly affect performance by 

modulating neural activity in task-relevant regions but affects reward representation 

during task completion. Therefore, we conclude that performance-contingent 

incentives need to be applied carefully. This finding is of special interest for employee 

compensation in unstable economic environments, as companies in unstable 

environments might not permanently maintain pay-for-performance. 

 

In the research article, we try to present one way of using neuroscientific 

methods to get a deeper understanding of economic behavior and to integrate neural 

findings into economic theory. Importantly, our article is also intended as an appeal to 

the broader research community, conveying the message that biologically based 

models can provide a framework for studying economic processes in the corporate 

world today. Although we study fundamental processes involving incentives and 

motivational processes, the paradigm is suited to getting a grasp on real-world 

economic questions. The study, therefore, contributes to the further development of 

neuroeconomic theory and the question of how incentives affect our performance and 

perception tasks in general and to the understanding of incentive-induced changes in 

motivation and performance in particular.  
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In summary, we were thus able to replicate previous findings on reward 

processing and the neural underpinnings of changes in incentives (Albrecht et al., 2014; 

Murayama et al., 2010) and to extend knowledge of the underlying cognitive processes. 

Nevertheless, the paradigm includes some weaknesses that need to be discussed 

critically. It is clear from previous studies that motivation and reward processing are 

strongly correlated in most cases (Arana et al., 2003; Kouneiher et al., 2009; Liljeholm & 

O’Doherty, 2012; Miller et al., 2014). With the current design, we are not able to 

differentiate between these two processes. A study by Miller et al. (2014) attempted to 

dissociate the processing of reward and motivation. The authors suggested that striatal 

activation outside the nucleus accumbens was associated more with motivation while 

the caudate and putamen scale were associated more with the expected reward 

outcome. However, a coherent model of motivation and reward still needs to be 

developed and tested in different settings. Therefore, for future research, the 

distinction between the cognitive processes associated with motivation and reward 

processing should be investigated.  

 

 

3. Study 2: Social Discounting Involves Modulation of Neural 

Value Signals by Temporoparietal Junction 
 

Strombach, T., Weber, B., Hangebrauk, Z., Kenning, P., Karipidis, I. I., Tobler, P. N., 

& Kalenscher, T. (2015). Social discounting involves modulation of neural value 

signals by temporoparietal junction. Proceedings of the National Academy of 

Sciences, 112(5), 1619-1624. 

 

 

One of the most relevant topics in decision making and society is the issue of why 

people are altruistic towards some individuals and selfish towards others (Jones & 

Rachlin, 2006; Jones & Rachlin, 2009; Rachlin & Jones, 2008). In this study, we tackle 

that question from a neuroeconomic point of view, combining psychological theories of 

prosocial behavior, an economic model that reconstructs decision making, and 

neuroscientific imaging methods to integrate another level of detail.  

 

 People often consider the well-being of others in their decision making (Falk et 

al., 2003; Fehr & Fischbacher, 2002; Fehr et al., 2002; Fehr & Schmidt, 1999). 

Nevertheless, they differentiate between people they feel close to (e.g., their partners or 
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mothers) and people they do not have any relationship with (e.g., strangers or people 

they only see sporadically on the street). Thus, perceived social distance from one’s 

interaction partner seems to influence willingness to forego a reward in order to be 

generous to that specific person. This phenomenon—the decline in generosity across 

social distance—is called social discounting (Jones & Rachlin, 2006). In the present 

study, we investigate how the integration of social distance into the valuation process 

of decision making is realized in the brain. Social discounting refers to the idea that 

social decision making balances egoistic, self-regarding motives and generous, other-

regarding considerations; this balance tilts towards selfishness with increasing social 

distance between the donor and recipient (Strombach et al., 2014). In our social 

discounting experiment, we systematically and independently varied other-regarding 

preferences and the strength of the egoism bias as a function of social distance so that 

we were able to discriminate between the influence of social distance and purely 

selfish, reward-maximizing strategies or social preferences like fairness.   

 

 A region that is often associated with mentalizing and perspective taking is the 

temporoparietal junction (TPJ) (Mars et al., 2012; Morishima et al., 2012; Schurz et al., 

2014). We hypothesized that the TPJ would orchestrate the balance between generous 

and selfish considerations depending on social distance. Furthermore, the design 

allowed discrimination between two competing ideas about the role of the TPJ in 

prosocial choice. On the one hand, the theory of mind suggests that TPJ reflects the 

closeness between the donor and recipient and, thus, the ability to put oneself in 

someone else’s shoes (Frith & Frith, 2007; Saxe & Kanwisher, 2003; Young, Dodell-

Feder, & Saxe, 2010). Conversely, a recently proposed model suggests that the TPJ 

reflects the temptation to be selfish to facilitate overcoming the selfish motives in the 

decision-making process (Morishima et al., 2012; Silani, Lamm, Ruff, & Singer, 2013). 

 

Using functional magnetic resonance imaging (fMRI), we investigate the neural 

underpinnings of social discounting. In our study, we do not find support for a 

correlation of TPJ activity with the econometrically reconstructed other-regarding 

value or social distance. However, we find support for the second idea about the TPJ, 

suggesting that TPJ activity reflects the temptation to be selfish. In fact, the TPJ is more 

active during generous choices than during selfish choices and covaries with the 

temptation to choose selfishly. Additionally, we find greater connectivity between the 

TPJ and the VMPFC, a region associated with subjective value, during generous 

decisions than during selfish ones (Bartra et al., 2013; Hare et al., 2009). Thus, the 
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higher the temptation to be selfish while making a prosocial choice, the greater the 

upregulation of the activity in the brain’s valuation system by the TPJ. 

 

The results are interesting for a couple of reasons. First of all, we propose a 

neural model about how prosocial considerations are integrated into the valuation and 

decision making process. Therefore, the study contributed to the further development 

of a biologically plausible model of decision making. That, of course, has implications 

for how social decision making is conceptualized in psychological models. In the 

present study, we show that TPJ does not merely reflect mentalizing and perspective 

tasking processes (actions associated with the theory of mind). We contribute to a more 

concrete picture of how social decisions are made—balancing egoistic and prosocial, 

social distance-dependent considerations—and this input is likely to originate from the 

TPJ. This contributes to the extension of the common currency idea. Besides the input 

from DLPFC in self-control processes (Hare et al., 2009; Hare et al., 2014), it is likely 

that the VMPFC receives input also from other regions to form a subjective value. We 

suggest that, in social decision making, the input might come from the TPJ. Thus, the 

study contributes to the refinement of psychological theories on prosocial choice. 

However, it also contributes to economic theory by highlighting the influence of social 

distance on economic decision making. Until this point, social distance had primarily 

been ignored in economic approaches. Here, we show that social distance modulates 

prosocial behavior, which is also a prerequisite for cooperation between actors 

(Axelrod & Hamilton, 1981; Fehr & Gächter, 1999). The study is, thus, an example of 

the successful integration of multidisciplinary approaches to develop a more detailed 

and elaborate picture of economic and social behavior.  

 

The findings can also be used to develop application-oriented approaches. 

While clinical scientists and psychologists can use the data to develop models of 

antisocial behavior and ultimately develop strategies and therapies for treating 

antisocial behavior, economists can get insight into the variability of social preferences 

and their underlying neurobiology.  

 

Future studies should focus on the replication of the patterns identified in the 

study. Thus, repeating the study in different social settings with diverse incentives 

might help to test whether we identified a specific form of social decision making or if 

the proposed model can be generalized to social decision making. 
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4. Study 3: Gender-specific effects of cognitive load on social 

discounting 

 

Strombach, T., Gorczyca, B. & Kalenscher, T. (submitted). Social Discounting & limited 

cognitive resources: gender interacts with cognitive load. 
 

 

Multitasking has become increasingly normal to us. At the same time, our cognitive 

resources are limited (Baumeister, Bratslavsky, Muraven, & Tice, 1998; Gailliot & 

Baumeister, 2007). Consequently, cognitive load is high in many situations—including 

those where we have to make decisions. This has given rise to the question of how 

these occupied limited resources affect decision making. There is an ongoing 

discussion about the effect that cognitive load has on social decision making (Camerer 

& Hogarth, 1999). While some researchers report that subjects become more generous 

towards their interaction partners when cognitive load is high (Roch, Lane, Samuelson, 

Allison, & Dent, 2000; Schulz, Fischbacher, Thöni, & Utikal, 2014), others report more 

egoistic behavior—less willingness to share with an opponent (Crelley, Lea, & Fischer, 

2008; Moore & Loewenstein, 2004).  

 

The inconclusive findings on the effect on prosocial choice suggest that there is 

at least one factor missing in the analysis that might explain the diverse results. In the 

present study, we hypothesize that the missing factor might be social distance. The 

analysis of previous studies indicates that those studies reporting more generosity with 

high cognitive load use anonymous interaction partners: thus, people with very high 

social distance. By contrast, studies reporting less generous behavior use non-

anonymous recipients of prosocial behavior: thus, interaction partners with lower 

social distances. Consequently, the perceived social distance is hypothesized to 

modulate the effect of cognitive load on prosocial behavior. To test this, high or low 

cognitive loads are induced in subjects, who subsequently perform a social discounting 

task, comparable to the one used in study 2.  

 

In the present study, we varied the level of cognitive load by using different 

levels of difficulty in demanding cognitive tasks. Our data indicates that social distance 

is indeed an important factor modulating the influence of the cognitive load level. 

However, it interacts with gender. While women are not significantly affected by 

cognitive load, men show less steep discounting when cognitive load is high. We 
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interpret our results within the framework of the dual process approach (Chaiken & 

Trope, 1999; Schulz et al., 2014), which states that decision making is always a balance 

of deliberate and automatic processes. When someone is well rested and cognitive load 

is low, the deliberate system prevails in the decision-making process. However, when 

the cognitive load is high and cognitive resources are exhausted, the automatic 

processes dominate the decision-making process. Similarly, going grocery shopping 

sated or hungry will influence the food items you choose. Referring to our study, men 

with high cognitive loads appear to use the deliberate processes less than women with 

high cognitive loads.  

 

Referring to the systems introduced in part I of this dissertation (Pavlovian, 

habit and goal-directed; Rangel et al., 2008), the habit system is likely to use more 

automatic or model-free processes, while the goal-directed one makes use of deliberate 

and model-based processes. Therefore, the present study suggests that, although 

different terminologies might be used, it is likely that there are different systems which 

control behavior dependent on the circumstances of the decision maker. It seems also 

reasonable to suggest that the different systems lead to different behavioral outcomes. 

Cognitive load is likely to be one factor that modulates which system is applied to the 

decision making problem. When cognitive load is high more automatic strategies or 

habits are used when cognitive resources are scarce, especially in men. 

 

 The study contributes to the ongoing discussion about the effect of cognitive 

load on decision making by integrating social distance into the theoretical approach. A 

better understanding of this construct might help to develop more effective strategies 

for dealing with the risks of cognitive exhaustion and improving the quality of 

decisions made when cognitive capacity is scarce, e.g., during jobs that demand 

multitasking or when time pressure is high.  

 

 

5. General Conclusion 
 

All three studies described in Part II investigate reward processing using different 

methods and experimental designs. Together, they provide an improved 

understanding of the processing of incentives in individual situations (performance-

based incentives) and social reward (neural correlates of social discounting and 
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behavioral effects of cognitive load on social discounting), contributing to a 

multidimensional view of subjective valuation processes. 

 

Study 1 shows that neural correlates in regions associated with reward 

processing react differently to cognitive tasks, depending on whether or not a 

monetary incentive is available. Previous research already indicated that the VS tracks 

the availability of performance-contingent rewards. However, we show that the 

removal of performance-contingent incentives changes neural activity in regions 

associated with reward processing, even when the task stays the same over time. We 

hypothesize that the VS modulates performance without directly affecting activity in 

task-related regions. We conclude that reward is a strong modulator and that changes 

in rewards have an especially strong influence on behavior and should, therefore, be 

applied carefully. 

 

 One of the goals of this dissertation is to establish a valid and reliable paradigm 

for measuring social distance-dependent prosocial decision making. We are able to 

show that the findings on social discounting are stable over experiments and therefore 

our paradigm offers a valid alternative to the original paradigm by Jones and Rachlin 

(Jones & Rachlin, 2006; Rachlin & Jones, 2008). The different methods and 

environmental settings highlight the importance of integrating social distance into 

models of decision making and economic theory. With this dissertation, I have, 

therefore, contributed to refining economic theory. Based on my results, I suggest 

extending the concept of social preferences by including a social distance dimension. 

We also show that the TPJ contributed to the social decision making process by 

modulating basic value signals in the VMPFC. The design of the experiment allows the 

investigation of the systematic influence of social distance and the interaction of 

prosocial and egoistic considerations. We show that the social decision is heavily 

reliant on the balance between other-oriented and self-oriented considerations, which 

can be distorted when cognitive load is high. We are therefore able to suggest a 

biologically plausible model of prosocial choice, which seems to be reliant on the 

environmental circumstances.  

 

 Nevertheless, there are still some unanswered questions that should be 

addressed in future research. Manipulation studies should be used to investigate 

whether the TPJ is not only involved in the prosocial choice behavior but also causally 

involved. Using for example transcranial magnetic stimulation (TMS), for example, we 

can disrupt the functioning of that specific region. This might indicate a potential 
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causal influence of TPJ in prosocial choice behavior. The combination of several 

methods (high temporal resolution (e.g., EEG) with high spatial resolution (e.g., fMRI)) 

might be fruitful, increasing the level of description in both the first and second fMRI 

studies.  

  

 One of the main weaknesses of fMRI is the question of ecological validity. The 

subjects are in the scanner and answer very basic questions with a limited number of 

options available. Therefore, future research should try to develop methods for testing 

neural underpinnings in real life settings to validate the findings. Although there is no 

method to reliably test that, neuroscience needs to keep in mind that the experiments 

are looking at very reduced and limited behaviors and decisions.  

 

To sum up, subjective valuation is a highly complex process in both social and 

non-social contexts. With the studies included in this dissertation, I contribute to the 

advancement of neuroeconomic theory on value-based decision making and reward 

processing. The dissertation may help to refine and advance existing approaches on the 

neural underpinnings of choice behavior and economic theory.  
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Abstract 

 

Pay-for-performance is commonly applied in order to favorably modulate behavior 

and increase performance. However, the removal of an incentive leads to a 

significant decrease in performance. Although there is behavioral evidence that 

incentives have an effect on performance, the neural underpinnings of the 

underlying cognitive processes are not certain. We hypothesize that performance is 

affected by monetary incentives, and that these changes are reflected by the 

dopaminergic reward system. In this study, we use the direct measure of 

performance and measure the underlying cognitive processes by using functional 

magnetic resonance imaging (fMRI) simultaneously. We find that incentives induce 

changes in reward-related brain regions, but not in task-related neural 

representations. Interestingly, when monetary incentives are introduced, blood 

oxygenation level dependent activity increases in the ventral striatum, being 

sensitive to reward, and decreases in the ventromedial prefrontal cortex, 

representing the subjective value. We suggest that pay-for-performance does not 

directly affect performance by modulating neural activity in task-relevant regions, 

but affects the reward representation during task completion. Therefore, we 

conclude that performance-contingent incentives need to be applied carefully. This 

finding is of special interest for employee compensation in unstable economic 

environments, as companies in unstable environments might not permanently 

ensure pay-for-performance. 

 

 

Highlights 

 

- The introduction of pay-for-performance increases activation in the ventral 

striatum. 

- The introduction of pay-for-performance decreases activation in the 

ventromedial prefrontal cortex. 

- No support that monetary incentives affect task-relevant brain regions. 

 

 

 

 

 

 

Keywords: monetary rewards, performance, incentives, motivation, fMRI, 

neuroeconomics 



 

1. Introduction 

 

That behavior is often guided by incentives in the form of rewards is a widely 

recognized condition (Locke, 1968; Schultz, 2006). Specifically, rewards are understood 

to initiate and modulate behavior (Schultz, 2006), and substantial research evidence 

demonstrates that such incentives affect performance (Bloom, 1999; Goldman, 2005; 

Jenkins Jr, Mitra, Gupta, & Shaw, 1998; Locke, Feren, McCaleb, Shaw, & Denny, 1980; 

Rynes, Gerhart, & Parks, 2005). However, opinions about the impact of rewards on 

performance remain far from unanimous, as the direction of the effect continues to be a 

topic of controversy both in psychology and economics (Albrecht, Abeler, Weber, & 

Falk, 2014; Camerer & Hogarth, 1999; Kamenica, 2012). When monetary incentives are 

introduced, intrinsic motivation to perform is overshadowed by the money, resulting 

in behavior that is predominantly elicited by financial incentives. Many theories 

indicate that this crowding out of motivation by financial incentives leads to a drop in 

performance (Deci, 1971; Deci, Koestner, & Ryan, 1999; Frey & Oberholzer-Gee, 1997; 

Murayama, Matsumoto, Izuma, & Matsumoto, 2010; Ryan & Deci, 2000). Nevertheless, 

an equally substantial amount of research demonstrates that monetary incentives can 

have a positive impact—possibly by increasing the effort that is invested in solving a 

task (Bloom, 1999; Jenkins Jr et al., 1998; Locke et al., 1980). Although the effect of 

incentives has not yet been definitely established, performance-based incentive 

systems (e.g., performance-based compensation plans, cash gifts, Christmas bonuses, 

annual bonuses, stock options, etc.) are widespread in today’s corporate world 

(Camerer & Hogarth, 1999; Le Blanc & Mulvey, 1998; Merchant & Van der Stede, 2007; 

Rosenthal, Frank, Li, & Epstein, 2005).  

 

Because the behavioral findings regarding performance-based incentives have 

not been definitively established, the ways in which performance-based monetary 

incentives change the neural representation of a specific task need to be investigated. A 

better understanding of the effects may reveal how such measures impact performance 

at a neural level. Neuroscience offers a method for investigating the latent but 

significant effects of monetary incentives on performance. Such insights may be very 

beneficial in a variety of corporate and institutional settings where performance 

measures are implemented on a regular basis. Because we are interested in the 

sequential effect of incentives, we observed reactions to the introduction of a monetary 

incentive, as well as subsequent responses to the removal of the incentive, noting, 

particularly, how these changes are reflected at the neural level. Subjects were 

presented with a cognitively engaging, but solvable, arithmetic task while measuring 
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blood oxygenation level dependent (BOLD) signals, which are an indirect measure of 

relative neural activation, and which allow inferences about the regions activated 

during a specific cognitive task (Huettel, Song, & McCarthy, 2004). Comparing BOLD 

signals that are recorded before performance-based rewards are introduced (baseline), 

during the administration of a pay-for-performance and subsequent to the removal of 

the incentives could be expected to reveal brain regions associated with processing 

such changes in incentives. As the task will remain the same in all conditions (i.e., 

before the incentive has been offered, when incentives are introduced and after the 

incentive has been removed), this experimental design is well suited to examining both 

the extent to which monetary incentives affect performance on a behavioral level, and 

how this is reflected in neural activation.  

