
Generation and propagation

of energetic particles

in relativistic laser-matter interactions

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät

der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Oleg Shorokhov

aus Baku

Düsseldorf

2005



Gedruckt mit der Genehmigung der Mathematisch-Naturwissen-
schaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. A. Pukhov
Korreferent: Prof. Dr. K.-H. Spatschek

Tag der mündlichen Prüfung: 20.01.2005



Generation and propagation

of energetic particles

in relativistic laser-matter interactions

Oleg Shorokhov

Dissertation for the degree of Doctor in Philosophy

at the University of Duesseldorf, Germany

Duesseldorf

2005



Printed with permission of the Faculty of Mathematics and Natural Sciences
of Heinrich-Heine University of Duesseldorf

Referee: Prof. Dr. A. Pukhov
Co-referee: Prof. Dr. K.-H. Spatschek

The day of public defense: 20.01.2005



Contents

1 Introduction 5

1.1 Laser plasma interaction physics. Motivation. Historical overview . . . . 5

1.1.1 Plasma based accelerators . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Ultra-short pulses production . . . . . . . . . . . . . . . . . . . . 7

1.2 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Basic laser plasma interaction theory . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Particle motion in electromagnetic wave . . . . . . . . . . . . . . 10

Plane electromagnetic wave . . . . . . . . . . . . . . . . . . . . . 10

Free particle motion in an electromagnetic wave . . . . . . . . . . 12

Relativistic threshold . . . . . . . . . . . . . . . . . . . . . . . . . 13

Focused laser pulses . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Basic plasma physics . . . . . . . . . . . . . . . . . . . . . . . . . 14

Plasma frequency and Debye length . . . . . . . . . . . . . . . . . 14

Plasma kinetic description . . . . . . . . . . . . . . . . . . . . . . 15

Plasma fluid description . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.4 Propagation of electromagnetic waves in plasma . . . . . . . . . . 18

1.3.5 Relativistic nonlinear optics of plasma . . . . . . . . . . . . . . . 19

Relativistic plasma . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Relativistic transparency . . . . . . . . . . . . . . . . . . . . . . . 20

Instabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.6 Self-focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Self-focusing threshold . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.7 Relativistic magnetic self-channeling . . . . . . . . . . . . . . . . 23

Channeling through overdense plasma . . . . . . . . . . . . . . . . 24

1.3.8 Electron plasma waves . . . . . . . . . . . . . . . . . . . . . . . . 24

Plasma wave phase velocity . . . . . . . . . . . . . . . . . . . . . 25

Plasma waves excitation. Wavebreaking . . . . . . . . . . . . . . 26

1.3.9 Particles acceleration mechanisms . . . . . . . . . . . . . . . . . . 27

Direct laser acceleration . . . . . . . . . . . . . . . . . . . . . . . 27

Particles acceleration in plasma wave. Wakefield acceleration . . . 28

Bubble regime of electron acceleration . . . . . . . . . . . . . . . 28

1



Contents

2 Protons acceleration in a plasma wave 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Ion relativistic threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Ion acceleration at the front surface . . . . . . . . . . . . . . . . . . . . . 33
2.4 Model for ion trapping in a running plasma wave . . . . . . . . . . . . . 34

2.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Single particle dynamics in prescribed potential . . . . . . . . . . 34
2.4.3 Plasma wave generation . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Particle motion in laser-generated plasma wave . . . . . . . . . . 39

2.5 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Pulse propagation in plasma and relativistic solitons 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Raman instability overcoming . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Analytical theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Pulse evolution investigation using the momentum method . . . . 51
First momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Second momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Pulse oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.3 Pulse compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.4 Soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.5 1D model numerical verification . . . . . . . . . . . . . . . . . . . 56

3.4 Possibility of 3D-compression . . . . . . . . . . . . . . . . . . . . . . . . 57

4 High harmonics generation from plasma surface 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1.2 Mechanism of harmonics generation from plasma surface . . . . . 62
4.1.3 Universal spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1.4 Different focusing regimes. The Coherent Harmonic Focusing . . . 62

4.2 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 Laser plasma interaction scalings . . . . . . . . . . . . . . . . . . 63
4.2.2 Oscillating mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Ideal mirror boundary condition . . . . . . . . . . . . . . . . . . . 64
4.2.4 Electrons dynamics near the boundary. Leontovich boundary con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 Pulse reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Retardation relation . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Universal spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.3 Spectrum modulations . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Coherent Harmonics Focusing . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Intensity scaling of plasma coherent harmonics focusing . . . . . . 78
4.4.2 Schwinger limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2



Contents

4.5.1 Power-law spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Reflected radiation structure. Ultra-short pulses . . . . . . . . . . 81

4.6 Numerical simulations of Coherent Harmonics Focusing . . . . . . . . . . 81

5 Summary 87

5.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix 89

A Particle-in-cell codes 90

B Virtual Laser Plasma Laboratory 92

Bibliography 95

Acknowledgements 109

Erklärung 111

3



4



1 Introduction

1.1 Laser plasma interaction physics. Motivation.

Historical overview

The major technological breakthrough that gave the impetus for a development of rel-
ativistic laser plasma physics was the invention of chirped pulse amplification (CPA)
[1]. It gave the opportunity of ultra-short laser pulses production, which in turn re-
sulted in a dramatic increase of achievable powers and focus intensities. The advent of
compact table-top terrawat laser systems [2, 3] has brought the relativistic plasma into
university-level laboratories.

This thesis considers relativistic short pulse laser-plasma interactions and important
new physical phenomena appearing in this high intensity regime: high gradient accelera-
tion of charged particles, non-linear evolution of the laser pulse itself and high harmonics
generation. These new effects are expected to have a great impact on a number of appli-
cations in high energy nuclear physics, material science, ultrafast chemistry, molecular
biology, etc.

1.1.1 Plasma based accelerators

Due to the recent great leap in the laser technology, intensities up to ∼ 1021 W/cm2

have been achieved at the laser focus [4, 5]. This corresponds to the electric field
Ef ∼ 103 GV/cm. This value is much greater than the maximum value of electric fields
achievable in conventional radio frequency linear accelerators, where the field is limited
to some Emax

rf ∼ 100 MV/m due to interaction with the chamber walls. However,
using the laser electric field is not straightforward, as the field is fast oscillating and
perpendicular to the wave propagation direction [6].

A way to overcome this difficulty is to use longitudinal plasma waves excited by laser
beams to accelerate electrons, as it was proposed by Tajima and Dawson [7]. When a
relativistically intense laser pulse propagates in plasma, its ponderomotive force expels
plasma electrons from the regions of the largest intensity. This initiates the plasma
oscillations, the so-called wake field. Charged particles can be accelerated by the electric
field of this plasma wave.

The main advantage of plasma-based accelerators is that they can sustain extremely
large acceleration gradients. Plasma is already an ionized medium and can support very
high electric fields. The natural limit for the amplitude of an electron plasma wave
is given by wave breaking. The characteristic wavebreaking field has been calculated
by Akhiezer and Polovin [8, 9] and is approximately EWB[V/cm] ≈ 0.96N

1/2
e [cm−3],
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1. Introduction

where Ne is the background electron density. As the plasma density can be as high
as the critical density nc ≈ 1021[cm−3], we see that the plasma fields are many orders
of magnitude higher than those in the conventional linear accelerators (see details and
numerical values in [10]). To gain energy from the plasma wave, a highly relativistic
particle must move along with the wave at approximately the same speed. Then, the
charged particle interacts with this wave for a long time, and can be accelerated to
a very high energy. Recently, essentially 3D acceleration mechanisms were proposed,
which advantage is a narrow energy spread of accelerated electrons [11].

A number of experiments [12, 13, 14, 15, 16, 17] provided a proof of principal for
electron acceleration in plasma waves. Here we list some of the most successful plasma-
based acceleration schemes.

• Laser Wakefield Accelerator (LWFA)

In the LWFA scheme, the plasma waves are excited by a single ultrashort laser
pulse. The condition for the most efficient wakefield excitation (optimum energy
transfer from pulse to the plasma wave) is

L ∼ λp , (1.1)

where L is the pulse length and λp = 2πc/ωp is the plasma wavelength and ωp =
√

4πNee2/m is the plasma frequency.

The LWFA was proposed by Tajima and Dawson [7]. However its experimen-
tal demonstration required high intensity laser systems with subpicosecond pulse
lengths. In those days the technology did not satisfy these requirements, and
roundabout setups had to be considered (like the PBWA scheme, see below).
When at the end of 80s the compact terrawat laser systems were created, the
original LWFA idea [18, 19] was revived.

The first evidences of plasma wave excitation via LWFA mechanism were reported
in [20, 21], and the accelerated electrons were first observed in [22].

• Plasma Beat-Wave Accelerator (PBWA)

The PBWA was the first method, confirmed in experiment, because it can be
done using less powerful lasers, than required in other methods. It was proposed
in [7] as the alternative of LWFA in the absence of technologies able to provide
ultrashort pulses. In PBWA two long laser pulses with two slightly different fre-
quencies are used. The interference (“beating”) of these laser beams corresponds
to a modulation of the electromagnetic wave envelope, which can act resonantly
on the plasma.

If one selects the lasers frequencies ω1 and ω2 in such a way, that they satisfy the
resonance condition

ω1 − ω2 ≈ ωp , (1.2)

where ωp is the plasma frequency, then a high amplitude plasma wave will be
excited.

6



1.1. Laser plasma interaction physics. Motivation. Historical overview

The first experimental observation of plasma wave generation using PBWA-method
was reported by Clayton et al. [23], and the same group was successful in injected
particles acceleration from 2 MeV to 30 MeV, which corresponds to 3 GV/m ac-
celeration gradient [24, 15]. Electrons acceleration to 10 MeV without injection
(from thermal background) was reported in [25].

• Self-modulated LWFA (SM-LWFA)

In the self-modulated LWFA regime, an initially long laser pulse, L > λp, breaks
into a series of short pulses [16, 17]. This break is caused by the forward Raman
scattering (FRS) and the so-called “sausaging” of the pulse envelope [26, 27, 28, 29].

The FRS instability can grow from noise. The density perturbations cause the
group velocity variations, which lead to a longitudinal bunching of the pulse.
In that way the pulse is breaking into a train of short pulses, with the char-
acteristic length ∼ πc/ωp. Each of these small pulses can be considered as an
individual plasma wave driver (and it satisfies resonant condition). Such pulse
self-modulation allows to use higher plasma densities, than the standard LWFA.

The first experimental evidence of the self-modulated LWFA has been given in the
work [30], where FRS forward scattering and electrons acceleration up to 2 MeV
were observed. The possibility of electron acceleration was demonstrated in the
series of experiments [16, 17, 31]. In [17] the observation of background electrons
acceleration to 30 MeV was reported.

There is a significant physical difference between these three regimes of wake field
acceleration. The SM-LWFA relies on an instability (the stimulated forward Raman
scattering) for an efficient plasma wave excitation. The PBFA regime also emploies a
long laser pulse that is subject to Raman instabilities. In the LWFA regime, however,
the laser pulse is shorter than the plasma period and thus is free from any Raman
instabilities. It is expected that the LWFA regime will finally lead to a practically
useful plasma-based accelerator.

However, to use the LWFA regime, one needs a very short and relativistically powerful
laser pulse. It appears that relativistic plasma itself can be considered as a nonlinear
medium suitable for laser pulse compression and short pulse generation.

1.1.2 Ultra-short pulses production

According to the uncertainty principle, the pulse duration is inversely proportional to
the frequency bandwidth occupied by the pulse. Thus, to produce ultra-short laser
pulses, one has to increase its bandwidth. This can be done by employing a non-
linear medium, where new frequencies appear due to the non-linear self-interaction. A
conventional method is to use atomic non-linearities in a gas medium. However, this
method works only for low intensities, below the gas ionization threshold. Plasma may
serve as a more advantageous medium, because it allows for much higher laser pulse
intensities.

7



1. Introduction

Here we mention two ways of using plasma for pulse compression. The first one is to
use the relativistic non-linearity to compress laser pulse in underdense plasmas, see [32,
33]. The second way is harmonics generation at overdense plasma surface [34, 35, 36, 37].
In this thesis we consider both of them in Chapters 3 and Chapter 4 correspondingly.

1.2 Thesis overview

This thesis deals with physical phenomena, which appear in laser-plasma interactions
in the wide range of laser intensities 1016 − 1023 W/cm2.

The value 1016 W/cm2 can be considered as the ionization threshold. For intensity
I > 1016 W/cm2, the laser field becomes stronger than the atomic fields. Any material
is instantaneously ionized and can be considered as a plasma at these laser intensities.
We will consider targets as plasma from the very beginning.

The value 1018 W/cm2 is the relativistic threshold. Starting with these intensities the
electrons move under the influence of laser pulse with velocities close to the speed of
light c, and relativistic effects must be taken into account. The physics of laser plasma
interaction at such intensities is essentially relativistic and non-linear. Because of this
fact, a development of analytical models is very complicated and numerical tools are
extremely important. However, in this work we will concentrate on analytical results and
use numerical tools mostly to check the analytical results and to support the selection
of analytical models.

When relativistic laser pulses propagate through plasma, a number of physical effects
appear. Some of them are: particles acceleration, generation of quasistatic fields, pulse
compression, front- and back-surface ion acceleration, harmonics generation, X-ray pro-
duction, extreme pressures generation, and many other effects. Several of them will be
considered in this work. Their selection is subjective and was mainly determined by
scientific interests of the author.

Below we list the topics, covered in this thesis.

• The first topic of this thesis is the study of particle acceleration mechanisms in laser
plasma interaction. This is the mainstream of laser-matter interaction research
nowadays. We concentrate our attention on the acceleration of protons, which is a
new rapidly developing area of laser plasma interaction physics. This subject will
be considered in Chapter 2.

• The second topic of the work deals with the pulse self-interaction in relativistic un-
derdense plasma. During its propagation through plasma, the laser pulse changes
optical properties of the plasma, which in its turn influence the pulse itself. Such
self-interaction can lead to very complicated pulse dynamics. One of the practical
applications is the production of ultra short pulses. Under certain conditions, the
laser pulse can compress itself (the self-compression effect). The pulse propagation
in plasma and self-compression are considered in Chapter 3.

• The third topic of this work concentrates on the process near a sharp overdense

8



1.3. Basic laser plasma interaction theory

plasma boundary. Oscillations of particles near the boundary are the point of spe-
cial interest, because the pulse interaction with the boundary and its reflection can
strongly modify the pulse structure. The investigation of excitation of boundary
oscillations, pulse reflection, and finally, the reflected pulse structure demonstrates
the possibility of extremely short pulses production (with the length of the order
of the Bohr radius). Considering the focusing of the reflected radiation, we also
demonstrate a possibility to achieve the Schwinger limit of vacuum breakdown
intensity using lasers with reasonable energies. All these subjects are considered
in Chapter 4.

1.3 Basic laser plasma interaction theory

1.3.1 Ionization

Let us estimate the laser field intensity, starting with which we can consider targets as
a plasma. In order to do this, we consider Hydrogen-like atom. The electric field at the
first Bohr orbit is

Ea =
e

r2
B

≈ 5.1 × 109 V/cm, (1.3)

where the Bohr radius

rB =
~

mee2
≈ 5 × 10−9 cm, . (1.4)

The laser pulse intensity that corresponds to atomic field Ea is given by formula

Ia =
cE2

a

8π
≈ 3.4 × 1016 W/cm2 . (1.5)

This value can be considered as the ionization threshold, because for I ≫ Ia any target
will immediately ionize and we can consider it as plasma.

The particular mechanism of ionization depends on the laser intensity via the dimen-
sionless Keldysh parameter [38]

Γ2 =
Ui

2εos
, (1.6)

where Ui is the atom ionization potential and εos is the quiver energy of an electron
in the laser electromagnetic wave. For a laser with the electric field E and the carrier
frequency ω, the quiver energy is given by formula

εos =
eE(1 + α2)

4meω2
, (1.7)

where the parameter α = 0 for linear polarization and α = 1 for circular. For Γ ≪ 1,
the optical field ionization almost instantly releases electrons from atoms and plasma is
formated. In the case Γ ≫ 1, the multi-photon ionization dominates. A simple quasi-
classical model of barrier suppression ionization (BSI), which was proposed in [39], gives
the threshold

IBSI =
4.0 · 109 × U4

i [eV]

Z2

[

W/cm2] , (1.8)
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1. Introduction

where Z is the nucleus charge. The probability of tunnel ionization was calculated in
the paper [40] (Ammosov-Delone-Krainov (ADK) model).

1.3.2 Particle motion in electromagnetic wave

Plane electromagnetic wave

A plane electromagnetic wave can be described using the vector potential:

A(r, t) = Re (A0 exp iψ) , (1.9)

where A0 is the wave amplitude, ψ = kr − ωt is the phase, r is the space coordinate, t
is the time, k is the wave vector. The dispersion relation in vacuum is

ω = kc , (1.10)

where c is the speed of light and k = |k|. Introducing the wavelength λ = cT = 2πc/ω
we can rewrite Eq. (1.10) as

k =
2π

λ
. (1.11)

Now let us introduce a coordinate system with unit vectors (ex, ey, ez). We are choosing
the ex-direction in such a way, that it coincides with the wave propagation direction.
Then we can write

A0 =

{

A0ey for linear polarization (LP ) ,
A0(ey ± iez) for circular polarization (CP ) .

(1.12)

We will use the standard Coulomb gauge

div A = 0 . (1.13)

Then, the expressions for electric field E and magnetic field B take the form

E = −1

c

∂A

∂t
, (1.14)

B = rot A . (1.15)

Using the substitution rules for derivatives: ∂/∂t → −iωt, ∂/∂r → ik, they can be
rewritten as

E = Re

{

iω

c
A0e

iψ

}

, (1.16)

B = Re
{

ik ×A0e
iψ
}

. (1.17)

With the Poynting vector

S =
c

4π
E× B , (1.18)
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1.3. Basic laser plasma interaction theory

one obtains the formula for intensity:

I(ψ) = |S| =
ωk

8π
A2

0 ×
{

(1 − cos 2ψ) for LP ,
2 for CP .

(1.19)

When the phase ψ is changed by 2π, the intensity for linear polarization oscillates twice,
but it does not depend on the phase for circular polarization. For practical reasons one
usually introduces the intensity averaged over phase:

I =
1

2π

2π
∫

0

I(ψ)dψ = ζ
ωk

8π
A2

0 . (1.20)

The factor ζ is different for linear polarization and circular polarization:

ζ =

{

1 for LP ,
2 for CP .

