Chemie und Koordinationschemie von Trifluoracetaten des Bismuts und des Antimons

Inaugural - Dissertation

zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Dipl.-Chem. Bruno Kugel

aus Konz

Düsseldorf

2004

Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. W. Frank

Korreferent: Prof. Dr. A. Mewis

Tag der mündlichen Prüfung: 14. Juni 2004

Die vorliegende Arbeit entstand zwischen November 1998 und April 2004 im Arbeitskreis von Prof. Dr. W. Frank im Fachbereich Chemie der Universität Kaiserslautern bzw. im Institut für Anorganische und Strukturchemie II der Heinrich-Heine-Universität Düsseldorf.

Herrn Prof. Dr. Frank danke ich für die interessante Themenstellung und die zahlreichen Diskussionen, die zum Gelingen dieser Arbeit beigetragen haben. "Ich kenn die Hälfte von euch nur halb so gut wie ich's gern möchte und ich mag weniger als die Hälfte von euch auch nur halb so gern wie ihr's verdient."

(Bilbo Beutlin an seinem "hundertelfzigsten" Geburtstag)

1.	Einl	eitung	1
	1.1	Trifluoracetate von Haupt- und Nebengruppenmetallen	1
	1.2	Trifluoracetate von Elementen der 15. Gruppe	2
	1.2.1	Trifluoracetate von Phosphor, Arsen und Antimon	2
	1.2.2	Trifluoracetate von Bismut	4
	1.3	π -Aren-Komplexe	8
	1.3.1	π -Aren-Komplexe von p-Block-Elementen	8
	1.3.2	π -Aren-Komplexe von Bismuttrifluoracetaten	.10
	1.4.	Crystal Engineering – supramolekulare Aspekte der Festkörperassoziation	.13
2.	Pro	blemstellung	.14
3.	Eige	ene Ergebnisse	.15
	3.1	$Das \ Reaktions system \ Bi_2O_3/Trifluoressigs "aureanhydrid" (TFAA) \dots \\$.15
	3.1.1	Ausgangssituation	.15
	3.1.2	Synthese, Eigenschaften und Festkörperstruktur von Bi(O ₂ CCF ₃) ₃ (6)	.16
	3.1.3	Synthese und Charakterisierung von Bi ₃ O(O ₂ CCF ₃) ₇ (12)	.23
	3.1.4	Verfeinerung der Kristallstruktur von $Bi(O_2CCF_3)_3 \bullet O(OCCF_3)_2$ (10)	.23
	3.2	Das Reaktionssystem Bi(O ₂ CCF ₃) ₃ /Benzol	.29
	3.2.1	Synthese, Eigenschaften und Kristallstruktur von $[(C_6H_6)_2Bi_3O(O_2CCF_3)_7]_2 \bullet C_6H_2$	l ₆
		(20)	.29
	3.3	Das Reaktionssystem Bi(O ₂ CCF ₃) ₃ /para-Xylol	.40
	3.3.1	Eigenschaften und Festkörperstruktur von $[Bi(O_2CCF_3)_3]_4 \cdot C_8H_{10}$ (17)	.42
	3.3.2	Eigenschaften und Kristallstruktur von $[Bi_3O(O_2CCF_3)_7]_2 \cdot 4 C_8H_{10}$ (18a)	.53
	3.3.3	Kristallstrukturanalytische Charakterisierung von $18b$ - Ein Stereoisomer von $18a$	a
			.71
	3.3.4	Vergleichende Betrachtungen zu 18a, 18b und verwandten Verbindungen	.79
	3.3.5	Synthese, Eigenschaften und Kristallstruktur von $[Bi_2O(O_2CCF_3)_4]_2 \cdot 3 C_8H_{10}$ (19	י) .82
	3.4	Das Reaktionssystem Bi(O ₂ CCF ₃) ₃ /H ₂ O	.93
	3.4.1	Synthese supramolekularer basischer Bismut(III)-trifluoracetate	.93
	3.4.1.1	Bildung, Eigenschaften und Kristallstruktur von Bi ₃ (OH)(O ₂ CCF ₃) ₈ (21)	.96
	3.4.2.1	Das Raumnetzcarboxylat $[Bi_{10}O_8(O_2CCF_3)_{20}][Bi_6O_4(OH)_4]$ (22)	05
	3.4.1.3	Das Schichtencarboxylat { $[Bi_6O_5(OH)_3(H_2O)_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_5]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_5]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CCF_3)_2]_3 \cdot 4H_2O_2(O_2CF_3)_2]_3 \cdot 4H_2O_2(O_2CF_3)_2$	C{
		(23)1	15

3.4.3	Thermolyse der basischen Trifluoracetate 22 und 23 – Abhängigkeit des				
	Produktspektrums von den Reaktionsbedingungen				
3.5	Das Reaktionssystem Bi(O ₂ CCF ₃) ₃ /Bi	137			
3.5.1	Eigenschaften und Kristallstruktur von Tetrakis(μ-trifluoracetato-κO,κO')-				
	dibismut(Bi-Bi) (15)				
3.6	Das Reaktionssystem Bi ₂ (O ₂ CCF ₃) ₄ /para-Xylol	148			
3.6.1	π -Arenkomplexe des Bismut(II)-trifluoracetats – Eigenschaften und Krista	llstruktur			
	von [Tetrakis(μ-trifluoracetato-κΟ,κΟ')bis(η ⁶ -para-Xylol)dibismut(Bi-Bi)] (16)			
		149			
3.7	Das Reaktionssystem Sb ₂ O ₃ /TFAA – Bisheriger Kenntnisstand				
3.7.1	Eigene Untersuchungen des Reaktionssystems Sb ₂ O ₃ /TFAA				
3.7.1.1	Festkörperstruktur und Eigenschaften der monoklinen Modifikation des				
	Antimon(III)-trifluoracetats (3b)				
3.7.1.2	2 Die kubische Modifikation des Antimon(III)-trifluoracetats (3a)				
3.8	Das Reaktionssystem Sb(O ₂ CCF ₃) ₃ /para-Xylol				
3.8.1	Die trigonale Modifikation des Antimon(III)-trifluoracetats (3c)				
3.9	Crystal Engineering der polymorphen Antimon(III)-trifluoracetate –				
	Lösungsmittelkontrollierte Dimensionalität der koordinationspolymeren Ve	rbände			
		177			
3.10	Das Reaktionssystem Sb(O ₂ CCF ₃) ₃ /Trifluoressigsäure – Saure Antimon(III)-			
	trifluoracetate				
3.10.1	Festkörperstruktur und Eigenschaften von $Sb(O_2CCF_3)_3 \bullet CF_3COOH(26)$				
3.10.2	Bildung und Kristallstruktur von $\{[(Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH\}_2 (27)$				
3.11	Das Reaktionssystem Sb(O ₂ CCF ₃) ₃ /Hexamethylbenzol – Synthese, Eigenso	haften			
	und Kristallstruktur von Antimon(III)-trifluoracetat- η^6 -hexamethylbenzol (2010)	25)			
3.12	Synthese und Kristallstruktur eines π -Arenkomplexes eines basischen				
	$\label{eq:antimon} Antimon(III) \text{-trifluoracetats} \ [Sb_2O(O_2CCF_3)_4]_2 \bullet 2 \ C_8H_{10} \ \textbf{(24)} \dots \textbf{(24)} \dots \textbf{(24)}$				
4. Zus	ammenfassung				
4.1	Bismuttrifluoracetate				
4.2	Antimon(III)-trifluoracetate				
5. Exp	erimenteller Teil	214			
Allgen	neine Arbeitstechniken und Geräte				
Ausga	ngsverbindungen und Lösemittel				

7.	Anh	ang	252
6.	Lite	ratur	244
	5.24	Synthese von $[Sb_2O(O_2CCF_3)_4]_2 \cdot 2 C_8H_{10} (24)$	242
	5.23	Herstellung von $Sb(O_2CCF_3)_3 \cdot C_6Me_6$ (25)	242
	5.22	Herstellung von { $[Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH$ } ₂ (27)	241
	5.21	Herstellung von Sb(O ₂ CCF ₃) ₃ • CF ₃ COOH (26)	240
	5.20	Herstellung der trigonalen Modifikation des Sb(O ₂ CCF ₃) ₃ (3c)	239
	5.19	Herstellung der kubischen Modifikation des Sb(O ₂ CCF ₃) ₃ (3a)	238
	5.18	Herstellung von Kristallen der monoklinen Modifikation des Sb(O ₂ CCF ₃) ₃ (3b)	.237
	5.17	Herstellung von Sb(O ₂ CCF ₃) ₃ (3) (Rohprodukt)	236
	5.16	Herstellung von $Bi_2(O_2CCF_3)_4 \bullet 2 C_8H_{10}$ (16)	235
	5.15	Herstellung von $Bi_2(O_2CCF_3)_4$ (15)	232
		22 und 23	231
	5.14	Herstellung des monoklinen α -Bi ₂ O ₃ (7 a) aus dem Gemisch der Hydrolyseprod	ukte
		22 und 23	231
	5.13	Herstellung des tetragonalen β -Bi ₂ O ₃ (7b) aus dem Gemisch der Hydrolyseprod	lukte
	5.12	Herstellung von BiOF aus dem Gemisch der Hydrolyseprodukte 22 und 23	230
	5.11	Herstellung von { $[Bi_{6}O_{5}(OH)_{3}(H_{2}O)_{2}(O_{2}CCF_{3})_{2}]_{2}[Bi(O_{2}CCF_{3})_{5}]_{3} \cdot 4H_{2}O$ } (23)	0.229
	5 10	Herstellung von $[Bi_{10}O_{\circ}(O_{2}CCF_{3})_{20}][Bi_{6}O_{4}(OH)_{4}]$ (22)	227
	59	Herstellung von $Bi_2(OH)(O_2CCF_3)_8$ (21)	0
	5.8	Herstellung von $\operatorname{Bi}_{2}O(O_{2}CCF_{2})_{4} \cdot 3 \operatorname{C}_{8}H_{10}(100)$	
	5.0	Herstellung von $[Bi_2O(O_2CCF_2)_7]_2 \cdot 4 C_8H_{10}$ (18h)	224
	5.5	Herstellung von [Bi ₂ O(O ₂ CCF ₃) ₃] ₄ · C_8H_{10} (18 ₉)	222
	5.5	Herstellung von $[Bi(O_2CCF_3)_2] \bullet C_0H_0$ (17)	221
	5.5	Herstellung von $[(C_1H_2)_2 Bi_2O(O_2CCF_3)_2] = C_2H_2(20)$	221
	5.2	Herstellung von $Bi_{3}O(O_2CCF_3)$, $O(O_2CCF_3)$, (12)	220
	5.1 5.2	Herstellung von $Bi(O_2CCF_3)_3$ (6)	217
	Synthe	sevorschriften	217
	Cruchles	a arren a haiftean	217

1. Einleitung

1.1 Trifluoracetate von Haupt- und Nebengruppenmetallen

Über die Synthesen und Eigenschaften der Trifluoracetate von Cu^{II}, Fe^{II}, Ni^{II}, Ag^I, Hg^I, Hg^{II}, Tl^I, Pb^{II}, Ba^{II} und Al^{III} wurde im Jahr 1939 von F. Swarts berichtet^[1]. Die meisten dieser Verbindungen sind sehr gut löslich in Wasser und neigen zur Kristallisation in Form von Hydraten. Die Löslichkeit einer großen Anzahl von Metallsalzen in Trifluoressigsäure, die damit verbundene Bildung von Trifluoracetaten sowie deren Löslichkeit in Trifluoressigsäure untersuchten R. Hara und G. H. Cady 1954^[2]. Ergänzende Untersuchungen dazu wurden von G. S. Fujioka und G. H. Cady zwei Jahre später beschrieben^[3]. M. J. Baillie, D. H. Brown, K. C. Moss und D. W. A. Sharp gelang 1968 die Synthese von wasserfreien Trifluoracetaten von Cr^{II} , Mn^{II}, Fe^{III}, Co^{II}, Ni^{II}, Cu^{II} und Zn^{II} durch die Reaktion des entsprechenden wasserfreien Metallchlorids mit Silbertrifluoracetat Ag(O₂CCF₃) (1) in Nitromethan^[4].

Schema 1

1.2 Trifluoracetate von Elementen der 15. Gruppe

1.2.1 Trifluoracetate von Phosphor, Arsen und Antimon

Das Trifluoracetat des Antimons, $Sb(O_2CCF_3)_3$ (**3a**), wurde erstmals 1957 erwähnt^[3]. Die Autoren stellten den farblosen, kristallinen Feststoff durch die Reaktion des entsprechenden "Carbonats" oder Oxids mit Trifluoressigsäure in Gegenwart von Trifluoressigsäureanhydrid (TFAA) (**2**) her.

Eine weitere Möglichkeit zur Synthese von **3a** sowie der analogen Verbindungen des Phosphors und des Arsens stammt von C. D. Garner und B. Hughes^[5], die die entsprechenden Trichloride MCl₃ (M = P, As, Sb) mit Silbertrifluoracetat (1) in Methylenchlorid umsetzten. Mit dieser Methode erhält man $P(O_2CCF_3)_3$ (4) in Form einer farblosen, flüchtigen Flüssigkeit. Beim analogen As(O_2CCF_3)₃ (5) handelt es sich um einen farblosen, kristallinen Feststoff, der extrem hygroskopisch ist.

Für die Phosphorverbindung wird eine pyramidale Struktur angenommen, bei der das Element dreifach koordiniert ist und ein stereochemisch aktives einsames Elektronenpaar (lone-pair) besitzt. **5** kristallisiert in der azentrischen monoklinen Raumgruppe $Cc^{[6]}$. Der Festkörper ist aus zwei kristallographisch unabhängigen (chirameren) As(O₂CCF₃)₃-Einheiten aufgebaut, die durch sekundäre Kontakte zusammengehalten werden und durch weitere sekundäre As-O-Kontakte mit benachbarten dimeren Aggregaten verknüpft sind (Abb. 1).

Abbildung 1: Zur Molekülstruktur der beiden Chirameren im Festkörper des Arsen(III)-trifluoracetats (5) (oben) und deren räumliche Vernetzung (unten)

Sb(O_2CCF_3)₃ (**3a**) konnte 1980 von D. P. Bullivant, M. F. A. Dove, und M. J. Haley kristallstrukturanalytisch untersucht werden^[7]. Das Produkt war durch Umsetzung von Sb₂O₃ mit Trifluoressigsäureanhydrid und anschließender langsamer Sublimation des Rohproduktes erhalten worden. **3a** kristallisiert dabei in Form farbloser isometrischer Kristalle in der chiralen kubischen Raumgruppe *P*4₃32 bzw. *P*4₁32. Das Antimonatom ist in primärer Koordinationssphäre pyramidal umgeben und dreifach koordiniert, wobei die Trifluoracetatgruppen als einzähnige Liganden fungieren. Diese sind propellerförmig um eine dreizählige Achse angeordnet, auf der das Antimonatom und dessen lone-pair liegen (Abb. 2).

Abbildung 2: Das Sb(O₂CCF₃)₃-Molekül in der Festkörperstruktur von **3a**, Blickrichtung entlang der kristallographischen C₃-Achse

Die chiralen Moleküle sind im Festkörper zum enantiotropen Raumnetzverband verknüpft. Die Koordination des Schweratoms ist dabei insgesamt mit 3+3(+3) (primär+sekundär (intramolekular) (+sekundär, intermolekular)) zu beschreiben.

1.2.2 Trifluoracetate von Bismut

G. S. Fujioka und G. H. Cady erwähnten 1957 erstmals die Formel $Bi(O_2CCF_3)_3$ (6) im Zusammenhang mit einer kristallinen Substanz, die sie durch die Reaktion von Bi_2O_3 (7) mit Trifluoressigsäure in Gegenwart von Trifluoressigsäureanhydrid (2) erhielten^[3]. Fast zwei Jahrzehnte später erhielten P. V. Radheshwar, R. Dev und G. H. Cady^[8] die Verbindungen Na[Bi(O_2CCF_3)_4] (8) und Bi(O_2CCF_3)_3 (6) durch folgende Reaktionen, wobei in beiden Fällen 2 im Überschuss eingesetzt wurde:

NaBiO₃ + 2 O(OCCF₃)₂
$$\Delta$$
 NaBi(O₂CCF₃)₄ + "1/2 O₂"
Bi₂O₃ + 3 O(OCCF₃)₂ Δ 2 Bi(O₂CCF₃)₃

Schema 2

Im Fall des Natriumbismutats **8** muss eine Reduktion des Bi^V zu Bi^{III} stattgefunden haben, deren Verlauf jedoch nicht exakt geklärt ist. Spätere Untersuchungen haben gezeigt, dass unter den in Lit.^[8] angegebenen Bedingungen zwar kein reines Bismut(III)-trifluoracetat gewonnen werden kann, die untere Gleichung aber bei veränderten Reaktionsbedingungen gleichwohl einen Weg zum Produkt aufzeigt^[10] (**Methode a**). Dazu ist ein großer Überschuss an Trifluoressigsäureanhydrid zu vermeiden *und* eine hinreichend lange Reaktionsdauer erforderlich, da sonst die Bildung des Trifluoressigsäureanhydrid-Adduktes relevant wird bzw. lediglich basische Trifluoracetate gebildet werden.

Eine weitere Synthesemöglichkeit (**Methode b**) für die Verbindung 6 entspricht der folgenden Reaktionsgleichung^[5]:

$$BiCl_3 + 3 Ag(O_2CCF_3) \xrightarrow{\text{RT, CH}_2Cl_2} Bi(O_2CCF_3)_3$$

$$1 \qquad \qquad 6$$

Schema 3

Auf diese Art und Weise erhält man das Bismut(III)-trifluoracetat 6 in Form eines weißen, körnigen Feststoffs, der sehr feuchtigkeitsempfindlich und nach neueren Untersuchungen nicht frei von Nebenprodukten ist^[10].

Das erste strukturell aufgeklärte Trifluoracetat des Bismuts war das Trifluoressigsäure-Addukt $Bi(O_2CCF_3)_3 \cdot CF_3COOH (9)^{[9]}$, das anstelle von reinem 6 bei späteren Synthese-Versuchen nach der von Fujioka und Cady beschriebenen Methode erhalten wurde^[3]. 9 kristallisiert in der centrosymmetrischen Raumgruppe $P2_1/n$, wobei das Bismutatom von neun Sauerstoffatomen umgeben ist, deren Zentren ein sehr unsymmetrisches Koordinationspolyeder definieren. Durch die Verknüpfung mit kristallographisch abhängigen benachbarten Polyedern wird eine Kettenstruktur entlang der kristallographischen b-Achse aufgebaut (Abb. 3).

Abbildung 3: Ausschnitt aus der Kettenstruktur von 9

Im Zuge einer systematischen Untersuchung an Bismut(III)-trifluoracetat wurde in unserer Arbeitsgruppe auch das bereits oben erwähnte Trifluoressigsäureanhydrid-Addukt des Bismut(III)-trifluoracetats, $Bi(O_2CCF_3)_3 \cdot O(O_2CCF_3)_2$ (**10**), synthetisiert^[10].

Die Verbindung wurde nach **Methode a** unter Verwendung eines großen Überschusses von Anhydrid erhalten. Sie kristallisiert aus dem Anhydrid in der chiralen monoklinen Raumgruppe $P2_1$. Das Schweratom ist von neun Sauerstoffatomen umgeben. Die Koordinationsfigur des Bismutatoms ist wiederum sehr unsymmetrisch und baut - wie beim Trifluoressigsäure-Addukt **9** - eine Kettenstruktur entlang der kristallographischen b-Achse auf.

Abbildung 4: Ausschnitt aus der Kettenstruktur von 10

Zwei der kristallographisch unabhängigen Trifluoracetatliganden fungieren μ_2 -verbrückend, während der dritte Trifluoracetatligand chelatisierend und verbrückend zum benachbarten Bismutatom koordiniert. Die verbleibende Koordinationslücke am Bismutatom wird von einem zusätzlich koordinierten Trifluoressigsäureanhydridmolekül geschlossen, welches zwei weitere Koordinationsstellen beansprucht.

1.3 π -Aren-Komplexe

Unter dem Begriff π -Aren-Komplexe werden im allgemeinen Koordinationsverbindungen zwischen Metallen oder Metallfragmenten und aromatischen Kohlenwasserstoffen mit sechsgliedrigen Ringen verstanden, in denen eine Wechselwirkung der π -Orbitale des Aromaten mit den Orbitalen des Metallzentrums vorliegt. Die bekanntesten Verbindungen dieser Art enthalten Übergangsmetallfragmente ^[12-14].

1.3.1 π -Aren-Komplexe von p-Block-Elementen

Auch Hauptgruppenelemente (Metalle und Nichtmetalle) können bei entsprechender Funktionalisierung der Liganden Bindungspartner in π -Aren-Komplexen sein, wobei sie stets als Lewis-acides Fragment und der Aromat als Base fungieren. Oft werden die resultierenden π -Aren-Komplexe deshalb auch als Donor-Akzeptor-Komplexe bezeichnet. Letztlich sind sie Ergebnis lockerer Zusammenschlüsse von Molekülen, in denen vielfach ein reversibler partieller Elektronentransfer vom Donor (elektronenreich) zum Akzeptor (elektronenarm) stattfindet (CT-Übergang). Auch wenn der Charge-Transfer nicht die Ursache, sondern in unterschiedlicher Ausprägung Folge der Donor-Akzeptor-Wechselwirkung ist, wird vielfach auch der Begriff Charge-Transfer-Komplexe verwendet. Klassische Beispiele von Donor-Akzeptor-Komplexen sind die sogenannten Menshutkinkomplexe^[15, 16, 18, 19, 20, 23, 147] (ElX₃ mit El = Sb, As und X = Cl, Br).

Ein strukturell deutlich komplexeres Beispiel für die Substanzklasse wurde von Birchall und Johnson 1981 über die Synthese und strukturelle Charakterisierung eines basischen gemischtvalenten Zinntrifluoracetats in Form eines koordinationspolymeren Benzol-Addukts 11 erhalten^[11]. Im festen Zustand (Abb. 5) besteht es aus einer vierkernigen $Sn^{II}_{2}Sn^{IV}_{2}O_{2}(O_{2}CCF_{3})_{8}$ -Einheit mit zwei µ₃-verbrückenden Oxoliganden. Die Trifluoracetatliganden sind µ2-verbrückend zwischen den Sn(II)- und den Sn(IV)-Zentren angeordnet. Ein Benzolmolekül ist beidseitig von Sn(II)-Zentren benachbarter η^{6} -ähnlichen Modus Carboxylateinheiten in einem koordiniert, so dass ein Kettenkoordinationspolymer gebildet wird.

Abbildung 5: Verknüpfung der molekularen basischen Zinntrifluoracetat-Bausteine über beidseitig koordinierte Benzolmoleküle in der Festkörperstruktur von **11**

Als erste Aromatenkomplexe von p-Block-Elementen überhaupt wurden vor mehr als einem Jahrhundert von W. Smith und G. W. Davis Molekülverbindungen von Antimontrichlorid und Aromaten beschrieben^[15]. Die stöchiometrische Zusammensetzung einer Vielzahl solcher Addukte wurde von B. N. Menshutkin bestimmt, nach dem diese schon oben kurz erwähnten Verbindungen heute oft benannt werden^[16].

In Abhängigkeit von den elektronischen und sterischen Eigenschaften des Zentralatoms und des Aromaten findet man bei Arenkomplexen von p-Block-Elementen und insbesondere von Elementen der 15. Gruppe eine große Zahl unterschiedlicher Stöchiometrien und Strukturen^[17, 23, 147].

Im nächsten Unterkapitel möchte ich exemplarisch einige π -Aren-Komplexe von Bismuttrifluoracetaten vorstellen.

1.3.2 π-Aren-Komplexe von Bismuttrifluoracetaten

Aus der Lösung eines 2:1-Gemisches von Hexamethylbenzol (HMB) und dem basischen Bismut(III)-trifluoracetat Bi₃O(O₂CCF₃)₇ (**12**) in Toluol wurde ein Toluolsolvat eines dreikernigen Bismut-Aren-Komplexes der Zusammensetzung Bi₃O(O₂CCF₃)₇ · 2C₆Me₆ · C₆H₅Me (**12a**) isoliert und die Kristallstruktur bestimmt.

Im Zentrum des molekularen Komplexes befindet sich eine dreieckige Bi_3O -Einheit, deren μ_3 -Oxoligand (O1) leicht aus der Ebene der Bi_3 -Einheit herausgehoben ist (Abb. 6).

Abbildung 6: {Bi₃O(O₂CCF₃)₇·2C₆Me₆·C₆H₅Me}-Einheit in der Festkörperstruktur von **12a** Die Wasserstoffatome sowie die Fluoratome sind zur besseren Übersichtlichkeit nicht dargestellt. An alle Bismutatome der zentralen Bi₃O-Einheit ist ein Aren-Molekül koordiniert. Dabei handelt es sich bei Bi1 und Bi2 jeweils um Hexamethylbenzol und bei Bi3 um Toluol. Die Arene sind in nahezu idealer η^6 -Koordination an die Ecken der Bi₃O-Einheit gebunden.

Bei der Reaktion von Bi $(O_2CCF_3)_3$ mit HMB wird eine Verbindung der Zusammensetzung $[Bi(O_2CCF_3)_3 \cdot 1/2 C_6Me_6]_4$ (13) gebildet. Sie liegt im Festkörper als kettenförmiges Tetramer mit endständigen Hexamethylbenzolliganden vor (Abb. 7). Die vier Bismutatome innerhalb einer $[Bi(O_2CCF_3)_3]_4$ -Kette sind zick-zack-förmig in einer Ebene angeordnet.

Abbildung 7: Tetramere [Bi(O₂CCF₃)₃]₄-Einheit im Festkörper von 13

Die zwölf Trifluoracetatliganden lassen sich drei der in der Carboxylatchemie wichtigsten Koordinationsmodi zuordnen^[46]:

- 1.) zwei zweizähnig verbrückende Trifluoracetatgruppen zwischen Bi1 und Bi2 bzw. Bi1a und Bi2a,
- sechs sogenannte dreizähnig verbrückende, jeweils zwei zwischen Bil und Bi2, Bil und Bila bzw. Bila und Bi2a
- 3.) vier zweizähnig chelatisierende, jeweils eine an jedem der vier Bismutatome.

Der Abstand zwischen Bi2 und dem Zentrum des annähernd ideal η^6 -koordinierten Arenliganden deutet auf eine starke Metall-Aren-Wechselwirkung hin. Werden die Zentren der beiden Aromaten als Koordinationsstelle angesehen, so ergibt sich für Bi2 und Bi2a eine siebenfache Koordination (3+3+Aren) und als Koordinationsfigur eine nur leicht verzerrte pentagonale Bipyramide. Im Gegensatz dazu sind die beiden inneren Bismutatome Bi1 und Bi1a der tetrameren Einheit neunfach koordiniert (3+6).

Dieser erste strukturell charakterisierte π -Aren-Komplex des Bi(O₂CCF₃)₃ liefert bei einer Thermolyse auf noch ungeklärtem Weg [Bi₂(O₂CCF₃)₄] · C₆Me₆^[90] (**14**), ein Hexamethylbenzolkomplex eines reduzierten Bismut(II)carboxylats mit Schaufelradstruktur (Abb. 8).

Im Kristall von 14 sind entlang der kristallographischen b-Achse alternierend $Bi_2(O_2CCF_3)_4$ und C_6Me_6 -Moleküle zu einer supramolekularen Kette verbunden, wobei dem reduzierten Carboxylat und dem Hexamethylbenzol als beidseitig η^6 -verbrückendem Baustein jeweils kristallographische 2/m-Symmetrie aufgeprägt ist. Die vier Trifluoracetatliganden fungieren als zweizähnig verbrückende Liganden über die Bi $_2^{4+}$ -"Hantel".

Das Aren-Addukt **14** enthält mit dem Bi₂(O₂CCF₃)₄-Molekül als Bestandteil eines Stapelverbandes mit Hexamethylbenzol das erste reduzierte Hauptgruppenelementcarboxylat.

Sieht man das Ringzentrum des Aromaten als

Abbildung 8: Ausschnitt aus dem eindimensional unendlichen Verbund von Bismut(II)trifluoracetat- und Hexamethylbenzol-Molekülen in Kristallen von rotem **14**

Koordinationsstelle an, so ergibt sich für das einzelne Bismutatom eine im Prinzip tetragonalbipyramidale Koordination, deren Verzerrung eine direkte Folge der unzureichenden Spannweite der Liganden ist. Eine im Sinne eines stereochemisch aktiven einsamen Elektronenpaares deutbare Lücke weist die Koordinationssphäre des Bismutatoms nicht auf, eine bei Bismutkomplexen mit koordinierten Sauerstoffatomen ausgesprochen seltene Situation^[53].

1.4. Crystal Engineering – supramolekulare Aspekte der Festkörperassoziation

Die langjährige intensive Erforschung von Festkörperstrukuren führte zur Erkenntnis, dass eine auf das lokale Geschehen beschränkte Betrachtungsweise der Bindungsverhältnisse und Wechselwirkungen weder eine hinreichende Beschreibung noch eine ausreichende Erklärung für den spezifischen Aufbau von Festkörpern liefern kann. Ein tieferes Verständnis der Zusammenhänge dokumentieren vor allem J.-M. Lehn et al.^[34-36] mit der Einführung der Begriffe "molekulare Selbstorganisation" und der "supramolekularen" Betrachtungsweise. Als grundlegende Kräfte für die Selbstorganisation supramolekularer Systeme, die auch im Zusammenhang mit der Festkörperassoziation von Trifluoracetaten und deren π -Aren-Komplexen relevant sein können^[28-30], sind folgende Arten von Wechselwirkungen zu nennen:

-Coulombwechselwirkungen (ungerichtet, stark)
-Ausbildung von Wasserstoffbrücken (gerichtet)
-Möglichkeiten zum π oder σ-Ladungstransfer
-van der Waals-Wechselwirkungen (ungerichtet, schwach)

abnehmende

Gitterenthalpie-

Beiträge

Die Erfahrung zeigt, dass für die Vorhersage potentieller Kristallstrukturen die kooperative Wirkung wenigstens zweier dieser Wechselwirkungsarten zu berücksichtigen ist. Im speziellen Fall der π -Komplexe von Arenen sollten für Fragen zur Festkörperorganisation sogar alle vier von Bedeutung sein^[37].

2. Problemstellung

Ziel der vorliegenden Arbeit war, die bislang auf spärliche unzusammenhängende Einzelbeobachtungen beschränkte Chemie der Bismut- und Antimontrifluoracetate zu erfassen.

In einem ersten Schritt eines dreistufigen Arbeitskonzeptes wurden dazu zunächst die entsprechenden, bislang nur unzureichend bzw. gar nicht bekannten Stammverbindungen des Bismuts, das Bismut(III)- bzw. das Bismut(II)-trifluoracetat, *als Reinsubstanzen* hergestellt und stofflich *und* strukturell charakterisiert.

Darauf aufbauend wurden in einem zweiten Schritt die zwei materialwissenschaftlich wichtigsten Basisreaktionen der gewonnenen Stammcarboxylate untersucht, die Hydrolyse und die Thermolyse. Die dazu durchgeführten Experimente waren vor dem Hintergrund der besonderen Assoziationsfähigkeit des Trifluoracetatliganden mit der Erwartung verbunden, neuartige basische Bismutcarboxylate mit und ohne strukturdirigierende Donorsolvatisierung herstellen zu können.

Abschließend war mit Ausblick auf zukünftige Arbeiten in einem dritten Schritt zu prüfen, ob sich die bei der Synthese und Strukturcharakterisierung der Bismutverbindungen erfolgreichen Konzepte auf die entsprechende Carboxylatchemie des leichteren Gruppenhomologen Antimon übertragen und sich damit ganz allgemein ein Weg zu einer systematischen Trifluoracetatchemie der Hauptgruppenelemente eröffnen lässt.

3. Eigene Ergebnisse

3.1 Das Reaktionssystem Bi₂O₃/Trifluoressigsäureanhydrid (TFAA) 3.1.1 Ausgangssituation

Die zuerst von Radeshwar et al.^[8] als Syntheseweg für Bi(O₂CCF₃)₃ (**6**) vorgeschlagene Reaktion von Bi₂O₃ mit Trifluoressigsäureanhydrid (TFAA) (**2**) wurde bereits einmal ausführlich untersucht^[10] und kann als einfachstes Verfahren für die Synthese von präparativ weiter nutzbarem **6** angesehen werden, vorausgesetzt die notwendigen Reaktionsbedingungen werden eingehalten. Letzte Ansprüche an die Reinheit vermag aber auch das auf diesem Wege bei optimalen Bedingungen erhaltene, stets feinkristalline Material nicht zu befriedigen, da **6** offensichtlich stets im Gleichgewicht mit dem basischen Carboxylat Bi₃O(O₂CCF₃)₇ (**12**) und dem TFAA-Addukt **10** steht^[10] (Schema 4).

Schema 4: Reaktionsverlauf der Umsetzung von Bi₂O₃ mit TFAA nach Reiland^[10]

Erstes Ziel meiner Untersuchungen am Reaktionssystem Bi₂O₃/TFAA war deshalb zunächst die Gewinnung reiner grobkristalliner Proben von **6**, die auch die einkristallstrukturanalytische Untersuchung und damit die Aufklärung der immer noch unbekannten Festkörperstruktur der Substanz ermöglichen sollte. Untersuchungen zur weiteren Charakterisierung der bereits als Nebenprodukte genannten Verbindungen, des basischen Carboxylats **12** und des TFAA-Addukts **10**, wurden ergänzend durchgeführt.

3.1.2 Synthese, Eigenschaften und Festkörperstruktur von $Bi(O_2CCF_3)_3$ (6)

Die Synthese des Bismut(III)-trifluoracetats, Bi(O₂CCF₃)₃ (**6**), erfolgte nach der bereits oben erwähnten Methode. Dabei wurde ein geringer Überschuss an TFAA eingesetzt und die Reaktionsdauer betrug etwa zwei Wochen. Unter thermodynamischer Reaktionskontrolle entsteht mikrokristallines Bi(O₂CCF₃)₃. Durch langsame Sublimation des synthetisierten Feststoffgemischs bei 125 °C konnte grobkristallines Material der Verbindung **6** hergestellt werden. Geeignete Einkristalle wurden isoliert und eine Röntgenstrukturanalyse bei -123 °C durchgeführt.

Abbildung 9: Koordination des Bismutatoms und asymmetrische Einheit von 6 (Symmetrie-Codes: a = -x, 0.5+y, 0.5-z; b = -x, -0.5+y, 0.5-z)

6 kristallisiert in Form farbloser Nadeln in der monoklinen Raumgruppe $P2_1/c$ mit a = 8.7517(8), b = 8.5660(5), c = 15.2522(13) Å, $\beta = 90.837(11)$ ° und Z = 4. Die Koordination des Bismutatoms in der asymmetrischen Einheit der Kristallstruktur von **6** ist mit 2+4 (+1) zu beschreiben, die Koordinationsfigur bildet eine stark verzerrte pentagonale Bipyramide. Es ist eine deutliche Deformation im Sinne einer lone-pair-Aktivität festzustellen (Abb. 9), die besonders durch die Größe des Winkels O6a—Bi1—O5 (148.40(15)°) verdeutlicht wird.

