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Abstract

In 1982 the discovery of quasicrystals caused a revolution in crystallography and aug-

mented the concept of ordered matter. On this account, Dan Shechtman was awarded the

Nobel Prize in Chemistry 2011. Although quasicrystals are not comprised of a periodically

repeating unit cell, they exhibit long-range order that can be detected in diffraction experi-

ments. Several decisive differences to periodic crystals arise from the fact that quasicrystals

are aperiodic. The rotational symmetry is not restricted to two-, three-, four-, or sixfold.

Another important difference is the existence of so-called phasons, which denote additional

hydrodynamic modes. Analogue to phonons, they do not cost free energy in the limit

of long wave lengths. Phasons are a topic of current research and of many discussions.

They are essential for the description of the elastic properties of quasicrystals and their

topological defects. Yet, their eventual contribution to the stabilization of quasicrystals is

disputed.

Most of the quasicrystals known today are complex metallic alloys consisting of several

elements. In the recent past, several mesoscopic quasicrystals have been discovered, for

instance in micelles or polymeric networks. In particular, the photonic properties of

quasicrystalline structures with such length scales have caught interest. In this work, the

point is to find out by means of computer simulations how colloidal quasicrystals can be

constructed by design under controlled conditions.

Colloids are particles with a diameter in the range of microns that are dispersed in a solvent.

Usually, the particles carry an electrostatic charge in order to stabilize the suspension. In

statistical physics colloidal suspensions are a well-known model system to investigate

atomic processes. On the one hand, the interaction between the particles can be tuned

precisely, and on the other hand motion and position of the particles are directly observ-

able by means of video-microscopy. In addition, the behavior of the suspension can be

influenced by applying external fields. In this work, we use three different methods to

stabilize quasicrystalline order in colloidal suspensions. As an advantage, the perspective

on colloids may grant access to properties involving quasicrystals that remains often denied

in atomic systems.

At first, we consider a two-dimensional suspension that is exposed to an interference

pattern of several laser beams. In a laser field, forces directed towards the spots of high laser

intensity act on the colloids. Therefore, quasicrystalline order can externally be enforced

on the colloidal suspension representing a versatile model system. As particular advantage

of such an optical quasicrystal, phasonic excitations can be implemented by tuning the

individual phases of the laser beams. A phasonic drift causes complex rearrangements
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between the minima and maxima of the intensity field, leading again to complex trajectories

for the colloids. For various rotational symmetries, we determine characteristic areas in

phononic and phasonic space into which all colloids can be mapped. On the basis of

the characteristic areas, similar to an effective unit cell, the trajectories can be predicted.

Furthermore, we investigate the influence of the particle diameter in this system as a model

for molecular deposition on atomic quasicrystalline surfaces. The ratio between the length

scale of the potential and the particle diameter yields self-similar patterns in the colloidal

structure, whose rotational symmetry remains predetermined by the laser field. However,

each pattern belongs to a different local isomorphism class.

Aside from enforcing by external fields, quasicrystalline order may also be stabilized by

modifying the interaction between the particles. In this respect, we show that a concentra-

tion of smaller polymer coils added to the suspension is sufficient to alter the phase behavior

in such a way that colloids self-assemble into a state with dodecagonal symmetry. Since

several experimental implementations on the colloid-polymer mixture are documented in

the literature, our result may provide assistance in growing colloidal quasicrystals in a

controlled manner by processes of self-assembly.

In order to grow quasicrystalline structures comprised of colloids in three dimensions,

we simulate the epitaxy of particles on substrates whose design is borrowed from quasi-

crystalline tilings. Under gravitation the colloids sediment onto the substrate and arrange

according to the predefined order such that quasicrystalline layers emerge upon continued

deposition. A specifically tuned particle-particle interaction is not required in this template-

guided approach. We investigate the growth process for different substrate symmetries

and address the question which tiling is most suitable. Moreover, we explore how defects

in the substrate may influence the grown structure. We differentiate between local flips

in the tiling, as a result of thermally excited phasonic fluctuations, and global defects

like dislocations. In the considered symmetries, dislocations are characterized by a four-

dimensional Burgers vector. During the epitaxial process they lead to defect lines in the

three-dimensional structure, whose course can directly be analyzed in our model. We

elucidate how the elastic strain accompanying a dislocation as well as the position of

the dislocation seed within the substrate affect the course of the defect lines. Moreover,

we explore the topological behavior of the defect lines. Thereby, we discover significant

difference compared to periodic crystals.

In principle, all colloidal quasicrystalline structures that we tailor in simulations can be

achieved in experiments. After all, the colloid-polymer mixture as well as the template-

guided approach have already been successfully implemented in experiments in order to

obtain periodic structures.
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Zusammenfassung

Im Jahr 1982 leitete die Entdeckung der Quasikristalle eine Revolution in der Kristal-

lographie ein und erweiterte die bisherige Sichtweise, wie sich Materie anordnen kann.

Dafür wurde Dan Shechtman mit dem Nobelpreis für Chemie 2011 ausgezeichnet. Ob-

wohl Quasikristalle nicht aus einer sich periodisch wiederholenden Einheitszelle bestehen,

weisen sie eine langreichweitige Ordnung auf, die sich in einem Beugungsexperiment

nachweisen lässt. Aus der Tatsache, dass Quasikristalle aperiodisch sind, ergeben sich

mehrere wesentliche Unterschiede zu periodischen Kristallen. Zum einen bleibt die Ro-

tationssymmetrie nicht auf zwei-, drei-, vier-, oder sechsfach beschränkt. Ein weiterer

wichtiger Unterschied die Existenz sogenannter Phasonen. Dabei handelt es sich um zusät-

zliche hydrodynamische Moden, die wie Phononen im Grenzfall langer Wellenlängen

keine Erhöhung der freien Energie erfordern. Phasonen sind Gegenstand der aktuellen

Forschung und vieler Diskussionen. Sie sind unerlässlich bei der Beschreibung elastischer

Eigenschaften von Quasikristallen oder ihrer topologischen Defekte. Inwiefern Phasonen

eventuell sogar zur Stabilisierung von Quasikristallen beitragen ist umstritten.

Die meisten bekannten Quasikristalle sind komplexe metallische Legierungen, die

aus mehreren Elementen bestehen. In jüngerer Vergangenheit wurden jedoch auch

einige mesoskopische Quasikristalle entdeckt, z.B. in Mizellen oder Polymernetzwerken.

Auf einer solchen Längenskala wecken insbesondere die photonischen Eigenschaften

quasikristalliner Strukturen vermehrt Interesse. In dieser Arbeit geht es darum mit Hilfe

von Computersimulationen herauszufinden, wie kolloidale Quasikristalle unter kontrol-

lierten Bedingungen hergestellt werden können.

Kolloide sind Teilchen mit einem Durchmesser im Mikrometer Bereich, die in einer Flüs-

sigkeit gelöst sind. Um die Lösung zu stabilisieren sind die Teilchen häufig elektrostatisch

aufgeladen. In der statistischen Physik sind kolloidale Suspensionen ein beliebtes Mo-

dellsystem zur Erforschung atomarer Prozesse. Zum einen lässt sich die Wechselwirkung

zwischen den Teilchen sehr genau einstellen und zum anderen können ihre Bewegung

und Position direkt über Video-Mikroskopie beobachtet werden. Zusätzlich kann über

externe Felder auf das Verhalten der Suspension Einfluss genommen werden. In dieser

Arbeit werden drei Methoden verwendet, um quasikristalline Ordnung in einer kolloidalen

Suspension zu stabilisieren. Der Blick auf Kolloide bietet den Vorteil, Fragestellungen

im Zusammenhang mit Quasikristallen nachgehen zu können, die in atomaren Systemen

bisher nur indirekt zugänglich sind.

Zunächst betrachten wir eine zweidimensionale Suspension, die einem Interferenzmuster

aus mehreren Laserstrahlen ausgesetzt ist. Im Laserfeld wirken Kräfte auf die Kolloide,
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die zu den Stellen mit hoher Laserintensität gerichtet sind. Aus diesem Grund lassen sich

durch Interferenzmuster quasikristalline Anordnungen von außen vorgeben. Dieser opti-

sche Quasikristall verkörpert ein vielseitiges Modellsystem. Als besonderer Vorteil lassen

sich phasonische Anregungen direkt über die Phasen der Laser einstellen. Ein phasonischer

Drift verursacht komplexe Neuordnungen zwischen den Minima und Maxima des Inten-

sitätsfeldes, was wiederum komplexe Trajektorien für die Kolloide ergibt. Wir bestimmen

für verschiedene Rotationssymmetrien charakteristische Bereiche in der phononischen

und phasonischen Verschiebung, in die alle Kolloide abgebildet werden können. Anhand

dieser charakteristischen Bereiche lassen sich gleichsam einer effektiven Einheitszelle die

Trajektorien vorhersagen. Zusätzlich untersuchen wir in diesem System den Einfluss des

Teilchendurchmessers auf die induzierte Anordnung als Modell für molekulare Deposition

auf atomaren quasikristallinen Oberflächen. Das Verhältnis zwischen der Längenskala

des Potentials und des Teilchendurchmessers führt zu selbstähnlichen Mustern in der

kolloidalen Struktur, deren Rotationssymmetrie weiterhin vom Laserfeld bestimmt wird.

Jedes Muster fällt jedoch in eine andere lokale Isomorphismus-Klasse.

Anstatt die quasikristalline Ordnung über externe Felder vorzugeben, kann diese auch

stabilisiert werden, indem die Wechselwirkung zwischen den Teilchen modifiziert wird.

Wir zeigen in diesem Zusammenhang, dass eine Konzentration von kleineren Polymeren,

die der Suspension hinzugefügt wird, ausreicht, um das Phasenverhalten dahingehend zu

ändern, dass die Kolloide sich in eine dodekagonale Symmetrie selbst anordnen. In der Li-

teratur sind bereits einige Experimente zu dieser Kolloid-Polymer Mischung dokumentiert.

Daher können unsere Simulationsergebnisse dazu beitragen, kolloidale Quasikristalle

kontrolliert selbsorganisiert wachsen zu lassen.

Um quasikristalline Strukturen aus Kolloiden in drei Dimensionen zu erhalten, wird die Epi-

taxie von Teilchen auf Substraten simuliert, deren Ordnung quasikristallinen Parkettierun-

gen entliehen ist. Durch die Gravitation sedimentieren die Teilchen auf das Substrat und

folgen der vorgegebenen Ordnung, sodass sich unter weiterer Deposition quasikristalline

Schichten herausbilden. Eine speziell abgestimmte Teilchen-Teilchen-Wechselwirkung ist

dazu nicht erforderlich. Wir untersuchen verschiedene Substratsymmetrien und gehen der

Frage nach, welche Parkettierung am geeignetsten ist. Desweiteren erforschen wir, welchen

Einfluss Defekte im Substrat auf den Wachstumsprozess haben. Dabei unterscheiden wir

zwischen lokalen Flips in der Parkettierung, wie sie durch thermisch angeregte phasonische

Fluktuationen entstehen können, und Dislokationen als globale Defekte, die für die betra-

chteten Symmetrien durch einen vierdimensionalen Burgers-Vektor gekennzeichnet sind.

Die Dislokationen führen im Zuge der Epitaxie zu Defektlinien in der dreidimensionalen

Struktur, deren Verlauf in unserem Modell direkt analysiert werden kann. Wir beleuchten

die Auswirkungen von elastischen Spannungen sowie die Position des Dislokationskeims

im Substrat auf den Verlauf der Defektlinien und erforschen ihr topologisches Verhalten.

Dabei stellen wir wesentliche Unterschiede zum Verhalten in periodischen Kristallen fest.

Grundsätzlich sollten sich alle quasikristallinen Strukturen aus Kolloiden, wie wir sie

hier in Simulationen erzeugen, auch im Experiment realisieren lassen. Denn sowohl die

Kolloid-Polymer Mischung als auch die Epitaxie auf Substraten ist bereits erfolgreich zur
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Herstellung periodischer Strukturen umgesetzt worden.
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There is no such thing as quasicrystals,

only quasiscientists.

(Linus Pauling 1901-1994)
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1 Introduction

The topic of colloidal quasicrystals is introduced in four steps. In the first part, we recount

the historical background surrounding the discovery of quasicrystals. In the second, the

subsequent development of the diverse research fields from the discovery until today is

briefly explained with special focus on those aspects directly connected to this work. In

the third subsection, we shortly present as a foundation for the following chapters how

aperiodic order looks like from a mathematical point of view. In the final subsection, the

general field of colloidal physics is introduced before the colloidal approach on the subject

of quasicrystals is explained.

1.1. A historic tale

The persistent need for technological innovations within our economy goes hand in

hand with a quest for new advanced materials. In this environment, the material sci-

entist D. Shechtman conducted his research. In the 1980s he was on a sabbatical at John

Hopkins University where he worked in a joint project with the National Bureau of Stan-

dards on rapidly solidified aluminum transition metal alloys. Although much effort was

and is still put into this research today certain fundamental laws were widely accepted and

unquestioned.

At least the structure of crystalline materials was limited to the fourteen Bravais lattices

displayed in Fig. 1.1 and already formulated in the 19th. century [1]. The Bravais lattices

represent cells that repeat periodically in space to form the macroscopic bulk material.

The lattice points may be occupied by atoms or clusters of several atoms of different

species allowing for rather complex alloys. Many properties of the bulk can be deduced

from the cell and the periodicity. In those times a crystal was defined as a periodic

arrangement of these cells. Periodically ordered and crystalline were treated as synonyms.

As a consequence of periodicity the rotational symmetry is restricted to a few cases. In the

following we prove this for two dimensions by contradiction.

Consider a discrete periodic lattice whose points are generated by applying two elemental

translations. Each translation consisting of linear combinations of these elemental ones

maps the lattice back onto itself. In a physical system, the lattice sites may be occupied
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Figure 1.1.: The fourteen Bravais lattices in three-dimensional space described in terms of

unit cells. Cubic (a), tetragonal (b), orthorhombic (c), trigonal (d), hexagonal (e),

monoclinic (f), and triclinic (g).
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Figure 1.2.: Illustration of the crystallographic restriction theorem in two dimensions. The

proof is constructed as contradiction of the initial assumption of a periodic lattice

with global symmetry centers O, P, Q, and R. See the text below for a detailed

explanation.

by atoms or complex clusters of atoms. As a next step, we investigate which rotations are

compatible with the translations and hence with periodicity. Let the site O be a global

symmetry center for n-fold rotation such that a rotation around O by an angle of 2π/n
leaves the lattice invariant. Due to translational symmetry there exist also other global

symmetry centers. Our assumption states that a site P is the closest global symmetry

center to O. Now we rotate O around P by an angle 2π/n to obtain a lattice point Q

(see Fig. 1.2 (a)). By construction, Q must also be a global symmetry center. However,

for rotations with n ≥ 7 the distance QO is smaller than the distance PO such that Q

is closer to O. This contradicts our initial assumption. For n = 5 a point R violating the

initial assumption is obtained after another consecutive rotation around Q as illustrated in

Fig. 1.2 (b). Therefore, translational order in two dimensions is restricted to two-, three-,

four-, and sixfold rotational symmetry. This restriction theorem holds in three dimensions

as well.

Yet in 1982, when performing a routine analysis on an AlMn alloy by electron diffraction,

Shechtman observed a diffraction pattern with sharp peaks violating the above theorem.

He noted his own initial disbelief by marking the angle exhibiting the fivefold symmetry

with three question marks. Most of his colleagues dismissed his findings immediately

as twinning when he revealed his results to them. Twinning is the occurrence of several

crystalline domains in a symmetric manner and can give rise to complex diffraction

patterns with arbitrary symmetry. Nevertheless, Shechtman had the firm conviction from

his experiments to exclude twinning as a possible explanation. As he remained stubborn

about the topic, the head of his research group recommended Shechtman to read the

textbooks again probably referring to the simple examples from above.

Still he managed to get support from Ilan Blech and John Cahn. Blech, unaware of the

mathematics of aperiodic tilings, showed by a computer simulation that a structure defined

by angles and distances could reproduce the observed diffraction pattern of Shechtman’s

experiment. Hence, the idea of a state of matter with long-range order yet without
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periodicity became the necessary paradigm shift which Shechtman et al. communicated in

1984 via two publications [2, 3]. These had a controversial impact and caused the start of a

fierce scientific battle within the crystallographic community.

While those in favor of Shechtman’s conclusion were assured by the works of other groups

reporting soon similar findings, namely structures with octagonal [4] and dodecagonal [5]

diffraction patterns, the leader of the opposition was the Nobel Prize laureate Linus

Pauling. He explained the tenfold diffraction pattern from Shechtman’s data as a result of a

complex cubic twin [6]. For years until Pauling’s death, the dispute about the existence of

quasicrystals was continued in various journals [7–10]. The term quasicrystal itself was

coined by publications from Levine and Steinhardt who connected Shechtman’s diffraction

pattern to the Penrose tiling [11, 12]. In 1992, the International Union of Crystallography

changed its definition of a crystal omitting the necessity of periodicity and reducing it to the

ability to produce clear-cut diffraction patterns in experiment such that quasicrystals were

included [13]. Therefore, the term crystal refers to a state of matter with long-range order.

This order can either be periodic or aperiodic. In case of the latter, the term quasicrystal

is customary in literature [14]. Finally in 2011, Shechtman was awarded with the Nobel

Prize of Chemistry for the discovery of quasicrystals.

Although the applications in technology have been limited up to this date, the resulting

paradigm shift in science about ordered matter has influenced research in numerous other

fields as will become clear in the following section.

1.2. Quasicrystals today

Although the discovery of an icosahedral AlMn alloy with decagonal diffraction pattern

proved that matter could organize into a quasicrystalline state, the initial samples were

of pure quality, as they were of limited size and thermodynamically unstable. Upon

heating, they changed into a periodic state. Moreover, since they were obtained under

non-equilibrium conditions like rapid melt quenching, ion beam mixing or sputtering, the

samples contained many defects and thus were unqualified for further investigations of the

properties of the quasicrystalline state. However, sample quality increased significantly,

when the first stable quasicrystals were reported in the AlCuLi and GaMgZn system [15,

16]. Soon further compositions were known to yield stable quasicrystals [17–19]. One of

the best ordered quasicrystalline materials available today is Al72Ni20Co8 with decagonal

symmetry. In a diffraction experiment, such a sample exhibits diffraction peaks whose

sharpness compares to those of silicon and almost reaches the instrumentation limit [20].

The improved sample quality allowed systematic studies of the various material properties

of quasicrystals which proved to be unique. For instance, the electronic properties have been

investigated intensively (see [21] for a review) revealing the unconventional conductance

properties [22–24]. Although the compounds of a quasicrystal may be good metals, the

electronic conductivity may still be below the minimum metallic value [25]. Moreover,
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their resistivity in the low temperature regime may exceed the values for disordered metals

and metallic glasses by four magnitudes leading to an insulator-like behavior [26, 27].

Quasicrystals exhibit a special pseudo-gap within their electronic band structure [28–

31]. Tiling models have been applied to link experimental observations to the aperiodic

structure [32–36].

Magnetism of quasicrystals covers a wide range of properties. The observed behaviors

range from diamagnetism [37], Curie- and Pauli-like paramagnetism [38, 39] to ferromag-

netism [40]. While paramagnetic quasicrystals exhibit large effective magnetic moments,

the magnetization of ferromagnetic quasicrystals seems to be weak due to the aperi-

odic environment [41]. In addition, long-range antiferromagnetism has been observed as

well [42]. Again, aperiodic tiling based calculations and symmetry considerations confirm

the experimental results [43–45].

In addition, the research regarding the mechanical properties of quasicrystals also revealed

interesting behaviors like pressure induced phase transitions [46], an increased fracture

strength through doping [47] or a special crack propagation mechanism, as the material

opens up along a phason wall [48]. In general, quasicrystals are often very brittle at

low temperatures, while they become deformable at higher temperatures [49, 50]. As

in a periodic crystal, the macroscopic plastic behavior of quasicrystals is governed by

defects like disclinations and dislocations. The topological charge, the Burgers vector of a

dislocation, can be determined by experimental techniques like convergent beam electron

diffraction or a mode analysis from real space images obtained for instance by transmission

electron or scanning tunneling microscopy [51–55]. While the dislocation in a crystal is

exactly described by a Burgers vector with d components, where d denotes the number

of dimensions, the Burgers vector in a quasicrystal has additional phasonic components.

Aside from phonons which culminate in lateral displacements of the lattice sites, there are

additional modes called phasons in a quasicrystal. These new modes manifest themselves

in complex correlated rearrangements of the lattice tiles and are fundamental for the elastic

properties and the melting behavior as well as the description of defects after all. Some

scientists conjecture that they might even be of significance regarding the stability of

quasicrystals as was shown in a special model system [56]. Therefore, phasons will be

introduced in more detail in the separate section 2.2.

The increase in sample quality has enabled the preparation of clean quasicrystalline

surfaces and thus established an active field in surface science. Though, in order to

determine the structure, the conventional observation techniques have to be adopted to

aperiodicity like for example periodic approximants for dynamical low energy electron

diffraction [57–59]. Several unique phenomena in relation to quasicrystalline surfaces

have been reported (see [60] for a review). Quasicrystals offer the potential as low friction

coatings by decreasing the sliding wear significantly [61, 62]. Due to the observation of

a large frictional anisotropy between the sliding along periodic and aperiodic directions,

quasicrystalline order is associated with lower friction than conventional periodic order [63–

65]. This has been further confirmed on a nanotribology level by the sliding of a colloidal

suspension above a quasicrystalline surface constructed by interfering laser beams [66–68].
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Together with their high hardness and oxidation resistance the tribological properties of

quasicrystals in various environments have been harnessed in coatings for machine parts,

cutting blades, and non-stick frying pans [69]. Since in this scope of applications lubricants

like hydrocarbons or other gases are widely used, research effort is devoted to investigate

the behavior of different gases on quasicrystalline substrates. In this respect, ethylene can

form a protective passivating layer on decagonal Al–Ni–Co quasicrystal surfaces [70]. On

the other hand, benzene and pentacene on i–Al–Pd–Mn do not form an ordered molecular

overlayer [71, 72]. In general, rare gas like Xe or Ar serve as a model to predict parameters

for more complex hydrocarbon substances [73–78].

The properties of quasicrystalline surfaces have been further explored by the deposition of

various metals like for instance gold [79], silver [80], iron [81], copper [82–84], tin [85] or

semimetals like silicon [86] leading to solid films (see also [87, 88] for overviews). Often

only some aspects of the complex quasicrystalline substrates are transmitted to the films

during the growth process such that the obtained new metal thin films exhibit unusual and

unprecedented structures. Therefore, quasicrystal surfaces represent potential templates to

design new materials [89]. An interesting feature of epitaxy on quasicrystalline surfaces

is polymorphic growth in various systems [82, 90]. Copper forms an uniaxially aperiodic

ordered film on the fivefold surface of Al–Pd–Mn [84]. A surprising discovery has been

the stabilization of islands with particular heights by quantum well states as dominant

energetic contribution [91, 92]. In addition, it has been demonstrated that quasicrystals may

serve as interfacial interlayers epitaxial linking two incommensurate materials [93]. As the

quasicrystalline substrates consist of several elements the emergence of quasicrystalline

films by single element deposition is unlikely. Yet, the growth of artificial single element

quasicrystalline monolayers has been reported [94, 95]. Supplementing the experimental

results, there are also grand-canonical and molecular dynamic simulations for various

adatoms reporting a decrease in quasicrystalline order after a few layers [96–101].

Aside from these artificial quasicrystalline samples produced in a laboratory, evidence for

a naturally formed quasicrystal has been provided in a mineral sample of an Al–Cu–Fe

alloy from the collection of the Museo di Storia Naturale of the Università degli Studi di

Firenze [102]. Icosahedrite were approved by the International Mineralogical Association

as a new mineral [103]. They are extraterrestrial in origin, possibly delivered to the Earth

by an asteroid that dates back 4.5 billion years [104].

Although originally a subject of solid state physics or crystallography, for the last decade,

perhaps pushed by exciting experimental discoveries, there has been an increasing interest

in soft matter quasicrystals (see [105, 106] for reviews). In contrast to atomic systems,

the dominating symmetry reported seems to be dodecagonal. Since the formation of

quasicrystalline ordering has been reported for a supermolecular dendritic liquid [107], a

network of ABC-star polymers [108], and an aqueous solution of micelles [109, 110], its

universal nature has been extended to the mesoscale. Prior to these experimental reports,

theoretical calculations by density functional theory predicted a stable quasicrystalline

phase for a colloid-polymer mixture [111]. There, short-range attraction compensates

the loss in packing efficiency. Moreover, energy calculations for various purely repulsive
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pair-potentials indicated conditions for quasicrystalline ordering as well [112–114]. As

one necessary condition for the self-assembly of such interacting particles into a quasicrys-

talline state has been assumed the presence of two incommensurate length scales in the

system [115, 116]. For pairwise interacting particles, this condition has been elaborated the-

oretically by precise fine tuning of the length scale ratio of the interaction potential which

may even be purely repulsive [117, 118]. Further evidence has been provided recently

in a systematic simulation study in two dimensions of hard spheres with soft shoulder

potential revealing numerous quasicrystalline states depending on the shoulder width [119].