(1.21)

Using Eq. (1.11), Eq. (1.20) can be written as

Iλ2 = ζ
π

2
cA2

0 . (1.22)

When we consider the particles of selected species with mass m and charge q, following
general methodology we can introduce the relativistically normalized vector potential

a =
qA

mc2
. (1.23)

The dimensionless amplitude is

a0 = |a0| =
|q|A0

mc2
. (1.24)

Using this notation we can rewrite Eq. (1.22) as:

Iλ2 = ζ
π

2

m2c5

q2
a2

0 . (1.25)

The amplitudes of electric and magnetic fields are correspondingly:

E0 =
mcω

|q| a0 , B0 =
mcω

|q| a0 . (1.26)

Particularly for electrons: q = −e, m = me and we have:

a0 =
eA0

mec2
, (1.27)

I0λ
2 = ζ

[

1.37 × 1018 W

cm2
µm2

]

a2
0 . (1.28)
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1. Introduction

Free particle motion in an electromagnetic wave

Let us consider relativistic particle motion in the plane wave. The Lagrange function of
particle with mass m and charge q in a prescribed electromagnetic field with potential
φ and vector-potential A is

L(r,v, t) = −mc2
√

1 − v2

c2
+
q

c
vA − qφ . (1.29)

Using the Euler-Lagrange equation

d

dt

∂L

∂v
− ∂L

∂r
= 0 , (1.30)

we obtain the relativistic equation of motion for the particle

m
dp

dt
= q

(

E +
v

c
× B

)

, (1.31)

where p = γmv, is the particle momentum and gamma-factor is given by formula

γ =
1

√

1 − v2/c2
. (1.32)

Eq. (1.31) can be solved analytically (see the exact solution in [41, 42]). Here we discuss
the results, which can be obtained from the analysis of symmetries. Let us introduce
the full canonical momentum

P =
∂L

∂v
= p +

q

c
A = m(γv + ca) . (1.33)

The first symmetry appears from the plane wave planar symmetry. The conservation
of the perpendicular component of the canonical momentum P follows from the fact
that the field does not depend on the transverse coordinate. Thus we have the first
invariant

P⊥ = p⊥ +
q

c
A⊥ = const . (1.34)

The second symmetry appears from the fact, that we consider the laser pulse propa-
gation with constant phase velocity vph (in vacuum vph = c). If we consider an infinite
wave A = A(t− x/vph), we have the following relation:

−∂L
∂t

= vph
∂L

∂x
= vph

d

dt

∂L

∂v‖
= vph

dP‖

dt
= vph

dp‖
dt

. (1.35)

Introducing the Hamilton function H(r,p, t) = E(t), we obtain:

dE

dt
=
dH

dt
= −∂L

∂t
. (1.36)
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1.3. Basic laser plasma interaction theory

Substituting in Eq. (1.35) and taking into account that A‖ = 0 in a plain wave, we
obtain the second invariant

E − vphp‖ = const . (1.37)

To exclude the particles rest energy, we will use the kinetic energy

Ekin = E −mc2 = (γ − 1)mc2 . (1.38)

For the particles which are initially at rest (before the laser pulse reaches them), we
have from Eq. (1.34):

p⊥ = −q
c
A⊥ = −mca⊥ . (1.39)

Using Eq. (1.37), we obtain:

Ekin = E −mc2 = p‖c . (1.40)

Using relation E = mc2γ =
√

(mc2)2 + p2
⊥c

2 + p2
‖c

2, we easily obtain the expression for

kinetic energy:

Ekin =
p2
⊥

2m
=
a2

2
mc2 . (1.41)

Relativistic threshold

From Eq. (1.41) we can see, that Ekin ∼ mc2 for a0 ∼ 1. The intensity I0 which
corresponds to a0 = 1 (for specified λ) usually is considered as a relativistic threshold
for specified sort of particles. If we consider the motion of electrons, the amplitude
a0 = 1 corresponds to laser intensity

I0λ
2 = 1.37 × 1018 W cm−2µm2 . (1.42)

The physical meaning of this threshold is following: when |a | < 1 and correspondingly
|v⊥| ≪ c, the particle oscillates mainly in the polarization direction with a small pon-
deromotive drift in the wave propagation direction. On the contrary, in the relativistic
regime, when |a | > 1 and |v⊥| ∼ c, the ponderomotive force (v × B)/c pushes the
particle forward and the particle motion becomes mainly longitudinal.

Focused laser pulses

As it is well known, if relativistic particle is interacting with infinite electromagnetic
wave in vacuum, if one neglects non-linear effect, the total particle acceleration is null
(Lawson-Woodward theorem [43, 44]).

In real experiments the laser pulse is not the plane wave. It is focused. But as a first
approximation we can use relations obtained above even for a finite laser beam. Using
Eq. (1.40), (1.41) we can estimate the scattering angle for a single electron outgoing
from the laser focus:

tan θ =
p⊥
p‖

=

√

2

γ − 1
. (1.43)
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1. Introduction

This result has been verified experimentally in [45].
For the next order of approximation, near the focal plane we can write:

A = A(ψg, r) exp(kψph) , (1.44)

where
ψph = z − vpht , ψgr = z − vgrt . (1.45)

The phase velocity vph > c and the group velocity vgr < c. Using the Coulomb gauge
condition Eq. (1.13), we can conclude, that the focused electromagnetic wave has the
longitudinal component A‖:

∂zAz = −∇⊥A⊥ . (1.46)

There is no exact analytical theory for particles motion in the focused pulse. But if we
suppose that wave amplitude varies slowly with respect to phase, the averaging over
fast oscillations can be performed. If we consider the particle momentum p̄, averaged
over the laser period, for low intensities a ≪ 1 the relativistic ponderomotive force can
be introduced:

fpond =
dp̄

dt
= −mc∇ ā2

2
, (1.47)

(see for details [46]).
From Eq. (1.47) we can see that the particles should be expelled from the region of high

intensity. One can also observe that the relativistic ponderomotive force ∝ ∇ā2/2 and
does not depend on the laser polarization. In [47, 48] it was shown that the relativistic
ponderomotive force model is still valid even for higher a and Eq. (1.47) takes the form:

dp̄

dt
= −mc

2

γ̄
∇γ̄ . (1.48)

In [48] it was shown that the scattering picture depends on dimensionless parameter
α = kσ/(1 − vz/c). If α ≪ 1 the scattering is ponderomotive. If α > 1 the particle
motion is more complicated and polarization asymmetries appear.

1.3.3 Basic plasma physics

Plasma frequency and Debye length

The main quantity, which defines the time scale for plasma processes is the plasma
frequency. The natural oscillation frequency of the electron plasma is the electron plasma
frequency

ωpe =

√

4πe2Ne

me
, (1.49)

where (−e) is the electron charge, me is the electron mass, and Ne is the electron density.
As the electrons are the lightest particles in the plasma, we will mainly use this frequency
and call it sometimes the plasma frequency ωp = ωpe.
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1.3. Basic laser plasma interaction theory

For the ion component, the ion plasma frequency can be introduced

ωpi =

√

4πZ2e2Ne

mi
, (1.50)

where Ze is the ion charge, mi is the ion mass, and Ni is the ions density. Due to the
plasma quasi-neutrality Ne = ZNi, and we have:

ωpi
ωpe

=

√

me

mi
≪ 1 . (1.51)

The other key plasma property is the Debye length - the characteristic length which
electron, moving with thermal velocity vth ∼

√

kBT/me overpasses during the time
t ∼ ω−1

pe

λD =

√

kBT

4πNee2
. (1.52)

Plasma kinetic description

Let us introduce the six-dimensional phase space (r,v). The most natural way to
describe plasma is to consider the motion of a great number of interacting charged
particles (electrons, protons, ions). We will use index α to mark the species. Density of
one particle in phase space is

Ni(r,v, t) = δ(r − ri(t))δ(v − vi(t)) , (1.53)

where i is the marker of particle, ri(t) and vi(t) is correspondingly the position and
velocity of particle at moment t, and δ is the Dirac delta function. The density of
species α is given by sum over all particles of this specie

Nα(r,v, t) =
∑

i∈{iα}

δ(r − ri(t))δ(v − vi(t)) , (1.54)

and the overall density is the sum over all species

N(r,v, t) =
∑

α

Nα(r,v, t) . (1.55)

The evolution of this density is described by Klimontovich equation [49]

∂Nα

∂t
+ v · ∂Nα

∂r
+

qα
mα

(

Em +
v

c
×Bm

)

· ∂Nα

∂v
= 0 . (1.56)

Here Em and Bm are the microscopic fields. The Maxwell’s equations for microscopic
fields are

∇ ·Em(r, t) = 4πρm(r, t) , (1.57)

∇ · Bm(r, t) = 0 , (1.58)

∇×Em(r, t) = −1

c

∂Bm(r, t)

∂t
, (1.59)

∇×Bm(r, t) =
1

c

Em(r, t)

∂t
+

4π

c
jm(r, t) , (1.60)
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where the microscopic charge density is

ρm(r, t) =
∑

α

qα

∫

Nα(r,v, t) dv =
∑

α

qα
∑

i∈{iα}

δ(r − ri) , (1.61)

and the microscopic current is

jm(r, t) =
∑

α

qα

∫

Nα(r,v, t)v dv =
∑

α

qα
∑

i∈{iα}

viδ(r − ri) . (1.62)

The Klimontovich equation together with the Maxwell’s equations and the definitions
for charge and current densities provides a full description of the plasma dynamics. It
follows trajectories of all individual particles. However, even using the best modern
supercomputers, it is impossible to accomplish this task.

The natural way to reduce Klimontovich equation is to introduce a probability density,
associated with ensemble of particles. In such a way we can replace a real plasma by a
plasma probabilistic ensemble. Thus for plasma kinetic description in a six-dimensional
phase space (r,v) one introduces a set of one-particle distribution functions {fα(r,v, t)}
for each species α. The distribution function {fα(r,v, t)} can be interpreted as the
averaged number of particles of species α in a unit phase space volume at the point
(r,v) at time t.

If we consider the electro-magnetic fields as prescribed by functions e(r, t) and b(r, t),
and ignore the effects of collisions, the kinetic equation can be written as collisionless
Boltzmann equation:

∂fα
∂t

+ v · ∂fα
∂r

+
qα
mα

(

e +
v

c
× b

)

· ∂fα
∂v

= 0 . (1.63)

However in laser plasma interaction problems electro-magnetic fields can not be con-
sidered as prescribed and should be determined self-consistently. Using averaged charge
and current densities:

ρ =
∑

α

qα

∫

fα dv , (1.64)

j =
∑

α

qα

∫

vfα dv , (1.65)

we can introduce the mean fields E = 〈Em(r, t)〉 and B = 〈Bm(r, t)〉 which can be
defined via the set of macroscopic Maxwell equations

∇ · E = 4πρ , (Poisson’s equation) (1.66)

∇ · B = 0 , (no magnetic monopoles) (1.67)

∇× E = −1

c

∂B

∂t
, (Faraday’s law) (1.68)

∇× B =
1

c

E

∂t
+

4π

c
j , (Ampere’s law) (1.69)
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1.3. Basic laser plasma interaction theory

If we neglect the difference between the “exact” fields and the mean fields (Vlasov ap-
proximation) [50] we can rewrite Eq. (1.63) as a Vlasov equation:

∂fα
∂t

+ v · ∂fα
∂r

+
qα
mα

(

E +
v

c
× B

)

· ∂fα
∂v

= 0 . (1.70)

The set of equations Eq. (1.66) - (1.69) and Eq. (1.70) forms a full system of Vlasov-
Maxwell equations for collisionless plasma.

If we want to describe collisional effects we should consider the exact fields of point
charges in kinetic equations: where summation is performed over all charged particles.
Approximately one can take collisions into account by adding a non-zero right-hand
side (∂fα/∂t)coll in the Eq. (1.70). In most applications of laser-plasma interactions the
plasma can be described in collisionless approximation, so we will not to go deeper into
discussion of collision effects.

Plasma fluid description

The next step in reduction is to treat plasma as a system of fluids: one fluid for each
type of particles. The fluid quantities can be obtained as a velocity momentums of
distribution function.
The density is

Nα(r, t) =

∫

fα(r,v, t) dv , (1.71)

the averaged velocity is

vα(r, t) =
1

Nα

∫

vfα(r,v, t) dv , (1.72)

the two-dimensional tensor of pressure is

P ij
α (r, t) = mα

∫

(v − vi)(v − vj)fα(r,v, t) dv , (1.73)

and the heat flux is

qα(r, t) =
1

2
mα

∫

(v − vα)
2(v − vα)fα(r,v, t) dv . (1.74)

Integrating the kinetic equation one can obtain the continuity equation:

∂Nα

∂t
+ ∇ · (Nαvα) = 0 . (1.75)

The physical meaning of Eq. (1.75) is the conservation of the number of particles of
each species. Multiplying by qi and summarizing over each species one easily obtains
the charge conservation law

∂ρ

∂t
+ ∇ · j = 0 . (1.76)
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The equation of motion of the particles of species i is

∂vα
∂t

+ (vα · ∇)vα =
qα
mα

(

E +
v

c
× B

)

− 1

Nαmα
∇ · P ij

α . (1.77)

As we can see, the equation for the time derivative of the selected momentum always
includes the divergence of the higher moment of the distribution function. To truncate
the chain of equations one should introduce a closure assumption. We will use the
equation of state for these purposes.
The simplest equation of state which corresponds to the cold plasma approximation is

Pα = 0 . (1.78)

The other approximation is
Pα = Nγα

α . (1.79)

For γi = 1 it corresponds to the isothermal approximation

Pα = NαkBTα . (1.80)

For γ = 5
3

it corresponds to the adiabatic approximation.
Introducing equation of state, we truncate the chain of the equations. In this way the

fluid can be described using the density N(r, t) and the velocity v(r, t). To describe the
evolution we will use the equation of motion and the set of Maxwell equations.

1.3.4 Propagation of electromagnetic waves in plasma

Let us consider how a plasma influences on the propagation of electromagnetic waves.
We will consider unmagnetized plasma, assuming that there are no large imposed or
self-generated magnetic fields. The ions are considered as a stationary background.

Let us examine the cold plasma linear response to an electric field, oscillating at
frequency ω > ωpe:

E = E(r) exp(−iωt) . (1.81)

Using Eq. (1.77) for the electrons and neglecting terms ve · ∇ve and ve × B/c (as they
are proportional to |E|2) we obtain:

v̇e = − e

me
E(x) exp(−iωt) . (1.82)

If we assume ve = ve(r) exp(−iωt), we obtain:

ve = − ie

meω
E(r) , (1.83)

and for the density current we have:

j ≈ je = −ene(r)ve(r) =
ie2

meω
E(r) =

iω2
pe

4πω
E(r) , (1.84)
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1.3. Basic laser plasma interaction theory

where we use the plasma frequency ωpe according to Eq. (1.49). Introducing the con-
ductivity of the plasma σ, we can rewrite Eq. (1.84) as:

j = σE, σ = i
ω2
pe

4πω
. (1.85)

Using Eq. (1.85) one can easily obtain the dielectric function of the cold collisionless
plasma. As ωpi ≪ ωpe we can neglect ion contributions, and the dielectric function is
the result of electron contributions only

ǫ(ω) = 1 −
ω2
pe

ω2
. (1.86)

Linearizing the Vlasov equation one can obtain for linear electrostatic waves in un-
magnetized plasma dispersion relation

ω2 = ω2
pe + k2c2 . (1.87)

We can see that for ω < ωpe the value k =
√

ω2 − ω2
pe/c becomes imaginary, so the

laser pulse can not propagates in plasma. The condition ω = ωpe defines the maximum
plasma density through which pulse with specified frequency can penetrate. It is the
critical plasma density, which is given by the formula

Ncr =
meω

2

4πe2
. (1.88)

Using the dispersion relation Eq. (1.87) we can calculate for electromagnetic wave
propagating in plasma the phase velocity

vph =
ω

k
=

c
√

1 −
ω2
pe

ω2

, (1.89)

and the group velocity

vgr =
∂ω

∂k
= c

√

1 −
ω2
pe

ω2
. (1.90)

1.3.5 Relativistic nonlinear optics of plasma

Relativistic plasma

If we consider laser-plasma interaction with a ≥ 1 relativistic effects should be taken into
account. For short-pulse lasers, which are the subject of main interest in laser plasma
interaction, the nonlinear optics of plasma involves only electron motion, because the
ions can be treated as immobile during the transit time of the laser. Thus the key effect
is the relativistic mass increase of plasma electrons. For single electron the so-called
relativistic mass can be introduced mrel

e = γme, where γ is the electron gamma factor
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for this electron. Going to the averaged plasma properties, we will describe plasma with
the relativistic plasma frequency which is given by the formula:

ωrelp =

√

4πe2Ne

me 〈γ〉
, (1.91)

where 〈γ〉 is the relativistic γ-factor, averaged locally over many electrons. The disper-
sion relation for laser light propagation also should be modified and it takes the following
form:

ω2 = (ωrelpe )2 + k2c2 . (1.92)

In that way the Eqs. (1.89), (1.90) and (1.86) should be modified to take into account
relativistic corrections, and therefore we have: the phase velocity

vph =
c

√

1 −
ω2
pe

ω2 〈γ〉

, (1.93)

the group velocity

vgr =
∂ω

∂k
= c

√

1 −
ω2
pe

ω2 〈γ〉 . (1.94)

and the dielectric function

ε = 1 −
(

ωrelpe

ω

)2

= 1 −
ω2
pe

ω2 〈γ〉 . (1.95)

Relativistic transparency

Plasma can be considered as a medium with refraction index

η =
√
ε =

√

1 − Ne

Ncr 〈γ〉
, (1.96)

where Ncr is defined by Eq. (1.88). From Eq. (1.96) we can see that the threshold for
plasma non-transparency is Ne ∼ 〈γ〉Ncr. At relativistic intensities, 〈γ〉 depends on the
local intensity I (approximately 〈γ〉 ∼ I1/2, see below for details), and a bunch of non-
linear optics effects appears. This dependence of plasma frequency on γ and through it
on the laser radiation intensity has deep consequences for light propagation in plasma.

The condition of electromagnetic wave passing through the plasma is that the length
of the wave vector k is a real number. Using Eq. (1.87), it can be rewritten as ω > ωrelpe .

When an ultra-relativistically intense laser pulse propagates in plasma, we can use for
the locally averaged electrons γ-factor the estimation:

< γ >∼ a0

2
, (1.97)

20



1.3. Basic laser plasma interaction theory

(see details in [51]). Using this equation one can easily obtain the condition of relativistic
transparency

a > 2
Ne

Ncr

. (1.98)

To clarify the physical meaning of this condition, let us consider Eq. (1.69) (the
Ampere’s law). The condition of electromagnetic wave penetration into the plasma can
be written as

4π

c
j ≪ 1

c

∂E

∂t
. (1.99)

Using the estimation from above, j = Neev < Neec, and substituting A ∼ exp(iωt), we
can rewrite it as:

ω2

c2
A≫ 4π

c
Neec . (1.100)

Introducing dimensionless amplitude a, one easily obtains a≫ Ne/Ncr.

Instabilities

The first results in nonlinear plasma optics were obtained from identification of the
so-called parametric instabilities. They were investigated in terms of wave-wave in-
teractions, when an incident electromagnetic wave with frequency ω0 decays into two
sidebands: the Stokes wave with the frequency ω0−ωmod and the anti-Stokes one with the
frequency ω0 + ωmod. The frequency ωmod corresponds to the modulations of refraction
index. This technique was first applied in the papers [52, 53, 54]. Using this formal-
ism, various instabilities were investigated, including Brillouin and Raman scattering,
Compton scattering, filamentation/self-focusing and self-phase modulational instabili-
ties [55, 52, 53, 54, 56, 57].

The most important instabilities for a short laser pulse interaction with plasma are:

FRS Forward Raman scattering (ωmod = ωpe). Electrostatic plasma wave is gener-
ated, with phase velocity vph ∼ c. This plasma wave can accelerate electrons to
relativistic energies.

SF Relativistic self-focusing / filamentation (ωmod ≪ ωpe).

SPM Relativistic self-phase modulation (ωmod ≪ ωpe).

An alternative formalism to consider the instabilities was proposed in [58, 59, 60].
In these papers, modulations of laser intensity were considered in terms of physical
phenomena, which appear from modulations of refraction index. The index of refraction
(as well as the group and phase velocities) can be altered by modulations of (i) plasma
density N , (ii) laser amplitude a, (iii) laser frequency ω0. Therefore, the index of
refraction may be expanded on this three perturbations

η = 1 − 1

2

(

1 +
δNe

Ne
− 〈a2〉

2
− 2

δω0

ω0

)

, (1.101)
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(see for details [51, 61]).
Let us write down the conservation of the photon number

〈a2〉ω0r
2L = const , (1.102)

where r is the laser spot size, L is the initial longitudinal pulse length, and 〈a2〉 is
the dimensionless amplitude square (the laser intensity), averaged over fast oscillations.
From Eq. (1.102), we can see that laser intensity can be modulated by changes in

• L, e.g., due to the longitudinal bunching,

• r, due to the transverse focusing,

• ω0, due to the photon acceleration.