Abbildung 10: Ausschnitt aus der Kettenstruktur von Bismut(III)-trifluoracetat **6**, (Symmetrie-Codes: a = -x, 0.5+y, 0.5-z; b = -x, -0.5+y, 0.5-z)

Zwei der Trifluoracetatliganden fungieren μ_2 -verbrückend; der dritte Ligand ist dreizähnig (chelatisierend und verbrückend) zwischen zwei Bismutatomen angeordnet, so dass ein eindimensional supramolekularer Verband resultiert (Abb. 10). Der Abstand zwischen zwei symmetrieabhängigen Bismutatomen liegt mit 4.4529(3) Å im erwarteten Bereich für derartige Verbindungen (Bi(O₂CCF₃)₃ · CF₃COOH (**9**): 4.561(1) bzw. 4.900(1) Å, Bi(O₂CCF₃)₃ · O(O₂CCF₃)₂ (**10**): 4.496(0) Å). Die Mitte der gedachten Bi—Bi-Verbindungslinie liegt auf einer 2₁–Achse, die parallel zur Kettenfortpflanzungsrichtung [0 1 0] verläuft. Die Bismutatome sind zick-zack-förmig angeordnet, ähnlich wie im HMB-Addukt **13**, der Bi—Bi-Bi-Winkel beträgt hier 148.242(9)° ([Bi(O₂CCF₃)₃]₄ · 2 C₁₂H₁₈ (**13**): 129.39°). Der generelle Aufbau des Kettenpolymers ähnelt dem des Trifluoressigsäureanhydrid-Addukts **10**, bei dem die in **6** beobachtete Koordinationslücke durch das zweizähnig gebundene Trifluoressigsäureanhydridmolekül geschlossen ist.

Abbildung 11: Anordnung der einzelnen Ketten entlang [0 1 0] in 6

Die Ketten ordnen sich im Sinne eines verzerrt tetragonalen Motivs senkrecht zu der von a und c aufgespannten Ebene an (Abb. 11) und werden durch van der Waals-Wechselwirkungen zwischen CF₃-Gruppen zusammengehalten.

Der Vergleich der Ergebnisse IR- und Raman-spektroskopischer, massenspektrometrischer, von DSC-Messungen und Elementaranalysen am feinkristallinen Rohprodukt und am gereinigten grobkristallinen $Bi(O_2CCF_3)_3$ zeigen, dass offensichtlich auch das feinkristalline Produkt einen sehr hohen Anteil an **6** enthält. Das "Rohprodukt" wurde deshalb in der Folge oft ohne weitere Aufarbeitung als Edukt eingesetzt.

Ein Molpeak von **6** ist nur im FAB-Massenspektrum zu beobachten. Weitere Kationen sind $Bi_2(O_2CCF_3)^+$ und $Bi(O_2CCF_3)^+$. Ferner entstehen Bi_2^+ und Bi^+ und Kationen wie etwa Bi_2O^+ und Bi_3O^+ . Im FAB-MS sind außerdem Teilchen wie $Bi_3O_4^+$, $Bi_2O_2^+$, BiO^+ und Bi^+ detektierbar. Ferner lassen sich unspezifische Fragmente von Trifluoressigsäureanhydrid bzw. Trifluoracetatanionen bei EI- und FAB-Massenspektren zuordnen.

Das Fehlen des Molpeaks im EI-MS ist nicht wirklich unerwartet, die Kenntnis der Struktur lässt erwarten, dass das Kettenkoordinationspolymer in kleinere Bruchstücke zerfällt, ohne dass zunächst notwendigerweise Bausteine der Zusammensetzung Bi(O₂CCF₃)₃ entstehen.

Im geschlossenen Rohr setzt der Schmelzvorgang von 6 bei 152 °C ein; bei 166 °C zersetzt sich die Substanz unter Bildung einer bräunlichen zähflüssigen Schmelze.

Die Ergebnisse der von mir durchgeführten schwingungsspektroskopischen Untersuchungen sind im experimentellen Teil aufgeführt. Die erhebliche Abweichung von dem von Radeshwar et al.^[8] mitgeteilten Daten bestätigt Zweifel an der Authentizität des von den Autoren erhaltenen Bismut(III)-trifluoracetats.

Verbindung Nr	6	
Empirische Formel	$\frac{1}{1}$ [Bi(O ₂ CCF ₂) ₂]	
Molekulargewicht [g mol ⁻¹]	548 04	
Kristallsystem	monoklin	
Raumgruppe	$P2_1/c$	
Gitterkonstanten	a = 8.7517(8) Å	
	b = 8.5660(5) Å	
	c = 15.2533(13) Å	
	$\beta = 90.837(11)^{\circ}$	
Volumen der Elementarzelle [Å ³]/Z	1143.37(16)/4	
Berechnete Dichte [g cm ⁻³]	3.184	
Kristallform, Kristallfarbe	nadelig 0.06x0.3x0.16 mm, farblos	
F(000)	992	
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)	
Messtemperatur [K]	150(2)	
Messbereich [°]	4.66 < 2θ < 52.28	
Gemessene Reflexe	15485	
Unabhängige Reflexe	2157	
Beobachtete Reflexe	1951	
Korrekturen	LP, num. Absorption	
Verfeinerte Reflexe	2157	
Parameter	199	
Restraints	6	
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0253	
$wR_2(all data)^3$	0.0666	
Wichtungsschema ⁴	0.0509	
GOOF (GOOF _{restrain}) ⁵	1.032 (1.045)	
max. shift/su	0.001	
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.376/-0.809	

Tab 1: Daten zum Kristall und zur Strukturbestimmung von 6

$$\begin{split} & \frac{{}^{2}R_{1} = \Sigma || \ F_{o} \mid | \ F_{c} \mid | \Sigma |F_{o} \mid}{{}^{3}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [(wF_{o}^{2})^{2}]]^{1/2}} \\ & ^{4}w = 1/[s^{2}(F_{o}^{2}) + (aP)^{2} + bP] \ mit \ P = (F_{o}^{2} + 2 \ F_{c}^{2})/3 \\ & ^{5}GOOF = S = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/(n-p)\}^{1/2} \end{split}$$

20

Bi1-O5	2.196(4)
Bi1-O3	2.275(4)
Bi1-O2	2.394(4)
Bi1-O1	2.423(4)
Bi1-O4b	2.439(4)
Bi1-O6a	2.496(4)
Bi1-O2b	2.700(4)
Bi1…Bi1a	4.4529(3)

Tab. 2: ausgewählte Bindungslängen [Å] im Trifluoracetat 6

Tab. 3: ausgewählte Bindungswinkel [°] in 6

O5-Bi1-O3	76.97(15)	O3-Bi1-O6a	89.71(14)
O5-Bi1-O2	76.81(14)	O2-Bi1-O6a	72.72(12)
O3-Bi1-O2	80.25(13)	O1-Bi1-O6a	95.40(13)
O5-Bi1-O1	72.82(14)	O4b-Bi1-O6a	121.89(12)
O3-Bi1-O1	129.45(13)	O5-Bi1-O2b	98.99(14)
O2-Bi1-O1	54.10(11)	O3-Bi1-O2b	73.03(12)
O5-Bi1-O4b	86.19(14)	O2-Bi1-O2b	153.18(4)
O3-Bi1-O4b	135.28(14)	O1-Bi1-O2b	150.55(11)
O2-Bi1-O4b	135.76(11)	O4b-Bi1-O2b	69.12(11)
O1-Bi1-O4b	81.97(12)	O6a-Bi1-O2b	104.36(12)
O5-Bi1-O6a	148.40(15)	Bila-Bil-Bilb	148.242(9)

Atom	x/a	y/b	z/c	${\rm U_{eq}}^1$
Bil	0.050449(19)	0.79228(2)	0.222904(10)	0.02009(10)
01	0.2978(4)	0.9090(4)	0.1966(2)	0.0280(8)
O2	0.1358(3)	1.0410(5)	0.2759(2)	0.0233(7)
03	-0.1058(5)	0.8201(5)	0.3397(2)	0.0290(9)
04	-0.1668(4)	1.0723(5)	0.3525(2)	0.0305(9)
05	0.1997(5)	0.7310(5)	0.3347(2)	0.0314(9)
06	0.0994(5)	0.4960(5)	0.3577(2)	0.0394(10)
C1	0.2664(5)	1.0222(6)	0.2418(3)	0.0250(11)
C2	0.3890(6)	1.1433(8)	0.2603(4)	0.0348(12)
C3	-0.1521(5)	0.9396(7)	0.3798(3)	0.0243(10)
C4	-0.2005(6)	0.9100(7)	0.4732(3)	0.0325(13)
C5	0.1819(5)	0.6068(6)	0.3769(3)	0.0215(10)
C6	0.2683(6)	0.5966(7)	0.4642(3)	0.0315(12)
F1	0.3385(5)	1.2637(5)	0.3041(3)	0.0514(10)
F2	0.5003(5)	1.0799(6)	0.3073(4)	0.0780(16)
F3	0.4462(6)	1.1968(5)	0.1869(3)	0.0659(14)
F4	-0.1627(5)	1.0264(5)	0.5250(2)	0.0495(9)
F5	-0.3494(4)	0.8902(7)	0.4775(3)	0.0654(13)
F6	-0.1326(6)	0.7854(5)	0.5082(2)	0.0519(11)
F7	0.3645(5)	0.7116(4)	0.4777(3)	0.0445(10)
F8	0.1665(5)	0.5996(7)	0.5275(2)	0.0680(15)
F9	0.3439(5)	0.4664(6)	0.4701(3)	0.0671(13)

Tab. 4: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 6

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_i \bullet a_j \bullet a_ia_j$

3.1.3 Synthese und Charakterisierung von $Bi_3O(O_2CCF_3)_7$ (12)

Die Reaktion von Bi₂O₃ mit siedendem TFAA im Molverhältnis 3:7 führt nach etwa 10 Tagen zu einem grauweißen mikrokristallinen Pulver. Der flüssige Reaktionspartner ist vollständig umgesetzt und die Probe zeigt leichte Anzeichen einer beginnenden Zersetzung. Raman- und IR-spektroskopische sowie thermoanalytische Untersuchungen belegen eindeutig, dass unter diesen Bedingungen statt **6** eine oder mehrere andere Verbindungen erhalten werden. Elementaranalytische Untersuchungen deuten darauf hin, dass im Wesentlichen das dreikernige oxozentrierte basische Trifluoracetat Bi₃O(O₂CCF₃)₇ (**12**) vorliegt. Versuche, aus unpolaren nicht koordinierenden Solventien umzukristallisieren, scheiterten an der mangelnden Löslichkeit der Verbindung. Die in nahezu quantitativer Ausbeute stattfindenden Solvatisierungsreaktionen mit Benzol oder *para*-Xylol zu den Addukten {[Bi₃O(O₂CCF₃)₃]₇}₂ · 5C₆H₆ (**20**) bzw. {[Bi₃O(O₂CCF₃)₃]₇}₂ · 4 C₈H₁₀ (**18a** bzw. **18b**) beweisen aber indirekt das Vorliegen des basischen dreikernigen Trifluoracetats als Baustein von festem **12**.

Die anscheinend nahezu quantitative Bildung der Verbindung **12** lässt sich verstehen, wenn man annimmt, dass Bi_2O_3 in Gegenwart von TFAA deutlich schneller in **12** umgewandelt wird als **12** in **6**^[10].

3 Bi ₂ O ₃ + 7 O(OCCF ₃) ₂	Δ ►	2 Bi ₃ O(O ₂ CCF ₃) ₇	$2 \text{ O}(\text{OCCF}_3)_2, \Delta$	2 Bi(O ₂ CCF ₃) ₃
	schneller		langsamer	

Schema 5

Das basische Trifluoracetat **12** kann auch durch thermische Belastung des Anhydrid-Addukts **10** unter sukzessivem Verlust von Anhydrid erhalten werden, wobei die Stufe des eigentlichen Trifluoracetats **6** durchlaufen wird (Schema 4).

3.1.4 Verfeinerung der Kristallstruktur von $Bi(O_2CCF_3)_3 \cdot O(OCCF_3)_2$ (10)

Kristalle von **10** wurden durch Abkühlen einer bei Raumtemperatur gesättigten Lösung von **6** in Trifluoressigsäureanhydrid erhalten. Ihre gute Qualität legte nahe, eine Neubestimmung der Kristallstruktur vorzunehmen, Strukturparameter befriedigender Qualität zu ermitteln und den Beitrag der anomalen Dispersion korrekt zu erfassen^[39]. Bei einem ersten Versuch der Strukturbestimmung war es auf Grund der Zersetzlichkeit der Substanz nur gelungen, einen rudimentären Datensatz zu ermitteln^[10].

Im Zusammenhang mit der Neubestimmung wurden folgende kristallographische Daten ermittelt (die Zahlen in Klammern bezeichnen Daten der ersten Strukturbestimmung): **10** kristallisiert in Form farbloser Plättchen in der chiralen monoklinen Raumgruppe $P2_1$ mit a = 8.7746(8), b = 8.5925(7), c = 13.4263(15) Å, $\beta = 104.525(11)$ ° und Z = 2 (bei 220 K) (a = 8.801(3), b = 8.640(10), c = 13.485(6) Å, $\beta = 104.14(4)$ ° und Z = 2).

Der untersuchte Kristall enthält ausschließlich das in Abb. 12 dargestellte Enantiomorph.

Es wurden selbst bei 220 K z. T. sehr große anisotrope Auslenkungsparameter gefunden, ohne dass jedoch eine Fehlordnung des nur schwach gebundenen Trifluoressigsäureanhydridmoleküls oder der übrigen Bausteine festzustellen war. Offensichtlich lässt die lockere, verzerrt hexagonale Stabpackung der Kettenpolymere eine hohe Mobilität einzelner terminaler Baugruppen im Kristall zu (Abb. 12).

Abbildung 12: Kettenaufbau in **10** (vgl. Abb. 4) und verzerrt hexagonale Stabpackung der Ketten entlang [0 1 0] (Symmetrie-Codes: a = -x, 0.5+y, -z; b = -x, -0.5+y, -z)

Abbildung 13: quasimolekulare Einheit und Koordinationsfigur des Bismutatoms in **10** (Symmetrie-Codes: a = -x, 0.5+y, -z; b = -x, -0.5+y, -z)

In **10** ist das Anhydrid symmetrisch an das Bismutatom gebunden; die Abstände Bi1—O7 (3.008(12) Å) und Bi1—O9 (3.016(9) Å) sind im Rahmen des experimentellen Fehlers gleich lang. Auffällig ist lediglich die Kürze der Bindungen O7—C7 (1.128(14) Å) und O9—C9 (1.133(13) Å) im Vergleich zu den ungewöhnlich langen Abständen O8—C9 (1.396(13) Å) bzw. O8—C7 (1.409(13) Å). Als Maß für die im Vergleich zur Festkörperstruktur von **6** vorliegende Verzerrung der Koordinationsfigur durch das zusätzlich koordinierte Trifluoressigsäureanhydrid kann der Winkel O5—Bi1—O6a von 145.1(3)° dienen (Abb. 13).

Bislang ist keine Festkörperstruktur mit koordiniertem Trifluoressigsäureanhydrid in der Literatur dokumentiert, und auch von dem geläufigeren Essigsäureanhydrid ist nur eine einzige kristallstrukturanalytisch charakterisierte Verbindung beschrieben^[40]. Es handelt sich um das Essigsäureanhydrid-Addukt des Titantetrachlorids. Dort ist das Essigsäureanhydrid als chelatisierender Ligand symmetrisch an das TiCl₄-Fragment koordiniert, d.h. die Abstände zwischen dem Titanatom und den koordinierenden Sauerstoffatomen sind jeweils gleich lang. Der Abstand der randständigen Sauerstoffatome zu den benachbarten Kohlenstoffatomen ist hier vergleichsweise länger (1.213 Å), während der Abstand des zentralen Sauerstoffs zu den beiden Kohlenstoffnachbarn entsprechend kürzer ausfällt (1.362 Å) im Vergleich mit der Situation bei **10**.

Verbindung Nr.	10
Empirische Formel	$\int_{\infty}^{1} [Bi(O_2CCF_3)_3 \cdot (F_3CCO)_2O]$
Molekulargewicht [g mol ⁻¹]	758.08
Kristallsystem	monoklin
Raumgruppe	P21
Gitterkonstanten	a = 8.7746(8) Å
	b = 8.5925(7) Å
	c = 13.4263(15) Å
	$\beta = 104.525(11)^{\circ}$
Volumen der Elementarzelle [Å ³]/Z	979.93(16)/2
Berechnete Dichte [g cm ⁻³]	2.569
Kristallform, Kristallfarbe	tafelig 0.9x0.72x0.16 mm, farblos
F(000)	700
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	220(2)
Gemessene Reflexe	14354
Messbereich [°]	$5.02 < 2\theta < 52.5$
Unabhängige Reflexe	3733
Beobachtete Reflexe	3201
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	3733
Flack-Parameter	-0.009(13)
Parameter/Restraints	338/164
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0376
$wR_2(all data)^3$	0.0938
Wichtungsschema ⁴	0.0631
GOOF (GOOF _{restrain}) ⁵	1.019 (1.016)
max. shift/su	0.000
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.190/-1.371

Tab. 5: Daten zum Kristall und zur Strukturbestimmung von 10

 $\label{eq:rescaled_$

Bi1-05	2.244(8)	Bi1-09	3.016(9)
Bi1-O3	2.335(8)	Bi1…Bi1a	4.4964(4)
Bi1-O4b	2.391(7)	Bi1…Bi1b	4.4963(4)
Bi1-01	2.425(8)	O7-C7	1.128(14)
Bi1-O2	2.466(6)	O9-C9	1.133(13)
Bi1-O6a	2.501(9)	O8-C9	1.396(13)
Bi1-O2a	2.570(6)	O8-C7	1.409(13)
Bi1-O7	3.008(12)		· · · · · · · /

Tab. 6: ausgewählte Bindungslängen [Å] im Trifluoressigsäureanhydrid-Addukt 10

Tab. 7: ausgewählte Bindungswinkel [°] in 10

O5-Bi1-O3	73.4(4)	O1-Bi1-O6a	99.5(3)	O2-Bi1-O7	90.9(3)
O5-Bi1-O4b	85.1(3)	O2-Bi1-O6a	72.4(3)	O6a-Bi1-O7	65.0(4)
O3-Bi1-O4b	138.6(2)	O5-Bi1-O2b	91.9(3)	O2b-Bi1-O7	117.6(3)
O5-Bi1-O1	71.8(3)	O3-Bi1-O2b	72.2(2)	O5-Bi1-O9	148.5(3)
O3-Bi1-O1	124.7(3)	O4b-Bi1-O2b	73.6(2)	O3-Bi1-O9	115.8(3)
O4b-Bi1-O1	78.6(2)	O1-Bi1-O2b	148.8(2)	O4b-Bi1-O9	68.2(3)
O5-Bi1-O2	75.8(2)	O2-Bi1-O2b	149.46(6)	O1-Bi1-O9	116.4(3)
O3-Bi1-O2	77.5(2)	O6a-Bi1-O2b	108.4(3)	O2-Bi1-O9	134.6(2)
O4b-Bi1-O2	131.4(2)	O5-Bi1-O7	130.1(4)	O6a-Bi1-O9	66.1(3)
O1-Bi1-O2	53.2(2)	O3-Bi1-O7	150.7(3)	O2b-Bi1-O9	65.3(2)
O5-Bi1-O6a	145.1(3)	O4b-Bi1-O7	68.2(3)	O7-Bi1-O9	55.5(3)
O3-Bi1-O6a	85.8(3)	01-Bi1-07	62.3(3)	Bila-Bil-Bilb	145.685(15)
O4b-Bi1-O6a	127.3(3)				

Tab. 8: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 10

Atom	x/a	y/b	z/c	U _{eq} ¹
Bi1	0.05621(3)	0.75975(14)	0.04350(2)	0.04538(12)
01	0.3153(9)	0.8736(8)	0.0649(6)	0.0545(18)
02	0.1181(8)	1.0154(6)	-0.0201(5)	0.0430(15)
03	-0.1563(11)	0.8008(7)	-0.0985(7)	0.060(2)
04	-0.2224(9)	1.0503(7)	-0.1226(7)	0.059(2)

Fortsetzung

-				
05	0.1415(12)	0.7030(8)	-0.0965(6)	0.063(2)
06	0.0671(14)	0.4637(10)	-0.1310(8)	0.081(3)
C1	0.2649(13)	0.9884(10)	0.0136(8)	0.048(2)
C2	0.3833(11)	1.0974(9)	-0.0181(7)	0.057(2)
C3	-0.2222(12)	0.9131(11)	-0.1428(7)	0.048(2)
C4	-0.3254(12)	0.8703(10)	-0.2499(8)	0.058(3)
C5	0.1181(14)	0.5878(11)	-0.1507(7)	0.049(2)
C6	0.1685(14)	0.6002(13)	-0.2521(8)	0.073(3)
07	0.2387(17)	0.8404(12)	0.2583(9)	0.096(4)
08	0.1312(11)	0.7380(14)	0.3859(7)	0.085(3)
09	-0.0257(13)	0.6480(10)	0.2366(7)	0.073(2)
C7	0.2393(16)	0.8142(12)	0.3407(10)	0.074(4)
C8	0.3858(18)	0.8612(18)	0.4254(12)	0.111(6)
C9	-0.0018(15)	0.6684(12)	0.3225(9)	0.065(3)
C10	-0.1060(15)	0.6172(13)	0.3925(9)	0.093(5)
F21	0.3181(11)	1.2206(7)	-0.0655(7)	0.086(3)
F22	0.4504(14)	1.0226(12)	-0.0781(11)	0.134(5)
F23	0.4875(13)	1.1438(14)	0.0614(9)	0.130(5)
F41	-0.260(2)	0.907(3)	-0.3193(9)	0.211(11)
F42	-0.454(2)	0.942(2)	-0.2742(13)	0.238(13)
F43	-0.360(2)	0.7301(13)	-0.2637(11)	0.215(10)
F61	0.2426(19)	0.7140(14)	-0.2592(10)	0.168(7)
F62	0.053(2)	0.597(3)	-0.3227(10)	0.269(16)
F63	0.247(3)	0.489(2)	-0.265(2)	0.293(19)
F81	0.353(2)	0.970(2)	0.4755(15)	0.212(10)
F82	0.4978(19)	0.908(3)	0.3945(17)	0.198(9)
F83	0.439(2)	0.759(3)	0.4874(16)	0.280(14)
F91	-0.1339(18)	0.7276(16)	0.4501(8)	0.134(5)
F92	-0.041(2)	0.5039(16)	0.4493(10)	0.166(7)
F93	-0.2385(17)	0.572(2)	0.3357(11)	0.157(6)

 ${}^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$
3.2 Das Reaktionssystem Bi(O₂CCF₃)₃/Benzol

Bei Raumtemperatur löst sich $Bi(O_2CCF_3)_3$ in Benzol nur schlecht unter Bildung einer farblosen Lösung, aus der bei 5 °C im Laufe mehrerer Wochen farblose sehr dünne verzwillingte Nadeln wachsen, die für eine Röntgenstrukturanalyse ungeeignet sind.

In siedendem Benzol dagegen löst sich langsam immer mehr 6. Gleichzeitig verändert sich die Farbe der Lösung nach intensiv gelb. In Analogie zu der in Kap. 3.3 beschriebenen Synthese von **18a** bzw. **18b** kann dies als Hinweis der thermolytischen Bildung von π -Aren-Komplexen des dreikernigen oxozentrierten Bismut(III)-trifluoracetats **12** angesehen werden. Die Benzolsolvate der basischen Bismut(III)-trifluoracetate besitzen offensichtlich eine um Größenordnungen bessere Löslichkeit in Benzol als die des "einfachen" Trifluoracetats **6**.

NMR-spektroskopische Untersuchungen an Lösungen von $Bi(O_2CCF_3)_3$ in C_6D_6 lassen keine signifikanten Veränderungen der Signallagen bzw. der Kopplungskonstanten im Laufe einer thermischen Belastung erkennen. Das Fortschreiten der Thermolysereaktion lässt sich jedoch recht gut an der Farbänderung der Lösung von farblos nach intensiv gelb beobachten.

3.2.1 Synthese, Eigenschaften und Kristallstruktur von $[(C_6H_6)_2Bi_3O(O_2CCF_3)_7]_2 \cdot C_6H_6$ (20)

Aus den gelben Lösungen, die durch Erhitzen von 6 in Benzol erhalten werden, kristallisieren in der Kälte blockförmige Kristalle der Verbindung 20, von denen einige erfolgreich einer Röntgenstrukturanalyse zugeführt werden konnten.

Alternativ lässt sich Verbindung **20** einfach durch Auflösen des basischen dreikernigen Trifluoracetats **12** in Benzol, Abtrennen der unlöslichen Bestandteile und Temperaturerniedrigung erhalten (siehe experimenteller Teil).

Verbindung **20** besitzt die elementaranalytisch bestimmte Zusammensetzung $[Bi_3O(O_2CCF_3)_7]_2 \cdot 5 C_6H_6$, die sie formal als Additionsverbindung ausweist.

20 wurde zunächst bei RT und später noch einmal bei 150 K röntgenographisch untersucht. Da die Tieftemperaturmessung erwartungsgemäß wesentlich bessere Daten liefert, werden diese Daten und das zu Grunde liegende Modell im Folgenden als Diskussionsgrundlage dienen.

Abbildung 14: Molekülstruktur von [Bi₃O(O₂CCF₃)₇]₂ · 4 C₆H₆

Die Substanz kristallisiert triklin in der Raumgruppe $P\overline{1}$ mit den Gitterkonstanten a = 12.740(3) Å, b = 17.221(3) Å, c = 20.968(4) Å, $\alpha = 94.70(3)$ °, $\beta = 99.00(3)$ °, $\gamma = 106.48(3)$ ° (T = 150 K) und Z = 2 in Form farbloser blockförmiger Kristalle. Die asymmetrische Einheit der Kristallstruktur enthält ein molekulares sechskerniges basisches Acetat sowie ein Solvat-Benzol-Molekül. Das Acetatmolekül ist aus zwei Bi₃O-Einheiten aufgebaut, die jeweils von sieben Trifluoracetatgruppen umgeben sind. Davon fungieren fünf syn-µ₂-verbrückend, eine sechste fungiert dreizähnig verbrückend innerhalb eines dreikernigen Fragmentes. Diese dreikernigen Fragmente sind durch zwei vierzähnig µ₃-verbrückende Trifluoracetatgruppen zum dimeren molekularen Aggregat verknüpft. Die beiden dreikernigen Bi₃O-Einheiten in der asymmetrischen Einheit der Struktur von **20** sind für sich genommen nahezu planar. Im Dimeren sind die Ebenen jedoch leicht (um etwa 25°) gegeneinander geneigt (Abb. 15).

Die Bi---Bi-Abstande innerhalb der dreikernigen Einheiten bewegen sich im Bereich von 3.6491(13) bis 3.8573(11) Å. Der kürzeste Abstand zwischen Bismutatomen benachbarter dreikerniger Fragmente beträgt 4.4328(13) Å. Vier der Bismutatome sind in der Lage, in einem η^6 -ähnlichen Modus je einen Benzolliganden zu koordinieren. Sie besitzen eine pentagonal-bipyramidale Umgebung (wenn man den Ringmittelpunkt eines Aromaten als eine

Koordinationsstelle betrachtet), während die übrigen Bi-Zentren eine mehr oder weniger unsymmetrische Achterkoordination realisieren.

Die Abstände zwischen Bismutatomen und und den Ringmittelpunkten der Benzolliganden bewegen sich im Bereich von 2.892(14) bis 2.949(10) Å. Das Bi-O-Abstandsspektrum reicht von 2.121(7) bis 2.965(10) Å.

Abbildung 15: Packung der einzelnen Moleküle in **20** (Blickrichtung [1 0 0]). Bismutatome sind als kleine Kugeln dargestellt

Verbindung Nr.	20
Empirische Formel	${[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 C_{6}H_{6}} \cdot C_{6}H_{6}$
Molekulargewicht [g mol ⁻¹]	3258.70
Kristallsystem	triklin
Raumgruppe	PĪ
Gitterkonstanten	<i>a</i> = 12.740(3) Å
	b = 17.221(3) Å
	c = 20.968(4) Å
	$\alpha = 94.70(3)^{\circ}$
	$\beta = 99.00(3)^{\circ}$
	$\gamma = 106.48(3)^{\circ}$
Volumen der Elementarzelle [Å ³]	4318.1(15)
Zahl der Formeleinheiten	2
Berechnete Dichte [g cm ⁻³]	2.506
Kristallform, Kristallfarbe	tafelig 0.39x0.43x0.72 mm, farblos
F(000)	2988
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	150(2)
Gemessene Reflexe	31353
Messbereich [°]	$3.92 < 2\theta < 50.0$
Unabhängige (beobachtete) Reflexe	14312 (11157)
Korrekturen	LP, Absorption
Verfeinerte Reflexe/Parameter	14312/924
Restraints	205
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0620
$wR_2(all data)^3$	0.1379
Wichtungsschema ⁴	0.0704
GOOF (GOOF _{restrain}) ⁵	0.941 (0.937)
max. shift/su	0.000
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	3.228/-4.699

Tab. 9: Daten zum Kristall und zur Strukturbestimmung von 20

$$\begin{split} ^2R_1 &= \Sigma || \ F_o \, || \ F_c \, || \ \Sigma |F_o \, | \\ ^3wR_2 &= [\Sigma [w(F_o{}^2 - F_c{}^2)^2] / \Sigma [(wF_o{}^2)^2]]^{1/2} \\ ^4w &= 1 / [s^2(F_o{}^2) + (aP)^2 + bP] \ mit \ P = (F_o{}^2 + 2 \ F_c{}^2) / 3 \\ ^5GOOF &= S = \{ \Sigma \, [w(F_o{}^2 - F_c{}^2)^2] / (n-p) \}^{1/2} \end{split}$$

Bi1-O1	2.186(7)	Bi3-O52	2.324(8)	Bi5-O121	2.456(9)
Bi1-O31	2.289(8)	Bi3-O62	2.386(8)	Bi5-O82	2.550(10)
Bi1-O72	2.374(9)	Bi3-O42	2.421(9)	Bi5-COR (C511-C516)	2.949(10)
Bi1-O21	2.465(9)	Bi3-O61	2.965(10)	Bi6-O2	2.163(8)
Bi1-O12	2.477(9)	Bi3-COR (C311-C316)	2.892(14)	Bi6-O131	2.248(10)
Bi1-O62	2.512(8)	Bi4-O2	2.204(8)	Bi6-O141	2.337(12)
Bi1-O11	2.743(11)	Bi4-O142	2.375(11)	Bi6-O112	2.366(9)
Bi1-O81	2.758(9)	Bi4-O132	2.393(10)	Bi6-O122	2.555(10)
Bi2-O1	2.141(7)	Bi4-O91	2.401(9)	Bi6-O121	2.712(9)
Bi2-O41	2.313(9)	Bi4-O101	2.406(10)	Bi6-COR (C611-C616)	2.926(11)
Bi2-O51	2.325(9)	Bi4-O81	2.643(10)	Bi1…Bi2	3.6491(13)
Bi2-O22	2.395(9)	Bi4-O11	2.668(9)	Bi1···Bi4	4.4328(13)
Bi2-O32	2.421(10)	Bi4-O82	2.717(9)	Bi2···Bi3	3.8573(11)
Bi2-O12	2.603(9)	Bi5-O2	2.121(7)	Bi1···Bi3	3.6855(12)
Bi2-COR (C211-C216)	2.932(11)	Bi5-O92	2.312(8)	Bi4…Bi6	3.8249(10)
Bi3-O1	2.174(8)	Bi5-O111	2.334(9)	Bi4···Bi5	3.6654(14)
Bi3-O71	2.291(8)	Bi5-O102	2.431(8)	Bi5···Bi6	3.7059(11)

Tab. 10: ausgewählte Bindungslängen [Å] in 20 $\,$

Tab. 11: ausgewählte Bindungswinkel [°] in 20

Bi2-O1-Bi3	126.8(4)	Bi2-Bi1-Bi3	63.46(2)
Bi2-O1-Bi1	115.0(3)	Bi2-Bi1-Bi4	123.65(3)
Bi3-O1-Bi1	115.4(3)	Bi3-Bi1-Bi4	171.462(16)
Bi5-O2-Bi6	119.8(4)	Bi4-Bi5-Bi6	62.51(2)
Bi5-O2-Bi4	115.9(3)	Bi5-Bi6-Bi4	58.23(3)
Bi6-O2-Bi4	122.3(3)	Bi5-Bi4-Bi6	59.26(2)
Bi1-Bi2-Bi3	58.73(2)	Bi5-Bi4-Bi1	127.42(3)
Bi1-Bi3-Bi2	57.81(3)	Bi1-Bi4-Bi6	157.813(17)

Atom	x/a	y/b	z/c	U_{eq}^{1}
Bi1	0.77017(4)	0.41682(3)	0.26238(2)	0.01851(12)
Bi2	0.54214(4)	0.31630(3)	0.34152(2)	0.02212(12)
Bi3	0.81683(3)	0.26021(3)	0.36358(2)	0.01631(12)
Bi4	0.76806(4)	0.62352(3)	0.14984(2)	0.02246(12)
Bi5	1.00904(3)	0.77467(3)	0.11140(2)	0.01823(12)
Bi6	0.75384(4)	0.83583(3)	0.11688(2)	0.02055(12)
01	0.7130(6)	0.3363(5)	0.3335(4)	0.0160(16)
02	0.8377(6)	0.7428(5)	0.1173(4)	0.0185(17)
011	0.6440(8)	0.4806(6)	0.1755(5)	0.036(2)
012	0.5691(7)	0.4047(6)	0.2469(5)	0.031(2)
O21	0.6618(7)	0.2886(5)	0.1915(4)	0.0238(19)
O22	0.5141(7)	0.2329(6)	0.2394(5)	0.031(2)
O31	0.7441(7)	0.5213(6)	0.3266(5)	0.036(2)
O32	0.6150(8)	0.4601(6)	0.3838(5)	0.035(2)
O41	0.5247(7)	0.1838(5)	0.3621(4)	0.0251(19)
O42	0.6553(7)	0.1443(6)	0.3185(5)	0.031(2)
O51	0.6055(8)	0.3239(6)	0.4527(4)	0.031(2)
O52	0.7398(7)	0.2642(6)	0.4567(5)	0.032(2)
O61	0.8435(10)	0.1871(6)	0.2364(5)	0.046(3)
O62	0.8833(6)	0.3189(5)	0.2728(4)	0.0199(18)
O71	0.9429(7)	0.3810(5)	0.4145(4)	0.0261(19)
072	0.9327(7)	0.4748(5)	0.3437(4)	0.026(2)
O81	0.8922(8)	0.5357(6)	0.1998(5)	0.035(2)
O82	0.9889(8)	0.6409(6)	0.1593(4)	0.033(2)
O91	0.8107(8)	0.5706(5)	0.0508(5)	0.035(2)
O92	0.9541(7)	0.6682(5)	0.0268(4)	0.0253(19)
O101	0.8739(8)	0.7031(6)	0.2512(4)	0.035(2)
O102	1.0235(7)	0.7962(6)	0.2289(4)	0.027(2)
0111	0.9702(7)	0.8316(5)	0.0166(4)	0.0232(19)
O112	0.7990(8)	0.8441(7)	0.0119(5)	0.038(2)

