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Abstract

This thesis deals with the solution of a nonlinear inverse problem arising in digital
image registration. In image registration one seeks to compute a transformation
between two images such that they become more similar in some sense.

In the first part, we define the problem as the minimization of a regularized non-
linear least-squares functional, which measures the image difference and smooth-
ness of the transformation. The nonlinear functional is linearized around a current
approximation in order to obtain well-posed linear subproblems. The Hessian is
replaced by an approximation that leads to an inexact Newton-type method, specif-
ically a regularized Gauss-Newton method. A related gradient descent method is
derived in the same framework for the purpose of comparison.

In the next part of this thesis we study geometric multigrid methods for the
solution of the linear subproblems (inner iteration). The type of regularization em-
ployed leads to a system of elliptic partial differential equations. For the regularized
Gauss-Newton method the differential operator contains jumping coefficients that
cannot be adequately dealt with by standard geometric multigrid methods. Modifi-
cations of the multigrid components that improve multigrid convergence and allow
for fast and efficient computation are proposed. In the outer iteration a trust region
strategy is used and the whole procedure is embedded in a multiresolution frame-
work. Extensive numerical results for the multigrid (inner iteration), outer iteration,
and multiresolution framework are given.

In the last part a framework for the incorporation of additional structural con-
straints in the presented registration procedure is proposed. This framework is
based on implicit representation of shapes via level sets. Representations for differ-
ent types of shapes are discussed. Distance functionals of least-square type that can
be easily plugged into the existing registration procedure are introduced. Examples
for the different representations and the combination with image data are given.
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CHAPTER 1

Introduction

Image registration is the process of computing a transformation between two im-
ages such that they become more similar. Other terms often found in the literature
are warping, morphing, normalization, matching, and alignment. In general it is
assumed that one image is a deformed version of the other one. There are two
big classes of transformations that are considered: linear and non-linear ones. In
the class of linear transformation one often makes a distinction between rigid and
non-rigid transformations. Rigid transformations are volume preserving, i.e. only
rotation and translation. Here we deal with non-linear transformations though in
the application the computation of a non-linear transformation is almost always
preceded by a linear transformation to compensate for global differences in shape,
size, and orientation.

Image registration is a very active field of research, with applications in med-
ical image analysis, target tracking, data fusion, recognition and satellite imagery.
In the field of modern brain research image registration is a valuable tool. It al-
lows for intra- and interindividual comparison of imaging data. In the intrain-
dividual case image registration is necessary when data is from different imag-
ing modalities, such as (functional) magnetic resonance imaging (MRI), positron
emission tomography (PET) ,or histological sections, or the image data is acquired
at different points in time. In the interindividual case the area of application is
mainly the comparison of data from individual brains in a common reference space,
e.g. for functional imaging studies or the construction of probabilistic atlas sys-
tems [5, 29, 33, 38, 45, 46]. Our applications are mainly from this area.

Since the goal of registration is to make the images more “similar” the modeling
involves the minimization of a dissimilarity or distance functional. We differentiate
between two different approaches to define such distance functionals. It can either
be a function of the image pixels itself, intensity based, or a distance between land-
marks, e.g. points, curves, or surfaces, that have to extracted in a preceding step. In
the former case the information used in the registration process is given implicitly
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by the whole image and in the latter explicit information about some parts of the
image is used. Both approaches have there pros and cons which cannot be discussed
at length here, but let us point out some of the most important arguments.

The landmark extraction step almost always involves manual user interaction.
The matching of just some landmarks can often be more robust and precise espe-
cially when the images contain a lot of artefacts. Image information that is affected
by artefacts does not have to be used and we can prescribe correspondences. On
the other hand a perfect match of some landmarks does not necessarily yield a
good match of the overall image, since no information from in-between is used.
The result for the parts of the image not given by the landmarks is solely influenced
by constraints on the solution, e.g. a smooth continuation of the transformation.
Hence, when landmarks are not carefully chosen we end up with a mock preci-
sion. In case of complex transformations a lot of landmarks can be necessary to
obtain satisfactory results. The result also depends on the appropriate localization
of the extracted image landmarks. While landmarks are often easily defined in two-
dimensional space an appropriate equivalent in three-dimensional space can often
not be found. A one dimensional landmark in two-dimensional space is generally
a curve in three-dimensional space. A contour (closed curve) in two-dimensional
space is a surface in three-dimensional space. Defining a distance between land-
marks (points) is easy, whereas defining a distance between curves and surfaces is
more difficult due to the correspondence problem. With points the correspondence
is uniquely defined. Between curves and surfaces a number of transformation lead
to an identical match. Sometimes this problem is circumvented by discretizing
curves and surfaces by a number of points. Yet, since the correspondence is not
clear this leads to a mock precision, too. For an overview of landmark based tech-
niques see e.g. [42].

In the intensity based approach the problem of establishing correspondence is
implicitly taken care of. By implicitly we mean that we do not have to provide any
information about correspondences a priori. Of course this does not entail that we
always get the “correct” result. In the presence of artefacts the image distance might
not be properly defined in all parts of the image. That can be dealt with by removing
the artefacts in a preprocessing step, or by providing information about them to
the registration algorithm [7, 28, 29]. Local minima can also lead to non desired
correspondences. This is often due to locally ambiguous image information. Hence
it would be advantageous to combine both approaches, but evidence of that in the
literature is scarce. One example can be found in [18, 19] where an intensity based
approach is combined with a one-to-one match of point landmarks. In [10] Cachier
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uses a two step algorithm, where first the image difference and then the difference
between geometric features in minimized by a closest point algorithm. In [13] the
chamfer distance between representations of sulcal ribbons is minimized. Direct
matching of the control points of B-splines is performed in [25].

We aim at solving the problem by minimizing a distance defined on the image
intensities and on representations of geometric features simultaneously. We do not
seek to establish a perfect correspondence on part of the geometric features, but
let both representations “compete” in the minimization process. Both sides should
augment or correct each other. The problem of reconciling both approaches lies
in the fact that we have the implicit representation via image intensities on the
one side and the explicit geometric representation on the other. The idea is to use
implicit representations for the geometric features and define appropriate distance
functions for them that can be plugged into an intensity based approach. We will
first introduce an intensity based approach and later turn to geometric additional
constraints.

The rest of this thesis is organized as follows. In the next chapter we give a
more precise characterization of the modeling used here. Chapter 3 introduces two
optimization approaches for the minimization of the non-linear functional proposed
in chapter 2. In chapter 4 the numerical implementation is described. This includes
the discretization, a multigrid solver for the linear equations derived in chapter 3,
and a multiresolution framework. Numerical experiments for all aspects of the
method are presented in chapter 5. The necessity of additional constraints for some
registration problems is discussed in chapter 6 and a framework that makes use of
implicit representations via level sets is presented. Results for the techniques pro-
posed in chapter 6 are given in chapter 7. In the final chapter we offer conclusions
and an outlook.



CHAPTER 2

Elastic image registration

In this chapter we introduce an intensity based approach to solving the registration
problem, based on the minimization of the difference between gray values. Let us
first state the image registration problem in general terms. Given are two images,
a template T and a reference R. We assume that T and R can be represented by
compactly supported functions

T,R : Ω ⊂ R
m → R. (2.1)

Furthermore we assume that T is distorted by an invertible transformation Φ−1. We
search for the transformation

Φ(u)(·) : R
m → R

m, Φ(u)(x) : x 7→ x− u(x), x ∈ Ω. (2.2)

In image processing one mostly findsm = 2 (images) orm = 3 (volume data sets).

Problem 2.1 (Image registration problem). Find u(x) such that the energy func-

tional

Eα(u) := D[T,R,Ω; u] + αR[Ω; u] : R
m → R (2.3)

is minimal with α ∈ R
+. D measures the disparity between T (x− u(x)) and R(x)

on the image domain Ω, and R imposes (smoothness) constraints on the solution

u.

Generally this is an ill-posed problem, yet it becomes well-posed for some
α > 0. In the literature we find two main approaches to regularization. One is
to regularize the functional directly [4, 16, 20, 31], as we have done here. The
other is to linearize the non-linear functional and then regularize the linear sub-
problems [8, 12, 27, 30].

Several choices exist for D as well as for R. A popular choice for R is the use
of a bilinear form that leads to a partial differential operator. PDE based methods
have become increasingly popular in the last couple of years. There is a whole
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branch of PDE-based image processing methods, not only for registration, but also
for image restoration, deconvolution, denoising, super resolution, inpainting, etc..

To measure the dissimilarity between R and T we use the integral (sum) of
squared differences (SSD)

DSSD :=
1

2

∫

Ω

(T (x− u(x))− R(x))2dx, (2.4)

where we use integral in the continious and sum in the discrete context. In other
words, the image distance is measured in the L2-norm. The SSD can be used when
identical structures are encoded by the same values in both images. If that is not the
case other distance measures that relate the information contained in the images to
each other have to be used, e.g. mutual information [36, 48].

As the regularizerR we choseR(u) = `[u, u] with the bilinear form

`[u, v] =

∫

Ω

(

λdiv(u)div(v) + 2µ

m∑

i,j=1

ei,j(u)ei,j(v)
)

dx,

where

ei,j(u) =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

),

which is borrowed from the theory of linear elasticity for homogeneous and isotropic
materials. It measures the elastic potential of the deformation u. The parameters
λ ≥ 0 and µ > 0, the so-called Lamé constants, define the elastic properties of
the underlying material. The elastic (Young’s) modulus is given by E = µ(3λ+2µ)

λ+µ
.

The first constant µ is the shear modulus and the λ is related to the bulk modulus
K = λ + 3

2
µ. The bilinear form ` can be written as `[u, v] = 〈Lu, v〉, where the

canonical linear mapping L is given by the so-called Navier-Lamé operator

Lu = −µ∆u− (λ+ µ)∇(∇u).

The symbol ∆ is the vector valued Laplace operator and ∇(∇) = div(∇). The
choice of the regularizer is a modeling choice. The Navier-Lamé operator is fre-
quently used for medical image registration problems since the deformation oc-
curring in body tissues can be thought of being of elastic nature. In contrast to
other popular regularizers, e.g. ∆u, or ∆2u, the Navier-Lamé operator couples the
directions. The strength of the coupling depends on the choice of λ. For more
information on the derivation see e.g. [41].
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For our minimization problem we end up with a regularized nonlinear least
squares functional that we tackle with a inexact Newton-type method, specifically
a regularized Gauss-Newton method with a trust region approach. The functional is
linearized around a current approximation which defines an iteration, the so called
outer iteration. In each step of the outer iteration one normal equations which
corresponds to a linear anisotropic subproblem is solved iteratively with a fast and
efficient multigrid solver. The iteration in the solver is also called inner iteration.
The Newton-type method is compared to a gradient descent method that is derived
in the same framework. At some points we restrict ourselves to presentation of the
2d-case (m = 2) due to simplicity of presentation and space restrictions , but all
techniques can be easily extended and are also used in 3d.



CHAPTER 3

Two optimization strategies for image registration

We present two optimization strategies for the solution of the minimization prob-
lem (2.3). The first method is a regularized gradient descent, and the second is
Newton type method. The former is mainly introduced because it is a frequently
used approach (c.f. [37] and references therein) and we need a reference method to
illustrate the benefits of using higher order methods. Both methods are augmented
with a trust region approach.

Since the functional is highly nonlinear a sequence of subproblems has to be
solved. Each of these subproblems should have the following important features:

• it is well-posed and

• can be solved efficiently.

To this end Eα is linearized around a current approximation and the linearized
model is used to construct an iterative method. The Taylor expansion of Eα(u)

around u(k) is given by:

Eα(u
(k) + v) ≈ Eα(u

(k)) + 〈JEα(u(k)), v〉+ 1

2
〈HessEα(u

(k))v, v〉, (3.1)

with v = (u − u(k)) and 〈·, ·〉 denoting the Euclidian scalar product. Using the
abbreviation

T (k)(x) = T (x− u(k)(x))

for the transformed template image, the Jacobian and the Hessian of Eα at u(k) are
given by

JEα(u
(k)) = J tθ(u

(k))θ(u(k)) + αLu(k),

HessEα(u
(k)) = J tθ(u

(k))Jθ(u
(k)) + S(u(k)) + αL,

where
θ(u(k)) = T (k)(x)− R(x)
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is the difference between reference and transformed template. Since Jφ(u) = −Im,
the m×m identity, we have

J tθ(u
(k)) = JT (φ(u(k))) · Jφ(u(k)) = −







∂T (k)(x)
∂x1
...

∂T (k)(x)
∂xm







and

J tθ(u
(k))Jθ(u

(k)) =







∂T (k)(x)
∂x1

∂T (k)(x)
∂x1

· · · ∂T (k)(x)
∂x1

∂T (k)(x)
∂xm

...
...

∂T (k)(x)
∂xm

∂T (k)(x)
∂x1

· · · ∂T (k)(x)
∂xm

∂T (k)(x)
∂xm






.

Note that J tθ(u
(k))Jθ(u

(k)) contains only first derivatives of the template image and
is symmetric positive semi-definite. The term

S(u(k)) = θ(u(k))θ′′(u(k)) = θ(u(k))∇2T (k)(x)

constitutes the more problematic part of HessEα(u
(k)), which becomes small for

small θ, i.e. well matched images. The Hessian HessEα(u
(k)) is not necessarily

regular. Even when it is regular it might have very small eigenvalues and hence be
ill-conditioned. That leads to numerical problems.

We linearized the functional to deal with it nonlinearity. Consequently we have
to solve a number of linear problems that are local approximations to the nonlinear
functional. Replacing u = u(k) +v in equation (3.1) with u(k+1) defines an iteration

u(k+1) = u(k) + v, (3.2)

where v is the solution to the normal equation

〈JEα(u(k)), v〉+ 1

2
〈HessEα(u

(k))v, v〉 = 0. ∀v ∈ V, (3.3)

in a suitable function space V . This iteration is also called outer iteration. As noted
above HessEα(u

(k)) is bound to cause problems for the solution of (3.3). Hence,
it is usually replaced by a more well-behaved approximation. In the following we
introduce two options, one that leads to a gradient descent method and one that
leads to a Newton-type method.
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3.1 Regularized gradient descent method

When we replace the data dependent and possibly ill-conditioned part of the Hes-
sian, i.e. J tθ(u

(k))Jθ(u
(k)) +S(u(k)) by a symmetric positive definite (spd) operator

βB, β ∈ R
+
0 , we obtain a regularized gradient descent method with a trust region

approach, i.e. the minimization problem

min
v∈V

{

〈JEα(u(k)), v〉+ α

2
〈Lv, v〉+ β

2
〈Bv, v〉

}

. (3.4)

The solutions to the corresponding quadratic normal equation

〈JEα(u(k)), v〉+ 1

2
〈(αL+ βB)v, v〉 = 0 ∀v ∈ V, (3.5)

are directions of steepest descent on Eα. The addition of βB can be interpreted
as a trust region strategy. The linearization of Eα can only be trusted a region that
depends on the nonlinearity of the functional at u(k). The solutions to the normal
equation (3.4) are restricted to a trust region with a radius ηk that is measured in the
norm induced by B.

Lemma 3.1. The unconstrained minimization problem (3.4) is equivalent to the

constrained minimization problem

min
v∈V

{

〈JEα(u(k)), v〉+ α

2
〈Lv, v〉

}

s.t. ||v||2B ≤ ηk. (3.6)

Proof. Using the method of Lagrange multipliers (3.6) can be rewritten as

〈JEα(u(k)), v〉+ α
2
〈Lv, v〉+ λ||v||2B

= 〈JEα(u(k)), v〉+ α
2
〈Lv, v〉+ λ〈Bv, v〉.

Setting the Lagrange multiplier λ to β/2 yields the desired result.

The regularization parameter β directly determines the degree of regularization
by B. The more regularization, the smaller the trust region radius. Another inter-
pretation is that β−1 is the size of a time-step. Consider the time evolution equation

∂ut + αLu+ JD(u) = 0 , 0 ≤ t ≤ T,

where JD is the Jacobian of the distance measure. When u∗ is a stationary point
∂ut vanishes and u∗ is the solution. The semi-implicit time discretization of that
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equation has the form

u(k+1) − u(k)

τ
+ αLu(k+1) + JD(u(k)) = 0. (3.7)

Lemma 3.2. Let B = I , with I the identity, and β = τ−1, then (3.7) is equivalent

to the classical formulation of the weak form (3.5) (see also proposition 3.1 on

page 13).

Proof.

(αL + τ−1I)v = −JEα(u(k))

⇔ (αL+ τ−1I)(u(k+1) − u(k)) = −(J tθ(u
(k))θ(u(k)) + αLu(k))

⇔ αLu(k+1) + τ−1(u(k+1) − u(k)) = −(J tθ(u
(k))θ(u(k)))

⇔ u(k+1)−u(k)

τ
+ αLu(k+1) + JD(u(k)) = 0

If we do not replace B by I the size of the time step is measured in the norm
|| · ||B. The smaller the time step τ the smaller the change that is to be expected.
That is in accordance with what we have stated above about the influence of β.

3.2 Regularized Gauss-Newton method

In the last section we replaced all image dependent terms of the Hessian by a spd
operator. Now we only replace S(u(k)), the part that contains higher order deriva-
tives of the template image, by a spd operator βB, β ∈ R

+
0 . That leads to the

unconstrained minimization problem

min
v

{

〈JEα(u(k)), v〉+ 1

2
〈(J tθ(u(k))Jθ(u

(k)) + αL + βB)v, v〉
}

. (3.8)

The corresponding quadrative normal equation to be solved is

〈JEα(u(k)), v〉+ 1

2
〈(J tθ(u(k))Jθ(u

(k)) + αL + βB)v, v〉 = 0 ∀v ∈ V, (3.9)

and the solution v is a descent direction on Eα. Again the addition of βB can be
interpreted as a trust region strategy.

Lemma 3.3. The constrained minimization problem

min
v

{

〈JEα(u(k)), v〉+ 1

2
〈(J tθ(u(k))Jθ(u

(k)) + αL)v, v〉
}

, s.t.||v||B ≤ ηk,(3.10)
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is equivalent to the unconstrained minimization problem (3.8).

Proof. The proof is analogue to the proof for lemma 3.1.

The combination of a Gauss-Newton method with a trust region strategy is often
called Levenberg-Marquardt method.

3.3 Trust region approach

In lemmas 3.1 and 3.3 the link between the unconstrained and constrained mini-
mization problems was shown. We can either interpret the addition of βB as an
extra regularization of the unconstrained minimization problem, or as a constraint
on the size of a trust region for a constraint minimization problem. We left open the
question how the trust-region parameter β and the spd operator B are to be chosen.

3.3.1 Choice of the trust-region parameter β

The problem with the choice of β is that if the linear model is a good approximation
to Eα(u) around u(k) we can take large steps, thereby reducing the number of outer
iterations. If it is a bad approximation we should take small steps, since otherwise
we do not compute sensible solutions, and the iteration might even diverge. The
solution of the normal equation is the by far most expensive step. Hence, we have
to find a reasonable compromise between efficency and robustness.

There are a number of strategies to control the trust region radius. For a new
approximation u(k+1) = u(k) + v we require that

Eα(u
(k+1)) ≤ Eα(u

(k)) + ρ〈f(u(k)), v〉, (3.11)

with some positive scalar ρ. The minimum permissable value for ρ is then given by

ρk =
Eα(u

(k+1))− Eα(u(k))

〈f(u(k)), v〉 .

This is also called the Armijo-Goldstein rule. It assesses the difference between the
projected and computed solution. When (3.11) is fulfilled, i.e. ρk ≥ ρ we accept
the update to the solution. When we have to reject the solution the trust region has
to be made smaller which is identical to increasing the regularization. When ρk is
much larger than ρ we can decrease the regularization. These considerations lead
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to following update procedure for the parameter βk+1 and the new solution u(k+1):

(βk+1, u
(k+1)) =







(2βk, u
(k)) for ρk < ρ−

(1
2
βk, u

(k) + v) for ρk > ρ+

(βk, u
(k) + v) otherwise

(3.12)

When ρk < ρ− the update is rejected and regularization is increased, i.e. the trust
region is made smaller. In all other cases the update is accepted and if ρk > ρ+ the
trust region radius is increased. Typical values from literature for the thresholds are
ρ− = 0.1 and ρ+ = 0.5 [24, 27].

Note that the trust region parameter is chosen a priori. The degree of regulariza-
tion by B is fixed before the computation of v. To determine βk information from
the previous iteration step is used. That means we have to chose a reasonable value
for β0. There are two possible situations. If β0 is to small v will be rejected until a
proper degree of regularization is reached. When β0 is chosen too conservative the
update procedure (3.12) will decrease the regularization parameter during the itera-
tion. The latter situation is the better one, since until the regularization parameter is
adapted accordingly a number updates to the solution have already been computed
and accepted. In the former situation the solution is identical to u0 until the proper
degree of regularization is reached. In both cases a value of β0 that is far off the
optimal choice will result in a large number of “unnecessary” iterations. There is
no ideal way to chose β0 because since it is an a priori choice you only find out if it
has been a good choice after an expensive solve of the normal equation. For a more
detailed discussion of trust-region methods see e.g. [15].

3.3.2 Choice of the trust region topology

Before we have always said that B should be spd, because we want αL + βB, re-
spectively αL+ βB + J tθJθ to be spd. Then we a unique solution v exists. Clearly
this property depends on the function space V (see the normal equations (3.5)
and (3.9)). Let

V0 :=

m-times
︷ ︸︸ ︷

H1
0(Ω)× . . .×H1

0 (Ω) .