 

 

2. Theory and hypothesis development 

 

2.1 Incentives and performance  

 

Since the early 1960s, researchers have been interested in investigating the relationship 

between payment and performance (Lawler, 1971; Locke, 1968), so far with 

inconclusive results. While many studies have shown that money has a positive effect 

on motivation and performance (Bloom, 1999; Jenkins Jr et al., 1998; Lazear, 2000; 

Locke et al., 1980), others have demonstrated that performance-based payments are 

disadvantageous as motivational factors (Frey & Oberholzer-Gee, 1997; Locke et al., 

1980). Though most researchers generally agree that there is a connection between 

monetary incentives and performance (Camerer & Hogarth, 1999; Kamenica, 2012; 

Locke et al., 1980), research in psychology and economics presents divergent opinions 

about such a relationship. While the greater number of researchers in psychology have 

concluded that monetary incentives undermine performance (Deci, 1971; Deci et al., 

1999), economic researchers generally endorse the opposite view. The research on the 

psychology of motivation (Deci & Ryan, 1985, 2000, 2012; Ryan & Deci, 2000) 

highlights the importance of the autonomous self and the freedom to make personal 

decisions as a prerequisite for a high motivation to perform. They suggest that rewards 

that are contingent upon engagement, competition, or performance undermine 

intrinsic motivation and, consequently, lead to reduced performance in a given task. 

The introduction of incentives might also be detrimental in the same way that added 

incentives make people self-conscious about an automatic activity (Baumeister, 1984; 

Baumeister & Showers, 1986; Camerer & Hogarth, 1999). A series of behavioral 
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observations and experiments indicated that the introduction of larger-than-average 

monetary incentives reduces performance in, for example, automatic actions or 

sporting events (Baumeister, 1984; Mobbs et al., 2009). These experiments suggest that 

the increase in incentives may lead to arousal beyond an optimal level, and may result 

in explicit monitoring that can interfere with the activity itself. In other words, 

preoccupation with a reward may lead to pressure-induced performance decrements 

(Baumeister, 1984; Baumeister & Showers, 1986; Schlenker, Phillips, Boniecki, & 

Schlenker, 1995). Thus, in psychological terms, intrinsic motivation is expected to be 

high enough to produce steady effort even in the absence of financial rewards, and 

incentives are likely to reduce performance (Camerer & Hogarth, 1999). 

 

In contrast, the conventional view proposed by economists states that behavior 

is initiated only when a reward is available, thereby implying that monetary incentives 

can be used to initiate a desired behavior (Camerer & Hogarth, 1999). When focusing 

on economic experiments to investigate the role of incentives, if subjects earn money 

for good performance, they work harder, more persistently, and more effectively 

(Camerer & Hogarth, 1999). A field study by Libby and Lipe (1992) also shows that the 

introduction of monetary incentive systems induces greater effort and results in better 

performance. Thus, economic and psychological theories make different predictions 

about the effect that monetary incentives have on performance. The general view of 

relationships between incentives, motivation, and performance is inconclusive. 

However, the initial level of intrinsic motivation to complete a task seems to be a core 

component to determine the effect of incentives on performance. Thus, the 

inconclusive results may be driven by the nature of the task or by the amount of 

intrinsic motivation and personal interest that the task elicits. According to a meta-

analysis developed by Jenkins and colleagues (1998), the effect of money on motivation 

to perform is modulated by the level of personal interest a person has in the task. 

While performance in low-interest activities increases with payment (Locke et al., 1980; 

Rynes et al., 2005), the motivation to perform highly interesting activities seems to 

diminish after receiving monetary incentives (Frey & Oberholzer-Gee, 1997).  

 

In the experiment conducted for our study, we examine the effects of 

introducing, and of removing, extrinsic monetary incentives for performance on a 

mental arithmetic task. We hypothesize that the introduction of monetary incentives 

will increase performance, as our task cannot be considered an interesting activity, so 

that incentives can be expected to increase the effort invested in solving the tasks 

rather than diminishing intrinsic motivation and performance (Camerer & Hogarth, 

1999). Additionally, taking an incentive away has been widely shown to decrease 
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levels of motivation—diminished motivation that may be permanent, and that is 

independent of the personal level of interest in the task (Gneezy, Meier, & Rey-Biel, 

2011; Rynes et al., 2005). These results cause us to expect the removal of a monetary 

incentive to decrease performance in our experiment as well. For the purposes of this 

paper, we argue that performance is a direct measure, while motivation to perform is 

the underlying construct that drives outcome-oriented behavior. We do not evaluate 

whether participants are intrinsically motivated; rather, we focus on the effect of 

incentives on performance. The motivation to perform is defined as being engaged in 

solving a given problem. Thus, in this context, motivation is tied to the concept of 

motivation to perform, independent of the intention behind it.  

 

 

2.2 Neural correlates of changes in performance-based rewards 

 

When task-related and incentive-related behaviors are combined, three processes are 

expected to modulate the underlying neural correlates: 1) reward-related activation as 

a response to the monetary incentives, 2) task-related activity to complete the task, and 

3) effort-related changes in BOLD signals that reflect an increase in cognitive control 

intended to result in task success.  

 

First, we expect activation in reward-related areas such as the corticobasal 

ganglia valuation system, including the ventral striatum (vStr), to reflect the 

introduction and removal of monetary rewards (Bartra, McGuire, & Kable, 2013; Chib, 

De Martino, Shimojo, & O'Doherty, 2012; Haber & Knutson, 2010; Murayama et al., 

2010; O'Doherty et al., 2004; Robbins & Everitt, 1996). We come to this conclusion, in 

part, on the basis of recent studies in this area that have used functional magnetic 

resonance imaging (fMRI) to investigate the effect of monetary incentives on 

performance and motivation. Murayama and colleagues (2010) showed that 

performance-based rewards modulate activation in the vStr. They state that this 

activation reflects the integration of extrinsic reward value and intrinsic task value. 

However, their design was limited to a comparison between incentivized participants 

and those who were not incentivized which, because of variability in performance-

based incentives, did not permit testing of within-subject changes. The authors suggest 

that the introduction of monetary incentives also modulates the effort that is invested 

in solving a given task—a response that can be observed by BOLD signal changes in 

the vStr. Although other studies focused more on money’s detrimental effect on 

intrinsic motivation and performance (Albrecht et al., 2014; Chib et al., 2012; Mobbs et 
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al., 2009), a common feature in all studies is the important role of the striatum, notably 

as it is associated with the introduction and removal of monetary rewards. In the 

present experiment we anticipate increased BOLD responses in the vStr during 

performance-based monetary rewards. Should this finding be observed, it would 

support the idea that the vStr is indeed involved in processing extrinsic motivation and 

reward, independent of the level of intrinsic motivation or personal interest.  

 

Second, we hypothesize that incentives drive changes in BOLD signals in task-

related regions. Throughout the experiment, as subjects are asked to solve arithmetic 

calculations, we expect to find activation in regions known to be associated with 

arithmetic calculations, such as the intraparietal sulci (IPL), inferior prefrontal, and 

prefrontal cortices that have been found to be involved independent of the type of 

calculation (i.e., addition, subtraction, multiplication, division) (Arsalidou & Taylor, 

2011; Dehaene, Molko, Cohen, & Wilson, 2004; Rivera, Reiss, Eckert, & Menon, 2005). 

Monetary incentives might also modulate BOLD activity in these regions.  

 

Third, in addition to changes in the reward- and task-related regions, monetary 

incentives may induce changes in effort and in attention to the task that are reflected in 

variable intensity of BOLD signals. These neural changes are expected to be paralleled 

by changes in performance in the experiment. Previous research shows that increasing 

the reward received from a desired outcome can facilitate cognitive processes that are 

required for the achievement of that outcome (Adcock, Thangavel, Whitfield-Gabrieli, 

Knutson, & Gabrieli, 2006; Delgado, Gillis, & Phelps, 2008; Engelmann, Damaraju, 

Padmala, & Pessoa, 2009; Jimura, Locke, & Braver, 2010; Kouneiher, Charron, & 

Koechlin, 2009; Krawczyk, Gazzaley, & D'Esposito, 2007; Taylor et al., 2004). Thus, we 

assume that when performance-based rewards are introduced, activation in task-

related areas such as the IPL will increase, reflecting the increased effort and cognitive 

engagement. When the reward is removed, activation in those regions is expected to 

decrease. The increase in effort may be accompanied by increased cognitive control 

and by behavior that is more consciously controlled. The dorsolateral prefrontal cortex 

(dlPFC) has reliably been found to be involved in self-control and executive processes 

(Crockett et al., 2013; Hare, Camerer, & Rangel, 2009; Hare, O'Doherty, Camerer, 

Schultz, & Rangel, 2008; Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 2006). An 

increase in dlPFC activation is expected after introducing monetary rewards, reflecting 

increased self-control and cognitive/executive control.  
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3. Material and Methods 

 

3.1 Participants   

 

Thirteen female and seven male, healthy, right-handed subjects participated in the 

fMRI study (age: M = 42.10, SD = 4.83, range = 34 to 50 years; no gender differences in 

age, t = -0.31, p = .758). All participants were native German speakers and gave written 

consent prior to the scanning sessions. Participants were informed that the 

examination could potentially reveal medically significant findings, and they were 

asked whether they would like to be notified in such a case. None of the participants 

was excluded from further analysis. Participants received a 30€ show-up fee at the end 

of the experiment. Additionally, participants received different amounts of money, 

based on the number of correct answers in the performance-based rewards condition. 

The amounts varied between 16€ and 48€ (benefit: M = 37€, SD = 7.83€). An 

institutional review board1 approved the study. 

 

 

3.2 Experimental design 

 

The fMRI experiment consisted of four blocks in which an LCD beamer projected 

arithmetic calculations onto a transparent screen that was viewed by participants via a 

45° mirror mounted on an element phased array coil. In order to prevent external 

confounding visual stimulation, the questions were equal in length, size, position, 

background, and luminance. Each question was visible for at least 10 seconds. 

Questions used in the experiment included simple addition, subtraction, multiplication 

and division, with numbers not higher than 221. In each question, subjects were shown 

a solution and were asked to indicate whether or not it was correct. Answers were 

given by pressing a corresponding button on a magnetic resonance compatible 

response box. In total, subjects had to solve 65 calculations, 20 within each main block 

(Blocks 1 – 3) and five in a control condition (Block 4). Short breaks between each block 

were applied. To ensure a comparable level of difficulty across blocks, the types of 

calculation (addition, subtraction, multiplication and division) and number of digits 

                                                        
1 The study was approved by an external institution—the Freiburg Ethics Commission 
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were balanced across the three 20-trial blocks2. In the first block, after participants 

pressed a button to answer the question, the calculation disappeared and they saw a 

fixation cross for the rest of the trial within 10 seconds. If no answer was given, the trial 

ended automatically after 10 seconds. Questions were presented in succession until the 

end of the block. In the second block, subjects were again asked to evaluate the 

correctness of a number of calculations and to press a button to indicate their decisions. 

The difference between the first and second block was that, while participants received 

neither feedback on their performance nor a performance-based reward in block one, 

after the calculations in block two they received a performance-based reward of 2€ for 

each correct answer, comparable to the study by Murayama et al. (2010). Thus, an 

external, quantifiable incentive was introduced. Block three was identical to block one, 

allowing within-subject comparisons to evaluate the effect of the removal of monetary 

incentives. In a fourth block, participants were presented with five more calculations 

and were again paid 2€ for each correct answer. Though Block 4 was not included in 

the fMRI analysis, it was designed to control for potential fatigue effects and to allow 

participants to leave the setting with a positive feeling about the experience. (See 

Figure 1 for the experimental setup.)  

 

                                                        
2 We have to mention that the necessary mix of different operations for the present research – due to 
possible differences of mental strategies – might have lowered the signal-to-noise ratio (see for example 
Fehr, 2013) 
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Figure 1: Experimental setup for Block 1 – Block 3 with feedback phase only 
for block 2. 

 We recorded the responses using Cogent (www.vislab.ucl.ac.uk/cogent.php). 

Average performance (individual fraction of correct answers (indSCblock = number of 

correct answers divided by the total number of calculations) was calculated for each of the 

three blocks. Consequently, values ranged between 0 [all answers were incorrect] and 1 

[all answers were correct]. After the scanning session, participants were asked to 

complete a questionnaire that included demographic data (e.g., age, gender, net 

income, work status). Additionally, participants completed a self-report questionnaire 

that assessed their motivation with respect to monetary incentives (Qmotivation), their level 

of pleasure, over time, for performing the calculations (Qfun), and any demotivation 

that resulted from the removal of monetary incentives (Qdemotivation). A 7-point scale 

ranging from 1 (totally disagree) to 7 (totally agree) was used.  

 

 

3.3 Imaging protocol and fMRI analysis 

 

The study was executed on a 3T fMRI scanner (MAGNETOM Trio, Siemens, Erlangen, 

Germany). The dataset used consisted of 36 transversal slices of 3.6 mm thickness 



Study 1: Neural Underpinnings of Performance-Based Rewards 

 

65 

without a gap, a field of view of 230 mm x 230 mm, and an acquired 64 x 64 matrix (i.e., 

isotropic voxels with 3.6 mm edge length). Contrast parameters were a signal response 

time of 3000 ms, echo time of 50 ms, and flip angle of 90°. Data analysis was conducted 

with SPM8-freeware (Friston, 1996; Friston et al., 1994) using MATLAB as a working 

basevand following procedures described in Poldrack et al. (2007). The data 

preprocessing consisted of three initial steps. First, to correct for artifacts due to head 

movement in the scanner, all images (Block 1 – Block 3) were realigned and resliced by 

a “rigid body” transformation to the mean image of all sessions (realignment). Second, 

to compare all participants within the group analysis, all images were normalized and 

re-sampled to the standard Montreal Neurological Institute (MNI) template 

(normalization). Third, to prepare the data for statistical analysis, all images were 

smoothed with an 8-mm Gaussian kernel (smoothing) (Ashburner, Neelin, Collins, 

Evans, & Friston, 1997) followed by a file set split, in order to re-assign the images to 

their related sessions (blocks). 

 

For the main data analysis, we estimated a general linear model (GLM with 

Block 1, Block 2, and Block 3 separately) using the robust Weighted Least Squares 

Estimation (rWLS). The GLM consisted of the following independent variables: (R1) 

indicator variable for Block 1; (R2 – R7) movement regressors for Block 1; (R8) indicator 

variable for Block 2; (R9) indicator variable for the feedback phase; (R10) parametric 

modulator for feedback phase with regard to correct and incorrect answers; (R11 – R16) 

movement regressors for Block 2; (R17) indicator variable for Block 3; (R18 – R26) 

movement regressors for Block 3 and session constants for Blocks 1 – 3. The regressors 

capturing each block (R1, R8, R17) were modeled using a boxcar function with the 

individual response time as duration. The regressor capturing the feedback phase (R9) 

was modeled using a boxcar function with a fixed duration of 2.5 seconds. Each of the 

regressors was convolved with a canonical hemodynamic response function (HRF). We 

calculated the following first-level single-subject contrasts of interest: Block 1 versus 

Block 2; Block 1 versus Block 3; and Block 2 versus Block 3. On the second level, to 

extract differences of single-subject contrasts between subjects, we computed a one-

sample t-test. We generated statistical parametric maps for the given contrast that 

displayed the t-value of each voxel meeting a p < .0001/p < .001 (uncorrected) 

significance level with an extent threshold voxel of k = 10, if not indicated elsewhere. 

Results are reported using the MNI coordinate system. 
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4. Results 

 

4.1 Behavioral results 

 

Behavioral data were analyzed to study the effects of incentives on performance. As 

indicated previously, we used the fraction of correct answers (indSCblock) as a direct 

measure of performance. To check for behavioral differences in the number of correct 

answers between the three blocks, we analyzed individual fractions of correct answers 

(indSCblock: Mblock1 = .74, SD =.16, range = .35 to .95; Mblock2 = .72, SD =.15, range = .45 to 

1; Mblock3 = .42, SD =.07, range = .35 to .55) using a one-way repeated measures ANOVA 

(with block numbers 1, 2, and 3 being the levels of the within-subject factor) corrected 

for multiple comparisons by the Greenhouse-Geisser (GG) correction criterion. 

Analysis revealed a significant main effect of block number (F(1.378, 26.174) = 50.21, p 

< .001, ηp
2  = .703). Post-hoc tests revealed a significant drop in performance from Block 2 

to Block 3 when the monetary incentive was removed, but no increase in performance 

from Block 1 to Block 2. Therefore, thus no increase in performance is observed after 

the introduction of the incentive (Block 2) (see Figure 2).  A bivariate analysis of 

performance levels between Block 1 and Block 3 (r = -.27, p = .25) and between Block 2 

and Block 3 (r = -.29, p = .212) revealed no indication of a bias regarding participants’ 

individual performance level.  

 

 
Figure 2: Boxplot with mean and standard deviation for block1-3 based on 
indSCblock (***=p <.001). 

After analyzing the post-scanning questionnaire, we found significant correlations 

(one-tailed) between an increase in motivation because of monetary incentives 

(Qmotivation) and a decrease in the pleasure of calculation over time (Qfun; r = .43, p = .030), 

as well as between an increase in motivation because of monetary incentives (Qmotivation) 
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and a demotivation after the removal of monetary incentives (Qdemotivation; r = .48, p = 

.015).  

 

 

4.2 fMRI results 

 

To investigate the effects of the introduction and removal of monetary incentives on 

neural activation, we first analyzed the contrasts using a threshold of p <.001 and k ≥ 

10 voxel. In a second step, we used masks of chosen regions as a region of interest 

based on a coordinate-based meta-analysis of BOLD fMRI experiments that examine 

neural correlates of subjective value (Bartra et al., 2013).  