Tab. 12: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 20

Atom	x/a	y/b	z/c	U _{eq} ¹
0121	0.9779(8)	0.9062(5)	0.1410(4)	0.029(2)
O122	0.8847(8)	0.9117(6)	0.2225(5)	0.036(2)
O131	0.6020(9)	0.7411(6)	0.0582(8)	0.067(4)
O132	0.6154(7)	0.6154(6)	0.0645(5)	0.034(2)
O141	0.6696(11)	0.7846(9)	0.2023(7)	0.074(4)
O142	0.6311(9)	0.6534(8)	0.2042(7)	0.061(4)
C11	0.5618(8)	0.4462(7)	0.1992(6)	0.029(3)
C12	0.4444(4)	0.4506(4)	0.1738(3)	0.049(4)
C21	0.5720(9)	0.2363(6)	0.1943(5)	0.020(3)
C22	0.5205(5)	0.1672(4)	0.1364(3)	0.036(4)
C31	0.6847(10)	0.5214(6)	0.3681(6)	0.028(3)
C32	0.6968(5)	0.6051(4)	0.4065(3)	0.043(4)
C41	0.5644(9)	0.1303(6)	0.3360(6)	0.026(3)
C42	0.4863(5)	0.0419(4)	0.3267(4)	0.041(4)
C51	0.6694(10)	0.2873(7)	0.4813(5)	0.029(3)
C52	0.6558(7)	0.2725(6)	0.5518(3)	0.053(5)
C61	0.8760(10)	0.2585(8)	0.2287(5)	0.030(2)
C62	0.9139(5)	0.2830(3)	0.1649(2)	0.030(2)
C71	0.9771(7)	0.4476(6)	0.3927(5)	0.020(3)
C72	1.0899(5)	0.5068(3)	0.4311(3)	0.041(4)
C81	0.9839(8)	0.5824(7)	0.1918(5)	0.024(3)
C82	1.0927(4)	0.5684(3)	0.2239(3)	0.033(3)
C91	0.8775(9)	0.5985(7)	0.0164(5)	0.023(3)
C92	0.8749(5)	0.5466(4)	-0.0486(3)	0.035(3)
C101	0.9628(10)	0.7582(7)	0.2663(4)	0.024(3)
C102	1.0041(5)	0.7834(4)	0.3405(3)	0.037(3)
C111	0.8857(10)	0.8497(7)	-0.0103(5)	0.026(3)
C112	0.8900(7)	0.8793(6)	-0.0780(4)	0.044(4)
C121	0.9684(8)	0.9334(6)	0.1991(5)	0.020(3)
C122	1.0705(5)	1.0024(4)	0.2384(3)	0.036(3)
C131	0.5696(8)	0.6648(7)	0.0445(5)	0.024(3)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Atom	x/a	y/b	z/c	U _{eq} ¹
C132	0.4582(6)	0.6322(4)	-0.0048(4)	0.051(4)
C141	0.6180(10)	0.7191(11)	0.2196(6)	0.042(4)
C142	0.5285(9)	0.7226(8)	0.2610(5)	0.058(5)
F11	0.4470(5)	0.4939(6)	0.1251(4)	0.074(4)
F12	0.4090(5)	0.4852(6)	0.2207(4)	0.082(4)
F13	0.3767(5)	0.3766(5)	0.1538(5)	0.088(5)
F21	0.4881(8)	0.0973(4)	0.1585(3)	0.077(4)
F22	0.5949(7)	0.1652(5)	0.1005(4)	0.074(4)
F23	0.4350(7)	0.1809(5)	0.1014(4)	0.072(3)
F31	0.7653(7)	0.6154(4)	0.4623(4)	0.073(3)
F32	0.5990(7)	0.6074(4)	0.4174(4)	0.060(3)
F33	0.7363(7)	0.6636(4)	0.3725(4)	0.072(4)
F41	0.5197(8)	-0.0036(4)	0.2877(5)	0.106(6)
F42	0.3864(7)	0.0406(4)	0.3025(6)	0.106(6)
F43	0.4874(9)	0.0148(4)	0.3822(5)	0.094(5)
F51	0.7471(9)	0.2749(7)	0.5844(3)	0.080(4)
F52	0.5876(11)	0.2045(9)	0.5509(3)	0.232(17)
F53	0.6216(14)	0.3263(11)	0.5768(4)	0.190(12)
F61	0.8849(7)	0.3475(4)	0.1501(3)	0.052(3)
F62	0.8665(8)	0.2223(5)	0.1177(3)	0.077(4)
F63	1.0226(6)	0.2999(6)	0.1726(3)	0.067(3)
F71	1.1064(5)	0.4900(4)	0.4907(4)	0.043(2)
F72	1.0869(5)	0.5821(4)	0.4319(4)	0.067(3)
F73	1.1709(5)	0.4981(5)	0.4028(4)	0.076(4)
F81	1.1627(4)	0.5799(5)	0.1838(3)	0.049(2)
F82	1.0718(5)	0.4938(5)	0.2379(4)	0.056(3)
F83	1.1360(5)	0.6196(5)	0.2772(3)	0.063(3)
F91	0.8245(8)	0.4707(5)	-0.0464(4)	0.094(5)
F92	0.9756(7)	0.5545(5)	-0.0568(3)	0.061(3)
F93	0.8225(8)	0.5716(6)	-0.0966(3)	0.089(4)
F101	1.1062(7)	0.8327(5)	0.3515(2)	0.070(3)

Atom	x/a	y/b	z/c	U _{eq} ¹
F102	1.0019(7)	0.7182(5)	0.3689(2)	0.063(3)
F103	0.9391(8)	0.8207(6)	0.3639(2)	0.090(4)
F111	0.9890(9)	0.9008(8)	-0.0863(4)	0.110(6)
F112	0.8518(12)	0.9387(9)	-0.0809(4)	0.155(9)
F113	0.8327(12)	0.8222(9)	-0.1216(4)	0.159(9)
F121	1.0809(6)	0.9939(4)	0.3003(3)	0.060(3)
F122	1.0562(6)	1.0735(4)	0.2302(4)	0.061(3)
F123	1.1607(5)	0.9980(5)	0.2177(4)	0.085(4)
F131	0.3830(7)	0.6575(7)	0.0172(6)	0.156(10)
F132	0.4273(5)	0.5534(5)	-0.0130(4)	0.067(3)
F133	0.4713(7)	0.6584(7)	-0.0598(6)	0.143(9)
F141	0.4386(11)	0.6976(13)	0.2274(6)	0.165(10)
F142	0.5439(15)	0.7912(11)	0.2838(10)	0.261(19)
F143	0.5342(14)	0.6816(15)	0.3035(8)	0.243(17)
C211	0.3052(10)	0.2191(7)	0.3690(8)	0.078(3)
H211	0.3013	0.1666	0.3783	0.094
C212	0.2737(9)	0.2323(8)	0.3052(7)	0.078(3)
H212	0.2487	0.1886	0.2719	0.094
C213	0.2794(9)	0.3108(10)	0.2914(6)	0.078(3)
H213	0.2583	0.3196	0.2487	0.094
C214	0.3167(10)	0.3761(7)	0.3412(8)	0.078(3)
H214	0.3206	0.4286	0.3319	0.094
C215	0.3482(10)	0.3629(8)	0.4049(7)	0.078(3)
H215	0.3732	0.4066	0.4383	0.094
C216	0.3425(9)	0.2844(10)	0.4188(6)	0.078(3)
H216	0.3636	0.2756	0.4615	0.094
C311	1.0440(11)	0.2319(8)	0.4181(5)	0.0367(13)
H311	1.1048	0.2766	0.4169	0.044
C312	1.0067(9)	0.1696(7)	0.3659(6)	0.0367(13)
H312	1.0417	0.1724	0.3301	0.044
C313	0.9164(10)	0.1033(8)	0.3682(6)	0.0367(13)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Atom	x/a	y/b	z/c	U_{eq}^{1}
H313	0.8912	0.0607	0.3339	0.044
C314	0.8629(11)	0.0995(8)	0.4212(5)	0.0367(13)
H314	0.8012	0.0553	0.4219	0.044
C315	0.9019(10)	0.1622(7)	0.4732(7)	0.0367(13)
H315	0.8669	0.1594	0.5091	0.044
C316	0.9929(10)	0.2289(8)	0.4716(6)	0.0367(13)
H316	1.0191	0.2710	0.5062	0.044
C511	1.2539(8)	0.8981(5)	0.1073(5)	0.0478(17)
H511	1.2570	0.9526	0.1064	0.057
C512	1.2315(8)	0.8460(6)	0.0493(4)	0.0478(17)
H512	1.2197	0.8656	0.0096	0.057
C513	1.2269(8)	0.7645(6)	0.0507(4)	0.0478(17)
H513	1.2119	0.7296	0.0119	0.057
C514	1.2445(8)	0.7352(5)	0.1100(5)	0.0478(17)
H514	1.2414	0.6807	0.1109	0.057
C515	1.2669(8)	0.7874(6)	0.1679(4)	0.0478(17)
H515	1.2787	0.7678	0.2076	0.057
C516	1.2716(8)	0.8688(6)	0.1666(4)	0.0478(17)
H516	1.2865	0.9037	0.2054	0.057
C611	0.7582(8)	1.0258(6)	0.1375(6)	0.058(2)
H611	0.8250	1.0625	0.1599	0.069
C612	0.6761(10)	0.9890(7)	0.1714(4)	0.058(2)
H612	0.6879	1.0011	0.2165	0.069
C613	0.5763(9)	0.9341(7)	0.1380(6)	0.058(2)
H613	0.5214	0.9095	0.1607	0.069
C614	0.5587(8)	0.9160(6)	0.0706(6)	0.058(2)
H614	0.4919	0.8793	0.0482	0.069
C615	0.6408(10)	0.9528(7)	0.0367(4)	0.058(2)
H615	0.6290	0.9407	-0.0084	0.069
C616	0.7406(8)	1.0077(7)	0.0702(6)	0.058(2)
H616	0.7955	1.0323	0.0475	0.069

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Atom	x/a	y/b	z/c	U _{eq} ¹
C711	0.2520(9)	0.0184(7)	0.4524(5)	0.0565(19)
H711	0.2558	-0.0160	0.4168	0.068
C712	0.3462(7)	0.0542(7)	0.5004(6)	0.0565(19)
H712	0.4130	0.0438	0.4969	0.068
C713	0.3406(7)	0.1055(7)	0.5536(5)	0.0565(19)
H713	0.4036	0.1295	0.5857	0.068
C714	0.2408(9)	0.1211(7)	0.5589(5)	0.0565(19)
H714	0.2370	0.1554	0.5945	0.068
C715	0.1466(7)	0.0853(7)	0.5110(6)	0.0565(19)
H715	0.0798	0.0956	0.5145	0.068
C716	0.1522(7)	0.0339(7)	0.4577(5)	0.0565(19)
H716	0.0892	0.0100	0.4256	0.068

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i\bullet}a_{j\bullet}a_{i}a_{j}$

3.3 Das Reaktionssystem Bi(O₂CCF₃)₃/para-Xylol

Beim Auflösen von Bismut(III)-trifluoracetat in *para*-Xylol entsteht eine schwach gelbe Lösung, deren Farbe als Indiz für die Bildung von Bismut(III)-π-Aren-Komplexen angesehen werden kann. Nach Entfernen unlöslicher Bestandteile wird die Lösung unter Vermeidung thermischer Belastung eingeengt. Im Laufe einiger Tage wachsen daraus bei 5 °C nahezu sechseckige schwach bräunlich gelbe Tafeln eines *p*-Xylol-haltigen Produkts (17). Wird die wie oben beschrieben erhaltene klare Lösung bei 140 °C etwa 24 h thermisch belastet, ändert sich ihre Farbe nach intensiv gelb. Wird die Thermolyse an dieser Stelle abgebrochen und die Lösung eingeengt, so erhält man bei 5 °C innerhalb eines Tages nahezu farblose tafelige Kristalle (18a). Im Zuge weiterer thermischer Belastung der Lösung bei 160 °C über weitere 24 h intensiviert sich ihre Farbe nach goldgelb. Beim Lagern der eingeengten Lösung wachsen bei 5 °C nach ein bis zwei Tagen rautenförmige, kaum merklich gelbe Kristalle (18b). Außerdem sind geringe Mengen an schwarzem Material entstanden.

Die Thermolyse des Bismut(III)-trifluoracetats in p-Xylol bei 140 °C wurde auch als Langzeitexperiment in einem abgeschmolzenen NMR-Rohr durchgeführt und der Fortschritt in definierten Zeitintervallen NMR-spektroskopisch untersucht. Als Lockmittel diente C₆D₆ in geringer Menge.

		4		4	
Bi(O ₂ CCF ₃) ₃ /	Nach 1 d	Nach 2 d	Nach 4 d	Nach 7 d	Zuordnung
<i>para</i> -Xylol					
165.38	165.00	165.06	165.10	165.21	q, RCO ₂ ,
					$^{2}J_{C,F} = 41.2$ Hz (unbehandelt)
					$^{2}J_{C,F} = 41.2 \text{ Hz} (\text{nach 7 d})$
135.08	135.08	135.08	135.08	135.09	m, quartäre Ring-C-Atome
129.59	129.59	129.59	129.59	129.59	m, tertiäre Ring-C-Atome
122.20	121.52	121.54	121.49	121.37	q, RCF ₃ ,
					${}^{1}J_{C,F} = 287.0 \text{ Hz} \text{ (unbehandelt)}$
					${}^{1}J_{C,F} = 287.0 \text{ Hz} (\text{nach 7 d})$
21.18	21.18	21.18	21.18	21.18	s, R-CH ₃ ,

Tab. 13: ¹³C{¹H}-NMR-Daten der Thermolyse von Bi(O₂CCF₃)₃ in *para*-Xylol

Die ¹³C-Signale des *p*-Xylols zeigen - wie bei dem großen Überschuss auch nicht anders zu erwarten - keine merkliche Verschiebung bei Zugabe der Bismut-Verbindung. Die ¹³C-Signale der Trifluoracetatliganden erfahren eine geringe, vor dem Hintergrund der Lagestabilität der Signale des Lockmittels aber als signifikant anzusehende Verschiebung. Die Kopplungskonstanten bleiben unverändert. Signale des als Produkt der Thermolyse erwarteten Trifluoressigsäureanhydrids konnten auch nach 7 Tagen nicht detektiert werden.

Im Hinblick auf die Reaktionsbedingungen und die Datenlage sind zwei mögliche Reaktionswege zur Bildung des dreikernigen oxozentrierten basischen Trifluoracetats 12 denkbar:

- a) Es findet eine echte Thermolyse statt; das entstandene Trifluoressigsäureanhydrid wird jedoch zur Säure hydrolysiert.
- b) Es findet eine Hydrolyse unter Bildung von Säure statt.

Beide Wege setzen voraus, dass eine Reaktion mit OH-Funktionen der Glaswand des NMR-Röhrchens möglich ist.

Alle Trifluoracetatliganden und die freie Säure befinden sich für die NMR-Zeitskala dann in schnellem Austauschgleichgewicht, so dass keine zusätzlichen Signale detektiert werden können.

3.3.1 Eigenschaften und Festkörperstruktur von $[Bi(O_2CCF_3)_3]_4 \cdot C_8H_{10}$ (17)

Elementaranalysen deuten darauf hin, dass die aus der thermisch unbelasteten Lösung erhaltene kristalline Substanz 17 ein Aren-Addukt aus vier Äquivalenten Bismut(III)trifluoracetat und *einem* Äquivalent *p*-Xylol ist. Die Verbindung kristallisiert in Form blass bräunlich gelber sechseckiger Tafeln in der monoklinen Raumgruppe $P2_1/c$ mit a = 20.002(4)Å, b = 19.029(3) Å, c = 16.236(3) Å, $\beta = 107.61(2)^{\circ}$ (260 K) und Z = 4.

Die asymmetrische Einheit der Kristallstruktur definiert einen komplexen supramolekularen Kettenverband, der sich nahezu ideal räumlich zu organisieren vermag.

Abbildung 16: Ausschnitt aus der Festkörperstruktur von [Bi(O₂CCF₃)₃]₄ · C₈H₁₀ (**17**), Blickrichtung [1 0 0]

Abb. 16 dokumentiert zunächst den prinzipiellen schichtartigen Aufbau von festem 17. Es ist eine Anordnung von kettenförmigen polymeren Einheiten erkennbar, wobei die Kettenfortpflanzung entlang [0 0 1] erfolgt. Die durch Verzahnung der Ketten entstehenden Schichten sind entlang [1 0 0] übereinander gestapelt und werden durch van der Waals-Wechselwirkungen zwischen CF₃-Gruppen und Arenliganden locker zusammengehalten. Eine Kette kann als Koordinationspolymer verstanden werden, das aus Tetrameren von Bi(O₂CCF₃)₃ aufgebaut ist, wobei ein Bismut-Atom eines Tetrameren ein *para*-Xylol-Molekül zu koordinieren in der Lage ist. Eine sinnvolle Summenformel wäre demzufolge [Bi(O₂CCF₃)₃]₄ · 1,4-Me₂C₆H₄.

Abbildung 17: Die asymmetrische Einheit der Kristallstruktur von 17 (Kugel-Stab-Darstellung) und ihre Umgebung (Drahtmodell) innerhalb einer supramolekularen Kette; Blickrichtung [1 0 0] (Symmetrie-Codes: a = x, 0.5-y, 0.5+z; b = x, 0.5-y, -0.5+z)

Abb. 17 verdeutlicht den Zusammenhang von Kettenaufbau und asymmetrischer Einheit der Kristallstruktur. Kettenaufbauendes Symmetrieelement ist die Gleitspiegelebene senkrecht zur kristallographischen b-Achse.

Alternativ kann die Struktur auch als Anordnung kettenverknüpfter, verzweigter Oktamere mit zwei *para*-Xylol-Liganden beschrieben werden. Diese Baugruppe ist im Prinzip ein Dimer der asymmetrischen Einheit. Entsprechend wäre eine Summenformel [Bi(O₂CCF₃)₃]₈ · 2 1,4-Me₂C₆H₄ bzw. {[Bi(O₂CCF₃)₃]₄ · 1,4-Me₂C₆H₄}₂ anzugeben. Diese Betrachtungsweise erleichtert die Systematisierung der Bismut(III)-trifluoracetat- π -Aren-Komplexe: Die bereits in der Einleitung vorgestellte Hexamethylbenzol-Verbindung **13** bildet tetramere Einheiten^[10], wobei die beiden Hexamethylbenzol-Liganden in η^6 -ähnlichem Modus an die terminalen Bismut-Atome koordiniert sind. Die Summenformel ist hier also [Bi(O₂CCF₃)₃]₄ · 2 C₁₂H₁₈ bzw. {[Bi(O₂CCF₃)₃]₂ · C₁₂H₁₈}₂.

In einer weiteren Betrachtungsweise sind die supramolekularen Kettenstränge durch ein "Rückgrat" aus zick-zack-förmig angeordneten Bismutatomen zu beschreiben, die durch Trifluoracetatliganden verknüpft sind. Seitlich an dieser "Rückgratkette" sind dimere Bi₂(O₂CCF₃)₆-Einheiten als "Äste" angeordnet, deren endständiges Schweratom (Bi4) jeweils in einem η^6 -ähnlichen Modus von einem *para*-Xylol-Liganden koordiniert ist (Abb. 17). Während die anderen Bismutatome annähernd in einer Ebene senkrecht zu [1 0 0] angeordnet sind, ist die Baugruppe um Bi4 von der eigentlichen Kette etwas abgewinkelt, so dass der Eindruck einer gekrümmten Struktur entsteht (Abb. 18).

Abbildung 18: Ansicht der supramolekularen Kette von 17 entlang [0 0 1]

Während sich die Koordinationsfiguren bei Bi4 noch als verzerrte pentagonale Bipyramide (wenn man den Ringmittelpunkt des Aromaten als eine Koordinationsstelle betrachtet) und bei Bi1 noch als stark verzerrtes dreifach überkapptes trigonales Prisma beschreiben lassen (Abb. 19), ist bei den anderen Bismutatomen ein einfacher Bezug zu symmetrischen Koordinationspolyedern nicht mehr gegeben. Die unsymmetrischen Koordinationsmuster der Koordinationszahl 8 bei Bi2 und der Koordinationszahl 10 bei Bi3 lassen für diese Atome eine besonders ausgeprägte lone-pair-Aktivität erwarten. Das Bi-O-Abstandsspektrum erstreckt sich von 2.1652(17) bis 3.407(8) Å.

Die Arenkoordination an Bi4 wird durch eine relativ unverzerrte η^6 -Koordination und einen Bismut-Ringmittelpunkt-Abstand von 2.846(7) Å charakterisiert.

Abbildung 19: Koordinationsfiguren der vier kristallographisch unabhängigen Bismut-Atome in 17 (links: Bismutatome im "Rückgrat" der Ketten, rechts: Bismutatome in den seitlichen [Bi(O₂CCF₃)₃]₂ · 1,4-Me₂C₆H₄-Fragmenten); der Endpunkt der gestrichelten Linie an Bi4 markiert den Ringmittelpunkt des Arenliganden (Symmetrie-Codes: a = x, 0.5-y, 0.5+z; b = x, 0.5-y, -0.5+z)

Die Koordinationsmodi der zwölf Trifluoracetatgruppen in der asymmetrischen Einheit der Kristallstruktur lassen sich in Anlehnung an die in der Einleitung erläuterte Klassifizierung von Ouchi et al.^[46] in vier Gruppen einteilen:

- a) Ein Trifluoracetat-Ion als Chelatligand
- b) Drei zweizähnig verbrückende Trifluoracetatliganden
- c) Sieben dreizähnig μ_2 -verbrückende Trifluoracetatliganden
- d) Ein vierzähnig μ₃-verbrückender Trifluoracetatligand, der sich der Klassifizierung nach Ouchi entzieht.

Der Aromat ist also in Abhängigkeit von seinem sterischen Anspruch offensichtlich gezielt als Werkzeug zum Crystal Engineering von supramolekularen Verbänden mit unterschiedlicher Dimensionalität einsetzbar: mit Hexamethylbenzol als basischem sterisch anspruchsvollem Liganden wird eine tetramere Einheit des in Substanz polymeren Bismut(III)-trifluoracetats quasi herausgeschnitten; es resultiert ein Molekül, in dem nur die zwei endständigen von vier Schweratomen an ein Aren gebunden sind. Das HMB verdichtet die Ligandenperipherie zur kompakten, geschlossenen van der Waals-Hülle.

Das sterisch weniger anspruchsvolle *p*-Xylol lässt eine höhere Flexibilität dieser Hülle und damit die Möglichkeit weiterer assoziativer Kontakte zu.

Abbildung 20: Schematischer Aufbau des molekularen Aren-Addukts 13

Trotz intensiver Untersuchungen an verschiedenen Systemen konnte bislang kein Hinweis auf eine Koordinationsverbindung der Zusammensetzung Bi $(O_2CCF_3)_3$: Aren = 1:1 gefunden werden. Die sterische Überladung eines *dimeren* Moleküls [Bi $(O_2CCF_3)_3 \cdot \text{Aren}]_2$ stellt dessen Existenz prinzipiell in Frage. In Analogie zu Sb $(O_2CCF_3)_3 \cdot \text{HMB}$ (**25**) (siehe Kapitel 3.11) wäre jedoch denkbar, dass mit sehr großen, elektronenreichen Arenen *monomere* Moleküle Bi $(O_2CCF_3)_3 \cdot \text{Aren}$ gebildet werden könnten.

Verbindung Nr.	17
Empirische Formel	$\int_{\infty}^{1} \{ [Bi(O_2CCF_3)_3 \cdot 0.25 \ 1, 4 - Me_2C_6H_4]_4 \} $
Molekulargewicht [g mol ⁻¹]	2298.32
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$
Gitterkonstanten	a = 20.002(4) Å
	b = 19.029(3) Å
	c = 16.236(3) Å
	$\beta = 107.61(2)^{\circ}$
Volumen der Elementarzelle [Å ³]	5890.0(19)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	2.592
Kristallform, Kristallfarbe	tafelig 0.27x0.19x0.12 mm, sehr schwach bräunlich
	gelb
F(000)	4200
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	260(2)
Gemessene Reflexe	75992
Messbereich [°]	$4.18 < 2\theta < 50.00$
Unabhängige Reflexe	10369
Beobachtete Reflexe	6823
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe/Parameter	10369/632
Restraints	31
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0499
$wR_2(all data)^3$	0.1244
Wichtungsschema ⁴	0.0588
GOOF (GOOF _{restrain}) ⁵	0.893/0.906
max. shift/su	0.027
$\Delta \rho_{max.} / \Delta \rho_{min.} [e Å^{-3}]$	1.472/-1.530

Tab. 14: Daten zum Kristall und zur Strukturbestimmung von 17

 $\label{eq:rescaled_$

Bi1-O21	2.324(2)	Bi3-O62	2.3872(18)
Bi1-O31	2.3321(18)	Bi3-O111	2.5901(17)
Bi1-081	2.4079(17)	Bi3-O91	2.6088(19)
Bi1-071	2.4362(16)	Bi3-O71	2.8742(17)
Bi1-O22	2.496(2)	Bi3-O61	3.0294(19)
Bi1-O52b	2.5029(16)	Bi3-O11	3.087(9)
Bi1-O41	2.5065(18)	Bi3-O102	3.3851(17)
Bi1-O11	2.663(8)	Bi4-O92	2.1765(19)
Bi1-O32	2.831(2)	Bi4-O121	2.262(2)
Bi2-O12	2.172(9)	Bi4-O112	2.3388(16)
Bi2-O42a	2.211(2)	Bi4-O122	2.471(2)
Bi2-O51	2.225(2)	Bi4-O102	2.5426(17)
Bi2-O61	2.4622(18)	Bi4-O111	2.6639(16)
Bi2-O32	2.490(2)	Bi4-COR(C1-C6)	2.846(11)
Bi2-O22a	2.6745(19)	Bi1···Bi2	4.7179(11)
Bi2-O52	3.263(2)	Bi1···Bi3	4.4065(8)
Bi2-O11	3.407(8)	Bi2···Bi3	5.1181(8)
Bi3-O101	2.1652(17)	Bi3···Bi4	4.5486(9)
Bi3-O82	2.2528(18)	Bi1···Bi2b	4.4844(9)
Bi3-072	2.3532(17)		

Tab. 15: ausgewählte Bindungslängen [Å] in 17

Tab. 16: ausgewählte Bindungswinkel [°] in 17

Bi1-Bi2-Bi3	53.041(9)	Bi4-Bi3-Bi1	146.26(2)
Bi1-Bi3-Bi2	58.818(15)	Bi1a-Bi2-Bi1	142.838(16)
Bi3-Bi1-Bi2b	147.232(16)	Bi2b-Bi1-Bi2	129.723(15)
Bi4-Bi3-Bi2	123.094(18)	Bila-Bi2-Bi3	148.570(14)

Atom	x/a	y/b	z/c	U_{eq}^{-1}
Bi1	0.32895(3)	0.16614(2)	0.53559(3)	0.04630(14)
Bi2	0.27560(3)	0.20079(2)	0.79653(3)	0.04729(14)
Bi3	0.29824(3)	-0.03455(2)	0.65468(3)	0.05217(15)
Bi4	0.15234(3)	-0.21946(2)	0.64687(3)	0.05615(16)
O11	0.2350(5)	0.1131(4)	0.6048(5)	0.059(2)
012	0.1838(5)	0.1709(4)	0.6912(5)	0.055(2)
O21	0.43726(9)	0.15478(9)	0.51164(9)	0.079(3)
022	0.36809(9)	0.22838(10)	0.42292(11)	0.068(3)
O31	0.38416(9)	0.27011(9)	0.59590(11)	0.059(2)
O32	0.31401(9)	0.24755(8)	0.67489(12)	0.055(2)
O41	0.24916(8)	0.13125(9)	0.39017(11)	0.073(3)
O42	0.21106(8)	0.20266(9)	0.27425(13)	0.070(3)
O51	0.20600(8)	0.16040(12)	0.86993(10)	0.079(3)
052	0.24238(8)	0.23766(12)	0.97651(12)	0.089(4)
O61	0.30685(8)	0.07603(9)	0.79173(10)	0.076(3)
O62	0.32340(8)	-0.03852(8)	0.80801(11)	0.073(3)
O71	0.33227(8)	0.03915(8)	0.51810(9)	0.068(3)
072	0.33988(8)	-0.07413(8)	0.54188(10)	0.064(3)
O81	0.40344(9)	0.12308(9)	0.67197(9)	0.068(3)
082	0.40827(9)	0.00821(7)	0.70262(10)	0.062(2)
O91	0.17973(9)	-0.03265(8)	0.69081(10)	0.089(4)
092	0.12666(9)	-0.13049(9)	0.71597(10)	0.075(3)
O101	0.35121(8)	-0.13284(8)	0.69983(10)	0.068(3)
O102	0.27169(8)	-0.18615(9)	0.74933(10)	0.071(3)
O111	0.20950(8)	-0.12607(8)	0.56604(10)	0.061(2)
O112	0.09599(9)	-0.15373(8)	0.52370(10)	0.079(3)
0121	0.03924(10)	-0.23914(10)	0.63995(10)	0.070(3)
0122	0.11071(9)	-0.26726(11)	0.76414(10)	0.081(3)
C11	0.1830(5)	0.1388(5)	0.6214(7)	0.049(3)
C12	0.11041(9)	0.13329(7)	0.55302(9)	0.074(4)

Tab. 17: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 17

Atom	x/a	y/b	z/c	U _{eq} ¹
C21	0.42610(9)	0.19867(9)	0.45182(10)	0.065(4)
C22	0.48637(10)	0.21405(10)	0.41266(11)	0.151(12)
C31	0.35546(9)	0.28505(9)	0.65295(11)	0.053(3)
C32	0.37221(10)	0.36012(10)	0.69272(12)	0.064(4)
C41	0.21353(8)	0.14666(9)	0.31732(12)	0.055(3)
C42	0.16086(8)	0.08812(9)	0.26412(12)	0.088(6)
C51	0.20700(8)	0.18626(12)	0.93964(11)	0.055(3)
C52	0.15911(8)	0.15044(12)	0.98737(12)	0.070(4)
C61	0.32386(8)	0.02356(8)	0.83805(11)	0.065(4)
C62	0.34723(8)	0.03029(10)	0.93811(11)	0.107(7)
C71	0.34627(8)	-0.02102(8)	0.50087(10)	0.056(3)
C72	0.37380(8)	-0.03293(8)	0.42089(10)	0.079(5)
C81	0.43270(9)	0.06920(8)	0.70776(9)	0.051(3)
C82	0.50945(10)	0.07545(8)	0.76957(9)	0.081(5)
C91	0.14175(9)	-0.06679(9)	0.72157(10)	0.069(4)
C92	0.10455(9)	-0.02626(10)	0.77882(9)	0.093(6)
C101	0.33036(8)	-0.17586(8)	0.74671(10)	0.054(3)
C102	0.39338(9)	-0.21875(9)	0.80878(11)	0.103(6)
C111	0.14759(9)	-0.12185(8)	0.51892(10)	0.066(4)
C112	0.13693(9)	-0.06962(7)	0.43995(11)	0.089(6)
C121	0.05201(10)	-0.25868(11)	0.71882(10)	0.070(4)
C122	-0.01154(10)	-0.27005(11)	0.75406(10)	0.100(6)
C1	0.2375(9)	-0.3091(6)	0.5426(13)	0.117(8)
C2	0.1683(11)	-0.3049(6)	0.4904(8)	0.138(11)
H2	0.1572	-0.2796	0.4390	0.165
C3	0.1156(7)	-0.3384(6)	0.5150(9)	0.104(6)
Н3	0.0693	-0.3355	0.4801	0.124
C4	0.1321(7)	-0.3762(5)	0.5918(10)	0.091(5)
C5	0.2014(8)	-0.3805(5)	0.6440(7)	0.109(7)
Н5	0.2124	-0.4057	0.6954	0.131
C6	0.2540(5)	-0.3469(7)	0.6194(12)	0.106(7)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Fortsetzung

Atom	x/a	y/b	z/c	U _{eq} ¹
Н6	0.3004	-0.3498	0.6544	0.128
C7	0.2993(17)	-0.2703(12)	0.513(3)	0.28(2)
H71	0.3143	-0.3004	0.4748	0.413
H72	0.3383	-0.2605	0.5634	0.413
H73	0.2817	-0.2271	0.4842	0.413
C8	0.0712(11)	-0.4171(9)	0.6208(19)	0.188(14)
H81	0.0301	-0.3880	0.6085	0.281
H82	0.0878	-0.4269	0.6816	0.281
H83	0.0598	-0.4604	0.5893	0.281
F11	0.08236(9)	0.07421(8)	0.56096(10)	0.176(7)
F12	0.11745(9)	0.13775(9)	0.47740(10)	0.122(4)
F13	0.07114(10)	0.18333(10)	0.56392(12)	0.155(6)
F21	0.46208(10)	0.24698(10)	0.34163(12)	0.126(4)
F22	0.51349(10)	0.15639(9)	0.39906(11)	0.237(12)
F23	0.53296(10)	0.25139(10)	0.46515(10)	0.298(16)
F31	0.35983(9)	0.36219(10)	0.76727(13)	0.093(3)
F32	0.33262(9)	0.40622(11)	0.64047(12)	0.128(5)
F33	0.43819(10)	0.37481(10)	0.70370(12)	0.134(5)
F41	0.12597(9)	0.11226(9)	0.19703(14)	0.163(7)
F42	0.12363(9)	0.06897(9)	0.30492(12)	0.217(10)
F43	0.19358(8)	0.03935(9)	0.25062(13)	0.334(17)
F51	0.16312(8)	0.18351(12)	1.05539(13)	0.194(8)
F52	0.17883(8)	0.08836(11)	1.00566(12)	0.196(8)
F53	0.09690(9)	0.15067(12)	0.93939(11)	0.219(9)
F61	0.35277(8)	0.09525(11)	0.95914(11)	0.152(6)
F62	0.40651(9)	0.00001(9)	0.96985(12)	0.204(9)
F63	0.30164(8)	0.00115(10)	0.96765(12)	0.203(8)
F71	0.37525(8)	0.02426(8)	0.38425(11)	0.185(8)
F72	0.33396(8)	-0.07423(8)	0.36934(11)	0.236(11)
F73	0.43397(9)	-0.05825(8)	0.44578(10)	0.245(12)
F81	0.53238(10)	0.13561(9)	0.76376(9)	0.242(11)

Atom	x/a	y/b	z/c	U _{eq} ¹
F82	0.54732(10)	0.03109(8)	0.74875(9)	0.181(7)
F83	0.50986(10)	0.06465(7)	0.84549(11)	0.275(13)
F91	0.11332(9)	0.03943(11)	0.77225(9)	0.190(8)
F92	0.13063(9)	-0.04491(10)	0.85721(10)	0.336(19)
F93	0.03935(10)	-0.04025(10)	0.75369(9)	0.296(15)
F101	0.43553(9)	-0.23528(9)	0.76900(10)	0.198(8)
F102	0.37039(9)	-0.27302(10)	0.83380(11)	0.193(8)
F103	0.42394(9)	-0.18177(9)	0.87249(11)	0.232(10)
F111	0.17666(8)	-0.01493(7)	0.46463(10)	0.104(3)
F112	0.07181(9)	-0.05004(7)	0.41250(11)	0.166(6)
F113	0.15359(8)	-0.10114(8)	0.37807(11)	0.157(6)
F121	-0.02025(11)	-0.33493(12)	0.76284(10)	0.177(7)
F122	-0.06607(11)	-0.24447(11)	0.70160(9)	0.157(5)
F123	0.00031(10)	-0.23994(11)	0.82625(10)	0.197(8)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

3.3.2 Eigenschaften und Kristallstruktur von $[Bi_3O(O_2CCF_3)_7]_2 \cdot 4 C_8H_{10}$ (18a)

Die bei der Thermolyse von *p*-Xylol-Lösungen von $Bi(O_2CCF_3)_3$ zunächst gebildete Substanz **18a** besitzt die elementaranalytisch bestimmte Zusammensetzung $[Bi_3O(O_2CCF_3)_7] \cdot 2 C_8H_{10}$. Die Verbindung wurde sowohl bei RT als auch bei einer Temperatur von 150 K röntgenographisch untersucht.