1.3.6 Self-focusing

Self-focusing threshold

Let us consider the laser beam propagation in underdense plasma. Two key mech-
anisms responsible for relativistic self-focusing exist. The first one is the relativistic
mass increase of plasma electrons, which cause plasma frequency decrease according to
ωrelp ∼ 〈γ〉−1. The second mechanism is the electrons expelling out of the focal spot by
ponderomotive force push. Such electrons expulsion from the pulse region diminishes
the local electrons density Ne and therefore the local plasma frequency. As a result of
such local decrease of plasma frequency we have the plasma refraction index increas-
ing, and the plasma acts as a positive lens. The process of relativistic self-focusing was
investigated theoretically in [53, 62, 63, 64] and experimentally in [65, 66].

Let us first consider a < 1. If we investigate low-intensity laser beam a ≪ 1, the
plasma density can be considered as undisturbed Ne ≈ N0, and electrons can be treated
as non-relativistic particles with γ ≈ 1. As the amplitude increases, first gamma-
nonlinearity appears, γ ≈ 1 + a2/4, while the density perturbations contribute in the
higher order. Then the wave equation in envelope approximation can be used

(

∇2
⊥ + 2ik

∂

∂x

)

a = −
ω2
p

c2
|a|2
4
a . (1.103)

The term ∇2
⊥a disperses the beam, the term ω2

p|a|2a/(4c2) compresses it and at the
threshold intensity they should balance each other. For Gaussian envelope approxima-
tion a(r, z) ∼ a0(z) exp(−r2/R2(z)) the critical power is given by formula

Pcr = 2

(

ω

ωp

)2

P0 , (1.104)

where the power unit is

P0 =
m2
ec

5

e2
= 8.7 GW . (1.105)
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One should note, that then the power approaches to Pcr, contraction of the beam leads to
the increase of light intensity on the axis and ponderomotive expulsion of the electrons.
This leads to plasma channel formation with reduced electron density. Numerical in-
vestigations performed in paper [62] give approximately the same value for self-focusing
threshold

Pcr ≈ 17

(

ω

ωp

)2

GW . (1.106)

From this value the laser pulse becomes relativistically focused. An analysis in enve-
lope approximation, which was performed in [67], shows that the picture of self-focusing
depends on laser pulse and plasma parameters. The first possibility is that the self-
focusing of the whole laser pulse leads to single channel production. But if the laser
power exceeds the value Pcr by a few order of magnitude, instead of single channel, the
multiple channels can be produced. This effect is known as the relativistic filamentation,
(see for details [67]).

1.3.7 Relativistic magnetic self-channeling

The analytical theory of self-focusing was developed in weakly relativistic approximation
a ≤ 1. If the laser intensity overcomes the relativistic threshold, given by Eq. (1.42),
the new physical effects can be expected.

As it was discussed above, at a > 1, the Lorentz force (e/c)v×B drives the electrons
forward in the pulse propagation direction. In this regime the radiation drives currents
of relativistic electrons in the direction of pulse propagation. These currents create a
strong magnetic field, which significantly change the picture of pulse interaction with
plasma.

Let us consider a simplified model of this process. Each filament carries a strong
current, which can be estimated as −feNec, where f ≤ 1 and Ne is the background
density. This currents magnetize the plasma. Quasi-static magnetic field, generated
by such current at the distance r from the axis is Bs

φ = 2πr(feNe). Under certain
conditions, this field can reach the value of the light magnetic field Bl = aB0, B0 =
mecω/e ≈ 107 MG. The ratio of these fields can be rewritten as

Bs

Bl
=

1

a

fNe

Ncr

πr

λ
, (1.107)

where λ is the laser wavelength, Ncr = πmec
2/(eλ)2.

This very complex situation was investigated in 2D and 3D PIC simulations in papers
[68, 69]. It was shown, that the quasistatic magnetic field is strong enough to pitch the
electrons, and therefore to direct the light deflection. As a result the current and light
filaments can merge into the single channel, which contains a significant part of incident
laser power. The physical reason of this merging is the attraction of electric currents
inside the filaments. In 3D PIC simulation [69] it was shown, that the incident beam
first propagates through an unstable filamentary stage and then collapses into the single
channel with a width (1 − 2)λ.
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Channeling through overdense plasma

The problem of laser hole boring into overdense plasma is the subject of great interest in
connection with inertial confinement fusion (ICF). The laser can generate the relativistic
electrons, which will heat the ignitor spot in the precompressed fuel core [70].

The ICF target at ignition time consists of a core, surrounded by ablated plasma.
The plasma density is falling from ∼ 105Ncr to Ncr over a distance ∼ 100 µm. The
pulse should drill a channel through this plasma towards the core. During this process,
the maximum mean currents cannot exceed the Alfven limit JA = mc3γ/e. This current
would correspond to the power transport of only P0 = J2

A/c = γ2 × 9 GW. Fortunately,
the forward current J in plasma is partially neutralized by return current Jret, so that
the maximum transportable power is increased by the factor f = J/(J − Jret). Also,
the energy transport through regions close to the critical surface is exposed to strong
magnetic fields influence. The corresponding 2D and 3D PIC simulations were performed
in [71, 72].

The recent review of fast ignition of ICF targets can be found in [73, 74].

1.3.8 Electron plasma waves

In this Section, we will consider plasma in one-fluid approximation, i.e. as electron fluid.
In that way we will use electrons density N(r, t) and velocity v(r, t) to describe plasma.
The equation of motion and the set of Maxwell equations will be used to follow plasma
evolution (see details in Section 1.3.3).

To investigate electron density oscillations we will consider the Poisson’s equation:

∇ · E = −4πe(N −N0) , (1.108)

together with the equation of motion:

me
dv

dt
= −eE − 1

N
∇P , (1.109)

and continuity equation:
∂N

∂t
+ ∇ · (Nv) = 0 . (1.110)

We will use isothermal approximation, so P = NkBT is the thermal pressure.
Let us designate is the uniform background density as N0. We will consider small

density perturbations |N −N0| ≪ N0. Then one can write

N(x, t) = N0 +N1(x, t) , (1.111)

v(x, t) = v1(x, t) ex , (1.112)

E(x, t) = E1(x, t) ex , (1.113)

P (x, t) = P0 + P1(x, t) . (1.114)

We will search for the plane wave solutions for which

{n1, v1, E1, P1} ∝ ei(kx−ωt) . (1.115)
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So in Eq. (1.111)-(1.114) we can substitute ∂t → −iω, ∂x → ik.
Let us first consider cold plasma with P ≡ 0. When we have a set of algebraic

equations






ikE1 = −4πeN1 ,
−iωmev1 = −eE1 ,
−iωN1 + ikN0v1 = 0 .

(1.116)

This system has a non-trivial solution if

ω2 =
4πe2N0

me
≡ ω2

p . (1.117)

Now lets consider warm plasma. Using the adiabatic relation P/P0 = (N/N0)
3, we

obtain dispersion relation for propagating plasma waves:

ω2 = ω2
p + 3k2v2

th , (1.118)

where v2
th = kBT .

Plasma wave phase velocity

The phase velocity of plasma wave is determined by its “driver”. If we consider plasma
wave excited by short laser pulse (laser-driven wakefield), we can postulate

vph ≈ vlasgr . (1.119)

Therefore in linear 1D regime we have the plasma wave phase velocity

vph = c

√

1 −
ω2
p

ω2
, (1.120)

and the plasma wave gamma-factor

γp =
1

√

1 − v2
ph/c

2
=

ω

ωp
=

√

Ncr

N0
. (1.121)

Taking into account nonlinear corrections (see [51, 61]), we have for the case ω ≫ ωp

vph = vlasgr = c

√

1 −
ω2
p

ω2〈γ〉 , (1.122)

where 〈γ〉 = (1 + a2
0/2)1/2.

The group velocity of laser pulse can be reduced by 3D effects. In 3D case, there are
finite angular distribution of wave vectors k. If R is the transverse size of the pulse,
the perpendicular component of wave vector k⊥ can be estimated as k⊥ ≃ 1/R, and
the characteristic angle θ of this distribution is θ ≃ k⊥/k ≃ 1/(kR). Therefore the
pulse axial group velocity is reduced vlasgr ≃ c cos θ ≃ c/(kR). Due to finite angular
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1. Introduction

distribution of wave vectors the relativistic gamma-factor of the pulse can be estimated
as

γ ≃ kR , k =
ω

c

√

1 −
ω2
p

ω2
. (1.123)

For real laser pulse the corrections given by Eq. (1.122) and Eq. (1.123) take place
simultaneously. The concrete pulse parameters define the dominating mechanism.

In this discussion we neglect the pulse shape modification, which takes place after
pulse propagation in plasma for a finite time. The plasma wave can distort the pulse
profile, which in turn leads to plasma wave phase velocity reduction [75].

Plasma waves excitation. Wavebreaking

In the linear regime the electric field in plasma wave can be described as

Ez = E0 exp

[

ωp

(

z

vph
− t

)]

, (1.124)

where E0 is the field amplitude and vph is the wave phase velocity. The maximum
amplitude of plasma wave Emax can be estimated using the assumption, that all plasma
electrons oscillate with wavenumber kp = ωp/c. Then using Poisson Eq. (1.66) we have

∇ · Emax = kpEmax = 4πeNe (1.125)

and
EWB =

cmeωp
e

. (1.126)

This value is known as nonrelativistic wavebreaking field [9]. Using 1D relativistic cold
fluid equations it is possible to show, that maximum accessible amplitude of plasma
wave is

ERWB =
√

2(γp − 1)
cmeωp
e

, (1.127)

where γp = (1 − v2
ph/c

2)−
1
2 . This value is called relativistic wavebreaking field, and it

wad first derived in [8]).
Let us clarify the physical meaning of this value. The fluid equations can be used to

describe plasma wave as long as the electron fluid velocity satisfies the condition ve < vph.
When the wave amplitude increases, the ve also increases, and at the limitve → vph
plasma density becomes singular, and we call it “wavebreaking”.

These values were derived using cold plasma approximation. Thermal effects can
reduce the wavebreaking limit. Wavebreaking limit, Eth < ERWB, was obtained in
papers [76, 77] using relativistic fluid equations.

The similarity theory, developed for 3D case in [78], shows that in 3D case the wave-
breaking looks rather like a thermalization, with characteristic “wavebreaking” time td.
As concerning the electric field, there is no limit analogous to Eq. (1.126), (1.127) in
3D case. In that way 3D geometry allows regular wake field existing with arbitrary
amplitudes.
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1.3. Basic laser plasma interaction theory

For E0 ≪ EWB, the plasma wave exists in linear regime and can be described as a
sinusoidal oscillation with frequency equals to plasma frequency ωp and phase speed vph,
defined by driver velocity.

When EWB < E0 < ERWB, the plasma wave is strongly unlinear. Electric field take
so-called, “saw-tooth” form. The period of such wave increases with the amplitude. See
for details [8, 79, 80, 81].

1.3.9 Particles acceleration mechanisms

Direct laser acceleration

The mechanism of direct laser acceleration (DLA) was proposed in [82]. This mecha-
nism works only for the linearly polarized laser pulses. The basic physical idea of this
mechanism, is that the electrons propagating in plasma channel, can interact resonantly
with the light traveling in the same direction. The ponderomotive pressure expelles the
electrons from the channel and creates a radial electrostatic field. At the same time, the
light propagating in channel, accelerates the electrons in forward direction, producing a
current, which generates the azimuthal magnetic field.

If we roughly approximate laser plasma channel as a cylinder with uniform electron
density Ne = fN0 (0 ≤ f ≤ 1) we can write the radial electric field:

−eEr = (1 − f)
mω2

pe

2
r . (1.128)

The current −efN0c produces the azimuthal magnetic field:

−eBφ = f
mω2

pe

2
r . (1.129)

Therefore the equation of radial motion for electron in such idealized channel can be
written as:

mγ
d2r

dt2
= −eEr − eBφ , (1.130)

and we can find the oscillation (betatron frequency)

ωβ =
ωpe√
2γ

. (1.131)

In this model the fields cooperate in such a way, that the electrons are moving mainly
in the direction of the channel axis, and in the radial direction the channel works as
a potential well. The electrons are trapped in this well and oscillate radially with
frequency ≈ ωβ. One should note, that betatron frequency does not depend on the
degree of channel cavitation.

As the electrons are moving in channel axial direction with velocity vz, they observe
a strongly downshifted optical frequency. The conditions can be selected in such a way,
that the transverse betatron oscillations are in resonance with laser. Then a fraction of
electrons, can be resonantly driven by the laser field.
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The electron oscillations are directed along the laser polarization, so the electron
can gain energy two times for the laser period (energy coupling). Because of that, the
transverse velocity v⊥ oscillates according to the laser period, and longitudinal velocity
v‖ oscillates twice during the period. This leads to the electron bunching in space two
times per laser wavelength.

For more details of DLA-mechanism see [82, 83].

Particles acceleration in plasma wave. Wakefield acceleration

In this Section we describe briefly laser wakefield acceleration (LWFA). This accelera-
tion mechanism uses laser-driven plasma waves and their longitudinal electric fields to
accelerate particles.

When a laser pulse propagates through underdense plasma, it excites a running plasma
wave oscillating at the plasma frequency ωp. The wave phase velocity is defined by the

laser pulse group velocity: vwaveph = vlasergr = c
√

1 − ω2
p/ω

2
0, where ω0 is the laser frequency.

The electric field of this plasma wave is longitudinal, i.e. it points into the propagation
direction. Under certain circumstances an electron can be put in this plasma wave and
can be accelerated.

The laser pulse can excite the plasma wave in a different ways. For a0 ≫ 1 this process
cannot be described by the linear plasma theory. One should note, that the pattern of
wake field excitation depends significantly on the laser pulse length L in comparison
with the plasma wavelength λp, (see LWFA and SM-LWFA mentioned above).

The energy which electron trapped in wakefield can gain can be estimated as

eW ≈ eEmLd , (1.132)

where Em is the maximum electric field, Ld - dephasing length, i.e. the length of part,
over which electron experiences accelerating field. It can be defined from this estimation

ωp

(

Ld
vp

− td

)

∼ π , (1.133)

where td = Ld/c.

Bubble regime of electron acceleration

If one considers the 3D geometry of short laser pulse propagation, a new regime appears,
in which the laser wave takes the shape of a solitary plasma cavity: the so-called “bubble
regime”. It was discovered in numerical simulations [11].

When the intensity of the laser pulse is ultra-relativistic and the pulse duration is
shorter than the relativistic plasma period, then the wake field takes the form of a single
cavity: the bubble. Background plasma electrons can be trapped and accelerated inside
the bubble. Such trapping is a continuing process. With the increase of the number of
trapped electrons, the bubble elongates. The effective bubble velocity decreases, and
electrons start to dephase with respect to the accelerating field. This causes electron
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1.3. Basic laser plasma interaction theory

self-bunching in the phase space, which results in the monoenergetic peak in the energy
spectrum. An extremely collimated and quasi-monoenergetic electron beam was recently
observed in the experiment [84], which is in a good agreement with “bubble” picture.

The theoretical investigation of this regime is very complicated, because the problem
should be described with the system of non-linear kinetic equations, and contains a
number of parameters. The significant progress was done in paper [78], where the
similarity theory for laser-plasma interaction in the ultra-relativistic limit was developed.
It was shown that the optimal configuration for the high energy electron acceleration is
the following one: the focal spot radius

R ≈
√
a0

kp
, (1.134)

and the pulse duration

τ ≤ R

c
, (1.135)

where a0 is the pulse dimensionless amplitude, kp = ωp/c. This configuration corre-
sponds to the “bubble” regime.

Using the similarity theory for the regime cτ < R, several scalings were obtained in
[78]. The maximum energy of monoenergetic peak in the electron spectrum is given by
formula

Emono ≈ 0.65mec
2

√

P

Prel

cτ

λ
, (1.136)

there P is the pulse power and Prel = m2
ec

5/e2 ≈ 8.5 GW. The number of accelerated
electrons in monoenergetic peak is

Nmono ≈
1.8

k0re

√

P

Prel
, (1.137)

where re = e2/mec
2, k0 = 2π/λ. One should note that form Eq. (1.136), (1.137), that

efficiency of laser energy conversion into monoenergetic electrons is a universal constant

η =
NmonoEmono

Pτ
≈ 20% . (1.138)

The parametric dependencies in the scalings Eq. (1.136)-(1.137) follow from the ana-
lytical theory while the numerical pre-factors have been obtained from direct 3D particle-
in-cell simulations.
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2 Protons acceleration in a plasma

wave

2.1 Introduction

Till now electron acceleration in laser fields was the main point of interest. Electrons are
the lightest charged particles in plasma. That is the reason, why they absorb the most
of laser pulse energy and accelerate first. However the acceleration of heavy charged
particles (protons and ions) to high energies is one of the most promising aspects for
applications of intense short laser pulses. The possible applications of proton beams,
produced by laser-solid interactions are:

• The imaging of electromagnetic fields in overdense plasmas (see [85]).

• Fast ignition of targets in Inertial Confinement Fusion (ICF) (see [86]).

• Medical applications (see [87, 88]).

A number of recent experiments have demonstrated that protons [89, 90, 91, 92, 93,
94, 95, 96] and even heavier ions [97] can be efficiently accelerated in laser-plasma
experiments. Different acceleration mechanisms have been proposed for explanation of
the experimental results.

In underdense plasma channels (see [89]) the mechanism of ion acceleration is the
Coulomb explosion of the electron-cavitated region near laser channel axis.

Laser interactions with overdense targets was investigated in details in the experiments
with solid foils. In most of these experiments, very powerful lasers have been used with
the pulse energies 100−1000 J and powers of 100−1000 TW and protons with energies
of the order ∼ MeV and higher have been observed. They originate from water and
hydrocarbon molecules always covering the target surface. The presence of water and
pump oil vapor is practically inevitable in current experimental setups.

To explain the observed MeV protons two reasonable acceleration scenario were pro-
posed. The first explanation [90, 91, 98] suggests that the protons come from the front
surface of the target. Their appearance deals with the direct ponderomotive push at
the front surface. This push leads to a double-layer formation and the ion acceleration.

The second explanation [94, 97, 99] suggests that the protons come from the rear
surface of the target. In this case, the proposed reason of protons acceleration is the
so-called Target Normal Sheath Acceleration (TNSA). The TNSA suggests that the
laser pulse produces hot electrons at the front surface. Then these electrons propagate
through the foil and generate a space charge sheath at the rear surface of the target.
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2. Protons acceleration in a plasma wave

The electrostatic field of this space charge pulls the ions sitting on the rear surface and
accelerates them to high energies.

According to multi-dimensional particle-in-cell simulations [100, 101], the both mech-
anisms can co-exist, which finds confirmation in recent experiments [102, 92]. In the
paper [103], the influence of laser prepulse on the protons acceleration in thin-foil ex-
periments was investigated. The authors show that prepulse duration has a profound
effect on the maximum proton energy and found optimal thickness of the target, which
depends on the prepulse duration. At the optimal thickness, the rear side mechanism
produces the highest proton energies, while in the case when protons are primarily
accelerated at the front side, lower cutoff energies were observed.