Even a state with 24-fold rotational symmetry is observed. Yet, up to now an experimental

setup in which the particle-particle interaction can be controlled to the required degree

to assemble soft quasicrystals by design has not been reported. Regarding experimental

feasibility, one possible drawback may be that the interaction potentials often discussed

are too artificial. In chapter 7, we will discuss suitable parameters for the self-assembly of

colloidal quasicrystals via the depletion potential in a colloid-polymer mixture which can

be controlled in experiments [120–122]. As an alternative approach to the tuning of the

interaction potential for quasicrystalline self-assembly, a formation governed by surface en-

tities or shape polydispersity has been demonstrated extensively in simulations [123, 124].

Besides, it was shown by free energy calculations that a system of patchy-particles exhibits

an entropically stabilized quasicrystalline phase [125]. Molecular dynamic simulations

revealed for particles interacting via a double-well potential decagonal and dodecagonal

quasicrystalline states [126]. In addition quasicrystalline order has been stabilized in a

binary dipolar system [127], in self-assembled cluster crystals [128] and in a dynamical

phase field crystal model [129].

Instead of achieving intrinsic self-assembly by particle-particle relations, quasicrystalline

ordering can be enforced by an external potential. Especially, a suspension of charged-

stabilized colloidal particles subjected to a quasicrystalline laser field can form a two-

dimensional quasicrystalline ordered monolayer in all kinds of symmetries [130, 131].

Depending on the density of the suspension as well as the laser intensity a rich phase

behaviour is observed [132–136]. In this respect, the emergence of an Archimedean tiling

phase as a compromise between the competing aperiodic order of the substrate and the

preferred periodic arrangement of the colloids is most notable [132]. Furthermore, the

minimal laser intensity necessary to enforce the quasicrystalline order against the periodic

preference of the colloids depends on the desired rotational symmetry [137]. Moreover,

since the phases of the individual laser beams can be tuned as well, this colloidal setup

provides a useful model to investigate phasonic excitations and their influence on the

colloids regarding structure [138] as well as dynamics [139]. We extend this research

in chapter 4, when we explore colloidal trajectories caused by a phasonic drift for the

octagonal, dodecagonal and tetradecagonal field. In addition, we analyze the potential for

colloids with finite diameter. Upon driving the suspended monolayer over the aperiodic

substrates, directional locking was observed [140]. Furthermore, in agreement with the

Frenkel-Kontorava model, which describes a sliding monolayer of interacting particles on

a periodic substrate, the presence of Kinks and Anti-Kinks could be detected for periodic

as well as aperiodic substrates [66, 68]. This offered further insight into the tribological
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properties of quasicrystalline surfaces on the micro level. In addition, different particle

geometries of the suspension like needles or rods were considered and the resulting phase

behavior was explored [141, 142].

In this work, we also make the step from the two-dimensional quasicrystalline monolayer

of colloidal particles, to a three-dimensional quasicrystal. In chapter 5, we introduce a new

model based on colloidal epitaxy to grow colloidal structures on well-defined quasiperi-

odic substrates. As we will show, in contrast to self-assembled intrinsic quasicrystals, no

fine-tuning is required to obtain structures with quasicrystalline order, instead a simple

short-range repulsive interaction is sufficient.

On periodic substrates the method of colloidal epitaxy is well established for colloids with

various interaction ranges and under gravity [143–147]. Therefore, we are confident that

our results can in principle be realized in experiments.

In chapter 6, we will demonstrate the control over defects in the grown colloidal structure as

another major advantage of this template-guided approach. Dislocations with well-defined

Burgers vectors can be incorporated in the quasicrystalline substrates and through the epi-

taxial process these seeds evolve into defect lines. As a result, we obtain three-dimensional

quasicrystalline structures with specially designed defects. These might be of additional

relevance for possible photonic applications [148]: The concept of aperiodic structures has

stimulated research in photonics in his own way (see for [149] a review). A major goal

is to construct components analogue to conventional electronic semiconductor devices

but based on channeling photons instead of electrons. In this context, the potential of qua-

sicrystals has been identified for applications [148]. As a desired property, quasicrystals,

independent from their respective symmetry, seem to possess a special photonic band

structure which can exhibit a complete band gap [150–155]. In addition, due to their wider

variety of symmetry centers compared to crystals, quasicrystals may allow the creation

of defect modes with different geometries [156]. As further possible applications, a color

fan for frequency conversion [157] and slabs with multiple cavity modes [158] have been

demonstrated.

Apart from the research fields presented above, the formation of quasicrystals has been

reported in various other systems. The most recent examples for the emergence of qua-

sicrystals are the surprising formation of hydrogen bonded ferrocenecarboxylic acids [159],

an interface-driven formation of ultrathin quasicrystals from perovskite oxide [160], and

the self-assembly of nanoparticles into binary aperiodic superlattices [161, 162]. A model

to realize a two-dimensional quasiperiodic cold-atom quasicrystal has already been pro-

posed [163]. Besides, it was shown that a spin-orbit coupled Bose gas can exhibit several

quasicrystalline ground states [164]. Eventually, this amount of manifold examples does

emphasize the universal nature of quasiperiodic order. While icosahedral order is aperiodic

in all three dimensions of space, octagonal, decagonal, and dodecagonal quasicrystals

consists of periodic stacks of two-dimensional quasicrystalline planes. The latter group is

of special interest for this work. In the next section, it is presented how a plane can be tiled

with aperiodic order and how this order might finally look like.
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1.3. Aperiodic tilings

For a long time in mathematics, an aperiodic tiling of the plane was deemed to be impossible

until 1966, when Berger presented a tiling that consisted of 20426 elementary tiles [165].

His explicit example lacks translational order yet nevertheless it exhibits long-range order.

In the following years his proof was further elaborated until an aperiodic tiling consisting

of merely six elementary tiles was achieved [166].

Astonishingly, it seems that medieval Islamic architects were capable of decorating their

sacral buildings with nonperiodic, quasicrystalline mosaics. Patterns, found in the Darb-i

Imam shrine in Isfahan, Iran, and dated back to 1453 A.D. are regarded as the first aperiodic

tiling [167]. However, the claim about the principal status and the aperiodicity itself is

contested by implying that patterns found in the Gunbad-i Kabud tomb tower in Maragha,

Iran, and already dating back to 1197 A.D. represent the actual methodical breakthrough

in achieving aperiodic tilings [168, 169]. In any case, it seems that the knowledge about

aperiodic geometry had to be rediscovered.

Today, an abundance of aperiodic tilings with long-range order is known [170, 171]. The

most famous one is probably the Penrose tiling [172]. It has fivefold rotational but no

translational symmetry. With the discovery of quasicrystals it gained further prominence

when Levine and Steinhardt compared the diffraction pattern calculated from the Penrose

tiling to Shechtman’s experimental observation [11]. Despite the development of direct

imaging techniques like electron microscopy, this approach remains quite powerful, as for

many tilings the analytical diffraction pattern can be calculated [173]. In this section, we

will give a brief introduction to aperiodic tilings with a special emphasis on the Penrose-

Rhomb, the Ammann-Beenker, and the Square-Triangle tiling, since these are the tilings

we will encounter regularly in the scope of this work.

1.3.1. Local matching and inflation rules

While the original Penrose tiling still consisted of six elementary tiles, a whole family was

subsequently established until solely two geometric shapes, a fat and a skinny rhomb, were

sufficient to tile the plane in an aperiodic manner [174–176]. In order to achieve aperiodic

order, these tiles cannot be arranged arbitrarily. Instead, so-called matching rules have

to be obeyed between adjacent tiles. In case of the Penrose-Rhomb tiling, one possible

implementation is illustrated in Fig. 1.3. Adjacent edges are well arranged when the blue

and red lines are smoothly sustained across neighboring tiles to form closed loops. As a

fascinating aspect, the edges of the two rhombs can be arbitrarily distorted against each

other. As long as they fit smoothly together and the matching rules are implemented, the

resulting pattern will remain aperiodic, even for chickens [175].

An alternative method to construct aperiodic tilings is the so-called inflation approach,

which utilizes the self-similarity of a tiling. In each step the current pattern is scaled by an

irrational number. For the Penrose tiling, the scaling factor is precisely the golden mean,
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τ = (1 +
√
5)/2, a magic number with great relevance for beauty and aesthetics [177].

The scaled tiles are replaced by sets of elementary tiles depending on the original type.

These inflation steps can be conducted iteratively and in agreement with the matching

rules to produce a perfect quasicrystalline tiling (see Fig. 1.3).

τ

τ

(a) (b)

1/τ

τ

Figure 1.3.: Pentagonal Penrose-Rhomb tiling by matching and inflation rules. (a) The basic

tiles, a fat and a skinny rhomb, are scaled by the golden mean τ = (1 +
√
5)/2.

Afterwards, the scaled objects (thick line) are composed from a conglomeration of

the original tiles. According to the matching rules the tiles have to be arranged such

that the blue and red lines are sustained smoothly throughout the tiling. (b) A patch

of the tiling after several inflation steps.

α

α

(a) (b)

Figure 1.4.: Octagonal Ammann-Beenker tiling by matching and inflation rules. (a) The

basic tiles, a right triangle and a rhomb, are scaled by the silver mean α = 1 +
√
2.

Subsequently, the scaled objects are segmented into a conglomeration of the original

tiles. In order to obey the matching rules, adjacent edges form red arrows, while

adjacent vertices form black ones. Hence, the right triangles form pairwise a square.

(b) A patch of the tiling after several inflation steps.
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λ

λ

λ

λ

λ

Figure 1.5.: Dodecagonal Square-Triangle tiling by matching and inflation rules. (a) The

basic tiles, three regular triangles and two squares, are scaled by the factor λ = 2+
√
3.

Subsequently, the scaled objects are segmented into a conglomeration of the original

tiles. A patch of the tiling is displayed in Fig. 1.10.

Another tiling with matching and inflation rules of similar simplicity to the Penrose

ones is the octagonal Ammann-Beenker tiling [178]. It is composed of squares, or rather

right triangles, and rhombs as elementary tiles. The scaling factor is given by α = 1 +√
2, sometimes referred to as the silver mean. The inflation step and matching rules

are illustrated in Fig. 1.4. The Ammann-Beenker tiling has been linked to octagonal

quasicrystals [4, 179] and will feature in the context of this work about suitable substrate

symmetries for colloidal epitaxy.

A tiling whose inflation rules are more complicated than the previous examples is the

dodecagonal Square-Triangle tiling. Its inflation rules are displayed in Fig. 1.5. As the

name suggests, it is composed of two squares and three regular triangles. The scaling

factor amounts to λ = 2 +
√
3 which is rather big. This can lead to problems when

finding suitable box sizes for computational methods. We address this issue in section 3.2.2.

So far, dodecagonal symmetry seems to be the most reported symmetry for mesoscopic

quasicrystals [108, 119]. Therefore, it will also feature in the section about intrinsic qua-

sicrystal formation in the colloid-polymer mixture. The tiling has been studied extensively
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as a model for entropically stabilized growth of quasicrystals [180–182]. In general, such

inflation rules can be formulated for tilings of n-fold rotational symmetry, though these

become more complicated with higher order [183].

1.3.2. Dual grid method

In a different construction method bands of parallel lines are drawn in each symmetry

direction to form a grid. For pentagonal symmetry this yields a pentagrid, for octagonal

a tetragrid. The grid is called regular if no more than two lines intersect in one point,

otherwise it is called singular. The different types of intersection points are then transformed

to the respective types of elementary tiles to produce the dual lattice. In order to construct

for instance the Ammann-Beenker tiling we require a regular tetragrid [184]. Details of

the construction are given in Fig. 1.6.

In similar fashion, the Penrose tiling is obtained from a regular pentagrid [185, 186]. In

addition, this method also allows to incorporate strain or defects in the tiling, as a distortion

in the grid is transferred to the resulting lattice [187].
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(a) (b)

(c) (d)

Figure 1.6.: Construction of the octagonal Ammann-Beenker tiling by the dual grid method.

(a-b) Replacement rules for the vertices of the tetragrid into the elementary tiles, a

square and a rhomb. (c) An excerpt of the regular tetragrid with numbered vertices.

(d) The resulting patch of the octagonal tiling composed of squares and rhombs when

the rules from (a) and (b) are applied to the vertices of (c).
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1.3.3. Projection method

Another method to construct aperiodic tilings is the projection from a periodic lattice of

higher dimension. It is a powerful concept in crystallography, as many properties, like for

instance phasons, can be explored in the higher-dimensional nature of quasicrystals. We

start our demonstration on the basis of the silver mean chain (Fig. 1.7 (a)) .

Consider a two-dimensional rectangular lattice with lattice points (x||, x⊥), where x||

comprises the physical dimension and x⊥ the mathematical one respectively. The lattice

points are generated by integer combinations of the basis vectors a1 = (1, 1) and a2 =
(−
√
2,
√
2). Along the axis of abscissa, two parallel lines at x⊥ = −1/

√
2 and x⊥ = 1/

√
2

define a strip, the so-called acceptance window. All points of the lattice which are inside

the window are projected on the abscissa. As the original two-dimensional lattice is tilted

by an irrational angle against the abscissa, the projected points form an one-dimensional

lattice without translational, yet nevertheless with long-range order. Thus, this chain of

small S and large segments L whose ratio is the number of the silver mean α is aperiodic.

It also follows the iterative replacement rules: L → LSL and S → L and successive

iterations yield:

L

LSL

LSLLLSL

LSLLLSLLSLLSLLLSL

LSLLLSLLSLLSLLLSLLSLLLSLLSLLLSLLSLLSLLLSL

. . .

Note that a slightly different tilting angle between the lattice and the abscissa would result

in a chain consisting of repeating units. Now, we want to investigate what happens if we

displace the original lattice. For a displacement along the physical direction, e.g. along

the x||-direction, the projected chain is also lateral displaced as illustrated in Fig. 1.7 (b).

In a physical system this would correspond to a phononic excitation in the long wave

length limit. In Fig. 1.7 (c) a displacement in the direction of x⊥ is applied to the whole

lattice. The principle nature of the projected sequence remains unchanged, although some

segments L and S have switched position within the chain. In a physical system such

flips correspond to a so-called phasonic excitation in the long wave length limit. Such an

additional degree of freedom in quasicrystals is a consequence of their higher-dimensional

nature. Obviously, there exist combinations of displacements in x|| and x⊥ direction which

leave the chain completely unaffected. These are the basis vectors a1 and a2. They will

become important in the context of Burgers vectors of dislocations in quasicrystals. In

Fig. 1.7 (d) flips have been inserted in the chain by a spatial distortion of the acceptance

window as an illustration for phasonic strain.
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X
||

X
⊥

L L S L L L L S L L

X
||

X
⊥

L S L L L S L L S L L

X
||

X
⊥

S L L L S L L S L L L

X
||

X
⊥

L L L S L L S L L L

(d)

(c)

(b)

a0

a1

(a)

Figure 1.7.: Construction of the one-dimensional silver mean chain by projection from a two-

dimensional rectangular lattice (a) without displacements, (b) with a displacement

along x||, (c) with a displacement along x⊥, and (d) with a distorted window. Detailed

explanation is given in the text.
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The projection approach to gain the silver mean chain can be generalized to higher di-

mensions. We now consider four-dimensional basis vectors ai with two components for

both the parallel physical space, a
||
i , and for orthogonal space, a⊥i . In each space, they

are arranged to cover the incommensurate directions on an eightfold star as illustrated in

Fig. 1.8. While linear combinations of the basis vectors generate the whole lattice of points

(x||,x⊥), only those points whose components x⊥ are located within an octagon with unit

edge length are relevant for projection. In Fig. 1.9 (a) it is displayed how these projected

points form a patch of the octagonal Ammann-Beenker tiling. If this patch was infinitely

large, the unit octagon in orthogonal space would be populated with uniform density. In

fact, the projection process is also beneficial in the reverse direction. Granted that we

observe a tiling like structure in our physical system, we can obtain the x⊥ counterparts to

the physical coordinates by employing the basis vectors ai when traversing the different

vertices of the tiling. In Fig. 1.9 (b) this has been exploited to identify the flips in the tiling,

since the flipped vertices have coordinates in orthogonal space that reside outside the unit

octagon.

Other symmetries can also be generated by this approach like for example the Penrose

tiling [185, 186]. With adjusted basis vectors the dodecagonal Square-Triangle tiling can

be constructed as depicted in Fig. 1.10. However different from the previous octagonal

case, the acceptance window possesses a fractal boundary [188, 189].

Finally, a further generalization to gain long-range aperiodic arrangements in three dimen-

sions is possible. For instance, the Penrose tiling has been elevated from a planar tiling to

fill space aperiodically in three directions to describe icosahedral quasicrystals [190–193].

⊥a
3

⊥a
4

⊥a
2

⊥a
1

a
1
||

a||
2

a||
3

a||
4

Figure 1.8.: The basis vectors (a
||
i ,a

⊥
i ) of the four-dimensional lattice (x||,x⊥).
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(a)

(b)

Figure 1.9.: Construction of the octagonal Ammann-Beenker tiling by projection. (a) The

four-dimensional lattice (x||,x⊥) is given by integer linear combinations of the basis

vectors (a
||
i ,a

⊥
i ). From those pairs the x|| whose x⊥ reside inside an octagon with

unit edge length (dashed blue line) yield the coordinates of the tiling. (b) Tile flips,

marked in red, are inserted by hand in the tiling . As we translate from the real

space coordinates to orthogonal space by the basis vectors, the flipped vertices now

correspond to the red points which are located outside of the octagon.
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(a) (b)

Figure 1.10.: The dodecagonal Square-Triangle tiling. (a) A patch of the physical coordi-

nates x|| comprising the tiling. (b) In orthogonal space the points x⊥ selected for

projection form an object with fractal boundaries. The image was calculated from a

finite tiling patch consisting of N = 40561 vertices.

1.4. Colloidal physics

Literally, the word colloid is a composition of the Greek words for glue and appearance.

Colloids are micron-sized particles of 0.01 to 10µm diameter dispersed in a continuous

solution. A homogeneous colloidal suspension has to be stabilized. Otherwise the attractive

Van der Waals interaction between close particles leads to the aggregation of clusters

as close particles stick to each other. Therefore, the colloids have to be kept at a large

distance such that Van der Waals forces are effectively disabled. This can be achieved by

adding electrical charges of identical sign to the particles such that they repel each other

via Coulomb forces. Screening effects originating from counter ions in the solvent that

accumulate around a colloidal particle can contribute to a decrease in the range of the

interactions. The complete pair potential was derived by Derjaguin, Landau, Verwey and

Overbeck [194, 195] and is given by

VDLVO(r) =
(Z∗e)2

πǫ0ǫr (2 + κσ)2
exp[−κ(r − σ)]

r
, (1.1)

where r denotes the distance between two colloids, σ the diameter and Z∗ its effective

charge. ǫr is the dielectric constant of the solvent and κ the inverse Debye screening length.

In our case, an additional excluded volume contribution is assumed such that the colloids

are not allowed to overlap as hard spheres. Depending on the parameter values in Eq. (1.1)

either contribution may dominate the interaction. While the interaction of the colloidal

particles in chapters 5 and 6 is dominated by the hard-core like behavior, both contributions
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are decisive in chapter 7.

Colloidal suspensions serve as a model system in statistical physics to study fundamental

principles [196]. They are frequently applied to investigate crystallization processes [197–

200], the properties of binary mixtures [201, 202], and glassy dynamics [203, 204]. In

addition, lane formation [205–208] or other collective behaviors as for instance in shear

flows [209–211] are studied as well. Furthermore, in the past years, a great attention has

also been devoted to the physics of so-called active systems (for a review see [212]). These

systems involve various kinds of colloidal particles that possess an internal propulsion

mechanism which drives the system out of equilibrium [213–222]. In this work, we allude

the topic of colloidal physics in three different ways to investigate the formation and

properties of mesoscopic quasicrystals.

Of particular relevance for the first part of this work is the fact that colloidal suspensions

can be manipulated by light fields due to the optical tweezer effect [223, 224]. Since in

a light field the force acting on the colloid is directed towards the highest light intensity,

colloidal particles can be forced to form complex structures [225]. The manipulation

can be exerted in detail such that even quantities like for example the osmotic pressure

can be measured [226]. As external potentials periodic light fields [227–229] but also

aperiodic ones have been deployed [131–133]. Concerning the latter, we consider the

experimental setup of Mikhael et al. who exposed a two-dimensional charged-stabilized

colloidal suspension to a quasicrystalline intensity field by interfering symmetrically

arranged laser beams [132, 134, 135]. In chapter 4, we study new aspects in this system.

A finite colloidal diameter is assumed which influences the general ordering. Besides,

Kromer et al. developed a method to predict colloidal trajectories when a phasonic drift is

applied by tuning the laser phases [138]. We generalize this approach to other rotational

symmetries of the interference pattern and prove its universality for quasicrystals with

higher rank.

Yet, as a new system, we apply the method of colloidal epitaxy to grow three-dimensional

colloidal quasicrystals from aperiodic tilings in chapter 5. The experimental feasibility has

been extensively demonstrated for colloidal suspension with various interaction lengths

that sediment under gravity on periodic substrates [143–147]. Moreover, in the subsequent

chapter 6, we incorporate dislocation lines into these grown quasicrystalline structures.

Again, comparable studies have only been conducted for periodic colloidal crystals so

far [230, 231]. We present some specific quasicrystalline properties.

In chapter 7, we consider a mixture of hard, charged colloids and smaller polymer coils. In

addition to the repulsive Coulomb interaction between the colloidal particles the polymers

provide a short-range attraction to the pair potential that can promote the formation of a

quasicrystal. Therefore, this mixture is related to other colloidal systems in which a two

length scale pair potential is tuned to stabilize a self-assembled quasicrystal [111, 117, 119].

Aside from these research chapters, we refer to chapter 2 for a theoretical background.

There, phasons are introduced in more detail as additional hydrodynamic modes. Besides,

we review the concept of local isomorphism classes for quasicrystals and elucidate the
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description of topological defects like dislocations in quasicrystals. Technical aspects

regarding our research like the simulation procedure or the construction of approximants

are explained in chapter 3.
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If it can be used again, it is not wisdom but

theory.

(James Richardson 1950)
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2 Theoretical Background

In the preceding chapter the colorful research field of quasicrystal physics has been

introduced. In addition, a mathematical description of aperiodic tilings was presented.

Here, we review refined theoretical concepts of quasicrystal physics in order to establish

a foundation for the subsequent chapters. In the first part, the geometric concept of

local isomorphism to characterize two-dimensional quasicrystals is introduced [232, 233].

Within this framework phasons arise as a symmetry operation and are introduced as

additional hydrodynamic modes in the second part in section 2.2. Subsequently, we recount

the injection of topological defects, i.e. dislocations in quasicrystals [234].

2.1. Local isomorphism class

Periodic crystals consist of a unit cell and are invariant under translations [235, 236], i.e.

by a translational operation two crystals with identical unit cells can be mapped onto

each other. In contrast, aperiodic crystals, represented for instance by the mathematical

tilings from section 1.3, are not invariant under translations. Yet, on the basis of a finite

region two tilings may still be indistinguishable, since any finite region in one tiling may

exist somewhere in the other [237]. This is illustrated in Fig. 2.1 for two superimposed

identical octagonal Ammann-Beenker tilings, where the red colored tiling is displaced by

an increasing offset relative to the other. Note that the further the red tiling is translated

the more the area of coincidence increases. Therefore, the two tiling patches are called to

be locally isomorphic. This concept to characterize quasicrystals has been elaborated by

Socolar et al. in [232, 233] and states:

Two tilings are locally isomorphic if and only if given any point

P in either tiling and any finite distance l, there exists a pure

translation of the other tiling that causes the two to coincide

everywhere in a circle of diameter l about P.
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(a) (b) (c)

Figure 2.1.: Two superimposed identical octagonal Ammann-Beenker tilings, a red and a

black colored one. From (a) to (c) the red tiling is translated lateral in x-direction
with increasing step size. Despite the aperiodicity of the patterns, there are certain

areas where the elementary tiles perfectly coincide. The further the red tiling is

translated the bigger becomes the area of coincidence. This fulfills the definition of

local isomorphism. However, a complete coincidence of infinite structures cannot be

achieved by nonzero translation alone. In order to remove all missmatches correlated

groups of tiles and vertices have to be rearranged. This corresponds to a deployment

of the phasonic degree of freedom in quasicrystals.

A physical consequence is that infinite tilings from the same local isomorphism (LI) class

cannot be distinguished by any finite measurement [233]. Moreover, they possess identical

auto correlation functions and, in particular, identical diffraction properties including

intensities. Therefore, quasicrystals within one LI class remain indistinguishable such that

all physical properties share the same behavior [237].

Thus, of interest might be both excitations that conserve the local isomorphism class and

those that break it. Regarding the former, translations, i.e. long wave length phonons

comprise one group of elementary excitations that reside within a given LI class. The

other group is also visible in Fig. 2.1. No symmetry operation consisting of pure nonzero

translations will result in a complete and infinite coincidence of the superimposed tilings.

There will remain correlated mismatches of red tiles that have to be rearranged, namely

flipped, in order to yield the original tiling. These necessary rearrangements can be achieved

by the phasonic degree of freedom. Similar to phonons, phasons represent hydrodynamic

modes as they do not cost free energy in the limit of long wave lengths. Besides, in this

limit, the occurring tile flips will conserve the local matching rules of the aperiodic tilings.

Note that this is not the case for local flips, i.e. phasonic flips with finite wavelength

violate the matching rules and thus lead to a different LI class. In general, excitations that

change the LI class are associated with an increase of the free energy [232]. We investigate

this further by considering a continuum description of two-dimensional quasicrystals in

section 2.2.1.
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2.2. Phasons

Analogue to phonons, phasons are low energy excitations that influence the elastic prop-

erties of quasicrystals, for instance the propagation of cracks [48]. Phasons correspond

to complex rearrangements of the elementary tiles defining the quasicrystalline structure.