Im Folgenden werden die Daten der Raumtemperaturstruktur Grundlage der Diskussion sein.

Verbindung **18a** kristallisiert monoklin in der Raumgruppe *C*2/*c* mit den Gitterkonstanten a = 18.100(4) Å, b = 57.855(12) Å, c = 28.100(6) Å, $\beta = 106.29^{\circ}$ (293 K) bzw. a = 17.990(4) Å, b = 56.628(11) Å, c = 27.550(6) Å, $\beta = 106.58(3)^{\circ}$ (150 K) und Z = 12. Die tafelförmigen Kristalle besitzen eine sehr schwache gelbe Farbe.

Bei einer sinnvollen Wahl besteht die asymmetrische Einheit der Kristallstruktur aus drei dreikernigen oxozentrierten Bi₃O-Fragmenten, die jeweils von sieben Trifluoracetatliganden umgeben sind, wobei je zwei der drei Bismutatome ihre Koordinationssphäre mit je einem *para*-Xylol-Liganden im Sinne eines π -Arenkomplexes vervollständigen. Je fünf der sieben Trifluoracetatliganden sind μ_2 -verbrückend zwischen zwei Bismutatomen angeordnet; ein sechster verbrückt dreizähnig innerhalb der dreikernigen Einheit und der siebte verbrückt wie in **20** vierzähnig μ_3 -verbrückend zum symmetrieabhängigen Nachbarfragment, so dass letztlich aus der asymmetrischen Einheit der Festkörperstruktur drei dreikernige dimere Aggregate des basischen Trifluoracetats Bi₃O(O₂CCF₃)₇ generiert werden, die eine Arenhülle aus vier *para*-Xylol-Liganden besitzen (Abb. 21a-c).

Die beiden nicht fehlgeordneten dimeren Aggregate unterscheiden sich hinsichtlich der Neigung der jeweiligen dreikernigen Fragmente zueinander (ca. 28 ° bei Molekül 1 und ca. 42 ° bei Molekül 3). Im Molekül 2 sind die Schweratome statistisch fehlgeordnet (Besetzungsfaktor jeweils 0.5, Abb. 22). Dort sind die Ebenen der dreikernigen Fragmente aus Bi 4, 5 und 6 um ca. 24 ° gegeneinander geneigt bzw. die Ebenen der Schweratome Bi 41, Bi51 und Bi61 schließen in Projektion der Oxoliganden aufeinander einen Winkel von ca. 24 ° ein. Die Abstände in den Teillagen sind in Tabelle 19 aufgelistet.

Abbildung 21a: Molekülgestalt des Moleküls 1 in **18a** (Symmetrie-Code: a = -x, y, 0.5-z)

Abbildung 21b: Molekülgestalt des Moleküls 2 in **18a** (Symmetrie-Code: a = -1-x, y, 0.5-z)

Abbildung 21c: Molekülgestalt des Moleküls 3 in 18a (Symmetrie-Code: a = -x, y, 0.5-z)

Abbildung 22: Zur Fehlordnung der Bismutatome Bi4, Bi5 und Bi6 (vgl. Abb. 21b) in 18a

Alle arenkomplexierten Bismutatome sind verzerrt pentagonal bipyramidal koordiniert (Ringzentrum des Aromaten = eine Koordinationsstelle); die Bismutatome, welche nur Sauerstoffatome koordinieren, besitzen verzerrte Achterkoordinationen mit sehr variablen Bi-O-Abständen. Abb. 23 gibt stellvertretend die Koordinationsfiguren der Schweratome des Moleküls 1 wieder, wobei die Koordinationsfiguren von Bi1, Bi4, und Bi7 fast identisch sind; entsprechend sind diejenigen von Bi2, Bi5 und Bi8, ebenso diejenigen von Bi3, Bi6 und Bi9 sich sehr ähnlich.

Abbildung 23: Koordinationsfiguren der drei kristallographisch unabhängigen Bismutatome des Moleküls 1 in **18a**; die Endpunkte der gestrichelten Linien markieren die Ringmittelpunkte der Arenliganden an Bi2 und Bi3. (Symmetrie-Code: a = -x, y, 0.5-z)

Die Bi-O-Abstände bewegen sich im Bereich von 2.026(12) bis 2.896(14) Å, die nichtbindenden Bi···Bi-Abstände innerhalb der dreieckigen Einheiten im Bereich von 3.624(2) bis 3.886(3) Å. Die Bi···Bi-Abstände zwischen den acetatverbrückten benachbarten Bismutatomen eines ,Dimeren' reichen von 4.444(2) bis 4.615(3) Å, die Abstände zwischen den entsprechenden Bismutatomen und den Ringmittelpunkten der Arene sind 2.955(14) bis 3.069(16) Å lang. Alle Arene sind in einem η^6 -ähnlichen Modus an die entsprechenden Bismutatome koordiniert, wobei eine Korrespondenz von Bismut-Aren- und Bismut- μ_3 -Sauerstoff-Abstand zu beobachten ist. Die Koordination der *p*-Xylol-Moleküle an die Bismut-Zentren ist in allen Fällen sehr ähnlich. Die Längsachsen der Arene ordnen sich jeweils etwa senkrecht zur Ebene der dreikernigen Einheit an.

Die Festkörperorganisation ist wesentlich mitbestimmt durch schwache aber signifikante π - π -Stapel-Wechselwirkungen der Hälfte aller koordinierten Arene. Deren Anordnung zueinander

ist jeweils etwas unterschiedlich, wobei die Ebenen der aromatischen Systeme jedoch stets nahezu planparallel zueinander liegen (Abb. 24).

Abbildung 24: Perspektivische Ansicht der π - π -Stapelwechselwirkungen in der Festkörperstruktur von **18a**

Abbildung 25: Eine der drei nichtäquivalenten Schichten in 18a (Blickrichtung [0 1 0])

Die Moleküle ordnen sich in einem Zick-zack-Muster entlang [1 0 0]. In Abb. 25 ist stellvertretend eine der insgesamt drei nichtäquivalenten Schichten aus ineinander verzahnten Zick-zack, ketten" gezeichnet. Die Stapelung der Schichten dokumentiert Abb. 26.

Abbildung 26: Packung der Moleküle in **18a** (oben: Blickrichtung [1 0 0], unten: Blickrichtung [0 0 1])

Offensichtlich lässt die lockere schichtartige Packung der Moleküle unterschiedliche Orientierungen der dreikernigen Fragmente zueinander und die oben bereits erwähnte statistische Fehlordnung eines der dreikernigen Dimeren im Festkörper zu.

Alle C-Atome in **18a** wurden mit isotropen Auslenkungsparametern in die Verfeinerung einbezogen. Möglicherweise ist die gesamte Peripherie der fehlgeordneten Bismutatome des Moleküls 2 ebenfalls von dieser Fehlordnung betroffen. Es ist jedoch nicht gelungen, eine Fehlordnung dieser leichten Atome sinnvoll zu modellieren, da deren Beitrag zum Gesamtbeugungsbild sehr gering ist und bei 207 Nicht-Wasserstoff-Atomen in der asymmetrischen Einheit hohe Parameterkorrelationen zu erwarten sind.

18a und die im folgenden Kapitel beschriebene Verbindung **18b** sind als Stereoisomere anzusehen. Die korrekte Bezeichnung des vorliegenden Isomers nach dem sogenannten Pearson-Code^[147] ist *mS*2036. Dabei steht *m* für das monokline Kristallsystem und *S* für die *C*-zentrierte Zelle. Die Zahl 2036 gibt die Anzahl der Atome in der Elementarzelle an.

Verbindung Nr.	18a
Empirische Formel	$[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 1, 4 - Me_{2}C_{6}H_{4}$
Molekulargewicht [g mol ⁻¹]	3292.80
Kristallsystem	monoklin
Raumgruppe	<i>C</i> 2/ <i>c</i>
Gitterkonstanten	a = 18.100(4) Å
	b = 57.855(12) Å
	c = 28.100(6) Å
	$\beta = 106.29(3)^{\circ}$
Volumen der Elementarzelle [Å ³]	28244(10)
Zahl der Formeleinheiten	12
Berechnete Dichte [g cm ⁻³]	2.323
Kristallform, Kristallfarbe	tafelig 0.43x0.56x0.26 mm, sehr schwach gelblich
F(000)	18192
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	56460
Messbereich [°]	3.02< 20 < 41.96
Unabhängige Reflexe	7410
Beobachtete Reflexe	4159
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	7410
Parameter	930
Restraints	186
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0870
$wR_2(all data)^3$	0.2621
Wichtungsschema ⁴	0.1556
GOOF (GOOF _{restrain}) ⁵	1.039/1.026
max. shift/su	0.026
$\Delta \rho_{max} / \Delta \rho_{min} [e Å^{-3}]$	1.185/-1.100

Tab. 18: Daten zum Kristall und zur Strukturbestimmung von 18a

$$\label{eq:R1} \begin{split} &^{2}R_{1} = \Sigma || \; F_{o} \; || \; F_{c} \; || \; \Sigma |F_{o} \; | \\ &^{3}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [(wF_{o}^{2})^{2}]]^{1/2} \\ &^{4}w = 1 / [s^{2}(F_{o}^{2}) + (aP)^{2} + bP] \; mit \; P = (F_{o}^{2} + 2 \; F_{c}^{2}) / 3 \\ &^{5}GOOF = S = \{ \Sigma \; [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n-p) \}^{1/2} \end{split}$$

Bil-Ol	2.193(8)	Bi3-COR	2.955(14)	Bi5…Bi6	3.886(3)
Bi2-O1	2.139(9)	Bi5-COR	2.966(15)	Bi4…Bi4a	4.615(3)
Bi3-O1	2.154(9)	Bi6-COR	3.069(16)	Bi41…Bi51	3.624(2)
Bi4-O2	2.201(10)	Bi51-COR	3.018(16)	Bi51…Bi61	3.797(2)
Bi5-O2	2.193(11)	Bi61-COR	3.012(19)	Bi41…Bi61	3.768(2)
Bi6-O2	2.166(10)	Bi8-COR	2.966(13)	Bi41…Bi41a	4.576(3)
Bi41-O2	2.135(10)	Bi9-COR	2.962(11)	Bi7…Bi8	3.6675(13)
Bi51-O2	2.127(11)	Bi1···Bi2	3.6626(13)	Bi7…Bi9	3.7077(15)
Bi61-O2	2.200(10)	Bi1···Bi3	3.6965(15)	Bi8…Bi9	3.8549(14)
Bi7-O3	2.196(9)	Bi2···Bi3	3.8518(13)	Bi7…Bi7a	4.444(2)
Bi8-O3	2.128(10)	Bi1…Bi1a	4.517(2)	Bi4···Bi41	0.452(2)
Bi9-O3	2.169(9)	Bi4···Bi5	3.701(2)	Bi5Bi51	0.495(2)
Bi2-COR	2.977(13)	Bi4…Bi6	3.738(2)	Bi6···Bi61	0.525(2)

Tab. 19: ausgewählte Bindungslängen [Å] in 18a

Tab. 20: ausgewählte Bindungswinkel [°] in 18a

Bi2-O1-Bi1	115.4(4)	Bi41-O2-Bi61	120.7(5)	Bi41-Bi51-Bi61	60.97(5)
Bi3-O1-Bi1	116.5(4)	Bi1-Bi2-Bi3	58.87(3)	Bi51-Bi41-Bi61	61.78(5)
Bi3-O1-Bi2	127.6(4)	Bi2-Bi3-Bi1	58.01(2)	Bi51-Bi41-Bi41a	128.73(7)
Bi4-O2-Bi5	114.8(4)	Bi3-Bi1-Bi2	63.12(3)	Bi61-Bi41-Bi41a	169.42(7)
Bi5-O2-Bi6	126.1(5)	Bi1a-Bi1-Bi3	162.73(3)	Bi41-Bi61-Bi51	57.26(4)
Bi6-O2-Bi4	117.8(5)	Bi1a-Bi1-Bi2	126.16(3)	Bi7-Bi8-Bi9	59.00(3)
Bi7-O3-Bi8	116.0(4)	Bi4-Bi5-Bi6	58.98(5)	Bi8-Bi9-Bi7	57.98(2)
Bi8-O3-Bi9	127.6(4)	Bi5-Bi6-Bi4	58.04(4)	Bi9-Bi7-Bi8	63.02(3)
Bi9-O3-Bi7	116.3(4)	Bi6-Bi4-Bi5	62.99(5)	Bi7a-Bi7-Bi8	123.83(4)
Bi51-O2-Bi41	116.5(4)	Bi4a-Bi4-Bi5	126.04(6)	Bi7a-Bi7-Bi9	157.45(2)
Bi51-O2-Bi61	122.7(4)	Bi4a-Bi4-Bi6	164.58(5)		

Tab. 21: Ortskoordinaten und isotrope bzw.	äquivalente isotrope Auslenkungsparameter der
Atome in 18a	

Atom	x/a	y/b	z/c	U _{eq} ¹
Bi1	0.09696(4)	0.011889(15)	0.32106(2)	0.0741(2)
Bi2	0.30171(4)	0.003873(15)	0.33177(2)	0.0789(2)
Bi3	0.22335(4)	-0.003316(15)	0.44498(2)	0.0766(2)
Bi4	0.40298(8)	0.15448(3)	0.17639(5)	0.0726(5)
Bi41	0.40255(9)	0.16227(3)	0.17763(5)	0.0674(5)
Bi5	0.19550(8)	0.16329(3)	0.16264(5)	0.0796(5)
Bi51	0.19852(9)	0.17161(3)	0.15957(6)	0.0754(5)
Bi6	0.27734(10)	0.16735(3)	0.04898(5)	0.0862(5)
Bi61	0.27025(9)	0.15853(2)	0.04776(5)	0.0679(5)
Bi7	0.09400(4)	0.315665(16)	0.32061(2)	0.0812(3)
Bi8	0.29717(4)	0.325583(15)	0.32833(3)	0.0790(2)
Bi9	0.21825(4)	0.338483(14)	0.43950(2)	0.0754(2)
O1	0.2119(5)	0.0024(2)	0.3675(3)	0.063(3)
O2	0.2896(6)	0.1645(2)	0.1277(4)	0.072(4)
O3	0.2089(5)	0.32658(18)	0.3649(3)	0.058(3)
O11	0.0575(5)	0.0197(3)	0.2219(4)	0.108(6)
O12	0.1779(6)	0.0154(2)	0.2621(3)	0.094(5)
O21	0.1565(5)	0.0497(2)	0.3299(4)	0.097(5)
O22	0.2781(5)	0.0445(2)	0.3325(4)	0.107(5)
O31	0.1046(5)	-0.0246(2)	0.2890(4)	0.111(5)
O32	0.2279(5)	-0.0292(2)	0.2931(4)	0.114(5)
O41	0.3873(6)	0.0199(3)	0.3998(3)	0.112(6)
O42	0.3425(6)	0.0138(3)	0.4631(4)	0.137(6)
O51	0.3543(6)	-0.0263(2)	0.3827(4)	0.110(5)
O52	0.2883(5)	-0.0364(3)	0.4358(4)	0.154(7)
O61	0.2009(5)	0.0401(4)	0.4528(5)	0.150(8)
O62	0.1018(7)	0.02176(18)	0.4081(4)	0.113(5)
071	0.1235(5)	-0.0302(3)	0.4168(4)	0.120(6)
072	0.0269(7)	-0.0162(2)	0.3552(4)	0.117(5)
O81	0.4381(5)	0.1544(3)	0.2764(4)	0.141(7)

Fortsetzung	5
-------------	---

Atom	x/a	y/b	z/c	U _{eq} ¹
082	0.3215(6)	0.1587(3)	0.2355(3)	0.113(6)
O91	0.3465(5)	0.1209(3)	0.1751(4)	0.124(6)
092	0.2233(6)	0.1268(2)	0.1696(5)	0.159(7)
O101	0.3942(5)	0.1961(2)	0.2019(4)	0.096(5)
O102	0.2722(6)	0.2018(3)	0.1943(5)	0.209(8)
0111	0.1069(10)	0.1504(3)	0.0958(4)	0.169(9)
O112	0.1657(6)	0.1405(3)	0.0429(4)	0.209(9)
0121	0.1529(7)	0.1980(3)	0.1063(4)	0.126(7)
0122	0.2015(6)	0.1933(2)	0.0469(3)	0.149(6)
O131	0.3245(6)	0.1198(4)	0.0592(6)	0.237(8)
O132	0.4122(12)	0.14482(19)	0.0964(5)	0.237(8)
O141	0.3702(7)	0.1921(4)	0.0586(5)	0.283(10)
O142	0.4616(7)	0.1850(3)	0.1317(4)	0.163(8)
0151	0.0585(5)	0.3030(3)	0.2268(5)	0.141(7)
O152	0.1775(6)	0.3110(2)	0.2611(3)	0.104(5)
O161	0.1004(5)	0.3528(2)	0.2889(5)	0.115(6)
O162	0.2238(5)	0.3573(3)	0.2887(5)	0.113(5)
O171	0.2785(6)	0.2855(2)	0.3344(4)	0.114(6)
O172	0.1616(5)	0.2746(3)	0.3384(4)	0.149(7)
O181	0.3499(6)	0.35751(19)	0.3733(4)	0.114(5)
O182	0.2721(5)	0.3715(3)	0.4152(4)	0.146(6)
0191	0.3837(7)	0.3121(3)	0.4033(3)	0.141(7)
O192	0.3379(5)	0.3247(2)	0.4629(4)	0.105(5)
O201	0.0111(8)	0.3415(2)	0.3499(4)	0.176(9)
O202	0.1074(5)	0.3607(3)	0.4032(4)	0.134(6)
O211	0.2062(5)	0.2978(3)	0.4570(4)	0.109(5)
O212	0.0945(7)	0.3054(2)	0.4064(4)	0.189(8)
C11	0.1264(4)	0.01756(19)	0.22269(19)	0.125(6)
C12	0.1462(4)	0.01706(17)	0.17297(18)	0.125(6)
C21	0.2232(5)	0.05733(9)	0.3351(4)	0.143(7)
C22	0.2397(7)	0.08323(10)	0.3456(4)	0.143(7)

Atom	x/a	y/b	z/c	U _{eq} ¹
C31	0.1603(5)	-0.03641(10)	0.2850(4)	0.206(11)
C32	0.1424(8)	-0.06167(10)	0.2688(4)	0.206(11)
C41	0.3912(4)	0.02171(15)	0.4438(3)	0.116(5)
C42	0.4590(4)	0.03442(17)	0.4791(4)	0.116(5)
C51	0.3333(5)	-0.04025(10)	0.4101(3)	0.128(6)
C52	0.3677(6)	-0.06469(11)	0.4129(5)	0.128(6)
C61	0.1307(4)	0.03932(11)	0.4315(4)	0.143(7)
C62	0.0795(4)	0.06015(13)	0.4348(4)	0.143(7)
C71	0.0559(4)	-0.02971(13)	0.3897(3)	0.144(7)
C72	-0.0006(4)	-0.04748(15)	0.4005(4)	0.144(7)
C81	0.3703(4)	0.1566(2)	0.2761(2)	0.138(7)
C82	0.3466(4)	0.15658(19)	0.3245(2)	0.138(7)
C91	0.2798(5)	0.11396(9)	0.1717(4)	0.184(10)
C92	0.2594(9)	0.08810(11)	0.1694(5)	0.184(10)
C101	0.3401(5)	0.20882(10)	0.2047(4)	0.53(4)
C102	0.3621(8)	0.23370(11)	0.2221(5)	0.53(4)
C111	0.1105(4)	0.13935(14)	0.0593(4)	0.273(17)
C112	0.0401(4)	0.12424(17)	0.0363(5)	0.273(17)
C121	0.1692(6)	0.20633(10)	0.0698(4)	0.290(18)
C122	0.1445(9)	0.23177(11)	0.0615(6)	0.290(18)
C131	0.3921(4)	0.12536(11)	0.0795(4)	0.193(10)
C132	0.4392(5)	0.10338(13)	0.0790(6)	0.193(10)
C141	0.4321(4)	0.19455(13)	0.0912(3)	0.283(18)
C142	0.4859(5)	0.21315(16)	0.0808(4)	0.283(18)
C151	0.1257(4)	0.30505(18)	0.2246(2)	0.117(5)
C152	0.1434(5)	0.3004(2)	0.1751(2)	0.117(5)
C161	0.1559(5)	0.36419(10)	0.2827(4)	0.149(7)
C162	0.1359(8)	0.38944(10)	0.2668(4)	0.149(7)
C171	0.2304(5)	0.27163(10)	0.3416(4)	0.218(10)
C172	0.2549(8)	0.24669(11)	0.3574(5)	0.218(10)
C181	0.3251(4)	0.37307(11)	0.3953(4)	0.126(6)
Fortsetzung	5			
-------------	---			
-------------	---			

Atom	x/a	y/b	z/c	${\rm U_{eq}}^1$
C182	0.3687(5)	0.39583(12)	0.3953(4)	0.126(6)
C191	0.3874(4)	0.31397(15)	0.4485(3)	0.142(7)
C192	0.4584(4)	0.3021(2)	0.4828(4)	0.142(7)
C201	0.0378(4)	0.35745(13)	0.3804(3)	0.198(11)
C202	-0.0204(5)	0.37473(18)	0.3910(5)	0.198(11)
C211	0.1387(5)	0.29260(10)	0.4367(3)	0.119(6)
C212	0.1115(5)	0.26928(11)	0.4519(3)	0.119(6)
F11	0.2035(7)	0.0309(2)	0.1751(2)	0.151(3)
F12	0.0868(6)	0.0237(2)	0.1377(3)	0.151(3)
F13	0.1651(7)	-0.0038(2)	0.1641(3)	0.151(3)
F21	0.1955(10)	0.09092(14)	0.3664(7)	0.228(4)
F22	0.2321(11)	0.09332(15)	0.3072(6)	0.228(4)
F23	0.3045(10)	0.08566(10)	0.3715(7)	0.228(4)
F31	0.1892(11)	-0.06854(16)	0.2451(8)	0.257(7)
F32	0.0734(11)	-0.06312(11)	0.2407(7)	0.257(7)
F33	0.1496(13)	-0.07437(17)	0.3072(6)	0.257(7)
F41	0.4398(6)	0.0557(3)	0.4838(6)	0.267(8)
F42	0.5177(8)	0.0339(3)	0.4612(5)	0.267(8)
F43	0.4769(8)	0.0244(3)	0.5221(6)	0.267(8)
F51	0.3199(8)	-0.07827(18)	0.3806(7)	0.250(6)
F52	0.3782(11)	-0.07306(17)	0.4582(7)	0.250(6)
F53	0.4345(10)	-0.06377(11)	0.4025(8)	0.250(6)
F61	0.0380(9)	0.0647(2)	0.3936(6)	0.242(6)
F62	0.1199(6)	0.0768(2)	0.4512(7)	0.242(6)
F63	0.0399(9)	0.05546(17)	0.4621(7)	0.242(6)
F71	-0.0658(8)	-0.0456(3)	0.3678(6)	0.253(7)
F72	-0.0089(9)	-0.0437(2)	0.4436(6)	0.253(7)
F73	0.0260(7)	-0.0679(2)	0.3990(8)	0.253(7)
F81	0.4042(7)	0.1521(3)	0.3603(3)	0.162(4)
F82	0.2955(8)	0.1415(3)	0.3219(3)	0.162(4)
F83	0.3205(8)	0.1761(2)	0.3307(3)	0.162(4)

Atom	x/a	y/b	z/c	U _{eq} ¹
F91	0.3042(13)	0.07635(18)	0.1452(8)	0.376(11)
F92	0.1829(13)	0.08525(11)	0.1442(8)	0.376(11)
F93	0.2728(14)	0.07957(16)	0.2168(7)	0.376(11)
F101	0.3049(11)	0.2436(2)	0.2320(9)	0.388(10)
F102	0.3803(14)	0.2449(2)	0.1877(7)	0.388(10)
F103	0.4196(13)	0.23338(11)	0.2610(8)	0.388(10)
F111	0.0625(5)	0.1047(3)	0.0206(7)	0.270(7)
F112	-0.0065(7)	0.1352(2)	-0.0013(7)	0.270(7)
F113	0.0038(7)	0.1197(3)	0.0698(6)	0.270(7)
F121	0.1917(13)	0.2440(2)	0.0900(9)	0.396(14)
F122	0.0818(13)	0.23429(14)	0.0689(11)	0.396(14)
F123	0.1404(16)	0.23725(17)	0.0190(9)	0.396(14)
F131	0.3932(8)	0.0856(3)	0.0689(11)	0.348(12)
F132	0.4886(13)	0.1006(3)	0.1223(9)	0.348(12)
F133	0.4758(13)	0.1053(2)	0.0453(10)	0.348(12)
F141	0.5453(10)	0.2053(2)	0.0849(11)	0.450(9)
F142	0.4911(14)	0.2280(3)	0.1084(9)	0.450(9)
F143	0.4614(10)	0.2200(4)	0.0414(8)	0.450(9)
F151	0.0814(8)	0.2922(4)	0.1428(4)	0.223(6)
F152	0.1995(9)	0.2852(3)	0.1820(2)	0.223(6)
F153	0.1645(10)	0.3198(3)	0.1582(4)	0.223(6)
F161	0.0637(11)	0.39058(11)	0.2380(7)	0.230(6)
F162	0.1836(11)	0.39708(15)	0.2417(7)	0.230(6)
F163	0.1433(11)	0.40250(17)	0.3069(6)	0.230(6)
F171	0.2551(16)	0.24389(17)	0.4000(7)	0.402(12)
F172	0.3185(12)	0.24324(17)	0.3534(9)	0.402(12)
F173	0.2102(12)	0.23338(18)	0.3313(8)	0.402(12)
F181	0.3458(9)	0.4055(2)	0.3495(6)	0.345(6)
F182	0.4454(9)	0.39157(13)	0.4075(8)	0.345(6)
F183	0.3532(9)	0.4106(2)	0.4288(7)	0.345(6)
F191	0.4510(7)	0.3007(4)	0.5229(6)	0.357(9)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Fortsetzung	5
-------------	---

Atom	x/a	y/b	z/c	
F192	0.5135(8)	0.3129(3)	0.4840(8)	0.357(9)
F193	0.4647(8)	0.2835(3)	0.4677(6)	0.357(9)
F201	-0.0026(10)	0.3954(3)	0.3811(10)	0.335(5)
F202	-0.0188(11)	0.3735(3)	0.4370(8)	0.335(5)
F203	-0.0884(10)	0.3698(3)	0.3638(9)	0.335(5)
F211	0.0878(10)	0.27201(12)	0.4889(6)	0.247(6)
F212	0.1659(7)	0.25545(18)	0.4619(6)	0.247(6)
F213	0.0588(9)	0.26158(18)	0.4173(5)	0.247(6)
C221	0.4435(4)	0.02504(5)	0.29562(19)	0.125(3)
C222	0.3882(5)	0.02181(7)	0.2505(2)	0.125(3)
H222	0.3654	0.0345	0.2318	0.150
C223	0.3671(6)	-0.00042(8)	0.2332(3)	0.125(3)
H223	0.3302	-0.0026	0.2030	0.150
C224	0.4012(6)	-0.01942(6)	0.2611(3)	0.125(3)
C225	0.4564(5)	-0.01619(5)	0.3062(3)	0.125(3)
H225	0.4793	-0.0289	0.3249	0.150
C226	0.4776(5)	0.00604(6)	0.3235(2)	0.125(3)
H226	0.5145	0.0082	0.3537	0.150
C227	0.4657(7)	0.04922(7)	0.3148(3)	0.158(11)
H271	0.4922	0.0486	0.3495	0.237
H272	0.4202	0.0585	0.3098	0.237
H273	0.4988	0.0559	0.2971	0.237
C228	0.3783(8)	-0.04359(7)	0.2422(4)	0.26(2)
H281	0.4221	-0.0515	0.2371	0.384
H282	0.3384	-0.0428	0.2114	0.384
H283	0.3597	-0.0519	0.2661	0.384
C311	0.2631(3)	0.01058(4)	0.5599(3)	0.149(4)
C312	0.3166(3)	-0.00663(6)	0.5598(4)	0.149(4)
H312	0.3683	-0.0029	0.5657	0.178
C313	0.2928(4)	-0.02945(5)	0.5508(5)	0.149(4)
H313	0.3286	-0.0410	0.5507	0.178

Atom	x/a	y/b	z/c	U _{eq} ¹
C314	0.2154(4)	-0.03506(6)	0.5419(5)	0.149(4)
C315	0.1619(3)	-0.01786(8)	0.5421(5)	0.149(4)
H315	0.1101	-0.0216	0.5361	0.178
C316	0.1857(3)	0.00496(6)	0.5511(4)	0.149(4)
H316	0.1499	0.0165	0.5512	0.178
C317	0.2890(4)	0.03540(7)	0.5698(8)	0.36(4)
H371	0.3380	0.0374	0.5635	0.547
H372	0.2936	0.0392	0.6038	0.547
H373	0.2519	0.0454	0.5485	0.547
C318	0.1893(5)	-0.05983(7)	0.5315(7)	0.214(16)
H381	0.2099	-0.0661	0.5063	0.321
H382	0.1341	-0.0603	0.5204	0.321
H383	0.2072	-0.0688	0.5613	0.321
C511	0.0594(5)	0.14910(4)	0.2046(2)	0.183(6)
C512	0.0155(7)	0.16179(6)	0.1646(3)	0.183(6)
H512	-0.0179	0.1543	0.1379	0.219
C513	0.0216(8)	0.18574(6)	0.1645(3)	0.183(6)
H513	-0.0077	0.1942	0.1378	0.219
C514	0.0716(7)	0.19700(4)	0.2045(3)	0.183(6)
C515	0.1155(8)	0.18431(7)	0.2445(4)	0.183(6)
H515	0.1489	0.1918	0.2712	0.219
C516	0.1094(7)	0.16036(6)	0.2445(3)	0.183(6)
H516	0.1387	0.1519	0.2713	0.219
C517	0.0548(9)	0.12298(6)	0.2039(4)	0.235(19)
H571	0.0025	0.1183	0.1997	0.352
H572	0.0869	0.1170	0.2345	0.352
H573	0.0720	0.1172	0.1768	0.352
C518	0.0807(9)	0.22295(6)	0.2032(5)	0.35(3)
H581	0.0347	0.2296	0.1819	0.523
H582	0.1237	0.2266	0.1909	0.523
H583	0.0896	0.2291	0.2361	0.523

Fortsetzung	5
-------------	---

Atom	x/a	y/b	z/c	U_{eq}^{1}
C611	0.1973(3)	0.13792(4)	-0.0637(4)	0.186(6)
C612	0.2728(3)	0.14327(6)	-0.0621(6)	0.186(6)
H612	0.3082	0.1315	-0.0610	0.223
C613	0.2953(4)	0.16623(7)	-0.0622(8)	0.186(6)
H613	0.3459	0.1698	-0.0612	0.223
C614	0.2424(4)	0.18383(5)	-0.0639(6)	0.186(6)
C615	0.1669(4)	0.17848(5)	-0.0655(6)	0.186(6)
H615	0.1315	0.1903	-0.0666	0.223
C616	0.1443(3)	0.15552(5)	-0.0654(6)	0.186(6)
H616	0.0938	0.1519	-0.0664	0.223
C617	0.1727(4)	0.11296(7)	-0.0632(8)	0.34(3)
H671	0.2154	0.1030	-0.0629	0.511
H672	0.1310	0.1099	-0.0922	0.511
H673	0.1562	0.1101	-0.0341	0.511
C618	0.2673(4)	0.20881(7)	-0.0631(8)	0.24(2)
H681	0.2865	0.2139	-0.0293	0.357
H682	0.2241	0.2182	-0.0800	0.357
H683	0.3071	0.2102	-0.0794	0.357
C811	0.4420(4)	0.30763(5)	0.29816(17)	0.143(4)
C812	0.3868(5)	0.30479(7)	0.2528(2)	0.143(4)
H812	0.3708	0.2900	0.2414	0.172
C813	0.3555(7)	0.32402(9)	0.2247(3)	0.143(4)
H813	0.3186	0.3221	0.1944	0.172
C814	0.3794(6)	0.34608(8)	0.2419(3)	0.143(4)
C815	0.4345(6)	0.34892(5)	0.2872(2)	0.143(4)
H815	0.4505	0.3637	0.2987	0.172
C816	0.4658(5)	0.32970(6)	0.3153(2)	0.143(4)
H816	0.5027	0.3316	0.3457	0.172
C817	0.4744(7)	0.28673(8)	0.3295(3)	0.170(12)
H871	0.4477	0.2731	0.3143	0.255
H872	0.4679	0.2886	0.3620	0.255

Atom	x/a	v/b	z/c	U_{eq}^{1}
H873	0.5282	0.2853	0.3320	0.255
C818	0.3454(7)	0.36693(8)	0.2110(3)	0.193(14)
H881	0.3618	0.3671	0.1813	0.290
H882	0.3627	0.3808	0.2297	0.290
H883	0.2903	0.3661	0.2024	0.290
C911	0.2511(3)	0.33362(5)	0.5593(2)	0.125(4)
C912	0.3070(3)	0.34863(6)	0.5522(3)	0.125(4)
H912	0.3581	0.3439	0.5599	0.150
C913	0.2865(4)	0.37070(7)	0.5336(4)	0.125(4)
H913	0.3239	0.3807	0.5288	0.150
C914	0.2101(4)	0.37775(8)	0.5221(4)	0.125(4)
C915	0.1542(3)	0.36274(9)	0.5293(4)	0.125(4)
H915	0.1031	0.3675	0.5216	0.150
C916	0.1747(3)	0.34068(7)	0.5479(3)	0.125(4)
H916	0.1373	0.3306	0.5526	0.150
C917	0.2736(4)	0.30967(7)	0.5800(4)	0.148(10)
H971	0.2789	0.3096	0.6149	0.222
H972	0.3217	0.3054	0.5743	0.222
H973	0.2345	0.2988	0.5637	0.222
C918	0.1880(5)	0.40185(7)	0.5024(4)	0.160(11)
H981	0.1814	0.4115	0.5286	0.241
H982	0.1406	0.4012	0.4763	0.241
H983	0.2278	0.4081	0.4897	0.241

3.3.3 Kristallstrukturanalytische Charakterisierung von 18b - Ein Stereoisomer von 18a

Die bei der weiterführenden Thermolyse der Lösung von Bi $(O_2CCF_3)_3$ in *p*-Xylol entstandene Substanz **18b** besitzt laut Elementaranalyse die gleiche chemische Zusammensetzung wie **18a**. **18b** kristallisiert in Form rautenförmiger Tafeln in der monoklinen Raumgruppe $P2_1/n$ mit a = 12.3221(10) Å, b = 22.964(2) Å, c = 16.2545(12) Å, $\beta = 108.156(8)$ ° (120 K) und Z = 2.