Particularly, very interesting is the possibility of proton acceleration to the energies
300−600 MeV using the lowest possible laser pulse energy. One of the practical reasons
for this study is that the protons at this energy range might be used for cancer therapy in
medicine [87, 88]. To achieve these energy using the TNSA mechanism, very high laser
intensities are required to heat electrons to the necessary energies. The pulse duration
should be also long enough, because the electric fields in the Debye sheath represent
only a small fraction of the laser ones. Therefore, for these purpose, short and intense
lasers which are applied to the front surface can be more suitable for ion acceleration
with high repetition rate.

In this Chapter we are discussing in detail the ion acceleration at the front surface
of the plasma layer. Our aim is to understand what is the scaling of the maximum
attainable ion energy as a function of the laser intensity. We also discuss the possibility
of protons acceleration in an electron plasma wave, which is possible in the case of a
two-ion components plasma mixture.

2.2 Ion relativistic threshold

The direct coupling of the laser energy to the ions begins at very high laser intensities.
Considering protons we can find using Eq. (1.25) and (1.28) the proton relativistic
threshold:

Ip =

(

mp

me

)2

I0 ≈
4.6 · 1024 [W cm−2]

λ[µm]2
, (2.1)

where I0 is the electron relativistic threshold given by Eq. (1.42) and λ is the laser
wavelength. In terms of the dimensionless amplitude we can rewrite this criterion as

a0 =
eA0

mec2
>
mp

me
≈ 1836 . (2.2)

For intensities I > Ip, the protons motion becomes essentially relativistic. Presently,
such intensities are unattainable, but new technologies, such as optical parametric am-
plification (OPA-CPA) probably will make them feasible [104].

In this Chapter we will study intensities still well below Ip, and investigate the possi-
bility of reducing a ∼ mp/me scaling to

√

mp/me ≈ 43 which looks much more suitable
for nowadays technology. We will show analytically and numerically that plasma fields
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2.3. Ion acceleration at the front surface

induced with laser intensities a ≤ 100 may be sufficient to accomplish the proton accel-
eration to nearly-relativistic energies.

2.3 Ion acceleration at the front surface

Let us consider which processes take place when laser pulse strikes the overdense plasma.
At the first stage of interaction the plasma is accelerated due to radiation pressure. This
implies that we may consider the pulse as sufficiently wide, so that the one-dimensional
geometry of interaction may be considered. If the laser pulse dimensionless amplitude
a ≫ 1, then electrons are quickly accelerated by the transverse electric field E, which
acts on the electrons with the force eE and accelerates them to velocities ve ∼ c. The
Lorenz force push them forward. Because ve⊥ ∼ c, the Lorenz force can be estimated
as |eve ×B/c| ∼ eE. We assume that at the first stage of boring into the plasma, laser
pulse displaces all electrons, until the electric field, created by the charge separation
becomes equal the Lorenz force.

At the second stage, due to the longitudinal electric field, created by the charge
separation, the radiation momentum is transfered to the ions. As the electrons and
the ions move with the same velocity and me ≪ mi, we can approximate that the
momentum is transported only by ions.

The energy of accelerated ions can be easily estimated if the plasma contains only one
ion species and is overdense for the laser pulse [105]. Then one can use the momentum
conservation law. The laser light pressure can be considered as a momentum flux:

Pl =
I

c
= Ncrmec

2a
2

2
, (2.3)

where a = eA/mec
2 is the dimensionless amplitude of the laser vector potential, and

Ncr = meω
2/4πe2 is the critical density. The momentum flux which is transported by

the ions can be defined by formula:

Pi = Ni
p2
i

miγi
, (2.4)

where Ni is the ion density, mi is the ion mass, pi is the mean ion momentum, and
γi =

√

1 + (pi/mic)2 is the relativistic γ−factor.
Using the absorption rate 0 ≤ η ≤ 1 we can write relation between incident light

momentum and momentum, absorbed by ions

Pi = (2 − η)Pl . (2.5)

To make clear the physical sense of Eq. (2.5) let us consider the limiting cases. If the
laser pulse is completely absorbed, we must set η = 1 and in this way obtain Pi = Pl.
If the laser pulse is completely back reflected, then η = 0 and Pi = 2Pl.

Using Eq. (2.5) we can obtain the ion energy estimation:

Ei =
p2
i

(1 + γi)mi

= (2 − η)
Ncr

Ni

a2

2
mec

2 . (2.6)

33
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The plasma layer remains overdense for a relativistically intense laser pulse only if
Ne/Ncr > a/2 (see Eq. (1.98)), where Ne = ZNi is the electron density and Z is the ion
charge. At higher intensities, the plasma is relativistically transparent. Setting the laser
amplitude at the boundary of relativistic transparency, a ≈ 2ZNi/Ncr, we can estimate
the maximum ion energy as:

Emax
i ≈ (2 − η)Zamec

2 . (2.7)

The estimations given by Eq. (2.6) and Eq. (2.7) are based on the fundamental law
of momentum conservation. They are insensitive to the particular interaction physics.
The only assumption we used to receive this conclusion is that all the plasma ions are
equivalent, i.e., a single species plasma is considered.

As it was mentioned above, the experiments show that whatever material is irradiated
by the laser, usually the protons are accelerated first. Let us consider plasma, which
is a mixture of different species. If the plasma contains a small portion of ions with a
large charge-to-mass ratio, then these ions can be accelerated to higher energies than
the simple limits Eq. (2.6) and (2.7) predict. In this case, the particular mechanism of
acceleration is very important.

In particular experiments hydrogen-helium mixture can be used, which charge-to-mass
ratios differ by the factor 2.

2.4 Model for ion trapping in a running plasma wave

2.4.1 Overview

We propose here the so-called "ion wakefield acceleration" mechanism. This mechanism
works when some energetic ions get trapped into an electrostatic plasma wave. Let us
assume that the plasma wave is running with the phase velocity vp, i.e., all the density
perturbations and the potential are functions of ξ = x− vpt. If the background ions are
oscillating in the field of this wave, they get the velocities which are comparable with
the wave phase velocity, vi ∼ vp, then they are trapped and may be accelerated further
to very high energies. This mechanism is analogous to the well-known electron trapping
in plasma waves [106]. Below using simple analytical model we will estimate the laser
intensity and plasma parameters needed for such type of ion trapping, and check it using
a number of one-dimensional (1D) particle-in-cell (PIC) simulations for different range
of parameters.

2.4.2 Single particle dynamics in prescribed potential

Let as consider the particle motion in the prescribed external electrostatic potential Φ.
And we will postulate, that it is moving with constant velocity vp, so Φ = Φ(x − vpt).
The Hamiltonian of particle with mass m and charge q is

H = γmc2 + qΦ(x− vpt) = mc2(γ + φ) , (2.8)
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2.4. Model for ion trapping in a running plasma wave

where γ is the relativistic gamma-factor and

φ =
q

mc2
Φ , (2.9)

is the dimensionless potential. The equations of motion for this particle can be described
using Hamilton equations:

dx

dt
=

∂H

∂p
, (2.10)

dp

dt
= −∂H

∂x
, (2.11)

(2.12)

(see [107] for details). Let us introduce dimensionless velocities β = v/c, βp = vp/c and
dimensionless coordinates

x̂ = kpx , (2.13)

ψ = kp(x− vpt) , (2.14)

where kp = 2π/λp and λp is the distance between nearest maximums of φ. If the
potential φ is the consequence of excited plasma wave, the relation between vp and kp
is defined by dispersion relation. We not concretize it here.

Using Eq. (2.8)-(2.14) and taking into account that particle momentum p = mcβγ,
we will rewrite the differential form as

pdx−Hdt =
mc2

kpvp

{

(

γββp − (γ + φ)
)

dx̂+ γdψ
}

+
mc2

kpvp
φ(ψ)dψ . (2.15)

It is easy to see, that last item is an exact differential dF , where

F (ψ) =
mc2

kpvp

ψ
∫

0

Φ(ς) dς . (2.16)

So we have

pdx−Hdt = λ(γdψ − hdx̂) + dF , (2.17)

where λ = mc2/(kpvp) = const, dF is the exact differential. The dimensionless Hamil-
tonian is given by formula

h(γ, ψ) = γ(1 − ββp) + φ(ψ) , (2.18)

where

β(γ) =

√

1 − 1

γ2
. (2.19)
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In such a way we can rewrite Eq. (2.10), (2.11) as

dψ

dx̂
=
∂h

∂γ
= 1 − β

βp
, (2.20)

dγ

dx̂
= −∂h

∂ψ
= −∂φ

∂ψ
. (2.21)

The phase space particle trajectory (orbit) γ(ψ) can be found as the solution of
equation

h(γ, ψ) = const . (2.22)

The fixed points can be found from equations

dψ

dx̂
=
dγ

dx̂
= 0 . (2.23)

Stable “O” points:
γ = γp ,
ψ = ψmin + nkpλp , n ∈ Z ,

(2.24)

unstable “X” points:
γ = γp ,
ψ = ψmax + nkpλp , n ∈ Z .

(2.25)

The phases ψmin and ψmax correspond to potential minimum and maximum

φ(ψmin) = φmin , φ(ψmax) = φmax (2.26)

ψmax − ψmin =
1

2
kpλp . (2.27)

The separatrix γs(ψ) which separates the close orbits from the open orbits can be
found from equation:

h(γs, ψ) = h(γp, ψmin) . (2.28)

The close orbits correspond to trapped particles, and the open orbits correspond to
untrapped particles.

Using this formalism, we can find the maximum energy gain. It takes place for trapped
particles, with orbits tending to the separatrix from the inside. So

∆Emax = mc2(γmax − γmin) . (2.29)

For separatrix γs(ψ) we have:

h(γm, ψmax) = h(γp, ψmin) , (2.30)

where γm = {γmin, γmax}. Eq. (2.30) can be rewritten as quadratic equation

γ2
m − 2γmγp(1 + γp∆φ) + β2

pγ
2
p + (1 + γp∆ψ)2 = 0 , (2.31)

and its roots are given by formula

γm = γp(1 + γp∆φ) ± γpβp

√

(1 + γp∆φ)2 − 1 , (2.32)

where “+” corresponds to γmax and “-” corresponds to γmin.
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Figure 2.1: Snow plow model

2.4.3 Plasma wave generation

We will consider the plasma slab which initially has a uniform density distribution with
a sharp boundary:

N(x) =

{

0 for x < 0 ,
N for x ≥ 0 .

(2.33)

Let us introduce

• The laboratory system of reference (K), in which the plasma slab is motionless.

• The reference system co-moving with the plasma wave (K ′). In laboratory system
(K), the system (K ′) is moving with the plasma wave phase velocity vp.

We will assume that the ponderomotive pressure of the laser pulse works as a “snow
plough” [108] and sweeps forward the background electrons until an electrostatic field
develops, which counterbalances the light pressure. In the laboratory system of reference
(K), the “snow plough” moves with the plasma wave phase velocity vp and creates a
non-compensated charge density Ne behind the shock-wave (see Figure (2.1)).

In the (K ′) we have region with charge density eN ′ which creates behind the shock-
wave. Using Poisson Eq. (1.66) we obtain for the electrostatic field in K ′:

dE ′
x

dx′
=

{

4πN ′e for 0 ≤ x′ ≤ d ,
0 for x′ > d ,

(2.34)

where

d =
E ′
max

4πN ′e
. (2.35)
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Figure 2.2: Plasma wave obtained in the PIC simulation. The laser amplitude a = 60, the plasma
density N = 10Ncr. The maximum electric field is close to the laser amplitude.

Because of the plasma quasi-neutrality, the wave of compression is followed by the wave
of rarefaction and the electric field E ′

x and potential φ′ obtain a quasi-symmetric form:

E ′
x(x) =

{

4πN ′ex′ for |x′| ≤ d ,
0 for |x′| > d ,

(2.36)

φ′(x′) = −
∫ x′

0

E ′
x(ξ)dξ =

{ −2πN ′ex′2 for |x′| ≤ d ,

− E ′2
max

8πN ′e
for |x′| > d .

(2.37)

We choose the integration constant in such a way to have φ′(0) = 0. In that case the
condition of particle trapping is

H ′ < 0, (2.38)

where H ′ is the particles Hamiltonian. If one choose the other standard condition
φ′(∞) = 0, the trapping condition will be H ′ < φ′

0 = φ′(0).
In the reference system K ′, the charge density and the electric field form a stationary

periodic structure with the period 2d. In laboratory system K this structure moves
behind the laser pulse with the phase velocity vp. A typical structure of such a wave
obtained from one-dimensional PIC simulation is shown in Figure 2.2.

The electric field Emax can be found from the condition of equilibrium with the laser
ponderomotive pressure at the front of the wave. Doing this, we obtain the estimation
Emax ≈ E0, where E0 is the amplitude of the laser pulse electric field. Making a
transition from K to K ′ and taking into account that Lorentz transformation does not
change longitudinal components of fields, we obtain:

E ′
max = E ′

x(x
′ = d) ≈ E0 =

meωc

e
a0 , (2.39)
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where

x′ =
x− vpt
√

1 −
v2
p

c2

. (2.40)

The ω and a0 = eA/mec
2 are the laser frequency and dimensionless vector potential

correspondingly. Calculating the integral in Eq. (2.37) we obtain the potential difference
over the half plasma wavelength △Φ = φ(d) − φ(0):

e|△Φ′| = mec
2

(

Ncr

N ′

)

a2
0

2
. (2.41)

Since the plasma wave is driven by the laser pulse and the plasma is relativistically
transparent, we can postulate with a good accuracy that the wave phase velocity vp is
equal to the laser group vlasgr velocity:

vp = vlasgr ≈
√

1 −
ω2
p

ω2
0〈γ〉

, (2.42)

where 〈γ〉 is an averaged relativistic gamma-factor of plasma electrons. The calculation
of gamma-factor for an ultra-relativistically intense laser pulse, propagating in plasma is
complicated and not completely resolved theoretical problem (see for details [51]). We
will use the estimation

〈γ〉 ∼ a0

2
, (2.43)

which is in a good agreement with the recent paper [109]. Substituting this estimation
for γ in Eq. (2.42) we obtain:

vp
c

≈
√

1 − N

Ncr

2

a0
, (2.44)

γp =
1

√

1 − v2
p

c2

=

√

Ncr

N

a0

2
, for a0 ≥

2N

Ncr
. (2.45)

2.4.4 Particle motion in laser-generated plasma wave

To describe the ion motion in the laser-generated wave, following Section 2.4.2 we intro-
duce the ions Hamilton function H(x, p, t). In the moving system of reference K ′, the
plasma wave can be considered as quasi-stationary and the Hamiltonian has the form

H ′(x′, p′) = E ′
i + qφ′(x′) , (2.46)

where E ′
i is the ion kinetic energy in K ′.

As we can see, Eq. (2.46) is similar to to Eq. (2.8), so we will use the separatrix
method, described in details in Section 2.4.2.
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The energy conservation along an ion trajectory provides the equation for the tra-
jectories H ′(x′, p′) = E ′ = const. Using Eq. (2.40) and expressing the particle energy
through the momentum pi in the laboratory frame we will obtain

H ′(x, pi) =

√

p2
i c

2 +m2
i c

4 − vppi
√

1 −
v2
p

c2

+ eφ′









x− vpt
√

1 −
v2
p

c2









. (2.47)

Introducing the new dimensionless variables:

v

c
→ v ,

pi
mic

→ pi ,
N

Ncr

→ N , y =
x− vpt

d

√

1 −
v2
p

c2

, (2.48)

we obtain:

h′(x, pi) =
H ′

mic2
=

√

1 + p2
i − vppi

√

1 − v2
p

+
q

mic2
φ′

(

x− vpt
√

1 − v2
p

)

. (2.49)

Now we will substitute the particular form of the potential given by Eq. (2.37), taking
into account that the electron density in N in K is expressed through the density N ′ in
K ′ by relation N = N ′/

√

1 − v2
p . Finally we obtain

h′(y, pi) =

√

1 + p2
i − vppi

√

1 − v2
p

− me

mi

1

n
√

1 − v2
p

a2

2
y2 . (2.50)

The equation
h′(y, pi) = 1 (2.51)

gives us the separatrix in phase space (y, pi). It separates the trapped ions with h′ < 1
from the passing ions with h′ > 1. The ion trajectories and the separatrix for different
laser amplitudes are shown in Figure (2.3).

The ions which are initially at rest can be trapped in the wave, when the separatrix
touches the axis p = 0. This condition can be written as

1 − me

mi

a2
tr

2N
=

1

γp
. (2.52)

There are two different regions of parameters, when the ions can be trapped into the
plasma wave. The first one corresponds to low laser group velocities, when the laser
is just at the verge of the relativistic transparency: a ≥ 2N , γp ≈ 1. In this case, the
plasma wave is very slow and it is easy to fulfill the ion trapping condition vi ≈ vp. The
phase portrait in Figure (2.3 a) corresponds to this case.

When the laser amplitude increases, the lower bound of the separatrix rises and the
ions at rest cannot be trapped anymore, Figure (2.3 b).

40



2.4. Model for ion trapping in a running plasma wave

-1 0 1 2 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1 2 3
0

5

10

15

20

25

30

y

y

y

p

p

p

a

b

c

Figure 2.3: Trajectories of protons in the (y, p) phase space. The plasma density is assumed to be
N = 10Ncr. The dimensionless laser amplitude for the panel (a) is a = 20.5, (b) -
a = 65, (c) - a = 200.
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2. Protons acceleration in a plasma wave

Another region of parameters, where the separatrix goes down to the axis p = 0
corresponds to γp ≫ 1. Here we have a very simple estimation for the threshold laser
amplitude:

atr ≈
√

2
mi

me

N . (2.53)

This case is shown in Figure (2.3 c). The laser intensity corresponding to this threshold
amplitude Eq. (2.53) can be 1−2 orders of magnitude lower than the proton relativistic
intensity Ip. Yet, pretty large. On the other hand, laser pulses that allow for the
relativistic transparency of overdense plasmas can become available in the nearest future.
We have seen, Figure (2.3 a), that already at the relativistic transparency threshold the
protons can be trapped in the plasma wave.

2.5 Numerical Simulations

In order to investigate the ion acceleration near the front surface and the propagation
through the plasma we use one-dimensional particle-in-cell simulations. The laser pulse
is emitted at the left side of the simulation domain. It first propagates through a vacuum
region and then interacts with a slab of overdense plasma. The plasma slab has constant
density n with a sharp boundary. For the simulations we use the one-dimensional version
of the code VLPL, described in Appendix B.

The simulation box is 50λ long, where λ = 2πc/ω0 is the laser wavelength. We use
absorbing boundary conditions: particles which achieve the boundaries are removed
from the simulation box, fields are absorbed completely on the boundaries. The laser
pulse has a cosine intensity profile: a = a0cos(πt/τ)cos(ω0t) with τ = 10Tω, where
Tω = 2π/ω0 is the laser period. The laser is circularly polarized.

We perform a parametric study of the ion acceleration by varying the laser pulse
amplitude a0 in the range from a = 1 till a = 100 and the plasma density n from 5Ncr

till 10Ncr.
In general, we consider plasma consisting of three types of particles: electrons, heavy

ions and protons. We model heavy ions presence using either infinitely heavy "nailed"
ions or ions with deuteron charge-to-mass ratio. Thus, we have for the ion concentration:

Ni = Np +Nh , (2.54)

where Np is the proton concentration, and Nh is the heavy ion concentration.
Figure (2.4) shows the maximum proton energy obtained in our simulation for laser-

plasma interaction with pure hydrogen (the solid curve), with 10% hydrogen – 90% deu-
terium mixture (the dotted line), and 10% hydrogen – 90% heavy “nailed” ions mixture
(the dashed line).