Here the spaceH1(Ω) is the Sobolev space of functions in L2(Ω) with weak deriva-
tives in L2(Ω). H1

0 (Ω) is the subspace of H1(Ω) consisting of the functions with
zero boundary values, i.e. Dirichlet boundary conditions.
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We can formulate the following two propositions about the uniqueness of the
minimizer and the equations to be solved.

Proposition 3.1. Let α, β ∈ R+, and L + B be a spd operator for all v ∈ V0,

then there exists a unique minimizer u∗ ∈ V0 of (3.4) that is characterized by the

classical boundary value problem

(αL+ βB)v = −JEα(u(k)) for x ∈ Ω,

v = 0 for x ∈ ∂Ω.
(3.13)

Proposition 3.2. Let α, β ∈ R+, and L + B be a spd operator, then there exists a

unique minimizer u∗ ∈ V0 of (3.8) that is characterized by the classical boundary

value problem

(J tθ(u
(k))Jθ(u

(k)) + αL+ βB)v = −JEα(u(k)) for x ∈ Ω,

v = 0 for x ∈ ∂Ω.
(3.14)

The proof of proposition 3.1 and 3.2 is a direct application of the fundamental
lemma of the calculus of variation (see e.g. [41]). For the proof of proposition 3.2 it
should be noted that J tθJθ is symmetric positive semidefinite and with the assump-
tion that L+B is spd J tθJθ + αL+ βB is spd, too.

Lets take a look at the different parts of the operators and their properties with
respect to V0. J tθJθ is symmetric positive semidefinite. It cannot generally be spd
because Thxi can be 0. The elliptic operator L is spd in V0. Only one part has to be
spd and the other can be only symmetric positive semidefinite, because a spd oper-
ator remains spd when we add something symmetric positive semidefinite. Thus,
with Dirichlet boundary conditions B has to be symmetric positive semidefinite.

The simplest choice for B is the identity I . This is related to Tihkhonov reg-
ularization(see e.g. [6, 17]), since 〈βIv, v〉 = β||v||22 (see also propositions 3.1
and 3.3). As shown in section 3.1 it is also a natural consequence of a semi-implicit
time discretization for the gradient descent. Obviously I is spd, but it is not clear
how a regularization by I relates to the original problem. We modeled our problem
such that the solution should be “elastic” by the use of the Navier-Lame operator L.
The topology of the trust region depends on the metric that is induced by the norm
of the operator B. Depending on the balance of α and β the influence of B on the
type of the solution increases. That leaves us with the problem that the solutions
computed in each step of the outer iteration are not “elastic”, and we cannot expect
them to magically add up to reduce the penalty term in Eα. When β is to large the
outer iteration can stop prematurely.
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Another choice is to set B := L. Then the topology of trust region is induced
by the regularizing term of the original problem. We look at both choices in more
detail in section 5.2.2 where numerical experiments are presented.

The normal equation that has to be solved in each step of the outer iteration (3.2)
of the regularized Gauss-Newton method is then

〈 JEα(u(k))
︸ ︷︷ ︸

:=−f(u(k))

, v〉+ 1

2
〈(J tθ(u(k))Jθ(u

(k)) + (

:=α̃k
︷ ︸︸ ︷

α + βk)L
︸ ︷︷ ︸

:=M

)v, v〉, ∀v ∈ V0. (3.15)

The abbreviations M , f , and α̃, will be frequently used in the following sections.

A remark on Neumann boundary conditions

Let

V1 :=

m-times
︷ ︸︸ ︷

H1(Ω)× . . .×H1(Ω)

be the function space associated with Neumann boundary conditions. L is not spd
because `[u, u] ≡ 0 for all constant functions uc = (c1, c2, . . . , cm), ∃i : ci 6= 0.
One option would be to chose a spd operator like I . Another option is to look at
the operator M := J tθ(u

(k))Jθ(u
(k)) + α̃L and derive conditions under which it is

spd. When

ker(J tθ(u
(k))Jθ(u

(k))) ∩ ker(L) = 0

M would be spd. Since the constant functions uc are the problem we look at
(J tθ(u

(k))Jθ(u
(k)))uc = 0. That leads to a system of m equations

T kxi

(
m∑

j=1

cjT
k
xj

)

= 0, 1 ≤ i ≤ m.

The solutions are T kx1
= . . . = T kxm = 0 and

∑m
j=1 cjT

k
xj

= 0. Note that the second
term also holds when the first term is fulfilled and that it includes solutions where
some of the T kxj are zero. Thus there exists a unique minimizer u∗ ∈ V1 of (3.8) if

∫

Ω

(
c1T

k
x1

+ . . .+ cmT
k
xm

)2
dx > 0, (3.16)
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holds. Note that we cannot formulate a similar statement for (3.4), because ad-
ditional terms like J tθ(u

(k))Jθ(u
(k)) are not present. For the gradient descent with

Neumann boundary conditions we have to chose an operator B that is spd.
In our implementation we always use Dirichlet boundary conditions, u = 0, u ∈

∂Ω, instead of Neumann boundary conditions, ∂u
∂n

= 0, u ∈ ∂Ω, because of the data
independent guaranteed invertibility of M for the Gauss-Newton method. When
we compare the gradient descent with the Gauss-Newton method we always use
the same boundary conditions and operator B.



CHAPTER 4

Numerical Implementation

In this chapter the discuss the discretization of the equations derived in the previ-
ous chapter. The principal concepts behind multigrid methods are introduced and
modifications to the standard components that allow for the robust and efficient
computation for equations with jumping coefficients are proposed. The structure of
the outer iteration is discussed and a multiresolution framework in which the outer
iteration is embedded is introduced.

4.1 Discretization

We regard the images as given on a domain Ω ⊂ Rm. For m = 2 that is usually the
unit square [0, 1]2 and for m = 3 the unit cube [0, 1]3. The image data is given on
a regular equidistant grid, with one pixel/voxel of a given value at each grid point.
The discretization step in each dimension is given by hj = 1

Nj−1
, 1 ≤ j ≤ m,

where Nj is the number of pixels along dimension j, and h = (h1, h2, . . . , hm).
Hence the discretization of Ωm = [0, 1]m is given by

Ωm
h

= Gm
h
∩ Ωm, (4.1)

∂Ωm
h

= Gm
h
∩ ∂Ωm,

with the grid

Gm
h

:= {xi1i2...im|xi1i2...im := (i1h1, i2h2, . . . , imhm), ij ∈ Z}. (4.2)

The discrete images are then given by:

Th := Gm
h
∩ T = {Ti1i2...im}

Nj
ij=0 ∈ R

N1×N2×...×Nm

Rh := Gm
h
∩R = {Ri1i2...im}

Nj
ij=0 ∈ R

N1×N2×...×Nm
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The discretized version of u and f := f(u) can then be expressed in the following
form:

uh := Gm
h
∩ u = {ul,i1i2...im}

m,Nj
l=1,ij=0 ∈ R

N1×N2×...×Nm×m (4.3)

fh := Gm
h
∩ f = {fl,i1i2...im}

m,Nj
l=1,ij=0 ∈ R

N1×N2×...×Nm×m

The partial derivatives in the differential operator L are approximated by central fi-
nite differences of second order accuracy. The derivatives of the template image Th

are computed likewise. Let ul,i1i2...im+ej = ul,i1...ij+1...im then the approximations
for the partial derivatives of ul,i1i2...im and Ti1i2...im are:

∂ul,i1i2...im
∂xj

=
ul,i1i2...im+ej − ul,i1i2...im−ej

2hj
+O(h2

j),

∂2ul,i1i2...im
∂x2

j

=
ul,i1i2...im−ej − 2ul,i1i2...im + ul,i1i2...im+ej

h2
j

+O(h2
j),

∂2ul,i1i2...im
∂xj∂xk

=
1

4hjhk

(

ul,i1i2...im+ej+ek − ul,i1i2...im−ej+ek

+ul,i1i2...im−ej−ek − ul,i1i2...im+ej−ek

)

+O(hjhk),

∂Ti1i2...im
∂xj

=
Ti1i2...im+ej − Ti1i2...im−ej

2hj
︸ ︷︷ ︸

=:Thxj

+O(h2
j).

The use of different discretization steps for each dimension would cause undue
complications in the subsequent exposition , e.g. very lengthy, unreadable formu-
las. For the ease of representation we henceforth assume that the discretization step
is identical for all dimensions, i.e. ∀hj : hj ≡ h, 1 ≤ j ≤ m. The formulas for
varying discretization step can be easily derived.

With the above definitions the stencil representation of Mhuh = fh for m = 2

is given in figure 4.1. The dashed line separates the equations for the the two
dimensions. It can be easily seen that the equations are coupled by the mixed first
order derivatives, and that the strength of the coupling is determined by λ.

So far we have expressed the discretization in the terminology of discrete differ-
ential operators, i.e. as grid functions, e.g. uh, and grid operators, like the stencil
representation above. The linearization that we performed in section 3 lead to a
linear system of equations. The classical form to describe such a linear system
of equations is with matrices and vectors. Both representations have their merits.
The representation in form of grid functions and grid operators will be especially
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Figure 4.1: Stencil representation of Mhuh = fh for m = 2. The dashed line separates
the equations for the the two dimensions.

helpful for the introduction of the multigrid in the following chapter. The structure
of the linear system can be more easily inferred from the matrix representation.
Furthermore the matrix representation can be directly fed into standard solver for
linear systems of equations. Before we give the matrix representation of the partial
differential operator Mh = α̃Lh + J thθJhθ (see equation (3.15)), we have to define
some operators that allow us to construct the matrix efficiently.The diag-operator
constructs matrices by filling diagonals with a given offset with fixed values.

Definition 4.1 (diag-operator). Let A = diag[(b0, . . . , bl)(d0, . . . , dl), n] ∈ Rn×n

with values bi on the diagonals with offset di, i.e.

aij =

{

bk if i− j = dk

0 otherwise
. (4.5)

For example, a tridiagonal matrix of size 5 with entries b0 on the lower diagonal, b1
on the main diagonal, and b2 on the upper diagonal, is given by

diag[(b0, b1, b2)(−1, 0, 1), 5] =











b1 b2 0 0 0

b0 b1 b2 0 0

0 b0 b1 b2 0

0 0 b0 b1 b2

0 0 0 b0 b1











.

The Kronecker product allows us to easily construct block matrices.
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Definition 4.2 (Direct matrix product (Kronecker product)). Given two matri-

ces A ∈ Rm×n and B ∈ Rp×q, the elements of the direct matrix product C =

A⊗B ∈ R
mp×nq are defined by

cαβ = aijbkl

with

α ≡ p(i− 1) + k,

β ≡ q(j − 1) + l.

Alternatively one can write

A⊗B =









a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

... . . . ...
am1B am2B · · · amnB









.

Together with the diag-operator we have a powerful tool for building block ma-
trices of any kind. If, for example, we would like to construct a block diagonal
matrix, with m identical blocks B we can simply write

C = diag[(1), (0), m]⊗ B.

The matrixB could be the discretized operator for a line in the image, for example.
The matrix C would then be the discretized operator for m such lines.

The images and the solution are given as multi-dimensional grid functions (see
equation (4.3)), but for the matrix representation we have to convert them to vectors.
The vec-operator linearizes a m-dimensional grid function to a single vector with
the identical number of elements. It is used to generate the solution and right hand
side vectors.

Definition 4.3 (vec-operator). Let A = {ai1i2...im}N1,N2,...,Nm
i1,i2,...,im

∈ RN1×N2×...×Nm be

a m-dimensional matrix with a total of N =
∏m

j=1Nj elements. The mapping

vec : R
N1×N2×...×Nm → R

N

A 7→ vec(A)
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is defined by the bijective index mapping ζ with ai1i2...im = vec(A)ζ(i1i2...im)

ζ : N
m → N

i1i2 . . . im 7→ i1 +

d∑

k=2

(ik − 1)

k−1∏

l=1

Nk.

Next we give the discrete formM
[m]

h , m = 2, 3, ofM . Since Dirichlet boundary
conditions, i.e. ∂Ωm

h = 0, are used, the boundary can be omitted. Hence the
discretization matrix has size N1 − 2× . . .×Nm − 2. We first define the auxiliary
matrices

DNl
0 := diag[(1), (0), Nl − 2],

DNl
1 := diag[(1, 1), (−1, 1), Nl − 2],

DNl
2 := diag[(−1, 1), (−1, 1), Nl − 2].

The Kronecker product D0⊗B creates a block diagonal matrix with blocksB. The
matrices D1, D2 are used to shift coefficients up one dimension. While (DN2

1 ⊗
DN1

0 ) vec(X), X ∈ RN1×N2 , acts on xj−1,j and xj+1,j, (DN2
0 ⊗ DN1

0 ) vec(X) acts
on xj,j−1 and xj,j+1.

With the help of these matrices we define the discrete version of the operator
M for the two-dimensional (m = 2) and the three-dimensional (m = 3) case. For
the ease of notation we henceforth use the substitution

Ah := J tθhJθh

for the coefficients from the template image.

In the two-dimensional case the matrix has the form

M
[2]

h = L
[2]

h + A
[2]

h =

(

L
[2]

11 L
[2]

12

L
[2]

12 L
[2]

22

)

︸ ︷︷ ︸

=L
[2]

h

+

(

A11 A12

A21 A22

)

︸ ︷︷ ︸

A
[2]

h

(4.6)

where the individual blocks are given by

G0 =
α̃µ

h2

(

DN2
0 ⊗ (4DN1

0 −DN1
1 ) +DN2

1 ⊗ (−DN1
1 )
)

,

L
[2]

11 = G0 +
α̃(µ+ λ)

h2

(

DN2
0 ⊗ (2DN1

0 −DN1
1 )
)

,
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L
[2]

22 = G0 +
α̃(µ+ λ)

h2

(

DN2
1 ⊗ (−DN1

1 ) +DN2
0 ⊗ 2DN1

0

)

,

L
[2]

12 =
α̃(µ+ λ)

4h2

(

−DN2
2 ⊗DN1

2

)

,

Aij = diag

[

(
vec
(
Thxi

))
, (0),

n∏

l=1

Nl − 2

]

· diag

[
(

vec
(

Thxj

))

, (0),

n∏

l=1

Nl − 2

]

.

G0 is the discretization of the Laplacian ∆. The auxiliary parts in L
[2]

11 and L
[2]

22

constitute an additional second order derivative in the respective direction. The
block L

[2]

12 is identical for both equations and represent the mixed direction first
order derivatives that couple the system of equations. The blocks Aij are diagonal
matrices with products of first order derivatives of the transformed template image
as entries.
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Figure 4.2: Sparsity pattern for M
[2]

h , with Nl = 9, l = 1, 2. The contributions of Aij are
marked red, all other entries are blue.

In the three-dimensional case the matrix has the form

M
[3]

h = L
[3]

h + A
[3]

h =






L
[3]

11 L
[3]

12 L
[3]

13

L
[3]

12 L
[3]

22 L
[3]

23

L
[3]

13 L
[3]

23 L
[3]

33






︸ ︷︷ ︸

L
[3]

h

+






A11 A12 A13

A12 A22 A23

A13 A23 A33






︸ ︷︷ ︸

A
[3]

h

(4.7)

where the individual blocks are given by

G1 =
α̃µ

h2

(

DN2
0 ⊗ (6DN1

0 −DN1
1 ) +DN2

1 ⊗ (−DN1
1 )
)

,
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G2 = DN3
0 ⊗G1 +

α̃µ

h2

(

DN3
1 ⊗ (DN2

0 ⊗ (−DN1
0 )
)

L
[3]

11 = G2 +
α̃(µ+ λ)

h2

(

DN3
0 ⊗ (DN2

0 ⊗ (2DN1
0 −DN1

1 ))
)

,

L
[3]

22 = G2 +
α̃(µ+ λ)

h2

(

DN3
0 ⊗ (DN2

0 ⊗ 2DN1
0 +DN2

1 ⊗ (−DN1
0 )
)

,

L
[3]

33 = G2 +
α̃(µ+ λ)

h2

(

DN3
0 ⊗DN2

0 ⊗ 2DN1
0 +DN3

1 ⊗DN2
1 ⊗ (−DN1

0 )
)

, ,

L
[3]

12 =
α̃(µ+ λ)

4h2

(

DN3
0 ⊗DN2

2 ⊗ (−DN1
2 )
)

,

L
[3]

13 =
α̃(µ+ λ)

4h2

(

DN3
2 ⊗DN2

0 ⊗ (−DN1
2 )
)

,

L
[3]

23 =
α̃(µ+ λ)

4h2

(

DN3
2 ⊗ (−DN2

2 )⊗DN1
0

)

.

The definition of M [3]

h is analogous to the two-dimensional case. The discretization
of the Laplacian ∆ is given by G2. For L[3]

ii second order derivatives in the respec-
tive dimensions are added. In contrast to L[2]

h there are three mixed derivatives. The
matrices Aij are constructed as in the two-dimensional case. The sparsity patterns
for M [2]

h and M [3]

h are shown in figures 4.2 and 4.3. The contributions of Aij are
marked in red. Note that for all blocks except M [m]

ii the matrices Aij are the only
contributions to the diagonal of these blocks.

The condition number of Lh is in the order of O(h−2). The value λ plays an
important role. It determines the degree of coupling and is, in terms of physics,
related to the bulk modulus. Numerically large values of λ pose a problem since
that leads a directional anisotropy in the diagonal blocks, L[m]

ii , 1 ≤ i ≤ m, and
to large values in the off-diagonal blocks L[m]

ij , 1 ≤ i, j ≤ m, i 6= j. For our
applications only moderate values of λ are necessary, because large values lack
a proper physical motivation. Techniques for the theoretical investigation of the
influence of λ, i.e. local Fourier analysis (LFA) for systems, are presented in [50].
A program called XLFA that performs LFA with various multigrid components is
distributed with the book.

We have to deal with a type of anisotropy that is different from the one in-
troduced by λ. This anisotropy is not global but local, the “jumping coefficients”
introduced by Ah. All entries in the blocks Aij are zero except for the diagonal.
Furthermore we have Aij 6= 0 only at places that correspond to regions where Th
changes locally, e.g. at edges. This leads to considerable jumps in the coefficients
at these location, especially when α̃/h2 � ThxiThxj , i, j = 1, 2, . . . , m. A theo-
retical analysis of the impact of these “jumping coefficients” is not possible due to
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Figure 4.3: Sparsity pattern for M
[3]

h , with Nl = 5, l = 1, . . . , 3. The contributions of Aij
are marked red, all other entries are blue.

two main reasons. Firstly, standard techniques like local Fourier analysis cannot be
used here. The power of local Fourier analysis stems from the fact that only one
point has to be analyzed. That only works under the assumption that the operator
is the same globally. When the variation is “reasonably smooth” one can still draw
some conclusions from LFA. Obviously this is not the case here. A technique that
takes into account the whole context, i.e. the whole operator, would be needed.
That of course would be computationally expensive and amount to something like
inverting the operator, e.g. compute the eigenvalues of Mh. Secondly if an efficient
technique would exist we could only analyze multigrid behavior for one specific
input because the structure and size of the anisotropies depends on the input data.
It is well known that multigrid convergence degenerates in the presence of “jump-
ing coefficients”. In the following sections we will introduce multigrid components
that deal with these problems and provide an analysis based on numerical experi-
ments that demonstrates the influence of the coefficients and the improvements that
can be achieved using different multigrid components.
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4.2 Multigrid (inner iteration)

The main aim of this chapter is to propose a multigrid solver that solves the normal
equation (3.15) efficiently. After a short introduction of the general concepts of
multigrid solvers that can be skipped by the expert reader, we describe the com-
ponents of this solver. We only consider geometric multigrid, and not algebraic
multigrid (AMG) here. In some details, e.g. the definition of the grid transfer op-
erators, we assume a vertex centered discretization as defined in section 4.1. For a
more thorough introduction and further reading refer to [47].

4.2.1 The principles

Multigrid methods are based on two principles, the smoothing principle and the
coarsening principle. The smoothing principle states that relaxation methods, like
Gauss-Seidel, when applied to discrete elliptic problems have a strong smoothing
effect on the error. That does not mean that the error becomes small, it just be-
comes smooth. In a short while we will explain what is meant by “smooth”. The
coarsening principle states that a smooth error term has a good approximation on a
coarse grid. Obviously the computation on a coarse grid is far less expensive than
a fine grid computation.

The error is a function of discrete variables i1, i2, . . . , im. When we say “smooth”
we mean that the high frequency components in Fourier expansion of the error be-
come small. The Nyquist-Shannon sampling theorem tells us that only the low
frequency components of the fine grid error are represented properly on a coarser
grid. Specifically when we sample with step s and we have n discrete points in
each dimension on the fine grid only the n/s smallest frequency components are
represented properly on the coarse grid. All other components cause alias because
they coincide with lower frequency components.

Coarsening does not only reduce the number of grid points for which we have
to perform computations. Coarsening also leads to a spread in the spectrum by the
same factor. Hence, the coarse error contains high frequency components for which
we have a good smoother, the relaxation method.

So the basic idea is smooth the error on the fine grid, transfer the remaining
error to a coarser grid, smooth it there, and so on. How this is done specifically is
determined by the multigrid components. The components are

• smoother,
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• coarsening strategy,

• coarse grid operator,

• transfer operator from fine to coarse grid (restriction),

• transfer operator from coarse to fine grid (prolongation, interpolation)

• cycle type.