In the limit of long wave length, phasons induce correlated tile flips that leave the free

energy unchanged and conserve the LI class [232, 238]. Aside from this limit, uncorrelated

phasons of finite wave length may occur due to thermal fluctuations [239]. Furthermore,

in some systems, namely random tiling models, phasonic flips might contribute signifi-

cantly to the stability of the quasicrystalline state because they increase the entropy of

the system [56, 181, 240, 241]. On the other hand, concerning the preparation of metallic

quasicrystals, uncorrelated phason flips induced by thermal fluctuations are the source

of frozen-in disorder after lowering the temperature. This form of disorder is frequently

detected from broadening Bragg peaks and additional diffusive scattering [187, 242, 243].

After all, local phasonic excitations break the LI class and violate the matching rules

of the tiling. Besides, individual phasonic flips have been observed via high resolution

transmission electron microscopy (hrTEM) [244] or in photonic quasicrystals [245]. Still

today, phasons are at the center of active research and scientific debate [243, 246]. As a

recent example, the claim that a quantum mechanical system of a boson gas with Rashba

spinorbit coupling exhibits more phason modes in the quasicrystalline state than the clas-

sical counterparts has caused controversy [164, 247]. The claim has been refuted by two

different approaches. We have refuted this claim by geometric considerations [C], while an

alternative approach considering a general free energy yielded the same conclusion [248].

In the following, phasons are introduced in a general continuum description.

2.2.1. Hydrodynamic modes

In order to identify the hydrodynamic modes in quasicrystals we follow the approach

derived by Socolar et al. [233]. Assuming the periodic or aperiodic crystal is given in the

continuum description by a density field ρ(r), then the Fourier series of that density is

ρ(r) =
N−1
∑

j=0

ρj exp[−iGj · r] . (2.1)

The reciprocal lattice vectors Gj = G(cos[2πj/N ], sin[2πj/N ]) with G = 2π/aV are

arranged in a symmetric, starlike manner and define the desired rotational symmetry.

A small set of reciprocal vectors is sufficient to denote an ordered state. The complex

components of the series are ρj = |ρj| exp[iϕj].
In the next step, a general expansion of the phenomenological free energy F in terms of
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ρ(r) is considered:

F =

∫

dA

∞
∑

k=1

Bkρ(r)
k . (2.2)

The details of the actual physical system are comprised in the coefficients Bk. Inserting

ρ(r) in Eq. (2.2) yields for the free energy

F =

∫

dA

∞
∑

k=1

Bk

∑

j1,...,jk

k
∏

l=1

ρjl exp

[

−i
k

∑

l=1

Gjl · r
]

. (2.3)

After conducting the integration over the whole plane one obtains

F = A

∞
∑

k=1

Bk

∑

j1,...,jk

δ

[

k
∑

l=1

Gjl

]

k
∏

l=1

ρjl , (2.4)

where A denotes the area of the system. The Kronecker symbol δ[x] is 1 if x equals zero

and 0 otherwise. Therefore, only specific combinations of Gj contribute to the free energy.

Inserting the Fourier components ρj results finally in

F = A

∞
∑

k=1

Bk

∑

j1,...,jk

δ

[

k
∑

l=1

Gjl

]

k
∏

l=1

|ρjl | exp
[

i

k
∑

l=1

ϕjl

]

. (2.5)

Note that the free energy F solely depends on the sum of the phases
∑k

l=1 ϕjl . As a

consequence, true hydrodynamic modes must be comprised of collective changes in the

phases ϕj that leave the sum unaffected.

AlthoughN reciprocal vectors have been initially considered in the series of Eq. (2.1), only

D < N are required, whereD is termed the rank of the crystal. IfD equals the dimension d,
the crystal is periodic, while in the case ofD > d the crystal is aperiodic, i.e. a quasicrystal.

A way to determine the minimal set D is to count the number of incommensurate length

scales nR in each lattice direction given by Gj . Then, the minimal set of reciprocal vectors

consists of D = nRd vectors. Alternatively, the rank can be calculated by Euler’s totient

function [189]. It is given by

Φ(n) = {a ∈ N| 1 ≤ a ≤ n ∧ gcd(a, n) = 1} , (2.6)

where gcd(a, n) denotes the greatest common divisor between a and n. Φ(n) returns the
amount of integers smaller or equal toN that are coprime toN . ThusN−Φ(N) reciprocal
vectors can be expressed by Gj =

∑Φ(N)−1
k=0 ajkGk. Then ρ(r) is rewritten and it can be

shown that the sum of Φ(N) independent phases has to be constant in order to preserve

the local isomorphism class [C].
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Figure 2.2.: Examples for different excitations on the basis of a decagonal quasicrystal. The

quasicrystalline pattern is generated by the real space of the Fourier series in Eq. (2.1)

with N = 5. The phases are parameterized according to Eq. (2.7). (a-c) A long

wave length phononic displacement corresponds to a translation of the whole pattern.

(d-f) A long wave length phasonic displacement induces complex rearrangements of

minima and maxima and causes some local symmetry centers to disappear and others

to appear. (g-i) Changing the global phase γ leads to a broadening of the minima and

maxima. Note that in contrast to the previous excitations the local isomorphism class

is broken as finite patches from (g-i) are not found in (a-f).

Regarding the expansion of the free energy in Eq. (2.5), N symmetrically arranged recip-

rocal lattice vectors Gj are used such that there are N phases ϕj . Since hydrodynamic
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modes conserve the LI class as well as the free energy the sum
∑k

l=1 ϕjl also has to remain

constant. Therefore, this amounts to D independent hydrodynamic modes in a quasicrystal

of rank D, where d are attributed to phononic and D − d to phasonic excitations. Con-

cerning the symmetries mainly investigated in the scope of this work, namely octagonal,

decagonal, and dodecagonal rotational symmetry the rank equals four. For D = 4 the

parameterization of the phases is usually according to [233, 238] given by

ϕj = Gj ·u+GmjmodN ·w + γ/N , (2.7)

where u = (ux, uy) denotes the phononic and w = (wx, wy) the phasonic displacement.

Note that the global phase γ is not a hydrodynamic mode as it affects the sum of the phases.

In Fig. 2.2 examples for a decagonal density pattern with different values of the phononic

and phasonic displacements as well as the global phase are displayed. An increase in u

culminates in a lateral translation of the whole pattern along u. Therefore, u describes a

phonon in the limit of long wave length. On the other hand, a change ofw induces complex

rearrangements between minima and maxima of the density field. These hydrodynamic

modes are termed phasons. An increase in γ leads to changes in the height and width of the

maxima and minima respectively. This breaks the definition of local isomorphism class as

for instance a finite patch in (h) is not found anywhere in (a-f). Besides, such an excitation

is expected to demand a significant increase in the free energy. Only long wave length

phonons and phasons conserve the LI class.

2.3. Topological defects

Both in periodic and in aperiodic crystals, the topology of a dislocation is defined by

a Burgers vector. In a periodic system of d dimensions, the Burgers vector of an edge

dislocation has d components and can directly be obtained in real space by considering

a closed loop around a dislocation core (see Fig. 2.3 (b)). If one follows a similar path

with exactly the same number of steps in each direction in the corresponding defect-free

crystal, the difference from the end point to the starting constitutes the Burgers vector (see

Fig. 2.3 (a)). As an alternative method, the Burgers vector can be obtained by integrating

over all displacements along a closed loop around the dislocation. For a given displacement

field u(r), the total displacement that is denoted in the Burgers vector is ∆u =
∮

du(r).
In a periodic crystal and in the case of full edge dislocations only, ∆u has to be a sum

of integer multiples of the lattice basis vectors, such that the density field ρ(r) of the
defect-free crystal is not changed by a displacement along ∆u, i.e.,

ρ(r) = ρ(r+∆u) . (2.8)
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(c) (d) (e)

(a) (b)

Figure 2.3.: Schematic illustration for dislocations in crystals quasicrystals in two dimen-

sions (cf. [D]). (a) Square lattice without any defect. (b) Upon injecting or removing

half of a line of nodes a single dislocation (surrounded by a yellow shading) is created

in the square lattice. By considering a closed loop (green line) around the dislocation

and a corresponding path in the defect-free lattice, the Burgers vector is given by the

difference from the end to the starting point in the perfect crystal [cf. green path and

magenta vector in (a)]. (c) A defect-free patch of an octagonal quasicrystal. (d) After

omitting half a row of nodes, it is not possible to connect the neighboring rows in a

straightforward way due to the aperiodicity of a quasicrystal. As a consequence, there

remains a gap (green) in a quasicrystal with a partial dislocation (marked yellow)

that contains only the phononic contribution of the Burgers vector. The gap cannot

be filled with the elementary tiles of the tiling. (e) Quasicrystal with a dislocation

(marked yellow) whose Burgers vector contains a phononic and a phasonic part. The

additional phasonic contribution manifests into rearrangements of the tiles adjacent to

the cut line such that the previously empty gap area can be covered with elementary

tiles.

In quasicrystals, a dislocation with a displacement field u(r) but no other perturbations

must be associated with a gap in the structure (see Fig. 2.3 (d)) because due to the

aperiodicity there is no nonzero phononic displacement vector ∆u =
∮

du(r) that fulfills
the condition of Eq. (2.8). However, in order to close the gap, one can employ the additional

degrees of freedom of quasicrystals, namely a phasonic displacement fieldw(r). While in a

quasicrystal there are no pure phononic displacements ∆u or pure phasonic displacements

∆w that leave the density ρ(r) unchanged, there exist combinations of phononic and
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phasonic displacements, ∆u and ∆w, that do not alter the density [138, A, B], i.e.,

ρw=0(r) = ρw=∆w(r+∆u) , (2.9)

where ρw(r) denotes the density field with a constant phasonic displacement w. As a

consequence, dislocations can be incorporated into quasicrystals by a spatial varying

phononic displacement field u(r) in combination with a phasonic one w(r), such that

∆u =
∮

du(r) and∆w =
∮

dw(r) fulfill the condition in Eq. (2.9) [238, D]. An example

of a dislocation in a quasicrystal is shown in Fig. 2.3. The Burgers vector B is composed

of the phononic and the phasonic displacement, i.e., B = (∆u, ∆w). In general, the

Burgers vector of a dislocation in quasicrystals in d dimensions has D components, where

D is the rank of the quasicrystal denoting the number of basis vectors that are required

to characterize the structure. While d components can be attributed to the phononic

contribution, the remaining D − d components determine the phasonic contribution.

In the following, we briefly review the work by De and Pelcovits who calculated the

phononic and phasonic displacement fields describing dislocations in decagonal quasicrys-

tals [234]. A phenomenological harmonic elastic energy density is readily constructed and

has the form

fel =
1

2
λuiiuii + µuijuij +

1

2
K1wijwij +K2 (wxxwyy − wxywyx)

+K3 [(uxx − uyy)(wxx + wyy) + 2uxy(wxy − wyx)]− f̃ · ũ , (2.10)

where uij =
1
2
(∂iuj + ∂jui) denotes the strain tensor and wij = ∂iwj . While the first

two terms on the right hand side characterize a two-dimensional isotropic solid, the last

term represents a general coupling of the D-dimensional elastic field ũ = u ⊕ w to a

generalized force f̃ . Specific choices for f̃ can model dislocations.

Following the Euler-Lagrange procedure fel is extremized with respect to small variables

δux, δuy, δwx, and δwy. This yields a system of equations

Li[ũ] = −f̃i , (2.11)

where Li is a linear differential operator. A convenient way to solve these inhomogeneous

equations is to calculate the associated D2-component Green’s tensor:

ũ(r) =

∫

dr′ Ḡ(r− r′) f̃(r′) . (2.12)

The elastic fields surrounding a dislocation are obtained by determining all components in

Ḡ. Analogue to periodic solids, u(r) and w(r) can be chosen as single valued functions

which undergo a fixed discontinuity as they cross the cut line. This cut line yields a

singular stress which must be compensated by fictious forces into the Euler-Lagrange

equations. Upon solving the modified equations and conducting the integration along the

whole cut line the strain field of a dislocation located at the origin with Burgers vector
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B = (∆u, ∆w) is given by

ux(r) =
∆ux
2π

{

arctan
[y

x

]

+
(µ+ λ)K1

(µ+ λ)K1 + (µK1 −K2
3)

xy

r2

}

=
∆uy
2π

{

µK1 −K2
3

(µ+ λ)K1 + (µK1 −K2
3)
ln

[r

a

]

− (µ+ λ)K1

(µ+ λ)K1 + (µK1 −K2
3)

x2

r2

}

=
∆wx

2π

{

(K3K1)

µK1 −K2
3

xy

r2
− K3K

2
1(µ+ λ)

2(µK1 −K2
3)[(µ+ λ)K1 + (µK1 −K2

3)]

2xy3

r4

}

=
∆wy

2π

{

− (K3K1)

(µ+ λ)K1 + (µK1 −K2
3)

x2

r2

− K3K
2
1(µ+ λ)

2(µK1 −K2
3)[(µ+ λ)K1 + (µK1 −K2

3)]

x2(x2 − y2)

r4

} (2.13)

where a denotes the dislocation core size.

Figure 2.4.: Dislocation and associated strain fields in an octagonal interference pattern. The

spatial varying fields u(r) and w(r) can be incorporated by tuning the respective

phases of the laser beams. (a) The octagonal intensity field exhibits two dislocations

with oppositely charged Burgers vectors such that the whole sample is neutral. From

real space observation the dislocations are hard to detect. The associated phononic

(b) and phasonic strain field (c) have a discontinuity at the cut line connecting the

two dislocation cores marked as red spots. The values of displacement are denoted

by black arrows while dashed blue lines serve as an additional guide to the eye. Far

away from the dislocation pair the displacement fields are almost zero as the effective

topological charge is zero.
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For the other components uy(r), wx(r), and wy(r) we explicitly refer to [234]. An example

for a quasicrystal containing a pair of dislocations as well as the corresponding phononic

and phasonic strain fields is displayed in Fig. 2.4.

On the basis of these fields the single energy of a dislocation Ec as well as their pairwise

interaction HD can be calculated [234]. Furthermore, the procedure above can be applied

to another type of topological defect. Analogue to dislocations, disclinations are described

by spatially varying phononic and phasonic strain fields [249], which allows to determine

their energies as well [250]. From this, a theory of defect-mediated two stage melting in

two-dimensional quasicrystals has been developed [251]. It represents an extension of the

KTHNY-theory for the melting of two-dimensional periodic solids formulated by Kosterlitz

and Thouless [252], Halperin [253], Nelson [236, 254, 255] and Young [256, 257].

In chapter 6, we deploy Eq. (2.13) in order to incorporate dislocations as defects into

quasicrystalline templates on which colloidal epitaxy is conducted. Therefore, three-

dimensional colloidal structures with controlled and well-defined dislocation lines are

produced.
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3 Methods

In this chapter, we explain how we have implemented the Monte-Carlo algorithm to model

the epitaxial deposition on various substrates as well as the two-dimensional suspension of

a colloid-polymer mixture. In particular, the choice of suitable box sizes is elucidated when

simulating quasicrystals under periodic boundary conditions. Moreover, we introduce a

way to quickly identify dislocations in a two-dimensional quasicrystal.

3.1. Simulation technique

In our simulations, we use the Monte-Carlo algorithm originally developed by Metropolis

et al. [258, 259], which has become a standard technique in the field of computational

physics [260, 261]. The algorithm allows to treat the system in the canonical ensemble

with the canonical partition function

Z =
∑

{i}
exp[−βEi] (3.1)

as the central object to calculate any further observable. The sum in Eq. (3.1) is over all

configurations and β = 1/kBT denotes the inverse of the thermal energy.

The general procedure of the algorithm is as follows: At the beginning of each Monte-Carlo

step the current configuration is changed randomly into a new one. Then the energy Enew

of this new configuration is calculated and compared to Eold, the energy of the previous

configuration. If Enew < Eold the new configuration is immediately accepted and serves

as the initial configuration in the next step. In case of Enew > Eold, the new configuration

might still be accepted but only with probability exp[−β(Enew−Eold)]. Otherwise, the next

Monte-Carlo step will begin with the old configuration again. This choice of acceptance

probabilities satisfies detailed balance, since the ratio between the transition probability

pi→j to get from configuration i to configuration j and the probability of the contrary

transition pj→i is

pi→j

pj→i

=
exp[−βEj]

exp[−βEi]
. (3.2)
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As a consequence, for an ergodic system i.e. a system, where all possible configurations

are explored, the probability to be in configuration i is proportional to exp[−βEi], such
that a canonical ensemble of configurations is obtained. Although a finite simulation can

never explore the whole configurational space, the algorithm will still include the most

important contributions in Z by gradually minimizing E. Therefore, the average of an

arbitrary observable A, for instance an order parameter, simplifies to

〈A〉 = 1

Z

∑

{i}
Ai exp[−βEi] = lim

N→∞

1

N

N
∑

n=1

An , (3.3)

where N is the number of considered Monte-Carlo configurations. In fact, such a mea-

surement is usually started after a considerable number of Monte-Carlo steps have already

been performed such that the system is in thermal equilibrium of the canonical ensemble.

In addition, several steps might separate the individual configurations to account for sub-

stantial differences in the averaging process. In the end, the quality of the implementation

is determined by the speed of finding the configurations close to the ground state and the

explored area of configurational space during the process. This can be influenced by the

suggested trial configurations.

In our implementation, trial configurations are generated by two possible modifications

of an old configuration. In a local transition, a colloid is randomly displaced in an area

surrounding its original position. The size of this trial area is adapted during the simulation

such that the average acceptance according to the Metropolis rule remains around 50%.

If the average of accepted transitions drops to a threshold below 50% the trial area is

reduced to increase the acceptance probability again. On the other hand, if the acceptance

rate reaches a threshold above 50%, the trial area is increased. By this procedure it is

guaranteed that a large number of configurations close to the state of lowest energy is

generated. However, that minimum may just be a local minimum in the energy landscape

in which the procedure is trapped unless one enables the crossing of high energy barriers.

Therefore, we perform a global transition with a probability of 20%. In contrast to local

transitions, the colloid is now randomly displaced in the whole sample, while theMetropolis

rule still determines acceptance or rejection. In our epitaxial code, global transitions can

only be attempted for colloids belonging to the top most layer in order to conserve the

already grown film. Further subtle differences between the Metropolis implementation for

the two-dimensional colloid-polymer mixture and the template-guided epitaxy in three-

dimensional systems will be adressed in the respective sections. In both cases, we use the

widespread Mersenne-Twister mt19937 [262] as pseudo-random number generator. The

name is due to its period length of 219937− 1 which is a Mersenne prime number. Its output

sequences are up to 623 dimensions uniformly distributed.
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3.2. Size of simulation box

In the following section, we address the issue of suitable box sizes for aperiodic structures

in simulations. While periodic boundary conditions are genericly applied to model bulk

behavior in numerical physics, they are contradictory to the aperiodicity of quasicrystals.

If implemented without special care, periodic boundary conditions may lead to a

significant discontinuity in the substrate system. Here, we explain methods to minimize

this discontinuity for continuous potentials like the laser interference pattern as well as

discrete ones like aperiodic tilings.

3.2.1. Approximants for continuous potentials

In general, the continuous potentials or patterns are generated by a set of reciprocal

lattice vectors Gj . These are are arranged in a starlike, symmetric manner: Gj =
G(cos[2πj/N ], sin[2πj/N ]) and G = 2π/aV . Instead of distorting these patterns near the

boundaries, we choose width Lx and height Ly of the simulation box appropriately such

that the discontinuities experienced by particles crossing these boundaries are negligible

small. Since quasicrystals possess length scales whose ratio is an irrational number like for

example the golden mean τ , these box dimensions are limited to certain integer multiples

of a length scale. Usually, these integers are part of a fractional approximation of the

involved irrational number.

For the decagonal potential, N = 5 or N = 10, the length scales in x-direction are

2π/G0,x = aV , 2π/G1,x = 2τaV , and −2π/G2,x = 2τ−1aV , while for the y-direction
2π/G1,y = τ−1aV / sin[π/5] and 2π/G2,y = aV / sin[π/5] are determined. The golden

mean can be approximated by successive elements of the Fibonacci sequence, since

lim
n→∞

fn+1

fn
= τ , (3.4)

with

fn =

{

fn−1 + fn−2 if n > 2

1 otherwise
(3.5)

is valid. Therefore, appropriate box sizes for the decagonal potential are Lx = 2fnaV and

Ly = 2fmaV .
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The octagonal pattern is generated by N = 8 reciprocal vectors. Since it is invariant

under rotations by π/2, the appropriate box is a square. Thus, it is sufficient to discuss

the x-direction whose length scales are given by 2π/G0,x = aV and 2π/G1,x =
√
2aV .

Similar to the previous case, we can approximate the irrational number
√
2 by

lim
n→∞

Pn+1 + Pn

Pn

=
√
2 (3.6)

where Pn are elements of the Pell sequence defined by

Pn =











0 if n = 0

1 if n = 1

2Pn−1 + Pn−2 otherwise

. (3.7)

Consequently, a suitable box size is given by L = maV , whilem is constructed according

to Eq. (3.6). For instance, the sequence of appropriate integers is {1, 3, 7, 17, 41, 99, . . .}
and the quality of the approximation is illustrated in Fig. 3.1 (a,b).

In case of the dodecagonal pattern which is constructed by N = 12 vectors the approxi-

mated box is also a square with edge length L = 2maV . The length scales are determined

to 2π/G0,x = aV , 2π/G1,x = 2aV /
√
3, and 2π/G2,x = 2aV . In order to obtain appropriate

integer values form, we use a continuous fraction approximation which is

√
3 = [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .] (3.8)

= 1 +
1

1 +
1

2 +
1

1 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

. (3.9)

In this way, suitable values are {1, 2, 4, 7, 15, 26, 56, 97, . . .} as can be observed in

Fig. 3.1 (c,d). Here, we demonstrated how suitable box sizes can be obtained for octagonal,

decagonal, and dodecagonal rotational symmetry, i.e. symmetries of rank D = 4. Note

that this approach is less applicable to rotational symmetries of higher rank, for instance

tetradecagonal symmetry with rank D = 6, where two incommensurate ratios have to be

approximated simultaneously.
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Figure 3.1.: Boundaries in laser potentials. (a) Different values of the octagonal laser po-

tential at the top of the box V (y = m · a0) are compared to the values V (y = 0)
at the bottom. (b) The difference from (a) are displayed. (c) Analogue to (a) for

the dodecagonal laser potential as the top of the box V (y = m · a0) is compared to

V (y = 0) at the bottom. In (d) the difference from (c) are shown.
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Figure 3.2.: Substrate construction from an intensity field of eight interfering laser beams. (a)

The most pronounced maxima of the intensity field seem to be ordered according to

an Ammann-Beenker like tiling. (b) When transferring the coordinates of the vertices

x|| from (a) to orthogonal space x⊥, all vertices are located inside an octagon with

unit edge length. Thus, the long-range octagonal order like the tiling is confirmed for

the intensity field. (c) The continuous field is discretized by arranging holes in the

plane according to the tiling. Therefore, small intensity differences between maxima

on the boundary become almost irrelevant.

These laser patterns serve as substrates in our model for colloidal epitaxy with induced

defects. In section 2.3, we already explained how to integrate the strain fields surrounding

dislocations into continuous laser intensity fields. As substrate, these fields are discretized

by arranging circular slots in an otherwise planar surface according to the position of

their most pronounced maxima. Through this process a tilinglike structure is obtained.

For instance, discretizing the intensity field of eight interfering laser beams leads to an

Ammann-Beenker like tiling, as illustrated for a patch in Fig. 3.2. In orthogonal space

the development of the Ammann-Beenker tiling is further confirmed as all points x⊥
are located inside an octagon with unit edge length. The final substrate is displayed in

Fig. 3.2 (c).
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3.2.2. Approximants for aperiodic tilings

In contrast to the continuous fields in the previous section, an appropriate choice of box

dimensions is not sufficient in order to construct rational approximants to the aperiodic

tilings presented in section 1.3. Therefore, we outline in this section how so-called phasonic

approximants can be derived for the aperiodic tilings used in this work. Instead of distorting

the coordinates of the tiling close to the boundary, the tiles are rearranged such that the

tiling is sustained smoothly across the periodic boundaries, while at the same time the

shape of the elementary tiles is conserved. Usually, this requires slight modifications to

the inflation rules, the dual grid or the projection angle. In the following, we will briefly

explain for each tiling used in the scope of this work how we generate useful approximants.

We implemented the inflation rules from section 1.3.1 into a program to construct the

tilings (see Appendix A) and cut out a patch by a rectangular box. However, if periodically

repeated, these boxes might fail to yield a sustained tiling consisting of the original tiles,

as shown in Fig. 3.3 (a) on the basis of the Penrose tiling. Close to the top and bottom

boundaries the elementary tiles, a fat and a skinny rhomb, would be distorted. In order to

overcome this set back, small conglomerations of the tiles can be arranged in a different

manner, by employing small phasonic flips. In this way, the cut out box becomes a periodic

cell as the sequence of tiles along the top and bottom boundary is now identical such that

the cell in Fig. 3.3 (b) may serve as a reasonable rational approximant. Aside this manual

approach, similar approximants of the Penrose tiling can be obtained by the dual grid

method [263] or the projection approach [264, 265]. In both cases the golden mean τ in

the slope of the pentagrid or the angle in the projection matrix is replaced by fractions

involving Fibonacci numbers.