Abbildung 27: Molekulare Einheit der Verbindung 18b (Symmetrie-Code: a = 1-x, -y, 1-z)

Im Festkörper der Verbindung ist das Verknüpfungsmuster der beiden coplanar angeordneten dreikernigen Bi₃O-Fragmente derart, dass die Ebene der zentralen vieratomigen Masche aus Bismut- und µ₂-verbrückenden Sauerstoffatomen (O11 bzw. O11a) einen Winkel von ca. 54° zu der besten Ebene der dreikernigen Bi₃O-Fragmente einschließt (Abb. 27 und 28). Im Vergleich zu **18a** fällt das unterschiedliche Koordinationsmuster der komplexierten *para*-Xylol-Liganden auf: Die Längsachse von einem der zwei kristallographisch unabhängigen *para*-Xylol-Moleküle ist annähernd coplanar zur Bi₃O-Ebene angeordnet, während die Längsachse des anderen *para*-Xylol-Moleküls nahezu senkrecht dazu steht (Abb. 28).

Abbildung 28: Perspektivische Ansicht des anorganischen Gerüsts, der

fragmentverknüpfenden Bi_2O_2 -Masche und der Koordination der Arene in **18b** (Symmetrie-Code: a = 1-x, -y, 1-z)

Abbildung 29: Koordinationsfiguren der drei kristallographisch unabhängigen Bismutatome in **18b**; die Endpunkte der gestrichelten Linien an Bi2 und Bi3 markieren die Ringmittelpunkte der Arenliganden (Symmetrie-Code: a = 1-x, -y, 1-z)

Die strukturelle Andersartigkeit von **18b** äußert sich außerdem in einem signifikant kleineren Abstand zwischen Bi1 und Bi1a {4.1939(7) Å; **18a**: 4.517(2), 4.615(3), 4.576(3) und 4.444(2) Å}. Rechnet man das Zentrum des Aromaten als eine Koordinationsstelle, besitzen Bi2 und

Bi3 eine Siebenerkoordination (verzerrte pentagonale Bipyramide) mit den bereits bei Verbindung **18a** diskutierten Besonderheiten. Bi1 ist im Gegensatz zu **18a** und **20** hier nicht von acht, sondern von neun Sauerstoffatomen umgeben, wobei der zusätzliche Bi-O-Kontakt mit 3.199(8) Å eine relativ geringe Bindungsstärke aufzeigt. Die Koordinationsfigur erinnert entfernt an ein dreifach überkapptes trigonales Prisma (Abb. 29).

Wesentliches Merkmal der Packung der Moleküle im Kristall (Abb. 30) sind π - π -Stapel-Wechselwirkungen zwischen jenen *para*-Xylol-Liganden, die mit ihrer Längsachse etwa parallel zur Bi₃O-Ebene ausgerichtet sind. Der Ebenenabstand beträgt ca. 3.6 Å. Durch die Stapelwechselwirkung wird letztlich eine nahezu koplanare Anordnung der beiden Bi₃O-Einheiten in einem Molekül erzwungen. Die Moleküle ordnen sich in einem Zick-zack-Muster entlang [0 0 1] (Abb. 30).

Abbildung 30: Packung der Moleküle in festem 18b (Blickrichtung [1 0 0])

Die Bezeichnung des Stereoisomers **18b** gemäß dem Pearson-Code ist mP712, wobei m das monokline Kristallsystem und P die primitive Zelle repräsentiert. Die Zahl 712 gibt die Anzahl der Atome in der Elementarzelle wieder.

Verbindung Nr.	18b
Empirische Formel	$[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 C_{8}H_{10}$
Molekulargewicht [g mol ⁻¹]	3292.80
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/n$
Gitterkonstanten	a = 12.3221(10) Å
	b = 22.964(2) Å
	c = 16.2545(12) Å
	$\beta = 108.156(8)^{\circ}$
Volumen der Elementarzelle [Å ³]	4370.5(6)
Zahl der Formeleinheiten	2
Berechnete Dichte [g cm ⁻³]	2.502
Kristallform, Kristallfarbe	tafelig 0.08x0.58x0.19 mm, sehr schwach gelblich
F(000)	3032
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	120(2)
Gemessene Reflexe	37964
Messbereich [°]	$4.06 < 2\theta < 52.34$
Unabhängige Reflexe	8609
Beobachtete Reflexe	6308
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	8609
Parameter	564
Restraints	18
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0466
$wR_2(all data)^3$	0.1074
Wichtungsschema ⁴	0.0573
GOOF (GOOF _{restrain}) ⁵	0.904 (0.905)
max. shift/su	0.001
$\Delta \rho_{max} / \Delta \rho_{min} [e Å^{-3}]$	1.993/-2.082

Tab. 22: Daten zum Kristall und zur Strukturbestimmung von 18b

 $\label{eq:rescaled_$

Bi1-O1	2.212(6)	Bi2-O32	2.595(7)
Bi1-O41	2.430(6)	Bi3-O1	2.121(6)
Bi1-O51	2.368(6)	Bi3-O72	2.322(7)
Bi1-O32	2.446(6)	Bi3-O62	2.330(5)
Bi1-O31	2.553(7)	Bi3-O12	2.396(7)
Bi1-O21	2.567(6)	Bi3-O22	2.563(7)
Bi1-O11	2.610(7)	Bi3-O21	2.647(7)
Bi1-O11a	2.724(7)	Bi2-COR	2.867(7)
Bi1-O12	3.199(8)	Bi3-COR	2.891(7)
Bi2-O1	2.127(5)	Bi1…Bi2	3.6681(5)
Bi2-O71	2.310(7)	Bi2···Bi3	3.8538(5)
Bi2-O61	2.363(6)	Bi1···Bi3	3.6401(6)
Bi2-O52	2.368(6)	Bi1…Bi1a	4.1939(7)
Bi2-O42	2.442(7)		

Tab. 23: ausgewählte Bindungslängen [Å] in 18b

Tab. 24: ausgewählte Bindungswinkel [°] in 18b

Bi2-O1-Bi1	115.4(3)
Bi3-O1-Bi1	114.3(2)
Bi3-O1-Bi2	130.3(3)
Bi1-Bi2-Bi3	57.823(11)
Bi1-Bi3-Bi2	58.529(10)
Bi3-Bi1-Bi2	63.649(10)
Bi2-Bi1-Bi1a	166.532(16)
Bi3-Bi1-Bi1a	103.392(13)

Atom	x/a	y/b	z/c	U_{eq}^{1}
Bi1	0.43490(3)	0.056390(12)	0.57461(2)	0.02651(10)
Bi2	0.38941(3)	0.153109(12)	0.74044(2)	0.02754(10)
Bi3	0.64895(3)	0.050400(13)	0.78737(2)	0.02675(10)
01	0.4940(5)	0.0883(2)	0.7097(4)	0.0239(13)
O11	0.6202(6)	0.0373(2)	0.5332(5)	0.0361(16)
O12	0.7035(7)	0.0752(3)	0.6625(5)	0.0400(17)
O21	0.5512(6)	-0.0269(2)	0.6660(5)	0.0340(16)
O22	0.5254(6)	-0.0326(3)	0.7941(5)	0.0388(17)
O31	0.2534(7)	0.0816(3)	0.4547(5)	0.0432(18)
O32	0.2886(6)	0.1272(2)	0.5792(5)	0.0339(15)
O41	0.5029(6)	0.1468(2)	0.5459(4)	0.0329(15)
O42	0.4764(6)	0.2074(2)	0.6481(5)	0.0353(16)
O51	0.3065(5)	0.0089(2)	0.6346(4)	0.0301(15)
052	0.2648(6)	0.0725(2)	0.7254(5)	0.0333(15)
O61	0.5613(5)	0.1951(2)	0.8288(5)	0.0316(15)
O62	0.7120(6)	0.1463(2)	0.8132(4)	0.0319(15)
O71	0.4214(6)	0.1111(3)	0.8750(5)	0.0357(16)
072	0.5982(6)	0.0727(3)	0.9099(4)	0.0324(15)
C11	0.7012(7)	0.0610(3)	0.5888(6)	0.028(2)
C12	0.8110(4)	0.07707(18)	0.5648(3)	0.036(2)
C21	0.5193(8)	-0.0536(3)	0.7230(7)	0.033(2)
C22	0.4773(6)	-0.11796(19)	0.7048(4)	0.047(3)
C31	0.2232(7)	0.1129(3)	0.5056(6)	0.033(2)
C32	0.0963(3)	0.13307(17)	0.4803(3)	0.041(3)
C41	0.5157(7)	0.1936(3)	0.5889(6)	0.030(2)
C42	0.5909(5)	0.24134(18)	0.5636(4)	0.044(3)
C51	0.2571(7)	0.0248(3)	0.6876(6)	0.032(2)
C52	0.1716(4)	-0.01964(17)	0.7063(3)	0.043(3)
C61	0.6637(8)	0.1894(3)	0.8336(6)	0.030(2)
C62	0.7442(4)	0.24198(16)	0.8711(3)	0.046(3)

Tab. 25: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 18b

Atom	x/a	y/b	z/c	U _{eq} ¹
C71	0.5113(9)	0.0898(3)	0.9260(5)	0.034(2)
C72	0.5166(4)	0.0875(2)	1.0223(3)	0.043(3)
F11	0.7884(5)	0.1186(3)	0.5101(6)	0.123(5)
F12	0.8444(5)	0.0328(3)	0.5319(4)	0.075(3)
F13	0.8895(5)	0.0929(3)	0.6327(5)	0.098(3)
F21	0.4084(8)	-0.1290(2)	0.7447(6)	0.111(4)
F22	0.5606(7)	-0.15149(19)	0.7295(8)	0.187(8)
F23	0.4297(10)	-0.1246(2)	0.6257(5)	0.140(6)
F31	0.0925(3)	0.1887(2)	0.4954(4)	0.064(2)
F32	0.0440(3)	0.1044(3)	0.5259(4)	0.084(3)
F33	0.0464(3)	0.1230(2)	0.3982(4)	0.0569(19)
F41	0.5450(6)	0.2907(2)	0.5623(6)	0.091(3)
F42	0.5987(8)	0.2301(3)	0.4895(6)	0.132(5)
F43	0.6895(6)	0.2416(3)	0.6187(7)	0.141(6)
F51	0.1879(5)	-0.0705(2)	0.6784(5)	0.073(3)
F52	0.0681(5)	-0.0030(2)	0.6673(5)	0.103(4)
F53	0.1880(6)	-0.0221(3)	0.7888(5)	0.086(3)
F61	0.6887(5)	0.29051(18)	0.8466(4)	0.071(2)
F62	0.8320(5)	0.2402(2)	0.8427(5)	0.096(4)
F63	0.7789(5)	0.2392(2)	0.9554(4)	0.079(3)
F71	0.5793(6)	0.0444(3)	1.0597(3)	0.084(3)
F72	0.4150(5)	0.0811(3)	1.0273(3)	0.080(3)
F73	0.5597(7)	0.1353(3)	1.0600(3)	0.092(3)
C211	0.2874(6)	0.2806(2)	0.7295(5)	0.041(3)
C212	0.3281(5)	0.2707(2)	0.8182(4)	0.043(3)
H212	0.3903	0.2917	0.8525	0.052
C213	0.2759(7)	0.2293(3)	0.8557(4)	0.054(3)
H213	0.3031	0.2227	0.9151	0.065
C214	0.1829(7)	0.1979(3)	0.8044(6)	0.058(4)
C215	0.1423(5)	0.2078(3)	0.7157(6)	0.057(4)
H215	0.0801	0.1868	0.6814	0.068

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Atom	x/a	y/b	z/c	U_{eq}^{1}
C216	0.1945(6)	0.2492(3)	0.6783(4)	0.045(3)
H216	0.1673	0.2558	0.6189	0.054
C217	0.3460(13)	0.3251(4)	0.6889(10)	0.067(4)
H271	0.2910	0.3531	0.6572	0.101
H272	0.3793	0.3058	0.6502	0.101
H273	0.4047	0.3445	0.7335	0.101
C218	0.1240(17)	0.1528(5)	0.8442(14)	0.105(8)
H281	0.0470	0.1649	0.8368	0.157
H282	0.1646	0.1490	0.9048	0.157
H283	0.1232	0.1159	0.8161	0.157
C311	0.8665(6)	0.0393(2)	0.9534(4)	0.043(3)
C312	0.9135(5)	0.0482(3)	0.8870(5)	0.051(3)
H312	0.9505	0.0830	0.8838	0.061
C313	0.9053(6)	0.0050(3)	0.8255(4)	0.061(4)
H313	0.9367	0.0109	0.7811	0.074
C314	0.8500(7)	-0.0471(3)	0.8304(4)	0.048(3)
C315	0.8029(6)	-0.05591(19)	0.8968(4)	0.038(2)
H315	0.7659	-0.0907	0.9000	0.046
C316	0.8112(6)	-0.0127(2)	0.9583(4)	0.040(3)
H316	0.7797	-0.0186	1.0027	0.047
C317	0.8753(11)	0.0853(5)	1.0218(8)	0.064(4)
H371	0.9230	0.1166	1.0141	0.096
H372	0.9080	0.0685	1.0782	0.096
H373	0.8005	0.1001	1.0165	0.096
C318	0.8425(15)	-0.0943(7)	0.7633(9)	0.093(6)
H381	0.8603	-0.0779	0.7147	0.140
H382	0.7665	-0.1100	0.7443	0.140
H383	0.8959	-0.1247	0.7885	0.140

Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome von 18b

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

3.3.4 Vergleichende Betrachtungen zu 18a, 18b und verwandten Verbindungen

Die Konstitution des bereits beschriebenen Benzolderivats **20** bzw. des ebenfalls bekannten 1,2,3,4-Tetramethylbenzolderivats^[47] (Abb. 31) entspricht im Prinzip der von **18a** (Schema 6, oberes Teilbild).

Abbildung 31: 1,2,3,4-Tetramethylbenzolsolvat des basischen dreikernigen Bismut(III)-trifluoracetats (W. Frank, unveröffentlicht).

Die Trifluoracetatliganden sind jeweils paarweise zwischen zwei Bismut-Atomen angeordnet. Das siebte Trifluoracetat-Ion verknüpft in etwa *in der Ebene* der Bi₃O-Fragmente liegend diese als μ_3 -verbrückender Chelatligand. In vereinfachender Betrachtung befinden sich also drei Liganden zwischen zwei Bismutatomen, von denen einer die dreikernigen Fragmente in einer Art vierzähnig μ_3 -verbrückendem Modus verknüpft. In **18b** kommt die Verbrückung nicht auf dieser Seite zustande, sondern auf der Seite, wo sich nur zwei Liganden zwischen zwei Bismutatomen befinden. Eines der beiden Trifluoracetat-Ionen verbrückt dann zusätzlich zum Nachbarfragment, ist aber gleichzeitig chelatisierend und verbrückend zwischen den beiden Bismut-Atomen innerhalb der dreikernigen Einheit angeordnet, so dass hier auch von einer vierzähnig μ_3 -verbrückenden Koordination gesprochen werden kann. Der Trifluoracetatligand, der die Fragmente verknüpft, ist aus der Ebene der Bi₃O-Fragmente herausgeneigt, so dass die Ebene der Bi₂O₂-Masche, welche die dreieckigen Fragmente verbindet, mit der besten Ebene der Bi₃O-Fragmente einen Winkel von etwa 54 ° einschließt. Die Bi₃O-Fragmente sind im gleichen Drehsinn etwas gegeneinander verdreht, so dass sich die benachbarten Bismutatome signifikant näher kommen als in **20**, **18a** oder dem 1,2,3,4-Tetramethylbenzolderivat. Dem unterschiedlichen Verknüpfungsmuster der dreikernigen Fragmente entsprechend sind **18a** und **18b** als Konstitutionsisomere zu betrachten.

Zur Verdeutlichung der unterschiedlichen Verknüpfungsmuster dient die folgende Prinzipskizze (Schema 6).

Schema 6: Verknüpfungsmuster in **20**, **18a** und dem 1,2,3,4-Tetramethylbenzolderivat des basischen dreikernigen Trifluoracetats (oben) sowie in **18b** (unten)

Aus der Sicht der supramolekularen Chemie kann das Benzolderivat 20, welches *keine* π - π -Stapel-Wechselwirkungen der Aren-Liganden besitzt, tatsächlich als "isoliertes" Molekül betrachtet werden, während bei 18a und 18b über π - π -Wechselwirkungen bereits eine schwache supramolekulare Ordnung ausgeprägt ist. Die Addukte 18a und 18b bilden π - π -Kontakte über *die Hälfte* der *para*-Xylol-Liganden aus, so dass hier ineinander verzahnte Zick-zack-"Ketten" entstehen. Die beiden Isomeren 18a und 18b unterscheiden sich in der

Anordnung der Ketten zueinander: während in **18a** die Kettenaufbaurichtung immer in der gleichen Richtung verläuft und Schichten aus diesen Zick-zack-Ketten gebildet werden, sind die einzelnen Ketten in **18b** jeweils gegenläufig zueinander angeordnet, wobei gleichartig orientierte Ketten entlang [1 0 0] übereinander gestapelt sind. Das 1,2,3,4-Tetramethylbenzolderivat bildet durch π - π -Stapel-Wechselwirkungen *aller* Arene zwei identische, sich gegenseitig durchdringende dreidimensionale Netzwerke, wobei eine "Masche" jeweils aus sechs dimeren dreikernigen Molekülen besteht.

Packungsbestimmend sind offenbar in allen Fällen die Gestalt der lipophilen Hülle und das intermolekularer Muster möglicher van der Waalsbzw. möglicher π-π-Stapelwechselwirkungen, wobei letztere einen etwas höheren Beitrag attraktiver Energie lassen sich die dimeren Aggregate 18a, 18b und liefern. So das 1,2,3,4-Tetramethylbenzolderivat als Moleküle mit π - π -, Rezeptoren" betrachten, die durch Nutzung der Hälfte dieser Rezeptoren kettenartige supramolekulare Einheiten aufbauen (18a bzw. 18b) bzw. durch Nutzung aller vorhandener Rezeptoren den maximalen Vernetzungsgrad eines Raumnetzes erreichen können (1,2,3,4-Tetramethylbenzolderivat).

Die Fähigkeit des Aromaten, die Packung der basischen dreikernigen dimeren Moleküle im Festkörper zu bestimmen und sogar geringen Einfluss auf die Molekülgestalt der dreikernigen Dimere zu nehmen, äußert sich in dem Befund, dass drei der vier betrachteten Verbindungen in verschiedenen Raumgruppen kristallisieren. Dies kann als eine Art von supramolekularem ,Crystal Engineering' aufgefasst werden.

Abschließend soll noch kurz die Reihenfolge des Auftretens von 18a bzw. 18b bei der fortschreitenden Thermolyse von 6 in p-Xylol diskutiert werden: Die Dimerisierung über die Brücke in der Ebene der Bi₃O-Fragmente verläuft offenbar schneller, da die entsprechenden Koordinationsstellen einfacher miteinander verknüpft werden können. Da eine ideale Verzahnung dabei nicht erreicht wird, können stabilisierende van der Waals-Wechselwirkungen in der lipophilen Hülle dann aber nur in geringem Maße zur Gesamtenergie beitragen. Bei thermodynamischer Kontrolle, d. h. Thermolyse über einen längeren Zeitraum, wird schließlich das kinetisch kontrolliert entstehende Konstitutionsisomer 18a, welches die vergleichsweise geringere Dichte besitzt, in das stabilere Isomer 18b mit der höheren Dichte umgewandelt.

3.3.5 Synthese, Eigenschaften und Kristallstruktur von $[Bi_2O(O_2CCF_3)_4]_2 \cdot 3$ C_8H_{10} (19)

Das basische Trifluoracetat **19** wurde ursprünglich beim Erwärmen einer Lösung von Bismut(II)-trifluoracetat (siehe Kap. 3.5.1) in *para*-Xylol erhalten. Da es Hinweise gibt, dass es unter geeigneten Konzentrationsbedingungen auch bei der höheren thermischen Belastung von **18a** bzw. **18b** entsteht und es in engem strukturellen Zusammenhang zu diesen Verbindungen steht, soll es jedoch an dieser Stelle besprochen werden.

Während sich das in *p*-Xylol gelöste rote Bismut(II)-trifluoracetat beim Erhitzen im geschlossenen Rohr bei 140 °C als stabil erweist, hellt sich eine Lösung der Substanz, die weniger streng vor Atmosphärilien geschützt ist, bei Erwärmen langsam auf und nimmt im Laufe einer mehrtägigen Reaktion eine intensiv gelbe Farbe an. Aus der Lösung kristallisiert dann als erstes die Verbindung $[Bi_2O(O_2CCF_3)_4]_2 \cdot 3 C_8H_{10}$ (**19**), deren prinzipielle Zusammensetzung zunächst elementaranalytisch ermittelt wurde. In Lösung entsteht im weiteren Verlauf jedoch recht schnell Verbindung **18a**.

Die Verbindung kann als Aren-Addukt eines basischen Bismut(III)-trifluoracetats mit der Summenformel [Bi₂O(O₂CCF₃)₄]₂ und damit als weiteres Produkt der Komplexkondensation von Bismut(III)-trifluoracetat in *para*-Xylol-Lösung aufgefasst werden.

Dem Reaktionsweg angemessener ist die Beschreibung als Dimer des primären Oxidationsproduktes von **15** in *p*-Xylol gemäß:

2
$$\operatorname{Bi}_2(O_2\operatorname{CCF}_3)_4 + O_2 \xrightarrow{p-Xylol} {\operatorname{Bi}_2O(O_2\operatorname{CCF}_3)_4}_2$$

19 kristallisiert in Form schwach gelber Stäbchen in der triklinen Raumgruppe $P\overline{1}$ mit a = 10.204(2) Å, b = 12.712(3) Å, c = 13.126(3) Å, $\alpha = 68.95(3)$ °, $\beta = 80.76(3)$ °, $\gamma = 69.63(3)$ ° und Z = 1.

Ein planares Bi_4O_2 -Fragment bildet das anorganische Grundgerüst der Verbindung. Im Vergleich zu den bereits besprochenen basischen Bismut(III)-trifluoracetaten kann das Fragment anschaulich als Resultat einer Kantenverknüpfung zweier Bi₃O-Einheiten beschrieben werden. An dieses Grundgerüst sind acht Trifluoracetatgruppen syn-syn- bzw. syn-anti- μ_2 -verbrückend gebunden (Abb. 32).

Abbildung 32: Quasimolekulare Einheit in [Bi₂O(O₂CCF₃)₄]₂ · 3 C₈H₁₀ (19)
(Symmetrie-Code: a = 1-x, 2-y, -z). Die Verknüpfung zum supramolekularen Kettenverband findet über einen μ-η⁶-koordinierenden *p*-Xylol-Liganden statt.

para-Xylol komplexiert alle Bismut-Atome in einem n⁶-ähnlichen Modus. Die para-Xylol-Moleküle an Bi2 bzw. Bi2a sind terminal koordiniert (Bi-Aren(COR) = 2.986(7) Å), während das para-Xylol-Molekül am Bi1 (bzw. Bi1a)-Atom als Bestandteil einer supramolekularen Kette zwischen kristallographisch Bismutatomen auf zwei abhängigen einem Inversionszentrum angeordnet ist, ein Strukturmotiv, das in der Hauptgruppenelement-Aren-Komplexchemie mehrfach gefunden wurde (siehe Einleitung). Die genauere Betrachtung zeigt eine Fehlordnungssituation des Aromaten im Sinne einer eigentlich unsymmetrischen Verbrückung auf (Bi-Aren(COR) = 3.43(2) Å bzw. 3.33(2) Å; Entfernung der Teillagen des Fehlordnungsmodells ca. 0.56 Å bei nahezu coplanarer Anordnung). Die Bismutatome sind stark verzerrt pentagonal bipyramidal (Bi1 = 1+5+Aren) bzw. verzerrt oktaedrisch (Bi2 = 1+2+2+Aren) koordiniert (Abb. 33). Die zum Zusammenhalt des Moleküls wesentlich beitragenden Bi-O-Wechselwirkungen sind durch Atomabstände im Bereich von 2.088(4) bis 2.448(6) Å charakterisiert. Nichtbindende Abstände benachbarter Bismutatome liegen zwischen 3.6051(10) und 3.8572(18) Å.

Abbildung 33: Koordinationsfiguren der kristallographisch unabhängigen Bismut-Atome in 19 (Symmetrie-Code: a = 1-x, 2-y, -z); die Endpunkte der gestrichelten Linien markieren die Ringmittelpunkte der Arenliganden an Bi1 und Bi2

Den Aufbau des Festkörpers von **19** dokumentieren die Abbildungen 34 und 35. Verdeutlicht wird die Rolle von π - π - Wechselwirkungen beim Aufbau einer Schicht aus Kettenpolymeren und der Bezug zu einer hexagonalen Stabpackung von Kettensträngen.

Abbildung 34: Ausschnitt des aus Kettenkoordinationspolymeren generierten

Schichtengefüges in Verbindung 19

Abbildung 35: Verzerrt hexagonale Stabpackung der Kettenkoordinationspolymere in **19**, Blickrichtung [1 0 0]

Die bereits oben angesprochene Bildung von **18** aus **19** ist nur verständlich, wenn man die Abspaltung eines BiOCl-analogen BiO(O_2CCF_3)-Fragmentes als Triebkraft der Reaktion annimmt (s. Schema 7). Die Reaktion entspricht einer Umverteilungs-(=Metathese)-Reaktion von Oxo- und Carboxylatoliganden. Unter Thermolysebedingungen ist es jedoch unwahrscheinlich, dass **6** in nennenswerten Mengen präsent ist. Eine weitere Möglichkeit der Bildung von **18** wäre formal die Reaktion von **19** mit zwei Äquivalenten **6**, denn Bi₃O(O_2CCF_3)₇ kann formal als Addukt der Bausteine Bi₂O(O_2CCF_3)₄ und Bi(O_2CCF_3)₃ bezeichnet werden.

Schema 7: Zur Bildung des dreikernigen oxozentrierten basischen Bismut(III)-trifluoracetats aus Bismut(II)-trifluoracetat

Verbindung Nr.	19
Empirische Formel	$\int_{\infty}^{1} \{ [Bi_2O(O_2CCF_3)_4]_2 \cdot 3 C_8H_{10} \}$
Molekulargewicht [g mol ⁻¹]	2090.56
Kristallsystem	triklin
Raumgruppe	$P\overline{1}$
Gitterkonstanten	a = 10.204(2) Å
	b = 12.712(3) Å
	c = 13.126(3) Å
	$\alpha = 68.95(3)$
	$\beta = 80.76(3)^{\circ}$
	$\gamma = 69.63(3)$
Volumen der Elementarzelle [Å ³]	1488.4(5)
Zahl der Formeleinheiten	1
Berechnete Dichte [g cm ⁻³]	2.332
Kristallform, Kristallfarbe	nadelig 0.12x0.08x0.36 mm, schwach gelblich
F(000)	962
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	21354
Messbereich [°]	5.3 < 20 < 52.08
Unabhängige (beobachtete) Reflexe	5447 (4122)
Korrekturen	LP, Absorption
Verfeinerte Reflexe/Parameter	5447/450
Restraints	98
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0344
wR ₂ (all data) ³	0.0917
Wichtungsschema ⁴	0.0621
GOOF (GOOF _{restrain}) ⁵	0.959 (0.954)
max. shift/su	0.001
$\Delta \rho_{max} / \Delta \rho_{min} [e Å^{-3}]$	0.902/-1.322

Tab. 26: Daten zum Kristall und zur Strukturbestimmung von 19

 $\label{eq:rescaled_$

Bi1-O1	2.088(4)	Bi2-O31	2.259(7)
Bi1-O1a	2.339(4)	Bi2-O41	2.276(8)
Bi1-O11	2.401(7)	Bi2-O12a	2.424(8)
Bi1-O21	2.421(6)	Bi2-O22a	2.377(6)
Bi1-O32	2.447(6)	Bi1-COR1	3.43(2)
Bi1-O42	2.448(6)	Bi1-COR2	3.33(2)
Bi2-O1	2.114(4)	Bi2-COR	2.986(7)
Bi1···Bi2	3.8572(18)	Bi2…Bi1a	3.8147(15)
Bi1…Bi1a	3.6051(10)	Bi2…Bi2a	6.772(2)

Tab. 27: ausgewählte Bindungslängen [Å] in 19

Tab. 28: ausgewählte Bindungswinkel [°] in 19

O1-Bi1-O1a	71.07(17)	O41-Bi2-O22a	84.2(3)
O1-Bi1-O11	90.4(2)	O1-Bi2-O12a	76.5(2)
Ola-Bil-Oll	74.8(2)	O31-Bi2-O12a	89.0(4)
O1-Bi1-O21	92.9(2)	O41-Bi2-O12a	162.5(2)
O1a-Bi1-O21	75.45(19)	O22a-Bi2-O12a	101.2(3)
O11-Bi1-O21	147.1(2)	O1-Bi1-Bi1a	37.85(11)
O1-Bi1-O32	83.7(2)	O1-Bi1a-Bi1	33.22(10)
O1a-Bi1-O32	135.6(2)	O1-Bi1-Bi2a	100.42(12)
O11-Bi1-O32	143.0(3)	O1-Bi1a-Bi2	29.35(10)
O21-Bi1-O32	69.8(2)	Bi1-Bi1a-Bi2	62.57(3)
O1-Bi1-O42	83.3(2)	O1-Bi1-Bi2	23.52(11)
O1a-Bi1-O42	136.0(2)	O1a-Bi1-Bi2	94.59(10)
O11-Bi1-O42	70.2(3)	Bi1-Bi1a-Bi2	61.38(3)
O21-Bi1-O42	142.7(3)	Bi2-Bi1-Bi2a	123.95(3)
O32-Bi1-O42	72.9(3)	O1-Bi2-Bi1a	32.84(12)
O1-Bi2-O31	91.4(2)	O1-Bi2-Bi1	23.21(12)
O1-Bi2-O41	88.5(2)	Bi1-Bi2-Bi1a	56.05(3)
O31-Bi2-O41	82.4(4)	Bi1-O1-Bi2	133.3(2)
O1-Bi2-O22a	78.45(19)	Bi1-O1-Bi1a	108.93(17)
O31-Bi2-O22a	163.4(3)	Bi2-O1-Bi1a	117.8(2)

	1			
Atom	x/a	y/b	z/c	U _{eq} ¹
Bi1	0.33320(3)	0.97377(2)	0.028222(19)	0.06670(12)
Bi2	0.63049(3)	0.76906(2)	0.22570(2)	0.08089(13)
01	0.5335(5)	0.9102(4)	0.0882(3)	0.0655(11)
011	0.2774(8)	1.1430(7)	0.0875(6)	0.109(2)
012	0.2149(7)	1.2704(7)	-0.0737(6)	0.123(3)
O21	0.4134(7)	0.8934(5)	-0.1204(5)	0.0936(17)
O22	0.3135(8)	1.0705(6)	-0.2403(5)	0.104(2)
O31	0.5140(10)	0.6541(6)	0.2097(8)	0.148(4)
O32	0.3520(8)	0.7631(5)	0.0921(6)	0.114(2)
O41	0.4361(8)	0.8295(9)	0.3288(5)	0.139(3)
O42	0.2616(8)	0.9207(7)	0.2224(4)	0.120(2)
C11	0.2393(9)	1.2456(11)	0.0196(9)	0.099(3)
C12	0.2218(10)	1.3466(7)	0.0657(8)	0.141(5)
C21	0.3797(10)	0.9621(9)	-0.2138(8)	0.092(2)
C22	0.4198(12)	0.9059(8)	-0.3057(6)	0.157(6)
C31	0.4181(10)	0.6732(7)	0.1533(7)	0.085(2)
C32	0.3743(10)	0.5597(6)	0.1705(8)	0.144(5)
C41	0.3132(10)	0.8809(8)	0.3066(6)	0.083(2)
C42	0.2079(9)	0.8905(11)	0.4084(6)	0.156(6)
F11	0.192(3)	1.3129(13)	0.1672(11)	0.225(15)
F12	0.124(2)	1.4377(12)	0.018(2)	0.24(2)
F13	0.3347(17)	1.3716(19)	0.049(2)	0.185(11)
F111	0.242(3)	1.4352(11)	-0.0107(11)	0.29(3)
F121	0.310(2)	1.3104(12)	0.138(2)	0.33(3)
F131	0.0995(17)	1.376(2)	0.107(2)	0.257(17)
F21	0.441(2)	0.7963(9)	-0.2650(7)	0.168(9)
F22	0.529(2)	0.9251(19)	-0.3562(13)	0.25(2)
F23	0.3222(18)	0.9509(16)	-0.3704(11)	0.25(2)
F211	0.420(3)	0.9852(11)	-0.3961(7)	0.27(2)
F221	0.3327(16)	0.8564(17)	-0.3048(12)	0.390(11)

Tab. 29: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 19

Atom	x/a	y/b	z/c	U _{eq} ¹
F231	0.5391(15)	0.8307(17)	-0.2907(12)	0.44(5)
F31	0.2480(13)	0.5822(11)	0.190(3)	0.25(2)
F32	0.436(3)	0.4771(11)	0.247(2)	0.191(14)
F33	0.405(3)	0.5321(19)	0.0874(15)	0.491(19)
F311	0.4781(15)	0.4787(12)	0.160(3)	0.26(2)
F321	0.290(3)	0.5838(11)	0.1027(18)	0.197(15)
F331	0.321(3)	0.5289(18)	0.2624(13)	0.25(2)
F41	0.2695(11)	0.8248(15)	0.4944(6)	0.158(8)
F42	0.1073(14)	0.859(2)	0.4028(10)	0.31(4)
F43	0.1644(19)	0.9951(13)	0.4079(11)	0.234(16)
F411	0.0913(12)	0.961(2)	0.3757(7)	0.24(2)
F421	0.2535(16)	0.9269(17)	0.4673(10)	0.41(4)
F431	0.1964(17)	0.7908(14)	0.4621(10)	0.33(3)
C111	0.040(2)	0.8889(13)	-0.0359(15)	0.106(5)
C112	0.025(2)	1.0062(14)	-0.1000(14)	0.103(5)
H112	0.0412	1.0257	-0.1752	0.124
C113	-0.016(2)	1.0942(12)	-0.0515(15)	0.109(5)
H113	-0.0262	1.1726	-0.0944	0.131
C114	-0.041(2)	1.0650(13)	0.0609(15)	0.109(5)
C115	-0.025(2)	0.9477(14)	0.1249(14)	0.112(6)
H115	-0.0421	0.9281	0.2001	0.134
C116	0.015(2)	0.8597(12)	0.0765(15)	0.116(5)
H116	0.0253	0.7812	0.1193	0.139
C117	0.086(4)	0.792(2)	-0.089(2)	0.19(2)
H171	0.1710	0.7948	-0.1323	0.279
H172	0.0142	0.8046	-0.1357	0.279
H173	0.1015	0.7155	-0.0338	0.279
C118	-0.088(4)	1.1622(19)	0.114(2)	0.166(17)
H181	-0.0071	1.1781	0.1262	0.249
H182	-0.1361	1.1361	0.1827	0.249
H183	-0.1489	1.2332	0.0668	0.249

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Atom	x/a	v/b	z/c	U_{eq}^{1}
C211	0.8205(10)	0.4944(6)	0.3465(7)	0.139(5)
C212	0.7122(9)	0.5176(8)	0.4225(7)	0.150(5)
H212	0.6442	0.4800	0.4381	0.181
C213	0.7054(9)	0.5968(9)	0.4750(6)	0.156(7)
H213	0.6329	0.6123	0.5258	0.188
C214	0.8069(12)	0.6529(8)	0.4517(7)	0.155(6)
C215	0.9153(9)	0.6298(8)	0.3758(8)	0.135(4)
H215	0.9832	0.6674	0.3602	0.161
C216	0.9221(8)	0.5505(8)	0.3232(7)	0.144(5)
H216	0.9946	0.5351	0.2724	0.173
C217	0.8276(19)	0.4078(12)	0.2880(12)	0.207(9)
H271	0.7375	0.3978	0.2934	0.310
H272	0.8953	0.3325	0.3213	0.310
H273	0.8545	0.4390	0.2124	0.310
C218	0.801(2)	0.7383(14)	0.5112(13)	0.250(13)
H281	0.8703	0.7773	0.4790	0.375
H282	0.8192	0.6947	0.5869	0.375
H283	0.7099	0.7966	0.5050	0.375

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

3.4 Das Reaktionssystem Bi(O₂CCF₃)₃/H₂O

3.4.1 Synthese supramolekularer basischer Bismut(III)-trifluoracetate

Die Elementarschritte der basischen Hydrolyse von hydratisierten Bi³⁺-Ionen lassen sich allgemein in zwei Arten von Prozessen unterteilen: die Olation (Verolung) und die Oxolation^[54a] (Schema 8).