These components are chosen in dependence to the problem to be solved. One can
either tailor the components ones specific needs, or use components that might be
not optimal with respect to efficiency, but solve a large class of problems robustly.

After this exposition of the key concepts we give a more formal definition of
the two-grid cycle from which the multigrid cycle is build.

4.2.2 Two-grid cycle

Let u(k)
h be an approximation to the solution uh of the discrete elliptic boundary

value problem

Mhuh = fh. (4.8)

The error of the approximation is

v
(k)
h := uh − u(k)

h

and the defect is denoted by

d
(k)
h := fh −Mhu

(k)
h . (4.9)

The defect equation

Mhv
(k)
h = d

(k)
h (4.10)

is equivalent to the equation of original boundary value problem (4.8). We can
define an iteration

u
(k+1)
h := u

(k)
h + v̂

(k)
h . (4.11)
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Algorithm 1: Two grid cycle

1: function TWOGRIDCYCLE(Mh , fh, u
(k)
h )

2: . Mh differential operator, fh right hand side, u(k)
h start approximation

3: d
(k)
h ← fh −Mhu

(k)
h . compute defect

4: H ← 2h
5: d

(k)
H ← IHh d

(k)
h . restrict defect

6: v̂
(k)
H =←M−1

H d
(k)
H . solve on Ωm

H

7: v̂
(k)
h ← IhH v̂

(k)
H . interpolate coarse grid correction

8: u
(k+1)
h ← u

(k)
h + v̂

(k)
h . update solution

9: end function

by replacing Mh in (4.10) by an approximation M̂h, where v̂(k)
h is the solution of

M̂hv̂
(k)
h = d

(k)
h .

The key idea is to chose a coarse grid approximation MH , H > h as the approxi-
mation to Mh. The defect equation (4.10) then reads

MH v̂
(k)
H = d

(k)
H .

As noted above we need operators to transfer functions from fine to coarse grids
(restriction) and vice versa (prolongation, interpolation). These operators are de-
noted by Ih2

h1
where the transfer is from a grid with discretization step h1 to a grid

with discretization step h2, i.e.

Ih2
h1

is a

{

restriction operator if h1 < h2

prolongation (interpolation) operator if h1 > h2

.

Thus the restricted defect and the prolongated coarse grid solution are

d
(k)
H = IHh d

(k)
h and v̂

(k)
h = IhH v̂

(k)
H .

A typical coarsening strategy is to double the discretization step, i.e. H = 2h.
This strategy is often referred to as standard coarsening . When the update in the
iteration (4.11) is computed from a coarse grid approximation of Mh the process is
called coarse grid correction scheme (CS). Algorithm 1 outlines all steps. Solving
the boundary value problem on the next coarser grid still does not seem a much
better prospect. To come from a two grid cycle to a multigrid cycle we have to ap-
ply the two-grid cycle recursively and use smoothing procedures to obtain smooth
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defects for the next level.

4.2.3 Multigrid cycle

From line 6 in algorithm 1 it is obvious that we need to recurse to a coarse grid
where the direct exact solution of the defect equation is cheap.

Let Ωm
h be as in (4.1). For the sake of simplicity of the presentation we assume

that N = 2l + 1. Using standard coarsening we can easily define a series of grids

(Ωm
hi

)li=1 = {Ωm
h1
, . . . ,Ωm

hl
}, hi = 1/2i

where Ωm
hl

is the finest grid and Ωm
h1

corresponds to the coarsest grid with only one
inner point. The index j is also called the level. Instead of only two levels like in
the two-grid cycle there are now a maximum of l levels.

(a) V-cycle (b) W-cycle

(c) F-cycle

Figure 4.4: Common multigrid cycle types are illustrated. The open circle corresponds to
the coarsest grid. The V- and the W-cycle have a constant cycle index of γ = 1 and γ = 2
respectively. In the F-cycle a combination is used, i.e. in the W-cycle the second recursive
call is a V-cycle.

There are all kinds of different multigrid cycle types that are determined by
the cycle index γ, the number of two-grid cycles applied on each level. The most
common choices are a γ = 1 (V-cycle) or γ = 2 (W-cycles). A third frequently
used option is the F-cycle which is obtained by varying γ depending on the level.
The F-cycle is especially popular because it often has similar convergence rates as
the W-cycle while being computationally cheaper and having a smaller memory
footprint. The three mentioned cycle types are exemplified in figure 4.4 for a five
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Algorithm 2: Multigrid algorithm

1: function MULTIGRID(Mh , fh, uh)
2: . Mh differential operator, fh right hand side, uh start approximation / solution
3: if h = 1

2 then
4: uh ← (Mhfh)

−1

5: else
6: uh ← Sν1h (Mh, fh, uh) . Sh Gauss-Seidel relaxation, ν1 presmoothing steps
7: dh ← fh −Mhuh . compute defect
8: H ← 2h
9: dH ← IHh dh . restrict defect

10: vH ← MULTIGRID (MH , dH , 0) . recursive call to multigrid
11: vh ← IhHvH . interpolate coarse grid correction
12: uh ← uh + vh . update solution
13: uh ← Sν2h (Mh, fh, uh) . ν2 postsmoothing step
14: end if
15: end function

level case. It is easy to see that the F-cycle starts with γ = 2 and then continues
with γ = 1 after the first of the two cycles.

A pseudo-code implementation of the multigrid cycle is given in algorithm 2.
Note that we omit the iteration counter k and simply “overwrite” the existing val-
ues, since the old approximations are not needed anymore. The smoothing operator
Sνh can be any appropriate smoother. The natural number ν determines the num-
ber of iteration (smoothing steps) performed by the smoother. As we enter the
recursion the right hand side fh is the defect of the preceding level. This is only
the multigrid cycle for coarse grid correction. There are other correction schemes,
such as the full approximation scheme (FAS) for non-linear problems. Since we
linearized our problem in the outer iteration the problem we have to solve with the
multigrid (inner iteration) is a linear one and the use of the CS is sufficient. For
linear problems CS and FAS yield the same result, FAS being the computationally
more expensive scheme.

4.2.4 Restriction and prolongation operators

In this section we introduce some of the standard restriction and prolongation op-
erators used in multigrid. The prolongation is also often referred to as interpolation
instead. There are three standard restriction operators: injection, halfweighting,
and fullweighting. The operator representations for the two-dimensional case in
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the order of the above enumeration are






0 0 0

0 1 0
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0 1 0
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1 2 1

2 4 2

1 2 1




 .

The operator is applied to the fine grid points which are also coarse grid points.
These operators apply to standard coarsening with a equidistant vertex centered dis-
cretization. When other discretization schemes, e.g. cell-centered discretizations,
are used the operators are different. The half- and fullweighting operators can be
viewed as injection operators with prior smoothing (low-pass filtering) of the grid
function. Remember the discussion about the high and low frequency components
in section 4.2.1. In the light of that discussion the smoothing reduces the risk of
alias. Injection can only be used when “enough” of the high frequency components
have been eliminated by the smoother. Otherwise we see slower multigrid conver-
gence or even divergence. In multigrid theory there is a rule that the sum of the
orders of the restriction and interpolation operator should be larger than the order
of the differential operator [26]. An interpolation operator has interpolation order
k if it preserves polynomials of order k − 1. Bilinear interpolation has order 2 and
the transpose, the fullweighting operator, has also order 2. Injection has order 0

since the transpose does not even interpolate constant polynomials exactly. Thus
for second order elliptic problems like the one considered here a combination of
fullweighting and bilinear interpolation should be used.

The standard prolongation operator is






1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4




 .

The fact that it is a transfer operator from a coarse to a fine grid is indicated by the
reversed parentheses. Again this operator applies to the equidistant vertex-centered
discretization and is different for other discretizations. The coarse grid point that
coincides with the fine grid point is left unchanged, the surrounding fine grid points
receive a contribution depending on the neighborhood relation. This operator is
the adjoint operator to the fullweighting operator, and with the equidistant grid is
equivalent to bilinear interpolation.

In three-dimensional space we use trilinear interpolation as the prolongation
operator. The transpose defines a three-dimensional version of the fullweighting
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operator.

4.2.5 Multigrid components

As a starting point we use standard “out of the box” multigrid components. Since
we deal with linear subproblems the correction scheme can be used. We use stan-
dard coarsening, i.e. H = 2h, and the coarse grid operator LH is the compatible
operator L2h. Data is restricted by fullweighting and interpolated by bi/trilinear in-
terpolation. The smoother is a pointwise coupled Gauss-Seidel relaxation method.
Note that coupled relaxation is necessary because the centers of the off-diagonal
stencils might be unequal to 0. We perform V-, F-, or W-cycles.

While this setup has good convergence rates for the equations from the gradient-
descent method, convergence rates for the Gauss-Newton method will generally
deteriorate due to the jumping coefficients (anisotropies) in the equations [47]. In
chapter 5 numerical results that underline this fact are given. Next we introduce
several changes in the standard components that improve the convergence of multi-
grid in the presence of jumping coefficients.

4.3 A multigrid method for anisotropic coefficients

In the last section the multigrid method has been introduced along with standard
components. As noted earlier the standard components work well for smooth func-
tions. It could for example be used for the normal equation (3.5) of the regularized
gradient descent problem. In the presence of anisotropies multigrid convergence
can deteriorate rapidly. This deterioration indicates that at least on of the principal
principles of multigrid is violated.

The crucial building block of multigrid is the relation between the different
grids. The three most important aspects are:

• The error has to be smoothed properly before it is transfered to the coarser
grid.

• The restrictions and prolongation operators have to link fine and coarse grid
in a proper way.

• The coarse grid operator has to be a good approximation of the fine grid
operator.
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With the modifications proposed in this section we touch all of these aspects. A
different smoother, a coarse grid operator, an operator dependent prolongation op-
erator, and a modification to the coarse grid correction step are proposed.

4.3.1 Coarse grid operator

Remember that the operator Mh consist of two parts: α̃Lh and Ah = J tθhJθh . In
case of Lh we use the compatible coarse grid operator LH = L2h. For Ah we have
two options:

• restriction of the coefficients

• restriction of the template Th, and computation of the coefficients on the
coarse grid.

The latter option can be interpreted as a direct discretization of A on the coarse grid
ΩH . For the numerical experiments at the end of this paper we used the restriction
of the coefficients, since it proved to give better results. Specifically we use full- or
halfweighting with injection at the boundary.

A third alternative would be the Galerkin operator IHh MhI
h
H . This would lead

to full stencils, i.e. 3mm2 coefficients for each grid point. All these coefficients
have to be either stored or recomputed for each operator application. The variant
proposed above needs far less coefficients to be stored. The compatible operator
LH is the same at all grid points and for AH m(m + 1)/2 coefficients are needed
in each grid point. These storage issues are the reason why we avoided the use of
the Galerkin operator.

4.3.2 Smoother

It is a well known fact that pointwise relaxation methods fail to smooth the er-
ror well for highly anisotropic problems. Generally strongly coupled components
should be updated collectively [47]. In our problem the anisotropy depends on the
input data and as a consequence location and direction of strongly coupled com-
ponents are not known a priori. Thus, we use alternating Gauss-Seidel line relax-
ations, instead of pointwise relaxations. By line we mean a line on the discretized
grid. In one smoothing step all lines along all dimensions are relaxed successively.
Linewise relaxation results in a linear system of equations for each line. Note that
when pointwise relaxations are used for a system of equations it is also necessary
to solve a linear system when the equations are coupled. In our case this coupling
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is introduced by the coefficients Thxi , which leads to m ×m linear system, where
m is the number of equations, that has to be solved in each point relaxation.

When a whole line is relaxed simultaneously we do not only have to take into
account the coupling between the elements of uh in one point, but also the coupling
between the grid points on the line. Due to the structure of the operator Mh the
coefficient matrix of the resulting linear system is a block matrix Q ∈ Rmn×mn

with m × m blocks Qij ∈ Rn×n, 1 ≤ i, j ≤ m, where n is the number of points
on the line. The diagonal blocks are tridiagonal matrices. The off-diagonal blocks
have non-zero entries, the coefficients ThxiThxj , on the diagonal only. The structure
of Q can be exploited to use a linear time solver to solve the system.

Definition 4.4 (Permutation matrix). Let π be a permutation

π : {1, 2, . . . , n} 7→ {π(1), π(2), . . . , π(n)}

then the permutation matrix P ∈ Rn×n is given by

Pπ :=









eπ(1)

eπ(2)

...

eπ(n)









,

where ei is the ith unit vector. For a matrix Q ∈ Rn×n, QPπ permutes the columns

of Q, and PπQ permutes the rows of Q. The properties of permutation matrices

include

P t
πPπ = I

PπPσ = Pπ◦σ

P−1
π = Pπ−1

With a proper permutations of the entries of Q a matrix with a single diagonal
band of fixed width can be generated, which in turn allows for the efficient solution
of the linear system.

Lemma 4.1. Let Q ∈ Rnm×nm be a block matrix with the tridiagonal submatrices

Qij ∈ Rn×n, 1 ≤ i, j ≤ m, and b, x ∈ Rnm. Let the permutation π be defined as

π : {1, 2, . . . , mn} → {π(1), π(2), . . . , π(mn)}
x 7→ ((xm− 1) mod mn)− 1 + bx− 1

n
c.
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then

1. solving

Qx = b

is equivalent to solving

(P t
πQPπ)P

t
πx = P t

πb,

2. the matrix (P t
πQPπ) has a single diagonal band of width 3m.
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Figure 4.5: Sparsity patterns for the matrix Q and the permuted version of it. Figure (a)
shows the start configuration, (b) the configuration after the permutation of the columns,
and (c) the result after the final permutation of the rows.

Proof. 1. This follows directly from the orthogonality of permutation matrices:

(P t
πQPπ)P

t
πx = P t

πb

⇔ Pπ(P
t
πQPπ)P

t
πx = PπP

t
πb

⇔ Qx = b

2. We do not give a thorough proof using matrix elements here, but rather ex-
plain the workings of the permutation π. The permutation π interleaves the
columns and rows of the submatrices, such that the lth rows, or columns,
of the blocks Qij are grouped together. It is easily verified that the term
((xm − 1) mod mn) − 1 successively generates m sequences of the form
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1, m+ 1, 2m+ 1, . . . , (n− 1)m+ 1. The term bx−1
n
c adds the block number

minus 1, whereby interleaving the sequences.

The right side multiplication of Q with Pπ groups the lth columns, 1 ≤ l ≤ n

of Qij together, leading to m blocks of size n× nm with diagonals of width
3m. The left multiplication with P t

π exchanges the rows such that the lth rows
of each block are grouped together. The final result is a nm×nm matrix with
one diagonal band of width 3m.

The rows of the solution vector x are exchanged (P t
πx) to compensate for the

columns permutation. The rows of the right hand side vector b are exchanged
(P t

πb) to compensate for the row permutation.

The permutation of the entries of Q is exemplified in figure 4.5. Figure 4.5(a)
shows the initial configurations, figure 4.5(b) the configurations after the grouping
of the columns, and figure 4.5(c) the final matrix. The system (P t

πQPπ)P
t
πx = P t

πb

can be solved directly in time O(n) and space O(n) using a Band-Gauss solver.
Hence, each point is relaxed in O(1) time, as it is the case for pointwise relax-
ation. Thus the asymptotic complexity of the multigrid is preserved. For m = 3

relaxation of whole planes is a common strategy. Usually a simple V-cycle with a
2D-multigrid solver is sufficient [47]. Note that the 2D-solver should also employ
line relaxation. An alternative to plane relaxations are line relaxations in all direc-
tions which were a better tradeoff between convergence and computation time in
our experiments.

Since this is essentially a Gauss-Seidel type relaxation method in the sense that
already computed data is used for computations in the same sweep, the order in
which the lines are relaxed can have an impact on the solution. From the abun-
dance of possible orderings the most popular methods for pointwise Gauss-Seidel
relaxations are lexicographical ordering and red-black ordering. For line relax-
ations there are also some typical orderings. There are two orthogonal strategies
that can be used to construct a number of such orderings. Consider there is an inner
loop and an outer loop. Then we can run through the directions in the outer loop
and over the line indices in the inner loop or vice versa. The former strategy leads
to so-called alternating line relaxations. When we first relax all lines with odd and
then the ones with even line indices this is referred to as zebratype line-relaxations.
In our calculations we iterate over the line indices in the inner loop and over the
directions in the outer loop.
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4.3.3 Operator dependent interpolation

The adjoint operator to the restriction by fullweighting is bilinear interpolation for
m = 2, respectively trilinear interpolation for m = 3. The interpolated correction
vh = IhHvH solely depends on vH . From the multigrid theory we know that this is
a good choice when the coefficients of the operator, the solution, and the right side
are smooth. Here, the operator Mh has jumping coefficients and does not fulfill
these criteria. Depending on the discretization and knowledge about the underlying
problem operator dependent interpolation operators can be derived [2, 14, 47, 51].
In the following we introduce a interpolation operator that is induced by the dis-
cretization of the differential operator Mh.

On the coarse grid we have solved

MHvH = IHh dh
︸ ︷︷ ︸

=rH

.

Hence the interpolated correction vh should be an approximate solution to the fine
grid equation

Mhvh = dh.

In the following we replace h by a vector ~h = (h1, h2, . . . hd) to indicate the dis-
cretization step in each dimension. We interpolate vH by successively refining the
grid along each dimension, i.e. in each refinement step the amount of grid points
doubles. The missing grid points can then be computed by solving for all points on
the new lines simultaneously. As in the case of the line relaxation that leads to band
matrix that can be solved efficiently with a band matrix solver in O(n) steps and
O(n) space where n is the number of grid points on the line. The corresponding
equations are

M~hiv~hi = d~hi,
~hi = (h1, . . . , hi, Hi+1, . . . , Hd), i = 1, . . . , d (4.12)

The missing values for M~hi and d~hi can be obtained by applying restriction to the
fine grid equivalents along all necessary directions:

M~hi := I
~hi

h (J tθhJθh) + α̃L~hi,

d~hi := I
~hi

h dh.

Figure 4.6 illustrates the procedure for the 2d-case. First the grid is interleaved in
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Figure 4.6: Illustration of the interpolation procedure for the 2d-case. First the grid is
refined in one dimension. Then the unknown values [white boxes] are computed by solv-
ing a system of linear equations for each line. Afterwards the grid is refined in the other
dimension and the missing values in the new grid are computed.

one dimension and the missing values (white boxes) are computed. Then the grid is
refined in the other direction and the unknown values (white boxes) are computed
from the values of the coarse grid solution (dark gray) and the values computed in
the previous refinement step (light gray).

Note that the computational efficiency of the presented technique mainly stems
from the fact that we have a simple coarsening and refinement strategy on a reg-
ular grid. The operator M~hi and and the right side d~hi can be easily computed.
Furthermore the coefficient matrix of the resulting linear systems has a only m

bands, where the width of the bands depends on the stencil width. Hence, as for the
line relaxation, we can find fast solvers that preserve the asymptotic complexity of
multigrid.

4.3.4 Operator dependent correction step

In this section we introduce a modification to the correction step. In the standard
multigrid one computes uh ← uh + IhHvH = uh + vh. Instead we multiply vh by a
factor τ that is optimal in a certain sense, i.e. line 12 in algorithm 2 (see page 28)
is replaced by

uh ← uh + τvh. (4.13)

Here the parameter τ is chosen such that the underlying energy (3.8) becomes min-
imal, i.e. the following minimization problem

min
τ∈R;τ≥0

Ψ(τ) = min
τ∈R;τ≥0

{

〈JEα, (u+ τv)〉+ 1

2
〈(J tθJθ + α̃L)(u+ τv), (u+ τv)〉

}

.
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is to be solved. Ψ is a quadratic function and therefore it is differentiable. The
necessary condition for a minimum is given by

∂Ψ

∂τ
= 〈JEα, v〉+ 〈(J tθJθ + α̃L)(u+ τv), v〉 !

= 0.

With some elementary manipulations we yield:

〈JEα, v〉+ 〈(J tθJθ + α̃L)(u+ τv), v〉 = 0

〈JEα + (J tθJθ + α̃L)u, v〉+ τ〈(J tθJθ + α̃L)v, v〉 = 0

− 〈(J tθJθ + α̃L)v, v〉
〈JEα + (J tθJθ + α̃L)u, v〉 = τ

With M = J tθJθ + α̃L and f = −JEα

τ = −〈Mu− f, v〉
〈Mv, v〉 = −〈d(u), v〉〈Mv, v〉 (4.14)

fulfills the necessary condition. This minimization is analog to minimizing ||u∗ −
(u(k) + τv)||1 where u∗ is the exact solution. The value of τ can also be used to
assess the “quality” of the interpolated solution with respect to the multigrid. In
the optimal case this step should not be necessary and τ should always be 1. In
section 5.1.3 this will be used to assess the influence of noise on the multigrid
method proposed here.

4.4 Outer iteration

In the outer iteration (see equation (3.2) on page 8) the right hand side and in case
of the Gauss-Newton method the new coefficients for the operator Mh have to be
computed. The outer iteration is stopped if either the maximum number of steps
(kmax) is reached, the functional increases, or the change in two consecutive steps is
smaller than some ε > 0. Whether an update is actually performed depends on the
parameter control strategy. Here we always use the procedure outlined in (3.12).
The overall algorithm for the outer iteration is outlined in algorithm 3.