(b)(a)

Figure 3.3.: (a) A patch of the Penrose-Rhomb tiling generated by inflation rules. A cut by

the rectangular area (red dashed line) does not comprise a periodically sustained cell

as the sequence of tilings along the top border differs from the one at the bottom

border. (b) The same tiling as in (a), but with a few phasonic flips in the vicinity of

the top boundary. Now the sequences of tiles along the top and bottom boundary are

identical and sustained through periodic repetition.

Due to its matching and inflation rules the Ammann-Beenker tiling can be produced
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(b)

(a)

(c)

Figure 3.4.: Illustration of the extended Schlottmann rule for the Square-Triangle tiling. (a)

As starting configuration a periodic cell is chosen. (b) In each iteration step the six

types of vertices are replaced by two types of dodecagons. In this way, the initial

periodicity is conserved. (c) Extract of an initial configuration in a two-dimensional

Monte-Carlo simulation. Black dots denote simulated colloidal particles while blue

dots represent mirror particles through periodic boundary conditions. The tiling of

squares and triangles is smoothly sustained across the periodic boundary (dashed red

line).

iteratively in a square domain if two right triangles compose the initial arrangement. This

domain already sustains the tiling across periodic boundary conditions. Nevertheless,

manually located tile flips might still be applied to generate box dimensions in between

the ones obtained by inflation, as these scale with α = 1 +
√
2.

In case of the Square-Triangle tiling, there exist modified inflation rules in order to generate

rational approximants [180, 266, 267]. Starting from an initial periodic arrangement of

triangles or squares the vertices are replaced iteratively by dodecagons consisting of six

triangles in the center surrounded by a ring of alternating squares and triangles. The

orientation of these dodecagons depends on the two types of vertices. This procedure is

known as the extended Schlottmann rule and is illustrated in Fig. 3.4. As a disadvantage the

difference in size between subsequent generations of tilings becomes quickly quite huge,

since the scaling factor in each iteration step remains λ = 2 +
√
3. In order to overcome

this and to produce approximants whose generations exhibit a smaller difference in growth,

so-called half-step rules have been developed for the Square-Triangle tiling [267]. A

vertex replacement according to the Schlottmann rule and an inflation scaling with
√
λ are

alternately applied to produce approximants with smaller size deviations in the generations.
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3.3. Mode analysis

Usually, it is hard to recognize or even characterize dislocations in quasicrystals by

just looking on snapshots. Instead of conducting a tiling based analysis as for example

in [268], we follow a different method which was deployed in [55] and is illustrated for an

octagonal quasicrystal in Fig. 3.5. We assume a two-dimensional quasicrystalline density

ρ(r) obtained, for instance, by averaging over all colloidal positions and consider isolated

density modes of this density. At first, we perform a Fourier transformation of the colloidal

density ρ(r) to obtain ρ̃(r). Then we extract an isolated density mode by performing an

inverse Fourier transformation on a single pair of peaks in ρ̃(r). This reveals the location

of dislocations whose Burgers vectors possess contributions to the mode direction. In

chapter 5, we will apply this analysis to our epitaxially grown colloidal structures. By

collecting mode informations from every layer we are able to follow the three-dimensional

course of dislocations originally induced by the substrate.

(a) (b)

y
/a

V

x/aV

0

10

20

40

30

0 10 20 30 40

Figure 3.5.: (a) Real space pattern of an octagonal laser intensity field with dislocations. The

dislocations are incorporated following the description from section 2.3. In real space,

the dislocations are difficult to identify in this pattern. However, isolated density

modes can be employed to localize the dislocations and to determine their Burgers

vectors. (b) Pattern denoting one isolated mode of the field shown in (a). In this

presentation, the dislocations can easily be identified. The pattern that shows one

isolated mode is obtained by an inverse Fourier transformation of two selected peaks

of the Fourier transformed density ρ̃ (see inset where the selected peaks are marked

by red circles). Figure is adapted from [D].
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Figure 3.6.: (a) Fourier transform of the density of an octagonal intensity field. The respec-

tive mode directions are indicated by red arrows. (b) All four density modes around

a dislocation. The dislocation is visible in modes 1 and 4. In order to obtain the

winding number, we traverse the dislocation core counterclockwise and count the net

amount of crossed stripes in mode direction. Therefore, the winding numbers for this

dislocation are n = (1, 0, 0, −1).

In addition, it is possible to calculate the topological charge, the Burgers vector (∆u, ∆w),
of a dislocation as well. In every mode a so-called winding number ni is determined by

counting the net displacement of stripes in a loop around the dislocation core. This leads

to a vector of winding numbers n with D components, where D is the rank of the crystal,

and subsequently to a system of D equations

2πn =
(

G̃0 G̃1 . . . G̃D

)

(

∆u

∆w

)

. (3.10)

In Eq. (3.10) G̃i denotes the D-dimensional reciprocal vector G̃i = Gi ⊕GkimodN asso-

ciated with the respective peak in the Fourier image. An example to determine the winding

numbers defining the Burgers vector is carried out in Fig. 3.6. The explained analysis has

also been applied in nonlinear photonic quasicrystals to monitor phonon and phasonic

strain relaxation in relationship with defects [245, 269]. Note that the described procedure

is sensitive to the size of the filter. In particular, if ρ(r) contains many dislocations, the

associated peak in ρ̃(r) is fuzzy. In order to detect all dislocations the filter radius has to be

chosen appropriately. Therefore, we usually check whether a larger filter choice reveals

differences or not.
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If you do not change direction, you may

end up where you are heading.

(Siddhartha Gautama 563 B.C. - 483 B.C.)
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4 Degrees of Freedom in

Quasicrystalline Laser

Fields for Colloids

Although quasicrystals originally emerged as a subject of metallurgy or crystallography, in

the last years the study of mesoscopic quasicrystals became an active research field [105].

Compared to atomic systems, mesoscopic quasicrystals as for instance from colloidal

suspensions possess the advantage of a feasible real space analysis. Therefore, certain

properties like for example phasonic degrees of freedom can be observed with less effort

from a mesoscopic perspective without losing fundamental insight. In this chapter, we

consider a laser induced quasicrystal comprised of a monolayer of colloidal particles to

explore ordering for different particle sizes. In addition, we derive trajectories for the

colloidal particles when a phasonic drift is applied to the laser potential.

Colloidal particles are widely employed to study ordering, crystallization and dynamics

in external potentials [196]. In a laser field, a force in the direction towards the highest

light intensity acts on the colloids [223, 224]. Therefore, colloidal particles can be forced

to form complex structures [225]. In particular, quasicrystalline ordering of the colloids

can be obtained and studied by employing an interference pattern with quasicrystalline

symmetry [131, 132]. The setup of the pioneering experiment of Mikhael et al. represents

the central basis of this chapter and has also been enhanced to investigate tribological

properties of sliding aperiodic and periodic monolayers [66, 68].

Several tunable parameters offer access to special quasicrystalline properties. While various

adjustments of the polarization of the laser beams produce interference patterns of different

local isomorphism (LI) class, the phases of the laser beams can be utilized to activate

the phononic and phasonic modes [133]. Regarding the latter degree of freedom, Kromer

et al. studied a monolayer of colloidal particles in a decagonal laser field when the

phasonic displacement is changed [138, 139]. They presented a method to predict the

trajectories of the colloids under a phasonic drift [138]. Here, we extend their approach for

quasicrystals to all rotational symmetries of rank D = 4, i.e. octagonal and dodecagonal

symmetry [A]. Moreover, we show on the basis of seven laser beams that the method can

in principle be further generalized to interference patterns of rank D = 6 [B]. The higher

rank increases the complexity to a four-dimensional phasonic space. Another degree of
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freedom in the suspension is given by the particle size or shape. Similar to settings of the

laser polarization, different particle sizes result in orderings of different LI classes. Kählitz

et al. considered needle- and rodlike particles subjected to a quasicrystalline interference

pattern and determined the phase diagram [141, 142]. Here, we consider a two-dimensional

system of hard discs in an quasicrystalline interference pattern with arbitrary rotational

symmetry. We show how the ratio between the diameter of the particle and the length scale

of the laser field influences the ordering. Degenerate quasicrystalline patterns of different

LI class yet identical rotational symmetry to the laser field are observed. This behavior is

reminiscent of molecular deposition on atomic quasicrystalline surfaces [270].

The chapter is divided into four parts. In the first one, the properties of the quasicrystalline

interference pattern are briefly reviewed. Thereby, we focus on explaining the tunable

parameters to access the degrees of freedom considered in the subsequent sections. In the

second part, we study colloids with finite diameter subjected to a decagonal laser field

and estimate a similar behavior as observed for molecular ordering on atomic surfaces.

In the third part, we extend the previous work of Kromer et al. by analyzing trajectories

occurring for colloids in octagonal, dodecagonal and tetradecagonal laser fields with a

phasonic drift. Finally, we conclude in section 4.4.

4.1. Magnifold of interference patterns

In this section, we introduce the experimental setup of Mikhael et al. [132]. A single laser

beam is split up inN beams of equal power. These are arranged in a symmetric manner and

focused onto the sample cell containing the colloidal suspension. The setting is displayed

for the case of five beams in Fig. 4.1 (a). In the sample plane, the beams interfere leading

to intensity patterns of 2N -fold rotational symmetry if N is odd an N -fold if N is even.

Therefore, crystalline as well as quasicrystalline patterns can be produced [135, 137]. The

resulting intensity pattern is given by the square of the sum over the electric fields of the

beams and averaging over one period T = 2π/ω of the pattern that oscillates with the

circular frequency ω of the light (see also [131]):

V (r) = −
T

∫

0

dt

{

N−1
∑

i=0

Ei cos[Gi · r+ ϕi + ωt]

}2

= −
T

∫

0

dt

N−1
∑

i=0

N−1
∑

j=0

Ei ·Ej{cos[(Gi −Gj) · r+ ϕi − ϕj]

+ cos[(Gi +Gj) · r+ ϕj + ϕj + 2ωt]}

∝
N−1
∑

i=0

N−1
∑

j=0

Ei ·Ej{cos[(Gi −Gj) · r+ ϕi − ϕj] + const , (4.1)
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where ϕj denotes the phase of a laser beam, r = (x, y) is a position within the sample

plane and Gj are the projected wave vectors onto that plane. The polarization vectors Ej

have to be chosen in a symmetric way as for example illustrated in Fig. 4.1 (a), where ψ is

the angle to the radial reference direction of the respective beam.
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Figure 4.1.: Experimental setup for decagonal intensity fields (cf. [133]). (a) The laser beams

as well as their polarization vectors are arranged in a symmetric manner to produce

quasicrystalline intensity fields with perfect tenfold rotational symmetry. θ denotes

the opening angle between the beams and the axis orthogonal to the sample plane,

while ψ defines the polarization to the radial reference direction. (b)-(f) Examples of

intensity fields for different polarizations and opening angles. Every field belongs to

a different LI class. Coordinates are given in units of the length scale aV = 2π/G.

The color coding in all plots is identical to reveal subtle differences in intensities.

Together with the opening angle θ, tuning of ψ and θ allows to obtain patterns of different
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Figure 4.2.: Intensity fields of interference patterns produced by a varying number of beams

(cf. [137]). Both, crystalline and quasicrystalline symmetries are possible. Coordi-

nates are given in units of the length scale aV = 2π/G

LI classes within one rotational symmetry defined byN . To demonstrate the possibilities, a

small collection of decagonal patterns has been assembled in Fig. 4.1 (b)-(f). In section 4.2,

we illustrate an alternative approach to the adjustment of the polarization in order to

influence the LI class of the ordered colloidal suspension.

Yet, a configuration in which all beams possess an identical polarization is more feasible

in experiment. Such a configuration has the consequence that for a finite opening angle

θ > 0, the intensity pattern would cease to exhibit perfect rotational symmetry. However,

since θ is usually very small, we can still assume the limit θ → 0 in Eq. (4.1), which yields

V (r) = − V0
N2

N−1
∑

i=0

N−1
∑

j=0

cos[(Gi −Gj) · r+ ϕi − ϕj] . (4.2)

The prefactor has been chosen such that the deepest minimum at r = (0, 0), at the same

time a or rather the center of perfect rotational symmetry, has the value −V0. Examples for

different N are provided in Fig. 4.2. There, all phases ϕj have been set to zero. A different

choice can induce phasonic excitations as we will address in section 4.3. In the following

sections, Eq. (4.2) serves as initial point to describe the potential of colloidal particles in
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laser fields.

4.2. Colloids with finite diameter

Molecular deposition on quasicrystalline atomic surfaces can lead to monolayers with

quasicrystalline symmetry. However, the scaling difference between the molecule and

the atomic adsorption sites can give rise to a different class of symmetry structure in the

adsorbed film in comparison to the surface. For example, fullerene C60 adsorbs at separated

Fe atoms on icosahedral Al–Cu–Fe while further deposition leads to the formation of a

degenerated quasicrystalline lattice [270]. In order to model the adsorption of particles

with different size on a quasicrystalline substrate, we investigate the energy landscape of a

spherical colloidal particle with finite diameter σ in an intensity field of N interfering laser

beams. This can be described by integrating over the particle area:

Vσ(r0) =
4

πσ2

σ/2
∫

0

l dl

2π
∫

0

dφ V (r0 + lel(φ)) . (4.3)

Note that an integration over the particle volume will lead to similar results. For the

following calculations it is convenient to rewrite the potential for pointlike particles in

Eq. (4.2). As illustrated in Fig. 4.3 for the decagonal case, instead of a double sum over

pairs of projected wave vectors Gj the potential can be expressed as a series of k ∈ ⌊N/2⌋
starlike patterns of j ∈ N wave vectors leading to

V (r) = − V0
N2

⌊N/2⌋
∑

j=0

Aj,N

N−1
∑

k=0

cos[∆Gjk · r+∆ϕjk] , (4.4)

where ∆Gjk = Gk −Gk+j and ∆ϕjk = ϕk − ϕk+j . The prefactor Aj,N depends on the

symmetry and is given by

Aj,N =

{

1 if j = 0 ∨ j = N/2

2 otherwise
. (4.5)

If we insert the new formula for the laser potential of pointlike particles in Eq. (4.3), we

obtain

Vσ(r0) = −
V0
N2

4

πσ2

σ/2
∫

0

l dl

2π
∫

0

dφ

⌊N/2⌋
∑

j=0

Aj,N

N−1
∑

k=0

cos[∆Gjk · (r0 + lel(φ)) + ∆ϕjk] .

(4.6)
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We consider the cos-term and due to symmetry extract the pointlike contribution from the

integration by

4

πσ

σ/2
∫

0

l dl

2π
∫

0

dφ cos[∆Gjk · (r0 + lel(φ)) + ∆ϕjk] (4.7)

=
2

πσ

{

exp[−i(∆Gjk · r0 +∆ϕjk)]

σ/2
∫

0

l dl

2π
∫

0

dφ exp[−il∆Gjk · el(φ)] (4.8)

+ exp[i(∆Gjk · r0 +∆ϕjk)]

σ/2
∫

0

l dl

2π
∫

0

dφ exp[il∆Gjk · el(φ)]
}

(4.9)

=cos[∆Gjk · r0 +∆ϕjk] I(∆Gjk) , (4.10)

where

I(∆Gjk) =
4

πσ2

σ/2
∫

0

l dl

2π
∫

0

dφ exp[il∆Gjk · el(φ)] (4.11)

remains to be calculated.

Gj Gj−G j−1

Gj−G j−2

(a) (b)

Figure 4.3.: The differences of the projected wave vectorsGj in the pentagonal arrangement

can be expressed by two pentagonal starlike patterns. The ratio between the stars is

the golden mean τ .
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We can exploit the symmetric arrangement as each wave vector∆Gjk in the starlike pattern

j has the same length ∆Gj and the integration runs from 0 to 2π. With ∆Gjk · el(φ) =
∆Gj cos[2πk/N + αj − φ] = ∆Gj cosϑ Eq. (4.11) becomes

I(∆Gj) =
4

πσ2

σ/2
∫

0

l dl

2π
∫

0

dϑ exp[il∆Gj cosϑ] . (4.12)

Upon substituting ω = ∆Gjl and Ω = ∆Gjσ/2 as well as incorporating Bessel functions

of the first kind Jn(x) the integration is finally carried out to yield

I(Ω) =
1

πΩ2

Ω
∫

0

ω dω

2π
∫

0

dϑ exp[iω cosϑ] =
2

Ω2

Ω
∫

0

ωJ0(ω)dω =
2

Ω
J1(Ω) . (4.13)

Therefore, we can express the laser potential for finite particle size as a modulation of the

pointlike particle potential

Vσ(r0) = −
V0
N2

⌊N/2⌋
∑

j=0

I(∆Gjσ/2) Aj,N

N−1
∑

k=0

cos[∆Gjk · r0 +∆ϕjk] . (4.14)

In contrast to the pointlike case, where the potential can be written as an expansion of

equally weighted starlike patterns of projected wave vectors, the respective weights for

the finite diameter case are nonuniform. Especially the sign may be different which can

give rise to further variations in the potential. In Fig. 4.4 we have assembled a collection

of patterns for increasing diameter σ. Note that due to the decay in I(Ω) the contrast in

the potentials decreases significantly with σ. We adjusted the color coding to enhance

visibility again. Nevertheless, in a real system with high enough density the particle-

particle interactions would become more dominant again with increasing σ, unless the

laser intensity is increased accordingly to counter balance this effect. Yet, if the decay in

I(Ω) can be neglected because of the overall intensity, its oscillation due to the Bessel

functions will result in the repetition of to some extend similar patterns for increasing

diameter. Preliminary results from Brownian dynamics simulations conducted by F. Rühle

confirm these predictions.

As another aspect, we want to point out the structural similarity to the intensity fields

with different polarizations from Fig. 4.1. For instance, the case σ = 0.64 aV resembles

a polarization defined by θ = π/2 and ψ = π/4, while the case σ = 0.74 aV almost

corresponds to a polarization with θ = π/5 and ψ = π/5. This further illustrates the
versatility of quasicrystalline structures that can be induced in one colloidal suspension by

interfering laser beams.
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Figure 4.4.: The decagonal laser potential for spherical colloids with different diameter σ.
The respective modulation value I(Ω) for each star is indicated in the top panel. The

color of the dots corresponds to the color code in Figure 4.3. In the panel below, the

potential Vσ(r0) is displayed with units in aV . For visibility the contrast has been

corrected to counter balance the averaging of the integration. The bar in the top right

corner represents the diameter of a colloid. As σ is increased the minima become at

first more pronounced before changing sign. All patterns belong to different local

isomorphism classes. In addition, they exhibit a certain self-similarity. Discounting

the inversion of minima and maxima in the potential, the patterns in (c) and (e) as

well as in (d) and (f) respectively seem to differ only in the length scale.
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4.3. Trajectories of colloidal particles under

phasonic drift

Phasons are additional hydrodynamic modes of quasicrystals [238]. Despite the fact that

the discovery of quasicrystals already dates back thirty years, phasons remain an active

and controversial topic of research [246, C]. Although today thermal excitations related

to phason flips can experimentally be detected in atomic quasicrystalline systems [244],

a colloidal system resembles a feasible approach to investigate the complexity of the

phasonic modes.

In this section we analyze the behavior of colloids in quasicrystalline laser fields with

octagonal, dodecagonal and tetradecagonal symmetry to which, in addition, a phasonic

drift is applied. Thereby we expand a method originally developed by Kromer et al. on

the basis of the decagonal laser field [138]. While the influence of a phasonic drift on

the colloidal dynamics for the case V0 ≈ kBT has been investigated as well [139], we

consider the limit of high potential strengths or low temperatures, e.g., V0 ≫ kBT , such
that all colloids are always located in local minima of the external potential. Under these

conditions, the colloids serve as tracer particles to visualize phasonic excitations.

While in a periodic crystal many properties can be deduced from a single unit cell [14, 237],

Kromer et al. showed for this quasicrystalline system that every colloid can be mapped

into characteristic areas of reduced phononic and phasonic displacement [138]. Here, we

generalize their method further. In section 4.3.1, we derive the colloidal trajectories for

phasonic drifts in octagonal and dodecagonal symmetry. Therefore, we demonstrate the

applicability of the approach to all symmetries of rank D = 4. In section 4.3.2, we show

on the basis of the tetradecagonal laser field that the method can even be extended to

quasicrystalline fields of rank D = 6.

The contents of this section have undergone external revision and are published in [A] for

D = 4 and in [271, B] for D = 6.

4.3.1. Interference pattern of rank four

In this section we study the colloidal suspension exposed to a quasicrystalline laser

interference pattern of rank D = 4 in the limit of high intensities while a phasonic drift is

applied. The characteristic areas for octagonal and dodecagonal rotational symmetry are

determined and the resulting colloidal trajectories derived. We observe similar types of

trajectories as in the decagonal case [138].
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Phasonic drifts

A phasonic drift can be incorporated into the potential of Eq. (4.2) for the interference

patterns by tuning the phases ϕj of the laser beams. These phases can be parameterized in

accordance with [232, 238] to

ϕj = Gj ·u+GkjmodN ·w + γ/N (4.15)

where we use k = 3 for N = 8 and k = 5 for N = 12. The vector u = (ux, uy) describes
the phononic and w = (wx, wy) the phasonic displacement. In contrast to u and w, the

global phase γ is not a hydrodynamic variable and vanishes in the interference patterns.

We denote a potential with a phasonic displacement w by Vw(r). We apply a phasonic

drift to the potential, i.e., the phasonic displacement is changed at a constant rate in time.

The effect of such a drift is illustrated in Fig. 4.5. Initially the colloid resides inside the

minimum. Upon increasing w the depth of the minimum decreases. At some point, the

minimum has completely vanished, while in the vicinity a new minimum is emerging.

Finally, the colloid slides to the new site. Since the applied phasonic drift is globally

applied, it induces rather complex trajectories comprised of such particle jumps throughout

the sample.

Figure 4.5.: (a) Cross section y = 0 of the octagonal laser potential for increasing values of

the phasonic displacement wx. The applied phasonic drift causes the local minimum

to gradually disappear and a new one to appear in the vicinity. Due to this change

in the potential landscape colloidal transitions occur as slides from one vanishing

minimum to another growing one. (b)-(e) Illustrations of typical stages of such

transitions corresponding to the red markings in (a).
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Table 4.1.: The step lengths ur and wr of phononic and phasonic displacement vectors used

in Eq. (4.16) such that there is no change to the laser field for all integer numbers n
andm. In the last two columns the size of the characteristic areas is given.

Beams ur/aV wr/aV δu/2aV δw/2aV

5 2
5
n+

(

1
5
+ 1√

5

)

m 2
5
n+

(

1
5
− 1√

5

)

m (1 +
√
5)/10 (1 +

√
5)/10

10 2√
5
n+

(

1 + 1√
5

)

m − 2√
5
n+

(

1− 1√
5

)

m 1
2

(

1 + 1√
5

)

1
2

(

1 + 1√
5

)

8 1
2
n+ 1√

2
m 1

2
n− 1√

2
m 1

2
√
2

1
2

(

1
2
+ 1√

2

)

12 n+ 1√
3
m n− 1√

3
m 1

2
1
2

(

1 + 1√
3

)

Characteristic areas

Although a quasicrystal does not possess a unit cell to derive global properties, all colloidal

positions can be mapped onto particles inside characteristic areas of small phononic

and phasonic displacements. The reason is that there are combinations of phononic and

phasonic displacements ∆u and ∆w that do not change the potential, i.e., Vw(r) =
Vw+∆w(r+∆u). For example, for j = 0, 1, . . . ,M displacements with

∆u = (ur cos [2πj/M ] , ur sin [2πj/M ])

and ∆w = (wr cos [2πkj/M ] , wr sin [2πkj/M ]) (4.16)

change the differences between phases ϕj −ϕk in Eq. (4.2) only by integer multiples of 2π
if the step lengths ur and wr are chosen appropriately (see Table 4.1 for possible values).

The number of symmetry axes isM = 2N for an odd number of beams andM = N for

an even one.

By using suitable combinations obeying Eq. (4.16), we can map a colloid at position r

in a potential Vw(r) onto a particle at reduced position r(red) = r −∆u in a potential

Vw(red)(r(red)) with reduced phasonic displacementw(red) = w+∆w within characteristic

areas whose size is determined as follows: We first consider the mapping along a phononic

direction given by ej = (cos[2πj/M ], sin[2πj/M ]) and its phasonic counterpart. The

sizes of the characteristic intervals δu and δw have to be chosen at least such that the

two-dimensional subspace spanned by the considered phononic and phasonic directions

can be completely covered with rectangles of dimensions δu and δw that are displaced by

∆u in phononic and ∆w in phasonic direction. We list the appropriate interval lengths δu
and δw in Table 4.1. Considering all symmetry directions, we end up on reduced values

r(red) and w(red) within areas of polygonal shape defined by

∣

∣r(red) · ej
∣

∣ ≤ δu

2aV
and

∣

∣w(red) · ej
∣

∣ ≤ δw

2aV
(4.17)

for all j = 1, . . . ,M (see also black polygons in Fig. 4.6).