Schema 8: Olation und Oxolation als wesentliche Schritte der basischen Hydrolyse von Bi³⁺

Beide Arten von Prozessen können für unterschiedliche Deprotonierungsstufen nebeneinander ablaufen und sind von der Konzentration und vom pH-Wert abhängig. In Lösung können deshalb mehrere hydrolysierte Spezies koexistieren, wobei die Anionen anscheinend einen wesentlichen Einfluss auf die Komplexkondensation ausüben. Bei Konzentrationen von 0.1 mol·l⁻¹ sollen vorwiegend sechs- und neunkernige Aggregate vorliegen^[54a].

Für die Suche nach Hydrolyseprodukten des Bismut(III)-trifluoracetats (6), werden wässrige Lösungen der Verbindung mit Konzentrationen von 0.25 mol·l⁻¹, 0.5 mol·l⁻¹ und 1 mol·l⁻¹ hergestellt und zur Kristallisation gebracht. Die erhaltenen festen Hydrolyseprodukte werden elementaranalytisch, IR-, NIR- und Raman-spektroskopisch und Kristalle geeigneter Größe kristallstrukturanalytisch untersucht. Bei den in Lösung ablaufenden Hydrolysereaktionen wird im Rahmen der Deprotonierungsvorgänge Trifluoressigsäure freigesetzt, die bereits am typischen Essigsäuregeruch erkannt werden kann. Sie wird zudem IR- und NMR-spektroskopisch nachgewiesen.

Beim Auflösen einer Stoffmenge von **6** in Wasser, die bei vollständiger Löslichkeit eine Konzentration von 1 mol·l⁻¹ ergeben sollte, wird eine gelbliche Lösung erhalten, die einen pH-Wert von etwa 0.5 besitzt. Die nach Eindampfen als Feststoff gewonnenen "gelösten" Bestandteile zeigen bei zahlreichen Versuchen nahezu identische Intensitäten und Lagen der Signale in IR- und Raman-Spektren. NIR-Spektren belegen stets einen gewissen Anteil einer gelben Substanz, genauer gesagt: In Reflexion gemessene NIR-Spektren der für das Auge nahezu farblosen Substanz besitzen eine Bande im Bereich von etwa 425 nm, wie sie auch für α -Bi₂O₃ charakteristisch ist. Die gelbliche Farbe der Lösung wird also möglicherweise durch Nanopartikel von Bi₂O₃ verursacht oder rührt von gelblichem Oxidhydrat her, das wegen der geringen Menge aber nicht eindeutig identifiziert werden konnte. Die Kristallisationstendenz aus der Lösung von **6** in Wasser ist sehr gering; nur mit Mühe werden feinkristalline Pulver gewonnen.

Durch Auflösen einer Stoffmenge von 6 in Wasser, die bei vollständiger Löslichkeit eine Konzentration von 0.5 mol·l⁻¹ ergeben sollte, resultiert eine nahezu farblose Lösung mit einem pH-Wert von etwa 0.7. Das Eindampfen der "gelösten" Bestandteile ergibt reinweiße Pulver. Sie zeigen bei IR- und Raman-spektroskopischen Untersuchungen bei mehreren Versuchen wiederum weitestgehend identische Signallagen und -intensitäten und unterscheiden sich aus schwingungsspektroskopischer Sicht nicht signifikant von den Proben des aus 1molarer Lösung gewonnenen Materials. NIR-spektroskopisch allerdings wird nur noch eine Bande geringer Intensität bei 425 nm gefunden. Die Bildung von gelblichem Oxidhydrat des Bismut(III) ist der reduzierten Oxolationstendenz der bismut(III)-haltigen Spezies entsprechend zurückgedrängt. Die Kristallisationstendenz aus der Lösung von 6 in Wasser ist recht hoch; vorwiegend wird farbloses mikrokristallines Pulver gewonnen, wobei stets aber auch ein Anteil an makrokristallinem Material in Form von sechseckigen dünnen tafeligen, dreieckigen tafeligen und stäbchenförmigen Kristallen entsteht. Trotz unterschiedlichem Habitus besitzen alle untersuchten Kristalle ähnliche Gitterkonstanten. NIR-, IR- und Ramanspektroskopische Untersuchungen der Kristalle im Vergleich zum Rohprodukt deuten darauf hin, dass es sich um weitgehend identisches Material handeln könnte.

Das Auflösen einer Stoffmenge von 6 in Wasser, die bei vollständiger Löslichkeit eine Konzentration von 0.25 mol·l⁻¹ ergeben sollte, liefert eine farblose Lösung, die einen pH-Wert von etwa 1.2 besitzt. Das Eindampfen der "gelösten" Bestandteile ergibt reinweiße feinkristalline Pulver. IR- und Raman-spektroskopisch unterscheidet sich das entstandene Produkt nicht signifikant von Proben des aus 0.5molarer Lösung erhaltenen Materials. NIR-spektroskopisch wird keine Bande bei 425 nm gefunden. Die weiter reduzierte

Kondensationstendenz der bismut(III)-haltigen Spezies bewirkt, dass keine Bildung von gelblichem Oxidhydrat Bismut(III) festgestellt des mehr werden kann. Die Kristallisationstendenz aus Lösung ist nicht mehr so ausgeprägt wie bei einer 0.5molaren Lösung; vorwiegend wird wieder farbloses mikrokristallines Pulver gewonnen, selten werden makrokristalline Anteile beobachtet. Untersuchte Kristalle einiger Proben besitzen wieder ähnliche Gitterkonstanten wie die bei entsprechenden Untersuchungen an dem aus 0.5molarer Lösung entstandenen Material gefundenen. Schwingungsspektroskopische Untersuchungen der Kristalle im Vergleich zum mikrokristallinen Material ergeben keine signifikant unterschiedlichen Resultate.

Die Kristallisationstendenz aus Lösungen von **6**, die bei vollständiger Löslichkeit des Edukts eine Konzentration von 0.5 mol·l⁻¹ ausweisen sollten, ist am höchsten. Deshalb werden solche Lösungen bei folgenden Versuchen unterschiedlich schnell eingedampft. Bei gleichmäßig schnellem Eindampfen entsteht im Verlauf einiger Tage Material, aus dem überwiegend Kristalle von **23** (siehe Kap. 3.4.1.3) isoliert werden können. Wird die wässrige Lösung zunächst stark im Vakuum eingeengt und dann über einen Zeitraum von mehreren Wochen sehr langsam eingedampft, entsteht Material, das überwiegend aus nahezu isometrischen farblosen Kristallen von **22** besteht (siehe Kap. 3.4.1.2).

3.4.1.1 Bildung, Eigenschaften und Kristallstruktur von Bi₃(OH)(O₂CCF₃)₈ (21)

Bei der Reaktion eines großen Überschusses Bi(O₂CCF₃)₃ mit Wasser bei 140 °C in einem geschlossenen Rohr schied sich in der kälteren Zone des Rohres neben viel unverändertem kristallinem Bi(O₂CCF₃)₃ eine Substanz ab, die an Hand weniger Kristalle einkristallstrukturanalytisch und IR-spektroskopisch als Bi₃(OH)(O₂CCF₃)₈ (21) identifiziert werden konnte. Diese Verbindung kann im Prinzip als ein parzielles Hydrolyseprodukt eines Trimeren des Bismut(III)-trifluoractetats 6 angesehen werden, d. h. als Resultat der formalen Substitution eines Trifluoracetat- durch einen OH-Liganden in [Bi(O₂CCF₃)₃]₃. Weitere Alternativen sind auch Formulierungen als Additionsverbindung aus dem in Substanz unbekannten Bismut(III)hydroxid und Bismut(III)-trifluoracetat (Bi(OH)₃ \cdot 8 Bi(O₂CCF₃)₃), als Additionsverbindung aus dem ebenfalls in Substanz unbekannten Bismut(III)-monohydroxo-carboxylat und 6 $(Bi(OH)(O_2CCF_3)_2 \cdot 2 Bi(O_2CCF_3)_3)$ oder als Additionsverbindung eines zweikernigen hydroxoverbrückten Carboxylats und 6 (Bi₂(OH)(O_2CCF_3)₅ · Bi(O_2CCF_3)₃). Eine Aussage über den Charakter der Substanz ist letztlich nur an Hand einer Analyse der Festkörperstruktur möglich. Nähere Angaben zu den Kristalldaten und zur Strukturbestimmung sind aus den unten aufgeführten Tabellen 30-33 ersichtlich.

IR-spektroskopische Befunde belegen eindeutig den parziell hydroxidischen Charakter von **21** über eine scharfe Bande bei 3675 cm⁻¹, die durch die OH-Gruppe hervorgerufen wird.

Verbindung **21** kristallisiert in Form farbloser Plättchen unter den oben geschilderten Bedingungen in der monoklinen Raumgruppe $P2_1/c$ mit den Gitterkonstanten a = 11.941(2)Å, b = 18.759(4) Å, c = 16.400(2) Å, $\beta = 103.46(3)^{\circ}$ und Z = 4.

Die Topologie der Formeleinheit Bi₃(OH)(O₂CCF₃)₈ in der Festkörperstruktur von **21** (Abb. 36) ist derjenigen des basischen dreikernigen oxozentrierten Bismuttrifluoracetats^[10] bzw. dessen Arensolvaten ähnlich. Das Sauerstoffatom der OH-Gruppe liegt etwa in der Ebene der drei Bismutatome und ist nicht im Zentrum des durch die Bismutatome gebildeten Dreiecks, sondern deutlich näher an Bi1 und Bi2 positioniert. Oberhalb und unterhalb der dreieckigen Bi₃O-Einheit sind drei Trifluoracetatgruppen jeweils zwischen zwei Bismutatomen angeordnet (die zu den Atomen O11 und O12 bzw. O31 und O32 bzw. O51 und O52 gehörenden Gruppen befinden sich oberhalb, die zu den Atomen O41 und O42 bzw. O21 und O22 bzw. O61 und O62 unterhalb der dreieckigen Einheit), zwei (die zu O71 und O72 bzw. O81 und O82 gehörenden) Trifluoracetatgruppen sind zusätzlich an Bi3 gebunden (Abb. 36).

Lediglich einer der acht Trifluoracetatliganden fungiert über O41 und O42 zweizähnig verbrückend. Vier Chelatliganden sind dreizähnig verbrückend zwischen zwei benachbarten Bismutatomen angeordnet (die zu dem Atomen O51 und O52 bzw. O61 und O62 bzw. O71 und O72 bzw. O81 und O82 gehörenden Gruppen) und ein weiterer verbrückt über O21 und O22 ebenfalls dreizähnig, jedoch chelatisierend zwischen drei Bismutatomen. Ein siebter ist über O11 und O12 in vierzähnig verbrückendem Modus zwischen drei Bismutatomen einer angeordnet. Der achte ist lagefehlgeordnet entweder zwischen zwei Bismutatomen einer Baueinheit zweizähnig μ_2 -verbrückend, oder μ_3 -verbrückend zwischen zwei dreikernigen Bauelementen einer Schicht angeordnet (die erste Teillage gehört zu O31 und O32, die zweite Teillage zu O311 und O321; Abb. 36). Eines der Bismutatome (Bi2) ist ebenfalls lagefehlgeordnet, wobei die zwei Teillagen Bi2 und Bi21 0.5149(16) Å voneinander entfernt sind. Einige Sauerstoffatome in der Koordinationssphäre dieses Bismutatoms sind zwangsläufig ebenfalls fehlgeordnet.

Abbildung 36: Asymmetrische Einheit der Kristallstruktur von **21** mit Kontakten zu benachbarten Fragmenten. Es ist nur eine Teillage der fehlgeordneten Bereiche gezeichnet; die Verknüpfung der Einheit zum supramolekularen Verband ist mittels segmentierter Bindungen angedeutet

Die zum Zusammenhalt des Festkörpers von **21** wesentlich beitragenden Wechselwirkungen lassen sich durch Bi-O-Abstände im Bereich von 2.05(5) bis 3.446(9) Å charakterisieren.

An Hand der nichtbindenden Abstände benachbarter Bismutatome, die sich im Bereich von 3.9103(18) bis 4.560(2) Å bewegen, und der Lage der OH-Gruppe zwischen den Bismutatomen lässt sich die offen gebliebene Frage nach dem Charakter der Substanz beantworten. Der vergleichsweise kleine Abstand Bi1…Bi2 (3.9103(18) Å) und die kurzen Bindungen Bi1-O1 (2.121(5) Å) und Bi2-O1 (2.232(6) Å) bzw. Bi21-O1 (2.563(6) Å) legen eindeutig eine Formulierung als Additionsverbindung aus einem zweikernigen hydroxoverbrückten Carboxylat und Bismut(III)-trifluoracetat (Bi₂(OH)(O₂CCF₃)₅·Bi(O₂CCF₃)₃) nahe.

Aufgrund der Fehlordnung beträgt die Sauerstoffkoordinationszahl von Bi1 entweder 7 oder 8, die von Bi2 und Bi21 jeweils 9. Bi3 ist von der Fehlordnung nicht betroffen und von 10 Sauerstoffatomen umgeben, wenn der schwächste Kontakt von 3.446(9) Å miteinbezogen wird. Zusätzlich zu den Sauerstoffkontakten an Bi1 existiert ein weiterer relativ starker Kontakt zu F23 (Bi1-F23 = 2.902(7) Å). Unter Berücksichtigung des Fluornachbarn ist Bi1 insgesamt 8- bzw. 9-fach koordiniert. Genaue Aussagen über die Bindungsverhältnisse lassen sich für Bi1, Bi2 und Bi21 nicht treffen, da eine Zuordnung der fehlgeordneten Sauerstoffpositionen zu den zum Teil ebenfalls fehlgeordneten Bismutzentren nicht möglich ist. Alle Koordinationsfiguren sind unsymmetrisch. Die wiederum (wie in **17**) unterschiedlichen Koordinationsfiguren der Bismutatome dokumentieren unterschiedliche lone-pair-Aktivitäten aller Bismutatome.

Die dreikernigen Baueinheiten der Substanz ordnen sich in der b,c-Ebene zu gewellten Schichten mit Maschen aus sechs Formeleinheiten (Abb. 37). Die Schichten wiederum sind entlang [1 0 0] übereinander gestapelt (Abb. 38). Sie werden durch van der Waals-Wechselwirkungen der CF₃-Gruppen zusammengehalten. Auffällig ist auch die Bildung von hydrophoben Inseln aus zueinander orientierten CF₃-Gruppen im Inneren der Maschen. Wie oben angedeutet, zeigen die Strukturparameter, dass auch Bismut-CF₃-Gruppen-Kontakte einen signifikanten Anteil an der Stabilisierung des supramolekularen Verbandes haben.

Abbildung 37: Schichtenbildung aus Maschen von jeweils sechs Bi₃(OH)(O₂CCF₃)₈-Fragmenten in **21**, Blickrichtung [1 0 0], oben: Anordnung der Bi₃(OH)-Bausteine innerhalb einer Schicht (die Stäbe zwischen den Bismutatomen repräsentieren keine Bindungen), unten: Ausschnitt einer gesamten Schicht ohne Berücksichtigung der Fehlordnung

Abbildung 38: Packung der Schichten in **21**, Blickrichtung [0 0 1] (Fehlordnung vernachlässigt)
Verbindung Nr.	21
Empirische Formel	$^{2}_{\infty}\{[Bi_{3}(OH)(O_{2}CCF_{3})_{8}]\}$
Molekulargewicht [g mol ⁻¹]	1548.11
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$
Gitterkonstanten	<i>a</i> = 11.941(2) Å
	b = 18.759(4) Å
	c = 16.400(2) Å
	$\beta = 103.46(3)^{\circ}$
Volumen der Elementarzelle [Å ³]	3572.7(11)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	2.878
Kristallform, Kristallfarbe	tafelig 0.08x0.16x0.13 mm, farblos
F(000)	2792
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	75445
Messbereich [°]	$5.26 < 2\theta < 60.60$
Unabhängige Reflexe	10160
Beobachtete Reflexe	3968
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	10160
Parameter	571
Restraints	41
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0389
$wR_2(all data)^3$	0.0958
Wichtungsschema ⁴	0.0497
GOOF (GOOF _{restrain}) ⁵	0.711 (0.712)
max. shift/su	0.002
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.198/-1.510

Tab. 30: Daten zum Kristall und zur Strukturbestimmung von 21

 $\label{eq:rescaled_$

Bi1-O1	2.121(5)	Bi2-O82a	2.739(8)	Bi3-O81	2.194(7)
Bi1-O41	2.289(8)	Bi2-O72a	2.789(8)	Bi3-071	2.246(7)
Bi1-O32	2.334(15)	Bi2-O311	2.845(8)	Bi3-O62	2.609(9)
Bi1-O21	2.530(7)	Bi2-O62	3.210(11)	Bi3-O72	2.787(8)
Bi1-011	2.571(9)	Bi21-O61	1.89(3)	Bi3-O12	2.801(6)
Bi1-O12	2.618(8)	Bi21-O221a	2.05(5)	Bi3-O82	2.818(8)
Bi1-O11b	2.647(7)	Bi21-O611	2.114(11)	Bi3-O1	2.896(6)
Bi1-F23	2.902(7)	Bi21-O42	2.18(4)	Bi3-O21	3.005(6)
Bi1-O321b	2.903(17)	Bi21-O22a	2.23(2)	Bi3-O51	3.446(9)
Bi1-O311	2.231(9)	Bi21-O421	2.38(2)	Bi1…Bi2	3.9103(18)
Bi2-O42	2.14(4)	Bi21-O31	2.489(14)	Bi1…Bi3	4.1750(8)
Bi2-O31	2.144(14)	Bi21-O72a	2.511(8)	Bi1…Bi1b	4.2004(10)
Bi2-O1	2.232(6)	Bi21-O51	2.649(10)	Bi1…Bi21	4.3277(17)
Bi2-O221a	2.24(4)	Bi21-O82a	3.008(8)	Bi2···Bi3	4.463(2)
Bi2-O61	2.35(3)	Bi21-O62	3.010(11)	Bi2···Bi3a	4.560(2)
Bi2-O421	2.44(2)	Bi21-O311	3.348(8)	Bi21…Bi3a	4.530(2)
Bi2-O22a	2.48(2)	Bi21-O1	2.563(6)	Bi21…Bi3	4.555(2)
Bi2-O611	2.595(11)	Bi3-O52	2.160(7)	Bi2···Bi21	0.5149(16)
Bi2-O51	2.604(9)				

Tab. 31: ausgewählte Bindungslängen [Å] in 21

 Tab. 32: ausgewählte Bindungswinkel [°] in 21

Bi2-Bi1-Bi3	66.91(4)	Bi1-Bi3-Bi21c ($c = x, 1.5-y, -0.5+z$)	94.67(4)
Bi2-Bi1-Bi1b	120.57(4)	Bi2-Bi3-Bi21c	133.24(3)
Bi3-Bi1-Bi1b	123.488(18)	Bi21-Bi3-Bi21c	133.08(6)
Bi3-Bi1-Bi21	64.76(3)	Bi1-Bi3-Bi2c	97.45(4)
Bi1b-Bi1-Bi21	124.75(3)	Bi2-Bi3-Bi2c	131.07(6)
Bi1-Bi2-Bi3a	59.38(3)	Bi21-Bi3-Bi2c	130.02(3)
Bi1-Bi2-Bi3a	134.57(4)	Bi1-O1-Bi2	127.9(3)
Bi3-Bi2-Bi3a	132.62(6)	Bi1-O1-Bi3	111.7(2)
Bi1-Bi21-Bi3a	123.89(4)	Bi2-O1-Bi3	120.4(2)
Bi1-Bi21-Bi3	56.00(3)	Bi21-O1-Bi3	112.9(2)
Bi3-Bi21-Bi3a	130.87(6)	Bi1-O1-Bi21	134.8(3)
Bi1-Bi3-Bi2	53.71(3)		

Atom	x/a	y/b	z/c	U_{eq}^{-1}
Bi1	-0.01754(3)	0.606324(17)	0.45889(2)	0.05961(11)
Bi2	0.0935(2)	0.76252(7)	0.61464(14)	0.0574(4)
Bi21	0.0989(2)	0.78976(6)	0.61579(14)	0.0513(3)
Bi3	0.24812(3)	0.722810(18)	0.39591(2)	0.05359(10)
01	0.0912(5)	0.6944(3)	0.5027(4)	0.0632(18)
H1	0.1421	0.6656	0.5336	0.095
011	0.1322(6)	0.5109(5)	0.5219(4)	0.091(3)
012	0.1933(7)	0.5861(3)	0.4432(5)	0.086(2)
O21	0.0108(6)	0.6644(4)	0.3260(4)	0.074(2)
O22	-0.0191(19)	0.6543(12)	0.1820(17)	0.057(5)
O221	0.006(3)	0.6734(18)	0.197(3)	0.156(18)
O31	-0.0392(12)	0.7025(7)	0.6518(9)	0.067(4)
O32	-0.0476(12)	0.5929(8)	0.5937(9)	0.062(4)
O311	0.0097(7)	0.6200(4)	0.5973(5)	0.072(5)
O321	-0.0045(7)	0.5124(4)	0.6499(4)	0.072(4)
O41	-0.1504(6)	0.6948(4)	0.4558(5)	0.086(2)
O42	-0.071(3)	0.7802(17)	0.531(2)	0.141(15)
O421	-0.081(2)	0.8057(13)	0.5183(16)	0.073(6)
O51	0.3087(8)	0.7477(5)	0.6099(5)	0.107(3)
052	0.3914(6)	0.7227(4)	0.5042(4)	0.078(2)
O61	0.129(2)	0.8748(18)	0.5622(16)	0.127(12)
O611	0.1112(15)	0.8935(6)	0.5681(5)	0.125(15)
O62	0.1783(9)	0.8358(4)	0.4626(6)	0.118(3)
O71	0.3738(6)	0.6493(4)	0.3557(5)	0.0749(19)
072	0.2368(7)	0.6584(4)	0.2411(5)	0.094(2)
O81	0.3517(6)	0.8076(4)	0.3576(5)	0.082(2)
082	0.1973(7)	0.8130(4)	0.2547(5)	0.087(2)
C11	0.2085(7)	0.5339(4)	0.4888(6)	0.060(2)
C12	0.3260(5)	0.4942(3)	0.5052(4)	0.094(4)
C21	-0.0435(8)	0.6536(4)	0.2536(7)	0.065(3)

Tab. 33: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 21

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i}a_{j}a_{i}a_{j}$

Fortsetzung

Atom	x/a	y/b	z/c	U_{eq}^{1}
C22	-0.1690(8)	0.6271(6)	0.2420(7)	0.080(3)
C31	-0.0586(11)	0.6355(9)	0.6518(8)	0.047(4)
C32	-0.1037(6)	0.6029(4)	0.7255(4)	0.085(8)
C311	-0.0182(7)	0.5755(3)	0.6471(5)	0.057(5)
C321	-0.0723(6)	0.6076(5)	0.7174(4)	0.080(8)
C41	-0.1547(8)	0.7589(7)	0.4756(6)	0.077(3)
C42	-0.2689(5)	0.8010(4)	0.4354(5)	0.108(5)
C51	0.3894(7)	0.7375(5)	0.5797(7)	0.067(3)
C52	0.5125(4)	0.7445(4)	0.6389(3)	0.112(5)
C61	0.1579(8)	0.8863(5)	0.5006(7)	0.069(3)
C62	0.1827(9)	0.9623(4)	0.4672(8)	0.129(6)
C71	0.3284(9)	0.6328(5)	0.2795(7)	0.073(3)
C72	0.3948(6)	0.5765(3)	0.2387(4)	0.110(5)
C81	0.2931(9)	0.8366(4)	0.2898(7)	0.066(3)
C82	0.3498(8)	0.9032(4)	0.2562(6)	0.117(5)
F11	0.4048(5)	0.5350(5)	0.5444(6)	0.172(5)
F12	0.3474(5)	0.4765(4)	0.4360(5)	0.156(4)
F13	0.3214(6)	0.4390(5)	0.5485(7)	0.237(7)
F21	-0.2177(7)	0.6004(4)	0.1704(4)	0.122(3)
F22	-0.2315(8)	0.6886(5)	0.2454(7)	0.174(4)
F23	-0.1876(7)	0.5910(5)	0.3016(4)	0.145(4)
F31	-0.0925(7)	0.5371(4)	0.7255(4)	0.169(10)
F32	-0.2069(8)	0.6181(6)	0.7168(6)	0.124(7)
F33	-0.0474(9)	0.6274(4)	0.7930(5)	0.192(12)
F321	-0.1750(6)	0.5837(6)	0.7089(4)	0.26(2)
F322	-0.0750(10)	0.6758(5)	0.7114(5)	0.268(19)
F323	-0.0111(7)	0.5895(5)	0.7895(4)	0.36(3)
F41	-0.3498(6)	0.7586(5)	0.4159(8)	0.226(7)
F42	-0.2566(7)	0.8329(7)	0.3722(7)	0.280(10)
F43	-0.2894(6)	0.8443(5)	0.4866(6)	0.200(6)

Atom	x/a	y/b	z/c	
F51	0.5718(4)	0.6865(5)	0.6337(5)	0.191(6)
F52	0.5034(4)	0.7530(4)	0.7164(4)	0.136(3)
F53	0.5653(5)	0.7996(5)	0.6162(4)	0.174(5)
F61	0.1390(17)	1.0063(4)	0.5003(15)	0.41(2)
F62	0.1451(16)	0.9651(6)	0.3944(10)	0.380(17)
F63	0.2826(11)	0.9722(4)	0.4820(9)	0.224(7)
F71	0.5021(7)	0.5803(4)	0.2728(5)	0.159(4)
F72	0.3785(7)	0.5890(4)	0.1604(5)	0.144(3)
F73	0.3579(8)	0.5142(4)	0.2496(6)	0.214(7)
F81	0.4461(11)	0.8885(5)	0.2517(11)	0.258(9)
F82	0.3526(14)	0.9525(5)	0.3034(8)	0.253(9)
F83	0.2939(12)	0.9193(6)	0.1879(8)	0.293(11)

Fortsetzung

3.4.2.1 Das Raumnetzcarboxylat [Bi₁₀O₈(O₂CCF₃)₂₀][Bi₆O₄(OH)₄] (22)

Verbindung 22 kristallisiert in der azentrischen tetragonalen Raumgruppe $I\overline{4}$ mit a = 15.826(2) Å, c = 23.941(5) Å, und Z = 2. Der Festkörper kann als supramolekulares Netzwerk aus Bausteinen beschrieben werden, für die formal die ionischen Formulierungen $[Bi_{10}O_8(O_2CCF_3)_{20}]^{6-}$ und $Bi_6O_4(OH_4)]^{6+}$ (sogenannte Bismutyl-Ionen) gewählt werden können und die im Verhältnis 1:1 vorliegen. Rein formal lässt sich der Baustein $[Bi_{10}O_8(O_2CCF_3)_{20}]^{6-}$ noch weiter in komplexe Ionen $[Bi_6O_8]^{2+}$ und $[Bi(O_2CCF_3)_5]^{2-}$ zerlegen. $[Bi(O_2CCF_3)_5]^{2-}$ wurde früher schon als Bestandteil der Verbindung $[(C_2H_5)_2(H)N(CH_2)_2N(H)(C_2H_5)_2][Bi(O_2CCF_3)_5]$ kristallographisch nachgewiesen^[56a], was die obige Betrachtungsweise stützt.

Die $[Bi_6O_8]^{2^+}$ -Bausteine liegen in Form verzerrter Bi_6 -Oktaeder vor, deren Dreiecksflächen von Oxoliganden überbrückt sind, die leicht pyramidalisiert aus der Ebene der jeweils drei benachbarten Bismutatome herausgehoben sind. In den $[Bi_6O_4(OH)_4]^{6^+}$ -Bausteinen überdachen abwechselnd Oxo- und Hydroxo-Liganden die Dreiecksflächen der Oktaeder (Abb. 39).

Abbildung 39: links: $[Bi_6O_8]^{2+}$ -Baustein, rechts: $[Bi_6O_4(OH)_4]^{6+}$ -Baustein in **22** (Symmetrie-Codes: a = 0.5-y, -0.5+x, -0.5-z; b = 0.5+y, 0.5-x, -0.5-z; c = 1-x,-y, z; d = -y, x, -z; e = -x, -y, z; f = y, -x, -z)

Die Käfigfragmente $[Bi_6O_8]^{2^+}$ und $[Bi_6O_4(OH)_4]^{6^+}$ liegen auf den Stützpunkten eines diamantartigen Raumnetzes (Abb. 40) und sind über einkernige Bi^{III}- Zentren miteinander verknüpft, wobei Käfige gleicher Zusammensetzung niemals direkt benachbart sind. Anschaulich lässt sich das Grundgerüst in strukturellen Zusammenhang mit kubischem Diamant bringen, wenn man die $[Bi_6O_4(OH)_4]^{6^+}$ und $[Bi_6O_8]^{2^+}$ -Ionen als tetraedrische Strukturäquivalente der Kohlenstoffatome in kubischem Diamant betrachtet. Die käfig-verknüpfenden einkernigen Bi^{III}-Zentren entsprechen dann einer C-C-Bindung (Abb. 41).

Abbildung 40: oben: Verknüpfungsmuster der Käfigfragmente und der einkernigen Bi^{III}-Zentren (größer gezeichnet) im Festkörper von **22**. In der Nachbarschaft der randständigen einkernigen Zentren befinden sich wieder [Bi₆O₄(OH)₄]⁶⁺-Bausteine. Unten: vergleichbarer Ausschnitt aus der Diamantstruktur

Abbildung 41: Umgebung des einkernigen käfigverknüpfenden [Bi(O₂CCF₃)₅]²⁻-Fragments in **22** (zur besseren Übersichtlichkeit sind die CF₃-Gruppen weggelassen) (Symmetrie-Codes: a = 0.5-y, -0.5+x, -0.5-z; c = 1-x, -y, z; f = y, -x, -z)

Diese einkernigen Zentren sind von jeweils fünf Trifluoracetatgruppen umgeben und können formal als $[Bi(O_2CCF_3)_5]^{2^-}$ Einheiten beschrieben werden, die die Käfigfragmente über μ_4 -Oxoliganden verknüpfen (Abb. 40 und 41). Innerhalb des $[Bi_6O_8]^{2^+}$ -Ions reichen die Bi-O-Abstände für μ_3 -Oxoliganden von 2.143(13) bis 2.169(12) Å. Der Abstand der μ_4 -Oxoliganden zu den einkernigen Bismut^{III}-Zentren ist deutlich unterschiedlich. So sind die μ_4 -Oxoliganden, welche das $[Bi_6O_8]^{2^+}$ -Kation mit den einkernigen Bismutzentren verknüpfen, wesentlich stärker an die einkernigen Zentren gebunden (Bi-O = 2.137(14) Å) als an die Bismutatome des Käfigfragments (Bi-O = 2.261(13) bis 2.566(13 Å). Der Abstand der einkernigen Bi^{III}-Zentren zu den μ_4 -Oxoliganden des $[Bi_6O_4(OH)_4]^{6^+}$ -Kations ist mit 3.240(12) Å jedoch sehr viel größer. Demzufolge können die $[Bi_6O_4(OH)_4]^{6^+}$ -Käfige noch am ehesten als quasi-isolierte Ionen aufgefasst werden. An Hand der Bismut-Sauerstoff-Abstände innerhalb dieser sogenannten Bismutyl-Ionen kann bereits darauf geschlossen werden, ob ein Oxo- oder ein Hydroxoliganden zu drei benachbarten Bismut-Käfigs überdacht. Die Abstände eines μ_3 -Oxoliganden zu drei benachbarten Bismut-Atomen liegen hier bei 2.162(11) bis 2.221(12) Å, während für entsprechende Abstände eines μ_3 -Hydroxoliganden zu

drei benachbarten Bismutzentren 2.363(12) bis 2.405(13) Å gefunden werden. Auch sind Hydroxoliganden stärker aus der Ebene der drei Bismutatome herausgehoben als Oxoliganden. Ein entsprechender Befund zeigte sich bereits früher bei Kristallstrukturen basischer Perchlorate und Nitrate des Bismuts, welche sogenannte Bismutyl-Kationen $[Bi_6O_{8-x}(OH)_x]^{(2+x)+}$ enthalten ^[62-64].