One sees from Figure 2.4 that the maximum proton energy scales quadratically with
the laser amplitude, for all types of considered plasmas at moderate intensities

Emax
p ∝ a2 . (2.55)
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Figure 2.4: The maximum proton energy observed in the simulation as a function of the laser pulse
amplitude in double-logarithmic scales. The pulse length τ = 10λ. The electron density
N = 10Ncr. The simulation is done for the cases of pure hydrogen (the solid curve);
10% hydrogen – 90% deuterium mixture (the dotted line); 10% hydrogen – 90% heavy
“nailed” ions mixture (the dashed line).

As we can see form Figure (2.4), for the pure hydrogen plasma the energy keeps the
same dependence in the full scanned range of laser amplitudes. But in the case of mixed
plasmas, we observe a change in the scaling after some critical amplitude is reached.
This is seen as branching points in Figure (2.4) (pointed by arrows). The first branching
point (a) is observed for the mixture of a small amount of protons in a background of
“nailed” ions. This first break in the scaling approximately corresponds to amplitude,
when plasma becomes relativistic transparent. This results in a generation of the plasma
wave, which traps the lightest ions, protons, and accelerates them.

Of course, the plasma wave can be generated in a purely hydrogenic plasma as well.
In this case, however, it is destroyed very fast, because all the plasma ions get trapped
simultaneously. In addition, the ponderomotive scaling given by Eq. (2.7) obtained for
the momentum conservation must be valid for the single-species plasma. The scaling
break in the proton-deuteron mixture happens at much larger laser amplitudes (point
(b)) than for the proton – immobile ions mixture. The reason is that the charge to
mass ration between the protons and deuterons is not very large and at the low laser
amplitudes, the deuterons also start to move and disturb significantly the plasma wave
structure.

Figure (2.5) presents more details of the laser pulse interaction with plasma. The
two types of the interaction can be clearly distinguished in this picture: the “light
pressure regime” (column I) and the “wake field regime” (column II). The frame (b)
in the column I shows that the electrostatic plasma field does not change its sign. It
corresponds to the double layer produced at the plasma boundary by the ponderomotive
pressure of the laser. The frame (b) in the column II clearly corresponds to a decaying
plasma wave. The wave decay is due to the particle acceleration in the wave. In the
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2. Protons acceleration in a plasma wave

second case, the plasma becomes relativistically transparent for the laser pulse.
Using the estimation for the plasma refraction index:

nR =

√

1 − Ne

Ncr〈γ〉
, (2.56)

and taking into account Eq. (2.43) we find that for this particular density, N = 10Ncr,
the plasma becomes transparent for a0 ≥ 20. The plasma wave generation and the form
of the proton longitudinal phase space (frames (a) in Figure (2.5), make the proton
acceleration mechanism evident).

We mention that the trapping condition given by Eq. (2.53) for protons at rest is not
fulfilled. Yet, the protons get trapped. This can be explained by the fact that when
the head of the laser pulse reaches the plasma boundary, the plasma is changing from
the overdense reflection to relativistic transparency. As it is seen from Figure (2.3 a),
the protons can be trapped and pre-accelerated in this regime. Later, when the laser
intensity continues to grow, these pre-accelerated protons get trapped into the plasma
wave and the acceleration continues.
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Figure 2.5: Results of the PIC simulation. The laser pulse is 10 λ long. The plasma electron density
N = 10Ncr. The plasma consists of a mixture of protons and heavy “nailed” ions,
Nh/Np = 9. The column I and II correspond to the laser pulse amplitudes a = 5
and a = 50 correspondingly. The snapshots are taken when the pulse maximum reaches
the plasma boundary. The frames (a) show the phase space of the protons (x, px); the
frames (b) give the longitudinal electric field; the frames (c) show the proton energy
spectra.
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3 Pulse propagation in plasma and

relativistic solitons

3.1 Introduction

In this Chapter we investigate the propagation of laser pulses in underdense plasmas.
The laser pulse dynamics can be approximated by the non-linear Schrödinger equation,
whose properties are well-known [110]. This equation has a family of solutions, but
we are particularly interesting in the self-similar solution in the solitonic form. One-
dimensional soliton solutions for weakly relativistic laser pulses propagating in under-
dense plasmas have been proposed by many authors [111, 112, 113, 114]. The plasma
dispersion is compensated by the relativistic nonlinearity and the soliton runs through
the plasma with nearly light velocity maintaining its shape.

The well-known fact from the soliton theory is, that if one starts with a pulse slightly
different from the soliton shape (e.g., with a wider pulse), then the pulse width oscillates
around the equilibrium value. This effect can be exploited to compress an initially wide
laser pulse to a shorter one.

In spite of the simplicity of the analytical model, the previous direct particle-in-cell
(PIC) simulations of this effect failed to demonstrate a significant pulse compression.
The PIC simulations reported in [32] show merely a pulse modulation in the longitudinal
direction and a transverse filamentation rather than a smooth self-compression.

In this Chapter we present direct one- and three-dimensional PIC simulations of a suc-
cessful pulse self-compression in underdense plasma. We show that the self-compression
effectively works only for a narrow range of plasma densities.

3.2 Raman instability overcoming

The fastest instability which leads to pulse erosion is the simulated Raman scatter-
ing (SRS) instability [46]. SRS is the result of scattering electromagnetic pump wave
(ω0,k0) by a plasma wave (ωe,ke). Let us designate scattered wave as (ω1,k1). Using
conservation laws of energy and momentum we can write:

ω0 = ω1 + ωe , (3.1)

k0 = k1 + ke . (3.2)

The case when the vectors k1 and k0 are nearly parallel, corresponds to stimulated
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3. Pulse propagation in plasma and relativistic solitons

forward Raman scattering (SFRS). For this case we can write

k1 ≈ k0 , (3.3)

ke ≈ kp = ωp/c≪ k0 . (3.4)

This leads to self-modulation of the laser pulse [28, 115]. Modulation length

lmod =
2π

kp
≈ 2πc

ωp
= λp . (3.5)

The case when vectors k1 and k0 are antiparallel, corresponds to stimulated backward
Raman scattering (SBRS). For that case we can write

k1 ≈ −k0 , (3.6)

ke ≈ 2k0 . (3.7)

SBRS leads to erosion of the pulse profile [116]. For ultrashort laser pulses this instability
develops first.

Let us find the plasma density, then the stimulated Raman instability can take place.
For electron plasma wave (ωe,ke) we have

ωe > ωp , (3.8)

as it should satisfy the dispersion relation for electrostatic wave. And for scattered
electromagnetic wave (ω1,k1) we have

ω1 > ωp , (3.9)

as it should satisfy the dispersion relation for electromagnetic wave. Substituting into
Eq. (3.1) we have

ω0 > 2ωpe . (3.10)

So as one can see, the stimulated Raman instability is taking place only if the electron
plasma density satisfies the following condition

Ne <
1

4
Ncr , (3.11)

where Ncr is the critical plasma density, which is given by Eq. (1.88).

In order to overcome pulse profile destruction by stimulated Raman instability, we
will use plasma with density

1

4
Ncr < Ne < Ncr . (3.12)

In this density region, slightly below critical density Ncr, the plasma is still transparent,
but the Raman instability that otherwise destroys the pulse, is prohibited.
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3.3. Analytical theory

3.3 Analytical theory

We will consider the simplified analytical model, which takes into account only the
relativistic nonlinearity and neglects electron density perturbations. Taking plasma
density in region, given by Eq. (3.12) we exclude Raman, hosing and other instabilities
[46, 117, 118]. We will consider long laser pulses, which initial length T satisfies the
condition

cT ≫ λp , (3.13)

where λp is the plasma wavelength.
Let us select coordinate system in such a way, that z-direction coincides with the

pulse propagation direction. According to [119] to describe the pulse propagation we
will write the wave equation

∂2A

∂z2
− 1

c2
∂2A

∂t2
= −4π

c
j, (3.14)

where A is the vector potential and j is the current. Strictly speaking the current is the
sum of electrons and ions currents

j = je + ji . (3.15)

In this Chapter we consider the ions as immobile particles and we will use one-fluid
approximation. Then one can write for the current:

j ≈ je = −Nev , (3.16)

where N(z, t) is the local electrons density and v(z, t) is the local electrons speed.
Using invariant defined in Eq. (1.34)

P⊥ = p⊥ − e

c
A⊥ = const , (3.17)

(generalized momentum perpendicular component conservation) we can express p⊥ as
a function of A⊥. We will select the initial conditions as:

p⊥ = 0, A⊥ = 0 at t = 0 . (3.18)

The physical meaning of this condition, is that the electrons are initially at rest and
there is no field. Then, substituting Eq. (3.18) in Eq. (3.17) we obtain that at any
moment t > 0:

p⊥ = A⊥. (3.19)

Using the Eq. (3.19) we can rewrite (see [112, 120]) Eq. (3.14) as:

∂2A⊥

∂z2
− 1

c2
∂2A⊥

∂t2
=

1

γ

ω2
p

c2
N

N0
A⊥ , (3.20)
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where N0 is the background plasma density, N is the current electron density, ωp =
√

4πe2N0/me is the background plasma frequency and γ is the Lorenz factor of the
plasma electrons.

Let us consider a circularly polarized laser pulse propagating in the z−direction:

A(z, t) =
1

2
A(z, t)(ex + iey) exp (−iωt+ ikz) + c.c. (3.21)

By substituting (3.21) in Eq. (3.20) we obtain equation for the amplitude A(z, t)

∂2A

∂z2
− 1

c2
∂2A

∂t2
−
(

k2 − ω2

c2

)

A+ 2i

(

k
∂A

∂z
+
ω

c2
∂A

∂t

)

=
1

γ

ω2
p

c2
N

N0
A . (3.22)

The pulse propagates with the group velocity

vgr = c
ck

ω
, (3.23)

where k = 2π/λ is the wave number given by the plasma dispersion relation c2k2 =
ω2 − ω2

p. Introducing the dimensionless amplitude a = eA/mc2 and taking into account
Eq. (3.23) we have

∂2a

∂z2
− 1

c2
∂2a

∂t2
+
ω2

c2

(

1 −
v2
gr

c2

)

a+ 2i
ω

c2

(

vgr
∂a

∂z
+
∂a

∂t

)

=
1

γ

ω2
p

c2
N

N0

a . (3.24)

In order to study the pulse shape evolution we will turn to the reference system co-
moving with pulse. We introduce the new dimensionless variables:

z′ = ωz/c , (3.25)

ψ = ω(z/vgr − t) . (3.26)

(We will omit the prime later on).
We will work in the quasi-static approximation, i.e., we suppose that the pulse envelope

changes significantly only after the laser pulse has propagated through the distance much
larger than its own length

1

vgr

∂

∂ψ
≫ 1

c

∂

∂z′
. (3.27)

Using this approximation and taking into account that γ2
p = Ncr/N (see Eq. (1.121)),

we have in the new coordinates equation which describes the pulse shape evolution

∂2a

∂ψ2
+ 2iβ3γ2

p

∂a

∂z′
= β2a

(

1

γ
− 1

)

. (3.28)

For a weakly relativistic circularly polarized pulse, |a| ≪ 1, the electron γ-factor can
be expanded as

γ =
√

1 + |a |2 ≈ 1 + |a |2/2 . (3.29)

Now Eq. (3.28) takes the form of the well-known nonlinear Schrödinger equation [112,
32, 120]

2iβ3γ2
p

∂a

∂z
= − ∂2a

∂ψ2
− 1

2
β2|a|2a , (3.30)

where β = vgr/c, γ
2
p = (1 − β2)−1 = Ncr/N .
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3.3.1 Pulse evolution investigation using the momentum method

We consider evolution of a finite laser pulse,

a(ψ = ±∞) = 0 , (3.31)

da

dψ
(ψ = ±∞) = 0 . (3.32)

First momentum

Multiplying Eq. (3.30) with a∗, we obtain

2iβ3γ2
pa

∗∂a

∂z
+ a∗

∂2a

∂ψ2
= −1

2
β2|a|4 . (3.33)

Subtracting the complex conjugated expression, and taking into account, that

a∗
∂a

∂z
+ a

∂a∗

∂z
=
∂|a|2
∂z′

, (3.34)

we have

2iβ3γ2
p

∂|a|2
∂z

+

(

a∗
∂2a

∂ψ2
− a

∂2a∗

∂ψ2

)

= 0 . (3.35)

Integrating Eq. (3.35) along ψ, and taking into account, that

+∞
∫

−∞

(

a∗
∂2a

∂ψ2
− a

∂2a∗

∂ψ2

)

dψ =

(

a∗
∂a

∂ψ
− a

∂∗

∂ψ

)∣

∣

∣

∣

+∞

−∞

= 0 (3.36)

one obtains conservation of the first momentum:

J1 =

+∞
∫

−∞

|a|2 dψ ,
dJ1

dz
= 0 . (3.37)

This equation can be easily interpreted as the pulse energy conservation.

Second momentum

Multiplying Eq. (3.30) with ∂a∗/∂z, we obtain

2iβ3γ2
p

∂a

∂z

∂a∗

∂z
+
∂2a

∂ψ2

∂a∗

∂z
= −1

2
β2|a|2a∂a

∗

∂z
. (3.38)

Adding the complex conjugated expression one obtains

∂2a

∂ψ2

∂a∗

∂z
+
∂2a∗

∂ψ2

∂a

∂z
= −1

2
β2|a|2

(

a
∂a∗

∂z
+ a∗

∂a

∂z

)

. (3.39)
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Let us integrate Eq. (3.39) along ψ. For left-hand term we have

lht =

+∞
∫

−∞

(

∂2a

∂ψ2

∂a∗

∂z
+
∂2a∗

∂ψ2

∂a

∂z

)

dψ = (3.40)

=

(

∂a

∂ψ

∂a∗

∂z
+
∂a∗

∂ψ

∂a

∂z

)∣

∣

∣

∣

+∞

−∞

−
+∞
∫

−∞

(

∂a

∂ψ

∂2a∗

∂z∂ψ
+
∂a∗

∂ψ

∂2a

∂z∂ψ

)

dψ . (3.41)

As we can see from Eq. (3.32)
(

∂a

∂ψ

∂a∗

∂z
+
∂a∗

∂ψ

∂a

∂z

)∣

∣

∣

∣

+∞

−∞

= 0 , (3.42)

and thus we have

lht = − ∂

∂z

+∞
∫

−∞

∂a

∂ψ

∂a∗

∂ψ
dψ = − ∂

∂z

+∞
∫

−∞

∂a

∂ψ

∂a∗

∂ψ
dψ = − ∂

∂z

+∞
∫

−∞

∣

∣

∣

∣

∂a

∂ψ

∣

∣

∣

∣

2

dψ . (3.43)

For the right-hand term (rht) in Eq (3.39) we have

rht = −1

2
β2

+∞
∫

−∞

|a|2∂|a|
2

∂z
dψ = −1

4
β2 ∂

∂z

+∞
∫

−∞

|a|4 dψ . (3.44)

Combining Eq. (3.43) and (3.44) together, we obtain the second momentum conserva-
tion:

J2 =

∫ +∞

−∞

(

∣

∣

∣

∣

∂a

∂ψ

∣

∣

∣

∣

2

− β2

4
|a|4
)

dψ,
dJ2

dz
= 0 . (3.45)

3.3.2 Pulse oscillations

Let us consider an incident laser pulse with the Gaussian envelope

a0 exp

(

− t2

T 2
0

)

. (3.46)

Below we use dimensionless time t′ = ωt. We will look for a solution in the form:

a(z, ψ) = a0

√

T0

T
exp

(

−ψ
2

T 2
−
iβ3γ2

pψ
2

2T

dT

dz

)

. (3.47)

Here T = T (z) is the width of the pulse envelope (measured in ω−1); T (0) = T0 is the
initial width of the pulse. Choosing initial conditions at z = 0

T (0) = T0 , (3.48)

dT

dz
(0) = 0 . (3.49)
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we can rewrite
J2 = J2(z = 0) (3.50)

an equation, which describes pulse length evolution. Let us calculate J2(z) for Gaussian
pulse given by Eq. (3.47):

|a|4 = a4
0

(

T0

T

)2

(−2ψ) exp

(

−4ψ2

T 2

)

, (3.51)

∣

∣

∣

∣

∂a

∂ψ

∣

∣

∣

∣

2

= a2
0

T0

T

(

1

T 4
+
β6γ4

p

4T 2

(

dT

dz

)2

(4ψ2) exp

(

−2ψ2

T 2

)

)

. (3.52)

Integrating over ψ we obtain second momentum as function of z

J2(z) =

√

π

2
a2

0

T0

T 2

(

1 +
β6γ4

p

4
T 2

(

dT

dz

)2
)

−
√
π

8
a4

0β
2T

2
0

T
, (3.53)

and particular value at z = 0

J2(0) =

√

π

2
a2

0

1

T0
−

√
π

8
a4

0β
2T0 , (3.54)

Expressing dT/dz we have:

(

dT

dz

)

2 =
4

β6γ4
p

(

1

T
− 1

T0

)(

β2a2
0T

2
0

4
√

2
− 1

T
− 1

T0

)

. (3.55)

Taking into account Eq. (1.121), we can rewrite the equation describing the pulse length
changes as

(

dT

dz

)2

=
4n2

β6N2
cr

(

1

T
− 1

T0

)(

1

Tm
− 1

T

)

, (3.56)

where

Tm =
T0

δ − 1
, δ =

a2
0T

2
0 β

2

4
√

2
, (3.57)

β =

√

1 − N

Ncr
. (3.58)

Let us analyze the solutions behavior of Eq. (3.56) qualitatively. In order to do this
we can note, that right side of Eq. (3.56) is proportional to function

f(T ) =

(

1 − T

T0

)(

T

T0/(δ − 1)
− 1

)

. (3.59)

The solution T (z) should satisfy the condition

f(T ) ≥ 0 . (3.60)
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Figure 3.1: Pulse behavior in plasma. In case (a) 0 < δ < 1 pulse width T monotonically grows; in
case (b) 1 < δ < 2 and case (c) δ > 2 pulse width oscillates between T0 and Tm.

If we rewrite Eq. (3.59) as

f(T ) = (1 − δ)

(

T

T0
+

1

1 − δ

)(

T

T0
− 1

)

. (3.61)

We can see that there are three modes of solution behavior, with initial condition T (z =
0) = T0 > 0, (see Figure (3.1) for illustration). In case 0 < δ < 1 we can see that on an
interval z ∈ [0,∞) function T (z) monotonically grows T (z) ∈ [T0,+∞) (Figure (3.1 a)).
When 1 < δ < 2 we have T0 < Tm = T0/(δ − 1), and function T (z) oscillates in the
range T (z) ∈ [T0, Tm] (Figure (3.1 b)). And in case δ > 2 we have T0 > Tm = T0/(δ−1)
and function T (z) oscillates in the range T (z) ∈ [Tm, T0] (Figure (3.1 c)).

It is also clear from Eq. (3.56) that the both oscillatory regimes 1 < δ < 2 and δ > 2
have the same period of oscillations.

Let us consider physical meaning of such T (z) behavior. If we consider dispersion-
nonlinearity competition, we can see that there are three regimes of the pulse behavior
after it enters into the plasma:
Case 0 < δ < 1 : The plasma dispersion dominates, and the pulse length increases
monotonically.
Case 1 < δ < 2 : After the entrance into the plasma, the pulse extends first to the width
Tmax = Tm and then oscillates.
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3.3. Analytical theory

Case δ > 2 : After the entrance into the plasma, the pulse compresses to Tmin = Tm
and then oscillates.