52 4. Degrees of Freedom in Quasicrystalline Laser Fields for Colloids

-0.5 0.5

-0.5

0.5

-0.4 -0.2 0.2 0.4

-0.4

-0.2

0.2

0.4

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

(red)y      /a V(b1)

      /a

      /a

(b2)

12 beams

(red)y      /a V(a1)

      /a

      /a

(a2)

8 beams

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.2

0.4

0.6

−0.4 −0.2

0.2

0.4

−0.2

0.2 0.4

−0.4

x      /a(red)
V

wy V
(red)

wx V
(red)

x      /a(red)
V

wy V
(red)

wx V
(red)

Figure 4.6.: Characteristic areas for octagonal and dodecagonal laser field (cf. [A]). The

areas of reduced positions r(red) (a1,b1) and phasonic displacements w(red) (a2,b2)

are depicted for different laser potentials. The characteristic areas are marked by

black polygons. The threshold value ofw(red) where a minimum disappears is shown

by solid colored lines drawn on top. If this threshold value is surpassed, the colloid

slides into a new minimum whose position is marked by the outermost colored spots

in the diagrams for r(red). Note that the reduced positions are drawn with the same

color as the associated reduced phasonic displacements. Afterwards r(red) and w(red)

are mapped back into the characteristic areas as illustrated by the innermost colored

dashed lines or spots that lie on the opposite site of the lines where the sliding

started. The remapping ends exactly underneath the lines where a slide for opposite

phasonic drift starts. Note that the mapping does not change the real position or the

real phasonic displacement. Examples of colloidal paths within the diagrams are

given in Fig. 4.7 and Fig. 4.8
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To gain a complete understanding of the colloidal dynamics, it is sufficient to study the

colloidal behavior within the characteristic areas. We follow the paths of colloids that are

started at the origin for phasonic drifts in all directions. In Fig. 4.6, the important points of

these trajectories are shown as described in more detail in the caption of the figure. Note

the color is always the same for the reduced phononic displacement and its corresponding

reduced position. Therefore, the color indicates in what direction a colloid is moving

depending on the direction of the phasonic drift. A detailed description of the analysis for

a laser field created by five beams is given in [138]. In the next section, we will show that

the path of a colloid started at an arbitrary position can be predicted by using the diagrams

shown in Fig. 4.6.

Colloidal trajectories

With the diagrams deduced in the previous section one can predict colloidal trajectories

due to phasonic drifts. Similar to the decagonal case N = 5, we identify two types of

trajectories: a straight path and a zig-zag path. Examples of trajectories caused by a

phasonic drift in x-direction are given for N = 8 beams in Fig. 4.7 and for N = 12 in

Fig. 4.8. Note that due to symmetry reasons a phasonic drift in y-direction leads to similar

paths. The Figures are to be viewed columnwise as each column contains the description

of a single trajectory. A trajectory depends on the starting value of w(red). All initial

conditions that lead to similar trajectories are marked by the crosshatched areas in Fig. 4.7.

At the beginning, the colloidal position changes only gradually under increase of w. The

colloid remains firmly located in its local minimum. Yet at some point, w will reach a

critical value such that the local minimum occupied by the colloid vanishes. Thus, the

colloid slides to a new local minimum in the vicinity which appeared due to the phasonic

drift. As a consequence of this transition, the position of the colloid r is now outside of the

characteristic area. However, we can employ a suitable choice from Eq. (4.16) to map its

reduced coordinate back inside the characteristic area by r(red) = r(red) −∆u. Since a

phononic displacement has to be accompanied by a phasonic one in order to leave the

physical system invariant, w(red) has to be updated by w(red) = w(red) + ∆w as well.

After this mapping, a new cycle of gradually vanishing minima, sliding colloids and again

mapping to updated reduced quantities begins. We obtain a straight path if this procedure

repeats after one slide and a zig-zag path in case it repeats after two slides.
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Figure 4.7.: A selection of colloidal trajectories in laser fields created by eight beams for

a phasonic drift in x-direction (cf. [A]). For symmetry reasons, a phasonic drift in

the y-direction causes analogue particle movements. In each column, a trajectory is

shown that is typical for all colloids starting inside the crosshatched area. In the first

row, the paths of the colloids are outlined, while in the second row, the corresponding

reduced positions r(red), and in the last row, the reduced phasonic displacements

w(red) are given. At the beginning, r(red) changes only gradually in response to an

increase of the phasonic displacement. When w(red) reaches the colored solid border,

the local minimum occupied by the colloid vanishes. As a result, the colloid slides

into another local minimum depicted by the same color. After that r(red) and w(red)

are mapped such that they are close to the origin and all steps are repeated for the

new reduced quantities.
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Figure 4.8.: A selection of colloidal trajectories in laser fields created by twelve beams for

a phasonic drift in x-direction (cf. [A]). A phasonic drift in the y-direction causes

analogue particle movements due to symmetry reasons. Each column represents a

trajectory that is typical for all colloids starting inside the crosshatched area. The first

row contains the paths of the colloids, the second row the corresponding reduced

positions r(red), and the last the reduced phasonic displacements w(red). Similar

to the case of eight beams, r(red) changes only gradually at first in response to an

increase of the phasonic displacement. When w(red) reaches the colored solid border,

the local minimum occupied by the colloid vanishes. Consequently, the colloid slides

into another local minimum depicted by the same color. After that r(red) and w(red)

are mapped such that they are close to the origin and all steps are repeated for the

new reduced quantities.
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4.3.2. Interference pattern of rank six

In the previous section, quasicrystalline interference patterns with octagonal and dodecago-

nal rotational symmetry were considered, which are all of rank D = 4. Here, we show on

the basis of the tetradecagonal symmetry how the method of Kromer et al. can be further

extended to laser fields with rank D = 6. Compared to the D = 4 case, the additional

phasonic modes lead to a more complex behavior and we identify several new types of

colloidal trajectories.

Characteristic areas

As a consequence of the tetradecagonal symmetry the parameterization from Eq. (4.15)

has to be adjusted:

ϕj = Gj ·u+G3jmod 7 ·v +G5jmod 7 ·w , (4.18)

where u = (ux, uy) denotes the phononic, v = (vx, vy) and w = (wx, wy) the phasonic

displacements. Let us note that compared to a D = 4 quasicrystal an additional phasonic

displacement vector is required.

As demonstrated in section 4.3.1 or in [138] we can map all particle positions in a qua-

sicrystal onto particles inside characteristic areas of small phononic and phasonic dis-

placements. In order to determine the characteristic areas, we calculate, analogue to the

D = 4 case, phononic and phasonic displacements ∆u, ∆v and ∆w that change the

differences between the phases ϕj − ϕk in Eq. (4.2) only by integers of 2π. We solve

Vv+∆v,w+∆w(r +∆u) = Vv,w(r), where Vv,w(r) denotes a potential with the phasonic

displacements v and w. For j = 0, . . . , 13, we obtain as suitable combinations

∆u = (ur cos[jπ/7], ur sin[jπ/7]),

∆v = (vr cos[3jπ/7], vr sin[3jπ/7]), and

∆w = (wr cos[5jπ/7], wr sin[5jπ/7]). (4.19)

These displacements do not modify the potential when

ur/aV =
8

49
(n1 a+ n2 b+ n3 c) ,

vr/aV =
8

49
(n2 a+ n3 b+ n1 c) ,

wr/aV =
8

49
(n3 a+ n1 b+ n2 c) , (4.20)
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where n1, n2, and n3 ∈ Z and a, b, and c are the constant values

a = (1− cos[10π/7])2 − (1− cos[2π/7])(1− cos[6π/7]),

b = (1− cos[6π/7])2 − (1− cos[2π/7])(1− cos[10π/7]),

c = (1− cos[2π/7])2 − (1− cos[6π/7])(1− cos[10π/7]). (4.21)

Thus, a colloid at position r in a tetradecagonal potential with phasonic displacements v

and w can be mapped to a reduced position r(red) = r−∆u in a potential with reduced

phasonic displacements v(red) = v +∆v and w(red) = w +∆w inside the particular

characteristic area.

Analogue to the D = 4 cases, we consider the subspaces spanned by a chosen phononic

direction ej = (cos[πj/7], sin[πj/7]) and its phasonic counterparts to determine the size

of the characteristic areas. In contrast to the quasicrystals of rankD = 4 from section 4.3.1,

we get for the tetradecagonal symmetry a three-dimensional subspace in every direction.

Therefore, we have to find cuboids of the side lengths δu, δv, and δw that fill out the whole

volume when shifted about ∆u in phononic and ∆v and ∆w in phasonic directions. Then

all reduced positions and reduced phasonic displacements are limited by

|r(red) ej| ≤ δu/2aV ,

|v(red) ej| ≤ δv/2aV ,

and |w(red) ej| ≤ δw/2aV (4.22)

for all symmetry directions j = 0, . . . , 13. A possible choice is δu/2aV = δv/2aV =
δw/2aV = 1/2(−a− b).

Analyzing colloidal trajectories

For a complete description of the colloidal dynamics in a quasicrystal with tetradecagonal

symmetry a four-dimensional phasonic space spanned by vx, vy, wx, and wy has to be

analyzed. Since it is too complex to sample the complete space, we restrict our analysis to

drifts on selected planes in the phasonic space.

As a first attempt eitherw is varied while v = 0 or v is changed whilew = 0. We trace the

paths of colloids started at the origin for all drift directions within the respective phasonic

plane. Then the important points of the trajectories for reduced phasonic displacements

w(red) or v(red) and the corresponding reduced positions r(red) can be presented in the dia-

grams of Fig. 4.9. Note the similarity to the diagrams obtained for the D = 4 quasicrystals

in Fig. 4.6.
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Figure 4.9.: Characteristic areas for the tetradecagonal laser field (cf. [B]). (a,b) Areas of

reduced positions r(red) and reduced phasonic displacements w(red) for v = 0. (c,d)

Areas of reduced positions r(red) and reduced phasonic displacements v(red) for

w = 0. The characteristic areas are limited by blue polygons. The lines where

particle start to slide or end up after sliding or remapping are marked by different

colors. Selected lines are also labeled by letters (A), (B), or (C) in order to denote

corresponding lines.

To derive now a trajectory for the case v = 0 (see Fig. 4.9 (a,b)) we attempt the procedure

explained in detail for the D = 4 case: When the phasonic displacement w(red) reaches a

point marked by (1,2) the colloid jumps from its old position (1) to a new one (2). Note

that the positions (2’) are only reached for a drift along a symmetry axis or slightly beside

it. Since the colloidal position is now outside the characteristic area, one has to map it

back inside by employing combinations of ∆u, ∆w and also ∆v. Due to the latter, for

the mapped quantity v(red) 6= 0. Thus, one has to consider a new diagram for the reduced

phasonic displacements w(red) and the reduced positions r(red) after every jump. The same

difficulty arises for drifts in the w = 0 plane. Therefore, in contrast to quasicrystals with

rank D = 4, the derivation of a colloidal trajectory for an arbitrary drift is for D = 6 in

most cases quite complex, as many diagrams would be required for a complete prediction.
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Selected colloidal trajectories

Despite the higher-dimensional complexity, there are drifts in the tetradecagonal potential

for which it is possible to deduce the trajectories with a single diagram for the reduced

phasonic displacements. For certain drifts in the plane with vy = wy = 0, the colloid

moves in x direction. In addition, the phasonic counterparts ∆w and ∆v to the required

∆u only affect the x components wx and vx. As a consequence, the phasonic plane with

v
(red)
y = w

(red)
y = 0 is never left during the mapping process. In the following, we discuss

the colloidal trajectories that can be completely derived from the diagram in Fig. 4.10 (a)

for selected drifts.

For a phasonic drift in the direction (vx, vy, wx, wy) = (cos[3π/7], 0, cos[5π/7], 0) we

observe a zig-zag path illustrated in Fig. 4.10 (b). The trajectory resembles the zig-zag

paths detected in quasicrystals with rank D = 4 from section 4.3.1.

On the other hand, a new type of trajectory is depicted in Fig. 4.10 (c). It is comprised of

straight paths interrupted by jumps in the opposite direction and occurs when a drift in

the direction (vx, vy, wx, wy) = (cos[9π/70], 0, cos[3π/14], 0) is deployed. The particle

slides on a straight line until the phasonic displacement reaches a point in the diagram in

Fig. 4.10 (a) such that the particle jumps. The phasonic displacements and the positions

can be mapped back into the characteristic areas to predict the further path of the colloids

upon a further increase of the phasonic displacement.

(a) (b)

(c)

(d)

(e)

Figure 4.10.: (a) Section of the characteristic diagram for the reduced phasonic displace-

ments v
(red)
x and w

(red)
x with vy = wy = 0. (b)-(e) Selected typical colloidal

trajectories arising for (vx, wx) drifts in certain directions. The directions of motion

are indicated by arrows. The scale bar denotes the length scales in x- and y-direction.
The figure has been adapted from [B].
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Figure 4.11.: Selection of typical colloidal trajectories comprising the majority of the ob-

served colloidal paths (cf. [B]). Glide motion of the colloid is depicted by solid

blue lines, while jumps are marked by dashed red lines. (a) The trajectory exhibits

combinations of straight and winding lines separated by jumps. (b) The trajectory

consists of several jumps following an irregular zig-zag path. (c) The chaotic trajec-

tory is interrupted by jumps and exhibits otherwise irregular slides without preferred

direction.

In Fig. 4.10 (d) an example of a straight path without any jumps is displayed. It arises for a

phasonic drift in the direction (vx, vy, wx, wy) = (1, 0, 1, 0). In this case, the phasonic

displacement never reaches a point in the diagram of Fig. 4.10 (a) as the particle never

leaves a minimum. Therefore, the phasonic displacement is simply mapped back when it

crosses the border of its characteristic area. This drift proceeds along a symmetry plane in

the phasonic space such that the form of the trajectory is a straight line.

Another new type of trajectory has the shape of a winding line as shown in Fig. 4.10 (e). It

arises, e.g., when a drift in the direction (vx, vy, wx, wy) = (cos[3π/7], 0, cos[5π/7], 0)
is applied for a colloid position whose initial reduced phasonic displacement is not in the

origin but at vx = 0.3aV and wx = −0.2aV . Just as in the example before, the colloid

never jumps. Compared to the previous case the drift does not move along a symmetry

plane in the phasonic space which leads to the occurrence of curves in the path.

Note that aside from this selection of typical paths, most phasonic drifts give rise to much

more complex trajectories. Further examples are shown in Fig. 4.11. All displayed paths

of the colloids are composed of the typical trajectories such that every section can be

explained separately.
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4.4. Conclusion

We have investigated new aspects in laser induced colloidal quasicrystals by considering a

finite particle diameter and phasonic drifts in octagonal, dodecagonal and tetradecagonal

rotational symmetry as possible degrees of freedom. The insight gained from studying this

basic model of a two-dimensional monolayer of colloidal particles is also relevant for other

quasicrystalline systems. For instance regarding the colloidal diameter, the deposition of

macromolecules on atomic quasicrystalline surfaces seems to result in similar degenerate

adsorption patterns [270]. Our model contributes to the understanding of the origin of these

patterns whose rotational symmetry is identical to the substrate.

A similar case can be made concerning the phasonic drifts in laser interference pattern.

In principle, the method is also applicable to intrinsic quasicrystals, e.g. atomic systems

characterized by a density distribution where atoms reside at the most pronounced maxima.

By analyzing the properties of these maxima within the reduced phononic and phasonic

areas it is possible to predict the correlated rearrangements of atoms due to phasonic

fluctuations.

Besides, we have extended the method originally developed by Kromer et al. to octagonal,

dodecagonal and tetradecagonal symmetry and demonstrated the universality of the ap-

proach. In particular, for the tetradecagonal case with rank D = 6 we showed how one

can still predict colloidal trajectories that are caused by phasonic drifts in spite of the

increased complexity in the phasonic space. In addition, we were able to identify new types

of trajectories compared to the regular straight and zig-zag paths that are already known

from quasicrystals with rank D = 4.
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When you stop growing you start dying.

(William Burroughs 1914-1997)
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5 Colloidal Epitaxy on clean

Quasicrystalline

Substrates

In contrast to the previous chapter, in which we discussed the properties of a quasicrys-

talline monolayer of colloidal particles, we now make the step to three-dimensional

colloidal quasicrystals. Pushed by experimental discoveries of mesoscopic quasicrystals

in star polymers [108] or micelles [109] an active field of soft matter quasicrystals has

emerged [105]. On the theoretical side, much effort has been invested to stabilize qua-

sicrystals in bulk by tuning in particular the interaction potential in great detail [117, 119].

In this chapter, we want to harness the potential of a template-directed approach and the

fact that most three-dimensional quasicrystals like the octagonal [179], decagonal [272] or

dodecagonal [5] phase are periodic stackings of two-dimensional aperiodic tilings.

For colloids, the method of template-directed growth has been successfully applied to

obtain periodic crystals and is controlled for various solvent conditions [143, 145]. Under

gravity as an external field, colloidal particles sediment onto a patterned substrate. The

specific design of the substrate influences the grown colloidal structure. Hence, crystal

structures differing from the bulk behavior can be achieved. Here, we investigate the

colloidal sedimentation on quasicrystalline substrates by Monte-Carlo simulations. In

contrast to other approaches, no fine-tuning of the interaction potential between the colloids

is required. So far, comparable studies only exist for the adsorption of rare gas elements on

metallic quasicrystalline surfaces [73, 74].

The outline of the chapter is as follows: In the first part, we introduce the epitaxial model

in general before explaining the simulation procedure or suitable interaction parameters

in detail. Afterwards, we retrieve the results for simple periodically crystalline substrate

symmetries. From this basis, we consider the deposition of colloids on quasicrystalline

substrates and show that stackings with several quasicrystalline layers develop for various

substrate symmetries. We continue to evaluate the formed layers in detail and discuss the

limitations of this approach as dislocations start to emerge in higher layers. Briefly, we

outline a possible experimental realization before finally concluding in section 5.3.
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5.1. Sedimentation model

We introduce the model in two stages. First, we explain the colloidal suspension and the

quasicrystalline substrate construction. Second, we discuss the simulation procedure in

detail with suitable values for interaction parameters and retrieve the results for simple

crystalline substrates.

5.1.1. Template and colloidal interaction

We consider a suspension of colloidal particles of diameter σ in a common solvent. Under

the influence of a gravitational field Vext = V0 · z/σ the colloids sediment onto a patterned

substrate. The design of the substrate is borrowed from the aperiodic tilings presented

in section 1.3. It is comprised of cylindrical holes with a certain depth that are arranged

according to the vertices of an aperiodic tiling on the otherwise plain surface (see Fig. 5.1).

Therefore, these slots represent beneficial locations for the colloids in the gravitational field.

In experiments a corresponding substrate might be realized by a lithography patterned

template (cf. [143, 230, 273]). The interaction between the colloids is described by the

screened Coulomb potential

V (r) =

{

ǫσ
r
exp [−κ(r − σ)] , r > σ

∞ , r < σ
, (5.1)

where r denotes the distance between the center positions of two colloids, κ is the inverse

Debye screening length, and ǫ determines the strength of the Yukawa interaction. The

interaction between the colloids and the substrate surface is hard-core like. For good growth

conditions, the gravitational strength has to be strong enough to imprint the substrate on

the colloidal ordering while it still leaves the colloids able to explore the surface landscape

during sedimentation.

5.1.2. Simulation details and parameters

We choose the values for the parameters of the pair potential in Eq. (5.1) in accordance

with [274] such that βǫ = 20 and κσ = 100. Thus, the interaction between the colloids is

dominated by excluding volume effects. The substrate contains cylindrical holes with depth

0.25σ and diameter 0.88σ arranged like an aperiodic tiling. In addition, the substrate pattern

is controlled by the edge length a0 of the basic tiles. For a sensible regime of a0 the lower

limiting value is forced such that all vertices can be occupied by non-overlapping holes and

consequently colloids. The upper limiting value is chosen such that sedimenting colloids of

the second layer are prevented from falling through to the surface. The gravitational force

has to be tuned in order to compromise two features. On the one hand, the gravitation must

not be too strong such that the colloids are restricted in exploring the surface landscape.

On the other hand, gravitation must still imprint the substrate order on the grown colloidal
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Figure 5.1.: Overview of the colloidal deposition model. The substrates are derived from

periodic approximants of aperiodic tilings. (a) Schematic excerpts of the three tilings

used in the scope of this chapter as quasicrystalline substrates: the octagonal Ammann-

Beenker, the dodecagonal Square-Triangle, and the decagonal Penrose-Rhomb tiling.

The substrate is constructed as a planar surface that exhibits circular slots. These

slots are arranged according to the aperiodic tilings from (a). The interaction of the

colloids and the substrate surface is determined by excluded volume such that the

slots represent energetically favored positions due to the external gravitational field.

(b) The interaction potential between the colloids is almost hard-core like. (c) A clean

octagonal substrate whose size is typical for the simulated system. (d) Final adsorbed

structure by colloidal sedimentation under a gravitational field. The coloring of the

particles is generated by their z coordinates and indicates the formation of several

layers. (c,d) are adapted from [D].
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structure. Therefore, we scanned both V0 and a0 for each substrate tiling and obtained

V0/ǫ = 12 as suitable value for the gravitational strength.

The simulation procedure is designed such that a layer by layer growth is supported:

First, colloids that could occupy half of the holes contained in the substrate pattern are

injected with random positions in the top xy-plane of the box and sedimented onto the

grown structure. The system is relaxed for at least 2.5 · 105 Monte-Carlo steps before the

next particles are injected. In the end, the final adsorbate structure consists of roughly

104 colloidal particles for substrates with 800 holes. On each substrate, the process is

independently repeated 200 times, in order to improve the statistics of the analysis. Then,

from the average number density distribution in vertical direction the layers are identified.

5.1.3. Growth on periodic substrates

Before we simulate the sedimentation on quasicrystalline substrates, we test the simulation

for periodic ones. We apply the procedure described in the previous section on square

and hexagonal lattice substrates. From the independently grown colloidal structures we

determine the average vertical distribution 〈N(z)〉, i.e. a histogram of occurring z values

in the structure. In case of a layerwise growth, 〈N(z)〉 exhibits distinct peaks (see, e.g.

Fig. 5.2 (a)). Based on this information we divide the whole structure into individual layers.

If the choice of higher layers is no longer distinct because of peak broadening, the grown

structure is split into layers based on the width of the previous layers. Moreover, each layer

is treated as a two-dimensional system with a structured colloidal density ρ(r) such that

its structure factor S(q) reveals the order within the layer. By integrating over the peaks

belonging to the first ring of S(q), we calculate an average intensity that allows to compare

the extend of order between higher layers. These results are displayed for the square lattice

in Fig. 5.2 and for the hexagonal lattice substrate in Fig. 5.3.

In case of the square lattice, we observe a perfect layerwise structure as 〈N(z)〉 exhibits
sharp and separated peaks. In addition, for each layer S(q) indicates square ordering, while

at the same time the average intensity of the structure factor remains at a constant high

value throughout the grown structure. Therefore, a continued sedimentation of colloids

leads to a bcc crystal, i.e. an unlimited stacking of square layers.

On the other hand, the sedimentation on the hexagonal substrate results into a structure

that, as z increases, consists of broadening layers, even though these remain distinctly

visible in 〈N(z)〉. Yet, the individual structure factors of the layers suggest a transition to a

disordered state for higher layers accompanied by a decrease of the average intensity.

These two different outcomes of the deposition process originate directly from the different

substrate symmetry. On the square lattice, the adsorption sites are uniquely defined, as all

colloids reside on the center of a square from the layer below (see Fig. 5.4 (a)). Since this

allows a rigid abab . . . stacking of square lattices, the tetragonal symmetry is conserved

throughout the grown structure. In contrast, the excluded volume interaction of the colloids

divides the adsorption sites of the hexagonal lattice into two groups, namely the center of
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Figure 5.2.: Crystalline layers on the square lattice with lattice constant a0/σ = 1.13. (a)
From the vertical distribution of particles 〈N(z)〉, several periodically stacked layers

are distinctly recognizable. The width of the peaks remains sharp throughout the

sample. (b) The average intensity of the four inner peaks of the structure factor

relative to the first layer remains constant. (c) The individual structure factors reveal

that ordering is conserved and that the whole structure is comprised of stacked square

lattices.
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Figure 5.3.: Crystalline layers on the hexagonal lattice with lattice constant a0/σ = 1.13.
(a) From the vertical distribution 〈N(z)〉 several layers can be identified, while their

width increases with height. (b) Consequently, the average intensity of the six inner

peaks of the structure factor seems to decrease exponentially relative to the value of

the first layer. (c) The individual structure factors of the layers show a transition by

decaying higher modes into a disordered state.
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(a) Square: (b) Hexagonal:

Figure 5.4.: Schematic stacking of hard sphere lattices for the square and hexagonal case.

Black circles denote substrate particles while adsorbed particles on top are repre-

sented by white and blue circles respectively. (a) On a square substrate the subsequent

square layer is uniquely defined and the stacking sequence is abab . . .. Hence, the

combined symmetry of substrate and layer remains four. (b) On a hexagonal lattice

two configurations of the subsequent layer are possible. The particles may either

reside on the center of a green (blue circles) or red triangle (white circles). These two

domains are incompatible with each other and the boundary between them affects

further layers. The stacking sequence may be random abc . . ., aba . . ., acb . . . as long
as adjacent layers are different. In addition, the combined symmetry of substrate and

each domain of adlayer is reduced to three.

upward and downward pointing triangles, as illustrated in Fig. 5.4 (b). Adjacent positions

of different groups cannot be occupied simultaneously. As a consequence, multiple col-

loidal domains with incompatible orientations can form within a layer. The boundaries

between these domains affect the subsequent growth during the sedimentation process by

interrupting the stacking of an otherwise random sequence of a, b, and c with differing

adjacent layers. This corresponds to a mixed hcp and fcc crystal. In the long run, the

amount of domain borders increases until the layer becomes disordered.