4.5 Multiresolution framework

In practice one often has to deal with large data sets and large deformations. Similar
to the defect in multigrid the actual deformation can be decomposed into compo-
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Algorithm 3: Pseudocode algorithm for the outer iteration. The iteration is stopped if
either the maximum number of steps (kmax) is reached, the functional increases, or the
change in two consecutive steps is smaller than some ε > 0.

function OUTERITERATION(Th , Rh, u
(0)
h , kmax)

k ← 0
while (k < kmax AND ||u(k+1)

h −u(k)
h ||22 > εANDEα(u

(k)
h )−Eα(u(k+1)

h ) > 0)
do
f

(k)
h ← computeRHS(Th, Rh, u

(k)
h ) . compute right hand side

vh ←M−1
h f

(k)
h . solve linear equation, e.g. with multigrid

k ← k + 1
u

(k+1)
h ← u

(k)
h + vh . update may depend on parameter control strategy

end while
end function

nents of different frequencies. Low frequency components correspond to smooth
deformations and high frequency components to more local deformations. The goal
must be to ensure that all these components are contained in the computed transfor-
mation. Note that here we make a semantical distinction between deformation and
transformation. The deformation is an unknown quantity that is to be approximated
by the computed transformation. Since we require the computed transformation to
be smooth, we can expect local transformations to be small, while the more global
smooth ones might be large. Actually we assume that the deformations are of that
form by our modeling. Like the smoothers in the multigrid method the outer iter-
ation is good at computing the high frequency (local) transformations, but meets
problems when smooth large transformations have to be computed. The reason lies
nonlinearity of the functional that is to be minimized. The linear model that results
from linearization is only a good approximation in a limited region. Hence, the
maximal length of the transformation vectors in the update computed in each step
is limited. That not only leads to a large number of iterations for large deforma-
tions, but also to a danger of getting caught up in local minima.

The large transformations frequently apply to large objects in the data. Local
details of different objects might look similar on fine grids. That in turn results in
small forces in these regions because they are locally well registered. On coarser
resolutions the details vanish, but the large objects are still visible. The low fre-
quency components of the deformation are high frequency components on coarser
resolutions. Hence, we can easily compute them there. The computed transfor-
mation can then be used as a start approximation at the next finer resolution. This
strategy does not only aid robustness, but reduces the computational burden, too.
The fact that we need less computations because we have less data is a nice side
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Algorithm 4: Pseudocode algorithm for the multiresolution framework. The images are
coarsened until some given minimal level lmin is reached. A solution is computed at that
level, and interpolated to the next finer grid where the interpolated solution is used as a start
approximation, and so on.

1: function MULTIRESOLUTION(Thl , Rhl, uhl,l)
2: . Thl template image, Rhl reference image, uhl actual deformation (0 at
3: . start)
4: if level== lmin then
5: uhl ←OUTERITERATION (Thl, Rhl, uhl, kmax(l))
6: else
7: Thl−1

← coarsen(Thl)
8: Rhl−1

← coarsen(Rhl)
9: uhl−1

← 0
10: MULTIRESOLUTION (Thl−1

, Rhl−1
, uhl−1

,l − 1)
11: uhl ← interpolate(uhl−1

)
12: OUTERITERATION (Thl, Rhl, uhl, kmax(l))
13: end if
14: end function

effect of the multiresolution scheme. Its main purpose however is to avoid local
minima.

More formally, we define a two resolution method that we apply recursively to
obtain a multiresolution method. To transfer data from one resolution to another
we can use the same transfer operators as is the multigrid algorithm. The images
are restricted by means of fullweighting, and the solution is interpolated with the
adjoint operator, i.e. bi(/tri)linear interpolation. In contrast to the multigrid we
do not coarsen down to the smallest possible resolution. The size of the smallest
image grid should be chosen with respect to the maximal expected transformation.
The multiresolution approach used here is comparable to the Full Multigrid Method

(FMG) known from multigrid applications (see e.g. [44]). The whole procedure is
illustrated in algorithm 4.



CHAPTER 5

Numerical results

In this chapter we present numerical results for the multigrid (inner iteration), the
outer iteration, and the multiresolution framework. For the multigrid h-independence,
convergence rates, and the influence of noise are investigated. The part about the
outer iteration deals with the effect of the number of inner iterations, the trust re-
gion topology, and the trust region control strategy. At the end the gradient descent
and the Gauss-Newton method introduced in chapter 3 are compared. The chapter
concludes with some observations about the multiresolution framework.

5.1 Multigrid

In this section we mainly focus on convergence rates for the multigrid, the inner
iteration. For practical reasons the gray values in the images are scaled to [0, 1],
and all norms are divided by the number of data points. If not indicated otherwise

(a) Template (b) Reference
20 40 60 80 100 120

20

40

60

80

100

120

(c) Transformation

Figure 5.1: Model problem: The template (a) is comprised of three nested squares with
different gray values. In the reference (b) the squares are replaced by circles. The resulting
transformation is shown in (c).

tests were performed with ν1 = 2, ν2 = 1, µ = 1, and λ = 1. For the smoothers
we used over-relaxation with ω = 1.3. We have done F-cycles in all computations
since that proved to be the best tradeoff between performance and convergence.
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5.1.1 h-independence

One of the key properties of multigrid methods is that their convergence does not
depend on the number of grid points. This property is also called h-independence.
The data dependent anisotropic coefficients render a rigorous analysis impossible.
Thus, we have to investigate h-independence empirically. To this end we deter-
mined the number of multigrid steps needed for the defect to drop below 10−8. We
cannot use a “real world” image here. In a “real world” image structures disappear
when the image size is reduced, i.e. h is increased. Hence a wholly different prob-
lem, with a different type of anisotropies, would be solved for the various image
sizes.
We used a synthetic images that are easily reproducible at different image resolu-

α̃ = 1 α̃ = 0.1 α̃ = 0.01
h m ||dmh ||22 m ||dmh ||22 m ||dmh ||22

1/128 5 1,748 440 · 10−10 6 6,891 06 · 10−10 7 7,020 42 · 10−09

1/256 5 2,557 180 · 10−10 6 1,896 95 · 10−09 8 2,474 33 · 10−09

1/512 5 2,777 750 · 10−10 6 4,743 39 · 10−09 8 4,068 41 · 10−09

1/1024 5 3,189 930 · 10−10 6 7,991 38 · 10−09 8 5,672 48 · 10−09

1/2048 5 3,711 890 · 10−10 7 5,685 02 · 10−10 8 7,144 06 · 10−09

α̃ = 0.001 α̃ = 0.0001 α̃ = 0.00001
h m ||dmh ||22 m ||dmh ||22 m ||dmh ||22

1/128 7 6,091 81 · 10−09 6 4,544 25 · 10−09 5 2,830 160 · 10−09

1/256 8 3,020 79 · 10−09 7 2,424 38 · 10−09 5 6,455 43 · 10−09

1/512 8 4,482 29 · 10−09 7 3,470 65 · 10−09 5 9,779 99 · 10−09

1/1024 8 5,706 06 · 10−09 7 4,424 39 · 10−09 6 2,605 61 · 10−09

1/2048 8 6,682 02 · 10−09 7 5,294 42 · 10−09 6 3,221 24 · 10−09

Table 5.1: Here the number of multigrid steps needed for the defect to drop below 10−8

for different values of h and α̃ is displayed. The synthetic example in Figure 5.1 was used.
The results show that the proposed multigrid converges independent of h.

tion. The template consists of three squares of decreasing size with different gray
values that are all centered to the same spot (Figure 5.1(a)). The reference consists
of discs of the same color and is a circle with the same colors and arrangement
(Figure 5.1(b)). The results are displayed in table 5.1. Tests were performed for
α̃ = 10−i, i = 0, . . . , 5, with line-relaxation, operator dependent interpolation, and
operator dependent correction step. Similar results were obtained for other combi-
nations.
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5.1.2 Convergence rates

Convergence factors q̂(m) where determined from the L2-Norm of the defect using
the formulas

q(m) :=
||dmh ||2
||dm−1

h ||2
, q̂(m) :=

m−m0+1
√

q(m)q(m−1) . . . q(m0), (5.1)

where dmh is the defect after the m-th multigrid cycle [47]. Here we use m0 = 4

and m = 10. The first three iterations are not included in the computation of the
convergence rates, because the defect reduction in the first few steps is generally
very good and does not reflect the asymptotic behavior.

α̃ P/N/N P/Y/N P/N/Y P/Y/Y L/N/N L/Y/N L/N/Y L/Y/Y
1 0.2410 0.1060 0.2365 0.0916 0.0276 0.0273 0.0248 0.0272

0.1 0.2454 0.1035 0.2420 0.1002 0.0374 0.0390 0.0372 0.0383
0.01 0.2445 0.1309 0.2418 0.1130 0.0713 0.0708 0.0528 0.0542

0.001 0.4450 0.4419 0.3241 0.3176 0.2254 0.2227 0.2083 0.1604
0.0001 0.5550 0.5538 0.5407 0.4571 0.3661 0.3561 0.3526 0.2842
0.00001 0.7202 0.7075 0.6991 0.6768 0.4418 0.4383 0.4401 0.4058

0.000001 0.7342 0.7238 0.7230 0.7082 0.4601 0.4538 0.4427 0.4287

Table 5.2: Convergence rates for different combinations of multigrid components, for a
given starting α̃. The first letter indicates whether pointwise (P) or linewise (L) relaxation
has been used. The second letter indicates whether the operator dependent interpolation
has been used (Y) or not (N). The third letter indicates whether the operator dependent
correction has been used.

Computations are based on the registration of histological sections (512× 512

pixels). The reference image has been distorted by an artificial transformation to
obtain the template image (Figure 5.8, page 54).

Note that for the computation of the convergence only one step is performed in
the outer iteration . Thus, we have f(u(0)) = −(J tθθ + αLu(0)), with u(0) ≡ 0. As
a consequence, only the value of α̃ is important and not how it is composed. For
subsequent outer iterations that is not the case due to the fact that the regularization
on the right hand side then depends on the choice of α, i.e. one might observe
different behavior for identical α̃ = α + β because the smoothness of the right
hand side varies. For α̃ = 0.01 ||A||∞ is approximately α̃||L||∞. As α̃ decreases
the anisotropy increases and we generally expect worse convergence rates.

We tested many parameters for different combinations of multigrid compo-
nents. We have selected some to illustrate the most important points. Point-
wise relaxations is compared to linewise relaxation. For each relaxation type we
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Figure 5.2: Convergence for pointwise relaxation with respect to the workload. Division
by the cumulative weights of the multigrid components yields the actual number of steps.

present convergence rates with and without operator dependent interpolation (see
section 4.3.3) and operator dependent correction step (see section 4.3.4). Opera-
tor dependent interpolation improves the convergence rates for moderate α̃’s. With
decreasing α̃ this has to be combined with the operator dependent correction factor.

For a fair comparison the amount of additional computational effort has to be
considered, too. To this end we assign a weight of 1.0 to the pointwise relaxation
without any modifications. Linewise relaxation has a weight of 2.0. The weight
of the operator dependent interpolation is 0.3 and that of the operator dependent
correction factor is 0.05. These weights were determined based on timings of our
implementation on a Pentium4. For different implementations or different archi-
tectures they might differ. We scaled the number of steps with these weights to
make the defect reductions comparable. Figure 5.2 displays the defect reduction
in the case of pointwise relaxation for α̃ = 1, 0.1, 0.01. A combination of opera-
tor dependent interpolation and correction factor yields the best performance. For
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Figure 5.3: Comparison of the convergence with respect to the workload for small α̃s (≤
0.0001) between pointwise and linewise relaxation. With decreasing α̃ linewise relaxation
becomes superior to pointwise relaxation.

α̃ = 1, 0.1 operator dependent interpolation alone suffices, too. Figure 5.3 illus-
trates that linewise relaxation is superior to pointwise relaxation when the degree
of anisotropy increases. The lower computational effort does no longer compensate
for the lower convergence rates.
Note that the absolute convergence rates might differ for different input data, but
the relative statements made above still hold.

5.1.3 Influence of noise

The term J tθ(u
(k))Jθ(u

(k)) depends on the transformed template T (k). Noise in the
template image thus has an influence on the coefficients in the operator Mh. In
the ideal case where images are free of noise, we have jumping coefficients at the
edges in the images only. In the presence of noise we also have them in other
places. The higher degree of local anisotropy is likely to affect the multigrid. A



5.1. Multigrid 45

direct comparison of convergence rates is not possible, since the the right hand side,
f , is affected, too.

With the operator dependent correction step introduced in section 4.3.4 we have
another means to investigate the “quality” of the multigrid. In the ideal case the cor-
rection factor τ should be one. Any deviation indicates a problem in the transfer of
information from one grid to the other, the approximation of the fine grid operator
by the coarse grid operator, or the smoothing of the error. Usually it will not be one
single effect and a separate analysis is not possible.

We used the following scheme to analyze the influence of noise. The reference
image is a histological section of a human brain (Figure 5.4(a)). The deformed
template with the contour of the reference is shown in figure 5.4(b)). We added
gaussian and salt&pepper noise of various degrees (0.0, 0.01, 0.05, 0.1, 0.5) to the
template. In case of gaussian noise these values are the variance of the noise, and
for the salt&pepper noise it is fraction of the affected pixels. Examples are shown
in figure 5.4(c)- (d).

One outer iteration with ten V-cycles was performed for each image. The op-
erator dependent correction factor τ was computed but not applied. Computations
were done with both operator dependent interpolation on and off. The mean correc-
tion factor at each level is displayed in figure 5.4(e)- 5.4(f). The result for no noise
(0.0) demonstrates the effect of the operator dependent interpolation. With opera-
tor dependent interpolation switched on the correction factors are close to one and
vary only slightly. With added noise we see a significant increase in the correction
factors when standard bilinear interpolation is used. Especially the coarser levels,
i.e. the lower level numbers, are affected. When operator dependent interpolation
is used the correction factors remain stable. This indicates that this type of interpo-
lation provides a better link between the coarse and the fine grid, and explains why
multigrid convergence is improved.

The influence of J tθ(u
(k))Jθ(u

(k)) on the registration is reduced by stronger reg-
ularization by means of α and β. Hence, regularization also reduces the influence
of noise. In case of regularized gradient descent where the term J tθ(u

(k))Jθ(u
(k)) is

not present, noise has no distinguishable effect on the multigrid. Though the right
side fh contains noise, the differential operator does not.
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(a) Reference (b) Template

(c) Gaussian noise (σ = 0.05) (d) Salt & Pepper noise (5%)
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(f) Salt & Pepper noise

Figure 5.4: Here the effect of noise on the multigrid is investigated. The operator depen-
dent correction factor τ is used to assess the “quality”. The factor is computed but not
applied. In the optimal case it is one. Two types of noise, gaussian and salt&pepper noise
are added to the template (b). Examples are shown in (c) and (d). The mean correction
factors at each level of the multigrid, for different noise levels, with and without operator
dependent interpolation, are displayed in (e) and (f). Ten V-cycles were used to compute
the mean correction factor.
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5.2 Outer iteration

In this section we investigate some aspects of the outer iteration. First we look
at the effect of the number of multigrid cycles on the convergence in the outer
iteration. Then we investigate two possible choices for the operator that determines
the trust region topology. This is followed by comparison between the regularized
gradient descent method (Section 3.1) and the regularized Gauss-Newton method
(Section 3.2) follows.

5.2.1 Effect of the number of multigrid cycles

In the previous section we investigated the convergence of the inner iteration. The
inner iteration is necessary because the direct solution of the normal equation is
not feasible, due to the huge number of unknowns. It is also the computationally
most expensive part of the whole registration algorithm. The solution from the
inner iteration is just an approximation to the exact solution. The accuracy depends
on the number of inner iterations (multigrid cycles). One would like to reduce
the number of multigrid cycles to a minimum. Convergence in the outer iteration
is measured by the decrease in the functional Eα (cf. equation (2.3)) which is
composed of the image difference and the regularization term.

We investigated the influence of the number of inner iterations on the decrease
of the functional Eα in the outer iteration. To this end we used the simple model
problem that has already been used to show h-independence in section 5.1.1 (see
figure 5.1). We did one to four F-cycles while not changing any of the other param-
eters and performed four steps in the outer iteration. The results are summarized
in table 5.3. While there is a difference in the image distance and the value of Eα

between one and two multigrid cycles, we do not see any substantial difference be-
tween two, three, and four multigrid cycles in these values. The defect at the end
of the inner iteration decreases as expected with the number of multigrid cycles.

Of course we cannot conclude from this that we always get the best reduction
in the outer iteration with just two inner iterations. But generally we can conclude
that the approximation in the inner iteration does not have to be precise down to
machine precision. The image is moved by one grid point if the length of uh is h.
Thus a change of say h · 10−4 in uh leads to only very small changes in the image,
and thus also in the image distance. We have to keep in mind that each update v is
just a step into the direction of an approximated descent direction. Hence, we can
also expect that small errors might be corrected in the next outer iteration.
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k 1 MG-cycle
||T (k) − R||22 Eα(u

(k)) ||Mv − f(u(k))||22
0 4,533 800 · 10−02 4,533 800 · 10−02 1,361 880 · 10−02

1 2,127 240 · 10−02 2,131 000 · 10−02 8,496 070 · 10−03

2 4,475 590 · 10−03 4,557 240 · 10−03 2,090 040 · 10−03

3 9,085 690 · 10−04 1,008 210 · 10−03 1,142 010 · 10−03

4 1,301 490 · 10−05 1,146 290 · 10−04 1,977 190 · 10−04

k 2 MG-cycles
||T (k) − R||22 Eα(u

(k)) ||Mv − f(u(k))||22
0 4,533 800 · 10−02 4,533 800 · 10−02 1,913 800 · 10−03

1 2,094 060 · 10−02 2,097 820 · 10−02 1,326 570 · 10−03

2 4,466 720 · 10−03 4,545 920 · 10−03 3,054 310 · 10−04

3 8,099 220 · 10−04 9,064 420 · 10−04 7,618 570 · 10−05

4 4,650 010 · 10−06 1,035 440 · 10−04 2,617 710 · 10−05

k 3 MG-cycles
||T (k) − R||22 Eα(u

(k)) ||Mv − f(u(k))||22
0 4,533 800 · 10−02 4,533 800 · 10−02 2,878 430 · 10−04

1 2,090 550 · 10−02 2,094 300 · 10−02 2,925 760 · 10−04

2 4,471 130 · 10−03 4,550 150 · 10−03 7,387 920 · 10−05

3 8,056 510 · 10−04 9,019 490 · 10−04 1,574 070 · 10−05

4 5,204 780 · 10−06 1,037 660 · 10−04 7,185 780 · 10−06

k 4 MG-cycles
||T (k) − R||22 Eα(u

(k)) ||Mv − f(u(k))||22
0 4,533 800 · 10−02 4,533 800 · 10−02 4,487 280 · 10−05

1 2,090 060 · 10−02 2,093 820 · 10−02 7,223 900 · 10−05

2 4,472 500 · 10−03 4,551 500 · 10−03 2,072 070 · 10−05

3 8,061 560 · 10−04 9,024 300 · 10−04 5,251 340 · 10−06

4 5,596 170 · 10−06 1,041 340 · 10−04 2,768 670 · 10−06

Table 5.3: Normalized image distance, value of the functional Eα, and and norm of the
defect at the end of the inner iteration for the model problem (see figure 5.1) for k outer
iterations. The number of MG-cycles (inner iterations) is varied from one to four. While
the defect decreases with each additional MG-cycle there is no substantial change in the
image distance after two inner iterations.
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5.2.2 Trust region topology

In section 3.3.2 we argued that it makes sense to use the same operator for the
trust region as is already used for the regularization of the problem (B := L).
In figure 5.5 we compare results for the outer iteration for two different choices
of B: the Navier-Lamé operator L and the identity I . The values of Eα(u

(k)),
||T (k) − R||22, 〈Lu(k), u(k)〉, and βk are displayed. The curves for L are solid and
the curves for I are dotted. We used the model problem from figure 5.1 for the
computations. The outer iteration stops when the change in Eα is smaller than
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Figure 5.5: Comparison of two different operators for the trust region topology. The value
of the overall functional Eα(u(k)), the image difference ||T (k) − R||22, the regularization
term 〈Lu(k), u(k)〉, and the trust region parameter βk are plotted against the number of
iterations. The dotted lines correspond to the results for I , the solid lines to the results for
L. In (a) we use α = 10−3 and in (b) we use α = 10−2. The parameter β0 is 10−1 in both
cases.

some ε > 0, when Eα increases, or when the update has been rejected three times.
Generally the distance term ||T (k)−R||22 decreases whereas the regularization term
〈Lu(k), u(k)〉 increases during the iteration. The data on 〈Lu(k), u(k)〉 in figure 5.5
indicates what we have already argued. The updates computed with I are less
“elastic” and thus the increase in the penalty term 〈Lu(k), u(k)〉 is larger than for
L. The new aspect is that the decrease in the image distance is less, too. Thus the
slower convergence ofEα cannot be attributed to some scaling effect in β due to the
use of different operators, but is an effect of the choice of the trust region topology.

The strength of this effect depends on the ratio α/βk. In figure 5.5(a) the it-
eration for B = I is stopped because the update to the solution has been rejected
three times. The increase of β that goes along with the rejection did not produce
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acceptable solutions. The final value of Eα differs by a factor of 10. This is the
result of both a larger penalty term and a slower decrease of the image distance.