Setzt man gedanklich die Bausteine wie oben beschrieben zusammen, so erhält man ein diamantartiges Netzwerk (Abb. 42 und 43) mit hydrophoben Kanälen zwischen CF₃-Gruppen, deren transanulare Fluoratome mindestens 6 Å voneinander entfernt sind. Nach Analyse der Restelektronendichte ist in diesen Kanälen keine weitere Spezies eingeschlossen.

Die Bismutatome der Käfigfragmente $[Bi_6O_8]^{2+}$ und $[Bi_6O_4(OH)_4]^{6+}$ sind jeweils unsymmetrisch von 8 Sauerstoffatomen koordiniert; die käfigverknüpfenden einkernigen Bi^{III}-Zentren besitzen eine formale Koordinationszahl von 12 entsprechend einer verzerrten pentagonalen Bipyramide mit doppeltem ,Mitteldeck' und einer gestauchten Spitze. Bezüglich dieser Zentren liegt eine ähnliche Situation wie in der Festkörperstruktur von **23** vor (s. Kap. 3.4.1.3). Die den einkernigen Zentren (Abb. 41) jeweils benachbarten drei Bismutatome der Bi-O-Käfige (Bi3, Bi4a und Bi4c bzw. Bi1f, Bi2f und Bi2) sind gestaffelt zueinander angeordnet.

Das Bi-O-Abstandsspektrum der bindenden Wechselwirkungen reicht von 2.137(14) bis 3.493(17) Å, nichtbindende Bi···Bi-Abstände innerhalb des Bismutyl-Ions betragen zwischen 3.6942(13) und 3.7265(11) Å, während sie zu den benachbarten einkernigen Bismutzentren über 4.15 Å groß sind. In der $[Bi_{10}O_8(O_2CCF_3)_{20}]^6$ -Baugruppe sind die nichtbindenden Abstände von Bi3 bzw. Bi4 zu Bi5 und die Abstände innerhalb des zentralen $[Bi_6O_8]^{2+}$ -Käfigs nahezu gleich groß (siehe Tabelle 36), so dass die integrierende Betrachtungsweise eines supramolekularen quasi-ionischen Bausteins für diese Baugruppe gerechtfertigt erscheint.

Die Detailanalyse der Struktur bestätigt auch die Wahl der Raumgruppe: durch die Existenz zweier verschiedener Kationen $[Bi_6O_8]^{2+}$ und $[Bi_6O_4(OH)_4]^{6+}$ und der direkt an die $[Bi_6O_8]^{2+}$ -Ionen gebundenen $[Bi(O_2CCF_3)_5]^{2-}$ -Fragmente resultieren sehr unterschiedliche Abstände der einkernigen Bismutzentren zu den μ_4 -verbrückenden Sauerstoffatomen. Inversions-symmetrische Baugruppen können wegen der Asymmetrie der Verknüpfung der Bausteine nicht vorliegen. Die Entscheidung zu Gunsten einer der möglichen Laue-Klassen 4/m oder 4/mmm war über die Betrachtung des Beugungsmusters nicht zweifelsfrei möglich. Lediglich ein geringfügig besserer R_{int}-Wert deutete zunächst auf die niedriger symmetrische Klasse 4/m hin. Von den nach Symmetrie des Beugungsmusters und systematischen Auslöschungen im gegebenen Fall nicht zu unterscheidenden 8 Raumgruppen *I*4, *I*4, *I*4/m, *I*422, *I*4mm,

 $I\overline{4}2m$, $I\overline{4}m2$ und I4/mmm kommen deshalb nur Raumgruppen mit einer 8-zähligen allgemeinen Lage in Frage, von denen sich $I\overline{4}$ bei Verfeinerungsversuchen als einzig passende erwies.

Das Bismutyl-Ion in **22** liegt im Ursprung der Elementarzelle und besitzt demnach 4-Symmetrie. Aus einer kristallographisch unabhängigen OH-Gruppe werden somit alle OH-Funktionen des Käfigfragments erzeugt, die alle die gleiche chemische Umgebung besitzen. Im IR-Spektrum sollten eine symmetrische und eine antisymmetrische Valenzschwingung zu erwarten sein, die den OH-Gruppen des Bismutyl-Ions zugeordnet werden können. Gefunden werden zwei Banden bei ca. 3560 und 3660 cm⁻¹.

IR-Spektren von Aluminium- und Galliumverbindungen, welche im Festkörper ähnliche Käfigfragmente $[M_6O_4(OH)_4]^{6+}$ besitzen, weisen OH-Banden ähnlicher Lage und Intensität auf $(Al_6O_4(OH)_4^tBu_6: 3424 \text{ cm}^{-1}, Ga_6O_4(OH)_4^tBu_6: 3600 \text{ cm}^{-1} \text{ [70b]}; Ga_6O_4(OH)_4\text{Mes}_6: 3671 \text{ bzw. 3521 cm}^{-1} \text{ [70a]})$. Weitere schwingungsspektroskopische Daten von **22** sind im experimentellen Teil aufgeführt.

Abbildung 42: Verknüpfungsmuster der Bismutatome im Raumnetzcarboxylat 22; die Stäbe zwischen den Bi-Atomen repräsentieren keine Bindungen und dienen lediglich der besseren Visualisierung des Baumusters.

Abbildung 43: Packung von 22, Blickrichtung [1 0 0]

Verbindung Nr.	22
Empirische Formel	$^{3}_{\infty}\{[Bi_{10}O_{8}(O_{2}CCF_{3})_{20}][Bi_{6}O_{4}(OH)_{4}]\}$
Molekulargewicht [g mol ⁻¹]	5864.12
Kristallsystem	tetragonal
Raumgruppe	<i>I</i> 4
Gitterkonstanten	a = 15.826(2) Å
	c = 23.941(5) Å
Volumen der Elementarzelle [Å ³]	5996.0(17)
Zahl der Formeleinheiten	2
Berechnete Dichte [g cm ⁻³]	3.248
Kristallform, Kristallfarbe	isometrisch 0.18x0.17x0.16 mm, farblos
F(000)	5120
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	42593
Messbereich [°]	4.98 < 2θ < 51.86
Unabhängige Reflexe	5820
Beobachtete Reflexe	3849
Korrekturen	LP, Absorption
Verfeinerte Reflexe	5820
Flack-Parameter	0.032(18)
Parameter	346
Restraints	125
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0394
$wR_2(all data)^3$	0.0559
Wichtungsschema ⁴	0.000
GOOF (GOOF _{restrain}) ⁵	0.961(1.054)
max. shift/su	0.001
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	0.928/-0.705

Tab. 34: Daten zum Kristall und zur Strukturbestimmung von 22

$$\begin{split} ^{2}R_{1} &= \Sigma || \; F_{o} \left| - \right| \; F_{c} \; || '\Sigma |F_{o} \; | \\ ^{3}wR_{2} &= [\Sigma [w(F_{o}^{\;2} - F_{c}^{\;2})^{2}] / \Sigma [(wF_{o}^{\;2})^{2}]]^{1/2} \\ ^{4}w &= 1 / [s^{2}(F_{o}^{\;2}) + (aP)^{2} + bP] \; mit \; P = (F_{o}^{\;2} + 2 \; F_{c}^{\;2}) / 3 \\ ^{5}GOOF &= S &= \{ \Sigma \; [w(F_{o}^{\;2} - F_{c}^{\;2})^{2}] / (n-p) \}^{1/2} \end{split}$$

Bi1-O2f	2.162(11)	Bi3-O3	2.366(14)	Bi5-O2	3.240(12)	Bi5-O12	2.70(6)
Bi1-O1	2.384(13)	Bi4-O4a	2.158(14)	O1-H1	0.8800	Bi5-O6	2.77(3)
Bi2-O2d	2.168(12)	Bi4-O4c	2.143(13)	Bi5-09	2.25(3)	Bi5-O11	2.98(3)
Bi2-O2	2.221(12)	Bi4-O3	2.261(13)	Bi5-07	2.464(18)	Bi5-08	3.070(15)
Bi2-O1	2.363(12)	Bi4-O3a	2.566(13)	Bi5-O13	2.62(3)	Bi5-O14	3.07(2)
Bi2-O1d	2.405(13)	Bi5-O3c	2.137(14)	Bi5-O5	2.605(17)	Bi5-O10	3.167(15)
Bi3-O4	2.169(12)						

Tab. 35: ausgewählte Bindungslängen [Å] in 22 $\,$

Tab. 36: "Nichtbindende Abstände" [Å] in 22

Bi1…Bi2f	3.6942(13)	Bi2…Bi5d	4.1904(13)	Bi3···Bi5	3.7885(11)
Bi1…Bi2	3.7254(12)	Bi2…Bi5	4.3598(16)	Bi4…Bi4a	3.6909(13)
Bi1…Bi5f	4.1659(11)	Bi3…Bi4	3.6314(12)	Bi4…Bi5c	3.8061(14)
Bi2…Bi2d	3.7165(11)	Bi3…Bi4a	3.6955(13)	Bi4…Bi5b	4.0583(12)

Tab. 37: ausgewählte Bindungswinkel [°] in 22

	1				
Bi2d-Bi1-Bi2f	90.68(4)	Bi4-Bi3b-Bi5b	65.66(2)	Bi2-O1-Bi2f	102.4(5)
Bi2-Bi1-Bi2d	60.117(18)	Bi4-Bi3-Bi5c	61.68(2)	Bi1-O1-Bi2f	101.0(5)
Bi2-Bi1-Bi2e	89.72(4)	Bi3-Bi4-Bi4b	60.62(2)	Bi1-O2d-Bi2	118.7(5)
Bi2d-Bi1-Bi5d	67.07(2)	Bi4-Bi4b-Bi4c	89.965(1)	Bi1-O2d-Bi2d	114.9(5)
Bi2-Bi1-Bi5d	63.86(2)	Bi3-Bi4-Bi3b	89.16(3)	Bi2-O2-Bi2f	115.7(5)
Bi2-Bi1f-Bi5	67.06(2)	Bi4-Bi4b-Bi3	58.895(19)	Bi1-O2d-Bi5d	99.0(4)
Bi1-Bi2f-Bi2	60.36(2)	Bi3-Bi4-Bi5c	61.19(2)	Bi2-O2d-Bi5d	99.7(4)
Bi2-Bi2d-Bi2e	89.992(1)	Bi4-Bi4a-Bi5b	65.53(3)	Bi2-O2-Bi5	104.4(4)
Bi1-Bi2-Bi1f	89.80(3)	Bi4a-Bi4-Bi5b	58.60(3)	Bi5c-O3-Bi4	119.8(6)
Bi2-Bi2d-Bi1f	59.53(2)	Bi3-Bi4b-Bi5c	58.27(2)	Bi5c-O3-Bi3	114.5(5)
Bi2-Bi2f-Bi5	66.61(3)	Bi3-Bi5c-Bi4	57.13(2)	Bi4-O3-Bi3	103.4(6)
Bi1-Bi2-Bi5d	63.19(2)	Bi3-Bi5c-Bi4b	56.07(2)	Bi5c-O3-Bi4b	119.0(6)
Bi1f-Bi2-Bi5	61.64(3)	Bi4-Bi5c-Bi4b	55.87(3)	Bi4b-O3-Bi4	99.5(5)
Bi2-Bi2d-Bi5d	61.91(3)	Bi1-Bi5d-Bi2	52.95(2)	Bi3-O3-Bi4b	97.0(5)
Bi4-Bi3-Bi4c	91.86(4)	Bi1-Bi5f-Bi2f	51.294(17)	Bi4-O4a-Bi4b	118.2(6)
Bi4-Bi3-Bi4a	60.489(18)	Bi2-Bi5d-Bi2d	51.48(2)	Bi4-O4a-Bi3b	117.3(6)
Bi4-Bi3b-Bi4c	89.82(4)	Bi2-O1-Bi1	103.4(5)	Bi4-O4c-Bi3	114.7(6)

	-	-		
Atom	x/a	y/b	z/c	
Bi1	0.0000	0.0000	0.10938(4)	0.0555(3)
Bi2	0.10907(4)	0.12521(5)	-0.00092(5)	0.05324(19)
Bi3	0.5000	0.0000	-0.14259(4)	0.0574(3)
Bi4	0.62404(5)	0.10860(5)	-0.24809(4)	0.05227(19)
O1	0.1316(9)	0.0119(8)	0.0616(5)	0.058(4)
H1	0.1768	0.0157	0.0829	0.069
O2	0.0989(7)	0.0040(8)	-0.0472(5)	0.051(3)
O3	0.6343(9)	0.0013(8)	-0.1861(5)	0.063(4)
O4	0.4946(9)	-0.0985(7)	-0.2054(5)	0.059(4)
O5	0.3767(11)	0.1156(12)	-0.1064(7)	0.116(7)
O6	0.2695(19)	0.1429(17)	-0.0599(9)	0.156(9)
O7	0.2322(11)	0.1306(12)	-0.1855(7)	0.097(6)
O8	0.1162(10)	0.1311(11)	-0.1389(7)	0.102(6)
O9	0.3616(14)	-0.0547(16)	-0.0747(10)	0.152(9)
O10	0.2761(10)	-0.0460(11)	-0.0017(6)	0.107(5)
O11	0.2225(12)	-0.0504(18)	-0.2459(14)	0.209(13)
O12	0.123(4)	-0.064(3)	-0.1783(9)	0.46(5)
O13	0.2931(15)	-0.155(2)	-0.1540(9)	0.180(12)
O14	0.2020(18)	-0.1689(15)	-0.0855(8)	0.156(9)
C1	0.3371(19)	0.1604(14)	-0.0738(13)	0.108(11)
C2	0.1593(17)	0.1588(10)	-0.1721(9)	0.084(7)
C3	0.3482(11)	-0.0776(17)	-0.0165(7)	0.108(10)
C4	0.1441(14)	-0.0738(13)	-0.2263(8)	0.077(6)
C5	0.2611(18)	-0.2007(11)	-0.1236(10)	0.090(7)
C6	0.3822(11)	0.2433(9)	-0.0586(7)	0.144(13)
C7	0.1488(13)	0.2457(9)	-0.1996(8)	0.20(2)
C8	0.4179(7)	-0.1039(10)	0.0239(5)	0.22(3)
С9	0.0833(11)	-0.0906(15)	-0.2742(6)	0.187(18)

Tab. 38: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 22

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{i}a_{j}$

Atom	x/a	y/b	z/c	
C10	0.2680(13)	-0.2965(10)	-0.1296(10)	0.162(13)
F1	0.4061(11)	0.2407(9)	-0.0053(7)	0.251(12)
F2	0.3296(11)	0.3079(9)	-0.0662(7)	0.298(17)
F3	0.4497(11)	0.2530(9)	-0.0909(7)	0.285(14)
F4	0.0793(13)	0.2460(9)	-0.2308(8)	0.272(15)
F5	0.2156(13)	0.2619(9)	-0.2315(8)	0.304(18)
F6	0.1423(13)	0.3047(9)	-0.1602(8)	0.252(14)
F7	0.4928(7)	-0.0922(10)	0.0000(5)	0.170(7)
F8	0.4086(7)	-0.1850(10)	0.0370(5)	0.270(16)
F9	0.4129(7)	-0.0573(10)	0.0700(5)	0.207(11)
F10	0.0936(11)	-0.0321(15)	-0.3135(6)	0.228(12)
F11	0.0043(11)	-0.0878(15)	-0.2553(6)	0.74(3)
F12	0.0987(11)	-0.1665(15)	-0.2956(6)	0.289(15)
F13	0.1984(14)	-0.3259(9)	-0.1432(18)	0.561(14)
F14	0.290(3)	-0.3276(9)	-0.0845(13)	0.38(2)
F15	0.3210(19)	-0.3137(9)	-0.1660(12)	0.280(15)

Fortsetzung

3.4.1.3 Das Schichtencarboxylat {[Bi₆O₅(OH)₃(H₂O)₂(O₂CCF₃)₂]₂[Bi(O₂CCF₃)₅]₃•4 H₂O} (23)

Die Charakterisierung der Produkte der in 3.4.1 beschriebenen Hydrolyse des Trifluoracetats **6** erfolgte vorwiegend an Feststoff, der aus 0.5molaren Lösungen gewonnen wurde. Auffällig war zunächst, dass alle untersuchten Einzelkristalle nahezu gleiche Gitterkonstanten aufwiesen, obwohl sie deutlich unterschiedliche Morphologie besaßen (sechseckige dünne tafelige, dreieckige tafelige und stäbchenförmige Kristalle). Im Folgenden ist die kristallographische Untersuchung eines tafeligen Kristalls beschrieben, der durch Eindampfen einer 0.5molaren Lösung gewonnen wurde.

Verbindung 23 kristallisiert in der monoklinen centrosymmetrischen Raumgruppe C2/c und besitzt die Gitterkonstanten a = 27.866(6) Å, b = 15.800(3) Å, c = 27.371(6) Å, $\beta =$

 $120.35(3)^{\circ}$, Z = 4 (120 K). Die Strukturlösung mittels Direkter Methode lieferte unmittelbar alle Schweratompositionen. Durch zahlreiche nachfolgende Differenzfouriersynthesen wurden die Positionen aller Nicht-Wasserstoffatome gefunden, die in der asymmetrischen Einheit der Festkörperstruktur vorliegen.

23 ist als weiteres parzielles Hydrolyseprodukt von $Bi_3(O_2CCF_3)_3$ (6) zu verstehen. Im Festkörper liegen komplexe Kationen $[Bi_6O_{8-x}(OH)_x]^{(2+x)+}$ vor (Abb. 44). Sie sind dem Muster eines Netzes aus gewellten Sechsringen folgend angeordnet und über einkernige Bi^{III}-Zentren miteinander verknüpft (Abb. 45).

Abbildung 44: Das Käfigfragment in **23** mit den benachbarten einkernigen Zentren Bi7, Bi8 und Bi7c (Symmetrie-Code: c = 0.5-x, -0.5+y, 0.5-z)

Abbildung 45: Grundgerüst aus Käfigen und einkernigen Zentren im Festkörper von 23 (Blickrichtung entlang der pseudo-dreizähligen Achse)

Abbildung 46: Umgebung der einkernigen Bi^{III}-Zentren im Vergleich. links: Bi7 auf allgemeiner Lage mit ganzer Besetzung; rechts: Bi8 auf zweizähliger Achse (CF₃-Gruppen sind der Übersichtlichkeit wegen weggelassen) (Symmetrie-Codes: a = 0.5-x, 0.5+y, 0.5-z; b = 1-x, y, 0.5-z)

Die einkernigen Zentren sind wie in **22** von fünf Trifluoracetatliganden umgeben (Abb. 46), bilden also zusammen formal $[Bi(O_2CCF_3)_5]^{2}$ -Einheiten. Diese sind über gemeinsame μ_4 -

Oxo-Liganden mit benachbarten Käfigfragmenten verbunden, wobei die Entfernungen Bi7-O2a und Bi7-O4 bzw. Bi8-O7 und Bi8-O7b etwa gleich groß sind. Die dreikernigen Einheiten zweier benachbarter Käfige sind wie in **22** gestaffelt zueinander angeordnet (Abb. 46, siehe zum Vergleich Abb. 41). Es resultiert eine formale Koordinationszahl von zwölf für die beiden kristallographisch unabhängigen einkernigen Zentren mit Koordinationsfiguren, die der des einkernigen Zentrums in **22** sehr ähnlich sind.

Abbildung 47: Umgebung des Käfigfragments in 23

An das dreikernige Segment des Käfigfragments, das keinen μ_4 -verbrückenden Oxoliganden besitzt (Bi3,Bi2,Bi6, Abb. 47), sind zwei Trifluoracetatliganden je μ_2 -verbrückend zwischen Bi2 und Bi6 bzw. zwischen Bi2 und Bi3 angeordnet. An Bi3 und Bi6 ist je ein Sauerstoffatom gebunden (O13 bzw. O14). Beide gehören offensichtlich zu Wasserliganden, was an Hand der Abstände (Bi6-O13 = 2.806(12) Å bzw. Bi3-O14 = 2.649(14) Å) angenommen werden muss. Diese Wasserliganden bilden mit einem in der Nähe befindlichen ,freien' Wassermolekül (O30) und benachbarten symmetrieabhängigen Wassermolekülen ein Netzwerk aus OH···O-Wasserstoffbrücken, das einen wesentlichen Beitrag zum Zusammenhalt benachbarter supramolekularer Schichten leistet. Pro asymmetrische Einheit ist ein weiteres Wassermolekül (O31) an anderer Stelle (in der Nähe von O19 und O1) kokristallisiert. Jedes der sechs Bismutatome des kristallographisch unabhängigen Käfigs ist achtfach von Sauerstoffatomen koordiniert, wobei die Koordinationsfiguren unsymmetrisch sind; mehr oder weniger ausgeprägte Koordinationslücken weisen auf die stereochemische Aktivität der einsamen Elektronenpaare hin.

Pro asymmetrische Einheit der Kristallstruktur werden also ein und eine halbe $[Bi(O_2CCF_3)_5]^{2^2}$ -Baueinheit, ein Käfigfragment mit zwei Trifluoracetatliganden, zwei an Bismutatome gebundene und zwei kokristallisierte Wassermoleküle gefunden. Demnach bietet sich für die Beschreibung die Zusammensetzung der zweifachen asymmetrischen Einheit, also die Formel $[Bi_6O_5(OH)_3(H_2O)_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_5]_3 \cdot 4 H_2O$ an, die auch zum Ausdruck bringt, dass drei der acht Dreiecksflächen des Käfigs von μ_3 -überbrückenden OH-Gruppen besetzt sind. An Hand der Bi-O-Abstände, welche für die μ_3 -verbrückenden Oxoliganden gefunden werden (2.144(17) bis 2.34(2) Å) kann nicht zwischen Oxo- und Hydroxoliganden unterschieden werden. Auch in Differenzfouriersynthesen lassen sich die Wasserstoffatome nicht lokalisieren. Es kann daher nicht ausgeschlossen werden bzw. ist sogar als wahrscheinlich anzusehen, dass eine statistische Besetzung von O²⁻ und OH-Gruppen in den $[Bi_6O_5(OH)_3]^{5+}$ -Käfigen vorliegt. Eine vergleichbare Situation wurde in der kürzlich von Henry et al. publizierten Verbindung $[Bi_6O_{4.5}(OH)_{3.5}]_2(NO_3)_{11}$ beschrieben^[62c]. In den Käfigfragmenten dieser Verbindung werden Bi-O-Abstände beobachtet, die genau zwischen den Standardlängen Bi-O(Oxo) und Bi-O(Hydroxo) liegen.

Ein weiterer auffälliger Aspekt sind die deutlich unterschiedlichen Abstände Bi6-O13 und Bi3-O14. Beide liegen im Bereich typischer Abstände zwischen Bismutatomen und Wasserliganden (2.64(3) Å ^[62a], 2.577(2) Å ^[53]). Es ist daher anzunehmen, dass in der hier beschriebenen Struktur tatsächlich zwei Wassermoleküle an Bi3 bzw. Bi6 gebunden sind.

In anderen untersuchten Kristallen vergleichbarer Proben ist der Abstand des stärker an Bi3 gebundenen Sauerstoffatoms O14 kleiner. Der Befund gibt Raum für Spekulationen: Möglicherweise ist in manchen Kristallen O14 Bestandteil einer OH-Gruppe, die zum benachbarten Wasserliganden O13 eine starke Wasserstoffbrücke ausbildet. Im Zusammenhang mit der statistischen Besetzung in den Käfigfragmenten ist denkbar, dass sich hier ebenfalls ein statistisches Bild aus zum einen zwei Wasserliganden und zum anderen einer OH-Gruppe bzw. einem Wasserliganden ergibt.

Abbildung 48: Gesamtes koordinationspolymeres Schichtengefüge in 23, entlang der pseudodreizähligen Achse betrachtet

Abbildung 49: Stapelung der Schichten von **23** (Blickrichtung [0 1 0]) (vergleiche auch Abbildung 43)

Abbildung 48 gibt die Anordnung der Bausteine der gesamten Schicht (ohne kokristallisierte Wassermoleküle) wieder. Die Stapelung der Schichten übereinander (Abb. 49), die im Wesentlichen durch Wasserstoffbrücken zustande kommt, und die pseudo-trigonale Organisation des Grundgerüsts lassen die Probleme bei der Charakterisierung der Substanz zutage treten.

Die Pseudosymmetrie spiegelt sich im monoklinen Winkel von ca. 120° und den näherungsweise gleich langen Achsen *a* und *c* wieder. So ist es möglich, dass entlang der pseudo-dreizähligen Achse systematisch verdrillingte Kristalle vorliegen. Die Wechselwirkungen zwischen den Schichten sind verglichen mit den Wechselwirkungen innerhalb der Schichten relativ schwach. Die Schichten können sich um jeweils 120° bzw. 240° zueinander gedreht übereinander stapeln.

Die Existenz der OH-Gruppen **23** wird IR-spektroskopisch durch zwei scharfe Banden zwischen 3555 und 3655 cm⁻¹ bestätigt. Die bei kleinerer Wellenzahl gelegene Bande wird durch OH-Gruppen, die schwache Wasserstoffbrücken ausbilden, hervorgerufen; die bei größerer Wellenzahl liegende OH-Valenzschwingung ist nahezu wechselwirkungsfreien OH-Gruppen zuzuordnen. Die Existenz der kokristallisierten Wassermoleküle wird durch eine breite Bande bei 3400 cm⁻¹ bestätigt. OH-Valenzschwingungen wasserstoffverbrückter Spezies deuten sich als Schultern bei ca. 3080 cm⁻¹ an.

Die beiden Hydrolyseprodukte **22** und **23** entstehen vermutlich synthesebedingt in variablen Anteilen nebeneinander. Eine Optimierung der Reaktionsbedingungen zugunsten der selektiven Bildung eines Produktes ist nicht möglich, denn die Eigenschaften des geringen makrokristallinen Anteils repräsentieren nicht notwendigerweise die Eigenschaften des gesamten hydrolysierten Materials.

Verbindung Nr.	23
Empirische Formel	$^{2}_{\infty}$ {[Bi ₆ O ₅ (OH) ₃ (H ₂ O) ₂ (O ₂ CCF ₃) ₂] ₂ [Bi(O ₂ CCF ₃) ₅] ₃ · 4 H ₂ O}
Molekulargewicht [g mol ⁻¹]	5688.26
Kristallsystem	monoklin
Raumgruppe	C2/c
Gitterkonstanten	a = 27.866(6) Å
	b = 15.800(3) Å
	c = 27.371(6) Å
	$\beta = 120.35(3)^{\circ}$
Volumen der Elementarzelle [Å ³]	10399(4)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	3.633
Kristallform, Kristallfarbe	tafelig 0.02×0.1×0.1, farblos
F(000)	10016
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	39660
Messbereich [°]	$3.92 < 2\theta < 51.96$
Unabhängige Reflexe	9981
Beobachtete Reflexe	5785
Korrekturen	LP, Absorption
Verfeinerte Reflexe	9981
Parameter	459
Restraints	76
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.1020
$wR_2(all data)^3$	0.2564
Wichtungsschema ⁴	0.1
GOOF (GOOF _{restrain)} ⁵	1.216 (1.214)
max. shift/su	0.022
$\Delta \rho_{\text{max.}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	3.031/-3.323

Tab. 39: Daten zum Kristall und zur Strukturbestimmung von 23

$$\begin{split} & {}^{2}R_{1}\!=\!\Sigma \|\;F_{o}\left|-\right|F_{c}\left|\left|\Sigma\right|F_{o}\right| \\ & {}^{3}wR_{2}\!=\![\Sigma[w(F_{o}^{-2}\!-\!F_{c}^{-2})^{2}]/\Sigma[(wF_{o}^{-2})^{2}]]^{1/2} \\ & {}^{4}w\!=\!1/[s^{2}(F_{o}^{-2})\!+(aP)^{2}\!+bP] \text{ mit }P\!=\!(F_{o}^{-2}\!+\!2\,F_{c}^{-2})/3 \\ & {}^{5}GOOF\!=\!S\!=\{\Sigma\;[w(F_{o}^{-2}\!-\!F_{c}^{-2})^{2}]/(n\!-\!p)\}^{1/2} \end{split}$$

Bi1-O1	2.174(18)	Bi3-O1	2.273(18)	Bi6-08	2.19(2)
Bi1-O3	2.20(2)	Bi3-O2	2.477(18)	Bi6-O6	2.22(2)
Bi1-O2	2.207(19)	Bi4-06	2.201(18)	Bi6-O7	2.30(2)
Bi1-O4	2.27(2)	Bi4-O3	2.222(19)	Bi6-O5	2.34(2)
Bi2-O1	2.230(18)	Bi4-O2	2.25(2)	Bi7-O2a	2.49(2)
Bi2-08	2.24(2)	Bi4-O7	2.33(2)	Bi7-O4	2.55(2)
Bi2-O5	2.248(19)	Bi5-O3	2.144(17)	Bi8-O7	2.47(3)
Bi2-O4	2.397(19)	Bi5-08	2.19(2)	Bi8-O7b	2.47(3)
Bi3-O5	2.17(2)	Bi5-O4	2.260(19)	Bi6-O13	2.806(12)
Bi3-O6	2.239(18)	Bi5-O7	2.368(19)	Bi3-O14	2.649(14)

Tab. 40: ausgewählte Bindungslängen [Å] in 23 $\,$

Tab. 41: "Nichtbindende Abstände"[Å] in 23

Bi4-Bi3	3.6254(16)	Bi1-Bi7c	3.8476(17)	Bi3-Bi6	3.7322(15)
Bi4-Bi1	3.6419(13)	Bi1-Bi7	4.0965(18)	Bi3-Bi7c	4.191(2)
Bi4-Bi6	3.6864(17)	Bi2-Bi3	3.6512(16)	Bi5-Bi6	3.5967(18)
Bi4-Bi5	3.7019(15)	Bi2-Bi5	3.7168(16)	Bi5-Bi7	3.9825(15)
Bi4-Bi8	3.9430(13)	Bi2-Bi6	3.7461(14)	Bi5-Bi8	4.1701(13)
Bi4-Bi7c	4.0052(15)	Bi2-Bi7	4.167(2)	Bi6-Bi8	4.0494(14)

Tab. 42: ausgewählte Bindungswinkel [°] in 23

Bi3-Bi4-Bi1	62.03(3)	Bi2-Bi1-Bi4	91.20(4)	Bi3-Bi2-Bi6	60.59(3)
Bi3-Bi4-Bi6	61.38(3)	Bi5-Bi1-Bi3	89.71(4)	Bi5-Bi2-Bi6	57.62(3)
Bi1-Bi4-Bi6	90.25(4)	Bi2-Bi1-Bi3	59.29(4)	Bi1-Bi2-Bi7	62.91(4)
Bi3-Bi4-Bi5	90.18(3)	Bi4-Bi1-Bi3	58.77(3)	Bi5-Bi2-Bi7	60.36(3)
Bi1-Bi4-Bi5	58.92(2)	Bi4-Bi1-Bi7c	64.59(3)	Bi4-Bi3-Bi2	91.21(3)
Bi6-Bi4-Bi5	58.26(3)	Bi3-Bi1-Bi7c	67.00(3)	Bi4-Bi3-Bi6	60.11(3)
Bi6-Bi4-Bi8	64.01(3)	Bi5-Bi1-Bi7	61.84(3)	Bi2-Bi3-Bi6	60.96(3)
Bi5-Bi4-Bi8	66.03(3)	Bi2-Bi1-Bi7	64.90(3)	Bi4-Bi3-Bi1	59.20(3)
Bi3-Bi4-Bi7c	66.42(4)	Bi1-Bi2-Bi3	61.85(3)	Bi2-Bi3-Bi1	58.86(3)
Bi1-Bi4-Bi7c	60.19(3)	Bi1-Bi2-Bi5	58.84(3)	Bi6-Bi3-Bi1	87.98(4)
Bi5-Bi1-Bi2	61.71(3)	Bi3-Bi2-Bi5	89.55(3)	Bi4-Bi3-Bi7c	61.14(3)
Bi5-Bi1-Bi4	61.37(3)	Bi1-Bi2-Bi6	89.41(4)	Bi1-Bi3-Bi7c	57.67(3)

Fortsetzung

Bi6-Bi5-Bi1	92.17(4)	Bi5-Bi7-Bi2	54.21(3)	Bi5-O4-Bi2	105.9(6)
Bi6-Bi5-Bi4	60.65(3)	Bi1-Bi7-Bi2	52.19(3)	Bi1-O4-Bi2	102.2(8)
Bi1-Bi5-Bi4	59.71(2)	Bi1-Bi7c-Bi3	55.33(3)	Bi5-O4-Bi7	111.5(9)
Bi6-Bi5-Bi2	61.60(3)	Bi4-Bi7c-Bi3	52.44(3)	Bi1-O4-Bi7	116.0(6)
Bi1-Bi5-Bi2	59.45(3)	Bi4-Bi8-Bi6	54.91(3)	Bi2-O4-Bi7	114.6(9)
Bi4-Bi5-Bi2	88.99(3)	Bi4-Bi8-Bi5	54.21(2)	Bi3-O5-Bi2	111.6(8)
Bi1-Bi5-Bi7	65.07(3)	Bi6-Bi8-Bi5	51.87(3)	Bi3-O5-Bi6	111.8(10)
Bi2-Bi5-Bi7	65.42(4)	Bi1-O1-Bi2	111.3(8)	Bi2-O5-Bi6	109.4(10)
Bi6-Bi5-Bi8	62.33(3)	Bi1-O1-Bi3	114.7(9)	Bi4-O6-Bi6	113.1(9)
Bi4-Bi5-Bi8	59.77(3)	Bi2-O1-Bi3	108.4(8)	Bi4-O6-Bi3	109.5(6)
Bi5-Bi6-Bi4	61.09(4)	Bi1-O2-Bi4	109.6(9)	Bi6-O6-Bi3	113.8(10)
Bi5-Bi6-Bi3	90.14(3)	Bi1-O2-Bi3	106.0(8)	Bi6-O7-Bi4	105.4(10)
Bi4-Bi6-Bi3	58.51(3)	Bi4-O2-Bi3	100.0(6)	Bi6-O7-Bi5	100.7(10)
Bi5-Bi6-Bi2	60.78(3)	Bi1-O2-Bi7c	110.0(7)	Bi4-O7-Bi5	104.0(8)
Bi4-Bi6-Bi2	88.78(3)	Bi4-O2-Bi7c	115.3(9)	Bi6-O7-Bi8	115.9(8)
Bi3-Bi6-Bi2	58.45(3)	Bi3-O2-Bi7c	115.2(8)	Bi4-O7-Bi8	110.4(9)
Bi5-Bi6-Bi8	65.79(3)	Bi5-O3-Bi1	112.6(10)	Bi5-O7-Bi8	118.9(10)
Bi4-Bi6-Bi8	61.08(3)	Bi5-O3-Bi4	116.0(7)	Bi6-O8-Bi5	110.7(9)
Bi1-Bi7c-Bi4	55.22(2)	Bi1-O3-Bi4	111.0(9)	Bi6-O8-Bi2	115.7(10)
Bi5-Bi7-Bi1	53.09(2)	Bi5-O4-Bi1	105.6(10)	Bi5-O8-Bi2	114.2(7)