 

When comparing BOLD activity before (Block 1) and during (Block 2) performance-

based incentives, we found higher BOLD activation during the incentive-free phase 

(Block 1) within the right orbitofrontal cortex (OFC; BA11, x=2, y=36, z=-18), the left 

dorsal anterior cingulate cortex (dACC; BA32, x=-6, y=36, z=-8), and the right 

ventromedial prefrontal cortex (vmPFC; BA10, x=2, y=36, z=-18). These regions are 

located in the medial prefrontal cortex and have previously been associated with the 

brain’s valuation network (Bartra et al., 2013).  Using a mask of the vmPFC based on 

Bartra and colleagues (2013), we found that this region, which is  known to be involved 

in modality-independent subjective value representation, shows a significant decrease 

in BOLD activity as a response to the introduction of the monetary reward (x=2, y=38, 

z=-18; p=0.0353, t=4.1815, small-volume (SV) familywise error (FWE) corrected) (see 

Figure 3).  

Using the same contrast to identify brain regions associated with processing of 

the monetary performance-based reward, we compared neural activity, as measured 

by the BOLD activity, during incentivized (Block 2) and non-incentivized (Block 1) 

trials. Of the notable observations for Block 2, we found significantly higher BOLD 

signals, as compared to Block 1, within the left parahippocampal gyrus (BA36, x=-40, 

y=-30, z=-16), the caudate head (especially the left vStr) (vStr; x=-4, y=12, z=-6), the left 

insula (BA13, x=-28, y=18, z=-2), and the bilateral dorsolateral prefrontal cortex (dlPFC; 

BA46, x=42, y=16, z=18; BA9, x=-42, y=4, z=42). Using a mask of the vStr from the 

meta-analysis (Bartra et al., 2013), we found higher activity in the vStr, a region that is 

reliably found to be involved in reward processing (x=-4, y=12, z=-6; t=6.400, p=.0113, 

SV FWE corrected) during the introduction of the monetary incentive, as compared to 

non-incentivized trials in Block 1 (see Figure 4).  
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Figure 3: Visualization of activity within a) the vmPFC for block 1 (x = 2, y = 
36, z = -18; contrast of block 1 versus block 2) and b) a conjunction between 
the contrasts of block 1 versus block 2 (red clusters) and block 1 versus block 
3 (yellow clusters), with an overlapping activation pattern of a cluster (orange) 
within OFC, vmPFC and ACC. 

 
Figure 4: Visualization3 of activity within the ventral striatum for block 2 (x = -
4, y = 12, z = -6; contrast of block 2 versus block 1). 

Contrasting BOLD activity during (Block 2) and after (Block 3) performance-

based incentives, we found significantly higher BOLD signals in Block 2 compared to 

Block 3 within the right parahippocampal gyrus (x=38, y=-2, z=-24), the bilateral 

superior temporal gyrus (BA38, x=42, y=20, z=-6; x=-46, y=16, z=-20), the caudate head 

(especially the left vStr) (vStr; x=-4, y=10, z=-4), the left insula (BA13, x=-32, y=6, z=18), 

and the bilateral dorsolateral prefrontal cortex (dlPFC; BA9, x=38, y=20, z=36; x=-34, 

y=12, z=42) (see Figure 5). For Block 3, we found no significant increases in activity 

compared to Block 2 in any region. 

 

                                                        
3 p-level of .005 [unc.] only for visualization 
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Figure 5: Visualization of activity within a) the dlPFC for block 2 (x = -42, y = 2, 
z = 42; contrast of block 2 versus block 1) and b) the dlPFC for block 2 (x = -
34, y = 12, z = 42; contrast of block 2 versus block 3). 

For the contrast of BOLD activity before (Block 1) and after (Block 3) performance-

based incentives, we found significantly higher BOLD activity in Block 1 compared to 

Block 3 in BOLD signals within the left amygdala (x=-28, y=-2, z=-28), the left dorsal 

anterior cingulate cortex (dACC; BA32, x=-2, y=18, z=-8), and the left insula (BA13, x=-

42, y=2, z=-8). Additionally, for an ROI analysis using the mask for the vmPFC (Bartra 

et al., 2013), we found significantly lower BOLD signals after removing the monetary 

incentives (x=-2, y=28, z=-8, t=5.0383, p=.0161) than before they were introduced in 

Block 1 (see Figure 3). However, we did not find any differences in the vStr when using 

that mask for ROI analyses.  For Block 3, we found no significant increase in BOLD 

signals compared to Block 1. Thus, the removal of the monetary incentives decreased 

neural activity when contrasted with the baseline condition in Block 1, representing the 

changes that can be attributed to the changes in the monetary incentives and not the 

task itself (see Table 1 for a detailed report of the fMRI results).  
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Table 1: Overview of activation patterns during the experiment 

Block Region Side No. of 
voxels 

BA MNI Coordinates t-value of 
peak 
voxel 

Main clusters for the contrast of Block 1 versus Block 2 
Block 1 Orbitofrontal cortex R 25 11 2 36 -18 4.39 

Anterior cingulate L 9 32 -6 36 -8 4.14 
Block 2 Parahippocampa gyrus R 20  38 -24 -14 5.36 

Parahippocampa gyrus L 34 36 -40 -30 -16 6.07 
Middle occipital gyrus R 6 19 42 -74 -14 4.81 
Hippocampus L 9 36 -28 -36 -8 6.55 
Hippocampus R 29  30 -32 -6 6.36 
Thalamus L 261  -4 -24 12 6.34 
Caudate head, ventral 
striatum 

L 55  -4 12 -6 6.40 

Thalamus L 26  -16 -32 0 5.39 
Caudate head R 12  6 16 4 -5.25 
Inferior frontal gyrus R 12 45 56 20 20 5.89 
Caudate body R 18  20 -16 18 4.98 
Insula L 99 13 -28 18 -2 4.41 
Dorsolateral prefrontal 
gyrus 

R 19 46 42 16 18 4.84 

Dorsolateral prefrontal 
gyrus 

L 25 9 -42 4 42 4.11 

Medial frontal gyrus L 15 6 -14 -14 56 4.95 
Main clusters for the contrast of Block 1 versus Block 3 
Block 1 Amygdala L 12  -28 -2 -28 4.07 

Parahippocampa gyrus L 45  -30 -4 -12 4.80 
Anterior cingulate L 40 32 -2 28 -8 5.04 
Middle temporal gyrus L 26  -58 -32 -6 4.28 
Insula L 7 13 -42 2 8 4.10 

 Cuneus R 7 18 16 -86 18 3.96 
Block 3 No significant activity changes 
Main clusters for the contrast of Block 2 versus Block 3 
Block 2 Parahippocampa gyrus R 71  38 -2 -24 5.27 

Superior temporal gyrus R 9 38 42 20 -26 5.16 
Superior temporal gyrus L 21 38 -46 16 -20 5.94 
Parahippocampa gyrus R 31  18 -26 -18 4.07 
Cuneus L 137 18/17 -8 -94 8 4.51 
Caudate head, ventral 
striatum 

L 11  -4 10 -4 4.13 

Thalamus L 48  -18 -32 -2 4.43 
Posterior cingulate R 11  10 -56 4 3.71 
Insula L 6 13 -42 0 6 3.93 
Inferior frontal gyrus R 26 45 56 20 20 4.33 
Insula L 81 13 -32 6 18 5.36 
Cingulate gyrus R 64 31/24 12 -24 40 4.57 
Cingulate gyrus L 26 23 -2 -20 32 4.51 
Dorsolateral prefrontal 
gyrus 

R 37 9 38 20 36 4.59 

Cingulate gyrus R 122 24 2 -6 42 4.41 
Dorsolateral prefrontal 
gyrus 

L 40 9 -34 12 42 5.68 

Block 3 No significant activity changes 
Height threshold T = 4.5899, p < .0001 [uncorrected], k =5; T = 3.505, p < 0.001 [uncorrected], k =5 
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5. Discussion 

 

The objective of this study was to explore how monetary incentives affect actual 

performance, and to determine how changes in incentives are reflected in the 

underlying neural activation. Our experimental design allowed a within-subject 

examination of this effect by using a cognitively engaging, but solvable, arithmetic 

task. As a reaction to the introduction and removal of monetary performance-based 

rewards, results revealed distinct changes in several brain regions associated with 

reward processing. Subjects completed three consecutive conditions to examine the 

systematic influence of changes in performance-based payments on neural activity and 

behavioral performance.  

 

On a behavioral level, we found a significant decrease in performance in 

response to the removal of monetary incentives. Because the task itself did not change 

throughout the experiment, and given that no general interaction with block-

independent individual performance level was found, this decrease is most likely 

attributable to the removal of the reward, while fatigue effects can be excluded as an 

explanation (fraction of right answers (block 4): Mblock4 = .76, SD =.23; interaction 

between blocks with performance-based payments: rblock2/4(20) =.62, p = .004). Overall, 

we were able to confirm our hypothesis that taking a monetary reward away leads to 

decreased performance. Interestingly, no changes in performance due to the 

introduction of monetary rewards were observed. Because subjects did not anticipate 

the performance-based rewards, they may have already been performing at the 

maximum level when the experiment began. A performance level pre-set at maximum 

implies that, though the additional incentive could not further improve performance, it 

could at least maintain performance at the initial level.  

 

While performance was a direct measure, neural correlates served as a proxy 

for the motivation to perform and for the underlying cognitive processes. We 

concluded that as fatigue effects were excluded as an explanation for the observed 

behavioral changes, the accompanying changes in BOLD activation can be attributed to 

the monetary reward manipulation. Moreover, we suggest that the underlying changes 

in BOLD signals reflect three different processes. First, reward-related brain areas were 

expected to respond to the introduction and removal of the monetary incentive. 

Second, we expected to find task-related activation as a response to the cognitive tasks. 

Third, we hypothesized that effort and self-control changes would be detectable on a 

neural level. While we found evidence suggesting involvement of reward- and effort-
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related changes in BOLD signals in the performance-based incentives processing, we 

did not find consistent support for a change in task-related areas. It may be the case 

that these regions were constantly active, so that no relative changes in BOLD signals 

were detectable. We therefore speculate that incentives do not directly affect task-

related activity, but rather modulate the value of a task or the effort that is put into 

solving a task. This observation implies that several brain regions modulate the 

decision-making process without directly affecting task-related regions. As well, it may 

suggest that regions other than task-relevant areas contribute to the execution of a 

better-elaborated decision process. 

 

We hypothesized that changes in monetary incentives are represented in the 

vStr. The vStr has repeatedly been implicated in general reward processing (Bartra et 

al., 2013; Haber & Knutson, 2010; Knutson & Cooper, 2005), and our findings support 

the idea that because the vStr is sensitive to rewards, observation of that region would 

track only the incentive. Our finding is also in line with studies suggesting that the vStr 

represents reward-prediction errors (RPE) in particular (Hare et al., 2008; Schultz, 1998; 

Schultz, Dayan, & Montague, 1997). RPEs are neural signals generated in reaction to a 

difference between an expected and an actual reward. In our experiment, RPE reflects 

reaction to unexpected change in reward when the monetary incentives are introduced 

or removed. These findings suggest that the incentives are, indeed, processed by 

participants and are perceived as rewarding (Balleine, Delgado, & Hikosaka, 2007; 

Bartra et al., 2013; Bloom, 1999; Jenkins Jr et al., 1998). The removal of the monetary 

incentive was also linked to a decrease in BOLD signals for reward-related brain 

regions, as well as to a decrease in performance. This is in line with Murayama and 

colleagues (2010), who found that the removal of monetary incentive leads to a 

decrease in activity in the striatum. They argue that the striatum may update the 

beliefs about an outcome of an action, which is equivalent to the idea of the RPE. 

Nevertheless, in the vStr we did not find a difference between the two non-

incentivized conditions. We speculate that the vStr responds only to the reward and 

RPEs, but not to the demotivation and drop in performance that occurs after removal 

of the monetary incentives. For further research, it might be advantageous to use a 

method that is more sensitive to temporal resolution—for example, 

electroencephalography (EEG) or magnetic encephalography (MEG). Additionally, it 

might be interesting to investigate the constitution of the network contributing to the 

processing of the introduction and removal of the performance contingent rewards 

(Friston et al., 1997; Friston, Harrison, & Penny, 2003; Fuster, 2009; Marreiros, Stephan, 

& Friston, 2010).  
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Although the vmPFC is also part of the reward network, that region responded 

differently than the vStr to the introduction and removal of the monetary incentive. 

This was to be expected, as previous research has shown that these two regions are 

associated with different components of the task process. While the vStr responds to 

RPEs and is, therefore, often associated with updating and learning processes 

(O'Doherty et al., 2004), it is proposed that activity in the vmPFC reflects subjective 

value (Hare et al., 2009; Strombach et al., 2015). Subjective values refer to an individual 

value that is assigned to a reward or action (Hare et al., 2008). Thus, the subjective 

value reflects the value of an option that is most in accordance with the subject’s 

interests, integrating several motivational factors in addition to monetary rewards. In 

the given case, as is suggested by the deactivation of the vmPFC in response to the 

introduction of the monetary incentive, the subjective value of the task is smaller after 

subjects are rewarded with money. The positive RPE in the vStr, coupled with the 

deactivation of the vmPFC, is in line with the findings of Hare et al. (2009), who state 

that the vStr reflects goals or absolute value, and the vmPFC reflects decision or 

relative value. The observed neural activation patterns also support the behavioral 

model of Deci et al. (1999), who propose that the introduction of monetary incentives 

crowd out the intrinsic motivation to perform, thus decreasing the inherent value of a 

specific action. Although it would be speculative to attribute the changes in BOLD 

activity to variability in intrinsic motivation, we assume that the perception of the task 

changes. It might be that the participant focuses on the monetary incentive when 

rewards are available. Removing the monetary incentives again leads to a decreased 

BOLD signal in the vStr. Thus, although the vStr and the vmPFC are both involved in 

reward processing, they show divergent activation patterns over task progression. This 

divergent pattern suggests that incentives affect the dopaminergic reward system in 

different ways. 

 

In addition to changes in the vStr and the vmPFC, we also found changes in the 

activation patterns of the dlPFC. The dlPFC is an area known to be involved in self-

control and attention (Crockett et al., 2013; Hare, Hakimi, & Rangel, 2014). Its 

activation thus reflects cognitive engagement in the task. We hypothesized that the 

dlPFC may reflect the cognitive engagement to solve the task, and the cognitive 

engagement seems to be dependent on the monetary incentives. The higher activation 

in the dlPFC suggests increased cognitive engagement and enhanced self-control when 

monetary incentives are present (Crockett et al., 2013; Hare et al., 2009).  Ballard and 

colleagues (2011) point out that the dlPFC drives the mesolimbic dopaminergic regions 

(i.e., the vStr, or nucleus accumbens) to initiate motivated behavior. In line with this, 

our data shows that the introduction of a monetary, performance-based reward 
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initiates stronger activation in networks that deal with motivational changes and 

modulation of cognitive control, supplementing the pure reward-processing signals. 

Neural activation patterns found in the present experiment correspond to the idea that 

the removal of the monetary incentive decreased the effort that was put into solving 

the tasks, along with reduced cognitive control and motivationally driven behavior. 

Removing the monetary incentives appears to de-motivate participants to the extent 

that performance-level drop below the initial performance baseline, although the 

difficulty of the arithmetic calculations is the same throughout the experiment.  

 

Overall, our findings are in line with the results of previous studies 

investigating the detrimental effect of monetary incentives on motivation (Albrecht et 

al., 2014; Mobbs et al., 2009; Murayama et al., 2010). Our results suggest that monetary 

incentives or pay-for-performance do not necessarily modulate task-specific activity, 

but may change neural activity in regions that are associated with reward-processing 

and cognitive control. This might lead to a more attentive completion of a given task, 

without necessarily affecting performance independent of the initial interest in the task 

itself— and thus also independent of the degree of change in motivation to complete 

that task.  

 

It is important to consider that the task used in the present experiment may, to 

some extent, lack ecological validity. However, due to the complex nature of using 

fMRI in a real-life work setting, application of such methods is currently not possible. 

Therefore, research methods in this area are currently reliant on behavioral tasks 

suitable for an fMRI environment, which compromises ecological validity. In future 

research, methods should be developed to transfer these findings to real life and to 

organizational situations—functional near-infrared spectroscopy, for example (see 

Kopton & Kenning, 2014). Furthermore, the use of a strict follow-up order of our 

experimental design was necessary for our given research question but might have 

produced different results than a different order or a more randomly chosen order. 

Future research could investigate possible inherent sequence effects. Nevertheless, our 

findings strongly support the finding that the removal of monetary rewards leads to a 

decrease in performance and neural effort. Therefore, incentives should be applied 

carefully, and only if the continuance of those incentives can be assured.  
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6. Conclusion 

 

The purpose of the study was to examine whether monetary incentives alter the neural 

underpinnings of a cognitively engaging task. The dopaminergic reward system plays 

a major role in the processing of performance-based incentives. Two regions in that 

system, the vStr and vmPFC, appear to be in opposition to each other. While incentives 

increase neural activity in the vStr, which is supposed to be sensitive to reward in 

general, activity decreases in the vmPFC, a brain region associated with the processing 

of subjective value. However, our findings do not support the idea that the incentives 

change neural activity in task-relevant regions. We suggest that pay-for-performance 

does not directly affect performance by modulating neural activity in task-relevant 

regions, but affects the reward representation during task completion. Therefore, we 

conclude that performance-contingent incentives need to be applied carefully. This 

finding is of special interest for employee compensation in unstable economic 

environments, as companies in unstable environments might not permanently ensure 

pay-for-performance.   
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Supplementary Material  

 
Figure S1: a) visualization and post-hoc ROI-analysis of DLPFC (block 2 minus 
block 1); b) visualization of conjunction OFC/vmPFC/ACC for contrasts block 1 
minus block 2 and block 1 minus block 3)  

  
Figure S2: a) visualization and post-hoc ROI-analysis of amygdala (block 1 
minus block 3); b) visualization and post-hoc ROI-analysis of insula (block 3 
minus block 1) 
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Abstract  

 

Most people are generous, but not towards everyone alike: generosity usually declines 

with social distance between individuals, a phenomenon called social discounting. 