In contrast for the choice of the parameters in figure 5.5(b) the outer iteration
is able to “recover”. Here α is larger and thus the role of B is diminished. The
final decrease in 〈Lu(k), u(k)〉 can be attributed to the fact that at that point the
equation is dominated by α and β only plays a minor role. Nevertheless the overall
convergence is considerably slower.

These examples show that with B = L the outer iteration is more robust and
the choice of β0 is less difficult. It should be noted that multigrid convergence for
B = I is better especially when α � β. But these are also the situations where
we see the described effects in the outer iteration which outweigh the advantage
of a faster convergence in the inner iteration by far. Additionally we have already
demonstrated above that we do not need high accuracy of the inner iteration.

These are only results for the regularized Gauss-Newton method and they can-
not be transfered to the regularized gradient descent method. The gradient descent
methods lacks the term J tθ(u

(k))Jθ(u
(k)) which plays an important role in the Gauss-

Newton method.

5.2.3 Trust region control strategy

Not only the topology of the trust region is important, but also the control of the
parameter βk. If βk would remain constant the choice of β0 would play a very
important role for the outcome of the outer iteration. When (α + βk)||L||∞ �
||J tθ(u(k))Jθ(u

(k))||∞ the method behaves more like a gradient descent method, be-
cause the influence of J tθ(u

(k))Jθ(u
(k)) is small. As βk becomes smaller the influ-

ence of J tθ(u
(k))Jθ(u

(k)) increases and the method behaves more like a Newton-type
method. Gradient descent methods are globally convergent methods, with the dis-
advantage that convergence can be very slow. Newton-type methods are locally
convergent methods, i.e. we can expect fast convergence near the solution. The
downside is that when we are far off the solution the method might not converge at
all. With an adaptive trust region strategy we seek to get the best of both worlds.
The stability and global convergence of the gradient descent, and as we get close to
the minimum the fast local convergence properties of the Newton-type method.

To analyze this behavior we used the model problem from figure 5.1 and per-
formed registration on one resolution, with varying values for β0. We used B := L

as well as B := I and held βk constant or used the Armijo-Goldstein rule (see
equation (3.12). The results are displayed in figure 5.6. In 5.6(a) we see that when
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(a) B := L, βk ≡ β0
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(b) B := L, Armijo-Goldstein
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(c) B := I , βk ≡ β0
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(d) B := I , Armijo-Goldstein

Figure 5.6: Here we show results for the convergence of the outer iteration for the regu-
larized Gauss-Newton method in dependence on the choice of β0 and the parameter opti-
mizations strategy. For the computations the model problem from figure 5.1 was used. The
left column shows results for the case where βk is kept constant. The right column shows
results for the case where the Armijo-Goldstein rule is applied. In the upper row B := L

and in the lower row B := I .

βk is held constant, the initial choice of β0 has a tremendous influence on the result.
For large value of β0 like 20 and 5 convergence in the outer iteration is extremely
slow. The trust region is very small and hence the step taken in each iteration is very
small, too. After hundreds of iterations the outer iteration should still converge to a
similar solution as for β0 = 1, 0.5, 0.1.

When the Armijo-Goldstein rule is used to adapt the parameter we observe
almost identical results for all start parameter choices (see figure 5.6(b)). Actually
if we would shift the curves by the difference in the overall number of iterations the
curves would look almost identical after the adaption phase in the beginning. We
can conclude that a more conservative choice of β0 costs us only a few iterations
and does not determine the outcome and convergence speed to the extreme extend
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it does when the parameter is fixed.

For the test with B := I it can be said that the results for fixed βk are extremely
bad. The effect of the choice of the trust region topology (see also section 5.2.2)
and the problems with the fixed parameter seem to combine. Note that the first
row in all graphs is scaled to the same range on the y-axis. When the parameter
is adapted the behavior is better, but the results are not consistent for all starting
values. The result for β0 = 1 is differs significantly from the ones for the other
values.

We performed the same calculations for the gradient descent method. The re-
sults are shown in figure 5.7. The same starting values have been used, but we
cannot expect similar results. Apart from the fact that convergence is expected to
be slower, the equation is different and thus the influence of βk might differ, too.
The effect of the Armijo-Goldstein rule is similar. For B := L the starting value
does not play an important role, and for B := I the results are not consistent. The
overall convergence is, as expected, slower. The method seems to be more sensitive
to the choice of βk when B := L which is indicated by the frequent adaption of the
parameter. The band in which βk is chosen is narrow. For B := I that is not the
case.

In the next section we discuss some of the further differences between the gra-
dient descent and Gauss-Newton method on the basis of some registration results.
Before we proceed we shortly discuss a strategy for a good initial guess of the start
parameter β0.

The choice of the start parameter β0

With the choice of B := L we can derive a strategy for an initial guess of β0.
The problem is that if we chose β0 to large the influence of J tθh(u

(0))Jθh(u
(0)) on

the minimization process is too small. Hence the information brought into the
registration process by the term J tθh(u

(0))Jθh(u
(0)) is not utilized properly. When

β0 is too small the operator M (0)
h may be ill-conditioned depending on the choice

of α. We show how β0 can be chosen such that we obtain an upper bound for the
condition of M (0)

h :

cond2(M
(0)
h ) ≤ α̃0λmax(Lh) + ||J tθh(u(0))Jθh(u

(0))||2
α̃0λmin(Lh)

= cond2(Lh) +
||J tθh(u(0))Jθh(u

(0))||2
α̃0λmin(Lh)

.
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When we chose

α̃0 ≥
||J tθh(u(0))Jθh(u

(0))||2
||Lh||2

⇒ β0 ≥
||J tθh(u(0))Jθh(u

(0))||2
||Lh||2

− α

we obtain an upper bound for the condition of M (0)
h ,

cond2(M
(0)
h ) ≤ 2 cond2(Lh).

In the application we can approximate || · ||2 by || · ||∞ due to the fact the matrices
are sparse.
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(a) B := L, βk ≡ β0
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(b) B := L, Armijo-Goldstein
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(c) B := I , βk ≡ β0
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(d) B := I , Armijo-Goldstein

Figure 5.7: Here we show results for the convergence of the outer iteration for the reg-
ularized gradient descent method in dependence on the choice of β0 and the parameter
optimizations strategy. For the computations the model problem from figure 5.1 was used.
The left column shows results for the case where βk is kept constant. The right column
shows results for the case where the Armijo-Goldstein rule is applied. In the upper row
B := L and in the lower row B := I .
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5.2.4 Comparison of gradient descent and Gauss-Newton
approach

(a) Reference (b) Template
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(c) Transformation

Figure 5.8: Example of registration of two histological sections (m = 2). The reference
section (a) was deformed by an artificial transformation to obtain the template image (b).
The calculated transformation is shown in (c).

In this section we to put forth some arguments in favor of the use of the reg-
ularized Gauss-Newton method. The normal equation of the regularized steepest
descent method is easier to solve and therefore the cost of the inner iteration is less.
The standard multigrid solver introduced in section 4.2.1 would suffice. We will
demonstrate that convergence in the outer iteration is faster for the Newton-type
method. Still one might argue that this advantage is nullified by the more expen-
sive inner iteration. We will show that computation time is not the only important
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aspect, and that the gradient descent does not yield satisfactory results in some
situations. Theoretically after a large number of step both optimization strategies
should produce the same result, i.e. if we neglect local minima and machine preci-
sion. Since both methods differ in their descent direction they take different paths
towards the result. That means they could stop at different points when there is no
“good” descent direction in the vicinity, i.e. we got trapped in a local minimum or
the change in the functional is below a chosen threshold. The minimization process
also stops when the increase in the regularization penalty exceeds the decrease in
the distance functional. Due to the fact that the solutions computed in each step of
the outer iteration are different for both methods the ratio between decrease in the
distance function and increase in the regularization penalty is likely to be different,
too. When the trust region parameter β → ∞ both methods become equal since
||J tθJθ||((α + β)||L||)−1 → 0, but then ||v|| → 0, too. That means for large β
both methods are more likely to deliver the same result, but the number of outer
iterations needed increases. Furthermore the information from J tθJθ is not utilized
the way it could be.

(a) (b)

Figure 5.9: In (a) the logarithm of the final difference after registration of the histological
section from figure 5.8 with the gradient descent approach is shown. Figure (b) displays
the logarithm of the difference after registration with the Gauss-Newton approach. Dark
colors indicate small differences where as light colors indicate large differences. The result
shows that the Gauss-Newton approach leads to more precise results, especially at edges
with low contrast.

For the two-dimensional case we use a “real world” example, a histological
section of a human brain. The section is colored for cell bodies and has been
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digitized with a flatbed scanner. The image size is 512 × 512. The reference is
the original section (Figure 5.8(a)). The template is a artificially deformed version
of the same section (Figure 5.8(b)). The contour of the reference is shown as a
black line for orientation. The computed transformation is shown as a vector field
in figure 5.8(c).

We performed registration with both methods, the regularized gradient descent
and the regularized Gauss-Newton method. The final difference between the refer-
ence and transformed template is visualized in figure 5.9. The results for the gradi-
ent descent method is shown in figure 5.9(a), and the result for the Gauss-Newton
method is shown in figure 5.9(b). To be able to see also minimal differences the
logarithm of the pixelwise image difference is shown. Dark colors indicate small
differences whereas light colors indicate large differences. Both images are scaled
to the same maximal value.

The registration with the Gauss-Newton method is more precise. Compared to
the gradient descent method the differences at the image edges are minimal. The
large image errors for the gradient descent approach can especially be found in
regions where the contrast is low, i.e. the gradient is weak. Information about the
template image is only contained in the right side fh in form of the image gradient
for the gradient descent method. The image gradient drives the registration and
the large gradients dominate the process. Thus edges with high gradient values
are matched first and the low gradient edges are matched later in the process. The
equations of the Gauss-Newton method incorporate information from the template
image into the differential operator. This allows for good registration results in
regions with low gradients and also more local transformations.

To demonstrate this use of local information we use a different template for the
histological section example. Only a small part of the reference, one part on the
left side, was transformed. In the three-dimensional case this part is attached to the
rest of the brain, but when the sections are cut it might be torn off. This situation is
simulated here. The reference is shown in figure 5.10(a). The same section with the
deformed part colored, the template, is shown in figure 5.10(b). One iteration was
performed. The logarithm of the image difference for the gradient descent method
is shown in figure 5.10(c) and for the Gauss-Newton method in figure 5.10(d).

The gradient descent method results in a globally smooth transformation. That
results in image differences in parts of the image that are actually identical. For
the Gauss-Newton method we see a local transformation and a stronger reduction
of the image difference after only one step. The transformations of the region
in question are displayed in figure 5.11. After just one iteration we see a very
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(a) (b)

(c) (d)

Figure 5.10: The reference is shown in (a). The template differs from the reference only
in the colored overlayed part in (b). The contour of the reference is indicated by a black
line in both (a) and (b). In figure (c) the logarithm of the difference after one iteration with
the regularized gradient descent approach is shown. In figure (d) the same is shown for the
regularized Gauss-Newton method. Dark colors indicate small differences where as light
colors indicate large differences. The result shows that the Newton-type method allows for
more local transformations.

smooth transformation for the gradient descent method that extends into large parts
of the identical portions of the template and reference image. In the Gauss-Newton
method we already see some directions that are also present in the final transfor-
mation in both methods after just one iteration. The length of the transformation
vectors declines rapidly in the direction of the not transformed parts of the histo-
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(a) Gradient descent after one iteration (b) Gauss-Newton after one iteration

(c) Gradient descent, final result (d) Gauss-Newton, final result

Figure 5.11: Here a part of the transformations computed for the example in figure 5.10
are shown. The upper row shows the transformation after one iteration. The bottom row
shows the final transformation. For the gradient descent the transformation extends into the
part of the template section that is identical to the image. The results for the Gauss-Newton
method are more localized. The difference is especially obvious after just one iteration.

logical section, whereas it is smooth in the directions where no additional image
information is present, i.e. the white parts of the image. In case of the gradient
descent the subsequent iterations correct the transformation. The image difference
in the parts that are incorrectly moved results in forces in those regions in the sub-
sequent iterations. Still the final result extends farther into regions it should not
than with the Gauss-Newton method.

We conclude this section with 3D example from an application in neuroscience
research. One would like to detect volume changes in MRI data of one individual
over time. In case of neurodegenerative diseases volume change can be used to
track and quantify the degenerative processes. The subjects are scanned multiple
times in intervals of a couple of months. To estimate the change in volume the
respective MRI data sets are registered to each other and the volume change in each
voxel is determined from the transformation. One would like to not have to segment
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the data prior to registration. By segmenting we mean removing everything that is
not brain, i.e. skull, eyes, nerves, dura mater, etc.. The changes we would like
to detect are very subtle. Hence an automatic segmentation is not sufficient and
manual correction is needed. That takes both time and is observer dependent. The
problem with not segmenting the brain is that some of the structures we would
usually remove, especially the bones, have high gray value intensities. The gradient
descent approaches mainly focus on the high gradients, yet we would like to detect
changes in the brain and not in the position of the skull with respect to the brain, the
eyes, or cavities. Hence gradient descent methods cannot be used in this context
and we have to resort to the Gauss-Newton method.

We illustrate the points made above on a three-dimensional example. To avoid
having to publish yet unpublished patient data we generated our own data set from
two MRI data sets of a healthy control taken within a period of three months. To
simulate a degeneration we took a segmented brain, eroded it, and placed it in
the other data set. Registration was performed with both the gradient descent and
the Gauss-Newton method. In figures 5.12- 5.15 renderings of the data with both
transformation vectors and contour lines of the volume change are displayed for
both methods. The vectors are projected on two orthogonal planes of the image data
set. The length of the vectors is constant and the color indicates the magnitude. The
colormap goes from blue over green, yellow, and orange, to red. All vectors with
length greater than 0.2 of the voxel size are red. The contour lines are computed on
the three-dimensional volume change data set computed from the transformation.
The contours correspond to volume changes in the range of ±5%. The colormap
ranges from red to white for volume decrease and from white to red for volume
increase.

For the gradient descent method (Figure 5.12) the transformation field is very
smooth and is mainly influenced by the high gradient components of the data sets.
The horizontal section cuts through the ear, where we some of the strongest de-
formations. When we compare that with the result for the Gauss-Newton method
the difference is obvious. The transformation vectors within the brain are of lower
magnitude and we see changes in the direction close to cavities where the brain
was eroded. The more subtle differences for the Gauss-Newton method are not
visible because we would have had to scale the them differently from the ones for
the gradient descent method. The same thing can be observed in the contour plots
in figures 5.14 and 5.15. The contour lines for the Gauss-Newton method are more
localized. Close to the outer cortex boundary, where most of the erosion took place,
they are close together, indicating that the local changes are better recognized.
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Figure 5.12: Volume rendering with transformation vectors for the gradient descent
method. The transformation vectors are projected onto two orthogonal plains through the
MRI data set. The surfaces of the skull (transparent) and of the brain (solid) are shown,
too. The magnitude of the vectors is indicated by the coloring. The colormap goes from
blue over green, yellow, and orange, to red. All vectors with a magnitude higher than 0.2
of the voxel length are red.
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Figure 5.13: Volume rendering with transformation vectors for the Gauss-Newton method.
The transformation vectors are projected onto two orthogonal plains through the MRI data
set. The surfaces of the skull (transparent) and of the brain (solid) are shown, too. The
magnitude of the vectors is indicated by the coloring. The colormap goes from blue over
green, yellow, and orange, to red. All vectors with a magnitude higher than 0.2 of the voxel
length are red.
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Figure 5.14: Volume rendering with contour lines for the gradient descent method. The
contour lines are generated from a scalar volume change data set computed from the trans-
formation. The contour lines are plotted on two orthogonal section through the MRI data
set at ten levels in the range of ±5% volume change. The colormap ranges from red to
white for volume decrease and white to blue for volume increase. The surfaces of the skull
(transparent) and of the brain (solid) are shown, too.
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Figure 5.15: Volume rendering with contour lines for the Gauss-Newton method. The
contour lines are generated from a scalar volume change data set computed from the trans-
formation. The contour lines are plotted on two orthogonal section through the MRI data
set at ten levels in the range of ±5% volume change. The colormap ranges from red to
white for volume decrease and white to blue for volume increase. The surfaces of the skull
(transparent) and of the brain (solid) are shown, too.
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Figure 5.16: Volume changes on individual sections. In the left column results for the
gradient descent method are displayed. In the middle column you find the results for the
Gauss-Newton method. The logarithm of the voxelwise squared image difference between
template and reference before registration is displayed in the right column. The colormap
for the volume change ranges from red (decrease) over white (neutral) to blue (increase).
The colormap is scaled to ±5% volume change. The image difference is colored according
to a heat colormap. Dark colors indicate small differences and light colors greater differ-
ences. The parts of the volume that are identical are colored white for better contrast.
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To further illustrate this point we show selected sections in figure 5.16. In the
left column results for the gradient descent method are displayed. In the middle
column you find the results for the Gauss-Newton method. The logarithm of the
voxelwise squared image difference between template and reference before regis-
tration is displayed in the right column. The colormap for the volume change ranges
from red (decrease) over white (neutral) to blue (increase). The colormap is scaled
to ±5% volume change. The image difference is colored according to a heat col-
ormap. Dark colors indicate small differences and light colors greater differences.
The parts of the volume that are identical are colored white for better contrast. For
the gradient descent method the detected volume changes are not as localized and
sharp as for the Gauss-Newton method. The volume increase in the space between
skull and brain is not captured well. In the images for the Gauss-Newton method
the surface of the brain is clearly visible and we see a volume increase in the space
around the brains, even in the depth of the sulci. On the surface of the brain itself we
see a decrease in volume. In the images for the gradient descent method everything
is looks more “hazy”. All of this corroborates the observations made in the exam-
ple with the histological section that in cases where the expected transformation
are localized the Gauss-Newton method delivers the more precise results. Through
the erosion only the outer surface of the brain is moved, not the rest. In regions
where the gradients are small relative to the maximum gradients the Gauss-Newton
method “does more”. Even when the force f is small there is also information
about the image edge in the operator M which is lacked in the gradient descent
method. It should be noted that due to the construction of the example it cannot be
expected that the erosion of the segmented brain is the only contributing factor to
volume change. Before we inserted the brain into the skull of the second MRI data
set that data set had to linearly registered to the other which incurs an interpolation
of the data. Furthermore we did not perform a histogram equalization between the
skulls. Hence gray value differences between the skulls and the cortico spinal fluid
(CSF) of the two data sets contribute, too. In the actual application a number of
preprocessing steps is necessary to ensure that interpolation artefacts, change in the
shimming of the scanner coils, and other influences are held to a minimum. We did
not do this here because we only wanted to demonstrate the difference between the
two approaches.
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5.3 Multiresolution framework

As discussed in section 4.5 the multiresolution approach allows for the robust and
efficient computation of the transformation, by computing different components of
the transformation on different levels of resolution. We illustrate this concept with a
very simple model problem. The reference and template are shown in figure 5.17(a)
and (b). The template and reference are shown at consecutive resolution levels in
figure 5.17(c) and 5.17(d). To make the smoothing in the multiresolution frame-
work, i.e. the loss of fine scale information, more obvious the blobs have been filled
with a pattern at the finest resolution. We chose this simple example instead of a
more complex one, because we need a problem that converges to approximately the
same solution regardless of the number of different resolution levels. Images with
a lot of fine scale information that require large transformations are not well suited
because the registration algorithm tends to get trapped in local minima as discussed
in section 4.5. Here we mainly want to illustrate that the multiresolution approach
can greatly reduce computation time.

We registered the reference and template of the model problem and only varied
the number of levels in the multiresolution approach. The outer iteration on one
resolution level was stopped when the reduction in Eα from one step to the next
was less than one percent of the start value. The computations were performed for
one to five levels and two values for α, 0.01 and 0.001. The results are visualized
in figure 5.18. The number of iterations is displayed on the x-axis and image dif-
ference is displayed in a logarithmic scale on the y-axis. The switch from one level
to next finer level is indicated by a circle in the graphs. The computational effort
for the computation of one step in the outer iteration differs from resolution level to
resolution level. Hence, we normalized the number of iterations proportional to the
number of grid points on the finest grid. A iteration on the second finest resolution
is only counted as a fourth of an iteration and so on. This normalization allows us
to assess the amount of computation time saved.

After switching to the next finer level we see an initial increase in the image
difference. This is due to the fact that the next finer level contains new fine scale
information that has not been considered for the transformation on the coarser res-
olution. These new details are not well matched, yet. The amount of the increase
seems to be related to the resolution level. With increased resolution the initial
increase becomes smaller.

There is another effect that can be seen in the data in figure 5.18. For four to
six levels we do not gain efficency. The maximal number of levels is related to the
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(a) (b)

(c) (d)

Figure 5.17: A artifical model problem with just a constant white blob is shown. The
reference (a) and the template (b) are shown at different resolution levels in (c) and (d). To
illustrate the smoothing from on resolution level to the next the blob has been filled with a
pattern.
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100 101 102
10−4

10−3

10−2

10−1

100

Iterations number

Im
ag

e 
D

iff
er

en
ce

 ||
T(

u)
−R

|| 22

1 level
2 levels
3 levels
4 levels
5 levels
6 levels

(c) α = 0.01
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(d) α = 0.01

Figure 5.18: Registration was performed for the model problem in figure 5.17 with two
values of α and for different number of levels in the multiresolution approach. The number
of iterations in the right column is normalized by the amount of grid points on the resolution
levels with respect to the finest resolution. The switch from one level to the next is marked
by a circle.

maximal transformations we expect and the scale of information contained in the
images. The registration is driven by features in the reference and template that are
different. When we go down to a resolution there these difference are obscured,
we cannot expect to gain anything in terms of efficency. In the present example we
see that up to a certain image difference the normalized iterations needed differ for
four to six levels, but then they coincide. This can be attributed to the fact that the
information needed for this exactness is not present at lower resolutions.