3.3.3 Pulse compression

For practical reasons we are mostly interested in pulse compression, so let us consider
the regime (δ > 2) in detail. Taking a root in Eq. (3.56) we have

dT

dz
= − 2N

β3Ncr

√
T0 − T

√
T − Tm

T
√
T0Tm

. (3.62)

One should note that we take a negative branch of a square root in order to satisfy
condition

dT

dz
(z = 0+) < 0 . (3.63)

Integrating Eq. (3.62) we obtain the exact analytical solution

z

D
=

1

4
+

√
δ − 1

πδ

√

1 − T

T0

√

T

Tm
− 1

− 1

2π
arctan

(

1

2

√

T − Tm
T0 − T

− 1

2

√

T0 − T

T − Tm

)

, (3.64)

where

D =
πT 2

0

2

Ncr

N

β3δ

(δ − 1)3/2
(3.65)

is the period of the pulse envelope oscillation (in ω−1).

3.3.4 Soliton solution

We will look for soliton solution in a form

a = as exp(iκz)/ cosh(ψ/Ts) , (3.66)

where κ and ψ are the constants. We have

∂a

∂z
= iκ

ase
iκz′

cosh(ψ/Ts)
, (3.67)

∂2a

∂ψ2
=

as
T 2
s

cosh2(ψ/Ts) − 2

cosh3(ψ/Ts)
eiκz

′

. (3.68)

Substituting in Eq. (3.30), we can see that non-linear Schrödinger equation has the
soliton solution

a =
ase

iκz

cosh(ψ/Ts)
, (3.69)

where as, κ and Ts are connected by the relations

κ =
1

2γ2
pβ

3T 2
s

, asTsβ = 2. (3.70)
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Figure 3.2: 1D PIC simulation of pulse compression. The initial pulse has amplitude a0 = 0.1 and

duration T0/2π = 30. Plasma density is N = 0.3Ncr. The laser pulse intensity, |a|2 vs.
ψ, is given in the pulse co-moving frame at the different times: dashed line at t = 0;
dotted line at t = 290λ/c; solid line at t = 890 λ/c.

3.3.5 1D model numerical verification

In order to check the validity of our simplified model, we have performed 1D PIC
simulations using VLPL, see Appendix B for details.

An initially Gaussian pulse, a = a0 exp(−t2/T 2
0 ) with the duration T0/2π = 10 and the

amplitude a0 = 0.12 propagates through a slab of uniform plasma of density n = 0.3nc.
Figure (3.2) shows how shape of the pulse changes during its propagation in plasma in
the pulse co-moving reference system. We observe a compression by more than 5 times,
and this process is energetically efficient.

We find that the theoretically predicted soliton-like solution can be observed numer-
ically with parameters Ts/2π = 2.15 and as = 0.16 which are close to our theoretical
values. (asTsβ ∼ 1.8 in comparison with 2 from the simplified model.)

Figure (3.3) demonstrates how the pulse intensity changes in time for pulses with
different initial parameters. Two Gaussian pulses with the same initial length T0/2π =
10, but different initial amplitudes a0 = 0.1 (line A) and a = 0.12 (line C) demonstrate
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Figure 3.3: Pulse oscillations during its propagation in plasma: maximum pulse intensity |a|2 vs the
propagated distance z/λ. Plasma density is N = 0.3Ncr. Solid lines correspond to
the results of 1D PIC simulation: lines A, C are Gaussian pulses with initial amplitudes
a0 = 0.1 and a0 = 0.12 correspondingly and duration T0/2π = 10. B is the soliton
pulse with as = 0.16 and Ts/2π = 2.15. The dashed line is the analytical prediction for
a Gaussian pulse with the initial parameters a0 = 0.1, T0/2π = 10

periodic oscillations of the amplitude. (It should be noted that for this initial amplitude,
when the compression rate becomes rather high, the solution given by Eq. (3.64) does
not accurately describes the pulse compression and plasma nonlinearity determined by
the ponderomotive force must be taken into account.) Otherwise, the soliton pulse with
parameters as = 0.16 and Ts/2π = 2.15 (line B) propagates stably over at least 3000λ.

3.4 Possibility of 3D-compression

The PIC simulations mentioned above are one-dimensional and thus exclude the pulse
transverse dynamics. On the other hand, the pulse compression works only at rela-
tively high plasma densities, close to the critical one, and sub-relativistic intensities.
In this parameter region, the laser pulse power easily overcomes the relativistic self-
focusing/filamentation threshold [121]. If we consider the filamentary instability of an
infinite plane wave, then the maximum growth rate is γ = (ω2

p/8ω0)a
2 [53]. This is com-

parable with the inverse self-compression time of the laser pulse. Thus, the transverse
filamentary instability can significantly deteriorate the self-compression process and the
full pulse compression can hardly be accomplished in a single stage.

A similar problem of pulse transverse dynamics is successfully solved in the conven-
tional lasers. The amplification is split into many stages, and after each stage a telescope
system cleans the amplified pulse from parasitic transverse modes [122]. Of course, a
similar technology could be applied also for pulse self-compression in plasma. However,
we suggest a different approach.
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3. Pulse propagation in plasma and relativistic solitons

Let us consider the pulse self-compression in a periodic plasma-vacuum structure.
Each plasma layer must be shorter than the characteristic filamentation time of the
laser pulse, so that passing it the laser pulse is slightly compressed longitudinally and
not significantly modulated transversely. In the vacuum region, we use the fact that the
parasitic transverse modes propagate under the angle k⊥/k and thus are slower than
the compressed pulse. When reaching the next plasma layer, the transverse modes lag
behind the main pulse.

To check the feasibility of the pulse compression in the periodic plasma-vacuum struc-
ture, we do explicit 3D PIC simulations using the code VLPL, see Appendix B. We
send a transversely super-Gaussian laser pulse a = a0 exp(−(r⊥/σ)4 − (t/T )2) onto a
periodic plasma-vacuum structure. The initial laser amplitude was a0 = 0.14, the dura-
tion T/2π = 11 and the focal spot σ = 100 λ. The initial pulse power is thus 26 TW,
for the wavelength λ = 800 nm. The plasma layers with N = 0.6 Ncr were 10 λ long
with 100 λ vacuum regions in between.

The simulation results are shown in Figure (3.4). The frames (a) and (c) give the
on-axis intensity distribution, the frames (b) and (d) show the (ZX) cuts of the pulse
intensity before and after the compression. In Figure (3.4 c), and Figure (3.4 d) the
pulse has passed four plasma layers. The pulse is compressed by more than 5 times. The
FWHM of the compressed pulse is about 5 fs, and the peak power exceeds 100 TW . The
compression efficiency is thus about 80%. No significant parasitic transverse modulation
is seen in the main part of the pulse and the compression is quasi-1D. However, one
observes a post-pulse formation, where the transverse modes have been piled up.
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Figure 3.4: 3D PIC simulation results of pulse compression in periodic plasma-vacuum structure.
(a) On-axis intensity a2 of the initial laser pulse; (b) (ZX)−section of the initial pulse
intensity; (c) on-axis intensity of the compressed pulse; (d) (ZX)−section of the com-
pressed pulse intensity. The initial pulse amplitude a0 = 0.14, duration T/2π = 11, and
the power 26 TW. The compressed pulse is 5 fs long and has the peak power of more
than 100 TW.
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3. Pulse propagation in plasma and relativistic solitons

In conclusion, we have discussed here the possibility of self-compression of multi-
TW laser pulses in plasma. The self-compression works only in nearly critical plasmas
with electron density above 0.25 nc, where Raman instabilities are prohibited. Pulses
consisting of just 1-2 oscillations can be produced in this way. We have studied the re-
alistic three-dimensional geometry and found that the usage of periodic plasma-vacuum
structures stabilizes the parasitic transverse filamentation of the pulse.

We also mention that at ultra-relativistic amplitudes, a ≫ 1, another compression
mechanism can be active. Because the intense center of the laser pulse propagates
faster than the lower intensity head, the energy is accumulated at the pulse front and
an optical shock is created [11]. Experimentally this is observed as the pulse spec-
tral broadening [123]. Simultaneously, a large-amplitude plasma wave is excited and
background electrons are accelerated to relativistic energies [11, 123].

The self-compression in the weakly relativistic regime, as it was discussed in this
paper, is free from energy losses, because no plasma wave is generated behind the laser
pulse. The losses in this case are mainly connected with the aberrations. When one
wants to achieve a large compression ratio, then the compressed pulse is not exactly
Gaussian and side wings appear. Still, as we have seen above, efficiencies of the order
of 80% are achievable with the laser compression by a factor 5.
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4 High harmonics generation from

plasma surface

4.1 Introduction

4.1.1 Motivation

Recently, a tremendous progress was achieved in the field of attosecond pulses production
[124, 125, 126, 127]. This stimulates researchers to look for mechanisms, which allow us
to produce even shorter pulses: subattosecond i.e. zeptosecond (zepto = 10−21) pulses.
To produce such pulses, the idea of high order harmonics generation was proposed.

It is well known that a single electron placed in a relativistically strong laser pulse
emits high harmonics [128]. The harmonics generation due to atomic electrons nonlinear
response in gases when laser field approaches to the ionization limit was investigated
experimentally and harmonics up to number n ∼ 300 were observed in experiments with
helium gas jets [129]. Unfortunately these harmonics disappear if we consider not a single
electron, but an electron cloud. The reason is that all electrons in the cloud radiate at
different phases and the harmonics are canceled by the destructive interference. The
harmonics emission is then incoherent [130, 131].

Thus if we are interesting in intensities, which exceed ionization limit, given by
Eq. (1.5), another collective-mechanisms of harmonics generation should be considered.
Recently was proposed mechanism, which is based on the usage of the petawatt laser
beam focused on a subwavelength-size solid particle or thin wire. According to theoret-
ical estimations presented in paper [132] zeptosecond pulse can be produced in this way
(“lasetron”).

In this Chapter we propose the mechanism of harmonics generation not from single
electrons, but from an electron fluid. The principal point for the mechanism under
consideration is the approximation of step-like plasma density gradient. The usage of
ultra-short laser pulses (femtosecond or shorter) allows to create such step-like gradients,
because there is not enough time for noticeable plasma expansion. Adjusting this to
solid targets, a thin plasma layer where plasma density drops from solid density to zero,
can be created.

Harmonics in radiation reflected from solid surfaces were considered in [133, 134, 135].
In these papers harmonics up to n ∼ (10−100) were observed. Therefore, the theoretical
investigation of possibility of harmonics generation from plasma boundary is the point
of great interest.
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4. High harmonics generation from plasma surface

4.1.2 Mechanism of harmonics generation from plasma surface

The problem of laser interaction with overdense plasma and the high-harmonics genera-
tion was investigated via simulations in [136, 105, 34, 137, 138] and in recent experiments
[139, 140]. The possibility of harmonic generation via reflection from a laser-driven os-
cillating plasma boundary was emphasized in papers [35, 36].

In the moving mirror model harmonics are generated by reflecting from the oscillating
mirror - the critical surface - where electrons density N = Ncr, (Ncr is the critical
density, given by Eq. (1.88)). This conception is extremely useful for understanding
basic physics of high order harmonic generation from oscillating plasma boundary (see
below Section 4.2.2).

The detailed numerical simulation of collective electron dynamics, which was per-
formed in [35], has shown a good agreement with model, in which harmonics can be
interpreted as an anharmonic distortion of the laser field due to reflection from the os-
cillating surface. The importance of retardation effects for efficient harmonics generation
was pointed in [36].

In [141] it was realized that plasma as an oscillating mirror gives an opportunity
to produce short pulses. The possibility of a single attosecond pulse isolation, when
a laser pulse, focused down to the λ3 volume, is reflected from a plasma surface, was
investigated in [142] (λ3 regime).

4.1.3 Universal spectrum

Gordienko et al. [37] first pointed at the applicability of Leontovich boundary condi-
tion for laser pulse interaction with plasma surface. Using it we show the existence of
universal harmonics spectrum (it will be considered below in details).

In this work we concentrate on the basic physics of laser interaction with plasma sur-
face. Using simple physical model, which nevertheless expresses the essential properties
of the plasma surface motion, and its influence on the pulse, we discover the harmonics
spectrum universality and investigate the properties of this spectrum. We also check
the validity of analytical theory using PIC simulation.

4.1.4 Different focusing regimes. The Coherent Harmonic

Focusing

The basic idea of harmonic focusing is to take an initial laser pulse with the wavelength
λ, send it through a nonlinear medium, generate n high harmonics with the wavelengths
λn = λ/n and then focus them down to a spot size ∼ λn.

But one should distinguish the coherent and the incoherent harmonics focusing. If the
harmonics are incoherent, then the harmonics intensities are to be summarized. Since
the dimension of the focal spot scales as 1/n, the field at the incoherent focus is boosted
only if the harmonic spectrum decays slower than 1/n2 .

In the case of a Coherent Harmonic Focusing (CHF), which we introduced in [143],
the high harmonics are generated coherently. They are focusing in such a way, that
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4.2. Reflection

the fields of all harmonics interfere constructively within the focal volume. In order
to boost the intensity by means of the CHF mechanism, the harmonic spectrum must
decay slower than 1/n4 (see below for details).

It also will be shown below, that such spectra do exist. The high harmonics spectrum
produced in the laser interaction with a sharp plasma boundary is a universal one and
it decays as 1/ω5/2. In [37] was also shown, that under certain conditions even ω−3

spectrum can be observed. It is also important that the laser-plasma surface harmonics
are coherent and appear in the form of (sub-)attosecond pulses [142, 37].

Experimentally, the plasma surface harmonics are produced by irradiating the surface
of a solid material by a relativistically intense laser pulse [139]. Being exposed to the
laser, the surface becomes a plasma with the solid state density. Shaping the target
surface appropriately, one can focus the harmonics.

4.2 Reflection

4.2.1 Laser plasma interaction scalings

In this Section we will present an analytical scaling for laser plasma interaction.
Let us consider the electron distribution function f(t, r,p). To describe laser plasma

interactions we have to solve the Vlasov equation

∂f

∂t
+ v

∂f

∂r
− e

(

E +
v

c
×B

) ∂f

∂v
= 0 (4.1)

together with the Maxwell equations on the electric E and magnetic B fields. A dimen-
sional analysis [144] gives

f =
Ne

(mec)3
F

(

ω0t,
p

mec
,
ω0r

c
,
Nc

Ne
, a0, ω0τ

)

, (4.2)

where F is an unknown universal function. Eq. (4.2) contains three dimensionless pa-
rameters. However, in the ultra-relativistic limit their number can be reduced. In the
ultra-relativistic limit we can set

v = cn, n =
p

|p| (4.3)

and re-write the Vlasov equation as

[∂t + cn∂r − e(E + n× B)∂v] f = 0 . (4.4)

Introducing dimensionless variables

t̂ = ω0t , (4.5)

p̂ =
p

mca0
, (4.6)

r̂ =
ω0r

c
, (4.7)

Ê =
cE

ω0A0

, (4.8)
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we can re-write Eq. (4.4) together with the Maxwell equations in the dimensionless form

[

∂t̂ + n∂r̂ − e
(

Ê + n × B̂
)

∂p̂

]

f̂ = 0 ,

∇r̂ · Ê = (1 − ρ̂)/Γ, ∇r̂ · B̂ = 0 , (4.9)

∇r̂ × B̂ = ĵ/Γ + ∂t̂Ê, ∇r̂ × Ê = −∂t̂B̂ ,

where ρ̂ =
∫

f̂ dp̂, ĵ =
∫

nf̂ dp̂. Eqs. (4.9) contain the only one dimensionless parameter

Γ = a0
Ncr

Ne

(4.10)

and the unknown universal function

f̂(t̂, p̂, r̂) =
m3
ec

3a3
0

Ne
f(t,p, r) . (4.11)

Now we can re-write the distribution function from Eq. (4.2) as

f =
Ne

(meca0)3
f̂

(

ω0t,
p

meca0
,
ω0r

c
,Γ, ω0τ

)

. (4.12)

4.2.2 Oscillating mirror

In this Section we consider the process of laser interaction with plasma boundary and
pulse reflection. The plasma layer is considered as preionized and steeply bounded. We
use index in to denote values related to incident radiation, and index rf for reflected
radiation.

Let us consider an incident monochromatic laser wave, propagating in a direction
opposite to the x-axis. This wave can be described by the vector potential

Ain(t, x) = Re {A0 exp(−iωt− iωx/c)} . (4.13)

This wave is reflected by a sharp plasma surface positioned at X(t′) at the time t′.
We are interesting in reflection from the overdense plasma, with background density

Ne ≫ Ncr, where Ncr = ω2me/4πe
2 is the critical density (see Eq. (1.88)). Following

the analysis presented above, we assume that the condition

Γ = a0
Ncr

Ne

≪ 1 (4.14)

is satisfied, where a0 is the dimensionless amplitude of incident pulse (see Eq. (4.10)).

4.2.3 Ideal mirror boundary condition

First of all, we must decide what boundary conditions should be used. The standard
“ideal mirror” boundary condition implies zero tangential components of the vector po-
tential at the mirror surface. Let us consider a laser pulse with electric field Ein and
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duration τin, and consider a situation, when the ideal mirror moves with relativistic
gamma-factor γ ≫ 1 towards the laser pulse. A direct consequence of such a choice of
boundary condition is that the reflected pulse acquires the electric field

Erf ∝ γ2Ein . (4.15)

As the mirror moves toward the pulse with v ∼ c the duration

τrf ≈ (c− v)

2c
τin ∝ τin

γ2
. (4.16)

Consequently, the energy of the reflected pulse ∝ E2
rfτr must be γ2 times higher than

that of the incident one. As we assume, that the plasma surface is driven by the same
laser pulse, this scaling is energetically prohibited. So one can see that the plasma
cannot serve as an “ideal mirror”.

If we consider the process in detail, we can see, that the “ideal mirror” must support
a current. The value of that surface current Js can be estimated using Eq. (1.69) in
integral form:

Js ∝
meωc

2

e
a0γ ∝ eNcrc

2γa0

ω
. (4.17)

This current is growing with the gamma-factor. A realistic plasma surface has no mech-
anism to provide such a current, so the boundary condition must be changed.

4.2.4 Electrons dynamics near the boundary. Leontovich

boundary condition

Let us consider the tangential component of vector potential of laser pulse normally
incident onto an overdense plasma slab. We choose −x as a pulse propagation direction.
To describe its evolution, we will use a wave equation (see [119])

1

c2
∂2A(t, x)

∂t2
− ∂2A(t, x)

∂x2
=

4π

c
j(t, x) , (4.18)

where j is the tangential component of plasma current density. We will look for solution
of Eq. (4.18) which will satisfy the boundary condition:

A(t, x = −∞) = 0 . (4.19)

Physically this boundary condition means, that the wave does not penetrate deep into
the plasma.

Let us consider the vector potential

A(t, x) = 2π

+∞
∫

−∞

J (t, x, t′, x′) dt′dx′ , (4.20)
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where

J (t, x, t′, x′) = j (t′, x′) (Θ− − Θ+) , (4.21)

Θ− = Θ

(

t− t′ − |x− x′|
c

)

, (4.22)

Θ+ = Θ

(

t− t′ +
|x− x′|

c

)

, (4.23)

and Θ(t) is the Heaviside step-function. This vector potential satisfies both Eq. (4.18)
and the boundary condition given by Eq. (4.19) since J(t, x = −∞, t′, x′) = 0.