Despite the pervasiveness of social discounting, social distance between actors has 

been surprisingly neglected in economic theory and neuroscientific research. We used 

fMRI to study the neural basis of this process to understand the neural underpinnings 

of social decision making. Participants chose between selfish and generous alternatives, 

yielding either a large reward for the participant alone, or smaller rewards for the 

participant and another individual at a particular social distance. We found that 

generous choices engaged the temporo-parietal junction (TPJ). In particular, the TPJ 

activity was scaled to the social-distance-dependent conflict between selfish and 

generous motives during prosocial choice, consistent with ideas that the TPJ promotes 

generosity by facilitating overcoming egoism bias. Based on functional coupling data 

we propose and provide evidence for a biologically plausible neural model according 

to which the TPJ supports social discounting by modulating basic neural value signals 

in the ventromedial prefrontal cortex to incorporate social-distance-dependent other-

regarding preferences into an otherwise exclusively own-reward value representation. 

 

 

Significance Statement 

 

People often consider the well-being of others. However, they are more likely to be 

generous towards individuals they feel close to than to those they only meet 

sporadically. Using neuroimaging tools, we show that the decline in generosity across 

social distance is realized by the interplay of two brain structures – the ventromedial 

prefrontal cortex coding the relative appeal of a selfish or a generous option, and the 

temporo-parietal junction modulating appeal signals of the generous outcome, 

depending on social distance between participant and beneficiary. Based on these 

findings, we developed a biologically plausible model explaining social discounting in 

particular, and prosocial behavior in general. Our study opens up new avenues to 

understand and tackle frictions arising in social networks. 

 

 

 

Keywords: Social discounting, prosocial choice, fMRI, connectivity, neuroeconomics 
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1. Introductio

 

Prosociality is one of the most fundamental qualities of all human societies. Without 

the ability to take other people’s interests into account human relationships would 

disintegrate and societies would malfunction. It has been widely demonstrated in 

laboratory and field experiments that individuals consider the welfare of others in their 

decisions and the consequences a decision has on them (Fehr & Schmidt, 1999; Jones & 

Rachlin, 2006; Strombach et al., 2014). Although almost all of us behave prosocially at 

times, it is clear that people are not equally generous to everyone alike. Rather, 

generosity decreases as a function of the closeness of the relationship between two 

individuals (Goeree, McConnell, Mitchell, Tromp, & Yariv, 2010; Jones & Rachlin, 

2006). However, it is currently unknown how social distance contributes to the 

decision process on a neural level. In the present study we set out to address this 

question.  

 

Our first aim was to investigate the systematic influence of social-distance 

dependent levels of generosity on neural activation. This was investigated using a 

social discounting experiment adapted to the functional magnetic resonance imaging 

(fMRI) environment (Strombach et al., 2014). We measured blood oxygen-level 

dependent (BOLD) responses while subjects made choices between selfish and 

generous rewards for themselves and for other people that varied in social distance. 

Choosing selfishly yielded a payoff only for the subject, while making a generous 

choice resulted in a lower payoff for the subject coupled with a reward for another 

person at a specific social distance (fig. 1). Next, based on the individual choices, we 

reconstructed the social-distance-dependent other-regarding utility (ORU), that is, the 

value participants attached to increasing the wealth of another person at a given social 

distance.  
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Figure 1: Participants received task-relevant information sequentially. First, 
social distance information was given on a scale consisting of 101 icons (100 
icons representing 100 social distance levels plus one icon, shown in purple on 
the left end, representing the participant himself). The social distance 
information for a specific trial was indicated by a yellow icon and, addi- 
tionally, presented numerically as a number on top of the yellow icon (here: 
social distance 10). Participants chose between a selfish (here: V125 only for 
themselves) and a generous option (here: V75 for the participant and V75 for a 
recipient on the specific social distance). The generous and selfish options 
were then presented sequentially and in random order. All ISIs had a mean 
duration of 4 s (jittered by ±1 s). Participants indicated their pref- erence 
during the decision period within a maximum time frame of 6 s. The trials were 
separated using a fixation cross with a mean ITI of 6 s (jittered by ±1 s). Note 
that this figure has been adjusted for illustration purposes; stimulus size and 
screen format are not to scale with the presentation dimensions used during 
fMRI scanning. In addition, the figure displays only 21 icons, instead of 101 
icons shown during scanning, to facilitate perceptibility.  

 

We then asked which brain regions showed activity that correlated with the 

difference between other- and self-regarding utilities. Our paradigm was designed so 

that the degree of generosity varied systematically as a function of social distance 

while objective economic outcome parameters – own- and other-person payoffs – were 

kept constant. This allowed us to identify the neural correlates of social-distance-

dependent other-regarding preferences independent of objective payoffs.  

 

We hypothesized, based on existing literature (Bartra, McGuire, & Kable, 2013; 

Fareri, Niznikiewicz, Lee, & Delgado, 2012; Haber & Knutson, 2010; Hare, Camerer, & 
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Rangel, 2009; Hare, O'Doherty, Camerer, Schultz, & Rangel, 2008; McClure, Laibson, 

Loewenstein, & Cohen, 2004), that own reward values are represented in the brain’s 

valuation system, specifically in the ventromedial prefrontal cortex (VMPFC). 

Furthermore, changes in other-regarding value would recruit areas associated with 

theory of mind (ToM) and altruistic choice, such as the temporoparietal junction (TPJ) 

(Saxe & Kanwisher, 2003; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014). Should 

this be the case, this would show that social distance is indeed systematically 

integrated into the neural underpinnings of the decision process.  

 

Our second aim was to investigate the role of the TPJ in prosocial behavior in 

more detail. To this end, we tested the predictions of two competing ideas on the role 

of the TPJ during prosocial choice in general, and social discounting in particular. 

Previous research showed that this region is involved in tasks requiring the ability to 

represent and understand others’ perspectives (Saxe & Kanwisher, 2003; Saxe, Moran, 

Scholz, & Gabrieli, 2006) and in social and selfish decisions (Carter, Bowling, Reeck, & 

Huettel, 2012; De Quervain, Fischbacher, Treyer, & Schellhammer, 2004; Krajbich, 

Adolphs, Tranel, Denburg, & Camerer, 2009; Morishima, Schunk, Bruhin, Ruff, & Fehr, 

2012). Thus, the TPJ’s implication in prosocial choice, perspective-taking, empathizing 

and ToM suggests that it plays a role in putting oneself in someone else’s shoes. In 

other words, the TPJ may encode the other-regarding value participants attach to 

increasing the well-being of another person.  Individuals empathize more with people 

they feel close to than with more distant others. Therefore, if this hypothesis is true, 

TPJ activation should correlate positively with the social-distance-dependent ORU. 

This view of the role of the TPJ is challenged by more recent studies postulating that 

TPJ activation solves the conflict between generous and selfish motives (Morishima et 

al., 2012). According to this hypothesis, to make a generous decision, the putatively 

natural bias to maximize own-payoff needs to be overcome (Knoch, Pascual-Leone, 

Meyer, Treyer, & Fehr, 2006). If the TPJ enables overcoming egoism bias, activation 

should be high when the temptation to be selfish is high (i.e. large social distance 

and/or large selfish reward) and low when there is little conflict between selfish and 

generous motives (i.e. small social distance and/or relatively small selfish reward).  

 

Our results confirmed the latter hypothesis according to which the TPJ plays a 

role in overcoming the default response of maximizing one’s own profit and thus 

behaving selfishly, rather than in representing other-regarding value. We also asked 

how the brain implements generous decisions. Specifically, we propose that the TPJ 

facilitates generous decisions by modulating basic reward signals in the VMPFC, 

incorporating other-regarding preference signals into an otherwise exclusive own-
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reward value representation, thus computing the subjective value for a social reward. 

Thus, the TPJ supports prosocial choice by shaping neural value signals in the VMPFC 

whenever the temptation to be selfish needs to be overcome; the stronger the 

temptation to be selfish, the more the TPJ upregulates VMPFC activity in favor of 

generous choices.  

 

A mechanistic model that integrates these data makes two predictions for 

which we provide empirical support: first, VMPFC activity should be higher during 

generous than selfish decisions. Second, connectivity between the TPJ and the VMPFC 

should be stronger during generous than during selfish decisions. Together, our 

findings suggest that prosocial decisions arise from a refined interplay between the 

VMPFC and the TPJ. In particular, value signals in the VMPFC are orchestrated by the 

TPJ according to the social distance between the decision maker and the recipient of 

generous decisions. 

 

 

2. Results 

2.1 Behavioral results 

 

We inferred social discounting parameters based on the participants’ individual 

choices, and used the obtained social discount functions to econometrically reconstruct 

the social-distance-dependent ORU for each individual (Strombach et al., 2014). To this 

end, we first determined, for each social distance level, the point at which a participant 

was indifferent between the selfish (yielding a larger reward for the participant) and 

the generous alternative (yielding a smaller reward for the participant plus a reward 

for the other person) using logistic regression. The difference in reward magnitudes for 

the participant between the two alternatives at the indifference points represented the 

amount of money a subject was willing to forego to increase the wealth of another 

person at a given social distance, and could be construed as a social premium 

equivalent to the utility of increasing the other person’s well-being. For example, if a 

participant was indifferent between €125 own-reward and €75 own-reward and €75 for 

a person at social distance 1, this participant was willing to forego €50 (the social 

premium) to increase the wealth of the other person by €75. Subsequently, we fit a 

standard hyperbolic model (Jones & Rachlin, 2006; see methods) to the individual 

social-distance-dependent social premiums with the parameters k (Mdn=0.078) and V 

(Mdn=74.15). As expected, the magnitude of the social premium subjects were willing 

to pay for someone else’s benefit declined with increasing social distance. The standard 
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hyperbolic model captured the individual discounting behavior well (mean r2=0.72, 

SD=0.242; fig. 2 shows the median social premiums together with the best-fitting 

hyperbolic function).  

 

 
Figure 2: We determined, for social distance levels 1, 2, 3, 5, 10, 20, 50, and 
100, the individual payoff magnitudes at which a participant was indifferent 
between the selfish (yielding a larger reward for the participant) and the 
generous alternative (yielding a smaller reward for the participant plus a 
reward for the other person). The amount foregone, i.e., the difference in own-
reward magnitude between the selfish and generous option at in- difference 
point, indicates the willingness to sacrifice a reward to give to another person 
at a specific social distance. The amount foregone can be interpreted as a 
social premium that reflects the utility a participant attaches to increasing a 
recipient’s payoff. A standard hyperbolic model was fit to the individual social-
distance–dependent amounts foregone to reconstruct the participant’s ORU 
function. The figure shows the best-fitting hyperbolic function to the median 
amounts foregone across all participants.  

 

These findings replicated those of previous studies on social discounting (Jones 

& Rachlin, 2006; Strombach et al., 2014) suggesting that the scanner environment did 

not substantially affect discounting behavior compared to studies carried out in more 

natural surroundings. The obtained individual hyperbolic fits served as estimates of 

the decline in other-regarding value across social distance, and were used to estimate 

the individual ORUs, which corresponded to the hyperbolic fit plus the sure €75 

(constant, within-subject) for the participant herself.  
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2.2 Neural mechanisms of social discounting 

 

Social discounting is the consequence of the social-distance-dependent balance 

between generous and selfish motives. The fundamental premise in our study is that, in 

essence, a prosocial decision results from the balance between generous and selfish 

motives. Due to social discounting, the balance between generous and selfish motives 

is increasingly tilted towards selfishness as social distance increases. With this premise 

in mind, we tested the hypothesis that the TPJ is involved in orchestrating the balance 

between generous and selfish motives across social distance. We also hypothesized 

that the TPJ would perform this function together with classical value coding regions 

such as the VMPFC (Hare et al., 2009; Kenning & Plassmann, 2005). 

 

 

Neural value signals in the valuation network. First, we investigated the neural 

correlates of selfish rewards. To identify brain regions associated with own-reward 

value coding, we examined neural activity during the decision period of selfish 

decisions only. For this analysis we concentrated on the VMPFC, and asked whether 

BOLD activity in the VMPFC covaried with selfish reward magnitude, thus with the 

value of the selfish decision. We used a region of interest (ROI) based on a meta-

analysis [-2, 40, -4] (Clithero & Rangel, 2013), that suggests this part of the VMPFC 

plays a role in value processing. Using a 6 mm sphere around the ROI, we found 

significant correlations within the VMPFC (-6, 41, -5; t(22)=3.10, p=0.017, small volume 

(SV) family-wise error (FWE) corrected, SI Appendix, fig. S3, table S1). 

 

Next, we also included generous decisions in our analysis. Interestingly, we 

found that activity in the VMPFC was significantly higher during generous than 

during selfish choices (0, 47, -20; t(22)=4.21, p=0.028, whole brain FWE corrected; fig. 3A, 

SI Appendix, table S2). Thus, in line with other findings (Harbaugh, Mayr, & Burghart, 

2007), the VMPFC coded not only the own-reward value of a selfish choice, but also 

generosity in addition to own-reward value, possibly reflecting the satisfaction derived 

from increasing someone else’s wealth (Harbaugh et al., 2007). Generous decisions also 

elicited stronger responses than selfish decisions in the right (60, -58, 31; t(22)=5.15, 

p<0.001, whole brain FWE corrected; SI Appendix, table S2) and left TPJ (-24, -79, 52, 

t(22)=4.51, p=0.002, whole brain FWE corrected). This section of TPJ has previously been 

shown to be associated with ToM and altruistic choice (Schurz et al., 2014). We used 

these brain areas as ROIs in all subsequent analyses to further characterize their 

contribution to social discounting.   
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Figure 3: Brain activations during social discounting. (A) BOLD responses in 
the VMPFC were stronger during generous than during selfish decisions [0, 47, 
−20; t(22) = 5.47, P = 0.028, whole-brain FWE corrected; displayed at P < 
0.005, uncorrected, k ≥ 10 voxel]. (B) Generous decisions elicited activation in 
the posterior part of the rTPJ. (C) Beta estimates within the rTPJ . The rTPJ 
was more activated during generous than selfish decisions. (D) Activity in the 
rTPJ was more strongly modulated by the temptation to be selfish during 
generous than selfish decisions. Error bars indicate ±1 SE.  

 

Generous decisions recruit the TPJ to resist the temptation to be selfish. Our design 

allowed us to shed light on two competing hypotheses about the role of the TPJ in 

social decision-making. If the TPJ was important for encoding the social-distance-

dependent value participants derive from increasing someone else’s well-being, we 

would expect a positive correlation between TPJ activity and the ORU. To test the first 

hypothesis, we searched for brain regions whose activity correlated with the social-

distance-dependent other-regarding value, using the individual ORUs as parametric 

regressors at decision onset. Inconsistent with our predictions, the parametric analysis 

revealed no activation in the TPJ, even at very liberal thresholds (p<0.1, uncorrected; 

see supplemental material for more analyses; SI Appendix, table S3).

Next, we tested the second hypothesis, that the TPJ is associated with 

overcoming egoism-bias. We reasoned that the temptation to make a selfish choice 

should be stronger, the larger the utility of the own reward relative to the social-

distance-dependent other-regarding utility. By extension, the stronger the temptation 

to be selfish, the more effort should have been exerted in order to overcome this 

temptation when a generous decision had been taken. Thus, we hypothesized that 



APPENDIX 

 

92 

activity in brain regions important for overcoming egoism bias would scale to the 

difference between own-reward and other-regarding values when a generous choice is 

revealed. We therefore searched for BOLD signals that correlated with the difference 

between own-reward and other-regarding values during generous decisions. This 

analysis revealed, among others, activation in the right parietal cortex, expanding into 

the parietal part of the TPJ (rTPJ; 42, -79, 46; t(22)=5.55, p=0.019, whole brain FWE 

corrected; SI Appendix, table S4). A conjunction analysis, revealing the strict 

intersection between this contrast and the contrast yielding generosity-related 

activations confirmed that this was indeed the same region as the one engaged during 

generous decision making. Additionally, a ROI-analysis using a mask for the parietal 

subsection of rTPJ (Crockett et al., 2013), an area known to be involved in social 

cognition, confirmed that it was activity in this ‘social’ part of the TPJ that correlated 

with the parametric modulation of the temptation to be selfish during generous 

decisions (p=0.032, SV FWE corrected, fig 3B).  

 

Importantly, according to the second hypothesis, the rTPJ should be active 

when the conflict between selfishness and generosity is resolved in favor of the latter 

(i.e. in generous choices), while activity should be less when selfish choices are made. 

In support of this idea, rTPJ activation survived when contrasting the difference in 

own-reward and ORU during generous against selfish decisions, suggesting that the 

rTPJ was more active during generous (i.e., when the temptation to be selfish had been 

overcome) than during selfish choices (42, -79, 46; t(22)=7.10, p<0.001, whole brain FWE 

corrected; SI Appendix, table S5). Thus, rTPJ activation correlated with the difference 

between own reward values and ORU when generous choices were made, but not with 

ORU in general, irrespective of the actual decisions taken. Although the lack of 

evidence in favor of the first hypothesis of TPJ function is not evidence against ToM, it 

is worth noting that rTPJ activity was in fact positively correlated with the difference 

between own-reward and other-regarding value. In other words, rTPJ activity was 

negatively correlated with other-regarding utility alone, which is difficult to reconcile 

with the ToM-based hypothesis. Conversely, our results are in line with the hypothesis 

of overcoming egoism bias, and are therefore more consistent with the idea that the 

rTPJ facilitates generous choice whenever a conflict between egoistic and selfish 

motives needs to be resolved.  

 

 

The TPJ was functionally connected with the VMPFC when egoism bias was overcome. So 

far, our data have shown that the VMPFC encoded the value of own-reward during 
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selfish decisions, and both the VMPFC and the TPJ were more engaged during 

generous than during selfish choices. Furthermore, the rTPJ activation pattern was 

consistent with the idea that the rTPJ facilitates prosocial choice by overcoming the 

temptation to maximize own payoff. We next asked how a social-distance-dependent 

prosocial choice is implemented in the brain. We propose a model of generous choice 

according to which the VMPFC encodes goal values. We hypothesize that the TPJ 

suppresses egoism bias by modulating basic value signals in the VMPFC to incorporate 

other-regarding preferences into an otherwise exclusively own reward value 

representation.  

 

 If our hypothesis was true, functional connectivity between the rTPJ and the 

VMPFC should be higher during generous than during selfish decisions. Our idea was 

inspired by recent models of self-control (Crockett et al., 2013; Hare et al., 2009) 

according to which basic value representations in the VMPFC are modulated by 

superordinate brain regions encoding higher-order considerations, such as long-term 

goals or other-regarding preferences. Thereby, these higher-order factors are 

incorporated into basic valuation signals of the VMPFC. Adapting this approach to 

social decision-making, we propose that the rTPJ modulates activation in the valuation 

network and orchestrates social decision-making in favor of other-regarding instead of 

individual preferences.  