When we compare the top and the bottom row in figure 5.18 we see that in
some situations the multiresolution approach does not only save computation time,
but also leads to more precise results. For α = 0.01, the larger of the two values,
the image difference is only reduced to the same amount when four to six levels are
used. There is a clear dependency on the number of levels of resolution for the final
result. When α is larger the influence of the penalty term in Eα is stronger. Hence,
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the results indicate that the many small steps computed at the fine resolutions lead
to transformations that are not that well in accordance with our model. That could
have something to do with a point we discussed above. Since the Gauss-Newton
method is a method with fast local convergence it is always better to be close to the
solution. When we compute large transformation on coarse resolutions, where they
are small transformations, we are closer to the solution on that resolution, than we
are on a finer one.



CHAPTER 6

Shape constraints

In this chapter we introduce a framework for additional shape constraints that can
be easily plugged in the registration method described in the previous chapters.
The constraints introduced here are soft constraints in the sense that global penalty
terms are used and the constraints are not enforced for each pixel like the volume
preserving constraints in [23] or the landmark constraints in [18, 19].

6.1 Introduction

It cannot be guaranteed that the registration is always “successful”, i.e. that the
right correspondences are established, while sticking to the correct class of trans-
formations. The reasons for that are manifold. Registration may fail because

1. the distance measure does not relate the template and reference in a proper
way,

2. the actual transformation Φ is not within the class of transformations consid-
ered,

3. the optimization gets stuck in a local minimum,

4. the images do not contain the necessary information to establish correspon-
dence.

These are probably the main four reasons. The first two are related to modeling.
If for example corresponding objects in the template have gray values that differ
considerably from the ones in the reference the squared distance of the images
is a bad choice. We have to resign to multimodal distance measures like mutual
information [36, 48] or morphological distance measures [16] . When we restrict
the class of permissable transformation to the class of affine linear transformation,
but the actual transformation Φ has nonlinear components, a “good” registration
result cannot be expected.
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Even when the correct model is employed we still cannot be sure that registra-
tion will be successful. This brings us to the latter two reasons. When the model is
correct the correct solution has to be global minimum of the functional to be min-
imized. We cannot determine that minimum analytically. Thus, iterative methods
that evaluate the functional locally to find search directions are used. The risk of
getting stuck in a local minimum is inherent, because once a stationary point is
reached in the iteration there is no local search direction that would decrease the
functional any further. There are strategies to make optimization algorithms more
robust against such situations, but they can never be avoided completely. We dis-
cussed one of these strategies, multiresolution, earlier in section 4.5 and 5.3. We
will now give an example how trying to avoid local minima via a multiresolution
strategy can produce a situation described in item 4.

6.1.1 Motivational example

The idea behind multiresolution strategy is that computational burden and robust-
ness can be improved by computing coarse components of the transformation on
coarse grids. The robustness is achieved by getting rid of ambiguous fine scale
information by smoothing and subsampling. Yet, sometimes things go awry and
instead of removing ambiguous information we loose valuable structural informa-
tion.

We discuss this concept of “loosing valuable structural information” on a spe-
cific example shown in figure 6.1. The first column shows the reference, a section
of a T1-weighted MRI data set. The template in the second column is a section
from a reconstructed postmortem brain that had been sectioned for microstructural
examinations. The template has already been linearly registered to the reference,
i.e. an affine linear transformation including scale, translation, rotation, and shear
has been computed. The third and fourth column show a magnification of the same
region in both reference and template. The rows correspond to different resolution
levels in the multiresolution framework. The fifth column shows the result after
nonlinear registration on each resolution. The transformation computed on one
resolution was always used as a start approximation for the next finer resolution, as
described in section 4.5.

The problematic part is marked by a circle. The two “fingers” (gyri) in the
reference belong to two separate brain structures, the parietal lobe (upper part) and
the temporal lobe (lower part). The same is true for the template image. If we
would overlay the reference and the template we would see that the gyrus in the
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(a) Resolution 0

(b) Resolution 1

(c) Resolution 2

(d) Resolution 3

(e) Resolution 4

Figure 6.1: The first column shows the reference, a section of a T1-weighted MRI data
set. The template in the second column is a section from a reconstructed postmortem brain
that had been sectioned for microstructural examinations. The template has already been
linearly registered to the reference, i.e. an affine linear transformation including scale,
translation, rotation, and shear has been computed. The third and fourth column show a
magnification of the same region in both reference and template. The rows correspond
to different resolution levels in the multiresolution framework. The fifth column shows
the result after nonlinear registration on each resolution. The transformation computed on
one resolution was always used as a start approximation for the next finer resolution, as
described in section 4.5.
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template that belongs to the temporal lobe extends into the parietal lobe of the
reference. This should not be the case after registration. To obtain such a result
would require a strong local deformation. On the fine resolution the difference at
the tip we would like to move downwards is small. Hence there are no strong forces
that would move this part. The distance to the correct location that we infer from
anatomical knowledge is too large. On coarser resolution that distance is smaller
with respect to the number of pixels. The structure should be pulled along with
other parts of the image due to the elastic penalty term, but on the lower resolution
the surrounding structures are well matched already. Additionally, the pixels that
belong to one of the structures are now mixed with pixels that belong to the other
structure. Hence, the information that is needed to separate both is not present or
too weak on the lower resolutions.

To sum up the situation. We have a complex structure, the human brain, that
has a complex folding pattern. When overlayed the structures can be very similar
locally, while not being very similar in a larger context. In the human brain that is
mainly due to the fact that we have gray matter on the outside and white matter on
the inside. Gray matter, respectively white matter, in one part of the brain cannot be
distinguished from the one in another part of the brain. Strong local deformations
lead to ambiguities that cannot be resolved on fine resolutions due to locality, and
can also not be resolved on coarser resolution due to lack of information. Thus, we
have to supply additional shape constraints to resolve ambiguities.

The above argument is not an argument against multiresolution strategies. They
are useful, necessary, and lead to good results in many situations. The problem
described above is a problem inherent to the image data used here, that can only
be resolved by providing additional information. In the next section the possible
representations of such additional information are discussed.

6.2 Representation of shape constraints

The additional shape constraints can be points (landmarks) and closed or open
curves in two-dimensional space. In the three-dimensional space closed or open
surfaces (surface patches) have to be added to that list. More generally one can say
that the shape constraints are submanifolds of the image space.

Before we discuss how such shape constraints can be integrated into the regis-
tration process, we have to decide on how they will be represented. We can think
of surfaces and curves as sets of pathwise connected points. Two methods for such
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representations can be distinguished, namely parametric and implicit representa-
tions.

6.2.1 Parametric representations

Parametric representations, sometimes also called explicit representations, are given
in form of a set of so-called parametric equations that express a set of quantities as
explicit functions of a number of independent variables, the parameters. For exam-
ple, the parametric representation of a circle in R2 is given by

x = r cos s,

y = −r sin s,

with the angle s ∈ [−π, π[ and the radius r ∈ R+. When we add an equation for
the third dimension we obtain a curve in R3. The equation

z = s

with s ∈ R produces a spiral pointing along the z-axis. When we express the
equation for the z-direction in terms of a second parameter we obtain a surface,
e.g.

z = t, t ∈ R

defines a tube with unit radius along the z-axis.

The key property of parametric representations is that the points on the repre-
sented curve or surface are the result of the evaluation of explicit functions. The
domain of the explicit functions is not necessarily, and will generally not be same
as the range of these functions. In the simple example with the circle the param-
eter is an angle, i.e. a scalar in R, while the circle is a set of points in R2. It is
straightforward to produce all points that belong to the represented shape explic-
itly. Determining whether a specific point is an element of the represented shape
can be extremely difficult. For implicit representations the opposite is the case.

6.2.2 Implicit representations

In implicit representations the shape is represented by the set of points that fulfill
certain constraints given by a system of equations. The information is given only
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implicitly not explicitly. That makes it very easy to determine whether a point
belongs to the represented shape, simply by checking if all constraint equations are
fulfilled. The circle from the above example can be represented by the equation

x2 + y2 − r2 = 0,

with a given radius r. The same equation also produces the tube in three-dimensional
space. Note that z is not used explicitly, it is given implicitly by the choice of the
domain.

There is no straightforward way for producing all points that belong to the
shape. A task which is easy for parametric representations. Essentially it is neces-
sary to convert the implicit into a parametric (explicit) representation. The example
of the circle demonstrated that there is not always a unique solution. Above we
used polar coordinates, but we could also use Cartesian coordinates and express
the circle by

x = s,

y = ±
√
r2 − s2,

with s ∈] − r, r]. This formulation is closer to the implicit representation, yet it is
also not as elegant. Things can easily become more complicated. The spiral along
the z-axis for example is more difficult to express in terms of an implicit represen-
tation, because we do not have the rotation angle as a parameter. A square with
sides of length r that is rotated by 45 degrees around the origin can be represented
by the implicit equation

|x|+ |y| − r = 0.

To express the same thing as a parametric representation with one free parameter
we have to provide four different equations, one for each quadrant, e.g.

x(t) =







rt, for t ∈ [0, 1]

r(2− t), for t ∈ [1, 2]

−r(t− 2), for t ∈ [2, 3]

−r(4− t), for t ∈ [3, 4]

y(t) =







r(1− t), for t ∈ [0, 1]

r(1− t), for t ∈ [1, 2]

−r(t− 3), for t ∈ [2, 3]

−r(3− t), for t ∈ [3, 4]

.

We could also express the shape as a polygon with control points (0, r), (r, 0),
(0,−r), and (−r, 0). The connections between the control points are represented
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by a parametric line equation. Basically this is a finite element discretization of the
shape boundary. This is a common form of parametric representation in computer
graphics. These examples indicate that a closed explicit formula can only be given
locally. This is also one of the main statements of the implicit function theorem
which will be used later on.

6.2.3 Weighing the pros and cons

In computer graphics both parametric and implicit representations are used. Which
one is used depends largely on the area of application. Parametric representations,
like nonuniform rational B-splines (NURBS), are widely used in free form mod-
eling, e.g. computer aided design (CAD). The main advantage of parametric rep-
resentations is that the underlying control points can be locally refined and easily
manipulated. Higher-order derivatives can be calculated analytically. Furthermore
they are easy to render.

The main disadvantage of parametric representations is that collision detection
and binary operations, such as intersection are very difficult and computationally
expensive. Collision detection amounts to detection of intersections between two
parametric representations in the image space. The parameter spaces of both shapes
are likely to be totally different, i.e. the coordinate in image space for some fixed
values of the parameters is different for both shapes. When we look for an intersec-
tion between a surface and a curve not even the arity of the explicit functions has
to be identical. Two shapes intersect if the distance between them at some point
in the image space is 0. The computation is expensive because in the worst case
we have to check each segment between control points in one shape against each
segment of the other shape, simply because we cannot compare the parameters di-
rectly. Merging two shapes with a parametric representation also requires “glueing”
them together at the points of intersection. That means the actual shape generated
by the intersection has to be extracted. That is difficult because the intersection has
to be parameterized, which becomes especially difficult when changes in topology
occur.

In the implicit representation both shapes are given in terms of coordinates in
image space. The shape is represented by a set of points in the image space that is
the solution to a system of equations. Hence the intersection of two shapes is the
intersection of two such sets. We can even chose the underlying function such that
it is the distance to the shape. Then it is very easy to compute the distance of a
point on one shape to the other shape. It is just a function evaluation.
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We will use implicit representations instead of parametric ones. The main rea-
son for this choice is the difficulty in computing the distance between parametric
representations. When we want the shapes to drive the registration, we have to be
able to assess the dissimilarity between the template and the reference shapes. For
parametric representations that could only be done efficiently under strong restric-
tions that are not desirable for our applications.

When both parametric representations are parameterized in the same way, e.g.
NURBS with an identical number of control points, one could minimize the differ-
ence between corresponding control points. In that case one would have to track the
control points during registration. The control points that have to be transformed
are given in Lagrange coordinates in the template space. The transformation gives
us the Lagrange coordinate for a given Euler coordinate, but not the other way
around. Hence, the computation of the transformed points requires a local inver-
sion of the transformation at these locations.

When we try to match shapes that are parameterized differently we have to
deal with another problem apart from the difficult computation of dissimilarity. As
the template parameterization is transformed situations can arise where we have to
reparameterization the template shape. Since the computation of the distance be-
tween the shapes would involve information from between the control points, we
have to be sure that that information remains valid. If for example B-splines are
used that enforce C2-differentiability at the control points the very oscillation arte-
facts that we seek to avoid by using polynoms with limited support, are likely to
appear when control points are moved such that they are very close to each other.
We could use linear interpolation between the control points instead. Under the
assumption that the distances between control points are short it might be accurate
enough, but when the distance between the control points increases during registra-
tion reparameterization would be necessary.

In [25], for example, the control points of B-spline representation are matched
to each other. To this end corresponding representation are resampled such that
they contain the same number of control points. The transformation is restricted
to locally affine linear transformations. The authors admit though that they are not
sure whether matching the control points is anatomically sensible.
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6.3 Implicit representations via Level Sets

We will now give a more thorough characterization of implicit representations via
implicit functions. An implicit function has to fulfill certain conditions to represent
a manifold in Rn. In the following we look in more detail at these conditions and
introduce a special class of implicit functions that is well suited to represent such
manifolds with the additional benefit of easy distance computation, the so-called
distance functions.

6.3.1 Level sets and the implicit function theorem

Definition 6.1 (Level set). Given a function

ψ : Ω→ R
m, Ω ⊂ R

n, n ≥ m

and a fixed υ ∈ Rm. The level set of ψ at level υ, or “υ level set of ψ”, is given by

Lψ(υ) := {α ∈ Ω|ψ(α) = υ}.

The equation
ψ(α) = υ, α = (a1, . . . , an) (6.1)

can also be written as a system of equations

ψ1(a1, . . . , an) = υ1

ψ2(a1, . . . , an) = υ2

...
...

...
ψm(a1, . . . , an) = υm

with functions ψi : Ω → R, 1 ≤ i ≤ m. A specific solution of equation (6.1) is a
point in Ω, and the collection of all such points forms an object in Ω.

For the relationship between m,n in definition 6.1 three situations can be dis-
tinguished. When n < m the system of equations is overdetermined and normally
the system will have no solution. When n = m and the system of equations has
a solution that solution is unique when certain conditions are satisfied. The most
interesting case for us is n > m. In this case the system of equations is underdeter-
mined and has infinitely many solutions. Under certain conditions these solutions
will form a manifold of dimension n−m. This is the content of the implicit function
theorem. We give a version without proof that is adapted to our needs.
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Theorem 6.1 (Implicit function theorem). Let ψ : Ω → Rm, Ω ⊂ Rn, n > m

and ψ(α) = υ, α ∈ Ω and υ ∈ Rm. If

ψ
′

(α) := Jψ(α) : R
n → R

m

is onto, i.e. the Jacobian of ψ has rank m, the following hold.

1. Near α, Lψ(υ) the level set of ψ at level υ, is an (n −m)-dimensional sub-

manifold of Ω.

2. The tangent space to Lψ(υ) is perpendicular to the row vectors of the matrix

Jψ(α) =







∂ψ1

∂x1
(α) · · · ∂ψ1

∂xn
(α)

... . . . ...
∂ψm
∂x1

(α) · · · ∂ψm
∂xn

(α)






.

Item 1 states that the submanifold is described by the solution to a system of
equations. Item 2 states that the corresponding tangent space is the null space of
the Jacobian, or in other words the orthogonal complement of the linear subspace
spanned by the Jacobian. LetMLψ(υ) be the submanifold described by Lψ(υ), then
its tangent space at a point α is

TαMLψ(υ) = ker(Jψ(α)).

The dimension of the submanifoldMLψ(υ) is the nullity, i.e. dim(ker(Jψ(α))), of
Jψ(α). Each equation ψi, 1 ≤ i ≤ m, eliminates one degree of freedom with re-
spect to the possible directions of movement on the original manifold (the ambient
space). This relation between a manifold and its submanifolds can be characterized
by the codimension.

Definition 6.2 (Codimension). If W is a manifold of dimension n and V is sub-

manifold of W of dimension k, then the codimension of V is n− k.

codim(V ) = n− k

Thus, the codimension ofMLψ(υ) ism or the number of independent constraint
equations ψi. Note that the space Rn is by definition a n-dimensional manifold. For
R
n the shapes with the highest possible codimension of n are points. We first con-

sider codimension one shapes, i.e. surfaces in three-dimensional space and curves
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in two-dimensional space. Later we will turn our attention to shapes of higher codi-
mension, or shapes with higher codimension boundaries. For codimension one,
m = 1, we have the following version of the implicit function theorem.

Theorem 6.2 (Implicit function theorem for m = 1). Let ψ : Ω → R, Ω ⊂ R
n,

and ψ(α) = υ for some α = (a1, . . . , an) ∈ Ω and υ ∈ R. If ∂ψ
∂xn

(x) 6= 0 then the

following hold.

1. There is a function ζ(x1, . . . , xn−1), defined near (a1, . . . , an−1) ∈ Ω ∩
(Rn−1 × {an}), such that

ψ(x1, . . . , xn−1, ζ(x1, . . . , xn−1)) = υ.

2. Near α the given equation has no solutions other than the ones described

in 1.

3. Near α, Lψ(υ) is a (n− 1)-dimensional manifold, and its tangent plane at α

is perpendicular to ∇ψ(α).

4. The derivative of ζ at (a1, . . . , an−1) is given by

ζ
′

(a1, . . . , an−1) =

[
∂ζ

∂x1
, . . . ,

∂ζ

∂xn−1

]

(a1, . . . , an−1)

=

[

−
∂ψ
∂x1

(α)
∂ψ
∂xn

(α)
, . . . ,−

∂ψ
∂xn−1

(α)
∂ψ
∂xn

(α)

]

In short under the above conditions an can be locally expressed explicitly as
a function of (a1, . . . , an−1). Moreover the above theorem states how and under
which conditions the implicit function can be differentiated (implicit differentia-
tion). Note that ∇ψ(α) is the normal vector to the tangent plane. The direction of
that vector will shortly play an important role.

6.3.2 Implicit representations for closed shapes

Now we can rethink what shapes in our images are and how they can be represented
by implicit functions. Generally the shape is on the surface of an object. Let us first
give a more formal definition of what is meant by objects.
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Definition 6.3 (Connected object). Let Ω be an open subset of Rn and let B be

an open pathwise connected subset of Ω. Then we call B a connected object in Ω.

Since B is a subset of R
n it is a n-dimensional manifold. The boundary ∂B is a

(n− 1)-dimensional closed manifold.

The (n− 1)-dimensional manifold from the above definition is our first shape.
Later on we compose more complex shapes from this simple building block. Con-
nected objects have an inside and an outside. We can build predicates based on the
object itself, or on the boundary and a fixed but arbitrary point. A point x ∈ Ω is
inside a connected object B ⊂ Ω ⊂ Rn if

1. x ∈ B or,

2. if there exists a connected path from x to a fixed but arbitrary point x∗ ∈ B
that does not include any point in ∂B.

A point is outside if it is not inside. Predicate 1 is trivial. Predicate 2 utilizes
information about the boundary of the object and one additional point inside the
object. It is clear that the information of the boundary alone is not sufficient to
tell whether a point is inside the object, because it is of lower dimension. Like in
Flatland [1] where a two-dimensional being is visited by a sphere which it perceives
as a circle varying in diameter as it moves through the two-dimensional plane.
Some additional information is always needed to determine whether a point is in-
or outside of the object defined by its boundary.

Note that the implicit function is defined on the whole of Ω and the interface
∂B is given by its zero level-set. We have not said how the implicit function is
defined on the rest of Ω. That leaves us with the freedom to incorporate the concept
of inside and outside into the implicit function. We simply encode the predicate as
the value of the implicit function.

Idea 6.1. Define the implicit function ψ of which ∂B is the level set at level 0, such

that

sign(ψ(x)) =







−1 , if x ∈ B
0 , if x ∈ ∂B
1 , otherwise

A common choice for ψ(x) is the signed distance of x from the level set at level
0. The sign is chosen as described above.
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Definition 6.4 (distance function). Let B ∈ Ω ⊂ Rn be a closed object, and ∂B
its boundary, then the corresponding distance function d(x; ∂B) is defined as

d(x; ∂B) : R
n → R

+
0

x 7→ min
x0∈∂B

(||x− x0||)

Thus d(x) is the distance to the closest point on ∂B in some norm || · ||.

If not indicated otherwise we use the euclidian norm || · ||2. Note that if there is
a unique closest point x0 ∈ ∂B then |∇d| = 1 and∇d is the normal. The definition
of the signed distance functions is now straightforward. It is a combination of
idea 6.1 and definition 6.4.