5.2. Colloidal deposition on quasicrystalline

substrates

After simulating the sedimentation of colloidal particles on periodic commensurate sub-

strates in the previous section, we now consider quasicrystalline substrates that are by

definition completely incommensurate. This can give rise to complex phenomena. For

example, regarding the deposition of metals on quasicrystalline surfaces, many interesting

phenomena have been reported in literature like polymorphic film growth [82, 90], or the

evolution of uniaxially aperiodic copper [84]. In this section, we show that for our colloidal

expitaxy approach quasicrystalline substrate symmetry in combination with sedimentation

of colloids under gravity suffices to achieve several quasicrystalline layers in the grown

structure. Besides, this can be exploited to realize rotational symmetries that are unlikely

to form for our particle model under conditions of self-assembly like for instance octag-
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onal symmetry [115]. In the first part, we compare the grown structures on the basis of

the average vertical distribution as well as the properties of the structure factors. In the

second part, we analyze changes in the individual layers in more detail by discussing the

stacking potential and the limit of defect free growth. In the last part, we discuss a possible

experimental realization.

Figure 5.5.: Quasicrystalline layers on the octagonal Ammann-Beenker substrate with tile

edge length a0/σ = 1.33. (a) In the vertical distribution 〈N(z)〉 the first layers are

distinctly visible, while the higher ones are chosen with similar layer width. (b) The

average intensity of the peaks in the first ring of the structure factor seems to decay

exponentially. (c) The individual structure factors reveal that octagonal order seems

to persist for a considerable height, though higher modes decay fast.
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5.2.1. Development of quasicrystalline layers

We apply the sedimentation procedure explained in section 5.1.2 on three different qua-

sicrystalline substrates in order to obtain three-dimensional colloidal quasicrystals. The

results comprised of the vertical distribution 〈N(z)〉, selected structure factors S(q) of
individual layers as well as their average intensity course are displayed in Fig. 5.5 for

the Ammann-Beenker, in Fig. 5.6 for the Square-Triangle as well as in Fig. 5.7 for the

Penrose-Rhomb tiling. In all cases, the first layer is completely induced by the substrate

tiling as each hole in the patterned surface is occupied by a colloid. Since each tiling

consists of two elementary tiles, the ground layer offers two types of adsorption sites with

different height respectively. For example, the Ammann-Beenker tiling is constructed from

squares and rhombs such that colloids belonging to the second layer are either located on

the center of a square or on the center of triangles comprising the rhomb. Thus, 〈N(z)〉
exhibits in fact two peaks in the first layer as can be seen in Fig. 5.5 (a). In general, the

presence of two length scales in the adsorption sites contributes to broadening layer widths

for all tilings as z increases. In the end, higher layers are not directly visible anymore,

but are defined by dividing the remaining structure in z direction in segments with width

equaling the previous layers.

Despite the fact that the layers become less pronounced, they possess clearly quasicrys-

talline symmetry in S(q), albeit with only weak higher modes. This might indicate an

increasing disorder starting on a local level. Surprisingly, the colloidal structure grown

on the Ammann-Beenker like patterned substrate exhibits even in the ninth layer distinct

octagonal arranged peaks in the structure factor and thus seems to surpass the growth on the

dodecagonal Square-Triangle tiling, even though dodecagonal symmetry is mostly reported

for self-assembled soft quasicrystals [117, 119]. The average intensity of peaks on the first

ring of the structure factor seems to decay for the structures on all templates exponentially.

In order to reveal small differences, the courses from all samples are assembled in Fig. 5.8.

For classification, the values from the periodic lattice substrates are contained as well.

While the quality of the square substrate is unrivaled, the next best substrate, in this respect

at least for the first seven layers, is represented by the Ammann-Beenker tiling. To measure

the potential of the Ammann-Beenker substrate we analyze the individual layers in more

detail in the following section.

5.2.2. Characterization of growth quality

In this section, we investigate the stacked layers of colloids on the Ammann-Beenker,

Square-Triangle, and Penrose-Rhomb tiling in more detail. The independently grown

structures on each substrate yield an average colloidal density with distinct maxima. These

sites are occupied with a higher probability and reveal the presence of quasicrystalline

order even in real space. As examples, the fourth layer grown on the Ammann-Beenker

substrate and the fifth layer from the structure on the Square-Triangle tiling are depicted in

Fig. 5.9.
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Figure 5.6.: Quasicrystalline layers on the dodecagonal Square-Triangle substrate with tile

edge length a0/σ = 1.30. (a) From the vertical distribution 〈N(z)〉 only the first

four layers are visible. Since the layers broaden very fast, the borders are determined

such that each layer exhibits the same width. (b) The average intensity of the peaks

in the first ring of the structure factor seems to decay exponentially. (c) In the bottom

lines, while higher modes vanish with layer height, the structure factors show that

dodecagonal quasicrystalline order remains in the higher layers, albeit the fuzziness

hints at the presence of defects.
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Figure 5.7.: Quasicrystalline layers on the decagonal Penrose-Rhomb substrate with tile

edge length a0/σ = 1.62. (a) Only the first three layers are visible in the vertical

distribution 〈N(z)〉 and exhibit already broad peaks. Therefore, all higher ones are

chosen by similar width. (b) The average intensity of the peaks in the first ring of the

structure factor seems to decay exponentially. (c) The individual structure factors in

the bottom line reveal a persistence of the first decagonal ring with vanishing higher

modes for increasing layer height. Again, the fuzziness suggests the presence of

defects.
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Figure 5.8.: Average intensity of the structure factor peaks in the first ring as a function of

layer height for various substrate symmetries. The intensity values are scaled relative

to the first layer. The dashed lines serve as guide to the eye while the symbols denote

the results for the projected layers. Aside from the square lattice, the intensities seem

to decrease exponentially.

In case of the Ammann-Beenker, the favored occupation sites reside around local symmetry

centers and form octagons whose size ratio equals exactly the silver mean α = 1+
√
2, the

inflation factor of the tiling (see Fig. 5.9 (a)). For a Square-Triangle substrate, the higher

hierarchical order of the tiling remains visible, even though the local order decreased

as a consequence of local flips. Note that with increasing height the structured density

ρ(r) becomes fuzzier until further information regarding order has to be extracted from

reciprocal space.

In the following, we determine the fixed adsorption sites within the grown structure. These

are sites that are occupied at least in 70% of the grown structures. To account for local

thermal fluctuations we integrate ρ(r) in each layer locally around the maxima over an

area with radius σ/4.0. If the resulting value exceeds 70%, this site is considered to be

fixed. As illustrated in Fig. 5.10, every grown three-dimensional colloidal structure lacks

those from the fourth layer onwards. For the sedimentation on the Penrose-Rhomb and

Square-Triangle tiling, these numbers decay monotonically, as both tilings exhibit sites that

exclude each other for hard-core interactions similar to the conditions on the hexagonal

substrate in section 5.1.3. In case of the Penrose-Rhomb tiling, these sites are located

on adjacent rhombs and in case of the Square-Triangle tiling one has to differentiate

oppositely pointing neighboring triangles within the dodecagonal patches. On the other

hand, the number of fixed sites in the second layer of the Ammann-Beenker tiling exceeds

the number of substrate holes.
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Figure 5.9.: Average real space position of the colloids in higher layers. Dark areas resemble

a high probability of occupation whereas sites with minor probability are color coded

from gray to white. The coordinates are given in units of the colloidal diameter σ.
(a) In the fourth layer grown on an Ammann-Beenker substrate the sites predom-

inantly occupied form octagons whose ratio is the silver mean α = 1 +
√
2, the

inflation factor of the tiling. (b) In the fifth colloidal layer grown on a Square-Triangle

substrate the higher hierarchical order of symmetry centers is still visible as indicated

by the green dodecagonal arrangement, the characteristic building block of the tiling.
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Figure 5.10.: Fixed adsorbtion sites in the epitaxial structures for various substrate tilings.

While the number of fixed sites relative to the amount of substrate holes decreases

for sedimentation on Square-Triangle and Penrose-Rhomb tiling, it increases in the

case of the Ammann-Beenker tiling. In higher layers no fixed sites are present for

neither substrate.
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Figure 5.11.: Stacking sequence on the Ammann-Beenker substrate. Coordinates are given

in units of σ and dark areas correspond to a high probability of occupation. (a) The

colloidal positions in the first layer are directly given by the substrate slots. The

average positions around a symmetry center are enclosed by blue circles. In (b), the

average colloidal positions in the third layer above the area in (a) are displayed. The

spots with highest probability are enclosed by red circles and form a similar octagon.

(c) The symmetry centers of the first and second layer almost overlap completely.

This is due to the fact that within the second layer one colloid is definitely placed on top of

a square in central position, while at least one is placed on either triangle belonging to a

rhomb. Excluding sites are between adjacent rhombs. Therefore, compared to the other

two tilings, more information is transferred to the third layer. This leads to an aba stacking

on a local level around the symmetry centers as illustrated in Fig. 5.11. The first and third

layer form an almost identical octagonal tiling patch above the local symmetry centers.

However, this sequence is not maintained as z increases because of the two length scales

in adsorbtion sites and possible local disorder due to flips.

In order to determine, when the global order begins to break down due to the subsequent

emergence of defects to compensate for accumulated strain, we conduct a mode analysis

for each layer as explained in section 3.3. Excerpts of this analysis are depicted in Fig. 5.12.

For sedimentation on the Square-Triangle substrate, dislocations emerge already in the

seventh layer, while the structure on the Penrose-Rhomb tiling exhibits defects from the

ninth layer on. The tiling where global order seems to be conserved best is the Ammann-

Beenker as the first dislocation is identified in the eleventh layer. Therefore, taking into

account the resilience of global order as well as the local stacking properties, the octagonal

Ammann-Beenker tiling seems to be a promising candidate for the template-directed

growth to obtain three-dimensional colloidal quasicrystals.
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Figure 5.12.: Excerpts of the mode analysis for the quasicrystalline layers obtained by

colloidal epitaxy. Each column corresponds to a different substrate. The aspect

ratio of the modes resembles the aspect ratio of the rational approximant. In each

column, one specific density mode of the average colloidal position is depicted

for various layers. Note the different layer numbers. For the octagonal Ammann-

Beenker substrate defects start to emerge from the tenth layer, while the colloidal

structures grown by deposition on the dodecagonal Square-Triangle and decagonal

Penrose-Rhomb tiling exhibit already defects in the seventh and ninth layer.
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5.2.3. Potential for experimental realization

Based on the conducted simulation studies, the octagonal Ammann-Beenker tiling seems

to be a promising candidate of quasicrystalline template-directed growth. From all tested

substrates, it exhibits the highest number of defect free quasicrystalline layers. In addition,

octagonal symmetry seems to be more beneficial for stacking. At the moment, similar

experiments to [143, 145] but with quasicrystalline templates, are being realized by the

group of C. Bechinger in Stuttgart. At present, order on periodic as well as aperiodic

substrates forms with considerably more defects probably due to too small gravitational

forces or too fast sedimentation velocities. Nevertheless, the colloids attach as desired on

the quasicrystalline tiling and yield the exact tiling in the first layer. Therefore, we remain

confident that our results will soon be confirmed experimentally.

5.3. Conclusion

We have shown that three-dimensional colloidal quasicrystals of various rotational sym-

metries can be obtained by a template-directed growth approach. No fine tuning of the

interaction potential in the solvent is required, a sedimentation under gravity suffices

to achieve several quasicrystalline layers. Moreover, we have identified the octagonal

Ammann-Beenker tiling as the most promising candidate from the studied tilings. The

mode analysis reveals a long lasting resilience in global order surpassing the structures

on the dodecagonal Square-Triangle and the decagonal Penrose-Rhomb tiling. Our results

demonstrate the potential of colloidal epitaxy as an alternative route to obtain three-

dimensional colloidal quasicrystals, especially if different symmetries are desired. In

principle, our results should be reproducible by sedimentation experiments like [143, 145]

and preliminary results seem to indicate that. Experimental progress might be important for

photonic applications [148]. As the next step, we study the influence of designed defects

within the quasicrystalline template on the grown colloidal structure.
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6 Colloidal Epitaxy on

Quasicrystalline

Substrates with Defects

In the previous chapter, we demonstrated the potential of a template-directed approach to

obtain three-dimensional colloidal quasicrystals with different rotational symmetries. Here,

we elaborate this further by investigating the influence of substrate defects on the growth

process. Apart from modified substrates, the model as well as all interaction parameters

remain completely unchanged to section 5.1. First, local flips as caused by phasonic

excitations are inserted into the substrate tiling without observing a significant effect on the

sedimented structure regarding the global order. Second, we design the template patterns

with well-defined dislocations. Upon sedimentation stable defect lines evolve within the

grown colloidal structure. We elucidate how shape and direction of these defect lines can

be influenced in a controlled manner. In particular, we present sets of basis Burgers vectors

that lead to stable defect lines. The prospect of controlled defect lines in the colloidal

quasicrystal might complement the potential for photonic applications [150].

Almost all material properties of a crystal are influenced by possible defects of the struc-

ture [236]. For example, in two dimensions melting is caused by the formation and

subsequent separation of pairs of dislocations, which in a second step disassociate into

isolated disclinations [236]. Dislocations occur along points where additional lattice lines

start or end and are characterized by Burgers vectors. Around the dislocation, the crystal

structure is usually strained. In quasicrystals, lattice lines cannot be inserted or removed in

a straightforward way and therefore the characterization of defects in quasicrystals is more

complicated as explained in section 2.3.

Quasicrystals possess additional degrees of freedom. Beside phonons, there exist addi-

tional hydrodynamic modes called phasons, which do not occur in periodic crystals. Such

phasons correspond to correlated rearrangements that in the limit of long wavelengths do

not cost any free energy [238] and influence many material properties of quasicrystals,

ranging from crack propagation [48] to entropic stability [56]. Dislocations in quasicrystals

require a positional as well as a phasonic strain around a dislocation line [232]. As a conse-

quence, a Burgers vector that describes a dislocation in a quasicrystal possesses additional

components because not only the positional fault is denoted but also the disturbance of the
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phasonic degree of freedom has to be considered.

Up to now, similar colloidal epitaxy systems have only been considered to study periodic

colloidal crystals with dislocation lines [230, 231]. We observe some specific quasicrys-

talline properties. While in a periodic lattice the course of a dislocation line does not depend

on the starting position, in quasicrystals the starting position matters and might influence

the bending of a dislocation line. Besides, in periodic crystals, all Burgers vectors are sums

of integer multiples of lattice basis vectors. As a consequence, the length of all Burgers

vectors is larger than or equal to the length of the basis vectors. In quasicrystals, there

is a larger variety of dislocations because there are more basis vectors. Furthermore, the

phononic part of a Burgers vector might be arbitrary small. While in a periodic crystal the

energy cost of dislocations with large Burgers vectors is usually larger than for those with

small Burgers vectors, dislocations with small phononic Burgers vectors in quasicrystals

might even decompose into multiple dislocations with larger phononic Burgers vectors

during the growth process. This underlines the importance of the phasonic distortions

associated with a dislocation in a quasicrystal, which is taken into account by the additional,

phasonic part of the Burgers vector. We identify a set of basis Burgers vectors that lead to

stable defect lines.

In section 6.1, the sedimentation of colloids on a template tiling containing phasonic

excitations is investigated. In section 6.2, the construction of substrates containing well-

defined dislocations is explained and a set of basis Burgers vectors that lead to stable defect

lines in the growth process is presented. In section 6.3, we discuss the sedimentation of

colloidal particles on substrates with dislocations for two quasicrystalline symmetries. In

the first part, the octagonal system is studied which has proven to be most suited for the

epitaxial approach from the previous chapter, while in the second part, defect lines for

dodecagonal symmetry are explored, since this rotational symmetry is frequently reported

in mesoscopic quasicrystalline systems [119, 161]. The contents of this chapter have

undergone external revision and are already published in [D].

6.1. Growth on substrates with local phasonic

excitations

In chapter 5, we demonstrated that the sedimentation of colloids on quasicrystalline

substrates leads to three-dimensional colloidal structures comprised of stacked two-

dimensional quasicrystalline layers. Analyzing the particular layers has revealed that

the average colloidal density becomes less structured for higher layers due to flips during

the growth process. Phasonic flips are expected to be easily excited by thermal fluctuations,

since the increase of the free energy due to a phasonic flip is small [239]. Here, we estimate

their effect regarding the global order of the structure by inserting phasonic excitations

directly into the substrate tiling. As tiling, we chose the octagonal Ammann-Beenker and

incorporate the excitations by randomly flipping some tiles, namely two rhombs and a

square (see Figs. 6.1(a) and (c)). A feature to incorporate selected flips is implemented
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in the program Tilingbuilder in the appendix. We compare the structure that grows on a

perfect tiling to structures obtained from deposition on substrates with different amounts

of phasonic flips. The amount of displaced vertices, i.e. substrate holes, ranges from 1%
to 7% of the total number of vertices. Such imperfections might also be caused in an

experimental construction process.

Figure 6.1.: The growth on a octagonal substrate is compared to a structure obtained from a

substrate containing local phasonic excitations (cf. [D]). As a consequence, 5% of

the vertex coordinates differ. The tilings that correspond to the substrates without

and with flipped tiles are shown in (a) and (c), respectively. The flipped tiles in (c)

are colored orange and dark green. The analysis of the density modes for the seventh

layer of the colloidal structure grown on the defect-free substrate is shown in (b) and

for the structure grown on a substrate where local phasonic flips were introduced in

(d). In both cases, some strain has been accumulated during the sedimentation process

as apparent by the green areas without resulting in the formation of dislocations.

Regarding the global order that is analyzed here, there is no significant difference

between the defect-free substrate and the substrate with local disorder.

We determine the long-range order by analyzing the basic density modes [55]. The modes
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of the seventh layer for the perfect and a structure containing a flip concentration of

5% are displayed in Fig. 6.1(b) and (d). Compared to the sedimentation on the perfect

Ammann-Beenker tiling the global order of the substrate with flips is only slightly less

pronounced for all tested concentrations. Therefore, there is no significant effect of isolated

uncorrelated flips on the long-range order regardless whether these flips are induced by

the substrate or occur during the growth process. Our epitaxially obtained quasicrystal is

almost not affected.

6.2. Construction of substrates with built-in

dislocations

In this section, the design of quasicrystalline substrates with well-defined dislocations is

explained. Following the theoretical description for two-staged melting of two-dimensional

quasicrystals originally derived in [234, 250, 251] and summarized in section 2.3, disloca-

tions are incorporated into quasicrystalline intensity fields from interfering laser beams.

The properties of these fields have been studied in [137] as well as in section 4.1. In

particular, phononic and phasonic displacement vectors have been derived that leave these

intensity fields invariant [138, A]. Here, we expand these studies to determine basic Burgers

vectors for the octagonal and dodecagonal interference pattern. Furthermore, we illuminate

conditions how the strain fields due to a dislocation can be accommodated into the rational

approximant of the simulation box.

6.2.1. Burgers vector in interference pattern

Laser intensity fields with quasicrystalline symmetry are realized by interfering N sym-

metrically arranged laser beams [131]. In this continuous description, dislocations can be

incorporated by spatially varying laser phases ϕ(r) [238]. Thus, Eq. (4.2) is rewritten to

V (r) = − V0
N2

N−1
∑

i=0

N−1
∑

j=0

cos[(Gi −Gj) · r+ ϕi(r)− ϕj(r)] , (6.1)

where r denotes a positional vector in the xy-plane of the template and Gj a projected

wave vector. By placing holes at the positions of pronounced maxima of laser interference

patterns we generate templates with tiling patterns similar to the ones from chapter 5 yet

with dislocations. The phases in Eq. (6.1) are parameterized in the conventional manner

according to [238] by

ϕi(r) = Gi ·u(r) +Gk · imodN ·w(r) , (6.2)

where u(r) and w(r) are the phononic and phasonic displacement fields belonging to

a dislocation. For both periodic and aperiodic crystals, the sum of displacements along
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a path around the core of a dislocation has to amount to the components ∆u and ∆w

of the Burgers vector such that ∆u =
∮

du(r) and ∆w =
∮

dw(r). Furthermore, for a

well-defined dislocation, i.e. a dislocation whose strain field causes no discontinuous gap

in the structure, the components ∆u and ∆w must represent combinations of phononic

and phasonic displacements that leave the structure invariant in the static case, where

Vw=0(r) = Vw+∆w(r+∆u) (6.3)

is fulfilled. Therefore, the Burgers vector are related to the displacements applied for

the mapping to characteristic areas of colloidal particles in quasicrystalline laser fields

deployed in [138, A] as well as in section 4.3. In quasicrystals, all Burgers vectors must

obey Eq. (6.3).

Regarding the rotational symmetries studied here, namely the octagonal N = 8 and

dodecagonal N = 12 laser field, any Burgers vector can be expressed as integer linear

combination of the basic Burgers vectors (b
(u)
j , b

(w)
j ) with

b
(u)
j = (ur cos[π(2j − 1)/N ], ur sin[π(2j − 1)/N ])

and b
(w)
j = (wr cos[kπ(2j − 1)/N ], wr sin[kπ(2j − 1)/N ]) (6.4)

for j = 1 . . . N . A set of D of these vectors, where D is the rank of the quasicrystal,

is a suitable basis for all Burgers vectors. For octagonal symmetry, we find k = 3,
ur = (1+

√
2/2)

1
2aV /2, and wr = −ur/(1+

√
2), while in case of dodecagonal symmetry,

k = 5, ur =
√
2/(3−

√
3)aV , and wr = (

√
3− 2)ur. aV denotes the shorter length scale

of the quasicrystal. Since both quasicrystals are of rank D = 4, four Burgers vectors from

Eq. (6.4) are sufficient to characterize the topological charge of any dislocation.

6.2.2. Strain field in interference pattern

In order to incorporate a dislocation with well-defined Burgers vector B = (∆u,∆w) in
the octagonal and dodecagonal quasicrystalline laser field, a four-dimensional displacement

field D(r) = (u(r),w(r)) is required. Its phononic u(r) and phasonic w(r) components

are tuned by the phases ϕj(r) of the laser beams. The full expression is derived in [234]

and is given by the form

2πDj(r) =Bj arctan
(y

x

)

+
4

∑

k=1

2
∑

l=1

αjkl(λ, µ,K1, K2, K3)fjkl(r)Bk. (6.5)

Also compare to Eq. (2.13) in section 2.3. The arctan-term in Eq. (6.5) constitutes the

topology of the dislocation, while the elasticity in the strain field is controlled by the

second term containing the elastic constants λ, µ, K1, K2, and K3. Minimizing the in-

crease of the free energy due to the strain in phononic and phasonic displacement fields

for a given Burgers vector yields the geometric fjkl(r) as well as the elastic functions
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αjkl(λ, µ,K1, K2, K3) [234]. The topological properties of the dislocation do not depend

on αjkl(λ, µ,K1, K2, K3) but are entirely characterized by the Burgers vector. For sim-

plicity, in the following we will employ αjkl(λ, µ,K1, K2, K3) = α with either α = 0
or α = 1. While these two cases are the same regarding the topology of the dislocation,

the strain distribution in the vicinity of the defect might differ. In order to keep eventual

discontinuities experienced by colloids crossing the periodic boundaries small, the strain

field D(r) has to decay towards the box edges. This can be achieved by demanding a total

Burgers vector of zero for the whole template such that the substrate contains at least two

dislocations with opposite charge. In addition, to decrease D completely to zero towards

the boundaries of the simulation box, we also add a sigmoid function in Eq. (6.5). In

Fig. 6.2, an example for an octagonal laser interference pattern with two dislocations as

well as the resulting discretized Ammann-Beenker tiling for the substrate are displayed.

The template holes are placed at the most pronounced maxima of the intensity, i.e. the

vertices of the tiling.

y
/a

V

0 10 15 205

10

15

20

0

5
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Figure 6.2.: Construction of the substrate tiling with dislocation seed from octagonal laser

field by interfering eight symmetrically arranged laser beams. At local maxima of

the intensity holes of the substrate are located, if the distance between them amounts

at least to the colloidal diameter σ. Thus, an Ammann-Beenker-like tiling is formed

(drawn in white, see also [163]). The cores of two dislocations are marked in red.

The upper one is given by the Burgers vector B = (b
(u)
1 , b

(w)
1 ) where b

(u)
1 and b

(w)
1

are given by Eq. (6.5), the bottom one by the opposite Burgers vector. The figure is

adopted from [D].
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6.3. Growth on substrates with dislocations

In this section, results for the sedimentation of colloidal particles on designed quasicrys-

talline templates containing dislocation pairs with opposite Burgers vector are presented.

We focus on octagonal and dodecagonal substrate symmetry. Analyzing individual density

modes for each layer of the stacked colloidal structure reveals that the Burgers vectors are

preserved in all layers. As a desired consequence, there exist well-defined lines connecting

the positions of dislocations through the layers. Though in a quasicrystal there exist Burgers

vectors with arbitrarily small phononic part, our simulation show that defect lines given

by the basis Burgers vectors are stable and do not split up into multiple dislocations with

smaller phononic part.

In the first part, we explore on the basis of the octagonal template how the local environment

of a dislocation seed tunable by its location as well as the applied strain field in the vicinity

affects the course of the dislocation line. In addition, we discuss topological properties

like annihilation and forking of defect lines. In the second part, we present additional

topological features arising in particular for the dodecagonal symmetry.