 

 To test the hypothesis, we conducted a psychophysiological interaction analysis 

(PPI) to identify which brain regions were functionally more strongly connected with 

the rTPJ during generous than during selfish decisions. To this end, we placed a seed 

(fig 4A) in the individual peak activations in the right TPJ cluster associated with 

overcoming egoism bias. The PPI analysis identified functional connectivity between 

the rTPJ and the VMPFC (t(14)= 6.61, p = 0.031, whole-brain FWE corrected; fig. 4B, SI 

Appendix, table S6). A conjunction analysis confirmed that the activated VMPFC 

cluster was indeed the same region as the VMPFC ROI that coded own-reward value 

during selfish decisions. Thus, compared to selfish decisions, the TPJ increased 

functional connectivity with regions associated with own-reward processing during 

generous decisions. 
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Figure4: (A) ROI in the rTPJ (51, −49, 34; 10-mm sphere) as the seed region 
for the PPI. (B) Positive functional connectivity of the rTPJ with VMPFC during 
generous decisions. The PPI analysis revealed that connectivity between the 
VMPFC and the rTPJ was stronger during prosocial than selfish choices [t(14) 
= 6.61, P = 0.031, whole-brain FWE corrected; displayed at P < 0.005, un- 
corrected, k ≥ 10 voxel].  

 

3. Discussion 

 

In order to function well in our society it is important to share resources with others. 

The closer our interaction partners are to us, the more likely we are to be generous 

towards them. Thus, the social context in which a decision is made strongly affects 

how the information is processed, making it essential for our brain to be able to encode 

such social context factors (Rushworth, Kolling, Sallet, & Mars, 2012). However, 

neuroeconomic theories have so far neglected social distance in models of decision-

making. The current experiment investigated the neural correlates of social discounting 

and aimed to provide support for a neural model of social distance-dependent 

generous decision-making. Generosity requires overcoming egoistic motives (Declerck, 

Boone, & Emonds, 2013; Jones & Rachlin, 2006; Morishima et al., 2012; Strombach et al., 

2014), and the temptation to be selfish grows with increasing own-reward magnitude, 

but also with increasing social distance. We were able to demonstrate, that a region 

associated with ToM, social cognition and decision making, the TPJ, is involved in this 

process (Declerck et al., 2013). However, contrary to the predictions of the first, ToM-

based, hypothesis we find no evidence that the TPJ computes other-regarding value. 

Instead, we propose that the TPJ facilitates overcoming egoistic motives to maximize 

own-payoff during generous decisions by modulating basic value signals in the 

VMPFC through integrating other-regarding preferences into an otherwise exclusively 

own-reward value representation (Declerck et al., 2013; Smith, Clithero, Boltuck, & 

Huettel, 2014). Thus, the stronger the social-distance-dependent temptation to be 

selfish, the more the TPJ is engaged and VMPFC-value signals become upregulated to 

facilitate a generous decision.  
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On a behavioral level, we replicated existing findings on social discounting, 

confirming that generosity declines hyperbolically across social distance, with 

individuals being more willing to forego a reward for recipients at close social 

distances. Hyperbolic social discounting has been observed in diverse locations, 

populations, cultures as well as under different experimental conditions and with 

various methods of implementing social distance and eliciting social preferences (Jones 

& Rachlin, 2006; Jones & Rachlin, 2009; Rachlin & Jones, 2008a, 2008b; Strombach et al., 

2014). This suggests that a hyperbolic discount function is an accurate, valid and useful 

description of social discounting behavior, even though it is likely that there is a large 

range of individual motives underlying the actual decisions during social discounting.  

 

To reveal the neural mechanisms underlying social discounting, we first 

identified regions that code value signals. When participants made selfish choices, 

activity in the VMPFC reflected own-reward value, replicating findings on valuation 

processes from a multitude of studies (Bartra et al., 2013; Hare et al., 2009; Hare et al., 

2008; Kurniawan, Guitart-Masip, Dayan, & Dolan, 2013; McClure et al., 2004). 

Additionally, we found that the VMPFC was more active during generous than during 

selfish choices, even though selfish decisions yielded higher payoffs for the 

participants.  This is in line with studies which postulated that VMPFC activity 

represents the extra value obtained from charitable giving (Harbaugh et al., 2007). 

Thus, it is likely that the increased activation during generous choices reflected the 

additional satisfaction derived from sharing a reward during generous decision-

making. 

 

Our results suggest that the TPJ is important for overriding selfish impulses 

during prosocial decisions.  Note that recent research on TPJ function suggests that it is 

not a monolithic structure that supports one single cognitive function, but is more 

likely to be composed of anatomically and functionally distinct subdivisions that may 

subserve different computational roles such as value, salience and ToM (Declerck et al., 

2013; Kahnt, Park, Haynes, & Tobler, 2014; Kahnt & Tobler, 2013; Schurz et al., 2014; 

Smith et al., 2014). Although we cannot rule out that our subjects used ToM or other 

mechanisms to make their decisions, it is possible that we found no evidence in favor 

of the first, ToM-based hypothesis simply because we did not explicitly elicit ToM-

cognition. Thus, we are not rejecting the wealth of evidence from previous work 

relating the TPJ to ToM and mentalizing. Instead, we complement existing literature by 

lending support to the idea that subparts of the TPJ have the additional role of 

overcoming egoism bias and thus facilitating prosocial choice. Future research should 
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study the TPJ in more detail and map the putative different cognitive functions to its 

different subdivisions.  

 

In summary, the present findings provide new insights into social decision 

making. We were able to characterize the role of the TPJ and proposed a neural model 

of prosocial choice. Our data identify the TPJ as the core component in overcoming 

egoism bias. This finding has a significant impact on neuroeconomic theory that has so 

far neglected the effect of social distance on prosocial decision making. Having shown 

that social distance is an important component of an individual’s decision-making 

process it should be integrated into future models of decision making. Furthermore, 

using social discounting to understand the influence of social factors and individual 

differences in generosity and other-regarding behavior opens up new opportunities to 

evaluate psychopathologic decision-making and antisocial behavior in more detail.  

 

 

4. Materials and Methods 

 

Participants. 27 subjects (meanage=25.03, 14 men) were tested. Participants received a 

€10 show-up fee and an additional amount depending on their decisions in the 

experiment (own reward: €7,50 - €16,50, other reward: €2,50 or €7,50), determined by a 

random draw of one of the trials. All subjects were native German speakers. 

Participants had no history of psychiatric or neurological disorders. Written consent 

was obtained according to the Declaration of Helsinki (BMJ 1991; 302: 1194). The study 

was approved by the ethics committee of the University of Bonn. Subjects were 

acquired using the subject database of the Life&Brain Centre, University Hospital 

Bonn.  

 

Stimuli and task. The experimental paradigm was adapted from a cross-cultural study 

on social discounting (Strombach et al., 2014). During the preparation phase 

participants received verbal and written instructions for the tasks they carried out 

during the experiment. Participants started with a self-representation task in which 

they specified closeness to people in their social environment (Strombach et al., 2014). 

Using a 20 point scale (1=very close; 20= not close), participants were asked to rate 

their closeness to the following people: mother, father, siblings, grandparents, family, 

kin, best friend, circle of friends, colleagues, neighbors, acquaintances, partner, 

children, and stranger. In case some of these people did not exist in a participant’s 

social environment, the corresponding trial was skipped. This task was aimed at 
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getting subjects used to the idea of social distance and to think about their social 

network.  

 

In the fMRI scanner, social distance was transformed into a scale consisting of 

100 icons (fig. 1). Participants were informed that the purple icon at the left end of the 

scale represents themselves and the yellow icon stands for a specific person in their 

social environment. For example, if the yellow icon is directly next to the purple one 

(social distance 1) this shows the person they feel closest to, e.g. mother or partner. If 

the yellow icon is at social distance 50 (the middle of the scale) this symbolizes an 

acquaintance while at social distance 100 it would represent the most socially distant, 

but emotionally neutral person, such as a stranger. Before entering the scanner, 

participants were asked to choose and write down names of representatives from their 

social environment, one for each of the following social distances: 1, 2, 3, 5, 10, and 20. 

We also included social distance levels 50 and 100 in the experiment, however, as these 

distance levels represent remote acquaintances or strangers, subjects were not required 

to indicate a name. Thus, eight social distances were included. We used a network-

based approach, according to which one might mentally assign more than one person 

to a particular social distance (Harrison, Sciberras, & James, 2011). However, in the 

experiment participants were asked to choose just one person for each distance. The 

network based approach is important since we assume that an individuals’ social 

network is adaptive and might change within days. For example, bad experience with 

a friend might result in a readjustment of the perceived social distance to that friend. 

Furthermore, as negative emotions can interfere with prosocial behavior subjects were 

explicitly asked to only include individuals they did not have a negative attitude 

towards (Bechara, 2004; Lerner & Tiedens, 2006; Sanfey, Rilling, Aronson, Nystrom, & 

Cohen, 2003). Subjects did not indicate any problems understanding the scale and the 

idea of social distance.  

 

In the scanner, subjects were asked to make 160 decisions involving the eight 

social distances (fig. 1). The task in each trial was to think about the person previously 

chosen for the specific social distance relevant to the actual trial. Each of the 160 trials 

started with the presentation of the scale indicating the relevant social distance 

followed by the generous and selfish options with a mean ISI of 4 sec (jittered: +/- 1 

sec) and a mean ITI of 6 sec (jittered: +/- 1 sec). The temporal and spatial ordering of 

the selfish and generous option presentation was pseudo-randomized. For the specific 

social distance, subjects had to choose between these two alternatives. The selfish 

alternative always yielded a large reward for the participant alone, while the generous 

option yielded a smaller reward for the participant and an additional reward for the 
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person at the indicated social distance. The selfish reward varied between €75 and 

€165, changing in increments of €10, resulting in ten selfish alternatives. The generous 

option was a fixed reward of €75 for the participant and €75 for the other person (high 

other-reward trials), or, €25 for the other person, respectively (low other-reward trials). 

The presentation order of social distances, selfish and generous alternatives was fully 

randomized. Subsequent to the experimental part in the scanner, subjects were asked 

to name the people they assigned to the specific social distances again, serving as a 

manipulation check and indicate demographic information.  

 

After completing the last questionnaire, subjects received their payment. In 

addition to the €10 show-up fee, a randomly chosen trial was paid out. Depending on 

whether the participant chose the selfish or the generous alternative in that specific 

trial, she received 10% of the selfish or the generous reward respectively.  The money 

for the selfish option was paid directly to the participant, and for the generous option 

subjects were asked to indicate the address of the other person. If the randomly chosen 

trial was about a person at social distance 50 or 100, a random person on the campus of 

the University of Düsseldorf, Germany received the reward. Thus, the experiment was 

fully incentive-compatible, did not include deception and met the experimental 

standards of behavioral economics. 

 

Social discount function. Since we aimed to quantify the degree of generosity as a 

function of social distance, we estimated the amount of money a participant was 

willing to forego in order to benefit a specific other at a given social distance (Jones & 

Rachlin, 2006). We first determined, for each social distance level, the point at which a 

participant was indifferent between the selfish and the generous alternatives, using 

logistic regression as described above. The decision maker switched from being 

generous to being selfish as selfish rewards increased. If the decision maker switched 

from generous to selfish decisions between a selfish reward of €135 and €145, the 

indifference point would be determined to be €140, thus a 50% probability of choosing 

generous and 50% of choosing selfish. We interpreted the amount foregone (the 

indifference point minus the €75 the subject would certainly get if he chose the 

generous option) as a social premium the participant was willing to pay in order to 

benefit the other. We fit the following standard hyperbolic model to the individual, 

social-distance-dependent social premiums (Jones & Rachlin, 2006): 

 

     Equation 1: Hyperbolic discount function  
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where v symbolizes the magnitude of a reward received by another person at social 

distance D. The parameter V refers to the social premium a subject is willing to pay in 

exchange for endowing another person with reward v. Thus, V can be interpreted as 

the socially discounted other-regarding utility of improving the wealth of another 

individual at social distance D. V is equal to the self-regarding utility at social distance 

D=0, thus the intercept with the y-axis, and determines the height of the social discount 

function. The degree of discounting is described by the parameter k, which indicates 

the steepness and shape of the curve (B. Jones & Rachlin, 2006; Strombach et al., 2014). 

The individual hyperbolic fits were used to estimate individual ORUs. 

 

fMRI data acquisition and preprocessing. Scanning was performed on a 3 Tesla Trio 

Scanner (Siemens, Erlangen, Germany) using an 8-channel head coil. Functional data 

were acquired using EPI-sequences with a repetition time (TR) of 2.5 s, an echo time 

(TE) of 30 ms, and a Flip angle of 90 degrees. Each volume comprised 37 slices 

acquired in an axial orientation covering all of the brain, including midbrain, but 

sparing parts of the cerebellum. The presentation of the task and recording of 

behavioral responses were performed using Presentation® software version 14.9 

(Neurobehavioral Systems, Albana, Canada). Subjects saw the experiment via video 

goggles (Nordic NeuroLab, Bergen, Norway) and gave their responses by response 

grips (Nordic NeuroLab, Bergen, Norway) using their index fingers of both hands. 

 

Neural data of 23 participants were analyzed using SPM8 (Wellcome 

Department of Imaging Neuroscience, London, UK) software. The results are 

visualized using the xjview toolbox. Three subjects had to be excluded due to extreme 

head-movements during the experiment (> 4mm translation, > 4º rotation). One subject 

had to be excluded who made exclusively selfish decisions, even when being generous 

did not involve any reduction in own-reward, as the aim of this study was to 

investigate pro-social behavior. Indeed, no social discount function can be fit to the 

data when a participant shows no variation in other-regarding utility. 

 

The following pre-processing steps were carried out: slice timing correction, 

motion correction, segmentation using the T1 weighted image, linear trend removal, 

high pass temporal filtering with a filter size of 128 seconds, spatial smoothing using a 

Gaussian kernel with full-width at half-maximum (FWHM) of 8mm, spatial 

segmentation and spatial normalization by co-registering the functional with the 

individual structural data and then transforming it into the Montreal Neurological 

Institute (MNI) space. 
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General linear model. We regressed fMRI time series onto two separate general linear 

models (GLMs). With the first GLM, we aimed to identify brain regions whose activity 

correlated with selfish reward magnitude and the econometrically reconstructed, 

social-distance-dependent ORU. In the second GLM, we searched for neural activity 

correlating with the relative value, i.e. the social-distance-dependent difference 

between the selfish value and ORU.  

 

For both GLMs we defined the following five onset regressors:1) onset of the 

social distance information at the beginning of each trial, 2) onset of the generous 

option, 3) onset of the selfish option, 4) onset of the button press when deciding 

generous, and 5) onset of the button press when deciding selfish. We modeled BOLD 

responses at these onsets as stick functions. For the first GLM, we used the following 

three parametric modulators to assess brain activation (36): 1) the social distance level 

during the onset of the social distance information (onset regressor 1), 2) the 

econometrically reconstructed ORU, given a generous choice (onset regressor 4), and 3) 

the selfish reward magnitude given a selfish choice (onset regressor 5). To obtain 

commensurability, ORU and selfish reward magnitudes were transformed and 

normalized to a common scale for all analyses. 

 

In the second GLM we used the following parametric modulators: 1) the social 

distance level during the onset of the social distance information, 2) the difference 

between own-reward magnitude and ORU, given a generous decision (i.e., the strength 

of the temptation to choose selfish, given a generous decision; see main text), and 3) the 

difference between own-reward magnitude and ORU, given a selfish decision. Both 

GLMs additionally included six movement regressors of no interest, three for 

translational movements (x, y, z) and three for rotation movements (pitch, roll, yaw). 

All regressors were convolved with the canonical hemodynamic response function 

(HRF). For each event, onset regressor parameter estimates were obtained and contrast 

images of each of the parameters against zero were generated. Furthermore, we 

obtained contrast images of “deciding generous versus deciding selfish”. The obtained 

images were transferred to a second level random effects analysis using one-sample t 

tests on the single-subject contrasts. We performed whole brain corrections for 

multiple comparisons at the cluster level. For all of the main contrasts reported in the 

results section and figures, the individual voxel threshold was set to p>0.005 with a 

minimal cluster extent of k ≥ 10 voxel (Lieberman, & Cunningham, 2009). Results are 

reported using the MNI coordinate system.   

 



Study 2: Social Discounting Involves Modulation of Neural Value Signal by 
Temporoparietal Junction 

 

101 

Psychophysiological Interactions (PPI). We performed a whole-brain PPI analysis 

with the TPJ as seed region (Crockett et al., 2013; Friston et al., 1997; Hare et al., 2009). 

The location of the TPJ seed ROI was based on a 10mm sphere (Eickhoff et al., 2009) 

around the peak activation within the conjunction between the contrasts of generous 

versus selfish decisions (first GLM), and the parametric modulation of the temptation 

to be selfish (second GLM; 51, -49, 34; rTPJ; fig. 4A). We computed individual average 

time series within a 4 mm sphere surrounding (Eickhoff et al., 2009) the individual 

subject peak activations within the TPJ seed ROI. Seven participants had to be 

excluded from the PPI analysis because they did not show any individual activation 

above threshold in the TPJ ROI at p<0.05, uncorrected. This exclusion criterion is the 

standard for identifying the location of corresponding activations in individual 

subjects as needed to extract time courses for connectivity analyses (Booth, Wood, Lu, 

Houk, & Bitan, 2007; Bzdok et al., 2013; Eickhoff et al., 2009; Heim et al., 2009). We 

created two PPI regressors by computing an interaction regressor between the 

normalized time-series and the respective condition, i.e. one regressor for generous 

and one for selfish decisions.  

 

Second, we estimated a GLM with the following regressors: 1) a physiological 

regressor (i.e., the entire time-series of the seed region over the whole experiment, 2) a 

psychological regressor for the onset of the generous choices, 3) the PPI regressor for 

the generous choices, 4) a psychological regressor for the onset of the selfish choices, 

and 5) a PPI regressor for the selfish choices. The onset and PPI regressors were 

convolved with a canonical form of the hemodynamic response. The model also 

included the six motion parameters as regressors of no interest.  