The tangential electric field is

Et = −1

c

∂A(t, x)

∂t
. (4.24)

So at the electron fluid surface X(t) we have

Et(t, X(t)) =
2π

c

α=+1
∑

α=−1

α

−∞
∫

0

j(t+ αξ/c,X(t) + ξ) dξ , (4.25)

where ξ = x′ −X(t).
To simplify this formula we should consider the electrons movement near the boundary

in details. The pressure of incident electromagnetic wave on the electrons is

Pin =
E2
in

4π
. (4.26)

If the laser moves electrons on the distance d from the boundary (of immobile ions), the
electric field created by uncompensated ions charge is

Ed =
eNed

4π
=
eσ

4π
, (4.27)

where σ = Ned is the number of displaced electrons on a unit area. Therefore, the force
acting on a unit surface area by the ions is

Pd = Edσe =
e2N2

e d
2

4π
. (4.28)

From the condition Pin = Pd one can easily find the distance of electron indentation

d =
Ein
eNe

. (4.29)

Let us investigate how the characteristic time of the skin layer evolution τ and the
plasma skin depth δ correspond with each other. The time for which parameters of the
skin layer are changing, can be estimated as τ ∼ ω−1 and the thickness on which the
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field penetrates into plasma δ ∼ d from Eq. (4.29). Thus, using Eq. (1.26), (1.88) we
have:

δ

cτ
≈ dωp

c
=
Einωp
eNec

= a0
meω

2/e2

Ne
∝ a0

Ncr

Ne
. (4.30)

Since we assume that the condition given by Eq. (4.14) is valid, it follows from Eq. (4.30)
that

τc≫ δ . (4.31)

Taking into account Eq. (4.31) we can Taylor-expand:

j (t± ξ/c, x′ = X(t) + ξ) ≈ j(t, x′) ± ǫ, (4.32)

where
ǫ = (ξ/c)∂tj(t, x

′) . (4.33)

We substitute this expression into Eq. (4.25). The zero order terms cancel each other
and we get

Et(t, X(t)) ∝ Js(δ/cτ) , (4.34)

where Js is the plasma surface current. As the electrons can not move with a speed
higher than the speed of light c, the above estimation for the surface current is

Js < ceNed = cEin , (4.35)

and one obtains that

Et(t, X(t)) ≪ Ein
δ

cτ
. (4.36)

Thus, as long as the skin-layer is thin and the plasma surface current is limited, we
can use the Leontovich boundary condition [145]

Et(t, X(t)) = 0. (4.37)

The same boundary condition was postulated ad hoc in [141] to interpret PIC simulation
results. Here we give the physical reasons why the boundary condition should be given
by Eq. (4.37). Using this boundary condition we will derive very general properties of
the reflected radiation.

4.3 Pulse reflection

4.3.1 Retardation relation

The incident laser field at the reflection time t′ is

Ein(t
′, X(t′)) = −1

c

Ain(t
′, X(t′))

∂t′
. (4.38)

According to Eq. (4.37), the reflected wave electric field at the plasma surface is

Erf(t
′, X(t′)) = −Ein(t

′, X(t′)) . (4.39)

67



4. High harmonics generation from plasma surface

As the one-dimensional wave equation simply translates a signal in vacuum, we can
write for the reflected wave field at the observer position x and the time t

Erf(t, x) = −Ein(t
′, X(t′)). (4.40)

Let us choose x = 0 as the observer position. The time which is needed for the
reflected radiation to propagate from the reflection from the surface (at the coordinate
X(t′)) to the observer (located at x = 0) is −X(t′)/c. Therefore, we have the retardation
relation

t′ −X(t′)/c = t . (4.41)

Differentiating this equation on t

dt′

dt
= 1 +

1

c

dX

dt
= 1 +

1

c

dX

dt′
dt′

dt
(4.42)

and expressing dt′/dt we obtain a relation between the time difference on the surface dt′

and the time difference, observed by observer dt

dt′

dt
=

(

1 − 1

c

dX

dt′

)−1

. (4.43)

The value dX/dt′ has a clear physical sense: it is the velocity of oscillating plasma
surface at the time t′

β =
1

c

dX

dt′
. (4.44)

We also need the surface gamma-factor γ = 1/
√

1 − β2. Using Eq. (4.44) we can rewrite
Eq. (4.43) as

dt′

dt
=

1

1 − β
, (4.45)

and for the ultra-relativistic surface motion with γ ≫ 1 one can approximate

dt =
1

2γ2
dt′ . (4.46)

The Eq. (4.46) demonstrates that we have 1/γ2 pulse Doppler compression.

4.3.2 Universal spectrum

Substituting retardation relation in Eq. (4.40), one can find that the Fourier spectrum
of the electric field Erf(t, x = 0) coincides with the spectrum of

F (t) =
A0ω

c
cos(2ωt′ − ωt) . (4.47)

The fine structure of the spectrum of F (t) depends on a particular surface motion X(t),
which is defined by complex laser-plasma interactions at the plasma surface. Attempts
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4.3. Pulse reflection

to approximate the function X(t) were done in the previous theoretical works concerning
harmonic generation from plasma surfaces [35, 141].

It appears, however, that a universal spectrum scaling can be obtained without an
exact knowledge of the function X(t). Being interested in universal results we avoid the
calculation of X(t), and this makes our approach very different from the previous ones.
We will only suppose for a moment that the boundary motion is periodic

X(t+ Tosc) = X(t) , (4.48)

where Tosc is the period of plasma surface oscillations.
If the laser pulse is linearly polarized (LP), then the ponderomotive pressure Ppond ∼ ∇a2/2,

which acts on the plasma surface, contains a term oscillating at twice the laser frequency
Posc ∼ a2

0 cos 2ω0t, (the pressure gets it maximum value two times in one laser period
Tω = 2π/ω of the basic wave). This makes the plasma surface to oscillate at the same
frequency 2ω0. So for linearly polarized laser pulse we have

TLPosc =
π

ω
. (4.49)

Here we consider monochromatic incident laser pulses, but using the Fourier integral,
this restriction can be can bypassed, and even non-monochromatic laser pulses can be
considered. Only non-monotonous dependence of the surface gamma-factor of time is
important for the overall spectrum scalings, (see for details [37]).

Let us consider the Fourier spectrum of F (t):

F̂n =

+Tosc/2
∫

−Tosc/2

F (t)e−iωnt dt =
A0ω

2c

+Tosc/2
∫

−Tosc/2

cos(2ωt′ − ωt)e−iωnt dt =

=
A0ω

2c

+Tosc/2
∫

−Tosc/2

(

cos(2ωt′)e−iωt(n−1) + cos(2ωt′)e−iωt(n+1) (4.50)

−i sin(2ωt′)e−iωt(n−1) + i sin(2ωt′)e−iωt(n+1)
)

dt .

(4.51)

As we can see, the Fourier spectrum of F (t) can be represented in the form:

F̂n =
A0ω

2c

[

Ĉn+1 + Ĉn−1 + i(Ŝn+1 − Ŝn−1)
]

, (4.52)

where Ĉn and Ŝn are the n−th harmonics of

C(t) = cos (2ωt′) , (4.53)

S(t) = sin (2ωt′) , (4.54)

and t′ is the retarded time from Eq. (4.41).
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4. High harmonics generation from plasma surface

We examine only the spectrum of C(t), because the spectrum of S(t) can be worked
out analogously. Using Eq. (4.53) and retardation relation Eq. (4.41), one can express
t′ through t:

t′ = t+
1

c
X

(

1

2ω
arccosC(t)

)

. (4.55)

It is easy to see that the function C(t) has a period π/ω. Thus, its spectrum

Ĉn =

+Tosc/2
∫

−Tosc/2

cos(2ωt′)e−inωt dt (4.56)

contains only even laser harmonics

n = 2m . (4.57)

Making simple arithmetic, we easily obtain:

Ĉn=2m =
1

2

+Tosc/2
∫

−Tosc/2

(

eiΦ1(t) + eiΦ2(t)
)

dt , (4.58)

where

Φ1(t) = 2(1 −m)ωt+ 2Φr(t) , (4.59)

Φ2(t) = −2(1 +m)ωt− 2Φr(t) , (4.60)

Φr(t) =
ω

c
X(t′) =

ω

c
X

(

1

2ω
arccosC(t)

)

. (4.61)

The definition of the retarded phase Φr(t) is recurrent, because C(t) itself is defined
through X.

To calculate the spectrum Eq. (4.58), we will use the saddle point technique. The
saddle points {tn}1 and {tn}2 can be obtained correspondingly from the equations

dΦ1(tn)

dt
= 0 , (4.62)

dΦ2(tn)

dt
= 0 . (4.63)

Taking a derivative, we can rewrite them as

2ω(1 −m) + 2
ω

c

dX

dt′
dt′

dt
= 0 , (4.64)

−2ω(1 +m) − 2
ω

c

dX

dt′
dt′

dt
= 0 . (4.65)
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And using Eq. (4.45) we can rewrite saddle point conditions as

β

1 − β
= m− 1 , (4.66)

β

1 − β
= −(m+ 1) . (4.67)

Now it is seen that the first saddle-point equation has a non-empty set of solutions and
the second saddle-point equation has no real solutions

{tn}1 = tn , (4.68)

{tn}2 = ∅ . (4.69)

Let us introduce the notation
t′(tn) = Tn . (4.70)

The Eq. (4.66) can be rewritten as

βn = β(tn) = 1 − 2

n
. (4.71)

Using the surface gamma-factor γn = 1/
√

1 − β2
n, we can rewrite Eq. (4.71) for n ≫ 1

as
n ≈ 4γ2

n . (4.72)

This equation has a clear physical meaning. The reflected radiation frequency is mul-
tiplied by the factor 4γ2, because of the relativistic Doppler effect, where γ is the rela-
tivistic factor of the plasma surface. If the plasma surface oscillates non-relativistically,
so that β ≪ 1, then Eq. (4.66) has no real solutions for n > 1, and the spectrum of C(t)
exponentially decays. When β ∼ 1, then there is a real solution for any n < nc ≈ 4γ2

max.
The stationary points {tn} corresponding to β(tn) = βn = 1 − 2/n are responsible for
the generation of n-th harmonic. The maximum harmonic number nc is defined by the
maximum surface velocity βmax, see illustration on Figure (4.1).

We will calculate the spectrum for

1 ≪ n≪ nc . (4.73)

Using the obtained saddle-points, we can rewrite the integral in Eq. (4.58)

Ĉn =
1

2

π/ω
∫

−π/ω

exp

{

i

(

Φ1(tn) +
1

2
Φ′′

1(tn)(t− tn)
2

)}

dτ (4.74)

≈ 1

2
exp

(

iΦ1(tn) ±
π

4

)

+∞
∫

−∞

exp

(

1

2
Φ′′

1(tn)(t− tn)
2

)

,

and taking into account
|d2
tΦ1(tn)| = 2|d2

tΦr(tn)| , (4.75)
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't 't
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Figure 4.1: Function β(t′) for possible motions of the plasma surface. Frame (a) demonstrates the
simplest case - single “hump” per half-laser period: two saddle points are responsible for
the generation of n-th harmonic. Frame (b) corresponds to the complex plasma surface
motion, with several local maximums of β. One can see, that the saddle points appear
in pairs, two per “hump”.

finally one obtains

Ĉn =
1

2

∑

tn

√

π

|d2
tΦr(tn)|

exp
(

iΦ1(tn) ± i
π

4

)

. (4.76)

To calculate the spectrum we use the fact that the highest harmonics are generated
around the time t′ = Tmax, when the plasma surface moves towards the laser with the
highest velocity βmax. In its vicinity, one can approximate

β ≈ βmax

[

1 − 1

2
b2(t′ − Tmax)

2

]

. (4.77)

In other words, we approximate the function β(t′) near Tmax by parabola, as shown in
Figure (4.1 a). Let us consider the two nearest to Tmax solutions of equation βn = β(t′),

T (±)
n : β

(

T (±)
n

)

= βn = 1 − 2

n
, (4.78)

∆Tn = T (+)
n − T (−)

n > 0 . (4.79)

Taking into account symmetry of the parabola, we have

T (+)
n − Tmax = Tmax − T (−)

n =
∆Tn

2
. (4.80)
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Substituting in Eq. (4.71) the expansion from Eq. (4.77) and the expression for β from
Eq. (4.71), we obtain

(

1 − 2

n

)

=

(

1 − 2

nc

)(

1 − 1

8
b2∆T 2

n

)

. (4.81)

As we are considering the case 1 ≪ n≪ nc, we obtain

∆Tn ≈ 4

b

√

nc − n

nnc
≈ 4

b
n−1/2 . (4.82)

One should note, that using Eq. (4.77) and Eq. (4.82), the condition n≪ nc is equivalent
to

1 − βmax ≪ b2∆T 2
n . (4.83)

This means that we consider harmonics generation far away from the parabola peak.
The simplest version of the saddle point method used above is valid if the areas that
surround saddle points and define the integral do not overlap. This condition is violated
for n→ ncr when the saddle points are close to each other. Therefore we drop out this
case from our consideration.

Now let us calculate |d2
tΦr(tn)|. From Eq. (4.61) we have:

dΦr

dt
=

ω

c

dX(t′)

dt′
dt′

dt
=

ωβ

1 − β
, (4.84)

d2Φr

dt2
=

d

dt′

(

dΦr

dt

)

dt′

dt
=

ω

1 − β

d

dt′

(

β

1 − β

)

=
ω

(1 − β)3

dβ

dt′
, (4.85)

and from Eq. (4.77)

dβ

dt′

∣

∣

∣

∣

T
(±)
n

= ±βmax
b2

2
∆Tn , (4.86)

(1 − β)|
T

(±)
n

= (1 − βmax) +
1

8
βmaxb

2∆T 2
n ≈ 1

8
βmaxb

2∆T 2
n . (4.87)

Collecting Eq. (4.85), (4.86) and (4.87) together, we obtain

∣

∣

∣

∣

d2Φ

dt2
(T (±)

n )

∣

∣

∣

∣

=
bω

4
n5/2 . (4.88)

Substitution into Eq. (4.76) gives the spectrum intensity scaling

Ĉ2
n ∝ n−5/2 for 1 ≪ n≪ nc . (4.89)

In that way

In ∝
{

n−5/2 for n < nc ,
exponential cut off for n > nc .

(4.90)
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4.3.3 Spectrum modulations

Let us consider the physical mechanism of high-harmonic generation in detail. All
harmonics above a number n (n < nc) are generated at times T

(−)
n < t′ < T

(+)
n . Thus,

the pulse duration ∆t = t(T
(+)
n )− t(T (−)

n ), as it is seen by the observer can be calculated
as

∆t = T (+)
n − T (−)

n − 1

c

(

X(T (+)
n ) −X(T (−)

n )
)

=

T
(+)
n
∫

T
(−)
n

(

1 − 1

c

dX

dt′

)

dt′ = (4.91)

=

T
(+)
n
∫

T
(−)
n

(1 − β(t′)) dt′ ≈ 1

2

T
(+)
n
∫

T
(−)
n

βmaxb
2 (t′ − Tmax)

2
dt . (4.92)

Finally, we have for 1 ≪ n≪ nc

∆tn =
βmaxb

2

24
∆T 3

n ≈ 8

3b
n−3/2 . (4.93)

This estimation tells us that the reflected pulse can be made very short by applying a
filter selecting harmonics with high numbers larger than n. We will discuss it in details
below.

Now let us investigate the phase modulation of spectra. The harmonic with the num-
ber n is generated due to the saddle points, which correspond to the proper surface
velocity βn. These saddle points come into (4.76) with different phase multipliers. Fig-
ure (4.1 b) represents the case of a complicated plasma surface motion, when the surface
velocity β has several maxima, “humps”, per half-laser period. As we can see, the saddle
points are grouped, i.e. there is a couple of the saddle points on every “hump”.

Let us calculate the the phase shift for the saddle points T
(±)
n,i belonging to the the

same i-th “hump”
∆Φn = Φ1(T

(+)
n ) − Φ1(T

(−)
n ) . (4.94)

Using definition from Eq. (4.59), we have

∆Φn = 2(1 −m)ω∆tn + 2
ω

c

(

X(T (+)
n )

)

. (4.95)

The first term was calculated above (see Eq. (4.93)), and for the second term we have

1

c

(

X(T (+)
n −X(T (−)

n )
)

=
1

c

T
(+)
n
∫

T
(−)
n

dX

dt′
dt′ =

T
(+)
n
∫

T
(−)
n

β dt′ ≈ (4.96)

≈ βmax

T
(+)
n
∫

T
(−)
n

(

1 − 1

2
b2(t′ − Tmax)

2

)

dt′ = βmax∆Tn

(

1 − b2

24
∆T 2

n

)

. (4.97)
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Substituting in Eq. (4.95), we obtain

∆Φn

2ω
= βmax∆Tn

(

1 −m
b2

24
∆T 2

n

)

=
2

3
βmax∆Tn . (4.98)

Considering 1 ≪ n≪ nc, we finally have

∆Φn =
4

3
ωβmax∆Tn ≈ 16

3
ωbn−1/2 . (4.99)

As we can see, the phase shift between the contributions of the saddle points belonging
to the the same “hump” is not very large. If we approximate the phase shift with a
continuous function Φ(n)

Φ(n) = Φn, for n ∈ Z, (4.100)

then we can estimate the frequency modulation period

Ω̂ ∼ 2πω

|dΦ(n)/dn| =
3π

4

1

b
n3/2 . (4.101)

The interference between contributions of different “humps” brings modulation into the
spectrum only if

Ω̂ ≪ nc , (4.102)

i.e. √
nc ≫

1

b
. (4.103)

On the other side, the phase shift between the contributions from different “humps”
can be much larger. In the case of a non-trivial surface motion, several β “hump” per
oscillation period can exist, which in turn can cause the spectrum modulation. Interfer-
ence between the different saddle points can lead to modulations of the spectrum. This
can be in agreement with mechanism proposed in [139] and can explain experimental
observations [139, 140].

But it is evident, that the larger number of the saddle points does not change the
averaged value for d2

tΦ(tn) and, consequently, does not affect the overall spectrum scaling
∼ n−5/2.

Strictly speaking, the above analysis is valid for a monochromatic incident wave.
However, one should note, that taking into account the finite bandwidth does not change
the spectrum significantly. So the scaling ∼ n−5/2 is valid for short laser pulses as well.
Detailed analysis of finite bandwidth influence we present in paper [37].

For a discussion of the spectrum modulations see also [140, 139].

4.4 Coherent Harmonics Focusing

In the preceding Section we have shown that high harmonics can be used for ultra-
short pulse generation. To produce such pulses we need to diminish the contribution
of “low” energy photons with energy somewhat less than 1 keV. It is difficult to find a
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material what is able to accomplish this task, since all material are rather transparent
for these high frequencies. Therefore we choose another way. Instead of decreasing the
contribution of “low” energy photons, one can increase the contribution of the highest
energy ones. As we can see in this Section, harmonic focusing allows reaching this goal,
because the larger the harmonic number, the stronger the intensity boost at the focus.
As a result, the harmonic focusing is a way to filtering out the low number harmonics.
Now we will derive conditions for which this method works efficiently.

To investigate the CHF mechanism let us consider a laser wave with the vector po-
tential

A(t, x) = A0 exp

(

−(x/c− t)2

τ 2
+ iω0(x/c− t)

)

+ c.c. . (4.104)

If we suppose that this wave is reflected from a sharp surface of the plasma electron fluid,
the reflected radiation contains high harmonics as it was shown above. The reflected
radiation can be expressed as the Fourier integral

Erf(t, r) =

+∞
∫

0

Eω exp (iωt+ iωx/c) dω + c.c. , (4.105)

where r = (x, y, z). As it was shown in Section 4.3.2, in the range 1 ≪ ω/ω0 ≤ nc the
spectrum of the reflected radiation can be wrote in form











|Eω|2 = η
A2

0

c2

(ω0

ω

)p

,

arg Eω ≈ Cωτ + ϕ ,

(4.106)

where η is the conversion efficiency, ϕ is the initial harmonics phase, and C is a constant.
One should note, that the harmonics coherence leads to the fact that C does not depend
on ω. For regime which was described in Section 4.3.2, the exponent index p = 5/2. In
[37] it was shown, that for some interaction regime (rather exotic) even p = 3 can be
obtained.