The major results are illustrated in Fig. 6.3 to Fig. 6.8 which share a common composition:

Each one contains a schematic representation of the Burgers vector at hand, an excerpt of

the relevant density modes, and a three-dimensional representation of the defect line within

the structure for visual clarity. Since the presence of dislocations distorts the template

tiling, the overall growth quality is reduced such that dislocations might already emerge

for deeper layers than for perfect templates deployed in section 5.2.2. Therefore, in order

to exclude unintended interactions between induced and emerging dislocations, we restrict

our analysis to seven layers for the octagonal and six for the dodecagonal template.

6.3.1. Dislocation lines in quasicrystals with octagonal

symmetry

We conducted the sedimentation on numerous substrate samples with different environ-

ments for the dislocation seed. This includes various locations for the individual dislocation

as well as different relative orientations for the complete dislocation pair in the template

plane and different displacement fields in the vicinity controlled by the parameter α.



86 6. Colloidal Epitaxy on Quasicrystalline Substrates with Defects

In Fig. 6.3, the defect lines of a pair of dislocations are shown. The substrate is prepared

with two dislocations as described in the previous subsection. The phononic part of the

Burgers vector of one dislocation is given by the first basis Burgers vector b
(u)
1 , of the

second dislocation by −b(u)
1 . As a consequence, the phasonic components of the Burgers

vectors must be b
(w)
1 and −b(w)

1 . Therefore, the first Burgers vector is B = (b
(u)
1 ,b

(w)
1 )

and the second dislocation is given by the inverse Burgers vector −B such that the total

Burgers vector for the whole simulation box is zero.

First, we explain how the local environment of a dislocation seed in the substrate tunable by

the position or the strain field affects the course of the dislocation line through the grown

structure. For instance, the dislocation lines in Fig. 6.3 are obtained for the sedimentation

on a template with α = 0 while in Fig. 6.4 dislocations with the same Burgers vectors

were placed at identical positions but for α = 1. While in Fig. 6.3 the dislocation lines

are vertical, the corresponding lines in Fig. 6.4 bend away from each other. Finite size

effects through the boundaries retire as origin of the observed bending of the lines towards

the box edges, as we tested different modulations of the sigmoid function in Eq. (6.5),

even a violation of the rational approximant, without observing any affects on the bending

direction at all. However, if the orientation of the dislocation pair in Fig. 6.4 is slightly

rotated in the substrate sample the course of the dislocation line becomes almost vertical

again (yellow dislocation line), though now for α = 1. In general, we observe that

the bending of dislocation lines depends on the strain in the surrounding phononic and

phasonic displacement fields, which changes if the value of α is varied. The position of the

dislocation in the substrate is of similar influence on the bending of the dislocation line.

Note that in a periodic crystal the only choice concerning the position of a dislocation is

where it crosses the unit cell. However, in a quasicrystal, no unit cells exist and therefore

there are infinite possibilities where to place dislocations. Our simulations reveal that

different starting positions might lead to different bending of the dislocation lines.

Aside from different local environments, templates containing dislocations with other

Burgers vector from the basis set in Eq. (6.4) were also considered. In Fig. 6.5 the substrate

is prepared such that two dislocation lines with opposite Burgers vectors bend towards each

other. They meet between the second and third layer and annihilate, i.e. in higher layers

there is no more dislocation. The course of the dislocation lines can also be perceived as

a single dislocation line that starts at one dislocation on the substrate bends around and

ends up at the second dislocation on the substrate. This is in perfect agreement with the

conservation of the sum of all Burgers vectors but has never been reported for quasicrystals

before.

Finally, in Fig. 6.6 we prepare a substrate with dislocations that are given by Burgers

vectors that are composed of two basis Burgers vectors. We observe that the dislocation

lines split up into two dislocation lines given by basis Burgers vectors. At the forks the

sum of Burgers vectors is preserved.
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Figure 6.3.: Vertical defect lines with Burgers vector B = (b
(u)
1 , b

(w)
1 ) (upper defect) and

−B (bottom defect) as well as α = 0. In the top, a schematic representation of the

Burgers vector of the upper dislocation with phononic (red) and phasonic contribution

(blue) is given in context with the basis Burgers vectors. The middle line contains the

mode analysis for the mode in direction of b
(u)
1 for each layer such that the position

and topology of the dislocations are revealed in each layer. Below, this analysis

is summarized into a three-dimensional illustration for the course of defect lines

through the grown colloidal quasicrystal. Figure is adopted from [D].
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Figure 6.4.: Bending defect lines with Burgers vector B = (b
(u)
1 , b

(w)
1 ) (upper defect) and

−B (bottom defect) are obtained with α = 1. In the top, a schematic representation

of the Burgers vector of the upper dislocation with phononic (red) and phasonic

contribution (blue) is given in context of the basis Burgers vectors. In the middle

row, the mode analysis is displayed for the mode in direction of b
(u)
1 . In the bottom,

the course of these bending defect lines is illustrated in three dimensions (green

lines). If the dislocation pair is rotated around the substrate center by an angle of

approximately π/8, the induced course of the defect line is vertical (yellow lines).

Figure is adopted from [D].
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Figure 6.5.: Annihilation of defect lines (cf. [D]). The dislocations in the substrate are given

by the Burgers vectors B = (b
(u)
3 , b

(w)
3 ) (upper dislocation) and its inverse counter-

part (bottom dislocations). The top row contains a schematic representation of the

Burgers vector. The center images display the mode analysis along a selected mode,

and in the bottom row a three-dimensional picture of the course of the dislocation

lines is shown. The dislocations bend towards each other and ultimately anneal.
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Figure 6.6.: Forking of defect lines (cf. [D]). The dislocations in the substrate are given by

the Burgers vectors B = (b
(u)
1 − b

(u)
4 , b

(w)
1 − b

(w)
4 ) (upper dislocation) and their

inverse counterparts (bottom dislocation). In the top row, a schematic representation

of the Burgers vector is given, the center images display the mode analysis along a

selected mode, and in the bottom row the three-dimensional course of the dislocation

lines is depicted. The dislocation lines split up into dislocation lines given by basis

Burgers vectors, i.e., (b
(u)
1 , b

(w)
1 ) and (−b(u)

4 , −b(w)
4 ) or the corresponding inverse

vectors.
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6.3.2. Dislocation lines in quasicrystals with dodecagonal

symmetry

Extensions to templates with other quasicrystalline symmetries are straight forward. For

instance, discretizing the interference pattern of Eq. (6.1) for N = 12 laser beams yields

a pattern similar to the Square-Triangle tiling with dodecagonal rotational symmetry.

Dislocations are completely described by sums of integer multiples of the four basis Burgers

vectors given in Eq. (6.4). As an advantage, the dodecagonal symmetry might be more

suited for applications, because for several pair potentials the intrinsic formation of two-

dimensional quasicrystals with dodecagonal symmetry has been reported (e.g., [117, 119]).

We complement this list of pair potentials by depletion forces for the colloid-polymer

mixture in chapter 7. Note that the situations presented in the previous section on the basis

of the octagonal substrate are also observed for the growth on the dodecagonal substrate.

Therefore, we concentrate on two new topological features arising for the dodecagonal

symmetry in the following.

In contrast to octagonal rotational symmetry, a dislocation in a dodecagonal substrate

given by a basis Burgers vector from Eq. (6.4) is always visible in two density modes

(see also [55]). In addition, for geometric reasons, every Burgers vector of the length

of a basis Burgers vector can be decomposed into two other basis vectors, such that

(b
(u)
i ,b

(w)
i ) = (b

(u)
i−2,b

(w)
i−2) + (b

(u)
i+2,b

(w)
i+2). For example, the green vector b

(u)
3 in the top

panel of Fig. 6.7 equals the sum of b
(u)
1 and b

(u)
5 (yellow and blue vectors in Fig. 6.7).

The substrate employed in Fig. 6.7 contains two dislocation pairs. The upper pair consists

of dislocations where the phononic part of the Burgers vectors are b
(u)
1 (yellow vector

and yellow dislocation line) and b
(u)
5 (blue vector and blue dislocation line). While these

dislocation lines start at slightly different positions in the substrate, they bend towards

each other and when they meet a single dislocation line with b
(u)
3 = b

(u)
1 + b

(u)
5 (green

vector and green dislocation line) continues to grow. In the bottom dislocation pair all

dislocations possess the negative Burgers vectors of the corresponding upper defects, but

the same merger of dislocation lines can be observed. Note that, regarding a complete

dislocation pair, the sum of Burgers vectors is preserved in both cases. However, the

example shown in Fig. 6.7 demonstrates that in the case of dodecagonal substrate symmetry

the characterization as single, double, or n-fold dislocation is ambiguous because in

principle every dislocation can be split into two dislocations with Burgers vectors of the

same length.

The fact that a basis Burgers vector in a dodecagonal template is always visible in two

density modes complicates tracking the defect lines through the layers as two modes have

to be analyzed in order to determine the course of a dislocation. Besides, we also observe

the case, in which the defects that we identify in the two respective modes are separated by

a significant distance (see Fig. 6.8). This implies that Eq. (6.3) is violated on a local level.

In Fig. 6.8, first the dislocation lines grow almost vertically and the defects in both modes

indicate almost the same position for the dislocation. In the fifth layer, the defects anneal

partially in one mode, resulting in a defect plane.
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Figure 6.7.: Coalition of defect lines on a dodecagonal substrate (cf. [D]). The dislocation

pairs in the substrate are given by the Burgers vectors B1 = (b
(u)
1 , b

(w)
1 ) and

B2 = (b
(u)
5 , b

(w)
5 ) (upper pair) and their inverse counterparts (lower pair). The top

row contains a schematic representation of the phononic contribution of the Burgers

vectors, excerpts of the mode analysis are shown in the center, and in the bottom

row the three-dimensional course of the dislocation lines is illustrated. Note that

all dislocations are visible in two modes (denoted by the smaller vectors in the top

panel). In all rows, the respective color coding for Burgers vector, associated density

modes, and defect lines is the same. The dislocations B1 (yellow) and B2 (blue)

bend towards each other. By partially annealing in one mode, they form a coalition in

the third layer and yield a defect line with Burgers vector (b
(u)
3 , b

(w)
3 ) (green). The

sum of Burgers vectors is preserved throughout the coalition.
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Figure 6.8.: Development of a defect plane on a dodecagonal substrate (cf. [D]). The disloca-

tions are given by the Burgers vectorsB = (b
(u)
3 , b

(w)
3 ) (upper dislocation) and their

inverse counterparts (lower dislocation). In the top, a schematic representation of the

phononic contribution of the Burgers vectors and the mode directions is depicted.

The defect is visible in two modes (light green and dark green). The mode analysis

in the center images contains the two modes associated with the dislocation. The

bottom panel shows the three-dimensional course of the defects that are observed in

the individual modes, i.e. the light green and the dark green line together correspond

to a dislocation line. Until the fourth layer, the induced dislocations develop vertical

in both modes preserving a well-defined and well-localized dislocation within the res-

olution of our analysis. In the fifth layer, the defects anneal in one mode (dark green),

while they progress in the second one (light green). This leads to the formation of a

defect plane which vanishes in the seventh layer.
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The defect plane vanishes two layers later when the defects in the second mode anneal.

Note that when crossing the area shaded in green Eq. (6.3) is violated, i.e. there have to be

distortions corresponding to nonfitting tiles close to this plane.

Substrates with decagonal symmetry can be constructed by interfering N = 5 laser beams,

while the basis Burgers vector correspond to the phononic and phasonic displacements

employed for the mapping in [138]. Similar to the dodecagonal case, dislocations with

basis Burgers vectors should be visible in two individual density modes.

6.4. Conclusion

We have augmented our three-dimensional colloidal quasicrystals obtained from sediment-

ing colloids with hard-core and screened Coulomb pairwise interaction on quasicrystalline

substrates with the feature to exhibit designed dislocation lines. Therefore, well-defined

dislocations are inserted into the substrate and continue as defect line through the stacked

layers. While local excitations, i.e. phasonic flips, might occur during the growth process,

we can exclude them to exert a significant effect on the global order and the dislocation

lines.

Though, in principle, there exist dislocations with arbitrarily small phononic Burgers

vectors, we observe that dislocation lines do not necessarily split up into dislocations with

smaller phononic Burgers vector. For quasicrystals with octagonal and dodecagonal rota-

tional symmetry we have identified basis Burgers vectors that are stable. While dislocation

lines with Burgers vectors comprised of multiple basis Burgers vectors dissociate into

multiple lines charged with the basis Burgers vector, defect lines already charged with

basis Burgers vectors do not decompose further.

Moreover, we have found the annihilation of dislocations when two defect lines with

inverse Burgers vectors meet each other. We have observed bending of defect lines that

depends on the strain of the phononic and phasonic displacement field in the vicinity of

the dislocation and, in contrast to the behavior in periodic crystals, might also depend

on the position of the dislocation in the substrate. In all cases, e.g. for all defect lines we

have studied and that can bend, fork or anneal, the sum of all Burgers vectors is always

conserved along all defect lines and at all forks.

In principle, the defect induced colloidal structures that we consider in simulations can also

be realized in experiments analogue to the structures obtained from perfect tiling templates.

In fact, sedimentation experiments on tilings containing different concentration of local

phasonic flips have been tried [private comm.]. The colloidal structures grown in such

a way to exhibit induced defect lines might be of additional importance for applications

in photonics [150]. Furthermore, our results can lead to a deeper understanding of how

physical properties of quasicrystals are influenced by defects. For example, the quasicrystal

to fluid transition might depend on dislocation lines intruding from a surface or on the

direct formation and unbinding of dislocation pairs. After all, in two dimensions such

defects are probably the main cause for melting [234, 250, 251].
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Have no fear of perfection - you’ll never

reach it.

(Salvador Dal? 1904-1989)
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7 Colloid-Polymer Mixture

In the previous two chapters three-dimensional stackings of quasicrystalline layers were

obtained by sedimenting colloids under gravity as an external potential on a designed

substrate. The template-guided approach enabled one to avoid the preferred bulk ordering of

the monodisperse colloidal particles in order to produce quasicrystals of various symmetries.

In this chapter however, we modify the internal bulk behavior of a two-dimensional

charged-stabilized colloidal suspension such that the particles self-assemble into a stable

quasicrystalline state. For this purpose, many options to influence the preferred bulk

structure are known in colloidal physics: For instance, designed particle shapes [123, 124],

patchy particle surfaces [125] or tuned pair potentials [117, 119, 126] may give rise

to quasicrystalline order. Here, we modify the pair interaction potential of the colloids

by adding small polymer coils to the suspension. Therefore, the repulsive interaction is

augmented by a short-range attraction leading to a stable quasicrystalline state.

For the past years, a lot of effort has been devoted to study quasicrystals in soft matter [105].

Several mesoscopic systems exhibiting quasicrystalline states have been reported in experi-

mental as well as theoretical and computational studies respectively. Regarding the former,

quasicrystals have been observed in a supermolecular dendritic liquid [107], polymeric

networks [108, 275], and in an aqueous solution of micelles [109]. On the theoretical

side, various forms of pair interactions have been considered that yield quasicrystalline

states like square-shoulder [112, 113, 119], square-well [114] or Gaussian double well

potential [126]. All these examples confirm the general assessment that an interacting

system of two incommensurate length scales is a basic requirement for quasirystalline

stability [115, 116].

Yet, up to now a technical gap between experiment and theory seems to remain. After all,

an experimental setup in which the particle-particle interaction can be controlled to the

required degree to assemble soft quasicrystals by design has not been reported. Regarding

experimental feasibility, one possible drawback may be that the interaction potentials

often discussed are too artificial. In a recent theoretical study on quasicrystalline cluster

crystals specific instructions for the properties of the required synthesized particles were

provided [128]. Here, we follow an alternative way to bridge this gap and enable qua-

sicrystalline self-assembly by design. Therefore, we consider a two-dimensional colloidal

suspension of hard electrically charged spheres containing small polymer coils. These

augment the screened Coulomb repulsion by a short-range attraction due to the osmotic
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pressure of the polymers [276]. Numerous systems governed by this depletion potential

have been experimentally investigated. Hence, the general feasibility of our system is

warranted [120–122]. We conduct Monte-Carlo simulations to explore the phase space

and obtain a dodecagonal quasicrystal. Besides, density functional theory has been ap-

plied to predict a stable quasicrystalline phase for this colloid-polymer mixture in three

dimensions [111].

The goal of the following investigations is not to derive a complete and quantitative phase

diagram. Instead, it is to support a laboratory realization by narrowing the parameter space

down to a manageable range. Therefore, we concentrate on the qualitative topology of the

simulation space. Typical configurations obtained from simulations provide a guideline for

the experimental parameters. As the focus lies in assisting an experimental realization, this

chapter complements our work on tailoring colloidal quasicrystals which may be utilized

for photonic applications [148, 150].

In section 7.1, the model of the colloid and polymer mixture is introduced in detail, while

the simulation procedure is also explained. In addition, the ground state phase diagram

derived by E. C. Oğuz is presented which serves as a starting point for promising simulation

parameters. In section 7.2, we address the quality of the self-assembled quasicrystals and

investigate the topology and transitions of the simulation space depending on colloidal and

polymer density as well as temperature. Finally, we conclude in section 7.3.

7.1. Model of the colloid and polymer mixture

The model is introduced in three stages. First, the isotropic interaction potential between

the colloidal particles in the presence of small dispersed polymer coils is explained. Second,

a ground state phase diagram derived by E. C. Oğuz is presented and allows to narrow the

parameter space down. Third, details on the simulation procedure are given.

7.1.1. Depletion interaction

The two-dimensional system consists of spherical colloidal particles with hardcore diameter

σc and small polymer coils of diameter σp dispersed in a common solvent. This binary

mixture is illustrated in Fig. 7.1. In order to stabilize the suspension the colloids carry

an electric charge. Therefore, one contribution to the interaction is given by Coulomb

repulsion in addition to screening effects due to counter ions from the solvent. So far, this

contribution of the pair potential is identical to the one considered in the epitaxial systems

from chapters 5 and 6. For convenience it is rewritten here as

VYk(r) =

{

ǫσc

r
exp [−κ(r − σc)] , r > σc

∞ , r < σc
. (7.1)
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The second contribution arises from the presence of the polymers. Their influence on the

colloidal interactions can be described by associating an osmotic pressure Ωp that favors

short-range attraction between colloids [276]. As two colloids come close to each other an

overlap volume is liberated for the polymers to explore, resulting in an increase of entropy

(cf. Fig. 7.1 (a)). This depletion potential is given by (see also [111, 274])

VAO(r) =







−π
6
σ3
cΩp(1 + q)3

[

1− 3r
2(1+q)σc

+ 1
2

(

r
(1+q)σc

)3
]

, r > σc ∧ r < σc + σp

0 , otherwise

,

(7.2)

where q = σp/σc is the size ratio between colloidal and polymer diameter. The com-

plete behavior is governed by VAO(r) + VYk(r) and displayed for various size ratios q in
Fig. 7.1 (b). Note that q affects the ratios of both the length scale and the energy scale. The

thermal energy is given by β = 1/kBT .
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Figure 7.1.: System of the colloid-polymer mixture. (a) Schematic illustration of the col-

loidal suspension. Aside from charged spherical colloidal particles (red) of hardcore

diameter σc, the suspension contains small polymer coils (green) of diameter σp.
The gray shaded shell around a colloidal particle marks the area that cannot be

occupied by the polymers due to excluded volume interaction. An increase in entropy

is achieved, when the colloids come close to each other, since the resulting overlap

volume of the shells is now free for the polymers to explore. Therefore, the screened

Coulomb repulsive pair potential of the colloids is augmented by a short-range attrac-

tion. (b) Two length scale pair potential of the colloids from Eq. (7.2) and (7.1) for

various size ratios q. The short-range attraction is due to the presence of the polymer

coils, while the repulsive decay originates from the electrical charges of the col-

loids. The parameter q affects both the length scale of the attraction and its strength.

With the inverse temperature β the ability of the colloids to overcome the barrier in

the potential is controlled. A sufficient mobility is crucial for the self-assembly of

quasicrystals.
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Furthermore, we introduce dimensionless quantities for discussion:

η = ρ̄(σc + σp)
2 and Γ =

πΩpσ
2
c

6ǫκ
(1 + q) exp[−κσc] . (7.3)

In Eq. (7.3), η denotes a scaled density from the average number density ρ̄, while Γ
represents the ratio between attractive and repulsive contribution in the total interaction

potential.

The challenge amounts to finding the precise tuning in the parameter space spanned by η,
Γ, q, κσc, and βǫ that leads to stable quasicrystals. For this purpose, Barkan et al. presented

a method based in reciprocal space to obtain the right ratios for isotropic pair potentials to

stabilize quasicrystalline formation [117, 128]. Unfortunately, it is not applicable to our

system because of the divergence in the electrostatic repulsion or the hardcore interactions.

That is why we rely on ground state calculations to narrow the parameter space down in a

first stage.

Figure 7.2.: Ground state phase diagram of the colloid-polymer mixture by courtesy of E. C.

Oğuz. The obtained structures are categorized into hexagonal (HEX), dimer (DIM),

trimer (TRI), chains (CH), honey comb (HC), kagome (KAG), a mixed phase of

rhombs and hexagons (RhH) as well as a mixed phase of periodic arrangements

of squares and triangles (SqT). Within the SqT-region, the red line marks the area,

where the Square-Triangle tiling yields the lowest energy.
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7.1.2. Phasediagram of the ground state T = 0

In this section, we present the work by E. C. Oğuz who conducted lattice sum calculations

and free minimization of unit cells. Provided with periodic approximants for various tilings

from section 3.2.2, he obtained a phase diagram for the case T = 0 that is depicted in

Fig. 7.2. It supports us in choosing promising sets of interaction parameters for it exhibits

a stable dodecagonal phase. In this phase, a structure where colloids are located on the

vertices of a Square-Triangle tiling yields the minimal energy.

However for dynamic reasons, not all sets from Fig. 7.2 might be equally suitable for

simulations or experiments. If the attractive contribution is too strong, the simulations often

end up in clustered or gellike configurations. Therefore, we prefer monotonic repulsive

interactions such that the overall particle pressure pushes some particles towards the short

distance as the density increases. Purely repulsive interactions are in perfect agreement

with previous studies [117, 119].

7.1.3. Simulation details and parameters

We employ static Monte-Carlo simulations as explained in section 3.1. In order to as-

sure that significantly diverse configurations are visited in configurational space during

the Metropolis algorithm, different initial configurations for the particle positions are

considered, in particular the neighboring or rather competing phases in the ground state.

Therefore, each point in parameter space in fact represents four independent simulation

runs starting from a tetragonal, hexagonal, dodecagonal, and random initial configuration.

The state obtained from these four routes, whose average energy per particle is minimal, is

reckoned the global minimum.

The system contains 800 to 1000 particles depending on the actual periodic approximant.

It is equilibrated for 8 · 105 Monte-Carlo steps before a two-dimensional density field ρ(r)
is determined by averaging over every 1000th for 200 configurations in total. The density

field exhibits distinct maxima that can easily be translated to discrete tilings for further

evaluations.

7.2. Self-assembled colloidal quasicrystal

In the following the simulation results are discussed. To begin, the general quality of

the quasicrystalline configurations that can be expected under self-assembly conditions

is addressed. Afterwards, the qualitative topology of the simulation space is presented.

Finally, the transition regions are elucidated in more detail such that useful guidelines for

an experimental search can be formulated.
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7.2.1. Characterization of the self-assembled quasicrystalline

structures

The isotropic interaction potential between two colloids gives rise to a short S and a

large L separation distance. A one-dimensional analogy would be a chain of S and L
segments similar to the silver mean chain from section 1.3.3 or a Fibonacci sequence [187].

Assuming a finite chain like for instance LSLLS . . . has already assembled, which type

of segment, S or L, is the correct sequel of the chain? For a perfect aperiodic order

information about the whole chain is required. Such can hardly be provided by isotropic

interactions, though a quasicrystal may be favored for entropic reasons [56]. In our case,

the resulting chain is most likely a random sequence of S and L segments, while the ratio of

S and L would depend on the particle density and the temperature. Although this approach

appears slightly simplistic to be directly transferred to higher-dimensional self-assembly of

quasicrystals, where criss-crossing effects may play an additional role [187], it illustrates

the basic feature.
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Figure 7.3.: Typical quasicrystal obtained from an initial random configuration in simula-

tion or a possible self-assembly in an experimental setup. (a) The maxima of the

structured colloidal density form a tiling comprised of squares and triangles but ran-

domly arranged. (b) Nevertheless, the corresponding structure exhibits sharp peaks

and reveals distinct dodecagonal rotational symmetry. (c) In a perfect dodecagonal

quasicrystal, characterized by the Square-Triangle tiling, the squares and triangles

form dodecagons arranged in a self-similar network. The configuration shown in (a)

exhibits several of these basic units (blue and yellow shading).
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In our self-assembly simulations in two dimensions, the random arrangement of basic

building blocks due to local isotropic interactions is reflected. A typical example obtained

from a random initial configuration is displayed in Fig. 7.3. The tiling from the structured

density ρ(r) is comprised of squares and triangles. To some extend, the tiling contains basic

dodecagons which are highlighted by colored shading. These are randomly distributed,

whereas in case of an ideal Square-Triangle tiling, these basic units yield a self-similar

network. However, this higher hierarchy is unlikely to be accomplished by self-assembly

processes alone. Nevertheless, the structure factor of the self-assembled random structure

reveals distinct dodecagonal rotational symmetry comparable to an ideal Square-Triangle

tiling.