 

In a third step, to identify regions whose connectivity was higher during 

generous than during selfish choices, single subject contrasts were calculated for the 

contrast between the PPI regressors, i.e. the contrast between the PPI regressor of the 

generous compared to the PPI regressor of the selfish choices. Then a second level 

analysis was performed by calculating a one-sample t-test on the single-subject 

contrast coefficients. We then identified voxels with significantly higher connectivity 

difference during generous compared to selfish choices.  
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Supporting Information  

 

 

Materials and Methods. 
 
Additional analyses. In addition to those presented in the main text, we performed 
further analyses to explore alternative explanations of TPJ functionality. In particular, 
we aimed to elaborate on the possibility that the TPJ represents the value attached to 
increasing another person’s well-being.  
These analyses were variants of (1) the GLMs described in the main text (decision onset 
split according to generous and selfish decisions), and (2) an additional GLM in which 
all decision onsets were collapsed into one vector, thus not conditioned by choice. 
For the GLM presented in the main text, we used the following parametric 
modulations for the onset regressor of generous decisions to model other-regarding 
utilities: 
 

1. the amounts foregone at the indifference point 
2. the ORU minus the selfish reward magnitude, thus the relative value of the 

chosen, generous option 
3. the inverse of the social distance as absolute numerical value 
4. z-scores of the social distance 

 
For GLM (2) in which all decisions were collapsed into one vector, we used the 
following parametric modulations: 

5. the ORU in all trials, independent of whether the decision was generous or 
selfish 

6. the ORU independent of the actual decision as a first parametric modulator, 
selfish reward magnitude as a second parametric modulator 

7. the selfish reward magnitude as a first parametric modulator, ORU 
(independent of the actual decision) as a second parametric modulator 

8. the inverse of the social distance as absolute numerical value 
9. the value of the chosen minus the value of the unchosen option, independent of 

whether the decision was generous or selfish 
 
None of these contrasts revealed significant activation in the TPJ, even at very liberal 
thresholds (p<0.01, uncorrected).  
 
 
Onset of the second option. All information necessary to make a decision was already 
available after presentation of the second option (generous or selfish alternative; see 
figure 1 in main text for details). Thus, it is possible that our participants already 
integrated all decision-relevant information at this time point, and formed their 
decision before it was revealed at decision onset. To test this possibility, we modulated 
the BOLD response at the onset of the second option to estimate the neural response to 
social discounting in addition to the GLM reported in the main text in which we used 
the time point of the revealed decision,. Since the order of the options was randomized, 
either the generous or the selfish option was presented second. We estimated the 
following GLM, consisting of four onset regressors: 1) onset of the 2nd option, generous 
decision, 2) onset of the 2nd option, selfish decision, 3) onset of a generous decision, and 
4) onset of a selfish decision. For all four regressors, we included the temptation to be 
selfish (own-reward value minus ORU) as parametric modulators. We were especially 
interested in comparing the parametric modulators for onset regressors 1) and 3) as 
well as 2) and 4) in order to examine whether we can identify similar activation 
patterns at the two distinct time points.  
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A conjunction analysis revealed a significant overlap between the parametric 
modulation of the temptation to be selfish, given a generous decision at the time of 
presentation of the second option (onset regressor 1) and at the time of the revealed 
decision (onset regressor 3; fig. S1). We find similar patterns also for the temptation to 
be selfish, given a selfish decision during both onsets.  
 
Thus, the data suggest that similar neural networks were active at onset of the second 
option and decision onset. However, as it is difficult to isolate decision making 
processes from potentially choice-irrelevant sensory or computational processes 
related to the presentation of the second option, and since the consideration of all 
relevant choice-information is only ultimately evident when a decision is revealed we 
decided to report neural activations at decision onset in the main manuscript. 
 
 
Reaction times. To control for a possible effect of reaction times on BOLD responses, we 
performed additional analyses on behavioral and neural data. First, a paired sample t-
test was carried out to compare the reaction times (time between decision prompt and 
decision onset) of generous (M=0.726, SD=0.226) and selfish decisions (M=0.731, 
SD=0.250). The test did not indicate a significant difference in RT between the two 
types of decisions (t(22)=-0.176, p=0.862; fig. S2). 
 
Second, to explore the possibility that reaction times were correlated with BOLD 
responses, we included individual reaction times at decision onset as additional 
parametric modulators in the first GLM reported in the main text. Our aim was to 
investigate whether activity in the VMPFC might be influenced by variability in 
reaction times, as VMPFC has been shown to be sensitive to response speed  (Büchel, 
Holmes, Rees, & Friston, 1998; Frackowiak et al., 2004; Grinband, Wager, Lindquist, 
Ferrera, & Hirsch, 2008). Thus, we added two parametric modulators to the GLM in the 
main text for the regressor for the onset of the selfish decisions: 1) the magnitude of the 
selfish reward and 2) the reaction time.  
 
Using the same VMPFC ROI as in the manuscript (Clithero & Rangel, 2013), in the 
correlation between VMPFC-BOLD signal and the selfish reward magnitude at 
decision onset remained significant (-6, 41, 5; t(22)=3.09, p=0.034) even after controlling 
for reaction times. Thus, it is unlikely that differences in RTs accounted for VMPFC 
activity, and conclude that VMPFC activity genuinely reflected the selfish utility. 
 
 
High vs. low other-regarding trials. In our experiment, we included generous trial types 
with high (€75 own-reward / €75 other-reward) and low (€75 own-reward and €25 
other-reward) other-reward alternatives. In our main analyses, we pooled across high- 
and low other-reward trial types for the following reasons:  
First, we found no significant differences in neural activation between the low and 
high other-reward trials anywhere in the brain, including VMPFC and TPJ. More 
specifically, we used an additional GLM to compare high and low other-reward trials. 
This GLM contained the following onset regressors: 1) onset of the decision, given a 
high other-reward trial and 2) onset of the decision, given a low other-reward trial. 
With an initial threshold of p<0.005, k ≥10 voxel, the contrast between the high and low 
other-reward regressors revealed no significantly activated voxel anywhere. Also 
when using a mask of both the parietal part of rTPJ and the whole rTPJ (Mars et al., 
2012), we found no significant small volume corrected differences in activation (all 
p>0.05, FWE SV corrected).  
Second, we found no differences in activation between the high and low other-reward 
trials in valuation networks, including the VMPFC: using a 6mm sphere around the 
VMPFC-ROI identified in a meta-analysis (-2, 40, -4; Clithero & Rangel, 2013), that was 



APPENDIX 

 

108 

also used in the main analysis, revealed no significant activation after small volume 
correction (p>0.05, FWE SV corrected). 
Third, in a further analysis, we investigated whether TPJ, in particular, was 
differentially activated in high and low other-reward trials given a generous decision. 
To this end, we calculated an additional GLM with one onset regressor for low other-
reward trials, given a generous decision and one onset regressor for high other-reward 
trials, given a generous decision. Neither a whole-brain analysis (p>0.005, uncorrected) 
nor a small volume correction using the mask from Mars et al. (2012) revealed any 
significant difference between high and low other-regarding trials in the TPJ.  
 
Because these analyses revealed no meaningful difference in neural activity between 
high and low other-reward trials, and in order to preserve statistical power, we pooled 
across high- and low other-reward trial types in our main analyses.  
 
 
Social distance or general metric of magnitude? It is possible that the participants may not 
have been considering social distance during the task but rather a more general metric 
of magnitude or distance. However, we think it is unlikely that our participants 
disregarded the social nature of the distance scale. This is evident from the 
participants’ behavior. Our results showed that participants were always less generous 
towards recipients at remote compared to close social distances. Our participants 
would not have shown this decrease in generosity across social distance had they 
disregarded social distance. It is important to highlight that the experiment was carried 
out in an incentive compatible manner and that subjects were asked to indicate 
representatives for several social distances (including name and their relationship to 
that person). Therefore, we assume that subjects were aware of the fact that their 
decisions could affect the well-being of another person. Moreover, if the TPJ was only 
processing a general numeric metric of social distance, independent of its social 
significance, TPJ activation should have been unmodulated by the type of decision 
(selfish/generous), but this is not what we found. Our results showed that TPJ activity 
was higher for generous vs. selfish decisions (see main text), although the numerical 
metric of social distance was identical in both generous and selfish decisions. 
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Figures.  

 

 
Figure S1: Conjunction analysis of the parametric modulation of the 
temptation to be selfish after a generous decision and after presentation of the 
second option in that trial, given a generous decision. Overlap is seen 
especially within the boundaries of the TPJ (48, -52, 37). 

Figure S2: Mean reaction times, split by decision. Mean reaction times were 
calculated first on an individual level and then summarized on a group level. 
Error bars indicate +/- 1 standard error.

Figure S3: Parametric modulation of activity by selfish reward magnitude after 
selfish decisions in the VMPFC (and the ventral striatum). 
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Table S1. GLM1. Regions showing parametric modulation by the selfish reward magnitude 
during selfish decisions. 
Region Side Cluster size MNI Coordinates t-Value 
Inferior frontal gyrus R 87 27, 8, -17 4.91 
Brainstem, Cerebellum R 22 -9, -28, -14 3.71 
Middle temporal gyrus R 23 57, -7, -14 3.37 
Hippocampus R 21 30, -25, -11 3.67 
Anterior cingulate R 28 9, 29, -5 3.55 
Anterior cingulate L 47 -15, 44, 4 4.03 
Insula R 17 42, -16, 7 3.69 
Superior temporal gyrus R 13 57, -61, 19 3.26 
Medial frontal gyrus R 66 15, 41, 22 4.43 
Supramarginal gyrus R 43 69, -40, 37 3.88 
Supramarginal gyrus L 12 -63, -43 40 3.33 
Threshold: k ≥ 10 voxel, t(22) > 2.8188, p < 0.005 
 
 
Table S2. GLM1. Regions showing more activity for generous versus selfish decisions at the 
onset of the decision (button press). 
Region Side Cluster size MNI Coordinates t-Value 
Positive     
Cerebellum R 97 36, -58, -32 4.22 
Occipital Lobe L 219 -12, -103, -5 5.48 
Inferior frontal cortex R 241 45, 44, -17 4.64 
Medial frontal cortex R/L 28 0, 47, -20 4.21 
Occipital Lobe, Cuneus R/L 390 24, -100, 13 4.67 
Fusiform Gyrus R 14 51, -61, -14 3.24 
Middle frontal gyrus L 161 -39, 53, 1 4.25 
Inferior frontal gyrus L 49 -33, 23, -2 3.45 
Insula R 17 42, -7, 7 3.42 
Caudate R 21 12, 8, 13 3.58 
Middle frontal gyrus R 113 36, 35, 16 4.22 
Anterior cingulate L 25 -6, 44, 13 3.28 
Superior frontal gyrus L 282 -15, 59, 22 5.44 
Middle frontal gyrus R 116 30, 5, 43 4.41 
Limbic lobe, cingulate cortex R/L 431 3, -10, 28 5.87 
Anterior cingulate R 40 6, 47, 22 4.04 
Inferior parietal lobule, angular 
gyrus 

R 690 60, -58, 31 5.11 

Supramarginal gyrus R 16 48, -19, 28 3.05 
Inferior parietal lobe L 486 -24, -79, 52 4.49 
Middle frontal gyrus L 

R 
328 
15 

-42, 20, 43 
39, 20, 37 

4.71 
3.29 

Superior frontal gyrus R 21 18, 32, 52 3.31 
Precentral Gyrus R 26 18, -25, 61 4.04 
Negative     
Temporal lobe R 24 24, -46, 10 3.92 
Threshold: k ≥ 10 voxel, t(22) > 2.8188, p < 0.005 
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Table S3. GLM1. Regions showing parametric modulation by the econometrically 
reconstructed ORU during generous decisions. 
Region Side Cluster size MNI Coordinates t-Value 
Rolandic operculum L 69 -42, -19, 19 4.65 
Precentral gyrus R 21 15, -19, 64 3.80 
Precentral gyrus L 10 -18, -19, 67 3.38 
Postcentral lobe R 10 24, -31, 82 3.56 
Threshold: k ≥ 10 voxel, t(22) > 2.8188, p < 0.005 
 

 

Table S4. GLM2. Regions showing parametric modulation by the difference between own-
reward value and ORU (i.e. the temptation to choose the selfish option) at decision onset, given 
a generous choice. 
Region Side Cluster size MNI Coordinates t-Value 
Cerebellum R 10 27, -67, -32 4.16 
Superior temporal gyrus L 10 -33, 20, -29 3.53 
Brainstem, Cerebellum  R 18 6, -31, -23 4.33 
Occipital lobe L 186 -48, -64, -14 4.78 
Inferior frontal gyrus R 185 30, 20, -14 5.19 
Inferior temporal lobe R 34 51, -58, -14 3.73 
Occipital lobe R 37 30, -88, -5 3.52 
Middle frontal gyrus R 475 51, 41, 25 5.65 
Middle orbito-frontal lobe L 15 -48, 47 -5 3.55 
Medial frontal gyrus R/L 924 9, 23, 34 5.38 
Occipital lobe L 

R 
58 
13 

-33, -94, 16 
33, -85 10 

4.50 
3.16 

Posterior cingulate R 24 9, -61, 13 3.43 
Middle frontal gyrus L 37 -21, 62, 25 3.44 
Superior medial frontal R 10 12, 68, 22 3.12 
Middle frontal gyrus L 117 -51, 17, 34 4.37 
Inferior parietal lobule, angular 
gyrus 

R 309 42, -79, 46 
42, .49, 46 
54, -61, 43 

5.98 
4.23 
4.20 

Precentral  L 14 -42, 2, 43 4.01 
Inferior parietal lobule L 32 -36, -49, 43 3.57 
Threshold: k ≥ 10 voxel, t(22) > 2.8188, p < 0.005 
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Table S5. GLM2. Regions showing stronger parametric modulation by the difference in own-
reward value and ORU during generous than selfish decisions. 
Region Side Cluster size MNI Coordinates t-Value 
Positive     
Cerebellum R 

L 
19 
19 

36, -58, -41 
-6, -85, -32 

3.37 
3.25 

Occipital lobe L 677 -33, -97, 16 5.13 
Inferior temporal lobe R 103 54, -43, -14 4.77 
Inferior frontal gyrus R 

L 
244 
117 

33, 26, -5 
-33, 20, 4 

6.26 
5.28 

Middle occipital gyrus R 319 36, -91, -8 4.76 
Superior frontal gyrus R/L 2190 51, 44, 25 6.98 
Occipital lobe R 20 36, -70, -8 4.15 
Cuneus L 14 -12, -76, 10 3.26 
Superior medial frontal  L 16 -6, 50, 19 3.21 
Middle frontal gyrus L 345 -51, 23, 34 5.26 
Precuneus R 114 6, -67, 40 3.53 
Parietal lobe, angular gyrus R 547 42, -79, 46 7.09 
Parietal lobe L 167 -33, -52, 43 5.01 
Negative     
Temporal lobe R 83 36, -37, -8 3.96 
Frontal lobe L 372 -21, -4, 28 5.03 
Frontal lobe R 72 21, 35, -5 4.37 
Temporal lobe L 23 -30, -49, 1 3.92 
Inferior parietal lobule L 420 -57, -34, 22 4.91 
Rolandic operculum R 15 66, 8, 4 3.85 
Supra marginal gyrus R 318 63, -28, 31 4.50 
Cerebrum R 172 18, -1, 28 4.06 
Medial frontal gyrus R 110 9, -13, 61 4.13 
Parietal lobe R 56 18, -34, 49 3.63 
Postcentral  R 313 24, -52, 76 5.75 
Postcentral L 111 -21, -49, 76 3.77 
Threshold: k ≥ 10 voxel, t(22) > 2.8188, p < 0.005 
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Table S6. PPI. Regions showing stronger task relevant functional connectivity with the right 
TPJ during generous than selfish decisions. 
Region Side Cluster size MNI Coordinates t-Value 
Cerebellum L 

L 
15 
16 

-18, -40, -44 
-27, -34, -32 

3.89 
4.09 

Superior temporal gyrus L 22 -51, 17, -23 3.87 
Middle temporal gyrus R 191 57, 11, -26 4.71 
Inferior frontal gyrus L 34 -33, 20, -20 3.58 
Anterior cingulate R/L 293 -6, 32, -2 6.60 
Insula L 

R 
1522 
226 

-36, -16, 19 
39, 11, 7 

5.90 
4.91 

Superior temporal gyrus R 37 72, -34, 19 4.24 
Supramarginal gyrus R 21 51, -52, 25 3.85 
Cingulate gyrus L 10 -15, -22, 25 3.89 
Precuneus L 18 -9, -55, 34 4.03 
Inferior parietal lobule R 315 69, -37, 37 7.42 
Middle frontal gyrus L 162 -27, 29, 43 4.80 
Medial frontal gyrus R 139 9, -22, 55 4.52 
Precentral gyrus L 108 -42, -22, 49 4.05 
Threshold: k ≥ 10 voxel, t(14) > 2.8188, p < 0.005 
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Abstract 

 

We live busy, social lives, and meeting the challenges of our complex environments 

puts strain on our cognitive systems. However, cognitive resources are limited. It is 

unclear how cognitive load affects social decision making. Previous findings on the 

effects of cognitive load on other-regarding preferences have been ambiguous, 

allowing no coherent opinion whether cognitive load increases, decreases or does not 

affect prosocial considerations. Here, we suggest that social distance between 

individuals modulates whether generosity towards a recipient increases or decreases 

under cognitive load conditions. Participants played a financial social discounting task 

with several recipients at variable social distance levels. In this task, they could choose 

between a generous alternative, yielding a medium financial reward for the participant 

and a recipient on a given social distance, or a larger reward for the participant alone. 

We show that the social discount function was significantly flattened under high 

cognitive load conditions, suggesting that participants became less generous towards 

recipients at close social distance, but more generous towards socially distant 

recipients, e.g., strangers. Unexpectedly, the cognitive-load effect on social discounting 

was gender-specific: while social discounting was strongly dependent on cognitive 

load in men, women were nearly unaffected by cognitive load manipulations. We 

interpret these results within a dual-process framework and suggest that cognitive 

load leads men, but not women, to switch from deliberate processing to more 

automatic decision making, neglecting the social distance information. Our study 

illustrates the importance of considering social distances as well as gender in research 

on prosocial choice. 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Cognitive Load, Social Decision Making, prosocial, Social Discounting, dual 

process  
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1. Introduction 

 

In today’s societies, we have to accomplish a multitude of different tasks in parallel. 