Definition 6.5 (Signed distance function). Let B ∈ Ω ⊂ Rn be a closed object,

and ∂B its boundary, then the corresponding signed distance function ψ(x; ∂B) :

Rn → R is an implicit function with |ψ(x; ∂B)| = d(x; ∂B) for all x ∈ Ω. Further-

more the sign indicates whether x is inside or outside of the object, i.e.

ψ(x; ∂B) =







−d(x; ∂B) , if x ∈ B
0 , if x ∈ ∂B

+d(x; ∂B) , otherwise

Again, if there is a unique closest point x0 ∈ ∂B then |∇ψ(x; ∂B)| = 1. Re-
member that ∇ψ(x; ∂B) is the normal vector to the tangent plane. The signed
distance function then is the distance to that tangent plane with an outward normal.
From now on we assume that ψ is a signed distance function of a zero level set.

The advantage of the signed distance function is that we get the relation of
a point x to the object and its boundary with just one function evaluation. The
disadvantage is that we have to compute a function in R

n while the actual boundary
of object, the shape we are interested in, is only (n − 1)-dimensional. For the
discretized version that means that we have to compute the distance function on
the whole grid. Often we do not need to know the signed distance function on the
whole domain, but only in a narrow band around the represented shape.

Definition 6.6 (Narrow band signed distance function). Let B ∈ Ω ⊂ R
n be a

closed object, ∂B its boundary, and b ∈ R the bandwidth, then the corresponding
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narrow band signed distance function is

ψ(x, b; ∂B) =







−b , if ψ(x, ∂B) < −b
b , if ψ(x, ∂B) > b

ψ(x, ∂B) , otherwise

.

Note that ∇ψ(x, b; ∂B) ≡ 0 outside the band, and that the difference of two
signed distance functions with the same bandwidth is 0 outside the band. The
importance of the latter fact will become obvious, when we later define a distance
functional with signed distance functions.

So far we have only defined the implicit function for the boundary of closed
objects as defined in definition 6.3. In the next section we discuss how we can
construct implicit functions for parts of these shapes and lower dimensional shapes.

6.3.3 Implicit representations for shapes of arbitrary
codimension

Two main approaches for the construction of level set methods for objects of ar-
bitrary codimension can be found in the literature. De Giorgi [22], Ambrosio and
Soner [3] used one scalar valued function to represent codimension k objects, and
Burchard et al. [9] used the intersection of k scalar valued functions to represent
codimension k objects. The latter alternative is the natural consequence of theo-
rem 6.1 (implicit function theorem). Both approaches have mainly been used in the
evolution codimension k > 1 objects based on their configuration (geometrically
based motion). In the present context a template level set is to be transformed in
relation to a reference level set. The registration has to be driven by some force
that decreases the distance between the reference and template representation. One
of the arguments against the use of a single scalar valued function brought forth
in [9] was that “the handling of topological changes does not carry over”. They
describe a phenomenon called “thickening” where the zero level set develops a non
empty interior when curves try to merge. We do not face this problem here, be-
cause the functions that contribute to the level set representation of the template are
not evolved separately, but are subject to the same transformation. Thus, we can
and make use of both approaches, but we start with the representations via multiple
scalar valued functions.

The following lemma about the relation of codimension and intersection gives
some indication on how submanifolds with a higher codimension can be con-
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structed from codimension one submanifolds.

Lemma 6.1 (Codimension and intersection). Let V1 and V2 be submanifolds of a

manifold W ⊂ Rn. If V1 has codimension k1 and V2 has codimension k2, then

max(k1, k2) ≤ codim(V1 ∩ V2) ≤ k1 + k2.

Proof. Let V1 be given by the zero level set of ψ : Rn → Rk1 , and V2 by the zero
level set of φ : Rn → Rk2 , then V1 ∩ V2 is given by the system of equations

ψ1(α1, . . . , αn) = 0
...

...
...

ψk1(α1, . . . , αn) = 0

φ1(α1, . . . , αn) = 0
...

...
...

φk2(α1, . . . , αn) = 0

.

The codimension is the rank of the Jacobian of that system. Since Jψ has rank k1

and Jφ has rank k2, the minimal rank of the Jacobian of the combined system of
equations is max(k1, k2). The maximal rank is k1 + k2.

If the two submanifolds from lemma 6.1 intersect transversally, the codimen-
sions add exactly. Two submanifolds are said to intersect transversally if at every
point of the intersection the separate tangent spaces at that point together generate
the tangent space of the ambient manifold. To construct codimension two mani-
folds in R2 we can use the intersection of two lines. In the three-dimensional case
we need the intersection of a line and a plane, where the line is the transversal in-
tersection of two planes. Note that two curves in R3 are only transversal if they do
not intersect at all. A circle in R3 is the intersection of a sphere (codimension one),
and a plane (codimension one).

This construction principle can easily be applied to the level sets of implicit
functions. Transversality translates into the rank of the Jacobian of ψ. The inter-
section of two submanifolds translates into the solution of a system of equations
comprising their corresponding implicit equations, i.e. the zero level set of the new
implicit function is the intersection of the zero level sets of implicit functions that
correspond to codimension one manifolds.

Lemma 6.2. Let ψi, . . . , ψm, ψi : Rn → R, be signed distance functions, and the
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combined implicit function defined by

ψ(1,...,m) : R
n → R

m

(x1, . . . , xm) 7→ (ψ1(x), . . . , ψm(x)),

then the following hold:

1. The level set of ψ(1,...,m) at level υ is then given by

Lψ(1,...,m)
(υ) =

m⋂

i=1

Lψi(υi).

2. The codimension ofMLψ(1,...,m)
is rank(Jψ(1,...,m)

) .

3. The codimension ofMLψ(1,...,m)
is m ifMLψ1

, . . . ,MLψm
intersect transver-

sally.

Proof. Item 1 follows directly from the definition of the level sets (definition 6.1).

Lψ(υ) = {x|ψ(x) = (ψ1(x), . . . , ψm(x)) = (υ1, . . . , υm)}
= {x|ψ1(x) = υ1 ∧ . . . ∧ ψm(x) = υm}
= {x|ψ1(x) = υ1} ∩ . . . ∩ {x|ψm(x) = υm}

=

m⋂

i=1

Lψi(υi)

Item 2 follows directly from theorem 6.1. Item 3 follows from theorem 6.1 and
definition 6.2.

The zero level set of ψ(1,...,m) is the set of points that all zero level sets Lψi(0)

have in common. Hence it is exactly what we are looking for, but ψ(1,...,m) is not a
(signed) distance function. It maps to a vector of length m that contains the signed
distance to each of the m (n − 1)-dimensional manifolds used to create the new
(n−m)-dimensional manifold.

The distance from Lψ(1,...,m)
(0) is simply given by d(x;Lψ(1,...,m)

), but it is not
possible to define a signed distance function like in section 6.3.2. There we dealt
with codimension one objects, i.e. manifolds which normal space is one-dimensional.
There for each point on the manifold there were always only up to two points with
the same distance. One in the direction of the normal vector and one in the opposite
direction. Manifolds of higher codimension do not have this property.
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Lemma 6.3. Let x0 ∈ Lψ(1,...,m)
, υ ∈ R \ {0}, and

N (x0, υ) = {x| d(x, Lψ1,...,m) = υ ∧ ||x− x0|| = υ}

be the set of points with distance υ to x0 then the following hold:

1. For each x ∈ N (x0, υ) there exist βi ∈ R, 1 ≤ i ≤ m such that

x = x0 +
m∑

i=1

βi∇ψi(x0).

2. For m = 1, |N (x0, υ)| ≤ 2.

3. For m > 1, |N (x0, υ)| ≤ ∞.

Proof. 1. The point x has distance υ from the x0. By definition connection
vector has length υ and is orthogonal to the tangent space Tx0Mψ(1,...,m)

. Thus
it has to be an element of the orthogonal complement which according to
theorem 6.1 is span{∇ψ1(x), . . . ,∇ψm(x)}.

2. & 3. Note that ||x − x0|| = υ and item 1 are a necessary conditions for
d(x;Lψ(1,...,m)

) = υ. Hence, only points that fulfill the former two are candi-
dates for the latter. The expression ||x−x0|| = υ is a level set and represents
a (n − 1)-manifold. Specifically it is a (n − 1)-sphere (Sn−1) in the topo-
logical sense with the center x0. The subspace that is spanned by ∇ψi(x0),
1 ≤ i ≤ m is a m-dimensional manifold. The intersection of both is the set
of permissable points. From lemma 6.1 we know that the codimension of the
intersection is at least max(1, n−m) = n−m and at most n−m+ 1.

For m = 1 the (n − 1)-sphere is intersected transversally by a line, i.e. the
intersection are two points (0-manifolds) of distance υ from the origin x0 in
direction of ∇ψ1(x0).

For m > 1 the intersection is a (m−1)-manifold with infinitely many points.
For example, form = 2 the (n−1)-sphere is intersected with a plane through
x0, and the result is a 1-sphere, i.e. a circle.
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6.3.4 Implicit representations for non-closed shapes

So far we have only dealt with closed codimension one manifolds, i.e. boundaries
of connected objects (see definition 6.3). These manifolds were always closed in
the sense that you could take any direction along the manifold. We cannot model
curve segments are surface patches with this technique. In the following we will
discuss a technique to “cut” pieces out of the closed manifolds. That is equivalent
to creating boundaries or barriers on the manifold.

A boundary on a (n− 1)-dimensional manifold is a (n− 2)-dimensional man-
ifold. The codimension of the boundary is one less than that of the manifold. In
two-dimensional space, for example, the ends of a curve segment are points. The
curve has codimension one and the points have codimension two. In the last section
we saw that such a lower dimensional manifold can be created by intersecting two
(n − 1)-dimensional manifolds. With same technique we can cut pieces out of a
manifold. A manifold of equal dimension serves as a barrier, that is the boundary
between the part of the original manifold that belongs to the sought for segment,
and the rest. We can then define the segment as the part of the original manifold
that is inside the “barrier” manifold.

Definition 6.7. Let ψ1, . . . , ψm : Rn → R, then the zero level set of the segment of

the manifold given by Lψ1 is

Lψ1 |ψ2,...,ψm =

{

x|ψ1(x) = 0 ∧
m∧

i=2

ψi(x) < 0

}

.

A simple example in two dimensional space is shown in figure 6.2. The segment
that is cut out of Lψ1 is situated in the grey region defined by the area where ψ2 < 0,
i.e. the inside of the object defined by Lψ2 . The boundaries of the curve segment
are points, i.e. 0-manifolds, and are marked by black dots.

6.3.5 A unified implicit representation via an unsigned distance
function

So far we have defined more complex objects via a number of implicit functions as
proposed in [9]. That lead to vector valued functions. The other option would be
to define a single scalar function that has the same zero level set [3, 22]. Note that
we usually get the zero level set as an input and have to construct a proper implicit
representation around it. The advantage of a single scalar function would be that
we do not have to treat all sorts of special cases. We could imagine a number of
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��
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ψ2 > 0

Lψ2

Lψ1

ψ2 < 0

Figure 6.2: It is illustrated how an open curve is created from a closed one. The closed
curve is given by the zero level set of ψ1. The open curve is given by the segment that
is restricted to the inside of a barrier manifold defined by the zero level set of ψ2. The
intersection of both level sets are points which are also the boundary of the open curve.

combinations between the sort of objects described in section 6.3.3 and 6.3.4, i.e.
an object that is given by the level set

Lψ1,...,ψj |ψj+1,...,ψm := {x|∀i ∈ [1, j] : ψi(x) = 0 ∧ ∀i ∈ [j + 1, m] : ψl(x) < 0} .

Not only that we have to deal with all those m functions but also we likely have to
design a distinct distance functional for each situation.

As pointed out in section 6.3.3 it is not possible to define a signed distance func-
tion in such a case. It is not even possible for non-closed objects with codimension
one. While we are able to define a signed distance function in a narrow band or-
thogonal to the segment, that is not possible for the higher codimension boundary,
e.g. the end points of an open curve. Obviously we would also have to represent
those, to be able to properly track them.

The simple idea is to use an unsigned distance function instead. The minimal
distance of any point in the domain to the zero level set is well defined. Apart from
the advantages of such an approach with respect to flexibility and reusability there
are also some disadvantages that should not go unnoticed. Firstly, we loose any
notion of inside and outside that is still present in the representation of non-closed
objects in section 6.3.4. Secondly there is a “kink” in the function at the zero level
set, i.e. the function is not differentiable exactly at the location of the represented
shape. The remedy proposed by Ambrosia and Soner[3] and Giorgi[22] is to use
the squared distance function instead. Another option frequently encountered is to
replace the distance function with a differentiable approximation around zero [40].
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For the definition of a distance functional it is only important that the function
decreases monotonously towards the zero level set. On the discretized grid those
kinks are smeared out by the discretization. In the worst case the derivative is zero,
which can also happen when we use a smooth version of the distance function.
Due to construction, the derivative close to the zero level set will nevertheless al-
ways be in [−1, 1] modulo h. We can expect the method is well behaved in some
sense, because the functional is regularized. Like for the images where the areas
of constant gray values are moved along with the edges that drive the registration,
the regularization will recover the correct solution even if some derivatives are not
approximated correctly. In the classical level set method the regularization by cur-
vature is used to obtain smooth viscosity solutions even in the presence of kinks in
the implicit functions[40, 43].

6.4 Distance functions

The representations introduced in the previous section allow us to represent all
kinds of possible shapes. Through the transformation of the representation we also
transform the represented shape. In order for these representations to drive the
registration process we have to define suitable distance functionals. In this section
we propose such distance functionals.

6.4.1 Distance function for closed shapes

A straightforward approach would be to minimize the area inside ψT that is outside
ψR and vice versa. This leads to the symmetric distance

DArea
ψ =

∫

Ω

H(ψT (x− u(x)))(1−H(ψR(x)) (6.2)

+(1−H(ψT (x− u(x))))H(ψR(x))dx

where

H(x) =

{

0, for x < 0

1, otherwise

is the Heaviside-function. This distance function has already been proposed in [35].
When ψ represents a closed object 1 − H(ψ) produces an image with a constant
value of 1 for the interior and 0 for the outside. In that case the SSD distance (see
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equation (2.4)) is component-wise equivalent to (6.2) because

HψT (1−HψR) + (1−HψT )HψR

⇔ HψT − 2HψTHψR +HψR

H(x)=0∧1⇔ (HψT )2 − 2HψTHψR + (HψR)2

⇔ (HψR −HψT )2 = ((1−HψT )− (1−HψR))2

with HψT := H(ψT (x − u(x))) and HψR := H(ψR(x)). The second step is only
possible because H does only assume the values 0 and 1.The derivative of DArea

ψ

and DSSD
H(ψ) with respect to u are

∂DArea
ψ

∂u
= −

∫

Ω

δ(ψT (x− u(x))))∇ψT (x− u(x))) · (6.3)

(2H(ψR(x))− 1)dx

∂DSSD
H(ψ)

∂u
= −

∫

Ω

δ(ψT (x− u(x))))∇ψT (x− u(x))) · (6.4)

(H(ψT (x− u(x))−H(ψR(x))))dx.

In correspondence with chapter 3 this is also called the negative force. It is easily
verified that both terms are equivalent up to a zero measure. For Computational
purposes δ(x) and H(x) have to be replaced by suitable approximations δa(x) and
Ha(x), with δa = Ha(x). This type of distance functional only makes sense when
the template and reference overlap. The parts of the boundary of the template that
are inside the reference are moved outwards until they coincide with the boundary
of the reference. The parts of the template boundary that are on the outside of the
reference are moved inwards. If there is no part of the reference inside the template
this process continues until the area inside the template is zero. The reason for this
behavior is that −∂DArea

ψ /∂u and −∂DSSD
H(ψ)/∂u are only local descent directions.

Moving the template in the direction of the reference would not change the dis-
tance functional until some part of them overlaps. Hence it is not a local descent
direction. For these reasons one has also to be careful when narrow-band signed
distance functions are used. Outside the band the difference in the distance is zero
and the gradient, too. Thus, only the overlap of the narrow band around the zero
level set is relevant for the computation of the forces.



6.4. Distance functions 91

6.4.2 Distance function for shapes of arbitrary codimension

One could argue that we could simply minimize the distance functional from sec-
tion 6.4.1 for each of the m codimension one manifolds used to construct the codi-
mension m manifold. Since all manifolds are subject to the same transformation
the intersection is also subject to that transformation. The problem with that lies in
the fact that we do not only want to match the object represented by this intersec-
tion, but also other objects, either represented by the zero level set of other implicit
functions, or image data. The only thing we require of the codimension one mani-
folds used in the construction is that they intersect to produce the shape we would
like to represent. In their single form they do not represent any object in the im-
age. Hence minimizing the distance between those codimension one objects would
lead to transformations around their intersection that have no relation to what we
would like to achieve. It might only be meaningful in a small region around the
intersection.

The difference between the intersection of the template and reference can be
described by the integral

DArbi
ψ :=

1

2

∫

Ω

(
m∏

i=1

δ(ψTi(x− u(x)))−
m∏

i=1

δ(ψRi(x))

)2

dx, (6.5)

which is zero when the intersection of the ψTi and the intersection of the ψRi are
identical and nonzero otherwise. The derivative with respect to u is given by

∂DArbi
ψ

∂u
=

∫

Ω

(
m∏

i=1

δ(ψTi(x− u(x)))−
m∏

i=1

δ(ψRi(x))

)

· (6.6)




−

m∑

i=1

δ
′

(ψTi(x− u(x)))∇ψTi(x− u(x))
∏

j=1

j 6=i

δ(ψTi(x− u(x)))




 dx.

The second term of (6.6) is a linear combination of the normal vectors of the tem-
plate codimension one manifolds. The final product term restricts it to the intersec-
tion. Like in (6.3) this definition only makes sense when the representation of the
template and the reference overlap. Again we have to work with an approximation
δa. The support of δa should be chosen such that the representations overlap.

We have made extensive use of the fact that ψ is a distance function here. The



92 Shape constraints

surface integral of ψ over the zero level set would usually be

∫

Ω

δ(ψ(x))|∇ψ(x)|dx. (6.7)

When ψ is a distance function |∇ψ| ≡ 1 except for a few degenerate points. Hence,
we can use the formulation

∫

Ω

δ(ψ(x))dx (6.8)

instead. This trick is frequently used in the classical level set methods. The unit
normal and curvature

N :=
∇ψ
|∇ψ| ,

κ := ∇ ·
( ∇ψ
|∇ψ|

)

,

simplify to

N := ∇ψ,
κ := ∆ψ.

As a result one does not have to deal with |∇ψ| in the denominator which is always
icky because the denominator may be zero. As ψT is transformed it might not be a
distance function anymore. We are mainly interested in the direction of ∇ψT , but
when the gradients become too steep that is a problem and the implicit function has
to be reinitialized to the zero level set.

6.4.3 Distance function for non-closed shapes

The surface integral over the non-closed object is given by

∫

Ω

δ(ψ1(x))

m∏

i=1

H(ψi(x))dx.

The product term extracts the relevant part of the zero level set of ψ1. Hence the
distance between reference and template representation can be expressed by

DBarrier
ψ :=

1

2

∫

Ω

(

δ(ψT1(x− u(x)))
m∏

i=2

H(ψTi(x− u(x)))
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− δ(ψR1(x))

m∏

i=2

H(ψRi(x))

)2

dx.

The associated force is then given by

∂DBarrier
ψ

∂u
=

∫

Ω

(

δ(ψT1(u))

m∏

i=2

H(ψTi(u))− δ(ψR1)

m∏

i=2

H(ψRi)

)

·
[

−δ′

(ψT1(u))∇ψT1(u)

m∏

i=2

H(ψTi(u))

−δ(ψT1(u))






m∑

i=2

δ(ψTi(u))∇ψTi(u)
m∏

j=2

i6=j

H(ψTj(u))









 dx,

where the x argument was omitted for the sake of readability.
The support of the approximation δa should be large enough for both repre-

sentations to touch. Like for the objects with arbitrary codimension a separate
registration of the ψTi to the ψRi is not an option because the functions with indices
2 ≤ i ≤ m only define the object boundary and do not represent any objects in the
image. Furthermore the part of ψT1 and ψR1 that lies outside the barrier does not
necessarily have any relation to an object in the image either.

6.4.4 Distance function for the unified approach

For the unified approach the surface integral is given by (6.8). The distance func-
tional then is

DUnified
ψ =

∫

Ω

(δ(ψT (x− u(x)))− δ(ψR(x)))2 dx. (6.9)

Although we have only one function for each representation we cannot minimize
some area as in (6.2) because ψT and ψR are not signed distance functions. The
derivative with respect to u is given by

∂DUnified
ψ

∂u
= −δ′(ψT (x− u(x)))∇ψT (x− u(x)) (6.10)

· (δ(ψT (x− u(x)))− δ(ψR(x))) .

As mentioned in section 6.3.5 has ψT to be a smooth approximation to the distance
function that is differentiable around the interface. Concerning the approximation
of δ the same as for the other distance functionals applies. From the formulation
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some of the advantages of the unified approach become more obvious. We only
need ψT and ψR in a region around the zero level set. Additionally the number of
necessary function evaluations is less than for the other functionals. That leaves us
with a smaller memory footprint and faster computation times. That all comes at
the cost of the disadvantages already discussed in section 6.4.4.

6.4.5 Approximations for H and δ

There are a couple of popular approximations for H(x) and consequently also
δ(x) := ∂H(x)/∂x. One is the sigmoid or logistic function.