Eq. (4.105) is written for a plane wave reflected from a plane surface. To treat
reflection from a curved surface, we will re-write (4.105) using Huygens principle (see
for details [146]). The reflected radiation is given by the Fourier integral

Erf(t, r) =

+∞
∫

0

E(ω, r) exp (iωt) dω + c.c. , (4.107)

where harmonics E(ω, r) can be expanded on the spherical waves

E(ω, r) =
ω

2πic

∫

exp (−iωR/c)
R

Eω(r
′) dS . (4.108)

The integral in Eq. (4.108) is taken over the wave front S, E(ω, r′) is the Fourier com-
ponent of the electric field at the point r′ of S, R = |r − r′|.
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As an example we consider the simplest case when a spherical wave is reflected from
a segment of a co-focal spherical surface with the radius R0. The segment occupies the
solid angle Ω ≪ 4π. If R0 ≫ λ, then the spectrum given by Eq. (4.106) is valid at every
reflection point, and the focal field is

Ef = R0Ω

∫

ωEω exp

{

iω

(

t− R0

c

)}

dω

2πci
+ c.c. . (4.109)

Substituting the power-law spectrum from Eq. (4.106) into the integral in Eq. (4.109),
we find that the field reaches its maximum Emax

f at the focus at time t = tf ,

tf ≈
R0

c
− Cτ . (4.110)

Field Emax
f is given by formula

∣

∣Emax
f

∣

∣

2

|E0|2
= η

(

4R0Ω

λ

)2(
nqc − 1

4 − p

)2

sin2 ϕ , (4.111)

where E0 = ω0A0/c and
q = 2 − p/2 . (4.112)

If q < 0 one has nqc ≪ 1. In this case, |Ef |2 is defined by low order harmonics.
For q > 0 one has nqc ≫ 1 and we can rewrite Eq. (4.111) as

∣

∣Emax
f

∣

∣

2

|E0|2
= η

(

4R0Ω

λ

)2
n2q
c

(4 − p)2
sin2 ϕ . (4.113)

As we can see from Eq. (4.113) in this case
∣

∣Emax
f

∣

∣

2
is defined by the coherent focusing

of high order harmonics and the CHF intensity boosting factor is n2q
c .

So we can see, that the condition of coherent harmonic focusing is

p < 4 . (4.114)

The oscillating integral in Eq. (4.109) gives the pulse duration at the focus

τf =
2π

ω0nc
. (4.115)

Let as to compare this result with a general power-law spectrum of the electric field
(without coherency)

Eω ∝ exp(−iΨ(ω))/ωp/2 . (4.116)

For such a spectrum one finds that the intensity at the focus is

|E|2 ∝
∣

∣

∣

∣

Re

∫

exp [−iΨ(ω) + iω(t−R0/c)]

ωp/2−1
dω

∣

∣

∣

∣

2

. (4.117)
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If the harmonics are incoherent, then the function Ψ(ω) is a fast oscillating. Using the
same stationary points method we find, that at each moment t the significant contribu-
tion to the integral in Eq. (4.117) gives only the harmonic ω(t), which frequency satisfies
the equation

dΨ(ω)/dω = t− R0/c . (4.118)

Thus we can see, that there is no increase in the intensity at the focus due to the
incoherent harmonic focusing for p > 2, (compare with Eq. (4.114)).

4.4.1 Intensity scaling of plasma coherent harmonics focusing

It follows from Eq. (4.12) that the relativistic gamma-factor of the reflecting surface
scales as

γ(t) = a0γ̂(ω0t, ω0τ,Γ) , (4.119)

where γ̂ is a universal function. As a result, one finds

η = η (Γ, ω0τ) , (4.120)

ϕ = ϕ (Γ, ω0τ) , (4.121)

and

γmax = G (Γ, ω0τ) a0 , (4.122)

nc = 4a2
0G

2 (Γ, ω0τ) , (4.123)

where all the functions η, G and ϕ are universal.
Using the similarity theory, we can find the focal intensity analytically. We choose the

parameters ω0τ and Γ in such a way, that the spectral slope p = 5/2 and the parameter

q = 3/4. Then, the CHF amplification factor is n
3/2
c . Let us specify our results for

this particular case. From Eq. (4.111) we obtain a scaling for the focal intensity ICHF

produced by the CHF and for the pulse duration at the focus τCHF. If one fixes the
dimensionless parameter Γ and changes the laser amplitude a0 together with the plasma
density Ne in such a way that Γ = a0Nc/Ne = const, then

ICHF = µ1 (R0Ω/λ)2 a3
0I0 , (4.124)

τCHF = 2πµ2/(a
2
0ω0) , (4.125)

where I0 and a0 are the incident pulse intensity and its dimensionless amplitude at the
reflecting surface; µ1 = µ1(ω0τ,Γ) and µ2 = µ2(ω0τ,Γ) are universal functions with their
values of the order of unity.

4.4.2 Schwinger limit

It follows from Eq. (4.125) that the Schwinger limit

IQED =
cE2

QED

4π
, EQED =

m2
ec

3

e~
. (4.126)
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can be reached at the coherent harmonic focus for the incident laser pulse intensity

Icrit =

(

λ

R0Ω
√
µ1

)4/5(
~ω0

mec2

)6/5

IQED . (4.127)

Assuming the geometrical factorR0Ω
√
µ1/λ ≈ 1, we get Icrit ≈ 8.5·1022 (µm/λ)6/5 W/cm2.

As we can see, the CHF effect allows one to reach the Schwinger limit of vacuum
polarization using source laser pulses with reasonable intensities. Simultaneously, the
CHF works as a spectral filter and shortens the pulse duration down to the zeptosecond
range.

4.5 Simulations

To check the validity of our analytical results and to demonstrate the CHF principle,
we have done a series of direct 1D and 3D particle-in-cell simulations, using the code
(VLPL), see for details Appendix B.

4.5.1 Power-law spectra

To verify the power-law spectra for reflected radiation, we took the laser pulse with the
Gaussian temporal profile

a0 exp
(

−t2/τ 2
L

)

, (4.128)

where τL is the pulse duration and a0 is the pulse amplitude. This pulse was incident onto
a plasma layer with a step density profile. Taking into account possible applications,
we consider the plasma density Ne = 30Ncr, which roughly corresponds to the solid
hydrogen or liquid helium.

Figure (4.2) shows spectra of the reflected radiation for laser pulses with the duration
ωτL = 4π and the amplitudes a0 = 5, 10, 20.
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4. High harmonics generation from plasma surface

Figure 4.2: Spectra of the reflected radiation for the laser amplitudes a0 = 5, 10, 20. The dashed
line marks the universal scaling I ∝ ω−5/2.
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Figure 4.3: Electron distribution function The helix represents the electron surface motion in the
laser field. The reddish downward spikes stay for the surface relativistic motion towards
the laser. These spikes are responsible for the zeptosecond pulse generation.
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4.6. Numerical simulations of Coherent Harmonics Focusing

To verify the power-law scaling of the spectral intensity we use log-log scale on
Figure (4.2). As one can see, the spectral intensity yields to the power-law scaling
IΩ ∝ n−5/2, which confirms our analytical model.

In Figure (4.2) we can approximately localize the critical harmonic number nc, where
the the power-law scaling changes into the exponential decay. One can observe, that
the critical harmonic number nc, increases for higher laser amplitudes.

The spectral intensity modulations discussed in previous Section can be also observed.

4.5.2 Reflected radiation structure. Ultra-short pulses

Let us consider in details the particular case a0 = 20 (the red line in Figure (4.2)). As
we can see, in this case, the power-law spectrum extends above the harmonic number
2000, and zeptosecond pulses can be generated.

The temporal profile of the reflected radiation is shown in Figure (4.4 a). As we can
see, a train of attosecond pulses is observed in reflected radiation, (see also [141]).

To understand the reason of such structure of reflected radiation, let us investigate
the evolution of distribution function of plasma electrons. In order to do this, we will
introduce the function f(t, x, px), which is the distribution function at the moment t. For
considering parameters (a = 20, N = 30Ncr), this function is shown on the Figure (4.3).

At the vicinity of x = 0 it represents the surface motion. As we can see, after the pulse
reaches the plasma boundary, it causes the surface oscillations. Each spike with px > 0
corresponds to the surface motion towards the incident laser pulse, that generates the
short reflected pulse. From Figure (4.3) we can see, that plasma oscillates with period

Tosc =
Tω
2
, (4.129)

where Tω = 2π/ω is the laser period. This is in agrreement with Eq. (4.49). One can
see from Figure (4.3), that the maximum surface gamma-factor γmax ≈ 25 is achieved
at the time t ≈ 6Tω.

Now we apply a spectral filter to select the harmonics above n = 300. As a result,
a train of much shorter pulses is recovered, see Figure (4.4 b). Let us zoom one of
these pulses, see Figure (4.4 c). This pulse width at half maximum is about 300 zs. Its
intensity normalized to the laser frequency is (eEzs/mcω)2 ≈ 14 that corresponds to the
intensity Izs ≈ 2 × 1019 W/cm2.

4.6 Numerical simulations of Coherent Harmonics

Focusing

First we want to present 3D simulations, when a linearly polarized spherical laser wave
is reflecting from a co-focal spherical plasma mirror. To compare the CHF and a simple
geometric focusing of the laser fundamental wave we have done another 3D simulation,
where the spherical laser wave was converging down to the theoretically smallest possible
spot size λ0/2.
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Figure 4.4: Zeptosecond pulse train: a) temporal structure of the reflected radiation; b) zeptosecond
pulse train seen after spectral filtering; c) one of the zeptosecond pulses zoomed, its
FWHM duration is about 300 zs.

The laser pulse has a Gaussian temporal profile:

a(t, R) = a0

(

R0

R

)

exp(−t2/T 2) cos(ω0(t− R/c)) , (4.130)

with the amplitude a0 = 3 when it arrives at the mirror surface located at R0 = 4λ.
The pulse duration was T = 2π/ω0. The plasma density is N = 5Nc and it has step
density profile.

The 3D simulation results are presented in Figure (4.5). The frame (a) in Figure (4.5)
shows the intensity distribution in the focal plane of the converging fundamental laser
wave (no harmonics). At the contrary, Figure (4.5 b) shows the focal plane of the CHF
produced by the laser wave bounced off a concave plasma surface. The intensity in the
center is boosted by more than an order of magnitude in comparison with the simple
linear focusing.

Figure (4.5 c) shows the on-axis cut of the CHF reflected intensity in the polarization
plane (XY ) at the focusing time. Here one sees a periodic structure defined by the
half-wavelength of the laser fundamental and the very sharp intensity spike at the CHF
focus. The same spike is perfectly seen also in Figure (4.5 b).
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Figure 4.5: 3D PIC simulation results, distribution of the dimensionless intensity
I = (E2 +B2)(e2/2mcω0)

2. (a) Intensity distribution in the focal plane (Y Z)
due to simple focusing of the laser fundamental; (b) intensity amplification in the focal
plane (Y Z) by the CHF effect; (c) on-axis CHF intensity cut in the polarization plane
(XY ): the periodic structure is defined by the laser fundamental. The characteristic
very sharp intensity spike in the focus is due to the CHF boosting.
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Figure 4.6: Numerically obtained scaling for the CHF focal intensity versus of the incident laser am-
plitude. The fundamental laser wavelength is assumed λ0 = 750 nm, the dimensionless
parameter Γ = aNc/Ne = 0.6. The dashed line marks the vacuum breakdown intensity
IQED. The numerical scaling agrees with the analytical result form Eq. (4.125).

The spike tip has a width of the single grid cell hy = hz = 0.0125λ0 and thus is at
the very limit of the numerical resolution. Yet, the present 3D PIC simulation contain
already 3 × 108 grid cells and 109 numerical particles, which is close to the limit of
the available computer capabilities. The further grid refining, e.g., by factor 2 in each
dimension of the 3D geometry would require 16 times more computational time and 8
times more computer memory, which is not feasible presently.

To fit the problem into the available computational resources, we have to use 1D PIC
simulations. We take the fundamental laser wavelength λ0 = 750 nm. We made a series
of simulations for different a0 fixing the dimensionless parameter Γ = aNc/Ne = 0.6.

We assume that the 1D harmonics are reflected by a spherically focusing mirror.
Then, we applied the operator from Eq. (4.109) to the harmonics Eω taken from the 1D
PIC results. The mirror radius is R0 = 4λ0 and the solid angle Ω = 1. On this way we
are able to obtain numerically the scaling for the CHF focal intensity ICHF over a wide
range of the incident laser intensities I0.

The numerical results are shown in Figure (4.6). They are in a good agreement with
the analytical scaling given by Eq. (4.125). The broken line in Figure (4.6) marks the
vacuum breakdown intensity IQED. The scaling in Figure (4.6) shows that the intensity
IQED can be achieved in the CHF focus by using an incident laser pulse with I0 ≈
1022 W/cm2.

The highest incident laser pulse intensity we have simulated in 1D is I0 = 2.4 ×
1022 W/cm2 which corresponds to the relativistic amplitude a0 = 100 (the rightmost
upper point in Figure (4.6)). The reflected radiation spectrum for this simulation |Eω|2 is
presented in Figure (4.7). One can see that the power-law spectrum |Eω|2 ∝ (ω0/ω)5/2
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4.6. Numerical simulations of Coherent Harmonics Focusing

ω/ω0

|Eω|2

Figure 4.7: Harmonics spectrum |Eω|2 of the reflected radiation for the incident laser intensity
2.4 × 1022 W/cm2 and the relativistic amplitude a0 = 100. The power-law spectrum
|Eω|2 ∝ (ω0/ω)5/2 reaches up to the frequency ω ≈ 5 × 104ω0.

reaches up to the frequency ω ≈ 5 × 104ω0. We want to note, that we can achieve
the extremely high intensity via the CHF boosting because of slow-decaying harmonics
spectrum.

85



86



5 Summary

5.1 Main results

The principal results presented in the thesis are the following:

1. The new efficient mechanism of proton acceleration in targets, consisted of ions
mixture was proposed. To describe this mechanism, the analytical model of “ion
wakefield acceleration” was developed. It was shown, that under certain conditions
ions relativistic threshold amplitude is scaling as ∝

√

mi/me.

2. The relativistic long living solitons in plasma were observed numerically in direct
particle-in-cell simulation. A one-dimensional analytical theory based on the non-
linear Schrödinger equation was constructed. The possibility of an effective three-
dimensional laser pulse self-compression in plasma was shown numerically.

3. The theory of high harmonic generation from sharp overdense plasma surfaces
is developed. The universal power-law spectrum of reflected radiation ω−5/2 was
obtained. The possibility of zeptosecond pulses production using present laser
technologies was shown.

4. The Coherent Harmonic Focusing model for the high harmonics generated off
concave overdense plasma boundaries was proposed. The possibility to achieve
the Schwinger limit of vacuum breakdown for a reasonable laser pulse energy was
shown.
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A Particle-in-cell codes

The modern theoretical laser plasma physics is interested in intensities, at which the
electrons motion (and in some cases even ions motion) is essentially relativistic (the
particles gamma-factor γ ≫ 1). The relativistic motion of electrons in laser plasma
interaction is highly non-linear. Because of that the number of analytical methods
application is limited and numerical techniques should be used.

From physical point of view all plasma processes can be divided in two classes. The
first class corresponds to the case, when collisional effects succeed to relax particles
to a local thermodynamic equilibrium (LTE), so that one can postulate that in each
infinitesimal plasma volume the particle distribution is Maxwellian. The second class
includes the physical processes, where the thermodynamic equilibrium is not achieved
and the local particle distribution is essentially non-Maxwellian.

According to this, there are two basic methods of plasma description

• (Magneto-)hydrodynamic description. In this description, the plasma is treated as
a conducting fluid (or a set of fluids). It is based on equations for moments of the
distribution function and the Maxwell equations.

• Kinetic description. In this case one has to describe a detailed dynamics of the
distribution function in the phase space. One distinguishes “Vlasov” and particle-
in-cell (PIC) methods. The first method is to integrate the Vlasov equation nu-
merically on an Eulerian grid in the phase space. The second method introduces a
collection of numerical macro-particles and follows their motion on a spatial grid.

The MHD description is good for large scale simulations, such as fusion plasmas, space
and solar plasmas, electric propulsion. However, if the problem is essentially kinetic,
i.e., the particle distribution functions differ significantly from the Maxwellian one, then
a kinetic description should be used. Examples of significantly kinetic problems are:
Landau damping, wave-particle resonance, etc.

We want to note, that some problems can have several levels of description. For
example, the slow ion component motion can be described as a fluid, while the electrons
motion may require a kinetic description. In such cases so-called “hybrid” codes may be
needed, (see for example [147]). Even more, in many situations plasma can be considered
as collisionless, so its dynamics is defined mainly by kinetic effects.

In relativistic laser plasma interactions kinetic effects dominate, so that we are going
to consider the kinetic approach.

The first kinetic numerical method is based on the system of Vlasov-Maxwell (or
Vlasov-Poisson) equations. The physical meaning of this approach is very clear: in-
teractions between point-like charged particles are replaced by mean electromagnetic
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Integration of motion equations: F -> v

Moving particles: v -> x

Integration of Maxwell equations on the grid:

      (ρ, j) -> (E, B)

Weighting:

(E, B) -> F

Weighting:

(x, v) -> (ρ, j)

Figure A.1: One time step of particle-in-cell simulation.

fields. These fields satisfy the Maxwell equations, in which charge and current densities
are determined by the particle distribution functions. However, for the most interest-
ing cases, the system of Vlasov-Maxwell equations can not be solved analytically. A
numerical solution of 3D problems with Vlasov-Maxwell description requires solution of
the Vlasov equation, which is a partial differential equation for the distribution function
depending on six coordinates and time. This is far beyond the possibilities of nowadays
computers.

The alternative approach is the particle-in-cell (PIC) method [148, 149]. It is one of the
most successful numerical technique for plasma kinetic simulations [149, 150, 148, 151].

PIC considers a motion of “macro-particles”, with the same charge to mass ratio as the
physical plasma particles of a particular species qα/mα. As we can see, macro-particles
can be treated as a large number of real particles, i.e., clusters (or “clouds”). From the
hydrodynamical point of view, these macro-particles can be considered in the framework
of “Lagrangian” fluid description.

The macro-particles motion is calculated according to the equations of motion in
electromagnetic fields. The electromagnetic fields are calculated self-consistently solving
the Maxwell equations on a spatial grid across the plasma. The charge density at each
grid position is determined by assigning particles to the grid according to their positions
and the weighting scheme. The scheme of a PIC computational cycle is shown on
Figure (A.1), see [148] for details.

PIC codes can include binary collisions between charged particles using Monte-Carlo
techniques. A particle-in-cell method merged with Monte Carlo collision (MCC) calcu-
lations was described in [152].
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B Virtual Laser Plasma Laboratory

For kinetic simulations described in this thesis we used the one-dimensional and three-
dimensional versions of the code Virtual Laser Plasma Laboratory (VLPL), which
was initially created by Alexander Pukhov [153], and nowadays is being developed by
Alexander Pukhov, Sergey Kiselev and the author of this thesis.

VLPL is a relativistic electromagnetic particle-in-cell (PIC) code, where the multi-
component plasma is represented by macro-particles. The electromagnetic fields E and
B are calculated on the grid.

Laser pulse(-s) is introduced as a time-dependent boundary condition. Periodic and
absorbent boundary conditions for fields and macro-particles can be used.

VLPL is an object-oriented code, written in C++. There are 1D (1D3V) and 3D
versions. The 3D version is parallelized using MPI. For simulations presented in this
thesis we use the parallel cluster of 76 Xeon-Processors/154 GByte RAM.
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