We are on the phone with a business partner while simultaneously scanning through 

the headlines of the newspaper, drinking our coffee and keeping upcoming duties in 

mind, like trying to get our kids ready for school – all at the same time. In this state of 

mind, we have to make decisions that might affect our own future, but very often, our 

choices impact also other people in our social environment. The question arising is 

how we deal with the strain of cognitive load, given that our cognitive resources have 

limited capacity (Sweller, 1994), to decide and act efficiently. And how does our 

behavior change when the cognitive capacity is exceeded? Here, we aim at 

investigating the role of depleting cognitive resources on social decision making 

(Strombach et al., 2014, 2015).  

 

Most studies on the effects of limited cognitive resources on behavior 

investigate decision making in an isolated social environment. For instance, it has been 

shown that cognitive load manipulations alter learning (Sweller, 1994), aviation 

(Wilson, 2002) and user interface design (Saadé & Otrakji, 2007).  However, in real life, 

many, if not most of our decisions are influenced by the consideration of the well-being 

of other people. But, unfortunately, the role of cognitive load and depleting cognitive 

resources on social decisions is much less understood, and previous research found 

ambiguous results on the role of cognitive load on social preferences (Benjamin, 

Brown, & Shapiro, 2006; Cappelletti, Güth, & Ploner, 2011; Hauge, Brekke, Johansson, 

Johansson-Stenman, & Svedsäter, 2009; Roch, Lane, Samuelson, Allison, & Dent, 2000; 

Schulz, Fischbacher, Thöni, & Utikal, 2014; Shiv & Fedorikhin, 1999): while some 

studies on prosocial choice behavior, in which subjects make decisions affecting the 

payoff of other participants, report that subjects became more generous towards their 

interaction partner under cognitive load conditions (Roch et al., 2000; Schulz et al., 

2014), others demonstrated increased selfishness (Crelley, Lea, & Fischer, 2008; Moore 

& Loewenstein, 2004), yet most publications do not report any effect of cognitive load 

on social decision making (Benjamin et al., 2006; Cappelletti et al., 2011; Cornelissen, 

Dewitte, & Warlop, 2011; Hauge et al., 2009).  Next to procedural differences, the social 

choice designs used in these studies differed in the degree of familiarity, or social 

closeness, between the participants and their interaction partners; e.g., in some studies, 

the interaction partner was anonymous, whereas in others, he/she was introduced to 

the participants, and yet in other studies, the interaction partners were actual 

acquaintances. Interestingly, whether the interaction partner was anonymous or not 

appeared to determine the sign of the cognitive load effects on generosity: when the 
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interaction partner was an anonymous stranger, subjects often became more generous 

under cognitive load conditions (Roch et al., 2000; Schulz et al., 2014), but when the 

interaction partner was familiar to the subject, e.g. the interaction partner was a co-

student or introduced before, he/she became more selfish (Crelley et al., 2008; Moore 

& Loewenstein, 2004). When familiarity was not well controlled, any putative effects of 

cognitive load on social preferences might have been obscured by the uncontrolled 

variability in anonymity. We therefore hypothesize that the ambiguity in previous 

results might be evoked by differences in the degree of social distance between 

participants and their interaction partners. This hypothesis blends in with recent 

theories on prosociality and cognitive control. These theories suggest that prosocial 

behavior requires self-control to resolve the conflict between selfish and other-

regarding motives (Knoch, Pascual-Leone, Meyer, Treyer, & Fehr, 2006; Strombach et 

al., 2015). Because evidence suggests that self-control capacities become exhausted with 

increasing cognitive load (Baumeister, 1984; Baumeister, Bratslavsky, Muraven, & Tice, 

1998; Baumeister & Showers, 1986; but see Carter, Kofler, Foster, & McCullough, in 

press), putting strain on the cognitive control system is therefore likely to change 

social-distance-dependent generosity profiles.  

 

In the present study, we investigate the effect of cognitive load on prosocial 

decision making with socially close, socially distant and strange interaction partners. 

We systematically vary social distance using a social discounting paradigm (Jones & 

Rachlin, 2006; Strombach et al., 2014; Strombach et al., 2015). Social discounting refers 

to the idea that generosity towards others diminishes systematically over social 

distance between donor and recipient, with social distance indicating how much, or 

how little, the donor cares about the recipient.  

 

We hypothesize that cognitive load affects prosocial, other-regarding decision 

making, and that this effect is modulated by the social distance between donor and 

recipient. More specifically, we expect that, under high cognitive load conditions, 

individuals become less generous towards people at closer social distance, but more 

generous towards people at large social distance. We use a psychometric approach to 

address this question. In a financially incentivized social discounting task, participants 

indicated their level of generosity towards recipients at variable social distances. We 

fitted a hyperbolic social discount function (Jones & Rachlin, 2006; Strombach et al., 

2014; Strombach et al., 2015) to our participants’ choice data to mathematically capture 

their social discounting behavior. We expected that cognitive load flattened the social 

discount function, reflecting the hypothesized social-distance-dependent cognitive-

load effects on generosity.  
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The present study has important implications for theories of social decision 

making, but will also inform research on business settings. Insights into the effect of 

cognitive load on social preferences might lead to a better understanding why high 

workload, stress and other states characterized by cognitive preoccupation often also 

result in interpersonal distress. Moreover, a multitasking environment is common in 

the business world. Understanding the impact of cognitive load on decision making 

and other-regarding behavior might help to create working environments that are 

more productive and less prone to exhaustion, occupational stress and work-related 

depression. 

 

 

2. Material and Methods 

2.1 Participants 

 

89 Participants (34 male, Mage=23.09, SDage=2.69, Rangeage: 18-30) were recruited at the 

University of Düsseldorf. The participants were randomly assigned to either the 

control condition (low cognitive load ; N=44, 17 men) , or the experimental condition 

(high cognitive load; N=45, 17 men). Participants who had previously participated in 

psychological experiments as well as students enrolled in Psychology or Economics 

were excluded from participation. One subject stopped the experiment during the 

procedure and was excluded from the analysis. Written consent was obtained before 

the experiment started. The study was approved by the local ethics committee and 

conformed to the guidelines of the Declaration of Helsinki. Participants were 

financially compensated for their participation, as outlined below. The study was fully 

incentive-compatible, did not involve deception and thus met the standards in 

psychology and behavioral economic research.  

 

 

2.2 General experimental procedure 

 

Participants were randomly assigned to a high (experimental) and low (control) 

cognitive load manipulation. Before the start of the main experiment, a brief self-

control scale was administered (see below for details). After completing the scale, 

participants received all instructions and information about the procedure.  
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Subsequently, they were subjected to the cognitive load manipulation (high versus low 

cognitive load) and then performed the social discounting task (see below for details 

on the cognitive load manipulation and social discounting task). They were debriefed 

after they finished the experiment. 

 

 

2.2.1 Cognitive load manipulation 

 

Cognitive load was elicited using two different treatments. Both treatments were 

similar to previous tasks used in studies on self-regulation and ego-depletion 

(Baumeister et al., 1998; Fennis, 2011; Wheeler, Briñol, & Hermann, 2007). For the 

stimulus-detection task, all participants received typewritten sheets of paper with a 

text extracted from an advanced machine learning book (Eifler, 2009). In the control 

condition, participants were asked to cross off every e they found in the text. In the 

experimental condition, instructions were similar, but participants received an extra set 

of rules as follows: they were instructed to cross off every e, except if the e was 

followed by a vowel and except if the e was the beginning letter of a word. However, 

when the word that began with an e was at the beginning of the sentence, the e had to 

be crossed off. In an unstructured interview after the procedure, participants in the 

experimental group indicated more often than participants in the control group that 

the procedure was exhausting.  

 

In addition to the instructions, the control and the experimental conditions also 

differed with regard to font size and font transparency of the text (Control: font size: 

14, brightness: 0%, experimental condition: font size: 9, brightness: 75%). This made it 

more difficult and effortful for the participants in the experimental condition to read 

the text. Both groups had five minutes to work on the task.  

 

The stimulus-detection task was followed by a computer-based stroop task 

(Goto & Kusumi, 2013; Gwizdka, 2010; Inzlicht & Gutsell, 2007; Soutschek, Strobach, & 

Schubert, 2013; Stroop, 1935), programmed in Presentation (Neurobehavioral Systems). 

The stroop task has often been validated to induce cognitive load (Gwizdka, 2010; 

Soutschek et al., 2013; Stroop, 1935). Subjects in the experimental group saw a color 

word displayed with differently colored fonts on a computer screen (six different 

colors). They were asked to indicate, by pressing a corresponding button on a 

keyboard, either the semantic meaning of the displayed word, or the name of the color 

of the font used to display the word, respectively. The meaning of the presented word 
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was sometimes incongruent with the color of the font used. For example, the word 

‘blue’ may have been presented in green fonts. Congruent (font color and semantic 

meaning are identical) and incongruent (font color and semantic meaning are 

dissimilar) trials were presented in 12 blocks (subjects had to indicate the words’ 

semantic meanings in six blocks, and their font color name in six other blocks) with 24 

trials in random order. In order to perform this task, subjects in the experimental 

condition had to suppress the automatism to read the semantic meaning of the word. 

In the high cognitive load condition, incongruent trials were presented in 50% of the 

trials. The incongruence between font-color and word-meaning was not present in the 

control group, where subjects were always asked to indicate the semantic meaning of 

the color-word, independent of the font-color used. To simplify the task even more, the 

words were always presented in grey fonts to avoid incongruences. Performance in the 

control condition therefore required less suppression of the automatism to read out the 

word instead of indicating the color. In both groups, words were presented on a white 

screen. Inter-stimulus intervals had duration of 500ms in which a fixation cross was 

presented. Maximum response time was limited to 5000ms. 

 

After the stimulus detection task and the Stroop task were completed, the 

experiment continued with the social discounting task (Strombach et al., 2014; 

Strombach et al., 2015). 

 

 

2.2.2 Social discounting task 

 

Social discounting was measured with the same paradigm used in our previous studies 

on social discounting (Strombach et al., 2014, 2015; see Strombach, 2014 for a discussion 

of the elicitation procedure of social distance). To introduce the concept of social 

distance, each participant was shown a scale consisting of 101 icons, with the leftmost 

icon representing the participant and the others representing his social environment. 

Participants were told that social distance 1 (the most leftward icon closest to the 

participant) represents the socially closest person, while distance 100 (the most 

rightward icon) would be a stranger who they may have randomly met on the street. 

Social distance 50 stands for a distant acquaintance, whose name they may not know. 

Once participants were familiar with the concept of social distance, they were asked to 

write down the names of representatives for the following social distances: 1, 2, 3, 5, 10, 

20. Although distances 50 and 100 were also included in the experiment, participants 

could, but were not required to provide a name, as these distance levels often represent 
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remote individuals.  Participants were specifically asked not to include anyone in their 

list against whom they have negative feelings.  

 

In each trial, a yellow icon on the social distance scale, indicating the social 

distance of the recipient, was shown to the participants. To avoid perceptual issues 

with the visual representation of social distance, the social distance information was 

additionally indicated by a number on top of the yellow icon (cf. figure 1). Participants 

had to choose between a selfish option, yielding a large reward for themselves, and a 

generous option, yielding a smaller reward for the them and the same amount for the 

recipient on the indicated social distance. The selfish reward varied between €75 and 

€165, with increments of €10. The generous option was identical in all trials, yielding 

€75 for the participant and €75 for the recipient on the specific social distance. For 

example, in a given trial, a subject may choose between a €125 reward only for herself 

(selfish option), or a €75 reward for herself and a €75 reward for a recipient on social 

distance 20 (generous option). In total, the participants made 160 decisions – 8 social 

distances, 10 selfish rewards and all combinations were presented twice. The order of 

trials, as well as the side of the presentation of the selfish and generous choice 

alternatives, was fully randomized (cf. fig. 1). 

  

Participants were informed during the instructions before the experiment that, 

at the end of the task, one of their decisions would be randomly chosen and 10% of its 

payoff would be paid out, therefore they and potentially another person would be able 

to earn money based on their decisions. The money the participant allocated to herself 

was paid out directly after the experiment, and for the money shared, subjects were 

asked to indicate the address of the other person in the randomly chosen trial. If the 

randomly chosen trial was about an anonymous person or stranger, e.g. at higher 

social distances, a random person on the campus of the University of Düsseldorf, 

Germany received the reward.  
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Figure 1: An exemplar trial in the social discounting task. Social distance 
information was given on top of the screen, the options below. The subject 
could choose between a selfish reward just for herself or a generous option, 
yielding a reward for herself and another person on the indicated social 
distance. The side of presentation of the options was randomized. As soon as 
both options were presented, the participant could make her decision. The 
final choice was fed back by a red box around the chosen option. Note that this 
figure has been adjusted for illustration purposes; stimulus size and screen 
format are not to scale with the presentation dimensions used testing. In 
addition, the figure displays only 21 icons, instead of 101 icons shown during 
scanning, to facilitate perceptibility. 

 

 

2.2.3 Brief self control scale 

 

Before the experimental procedure started, self-control was measured with a German 

translation of the Brief Self-Control Scale (BSCS; Tangney, Baumeister, & Boone, 2004; 

available at www.uni-konstanz.de/diagnostik/research_measures.htm). The BSCS 

consists of 13 items indicating agreement with given statements on a 5-point-Likert 

scale to quantify a subjective measure of self-control. The scale was intended as a 

control for potential inhomogeneous group differences.  
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2.3 Data analysis 

 

The analysis procedure was identical to procedures used previously (Jones & Rachlin, 

2006; Strombach et al., 2014; Strombach et al., 2015). First, we determined, for each 

subject and each social distance, the point at which a subject was indifferent between 

the selfish and the generous option. To this end, logistic regression was used to 

identify the point at which the probability of answering generously or selfishly was 

50%. For each indifference point, we calculated the individual amount foregone, i.e., 

the difference between own-reward of the selfish alternative and own-reward of the 

generous alternative. For example, if a participant was indifferent between receiving 

€125 just for herself and €75 for herself and €75 for a recipient at a specific social 

distance, she was willing to forego €50 to increase the wealth of the recipient by €75. 

The individual amount foregone at a given social distance level measures how much it 

was worth to the participant to endow the recipient with €75; it can therefore be 

construed as a social premium a subject was willing to pay to improve the recipient’s 

wealth. This social premium served as a social-distance-dependent estimate of the 

other-regarding value a subject attaches to increasing a recipient’s wealth by €75. If the 

participant made exclusively selfish or generous choices at a given social distance, 

indifference points were determined to be €170 or €70, respectively (for more details on 

the estimation of the discount curve see Strombach, 2014). After determining the 

individual amounts foregone for each social distance played, the following standard 

hyperbolic model was fitted to the social-distance-dependent social premiums (Jones & 

Rachlin, 2006; Strombach et al., 2014; Strombach et al., 2015):  

 

           (equation 1)  

 

where V symbolizes the magnitude of a reward received by a recipient at social 

distance D. The parameter v refers to the amount foregone, i.e., the social premium a 

subject is willing to pay in exchange for endowing the recipient on social distance D 

with reward v. Thus, v can be interpreted as a proxy of the socially discounted other-

regarding value of improving the wealth of another individual at social distance D. V 

is the intercept with the y-axis, and determines the height of the social discount 

function. Thus, V can be interpreted as the level of generosity towards socially close 

recipients. The degree of discounting is described by the parameter k, which indicates 

the steepness and shape of the curve.  
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4. Results 

 

The goal of the current experiment was to identify the effect of cognitive load on social 

discounting, i.e. on social distance-dependent generosity. We hypothesized that a 

higher cognitive load alters the social discount function. More specifically, we expected 

flatter social discounting after high cognitive load manipulations.  

 

 

4.1 Cognitive Load Manipulation 

 

There was no significant difference in the self-control scores of the BSCS between 

participants of the control and the experimental conditions (BSCS: Mcontrol = 3.13, SDcontrol 

= 0.60; MCognitveLoad = 3.17, SDCognitive Load = 0.59; t-test: t(85) = 0.282, p = 0.779, ηp2 = 0.001).   

 

As manipulation check for the cognitive load manipulation, we compared the 

reaction times in the Stroop task between experimental and control group. We 

assumed that higher cognitive load would go along with longer reaction times 

(Gwizdka, 2010; Schulz et al., 2014). We found a significant difference between 

experimental and control subjects in reaction times  (Mcontrol = 792.50 ms, SDcontrol = 

132.78; MCognitveLoad = 862.71 ms, SDCognitive Load = 155.00; t(85) = -2.27; p = 0.026, ηp2 = 0.057) 

and errors made in the Stroop task (Mcontrol = 4.34, SDcontrol = 5.26; MCognitveLoad = 10.79, 

SDCognitive Load = 8.94; t(85)=67.68; p < 0.001, ηp2 = 0.166), supporting our assumption that 

cognitive load was higher in the experimental Stroop condition compared to the 

control condition. We additionally tester whether performance in the Stroop task 

differed between men and women. However, a mixed 2x2 ANOVA with the factors 

group and gender revealed no significant main effect of gender, or interaction effects 

between gender and condition, for reaction times (all p>0.40). For the e-crossing task 

we checked whether subjects in the experimental condition made less progress in 

identifying “e”s compared to subjects in the control condition because of differences in 

task difficulty and perceptibility of the text. To this end, we counted the letters that 

were processed by the participant until time-out. We found a significant difference in 

the total number of words processed between experimental and control subjects (Mcontrol 

= 1478.36, SDcontrol = 466.37; MCognitveLoad = 2071.18, SDCognitive Load = 436.40; t(85) = 6.09; p < 

0.001, ηp
2 = 0.306). Again, there was no indication of gender main and interaction effects 

on performance in the e-crossing task (all p > 0.20). Thus, in line with others 

(Baumeister et al., 1998; Salmon, Adriaanse, De Vet, Fennis, & De Ridder, 2014; Vohs, 
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Baumeister, & Schmeichel, 2012) we assumed that the differences in complexity of the 

e-crossing task between experimental and control groups translated into differences in 

cognitive load.   

 

 

4.2 Social Discounting 

 

In both conditions, generosity levels, measured as the amount foregone at indifference 

points (the social premiums, see methods), decreased across social distance, replicating 

previous studies on social discounting (Hangebrauk et al., in press; Jones & Rachlin, 

2006; Strombach et al., 2014; Strombach et al., 2015).  