Hsig
a (x) :=

1

1 + e−x/a

δsig
a (x) :=

a−1e−x/a

(1 + e−x/a)2

A nice property is the fact that the derivatives δsig
a and δsig

a
′ can be expressed in

terms of Hsig
a , i.e.

δsig
a (x) = a−1Hsig

a (x)(1−Hsig
a (x)),

δsig
a

′
(x) = a−2Hsig

a (x)(1−Hsig
a (x))(1− 2H sig

a (x)).

Hence, we always only need one evaluation of the exponential function. The pa-
rameter s determines the slope of H sig

a and thus also the slope of δsig
a .

Another approximation that has been used e.g. in implicit active contours [11]
is

Hatan
a (x) :=

1

2

(

1 +
2

π
arctan

(x

a

))

,

δatan
a (x) :=

a

π(a2 + x2)
.

Both aforementioned approximations have global support and are C∞. For com-
putational and storage considerations we would like to use narrow band distance
functions. That means we could use an approximation with compact support. Fur-
thermore functions that are C2 would be sufficient. In [52] the following approxi-
mation C2 is proposed:
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Figure 6.3: Plots of approximations via sigmoid functions for different values of the scal-
ing parameter a. Hsig

a is plotted as a solid line, δsig
a as a dashed line, and δsig

a
′

as a dotted
line.

Hsin
a (x) :=







1
2

(
1 + x

a
+ 1

π
sin
(
πx
a

))
, if |x| ≤ a

1 , if x > a

0 , if x < −a
,

δsin
a (x) :=

{
1
2a

(
1 + cos

(
πx
a

))
, if |x| ≤ a

0 , otherwise
.

When we just need δ and derivatives thereof as e.g. in (6.10) we could also use
radial basis functions with compact support. Usually the distance criterion is built
into the radial basis function, i.e. a center and another point are the input arguments.
In our case the distance is already given by the distance function ψ. In case of
signed distance functions we have to use |ψ|. We use the radial basis functions
proposed by Wendland in [49]. Specifically the C2 function

δWend
a (x) =

3

2
(1− |x|/a)4

+(4|x|/a+ 1),
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Figure 6.4: Plots of approximations via Hatan
a for different values of the scaling parameter

a. Hatan
a is plotted as a solid line, δatan

a as a dashed line, and δatan
a

′ as a dotted line.

where

(y)+ =

{

y , if y > 0

0 otherwise
.

Obviously δWend
a ≡ 0 if x > a. Hence a is the maximal relevant distance to the

zero level set and also the bandwidth of the narrow band distance function.

6.5 Integration into the registration process

With the distance functionals defined in the previous section we can now expand
Eα (see equation (2.3)). We simply add the distance functionals for the additional
constraints and obtain the new functional

Eψ
α (u) := DSSD +

l∑

i=1

γiD[Area|Arbi|Barrier|Unified]
ψ + αR. (6.11)
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Figure 6.5: Plots of approximations via sine and cosine functions for different values of
the scaling parameter a. H sin

a is plotted as a solid line, δsin
a as a dashed line, and δsin

a
′ as a

dotted line.

The coefficients γi are weighting factors that determine the influence of each of the
l structural constraints on the registration procedure. The derivation of the normal
equations is done via Taylor expansion of the additional terms as in chapter 3. Note
that all the proposed distance functional are quadratic and hence we can use the
Gauss-Newton approach with all of them.



CHAPTER 7

Results for shape constraints

In this chapter we give examples for the various representations and distance func-
tional introduced in the previous chapter. There is one exception, the closed shapes
from section 6.4.1 are not considered here. That is because of the similarity of the
distance functional to the original SSD functional used with images containing ob-
jects with constant gray value (see the results in section 5.3. At the end we revisit
the motivational example from section 6.1.1 (see figure 6.1) and demonstrate the
benefit of additional shape constraints there.

7.1 Shapes of arbitrary codimension

The simplest example for an object of arbitrary codimension is a point in two-
dimensional space. Although this is a case that is easily covered by other tech-
niques because the correspondence is trivial it is well suited to illustrate various
aspects. In section 7.2 the same example will be used to illustrate the influence of
the approximation parameter a. We use a 256× 256 image. The template point is
located at (140, 135), and the reference point is located at (128, 128).

When we use DAribtrary
ψ the points are modeled by two distance functions. The

point is given by the intersection of their zero level sets. The functions are shown
in the left and middle column of figure 7.1. The template functions are displayed in
the top row and the reference functions are displayed in the bottom row. The zero
level sets are indicated by a black line.

When we use DUnified
ψ the points are modeled by a single distance function

which is shown in the right column of figure 7.1. The zero level set which is just
one point is indicated by the intersection of two black lines.

The resulting transformations are shown in figure 7.2. The template point is
indicated by a black cross, the reference point by a gray cross. In the bottom row
a magnification of the region around the points is shown. The approximation pa-
rameter a was 2/3 and three levels in the multiresolution framework were used.
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Figure 7.1: The top row shows the distance functions for the template point (140, 135).
The bottom row shows the distance functions for the reference point (128, 128). The left
and middle columns show the two distance functions used for DArbi

ψ . The zero level set
is indicated by a black line. In the right column the distance function used in DUnified

ψ is
displayed. The zero level set is indicated by the intersection of two black lines.

The representations of the shape constraints were treated like image data in the
multiresolution framework. Since we deal with only one point we avoid the corre-
spondence problem and the exact transformation u∗ can be easily calculated from
the location of the template and reference point.

140 = 128− u∗1(128, 128)/h ⇒ u∗1(128, 128) = 12h

135 = 128− u∗2(128, 128)/h ⇒ u∗2(128, 128) = 7h

The computed results for the reference point location (128, 128) are given in ta-
ble 7.1 along with the relative error with respect to the expected transformation
u∗. The relative error is in the order of 10−3. Remember that we do not register
the points but their representations and usually have no knowledge about the cor-
respondence. Hence we have to resign to such simple examples for an analysis. In
figure 7.3 the transformed zero level sets for DArbi

ψ are visualized. The zero level
sets are at the interface from black to white. The left and the middle image show
them separately. The two images are combined in the right image. The images also
show the decay of the transformation away from the reference point. The strongest
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u(128, 128)/h relative error
u1/h u2/h |u1 − u∗1|/u∗1 |u2 − u∗2|/u∗2

DArbi
ψ 11.9779 6.9939 1,846 · 10−3 8,717 · 10−4

DUnified
ψ 12.0221 7.0170 1,839 · 10−3 2,426 · 10−3

Table 7.1: Transformation vectors for point example at location of the reference point
(128, 128) for two representation strategies. The transformation vector normalized to im-
age pixels is given in the left column. The relative error with respect to the actual transfor-
mation is given in the right column.

deformations are at the location of the reference point. In the next section we use
the example from this section to investigate the influence of the approximation pa-
rameter a.

7.2 Influence of the approximation parameter a

The parameter a stretches the approximations Ha and δa for a > 1 and does the
adverse for a < 1. For approximations with compact support this is equivalent
to varying the size of the support. We argued that a has to be chosen such that
the representations of the reference and template overlap, because otherwise the
template is not transformed in relation to the reference. Obviously it should not be
too large because then the functions ψ are registered to each other and not the only
the object they represent. We tested various choices of a for the point matching
example from section 7.1 with DUnified

ψ . We chose this example because only one
function is involved and the correspondence is known. This “simplicity” reduces
the number of possible side effects. For the computations we used three levels in
the multiresolution approach.

The results are displayed in figures 7.4 and 7.5. Figure 7.5 is a zoomed in
version of figure 7.4. The values for a are 4, 1, and 2

3
. In the left column the length

of transformation vectors, normalized to 1 with respect to the maximal length of
the transformation vector, is shown. The right column displays the contour lines
of the difference between the transformed template function ψT and the reference
function ψR. A cross indicates the position of the reference point.

We start with the left column. The length of the transformation vectors decays
away from the reference points. The blob has the shape of an ellipse where one
principal axis is in the direction of the template point and the other orthogonal to
it. This is what we expect since the isocontours of δa(ψ) are circles when ψ is a
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Figure 7.2: Results for the registration of a point. The transformation is displayed along
with the template and reference point which are indicated by a cross. The black cross
corresponds to the template point and the gray cross corresponds to the reference point. On
the left is the result for DArbi

ψ and on the right the result for DUnified
ψ . The bottom row is a

magnification of the relevant part of the images from the top row.
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(a) (b) (c)

Figure 7.3: Transformed interface for the point example with DArbi
ψ . The left and mid-

dle image show the transformed zero level sets separately, and the right image shows a
combined view. The zero level set is at the interface from black to white.

distance function. The rate of decay depends on the choice of a, because the rate
of decay of the force away from the reference point also directly depends on the
choice of a. As we increase a we also increase the area around the zero level set
of ψT and ψR that is relevant for the registration process. A larger part of ψT is
matched to ψR, where the influence depends on the value of δa.

This effect is also visible in the contour plots in the right column. Since ψT
and ψR correspond to different points in space they are only equal on the line that
intersects the connection between the two points orthogonally at half the points
distance. After registration the difference between ψT and ψR should be zero at
least in the reference point. The difference around the reference point indicates
how much of the surrounding region has been matched. For large a the isocontours
of the difference should be more widely spaces than for small values of a. Away
from the reference point the variation in the results for different a should diminish.
The latter effect can be observed in figure 7.4. The former is more obvious in the
zoomed in plots in figure 7.5. As the size of the region that is strongly transformed
decreases the difference in the representing functions increases as indicated by the
isocontours of the difference between ψR and the transformed ψT .

Here we have only shown for values of a for which the registration “worked”.
When a is chosen too small the representation of the template and reference do not
overlap properly and the template representation is transformed subject to its own
properties without any connection to the reference.

When a is chosen too large we see two effects. Firstly, as already indicated by
the results shown in figure 7.4 and 7.5 the transformation is influenced by parts of
the functions that are far away from their zero level sets. Secondly, the gradients are
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Figure 7.4: The influence of the approximation parameter a on the result is illustrated here.
The left column displays the the length of the transformation vectors, normalized to 1 with
respect to the maximal length, for the point matching example with DUnfied

ψ with different
values of a.In the right column the contour lines of the difference between the transformed
template distance function ψT and the reference distance function ψR is shown. The po-
sition of the reference point is indicated by a cross. For higher values of a the region
that influences the result is larger. Hence a larger region of the distance functions is well
matched as indicated by the vector length and contour plots.



104 Results for shape constraints

100 110 120 130 140 150 160

100

110

120

130

140

150

160

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(a) a = 4

−8
−7

.5

−7
−6.5

−6
−5.5

−5−4.5
−4

−3.5

−3

−2
.5

−2

−2

−1.5

−1
.5

−1

−1

−0.5

−0
.5

0

0

0.5

0.
5

1

1

1.5

1.
5

2

2

2.5

2.
5

3

3
3.5

3.
5

4
4

4.
5

5

5.5

6

6.5 7

7.5

8

100 110 120 130 140 150 160

100

110

120

130

140

150

160

−6

−4

−2

0

2

4

6

8

(b) a = 4

100 110 120 130 140 150 160

100

110

120

130

140

150

160

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(c) a = 1

−9
−8

.5

−8

−7.5
−7

−6.5−6
−5.5−5

−4.5

−4
−3.5

−3

−3

−2.5−2

−2

−1.5

−1
.5

−1

−1

−0.5

−0
.5

0

0

0.5

0.5

1

1

1.5

1.
5

2

2

2.5

2.
5

3

3 3.5

3.
5

4

4

4.5

4.
5

5

5
5.

5

6
6.5

7

7.5

8
8.

5

99.5

100 110 120 130 140 150 160

100

110

120

130

140

150

160

−8

−6

−4

−2

0

2

4

6

8

(d) a = 1

100 110 120 130 140 150 160

100

110

120

130

140

150

160

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(e) a = 2

3

−9
.5−

9

−8
.5

−8

−7
.5

−7
−6

.5

−6
−5

.5

−5 −4.5 −4

−3.5

−3

−3

−2.5

−2
.5

−2

−2

−1.5

−1
.5

−1

−1

−0.5

−0
.5

0

0

0.5

0.5

1

1

1.5

1.
5

2

2

2.5

2.
5

3

3

3.5

3.
5

4

4 4.5

4.
5

55
5.

5

66.5

7
7.

5
8 8.
5 9

9.5

10

100 110 120 130 140 150 160

100

110

120

130

140

150

160

−8

−6

−4

−2

0

2

4

6

8

(f) a = 2

3

Figure 7.5: This figure is a zoomed in version of figure 7.4. It allows to better appreciate
the differences for the various values of a. For a description please refer to figure 7.4.
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less strong and the registration might stop prematurely. The transformation goes in
the right direction, but its not large enough to match the representations well. When
not only one, but also other objects and images data are registered, a value of a that
is too large hinders the registration of these other objects and the image data, too.

Hence, when a has to be chosen large because the distance between the repre-
sented objects is large, its value should be reduced as the distance decreases during
registration. As a is decreased the registration focuses on the actual object. Varying
a in the registration is a multiscale technique. An analogue that is sometimes used
in the registration of images is the smoothing of the images with varying strength to
first match coarse image components and then progress to finer features. This pro-
cedure can be used instead of or in conjunction with the multiresolution approach
introduced in section 4.5.

7.3 Non-closed shapes

When we deal with non-closed shapes we have the choice between the barrier tech-
nique using additional “barrier functions” or we can use the unified representation.
The simplest example for a non-closed shape is an open curve in two-dimensional
space. The construction for the representation with barriers is already illustrated in
figure 6.2. Hence, we do not show the corresponding distance functions here. The
transformations for both representation strategies are displayed in figure 7.6. The
black curve is the template curve and the gray curve is the reference curve. The
bottom row is a magnification of the images in the top row in the region around
the curves. The transformed template curve matches the reference curve almost
exactly and and therefore an overlay with the recovered zero level set does not give
any information. Hence, we abstained from such a visualization. Remember that
the difference between the barrier and the unified representation is that thatDBarrier

ψ

contains terms that explicitly enforce matching of the end points defined by the
intersection of the zero level sets and that some notion of in- and outside in inher-
ent. For the unified approach matching of the end points is due to regularity of the
solution and there is not concept of in- and outside.

7.4 Combination of different shape constraints

We cannot only work with constraints of the same type but also use constraints of
various types at the same time. We just have to add the appropriate functionals (see
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Figure 7.6: Results for the registration of an open curve are shown. The transformation
is displayed along with the template and reference curve. The black curve is the template
curve and the gray curve is the reference curve. On the left is the result DBarrier

ψ and on the
right side the result for DUnified

ψ . The bottom row is a magnification of the relevant part of
the images from the top row.
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also equation (6.11)). Here we give an example of a combination of the constraints
used in the sections above, the open curve and the point constraint. For the open
curve we use DBarrier

ψ and for the point constraint we use DUnified
ψ .

The computed transformation is displayed in figure 7.7(a) and figure 7.7(c)
shows a magnified version of the relevant part. The black curve is the template
curve and the gray curve is the reference curve. The position of the point constraint
is indicated by a cross. The colors for template and reference are the same as for
the curve. A contour difference plot like the ones used in section 7.2 is presented
in figure 7.7(b) and a magnified version in figure 7.7(d).

When only one of the constraints was used the transformation extends smoothly
into the space surrounding the transformed representation (see figure 7.4 and 7.6).
In the combined case the transformation is influenced by the other constraint, too.
In some situations the different representations even “compete”. That becomes
obvious when one compares figure 7.6(c) and 7.7(c). Where the point is close to
the curve the transformation is clearly different from the one without the point. The
point and the curve have to be moved in different directions. This is also indicated
in the contour difference plots in figure 7.7(b),(d). While the zero contour still goes
through the reference point the region towards the curve is clearly distorted by the
transformation of the curve. That is not a problem since only the part close to the
zero level set contributes to the registration process.

If however we would place the template point closer to the curve, registration in
that region would be hindered by the conflicting directions in which the curve and
the point have to be moved. Yet, this is not a problem specific to our approach, but
a general problem in image registration. If locally discontinuous transformations
are required one has to model the regularization term differently, e.g. use Total-
Variation (TV) based regularization [21].

7.5 Combination of image data and shape
constraints

The initial motivation for the development of the techniques presented above was
the need for additional constraints on the registration of image data. Let us re-
view the motivational example from section 6.1.1 (Figure 6.1). We performed the
computations with the same parameters with the difference that this time we used
an additional constraint for the critical region identified by the circle in figure 6.1.
Here we usedDBarrier

ψ . The results are displayed in figure 7.8. The leftmost column
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Figure 7.7: Result for the combination of two different types of constraints. It is a com-
bination of the example in figure 7.6 and figure 7.4. For the point constraint the unified
approach and for the open curve the barrier approach is used. The transformation is shown
in (a). The black curve is the template curve and the light gray curve is the reference curve.
Figure (b) shows the same contour difference plot used in section 7.2. The figures (c)
and (e) are magnifications of the relevant parts of figures (a) and (b). The transformed
template point and curve are shown in (e).
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shows the reference, the second column the template. The zero level sets of the ad-
ditional constraint are indicated by a white line. The result without the additional
constraint is displayed in the middle column. Clearly the registration result is not
what we would like to see. The result for just the additional constraint without the
image data is displayed in the fourth column. The zero level sets are well matched,
but the rest of the image is just “pulled along”. In the rightmost column the result
for the additional constraint in conjunction with the image data is shown. Now
also the image features are matched. Remember that we cannot expect a perfect
match since the images are slices from three-dimensional data sets and are brains
of two different individuals. Nevertheless it is easier to visualize the effects in two
dimension. The main issue was that a part of the temporal lobe was registered to
the parietal lobe which is anatomically wrong. This problem has been resolved by
the use of the additional constraint.
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(a) Resolution 0

(b) Resolution 1

(c) Resolution 2

(d) Resolution 3

(e) Resolution 4

Figure 7.8: Final results for each stage in the multiresolution framework for the moti-
vational example in figure 6.1. One of the critical parts is enlarged. The columns show
from left to right, the reference image, the template image, the result when just the image
difference is used, the result based just on the additional constraint, and the result based
on the image difference and the additional constraint. On the finest resolution the chosen
constraint is indicated by a white line.



CHAPTER 8

Conclusion

We introduced a inexact Newton method for the solution of the image registration
problem based on image differences. The linearization of the non-linear functional
results in a regularized Gauss-Newton method. To improve robustness and speed,
and to facilitate the computation of large transformations a multiresolution frame-
work is used. Regularization in each step of the outer iteration is controlled by
a trust region strategy based on the Armijo-Goldstein rule. An efficient multigrid
solver that deals with the jumping coefficients in the resulting system of linear equa-
tions has been proposed. In addition to the numerical investigation of the solver,
we compared the regularized Gauss-Newton method with a related regularized gra-
dient descent method. The only difference between the two methods are image
dependent coefficients in the partial differential operator. We demonstrated that
in certain situation the Gauss-Newton method is superior to the gradient descent
method, and that that justifies the additional work that has to be invested.

In a second part we investigated the use of additional structural constraints on
the registration process. These constraints were modeled with implicit functions
which zero level sets represented the structural constraints. Distance functional
that can be easily plugged into the existing intensity based minimization method
have been proposed. The effectiveness has been shown in a number of examples.

There are a number of issues that have not been covered here. That especially
concerns issues raised in the last part. We have said little about the efficient com-
putation of distance functions, storage schemes, and reinitialization that might be
necessary during registration. Extensive information on such issues can be found
in [34, 39, 40, 43] and the references therein.

Another problem that will require further attention is the control of the influence
of the additional constraints. In some situation when they are used to disambiguate
they could possibly be switched of when one is close to solution. When they pro-
vide additional information that is not present in the images they should be kept
active up to the end. One possibility might be to control the weighting parame-
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ter with respect to the residual distance. A key problem is that size of the terms
depends on the size and form of the constraint and the different representations
scale differently. Thus, one probably has to tune the parameters relative the others.
Proper experience is needed and problem dependent choices are inevitable. The
goal of a control strategy should be to produce stable results over a large range of
initial values.
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Abbreviations and acronyms

AMG algebraic multigrid

CS correction scheme

CSF cortico spinal fluid

FAS full approximation scheme

FMG Full Multigrid Method

fMRI functional magnetic resonance imaging

GM gray matter

MRI magnetic resonance imaging

NURBS nonuniform rational B-splines

PET positron emission tomography

spd symmetric positive definite

WM white matter

CAD computer aided design

TV Total-Variation

SSD integral (sum) of squared differences
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Nomenclature

∆ vector valued Laplace operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

γ cycle index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

D distance functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

R regularization functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

V function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Ωm
h

discrete domain in m dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

dh defect (residual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

f force [right hand side] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

fh discrete force [right hand side] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

H1 Sobolev space of functions in L2 with weak derivatives in L2 . . . . . . . . . . 12

H1
0 subspace of H1 consisting of the functions with zero boundary values . . 12

IhH prolongation (interpolation) operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

IHh restriction operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

L Navier-Lamé operator [elliptic differential operator] . . . . . . . . . . . . . . . . . . . 5

L2 space of square integrable L2-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Lh discrete Navier-Lamé operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

M partial differential operator (α + β)L+ J tθJθ . . . . . . . . . . . . . . . . . . . . . . . . 14

Mh discrete partial differential operator (α+ β)Lh + J thθJhθ . . . . . . . . . . . . . . 18

R reference image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Rh discrete reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

T template image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Th discrete template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

u solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

uh discrete solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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