Therefore, for a more quantitative assessment, we compare the amount of squares and

triangles between the ideal tiling and the simulated configuration. In case of an ideal

Square-Triangle tiling the area fraction of squares f� equals the area fraction of triangles

f△, i.e. f� = f△ = 1/2 [181]. This is equivalent to a ratio of
√
3/4 for the number of

squares divided by the number of triangles. For the configuration from Fig. 7.3 (a) we

determine the corresponding values to f� = 0.499 and f△ = 0.501. This is close to

the ideal case. Hence, this configuration represents the typical quality of a dodecagonal

quasicrystal that can be obtained in simulations from a random initial configuration or in a

comparable experiment under laboratory conditions.

Figure 7.4.: Analysis of the density modes of the dodecagonal configuration from Fig. 7.3 (a).

Defects are detected in two modes, marked by black circles. Thus a pair of dislo-

cations is identified with oppositely charged basic Burgers vector. Apart from the

random arrangement of squares and triangles, the number of performed simulation

steps seems to be sufficient for the system to relax in a state with only a few global

defects.
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Moreover, in order to detect possible global defects, the mode analysis from section 3.3

is conducted. Usually, mesoscopic quasicrystals obtained by processes of self-assembly

contain several defects [55, 161]. The basic density modes are displayed in Fig. 7.4. We

identify a neutral pair of dislocations with basic Burgers vector. Therefore, the general

quality of our simulated structures is only restricted by local randomness of tiles but not by

global defects.
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Figure 7.5.: Diagram of stable configurations obtained from Monte-Carlo simulations for

various densities and temperatures. The parameters are set to Γ = 1.610, q = 0.1704,
and κσc = 0.9. The configurations are classified according to their structure factor.

One can differentiate between four areas. For low densities, a fluid like phase is

detected which is characterized by a nonstructured average colloidal density and an

absence of sharp peaks in the structure factor. Upon increasing the density, hexagonal

order is predominantly observed in regions of higher temperature and tetragonal

order for lower temperatures. Between these two zones resides an area in which in

general dodecagonal order as a mixture of square and hexagonal arrangement can be

observed. However, not all configurations comprised of squares and triangles exhibit

distinct dodecagonal rotational symmetry. In these cases, the ratio of squares and

triangles deviates significantly from the ratio in the ideal Square-Triangle tiling. The

encirclements represent paths that are discussed in section 7.2.3.
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Usually, we consider different initial configurations for the colloids in simulation and

compare the energy per particle of the evolving state. Note that an arrangement according

to the perfect tiling might be stable, but is unlikely to form by self-assembly from any other

initial state deviating from the ideal tiling (cf. Fig. 7.3). Therefore, we expect a state as in

Fig. 7.3 to resemble the quality attainable in experiments. In the next section, the topology

of the simulation space is explored. There, snapshots featuring the ideal Square-Triangle

tiling represent the configuration with the lowest energy.

7.2.2. Topology of the simulation space

In the following, the qualitative topology of the simulation space spanned by the colloidal

density as well as the thermal energy is discussed to provide support for an experimental

search for a quasicrystalline state. The Monte-Carlo simulations are conducted as previ-

ously explained in section 7.1.3 and the generated structure is characterized by its structure

factor. A selection of results for iterations over η and β is depicted in the diagram of

Fig. 7.5. We differentiate between four different areas: Fluid or disordered configurations

are characterized by a nonstructured density in real space or an absence of sharp peaks

in the structure factor. Further enclosed by predominantly tetragonal and hexagonal or-

derings resides an area, where stable dodecagonal quasicrystals can be observed. Beside

perfect dodecagonal symmetry, we also detect more randomly ordered tilings. While these

arrangements are mostly composed of squares and triangles as well, the respective area

fractions of squares and triangles may deviate considerably from the value of the ideal

Square-Triangle tiling. Consequently, these configurations lack dodecagonal rotational

symmetry.

If the ratio Γ between attraction an repulsion varies, for instance by changing the polymer

concentration, the boundaries between the phases shift along the βǫ-axis. This behavior
is illustrated in Fig. 7.6. In general, the higher the depletion strength, the higher is the

maximal temperature under which a dodecagonal or tetragonal configuration remains

stable. For a fixed density, the estimated course between a preferred hexagonal and a

dodecagonal or rather random ordering is displayed in Fig. 7.6 (a). Note that for a value

Γ = 0.716 or below a dodecagonal state is not detected within the applied search window.

In this case, the course of the interaction potential is purely convex and a tilting of the

potential course expressing an effective overall particle pressure cannot yield a minimum

at short range. Based on our simulation data, a concave potential course seems to set

the required attraction strength, i.e. polymer concentration, to yield a stable dodecagonal

quasicrystal.

As an advice for an experimentally conducted search, we recommend to search for the fluid

to square transition region. From there onwards, the density should be gradually increased

such that the particles remain mobile to arrange themselves accordingly. At some point,

a dodecagonal-like structure is expected to occur representing the compromise between

packing efficiency and energy.
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Figure 7.6.: Influence of the polymer concentration, i.e. the parameter Γ, on the obtained

phases. (a) Stable quasicrystalline configuration for η = 1.39 under minimal value

of βǫ as a function of Γ. The symbols denote simulation values from the diagrams,

while the dashed line is a guide to the eye representing the border. For higher Γ,
i.e. stronger attraction, the maximal temperature under which the quasicrystalline

configuration remains stable increases. (b) The corresponding pair potentials to the

simulated values from (a). Compared to the Coulomb contribution the depletion

interaction is weak such that nearly all courses are monotonic repulsive. The overall

particle pressure may push some particles on the small length scale. (c) Diagram of

the simulation space for Γ = 1.163. The quasicrystalline and square domains are

restricted to low temperatures in the search window. (d) Diagram of the simulation

space for Γ = 2.505. Compared to (c) the quasicrystalline and square domain extend

to higher temperature values. Qualitatively, the topology is identical.



7.2. Self-assembled colloidal quasicrystal 105

x/σc
y
/σ

c

0 5 10 15 20 25
0

5

10

15

20

25

x/σc

y
/σ

c

0 5 10 15 20 25
0

5

10

15

20

25

x/σc

y
/σ

c

0 5 10 15 20 25
0

5

10

15

20

25

βε

(b) (c)(a)

Figure 7.7.: Excerpts of configurations on a path in the simulation space of Fig. 7.5 with

constant density η = 1.42 along βǫ. (a) Hexagonal phase for βǫ = 30.19. (b)
Distorted Square-Triangle like tiling for βǫ = 50.32. (c) Perfect dodecagonal Square-
Triangle tiling for βǫ = 75.49. An increase in temperature, i.e. a decrease in βǫ,
excites thermal fluctuations in the dodecagonal tiling. These culminate in phasonic

flips that twist the elementary dodecagons. Compare the orientation of the orange

(b) and blue dodecagons (d). In addition, the overall structure is distorted such that

squares become rhombic. Upon further increasing the temperature the rhombs seem

to separate into equilateral triangles such that hexagonal order is established.

7.2.3. Investigation of the transitions

Based on the diagrams of the previous section the route to stimulate quasicrystal self-

assembly is either by lowering the temperature or by increasing the density, whereas

the latter seems to be more feasible in experiments. Here, we explore the transitions

towards the dodecagonal ordering in more detail as, in particular, finite temperatures and

accompanying fluctuations may lead to different states compared to the ground state.

Therefore, we elaborate the particle configuration on certain paths in simulation space

with either density η or thermal energy βǫ fixed. Besides, such paths also resemble a

systematically conducted search in experiments. The considered paths are located in the

search window of Fig. 7.5, i.e. the parameters are Γ = 1.610, q = 0.1704, and κσc = 0.9.

First, considering a path along a fixed density η = 1.42, three meaningful configurations

are depicted in Fig. 7.7. These contain hexagonal and dodecagonal ordering. The state

in-between would be classified as a random tiling according to its structure factor. Starting

from a stable dodecagonal configuration with low temperature, phasonic flips can be

detected as the temperature is increased. In addition, the intermediate configuration is

partially distorted compared to the Square-Triangle tiling for the squares have become

rhombic. This indicates a tendency towards preferred hexagonal ordering that is eventually

accomplished when the temperature is increased further. Thermal fluctuations seem to

shield away the shorter length scale in the interaction potential such that the effective
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(a) (b)AT of type (33.22) AT of modified type

Figure 7.8.: (a) Archimedean tiling (AT) of type (33.22). It consists of alternating rows of

squares and triangles. Thus, we expect it also in the transition region between square

and hexagonal phase. (b) A modified version of the AT in (a) as it contains double

rows of triangles instead of single rows. In our simulations, the detected domains

are not as big as shown here. In addition, we observe a mixture of these two cases

(cf. [132]).

interaction is felt as completely repulsive.

More relevant to an experimental realization might be a path for fixed temperature and

varied density. In principle, such a path could be achieved in a laboratory by means of

optical tweezing. Along this path various mixtures of squares and triangles are to be

expected. Aside from the dodecagonal Square-Triangle tiling, another famous group of

tilings comprised of squares and triangles is the Archimedean tiling [132]. This tiling

consists of alternating rows of squares and triangles. Yet, similar to the case already

made for the dodecagonal tiling in section 7.2.1, we expect finite domains of random

orientations in simulations. In case of an ideal Archimedean tiling of type (33.22) as

schematically depicted in Fig. 7.8, the area fractions of squares and tiles amount to

f� = 2/(2 +
√
3) ≈ 0.536 and f△ =

√
3/(2 +

√
3) ≈ 0.464 respectively.

While thermal energy is kept at βǫ = 90.58, mixed configurations with different values of

square and triangle area fraction are generated by gradually increasing η. The course of the

area fractions is displayed in Fig. 7.9. The three plateaus correspond to the tetragonal for

f� ≈ 1.0 , the dodecagonal for f� ≈ f△ ≈ 0.5 as well as the hexagonal phase for f△ ≈ 1.0.
In-between the tetragonal and dodecagonal plateau, a configuration whose area fractions

equal the values for the ideal Archimedean tiling can be identified. In the corresponding

tiling, we observe extended Archimedean tilinglike domains. A further increase of the

density from the dodecagonal phase onwards leads to the formation of larger hexagonal

domains separated by squares as a higher packing efficiency is demanded. Eventually,

hexagonal order prevails completely.
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Figure 7.9.: Area fractions of squares and triangles for configurations on a path in the

simulation space of Fig. 7.5 with constant temperature βǫ = 90.58 along η. (a)
Area fraction of square and triangles as a function of the colloidal density η. The
dashed horizontal line marks the value of a perfect dodecagonal Square-Triangle

tiling, while the dashed vertical lines mark the configurations displayed in (b-d). The

plateaus in the course of the area fraction correspond to the tetragonal, dodecagonal

and hexagonal domains in the simulation space. In-between we find mixed phases of

squares and triangles. (b) This configuration resembles an Archimedean tilinglike

phase. Some domains of alternating rows of squares and triangles are highlighted.

The value of the area fraction is close to the ideal value for an Archimedean tiling. (c)

Perfect dodecagonal tiling. A patch of basic dodecagons is shaded for visual clarity.

(d) As the density increases further, squares are gradually replaced by triangles for

better packing efficiency.
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7.3. Conclusion

We have qualitatively explored the rich phase behavior in two dimensions of a binary mix-

ture of charged colloids and smaller polymer coils. We detected hexagonal, tetragonal, and

dodecagonal configurations as well as intermediate orderings. Furthermore, we provided a

suitable range of parameters that should in principle be accessible in experiments to obtain

colloidal quasicrystalline structures by processes of self-assembly. Additional feasibility is

ensured as the potential can be monotonic repulsive. A small concentration of polymers

that leads to a concave course in the isotropic interaction potential is probably sufficient

to stabilize dodecagonal order. With respect to the template-guided approach employed

in the two previous chapters, the prospect of self-assembly by an isotropic interaction

potential offers an alternative route to mesoscopic quasicrystalline structures that might be

important in photonics [148]. After all, complete band gaps were engineered by devices

of a similar Square-Triangle tiling like arrangement [152]. Aside from concrete technical

applications, a possible realization in a laboratory could also be a prosperous model system

to investigate thermally excited phasonic fluctuations directly in real space by means of

video microscopy.
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Experience is the name so many people

give to their mistakes.

(F. Scott Fitzgerald 1896-1940)
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8 Summary & Outlook

On the mesoscopic level, the behavior of a colloidal suspension can be influenced by various

external and internal mechanisms. In this work, we applied three different methods in order

to obtain tailored colloidal quasicrystals. First, we considered a two-dimensional suspen-

sion consisting of a colloidal monolayer, where the quasicrystalline order of the particles

was induced externally by optical laser fields. Second, adding a small polymer concentra-

tion modified the internal isotropic pairwise interactions between the charged particles in a

way that self-assembly occurred into a stable quasicrystalline state. Third, we employed

a template-guided approach together with colloidal epitaxy to grow three-dimensional

colloidal quasicrystals from aperiodic substrates. Under gravitation, the colloidal particles

sedimented onto specifically designed substrates with quasicrystalline rotational symmetry

to yield structures comprised of stacked quasicrystalline layers. Compared to correspond-

ing atomic systems, colloidal suspensions offer the advantage of a more feasible analysis

in real space. They grant an access to the unique properties of quasicrystals that is often

denied for most metal compound systems. Therefore, we were able to trace and to predict

the complex trajectories of particles under a phasonic drift or to follow the courses of

dislocation lines in three-dimensional quasicrystals. As method, we employed Monte-Carlo

simulations to obtain quasicrystalline structures in two and three dimensions.

Quasicrystalline laser fields have been deployed before to induce two-dimensional colloidal

quasicrystals [131–133]. The rich phase behavior has been analyzed in both experiment

and theory. On the basis of a decagonal laser interference pattern, Kromer et al. developed

a method to predict colloidal trajectories originating from an applied phasonic drift [138].

Although a quasicrystal exhibits per definition no repeating unit cell, Kromer et al. showed

that all colloidal particles can be mapped into characteristic areas. From these characteristic

areas, the trajectory of every colloidal particle could be derived. Here, we extended their

method to octagonal, dodecagonal, and tetradecagonal rotational symmetry. In particular,

the tetradecagonal case establishes the universality of the method for it requires the

mapping in six dimensions in contrast to four dimensions for the other cases. In principle,

the method can be utilized to describe phasonic fluctuations in intrinsic quasicrystalline

systems.

Moreover, we considered a finite diameter for the colloidal particles in the light induced

suspension to describe the acting optical forces on the particles more accurately. The

ratio between this particle length scale and the length scale of the potential can give rise
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to degenerate orderings. While the rotational symmetry remains predetermined by the

laser field, the local isomorphism class depends on the length scale ratio. This behavior

is reminiscent to the degenerate patterns observed for molecular deposition on atomic

quasicrystalline surfaces [270].

Aside from enforcements by external fields, colloids may self-assemble into a stable quasi-

crystalline ordering for a specifically tuned isotropic pair potential [117]. We demonstrated

that a small concentration of polymers added to the charged stabilized suspension is

sufficient to promote dodecagonal order in simulations. By exploring the phase behavior

of this colloid-polymer mixture we determined the range in density and temperature,

where the quasicrystal remained stable. Since this depletion potential has been frequently

implemented in experimental setups [120–122], we are confident that our work provides

concrete support for a future realization in a laboratory. The warranted feasibility may

pave the way for generated soft matter quasicrystals by design, which might be important

for photonic applications.

However, for such purposes, three-dimensional quasicrystalline structures might be more

desirable. Therefore, we applied the method of template-guided colloidal epitaxy to simu-

late the growth of three-dimensional colloidal quasicrystals from substrates whose design

is borrowed from aperiodic tilings. So far, this method has only been attempted on periodic

substrates [143, 145]. We showed that, in contrast to self-assembly approaches, no fine

tuning of the pairwise interaction is required. The quasicrystalline template is sufficient to

avoid the bulk behavior such that several layers of quasicrystalline rotational symmetry

form as the colloids sediment under gravity. We considered different substrate symmetries,

namely the octagonal Ammann-Beenker, the decagonal Penrose-Rhomb, and the dodecago-

nal Square-Triangle tiling. Out of these, the octagonal Ammann-Beenker tiling emerged as

the most promising candidate because it showed the best stacking properties. Besides, the

conducted mode analysis revealed that the structure grown from such a substrate exhibits

the highest amount of layers without global defects.

While the quality of the quasicrystalline layers decreased in general as the layer height

increased, the overall quality still allowed for a systematic analysis about the effect of sub-

strate defects on the epitaxial structures. Two kinds of defects were added to the substrate.

While local tile flips that might occur as a possible result of thermal phasonic fluctuations

had hardly any detectable effect, global defects in the substrate, e.g. dislocations with well-

defined Burgers vectors, lead to stable defect lines in the three-dimensional grown colloidal

structure. We illustrated how the respective strain field surrounding the dislocation seed

and the Burgers vector can influence the shape and course of the resulting defect line. In

contrast to periodic crystals, the course also depends sensitively on the position of the seed.

In addition, the topological behavior of the defect lines was explored and we observed the

annihilation, forking and coalition of defect lines. Furthermore, we determined the basic

set of Burgers vectors that yield stable defect lines during the growth process, i.e. lines

that do not decompose further. Eventually, such three-dimensional colloidal quasicrystals

augmented by controlled defect lines might offer a diverse potential for future applications.

In principle, all colloidal quasicrystalline structures that we tailored in simulations can
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be achieved in experiments. After all, the discussed colloid-polymer mixture as well as

the template-guided approach have already been successfully implemented in order to

obtain periodic structures. However, especially intriguing seems to be a combination of

both approaches. On the one hand, the self-assembled dodecagonal structures in the two-

dimensional colloid-polymer mixture are comprised to a certain extend of random tiling

arrangements and lack the consistent hierarchical order of a perfect tiling. On the other

hand, in the template-guided three-dimensional growth this higher hierarchical network

of the symmetry centers is imprinted by the substrate tiling to higher two-dimensional

layers, where the order on a local level has already decreased significantly due to local flips.

Therefore, translating the tuned isotropic interactions from the two-dimensional colloid-

polymer mixture to the epitaxial growth in three dimensions seems to be a prosperous

prospect for future research.
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A Tilingbuilder

In this appendix we present our program that we implemented in order to construct the
aperiodic tilings used in the preceding computational studies. The program is written in
C++ and exhibits a graphical user interface (GUI). In the following, the features of the
program are explained as in a short user guide. In the first part, the general functionality
of the program is introduced. In the second part, the individual controls in the GUI are
elucidated in more detail. In the third part, the feature to incorporate user defined tile flips
is presented, while, as an example, a rational approximant for a tiling with tetradecagonal
rotational symmetry is constructed.

A.1. Program overview

The implemented aperiodic tilings are obtained by the inflation method from section 1.3.1.
An initial configuration of basic tiles is scaled by an irrational inflation factor. Afterwards,
each scaled tile is substituted by conglomerations of the basic tiles according to its inflation
rule. By conducting this procedure several times a large patch of the aperiodic tiling is
generated. Then a rectangular segment from this patch is cut out. All vertex coordinates are
exported to a file and thus made available for further computational studies. In section A.3,
we explain how the cut out segments can be modified by the user to comply with periodic
boundary conditions.

The program is implemented in C++ and possesses the advantages of an object orientated
architecture. The general composition follows the model-view-controller principle (MVC).
Therefore, an extension to other inflation based tilings is straight forward. Since the classes
of the basic tiles are all derived from an abstract base class, a concrete implementation of
the member function performing the inflation step is all that is required. A current list of
realized aperiodic tilings comprises the octagonal Ammann-Beenker and Watanabe-Ito-
Soma, the dodecagonal Square-Triangle, the decagonal Penrose-Rhomb, the tetradecagonal
Danzer-Original and the octadecagonal Harris tiling. These and further tilings can be found
here [a1].

A typical window of the program is illustrated in Fig. A.1. It is divided into two parts,
a control panel and a display panel with the tiling. The red rectangle defines the cut out
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Figure A.1.: Screenshot illustrating the typical usage of the program. The graphical user
interface is divided into two parts, a control panel on the left and a display panel with
the tiling on the right side. The red rectangle denotes a simulation box, namely the
segment of the tiling whose vertices are exported to an external file. The current view
on the displayed tiling can be modified by zooming or displacing the focus point. In
addition, the control panel offers options to manipulate the tiling by performing the
next inflation step or by inserting flips of different tiles as defects. The location of
these defects is set directly by mouse clicks and should be chosen in such a way that
opposite edges of the exported segment form periodic boundaries.

segment whose vertex coordinates are exported. Aside from the C++ standard libraries,
several external libraries are embedded into the program. Nevertheless, the program is
portable to various systems. For the graphical implementation we rely on OpenGL which is
he premier application programming interface (API) for developing portable, interactive 2D
and 3D graphics applications [a2]. While the OpenGL utility toolkit (GLUT) is sufficient
in our case to carry out the window handling, it also offers a window-system independent,
portable API [a3]. In addition, GLUI, a GLUT based C++ user interface library, provides
basic controls such as buttons, check boxes, radio buttons, and spinners to our OpenGL
application [a4]. The mathematical operations of the inflation procedure are managed in
Eigen, a template library for linear algebra [a5].
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A.2. User interface

The control components from the GLUI library allow the user to construct his tiling patch
individually. A detailed explanation of the control interface is presented in Fig. A.2. The
user selects a tiling from a list and executes the inflation procedure as far as desired. He can
move the camera to view different regions of the aperiodic tiling. In addition, he can set
the size of the cut out segment and place it to any desired region. For more sophisticated
needs, defects can be incorporated as certain groups of tiles depending on the respective
tiling may be flipped. In this way, the user can obtain his own devised tiling patch.

(c)

(b)

(a)

(d)

(e)

(f)

(g)

Figure A.2.: Detailed explanation of the control interface.

(a) After the desired tiling has been selected from the list

box the starting configuration of that tiling is displayed.

Every time the button Inflate is pushed the next generation

of the tiling is produced, while a click on Clear resets the

whole process. (b) The steering cross allows to shift either

the focus point of the camera view or the exported segment

region of the tiling that is defined by a red rectangle. (c)

If the option for defects is turned on, mouse clicks within

the tiling may lead to tile flips. Defects that affect only

the position of one vertex are characterized as Single and

are incorporated by a mouse click close to the vertex. The

neighboring tiles forming this vertex rearrange in a different

manner such that the position of the vertex is slightly dis-

placed. On the other hand, defects that affect several vertex

positions are characterized as Multiple. Tiles are marked by

mouse clicks and the rearrangement is executed by pushing

Flip. (d) Displays the current values for width and height

of the exported segment. The size of the rectangle can be

modified by the spinners or by selecting vertices within the

tiling as corners of the rectangle. Therefore, the box size

of the rational approximant can be adjusted precisely. (e)

The two buttons allow to zoom in and out. (f) If necessary

the edge length of the tiles or the depth and diameter of

the substrate holes can be set, otherwise the default settings

remain hidden. (g) If Save is pushed, the vertices located

inside the red bordered region are written to the named file.

Via Quit the program terminates.
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A.3. Tools to construct approximants

The most important feature of the program is the ability to design rational approximants
for the aperiodic tilings. These are a necessity for most computational studies involving
quasicrystals. The method to select suitable box sizes from section 3.2.1 is sufficient for
octagonal, decagonal or dodecagonal continuous quasicrystalline fields, i.e. rotational
symmetries with rank D = 4. It is less applicable for rotational symmetries with rank
D = 6, like for instance tetradecagonal or octadecagonal symmetry, as it requires the
rational approximation not for two but for three incommensurate length scales. Therefore,
a subtle choice for the cut out segment from the aperiodic tiling is not sufficient to produce
an approximant.

Tilingbuilder offers tools to the user exploiting the phasonic degrees of quasicrystals to
produce phasonic approximants. By flipping certain tiles close to the edges of the cut out
segment, opposite edges may match under periodic conditions. For each tiling an individual
solution has been implemented. An example for the tetradecagonal Danzer tiling is shown
in Fig. A.3. If the original rhombic patch satisfying the matching rules is translated as a
basic periodic cell, the boundaries of the original and translated cells do not match each
other. However, the flipping of tiles in the area of mismatch leads to edges of the rhombic
cell that fulfill periodic conditions.

Figure A.3.: Construction of a rational approximant for the tetradecagonal Danzer tiling.
(a) A rhombic patch of Danzer’s Original tiling is displayed. The premorse patches
correspond to translations of the original patch as in a simulation box with periodic
boundary conditions. Yet, at the moment the adjacent patches do not fulfill periodic
conditions. (b) Tiles in the region of the unmatched boundaries are marked for
rearrangement. Note the different color shading. (c) After the flip routine has been
executed the selected tiles have been rearranged in such a way that periodic boundary
conditions are now fulfilled for the rhombic tiling patch. The patch can now be
exported for computational studies.



A.4. Conclusion 141

A.4. Conclusion

Whether the construction of quasicrystalline substrates for colloidal epitaxy or the compet-
ing configurations of colloids in the colloid-polymer mixture, Tilingbuilder represents the
first step in investigating these systems. Since its object orientated architecture follows the
model-view-controller principle, adjustments to the program can be easily implemented as
the possible need arises during research. In principle, any tiling for which inflation rules
exist can be incorporated. In the end, the portability ensures the usage for colleagues and
coworkers.
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