 

For each subject, we fitted the hyperbolic social discount model (eq. 1) to the 

individual amounts foregone. We used the best-fitting discount parameters V and 

log(k) to quantify and compare social discounting between experimental and control 

groups.  k was log transformed to approximate a normal distribution. As stated earlier, 

V can be interpreted as the level of generosity towards socially close recipients, and k, 

or log(k) respectively indicates the steepness of the curve, thus how steeply generosity 

decays across social distance. Six subjects were excluded because they selected the 

identical options across all social distances, and therefore had a k-value of zero, which 

cannot be log-transformed. We hypothesized that cognitive load flattens the social 

discount function, reflecting the predicted decrease in generosity towards socially close 

recipients, and increase in generosity towards socially more distant people.  

 

To test this hypothesis, we first compared the log-transformed k-values between 

the two experimental conditions. Contrary to our prediction, a t-test did not indicate a 

significant difference in log(k)-values between the groups (Mcontrol=1.617, SDcontrol=6.846; 

Mcognitive load=-3.305, SDcognitive load=2.405; t(79)=1.458, p=0.149, ηp2 = 0.026). It has been 

suggested that men and women are differently affected by cognitive load (Lighthall et 

al., 2012; Ptacek, Smith, & Dodge, 1994), and also differ in their social preferences 

(Olson, Rosso, Demers, Divatia, & Killgore, 2015). Thus, to further inspect our data, we 

ran additional analyses including gender as additional factor in a 2x2 analysis of 

variance (ANOVA) with cognitive load and gender as fixed factors. The ANOVA 

revealed a significant interaction effect between cognitive load and gender on the 

log(k)-values (F(77,1) = 6.390, p = 0.014, ηp2 = 0.077; fig. 2, 3), while there was no 

significant main effect for gender (F(77,1) = 0.383, p = 0.538, ηp2 = 0.005). The lack of a 

main effect for gender may explain why also previous work did not report any gender 
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effects (Jones & Rachlin, 2006; Jones & Rachlin, 2009; Strombach et al., 2014; Strombach 

et al., 2015). However, the significant interaction between gender and cognitive load on 

the steepness of the social discount function seems to corroborate our hypothesis that 

cognitive load affects social preferences differently in men and women.  

 

To further characterize the gender x cognitive load interaction, post-hoc 

analyses revealed that cognitive load effects on log(k) were most pronounced in men: 

while women did not show significant differences in log(k)-values between the 

cognitive load treatments (Mwomen & control = -2.95, SDwomen & control = 2.08, Mwomen & cognitive load = -

2.55, SDwomen & cognitive load = 1.60, p > 0.1), men had significantly lower log(k)-values under 

high- compared to low-cognitive-load conditions. Furthermore, compared to log(k)-

values of women, men’s log(k)-values were significantly lower in the high cognitive 

load condition (Mmen & cognitive load = -4.81, SDmen & cognitive load= 3.05, F(37, 1) = 9.288, p = 0.004, 

ηp2 = 0.201). Thus, while social discounting behavior in women seemed relatively 

unaffected by cognitive load, men showed flatter social discounting under high 

cognitive load (see fig. 2, 3).  

 

Next, we repeated the fixed factor 2x2 ANOVA to investigate the effects of 

gender and cognitive load on the second parameter in the hyperbolic function V. The 

ANOVA did neither indicate significant main effects of cognitive load or gender on V, 

nor an interaction effect (all p > 0.1).   

 

 

Figure 2: A standard hyperbolic model was fitted to the amounts foregone 
(social premiums). Social discount curves are presented separately for gender 
(men; women) and high and low cognitive load. While there was no significant 
difference in social discounting in women between high and low cognitive load 
conditions, men under high cognitive load were less sensitive towards 
variations in social distance, reflected by a considerably flatter discount curve. 
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Figure 3: Interaction effect of gender and cognitive load on the averaged log 
transformed discount parameter k, reflecting the steepness of the social 
discount curve. Errorbars indicate standard errors of the mean. 

 

In sum, our data suggest that cognitive load affected the steepness, but not 

necessarily the height, of the social discount function in a gender-specific way. 

However, there might be several alternative accounts for the interaction effect of 

cognitive load and gender on log(k) (Franco-Watkins, Pashler, & Rickard, 2006; Hinson, 

Jameson, & Whitney, 2003). For instance, it is possible that men, unlike women, simply 

made more noisy decisions under high- than under low-cognitive load conditions. To 

rule out this possibility, we performed additional analyses to establish putative effects 

of cognitive load on decision noise as follows: as outlined earlier, we used binary 

logistic regression to determine the individual indifference points between generous 

and selfish options for each social distance level. Decision noise as well as high choice 

variability and/or inconsistent decision patterns should be reflected in poorer 

goodness-of-fit measures of the individual logistic regressions. We therefore used the 

individual goodness-of-fit estimates R2 as a measure of decision noise and choice 

inconsistency. In cases subjects always and invariantly selected the selfish over the 

generous option, or vice versa respectively, R2 was set to one. To test whether men 

differed from women in the number of noisy or inconsistent decisions under high 

compared to low cognitive load, we calculated the mean adjusted R2 across all 

indifference points for each subject, and used it as the dependent variable in a 2x2 

ANOVA with gender (men/women) and level of cognitive load (high/low) as fixed 

factors. The ANOVA revealed no significant main or interaction effects of gender and 

cognitive load on adjusted R2-values (all p > 0.1). This suggests that we have no 
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evidence to assume that the above reported gender-specific cognitive-load-effects on 

social discounting can be explained by cognitive-load-dependent decision noise 

and/or choice inconsistency.   

 

Another potential explanation for the low log(k)-values in men in the high 

cognitive load condition might be differential attention-effects: after high cognitive 

challenge, men may simply pay less attention to the task and just “click” through the 

experiment, randomly choosing any option, or perseverating on one response option. 

Subjects had to indicate their selection of the generous or selfish option by clicking on 

the left or right option presentation (cf. fig. 1). Since the side of the presentation of the 

options was randomized, perseveration on one side, or random clicking, would result, 

for each social distance level, in a medium indifference point estimate that would be 

similar for all social distances. Because of the fact that indifference point estimates 

would be similar across social distance, fitting a hyperbolic function to the choice data 

obtained from a perseverating or random “clicker” would yield flatter discounting, 

and consequently lower log(k)-values. We assumed that such mindless, random or 

perseverating “clicking”-behavior should be reflected by reduced reaction times 

(Lighthall et al., 2012). To address the possibility that men became mindless “clickers” 

under high cognitive load conditions, we calculated mean reaction times per 

individual and ran another 2x2 ANOVA with gender and cognitive load as 

independent factors and mean reaction time as dependent variable. Again, we did not 

find any significant main or interaction effects (all p > 0.1). Thus, mindless random or 

perseverating clicking behavior is not likely to be the reason for above reported 

gender-specific cognitive-load-effects on social discounting.  

 

Finally, we checked for correlations between the discount parameters log(k), V, the 

number of errors and reaction times in the Stroop task. None of the correlations 

reached significance (all p > 0.1). 

 

 

5. Discussion  

 

We investigated the effect of cognitive load on social discounting.  We exposed 

participants to either a high or a low cognitive load manipulation in which they had to 

perform two tasks requiring cognitive control (the e-crossing and the Stroop task). 

They subsequently played a social discounting task in which they repeatedly decided 

between a large reward for themselves (the selfish option), or a smaller reward for 
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them plus an additional reward for recipients on variable social distances. We 

replicated previous findings on social discounting showing that a generosity metric – 

the willingness to forego a reward in exchange for increasing the wealth of the 

recipient (the social premium) - decreased over social distance. In line with our 

prediction, we found that high cognitive load flattened the social discount function, 

but, unexpectedly, this cognitive-load effect on social discounting was only found in 

men: under control conditions, men showed steeper social discounting than women, 

suggesting that their generosity towards others decreased very steeply with increasing 

social distance to the recipient. But following the cognitive load manipulation, men 

showed considerably flatter social discounting than women and under control 

conditions, indicating that, after increased cognitive load, the typical decrease in 

generosity across social distance was much less pronounced. By contrast, the discount 

function of female subjects was similar in the high- and low-cognitive-load conditions.  

 

Gender differences in decision making and cognitive style have been reported 

before (Lighthall et al., 2012; Preston & de Waal, 2002; Van den Bos, Harteveld, & 

Stoop, 2009). For instance, a neuroimaging study by Lighthall and colleagues (2012) on 

reward-processing under stress identified opposing effects of stress on reward-related 

brain activation in men and women. They suggested that men and women use 

different strategies when cognitive resources became depleted due to the stress 

manipulation. While men switched to more automatic processing under stress 

(Lighthall et al., 2012; Porcelli & Delgado, 2009), women relied more on deliberate 

processing in stress- and no-stress situations, making use of greater explicit knowledge 

about the task contingencies (Lighthall et al., 2012; Preston & de Waal, 2002). This 

finding is corroborated by recent evidence for gender-specific effects of stress on 

performance in the IOWA gambling task (Van den Bos et al., 2009): while performance 

in men deteriorated after stress, presumably due to stress-related downregulation of 

prefrontal brain regions responsible for cognitive control and deliberative reasoning, 

stress effects on IOWA gambling performance in women was less unidirectional, and 

more complex overall. Taken together, these findings suggest that manipulations 

known to affect cognitive control and reasoning, such as stress as and cognitive load, 

change decision making patterns in men and women in opposite ways.  

 

The idea that cognitive load effects on social discounting are the consequence of 

gender-specific exhaustion of cognitive control capacities blends in with recent dual 

process models of decision making (Chaiken & Trope, 1999; Evans, 2008; Johnson & 

Weber, 2009; Loewenstein & O’Donoghue, 2007; Schulz et al., 2014). These dual process 
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models postulate that decisions are based on the interplay between two 

complementary mental processes: while affective processes deal with emotional and 

automatic behavioral responses, cognitive processes are responsible for controlled, 

deliberated behavior. One important difference between the two processes is that 

controlled processes have a limited capacity (but see Carter et al., in press; Johnson & 

Weber, 2009; Schulz et al., 2014). Thus, when self-control or cognitive effort is exerted, 

the cognitive processes might eventually get exhausted and the affective processes 

might gain stronger influence on decision making. Previous research indicates that 

there are a multitude of factors influencing whether automated or cognitive processes 

are used (Chaiken & Trope, 1999; Cornelissen et al., 2011; Evans, 2008; Loewenstein & 

O’Donoghue, 2007; McClure, Laibson, Loewenstein, & Cohen, 2004; Schulz et al., 2014; 

Shiv & Fedorikhin, 1999). Amongst others, mood, low blood glucose levels, exhaustion 

of willpower and cognitive load determine whether the cognitive or affective processes 

have a greater impact on decision making (Gailliot & Baumeister, 2007; Gailliot et al., 

2007; McClure et al., 2004; Schulz et al., 2014). The dual process approach thus states 

that, when cognitive capacity is high, decisions can be made in a more controlled way 

and presumably in line with long-term interests. However, when the cognitive 

resources are exhausted, the automatic processes dominate. Thus, the amount of 

available cognitive control seems to shape which preferences are revealed in a decision.  

 

Recent theories on altruism and other-regarding preferences suggest that 

prosocial behavior requires cognitive control to overcome selfish motives (Knoch et al., 

2006; Strombach et al., 2015). Combining this insight with the evidence from stress-

research cited above, suggesting that men are more prone to cognitive depletion then 

women, we speculate that the results in our present study reflect a gender-dependent 

switch from controlled to automatic processing: while men use more automatic 

processes to make social decisions when cognitive load is high, women consistently 

rely on deliberate control processing independent of cognitive load. The disuse of the 

deliberative system in men is likely to lead to a reduction in the information 

complexity that is processed to form a decision. In order to come up with a sound 

decision in the social discounting task, participants have to consider own- and other-

reward magnitudes as well as social distance to the recipient. One way to simplify the 

decision problem is to reduce the dimensionality of the social choice alternatives. It is 

therefore possible that men under high cognitive load conditions neglected the social 

distance dimension of the choice problem. Because women were presumably less 

sensitive to the cognitive load manipulation, the switch from deliberative to automatic 

processes was less pronounced, and women consequently showed no difference in 

social discounting behavior between cognitive load conditions.  
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Finally, it is important to mention that a recent meta-analysis challenges the 

idea that self-control relies on a limited resource that is subject to exhaustion by 

cognitive load (Carter et al., in press). Although the conclusion of this meta-analysis 

does not contest the validity of our results per se, it has potentially some implications 

for the interpretation of our data. If cognitive control depletion was indeed a myth, the 

difference in social discounting between high and low cognitive load conditions in 

men must have been caused by a different mechanism than cognitive exhaustion. 

However, although we cannot entirely rule out alternative explanations, we are 

hesitant to entirely dismiss the cognitive depletion account of our data: first, the meta-

analysis (Carter et al., in press) mainly covered studies on will-power, which is a 

special case of self-control, which in turn is also a special case of cognitive control. 

Here, we refrain from specifying whether the change in social discounting was 

instigated by a drop in will-power, or by changes in other forms of cognitive control. 

The fact remains that men and women showed different social choice behavior, which 

is very likely the consequence of our cognitive load manipulation. Second, we show 

that cognitive load effects on (social) preferences are highly complex and depend on 

several factors, including social distance as well as gender. Studies that do not consider 

or control these modulators of behavior may yield inconsistent findings, which would 

factor in as a null result in any meta-analysis. Finally, the neural mechanisms 

underlying social discounting have little or nothing in common with the neural 

processes associated with the self-control capacities dissected in Carter et al., (in press). 

More specifically, we have recently provided a neurobiological model of social 

discounting according to which the social-distance-dependent conflict between selfish 

and generous motives is resolved by upregulating prosocial neural value signals in 

ventromedial prefrontal cortex through functional coupling with one of the core social 

brain regions – temporoparietal junction (Strombach et al., 2015). By contrast, will-

power, self-regulation or other forms of self-control inspected in Carter et al. (in press) 

are usually associated with different, mainly frontal neural networks, including 

dorsolateral prefrontal cortex (Hare, Camerer, & Rangel, 2009), inferior frontal gyrus 

(Casey et al., 2011), or frontopolar cortex (Crockett et al., 2013). To our knowledge, no 

neuroimaging study on self-control has revealed an involvement of temporoparietal 

junction. Hence, the neural mechanisms, and thus possibly also the mental processes 

underlying social discounting (Strombach et al., 2015) are not reminiscent of the 

willpower mechanisms scrutinized in Carter et al. (in press), and the conclusions of 

their meta-analysis may therefore not apply to the current study. We suggest, 

therefore, that changes in cognitive control might have distinct effects on social 

preferences that are reliant on the neural network used to process social discounting. 
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In summary, we suggest that our findings that cognitive load affects social 

discounting in a gender-dependent way might be interpreted within the dual process 

framework (Evans, 2008; Johnson & Weber, 2009; Schulz et al., 2014). We propose that 

cognitive load diminishes deliberation capacities in men and, thus, the likelihood of 

activating the controlled, cognitive system. As such, decisions taken under additional 

cognitive load are governed to a greater extent by affective processes and automatic 

choice heuristics. This might lead to a reduction in the choice alternatives’ dimensions 

that are considered to form a decision (Rachlin & Jones, 2008; Simon, 1995). In the 

present case, we propose that the social distance dimension is considered less under 

increased cognitive load. In line with previous research, we suggest that the cognitive-

load-induced diminution of deliberation capacities is more pronounced in men than 

women.  

 

Our data are interesting for a couple of reasons. First, we show that cognitive-

load effects on prosocial sentiments are complex and dependent on several interacting 

factors, including social distance and gender. Since social distance and gender were 

often not, or only partially controlled in previous studies on cognitive load and social 

choice, our results may help reconcile the inconsistencies in earlier findings. Second, 

previous studies are incongruous regarding gender difference in cognitive load effects 

on cognition. We show that gender effects only become visible in prosocial choice tasks 

when social distance is taken into consideration. Thus, only the combination of social 

distance, gender and a cognitive load manipulation is able to unshadow the effect of 

cognitive load on social behavior. In sum, overall, we suggest that inclusion of social 

distance in social experiments might be advantageous.   

 

Our results highlight the importance of research on the effects of cognitive load 

on social behavior. Insights in this field might lead to a better understanding of 

behaviors in situations where cognitive capacity is scarce, i.e. in jobs that demand 

multitasking faculties, or executive decisions that are made under time pressure and 

stress. A better understanding could help to develop strategies to deal with the risks of 

cognitive exhaustion to improve the quality of decisions. That might also lead to 

optimize the work environment to improve the quality of the decisions made in a 

work-related setting. Finally, we suggest that social preferences as well as social 

distance should be included in economic models and psychological theories to further 

their descriptive and predictive value.  
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6. Conclusion 

 

The effects of cognitive load on generosity and prosocial behavior are complex, and 

depend on social distance between donor and recipient, as well as the gender of the 

donor. The gender-difference in the impact of cognitive load on social behavior 

suggests that men and women process social information differently when cognitive 

control becomes exhausted. We propose that our results can be interpreted within the 

dual system framework, which suggests two distinct processes that drive decision 

making – a deliberate and an automatic system. We suggest that cognitive load affects 

the interplay of these two systems differently between men and women. Our findings 

have implications for our understanding how a person’s environment might influence 

her or his ability to make decisions (Porcelli & Delgado, 2009).
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4. List of Abbreviations 
 

ACC  Anterior cingulate cortex 

BOLD  Blood oxygenation level dependent 

DLPFC dorsolateral prefrontal cortex 

EEG  Electroencephalography 

fMRI  functional magnetic resonance imaging 

FWE  familywise error 

GG  Greenhouse Geisser (correction) 

GLM  general linear model 

HRF  hemodynamic response function 

LCD  Liquid-crystal display 

M  mean 

Mdn  median 

MNI  Montreal Neuroimaging Institute 

MRI  magnetic resonance imaging 

OFC  orbitofrontal cortex 

ORU  other-regarding utility 

PPI  psychophysiological interaction 

ROI  region of interest 

RPE  respose prediction error 

s  seconds 

SD  standard deviation 

STG  superior temporal gyrus 

SV  subjective value 

TMS  transcranial magnetic stimulation 

ToM  theory of mind 

TPJ (rTPJ) temporoparietal junction (right temporoparietal junction) 

VMPFC ventromedial prefrontal cortex 

VS  ventral striatum 

vStr  ventral striatum (abbreviation used in study 1) 
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