Atom	x/a	y/b	z/c	U_{eq}^{1}
Bi1	0.26587(3)	0.27976(6)	0.26330(4)	0.0315(2)
Bi2	0.36274(3)	0.39607(6)	0.38987(4)	0.0393(2)
Bi3	0.37104(3)	0.16532(6)	0.39367(4)	0.0398(2)
Bi4	0.37940(3)	0.16195(6)	0.26574(4)	0.0309(2)
Bi5	0.37668(3)	0.39618(6)	0.26179(4)	0.0318(2)
Bi6	0.48126(3)	0.28970(6)	0.38664(4)	0.0381(2)
Bi7	0.25261(4)	0.53792(8)	0.24891(5)	0.0548(3)
Bi8	0.5000	0.26410(10)	0.2500	0.0551(5)
01	0.3130(8)	0.2780(11)	0.3553(8)	0.056(6)
02	0.3127(7)	0.1597(14)	0.2891(8)	0.080(6)
03	0.3299(6)	0.2807(12)	0.2390(11)	0.084(7)
04	0.3123(6)	0.4052(16)	0.2886(8)	0.076(7)
05	0.4185(8)	0.2818(12)	0.4195(12)	0.121(7)
06	0.4279(6)	0.1753(16)	0.3585(8)	0.086(7)
07	0.4379(8)	0.2790(12)	0.2895(10)	0.074(8)
08	0.4195(7)	0.3912(15)	0.3542(8)	0.070(6)
09	0.3456(8)	0.3478(11)	0.4713(10)	0.098(9)
O10	0.3627(10)	0.2027(11)	0.4780(10)	0.147(8)
011	0.4476(10)	0.4422(17)	0.4787(10)	0.142(14)
012	0.5120(9)	0.374(6)	0.4912(15)	0.514(9)
013	0.5378(6)	0.1619(8)	0.4667(6)	0.116(9)
014	0.4681(6)	0.1101(7)	0.4765(7)	0.126(10)
015	0.1124(8)	0.5084(10)	0.1744(11)	0.089(9)
016	0.1851(6)	0.4215(15)	0.2065(9)	0.077(8)
017	0.2120(7)	0.5383(13)	0.1441(9)	0.092(7)
018	0.2763(7)	0.4462(13)	0.1725(8)	0.078(7)
019	0.2932(3)	0.6566(13)	0.2154(9)	0.132(8)
O20	0.3650(7)	0.5802(7)	0.2692(7)	0.090(8)
O21	0.2855(10)	0.6653(15)	0.3182(5)	0.148(13)
O22	0.3407(10)	0.5784(11)	0.3762(12)	0.160(7)

Tab. 43: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 23

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i}a_{j}a_{i}a_{j}$

Fortsetzung

023	0.2020(10)	0.5405(11)	0.3027(8)	0.087(9)
O24	0.2507(6)	0.4254(12)	0.3444(9)	0.077(7)
025	0.5550(6)	0.2293(17)	0.3611(13)	0.117(12)
O26	0.6101(7)	0.2150(15)	0.3268(6)	0.079(7)
O27	0.5154(5)	0.4236(15)	0.3457(8)	0.108(7)
O28	0.5544(7)	0.3863(10)	0.2973(7)	0.071(5)
O29	0.4820(6)	0.1040(14)	0.2761(7)	0.074(7)
O30	0.5166(6)	0.0406(7)	0.3923(6)	0.081(6)
031	0.2749(6)	0.7514(17)	0.1175(7)	0.121(8)
C1	0.3539(9)	0.2744(11)	0.4919(9)	0.300
C2	0.3333(10)	0.275(3)	0.5334(11)	0.500
C3	0.4857(14)	0.395(3)	0.5155(8)	0.300
C4	0.510(2)	0.391(5)	0.5791(9)	0.500
C5	0.1349(6)	0.4386(9)	0.1763(10)	0.046(7)
C6	0.0959(4)	0.3672(7)	0.1428(5)	0.054(8)
C7	0.2383(7)	0.4857(12)	0.1318(5)	0.039(6)
C8	0.2218(7)	0.4637(13)	0.0716(6)	0.17(3)
C9	0.3452(5)	0.6466(11)	0.2416(12)	0.101(14)
C10	0.3814(4)	0.7115(8)	0.2350(6)	0.094(13)
C11	0.3193(8)	0.6483(11)	0.3689(6)	0.056(8)
C12	0.3272(8)	0.7092(11)	0.4151(6)	0.26(5)
C13	0.2146(5)	0.4794(10)	0.3361(7)	0.035(6)
C14	0.1816(6)	0.4701(14)	0.3655(7)	0.15(2)
C15	0.6032(6)	0.222(2)	0.3684(6)	0.057(8)
C16	0.6537(8)	0.209(2)	0.4260(8)	0.56(15)
C17	0.5527(7)	0.4326(12)	0.3337(8)	0.086(12)
C18	0.5929(6)	0.5044(11)	0.3656(8)	0.110(15)
C19	0.5000	0.0606(9)	0.2500	0.017(6)
C20	0.5037(4)	-0.0340(7)	0.2436(6)	0.11(3)
F1	0.309(2)	0.348(3)	0.5305(17)	0.32(3)
F2	0.3759(11)	0.263(4)	0.5856(11)	0.28(3)
F3	0.2967(18)	0.212(3)	0.5207(16)	0.42(5)

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i} \cdot a_{j} \cdot a_{i}a_{j}$

Fortsetzung	2
-------------	---

F4	0.492(4)	0.455(6)	0.5961(11)	0.63(6)
F5	0.565(3)	0.395(9)	0.6046(9)	0.63(6)
F6	0.496(4)	0.318(6)	0.5923(10)	0.63(6)
F7	0.1232(5)	0.2945(10)	0.1579(7)	0.083(6)
F8	0.0759(6)	0.3801(9)	0.0881(8)	0.122(9)
F9	0.0543(6)	0.3646(9)	0.1531(7)	0.094(7)
F10	0.2435(9)	0.3949(17)	0.0709(6)	0.132(10)
F11	0.2381(10)	0.5206(17)	0.0517(7)	0.155(12)
F12	0.1701(11)	0.4575(19)	0.0424(7)	0.191(15)
F13	0.3625(6)	0.7877(12)	0.2346(10)	0.133(10)
F14	0.3806(7)	0.6983(11)	0.1873(9)	0.127(9)
F15	0.4326(8)	0.7049(11)	0.2774(9)	0.132(10)
F16	0.3737(11)	0.7189(15)	0.4459(10)	0.138(10)
F17	0.3069(12)	0.6819(15)	0.4390(10)	0.175(14)
F18	0.3070(14)	0.7727(18)	0.3954(7)	0.31(3)
F19	0.1416(10)	0.5260(18)	0.3456(10)	0.144(10)
F20	0.2141(8)	0.482(2)	0.4198(11)	0.198(16)
F21	0.1604(10)	0.3942(19)	0.3567(11)	0.159(12)
F22	0.6599(12)	0.268(3)	0.4543(12)	0.30(3)
F23	0.6928(14)	0.201(3)	0.4213(9)	0.31(3)
F24	0.6477(9)	0.149(3)	0.4468(10)	0.169(13)
F25	0.6295(9)	0.5103(13)	0.3495(10)	0.119(9)
F26	0.6181(10)	0.4891(13)	0.4199(12)	0.27(2)
F27	0.5654(8)	0.5753(15)	0.3549(11)	0.165(13)
F28	0.4966(6)	-0.0727(7)	0.2806(6)	0.22(4)
F29	0.5517(5)	-0.0524(7)	0.2510(8)	0.106(15)
F30	0.4660(6)	-0.0568(7)	0.1939(6)	0.093(13)

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i}a_{j}a_{i}a_{j}$

3.4.3 Thermolyse der basischen Trifluoracetate 22 und 23 – Abhängigkeit des Produktspektrums von den Reaktionsbedingungen

Das Feststoffgemisch aus Raumnetzcarboxylat **22** und Schichtencarboxylat **23** lässt sich an Luft bei Temperaturen zwischen 330 und 450 °C in ein orange-gelbes bis schwach gelbes Pulver überführen. Da zu erwarten ist, dass die Geschwindigkeit der Thermolysereaktion und die Zusammensetzung der Produkte in hohem Maße von der Temperatur und von der Korngröße des eingesetzten Materials abhängig ist, wurden die eingesetzten Proben vor der Thermolysereaktion im Achatmörser gut homogenisiert, gleichmäßig dünn im offenen Reaktionsgefäß verteilt und die Reaktionen außerdem bei verschiedenen Temperaturen durchgeführt. Die Produkte wurden Raman-spektroskopisch und pulverröntgenographisch untersucht.

Versuch 1: Thermolyse bei ca. 330 °C:

Wird eine Probe nur etwa 20 Stunden lang einer Temperatur von 330 °C ausgesetzt, erhält man ein nahezu farbloses Pulver mit einem kaum merklichen Gelbstich, in dem IRspektroskopisch keine organischen Bestandteile mehr nachzuweisen sind, die an CO-Valenzschwingungen der Carboxylatgruppen und CF-Valenzschwingungen erkennbar wären. Das Raman-Spektrum des Produkts zeigt neben einigen Banden geringer Intensität im wesentlichen eine vergleichsweise sehr intensive und scharfe Bande bei 164 cm⁻¹, die weder für das Gemenge aus 22 und 23 gefunden wird, noch für die Oxide α -Bi₂O₃ und β -Bi₂O₃ typisch ist (Abb. 51). Pulverröntgenographisch können die Linien des Materials weder den Verbindungen 22 und 23 noch dem monoklinen α -Bi₂O₃ oder dem tetragonalen β -Bi₂O₃ zugeordnet werden. Der Vergleich des Pulverdiffraktogramms der Substanz mit den Linienlagen bekannter Oxide bzw. Oxidfluoride des Bismuts zeigt, dass im entstandenen Material offensichtlich ein hoher Anteil an BiOF enthalten ist (Abb. 50), dessen Kristallstruktur seit 1964 bekannt ist (*P*4/*nmm*, *a* = 3.7469(5) Å, *c* = 6.226(1) Å und *Z* = 2)^[71a].

Abbildung 50: Pulverdiffraktogramm von BiOF (rot: Literaturdaten, schwarz: Experiment)

Abbildung 51: Raman-Spektrum von BiOF

Versuch 2: Thermolyse bei ca. 350 °C

Nach etwa 20stündigem Erhitzen einer Probe auf 350 °C ist ein nahezu farbloses Pulver mit einem kaum merklichen Gelbstich entstanden, in dem IR-spektroskopisch ebenfalls keine organischen Bestandteile mehr detektiert werden können. Ein Raman-Spektrum zeigt neben einigen Banden kleiner Intensität wieder eine vergleichsweise sehr intensive und scharfe Bande bei 164 cm⁻¹, welche durch entstandenes BiOF hervorgerufen wird. Nach etwa 10 Tagen ist die Probe vollständig umgesetzt. Die Farbe ist gelborange mit geringen braunorangen Anteilen. Pulverdiffraktogramme belegen das Vorliegen von α -Bi₂O₃ (monokline Modifikation) als Hauptprodukt und β -Bi₂O₃ (tetragonale Modifikation) als Nebenprodukt. Weitere Phasen konnten in diesem Oxidgemisch nicht detektiert werden.

Versuch 3: Thermolyse bei ca. 370 °C:

Die schon vorher beschriebenen Beobachtungen werden auch in diesem Fall gemacht: Die braunorange Farbe des β -Bi₂O₃ verschwindet jedoch im Reaktionsverlauf fast vollständig und die gesamte Thermolyse verläuft insgesamt schneller. Die Reaktion ist nach ca. 5–6 Tagen beendet.

Versuch 4: Thermolyse bei ca. 400 °C

Die Thermolyse verläuft noch schneller und ist nach spätestens 1–2 Tagen beendet. Aus den gleichmäßig dünn verteilten Partikeln der Probe bestehend aus **22** und **23** ist phasenreines feinkristallines braunoranges tetragonales β -Bi₂O₃ entstanden, das sich bei Lagerung langsam in die schwach gelbe monokline α -Modifikation umwandelt^[75, 76]. Offensichtlich ist eine kurze Reaktionsdauer (ca. 1–2 Tage) notwendig, um phasenrein die tetragonale Modifikation zu gewinnen. Je länger die Reaktionszeit bei 400 °C, desto größer ist der Anteil der monoklinen bei RT stabilen α -Modifikation. Von beiden Modifikationen und von käuflichem α -Bi₂O₃ wurden zu Vergleichszwecken Raman-spektroskopische Untersuchungen durchgeführt. In allen Fällen wird eine sehr gute Übereinstimmung mit bekannten Daten der Literatur gefunden^[81, 82].

Versuch 5: Thermolyse bei T > 400 °C

Bei einer Reaktionsdauer > 24h zwischen 400 und 450 °C nimmt der nachweisbare Anteil an β -Bi₂O₃ im Produkt kontinuierlich ab; der prozentuale Anteil an α -Bi₂O₃ dominiert immer deutlicher. Bei Reaktionstemperaturen oberhalb 450 °C entsteht phasenreines schwach gelbes α -Bi₂O₃. Dies steht im Einklang mit der in der Literatur berichteten Umwandlungstemperatur von β -Bi₂O₃ nach α -Bi₂O₃ von etwa 420 °C^[76].

Fazit:

- Die Thermolyse des Gemisches aus 22 und 23 bei recht kurzer Reaktionszeit (ca. 20 h) und Temperaturen von ca. 330 °C liefert im Wesentlichen BiOF.
- 2. Bei geschickter Wahl der Reaktionsbedingungen lässt sich phasenrein die β oder die α -Modifikation von Bi₂O₃ herstellen.
- 3. Es ist offensichtlich Luftsauerstoff (oder Luftfeuchtigkeit) notwendig, um das basische Carboxylatgemisch vollständig zum Oxid zu thermolysieren.

Die besten Resultate zur selektiven Synthese von β -Bi₂O₃ wurden bei einer Ofentemperatur von etwa 400 °C und einer Reaktionsdauer von etwa 1–2 Tagen erreicht.

Nachfolgend sind die Pulverdiffraktogramme von β -Bi₂O₃ und α -Bi₂O₃ und die zugehörigen Raman-Spektren jeweils im Vergleich zu Literaturdaten^[74-76, 80-82] (Abb. 52-54) abgebildet.

Abbildung 52: Pulverdiffraktogramm von β -Bi₂O₃ (oben) und α -Bi₂O₃ (unten) (schwarz: gemessene, rot: aus Literaturdaten generierte Diffraktogramme^[75, 76])

Abbildung 53: Raman-Spektrum von β -Bi₂O₃ (oben: gemessenes, unten: Literaturspektrum (nur für Nb-dotiertes Material verfügbar). Der Messbereich des Gerätes endet bei 80 cm⁻¹

Abbildung 54: Raman-Spektren von α -Bi₂O₃ (oben: gemessenes, unten: Literaturspektrum) Der Messbereich des Gerätes endet bei 80 cm⁻¹

Die erstaunliche Stabilität der bei den eigenen Untersuchungen gewonnenen metastabilen β -Modifikation des Bi₂O₃ hängt offensichtlich mit den Herstellungsbedingungen und den strukturellen Eigenschaften zusammen. Deshalb sollen in diesem Zusammenhang mögliche strukturelle Verwandtschaften der supramolekularen Verbände 22 und 23 mit den Bismutoxiden aufgezeigt werden. Auch sei die Rolle des in Bismutoxiden immer wieder gefundenen Wasseranteils im Folgenden erläutert. Jansen und später Romanov^[75, 76] untersuchten die Abbaureaktionen der Bismut(III,V)oxidhydrate bei verschiedenen Bedingungen. Dabei wird stets als Zwischenprodukt ein kubisches Oxid BiO₂ (Bi₂O₄) mit Fluoritstruktur gebildet. Bei hohem O₂-Partialdruck entsteht als Abbauprodukt von Bi₂O₄ eindeutig nachweisbar eine Verbindung Bi₂O_{4-x}, die auch im CaF₂-Typ kristallisiert, sich kristallographisch jedoch sowohl von Bi₂O₄ (durch signifikant kleinere Gitterkonstanten) als auch von β -Bi₂O₃ (anderes Kristallsystem) unterscheidet. Durch weiteren Sauerstoffverlust wandelt sich Bi₂O_{4-x} in tetragonales β -Bi₂O₃ um. Die auf diese Weise entstandene metastabile β -Modifikation besitzt laut den Autoren eine höhere Stabilität als auf andere Weise präpariertes, etwa durch Metalloxidation entstandenes, β -Bi₂O₃. Außerdem besitzt sie anscheinend einen etwas höheren Sauerstoffgehalt als ein stöchiometrisches Bi₂O₃, obwohl sich im Beugungsmuster kein Unterschied zu stöchiometrischem β -Bi₂O₃ feststellen lässt^[76]. Möglicherweise besitzt das im Rahmen der eigenen Untersuchungen präparierte β -Bi₂O₃ entspricht.

Das höchstsymmetrische Polymorph von Bi_2O_3 stellt das δ - Bi_2O_3 dar, welches eine CaF₂-Struktur besitzt. Die in den Tetraederlücken lokalisierten Sauerstoffatome sind vierfach fehlgeordnet, d. h. die Lage ist statistisch zu ³/₄ besetzt. Die in der Literatur beschriebene stöchiometrische Verbindung Bi_2O_4 mit Fluoritstruktur unterscheidet sich von der δ -Modifikation des Bi_2O_3 neben der Besetzung der O-Lage durch signifikant kleinere Gitterkonstanten.

Auch die supramolekularen Verbände 22 und 23 lassen sich in strukturellen Zusammenhang mit dem CaF₂-Gitter des δ -Bi₂O₃ bringen, was folgende Abbildung verdeutlicht:

Abbildung 55: Struktureller Bezug des CaF₂-Gitters von δ-Bi₂O₃ (links) zu 22 (Mitte) und 23 (rechts). Durch Entfernen der vier nicht benachbarten Bismut-Atome an den Würfelecken der Elementarzelle im Fluoritgitter von δ-Bi₂O₃ gelangt man zu einem Strukturmotiv mit Ähnlichkeiten zu Ausschnitten von 22 und 23

In der Literatur^[75, 76] wird spekuliert, dass die Positionen der O²⁻-Ionen in den Tetraederlücken teilweise durch OH⁻-Ionen ersetzt sind, wodurch das Fluoritgitter von δ -Bi₂O₃ möglicherweise stabilisiert wird. Rein formal kann durch Ersetzen eines O²⁻-Ions durch zwei OH⁻-Ionen die Defektstruktursituation vollständig beseitigt werden. Dann sind also formal Wasseranteile enthalten, die bei der kristallographischen Charakterisierung größere Gitterkonstanten liefern.

Die komplexen Käfigfragmente in **22** besitzen die Zusammensetzung $[Bi_6O_8]^{2+}$ und $[Bi_6O_4(OH)_4]^{6+}$, wobei jeweils vier weitere Bismutatome in deren Nachbarschaft lokalisiert sind. Damit ist formal die Situation im mittleren Bild von Abbildung 55 gegeben, und zwar einmal mit Oxoliganden und einmal mit OH-Gruppen an den μ_3 -Positionen (letzterer Fall abgebildet). Das Verknüpfungsmotiv des Festkörpers in **23** lässt sich aus dem von **22** durch formales Entfernen eines weiteren Bismutatoms an den Ecken der (nun gedachten) Elementarzelle der Fluoritstruktur erhalten (Abb. 55 rechts). Möglicherweise stabilisieren die vorhandenen OH⁻-Positionen in **22** und **23** ebenfalls ganz entscheidend die Struktur des Festkörpers.
3.5 Das Reaktionssystem Bi(O₂CCF₃)₃/Bi

Vor einiger Zeit konnte gezeigt werden, dass bei der Cothermolyse von Bismut(III)trifluoracetat und Hexamethylbenzol über einen nicht genauer geklärten Redoxprozess $Bi_2(O_2CCF_3)_4 \cdot C_6Me_6$, d. h. ein Addukt des in Substanz unbekannten Bismut(II)-trifluoracetats, entsteht. Eigene orientierende Untersuchungen zur Reduktion von Bismut(III)trifluoracetat mit Bismut belegten, dass auf diesem "einfachen" Syntheseweg die unsolvatisierte Bismut(II)-verbindung **15** zugänglich ist:

4 Bi(O₂CCF₃)₃ + 2 Bi
$$\Delta T$$
 3 Bi₂(O₂CCF₃)₄

Beim Erhitzen von Bi $(O_2CCF_3)_3$ mit Bismut auf ca. 200 °C entsteht eine rotbraune Schmelze. Aus dem erkalteten gelbbraunen Schmelzkuchen lassen sich durch langsame Sublimation bei 120 °C gelborange Stäbchen gewinnen, die im weiteren Verlauf der Untersuchungen als Bi₂ $(O_2CCF_3)_4$ (**15**) identifiziert werden konnten. Zurück bleibt ein unlöslicher schwarzgrauer Rückstand, dessen genaue Zusammensetzung nicht geklärt werden konnte. Die genauere Untersuchung der Reaktionsbedingungen ergab, dass bereits ein Gemenge der Reaktanden bei 120 °C mit hinreichender Geschwindigkeit reagiert, so dass sich am kalten Ende eines geschlossenen Rohres direkt das reduzierte Carboxylat in kristalliner Form abscheidet.

3.5.1 Eigenschaften und Kristallstruktur von Tetrakis(μ-trifluoracetatoκO,κO')-dibismut(Bi-Bi) (15)

Das aus der Gasphase in Form gelboranger Stäbchen anfallende Dibismutan **15** besitzt die elementaranalytisch bestimmte Zusammensetzung Bi $(O_2CCF_3)_2$ und einen Schmelzpunkt von etwa 148 °C. Es kristallisiert in der monoklinen Raumgruppe $P2_1/n$ mit a = 8.1574(4), b = 14.7885(9), c = 21.8239(13) Å, $\beta = 98.410(7)^\circ$ (120 K) und Z = 6.

Die Moleküle im Festkörperverband sind in centrosymmetrischen Dreiergruppen angeordnet. Für diese Form der Assoziation sind Bi---F₃C-Gruppen-Kontakte mit ungewöhnlich kurzen Bi---F-Abständen (3.076(4) Å und 3.227(9) Å) und schwache Bi---O-Wechselwirkungen (3.157(8) bzw. 3.183(5) Å) verantwortlich (Abb. 56).

Abbildung 56: Bismut(II)-trifluoracetat (15), Dreiergruppe aus Molekülen, die durch lockere Bi-O- und Bi-F-Kontakte zusammengehalten werden; ein und ein halbes Molekül bilden die asymmetrische Einheit der Kristallstruktur (Symmetrie-Code: a = -x, -y, -z)

Der Vergleich der empirischen Bindungsordnungen^[142] der jeweils stärksten Wechselwirkung (0.059 für Bi---F₃C bzw. 0.057 für Bi---O) zeigt, dass Bi---F- und Bi---O-Kontakte nahezu

gleich große Beiträge zur Assoziation liefern; die Anordnung der Dreiergruppen im Kristall entspricht den Erwartungen für einen typischen Molekülkristall (Abb. 57).

Abbildung 57: Anordnung der Dreiergruppen im Festkörper von 15

Dieser Befund steht im Gegensatz zu anderen Dibismutanen, bei denen oft sekundäre Metall-Metall-Wechselwirkungen festkörperstrukturbestimmend sind^[114-115].

Die intermolekularen Kontakte bei **15** haben einen geringen aber signifikanten Einfluss auf die Bindungssituation in den beiden kristallographisch unabhängigen Schaufelradmolekülen im Festkörper von **15**. So weist das beidseitig koordinativ beanspruchte zentrale Molekül der Dreiergruppe (Abb. 56) erwartungsgemäß eine geringfügig größere Bi-Bi-Bindungslänge (2.9382(5) Å) auf als die randständigen Moleküle (2.9265(4) Å). Besitzen die Moleküle im

Hexamethylbenzol-Addukt 14 noch C_{2h} -Symmetrie, so weisen sie in 15 lediglich C_1 bzw. C_i -Symmetrie auf.

Die intramolekularen Bi-O-Abstände in **15** bewegen sich im Bereich von 2.336(7) bis 2.424(6) Å. Alle drei kristallographisch unabhängigen Bismutatome sind in primärer Koordinationssphäre tetragonal-pyramidal von einem Bismutatom und vier Sauerstoffatomen umgeben. Durch Ausbildung der erwähnten schwachen intermolekularen Kontakte werden Koordinationslücken vermieden.

Das Strukturmotiv "Schaufelrad mit Metall-Metall-Bindung", für das es in der Nebengruppenelementchemie zahllose Beispiele gibt, wurde in der gesamten Hauptgruppenelementchemie bisher nur in dem oben genannten Hexamethylbenzolkomplex 14 gefunden. Verbindung 15 repräsentiert damit das erste strukturell charakterisierte solvatfreie reduzierte Hauptgruppenelementcarboxylat mit Schaufelradstruktur.

Massenspektrometrische Untersuchungen an **15** zeigen bei Elektronenstoßionisation (70 eV) den Peak des Molekülions $[Bi_2(O_2CCF_3)_4]^+$ als Peak mit der höchsten beobachteten Masse. Als Fragmente sind wie bei entsprechenden Untersuchungen am Hexamethylbenzol-Addukt alle Glieder der Reihe $[Bi_2(O_2CCF_3)_n]^+$ mit n = 3 – 0 und $[Bi(O_2CCF_3)_n]^+$ mit n = 2 – 0 durch entsprechende Linien belegt. Weitere in Spuren beobachtbare Fragmente sind Bi₄⁺ und Bi₃⁺, die bei nicht ganz sachgemäßer Handhabung der Substanz zu einem prozentual größeren Anteil auftreten.

IR-spektroskopische Studien zeigen in Bezug auf charakteristische Banden der Trifluoracetatliganden - z. B. den Banden der symmetrischen und antisymmetrischen CO₂-Streckschwingung, der CF₃-Valenzschwingung und der C-C-Streckschwingung - nahezu identische Bandenlagen und -intensitäten bei **15** und beim Hexamethylbenzol-Addukt **14**. IR-Studien an einer verwandten Verbindung des Molybdäns zeigt ebenfalls weitgehende Übereinstimmungen charakteristischer Bandenlagen im Bereich von ca. 1250 bis 700 cm⁻¹ ^[117a]. Auch in den Raman-Spektren von **14** und **15** gibt es eine weitgehende Übereinstimmunge entsprechender Bandenlagen. Im Raman-Spektrum von Natriumtrifluoracetat ^[117b] lassen sich Linien bei etwa 1450 cm, 850, 730 und 605 cm⁻¹ sicher internen Schwingungen der Trifluoracetatliganden zuordnen; diese Linien werden bei nahezu gleichen Wellenzahlen auch bei **14** und **15** beobachtet.

Die Valenzschwingung der Bi-Bi-Hantel sollte stark Raman-aktiv sein. In Frage kommen drei Banden bei 176, 150 und 119 cm⁻¹. Die Bande bei 119 cm⁻¹ kommt im Raman-Spektrum des HMB- und HEB-Addukts (HEB = Hexaethylbenzol) nicht vor. Auch liegt dieser Wert deutlich näher am Wert von ca. 105 cm⁻¹, welcher für die stark geschwächte Bi-Bi-Bindung in Verbindungen des Typs $Bi_2M_4X_8$ (M = Al, Ga; X = S, Se) gefunden wird^[117c], als am Wert von ca. 141 cm⁻¹, der für die v₁-Mode des Bi₄-Tetraeders angegeben wird ^[117d, e]. Es ist deshalb anzunehmen, dass die Bande bei 150 cm⁻¹, die in den genannten Vergleichsverbindungen mit gleicher Intensität bei 155 cm⁻¹ bzw. 148 cm⁻¹ gefunden wurde, durch die symmetrische Valenzschwingung der Bi-Bi-Hantel des Bi₂(O₂CCF₃)₄–Moleküls hervorgerufen wird.

Die Verschiebung der Banden der Valenzschwingungen der M_2^{4+} -Hanteln zu höheren Wellenzahlen beim Übergang von Verbindungen mit nicht chelatisierenden Liganden zu Verbindungen mit chelatisierenden Liganden, welche die M-M-Hantel "verklammern", soll an einem weiteren Beispiel verdeutlicht werden. Während die Bande der symmetrischen Valenzschwingung in der Mo₂⁴⁺-Hantel im Molybdän(II)-trifluoracetat bei 397 cm⁻¹ liegt, beträgt die Valenzschwingung der Mo₂⁴⁺-Hantel in den Anionen Mo₂Cl₈⁴⁻ der Salze des Typs M₄Mo₂Cl₈ (M = K, Rb, Cs) ca. 338-346 cm^{-1 [117f]}. Der Effekt der Verklammerung ist also signifikant und bestätigt damit noch einmal die oben getroffene Annahme.

Nachfolgend sind schwingungsspektroskopische (alle Werte in cm⁻¹), massenspektrometrische Daten und die numerischen Ergebnisse der Kristallstrukturanalyse von **15** aufgelistet.

IR-Daten für 15	Raman offset für 15	IR-Daten für 14	Raman offset für 14	Zuordnung
(Nujol)		(IR-Mikroskop)		
		3082 (m)	2916 (m-w, br)	V _{CH} streck
		3019 (s)		VCH streck
		2948 (vs)		VCH streck
2422 (vw, br)		2421 (w)		
2172 (vw)				
2034 (vw)				
1899 (vw)				
1782 (m, sh zu		1788 (w)		$\nu_{as CO2}$
kleineren WZ)				
		1746 (w)		$v_{as CO2}$

Tab. 44: IR- und Raman-spektroskopische Daten für 15 und 14

IR-Daten für 15	Raman offset für 15	IR-Daten für 14	Raman offset für 14	Zuordnung
(Nujol)		(IR-Mikroskop)		
1645 (s, br)		1634 (vs)		$v_{as CO2}$
		1593 (s)	1565 (vw)	V _{C=C Aren}
1454 (vs, sh zu	1438 (s)	1445 (vs)	1438 (w)	$\nu_{s CO2}$
höheren und				
kleineren WZ)				
1375 (s, sh zu	1329 (vw, br)	1390 (s)	1393 (w)	$\nu_{s CO2}$
kleineren WZ)				
1225 (s, sh)		1247 (s)	1293 (w-m)	$v_{C-F \ streck}$
1187 (s, br)	1182 (vw, mit sh)	1187 (vs)	1199 (vw)	$v_{C-F \ streck}$
1127 (s, sh)				$v_{C-F \ streck}$
		999 (m)		
847 (s, sharp)	850 (s-vs, sh zu	846 (m)	848 (w)	V _{C-C streck}
	kleineren WZ)			
791 (s, sharp)		796 (m)		$\delta_{OCO \ def}$
725 (s, sh zu		728 (m)	726 (vw)	$\delta_{OCO \ def}$
kleineren WZ)				
609 (w)		603 (m)		$\delta_{CF3 \ def}$
			553 (m)	$\delta_{CF3 def}$
521 (m)				$\delta_{CF3 def}$
	467 (vw)		460 (w, sh)	Bi-O-Streck-
444 (m, br)			448 (w, sh)	schwingungen,
			376 (vw)	rock-, wag-
			224 (vw)	und
	176 (s, sh)		166 (vs, sh)	Gittermoden
	150 (vs, sharp)		155 (vs)	v _{Bi-Bi}
	119 (s, sh)			Gittermoden

Fortsetzung

M/z ber.	M/z gef.	Rel. Int.	Zuordnung zu Fragment
870.0	869.8	39.1	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_4^+$
757.0	758.0	69.0	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_3^+$
644.0	643.6	10.0	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_2^+$
531.0	530.5	6.9	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)^+$
491.0	490.6	0.9	Bi ₂ OF ₃ ⁺
472.0	471.6	3.2	Bi ₂ OF ₂ ⁺
453.0	452.7	5.2	Bi ₂ OF ⁺
437.0	436.7	3.0	Bi_2F^+
434.0	434.7	12.9	$\operatorname{Bi}_2\operatorname{O}^+$ oder $\operatorname{Bi}(\operatorname{O}_2\operatorname{CCF}_3)_2^+$
418.0	417.7	17.4	Bi ₂ ⁺
341.0	340.7	13.6	$\operatorname{BiF}(O_2\operatorname{CCF}_3)^+$
322.0	321.8	65.9	$\operatorname{Bi}(\operatorname{O_2CCF_3})^+$
291.0	290.8	2.1	$\operatorname{Bi}(O_2 \operatorname{CF}_2)^+$
228.0	228.0	2.7	BiF ⁺
225.0	225.0	7.2	BiO ⁺
209.0	209.0	100.0	Bi ⁺
113.0 (114.0)	114.1	3.8	$CF_3COO(H)^+$
97.0	97.1	6.3	CF ₃ CO ⁺
94.0	95.1	9.2	$CF_2CO_2^+$
85.0	86.1	2.4	CF ₃ O ⁺
78.0	78.1	2.4	CF_2CO^+
69.0	69.1	73.6	CF ₃ ⁺
51.0	51.1	53.0	CF_2H^+
50.0	50.1	28.5	CF ₂ ⁺
45.0	45.2	81.5	$\rm CO_2H^+$
44.0	44.2	12.9	CO_2^+

Tab. 45: Massenspektrometrische Daten (EI-MS, 70 eV) von 15

Verbindung Nr.	15
Empirische Formel	$Bi_2(O_2CCF_3)_4$
Molekulargewicht [g mol ⁻¹]	870.04
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/n$
Gitterkonstanten	a = 8.1574(4) Å
	b = 14.7885(9) Å
	c = 21.8239(13) Å
	$\beta = 98.410(7)^{\circ}$
Volumen der Elementarzelle [Å ³]	2604.4(3)
Zahl der Formeleinheiten	6
Berechnete Dichte [g cm ⁻³]	3.328
Kristallform, Kristallfarbe	prismatisch 0.63x0.21x0.21 mm, gelborange
F(000)	2316
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	120(2)
Gemessene Reflexe	24784
Messbereich [°]	4.68 < 2θ < 56.78
Unabhängige Reflexe	6102
Beobachtete Reflexe	5089
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	6102
Parameter	369
Restraints	12
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0390
$wR_2(all data)^3$	0.1043
Wichtungsschema ⁴	0.0656
GOOF (GOOF _{restrain}) ⁵	1.047(1.046)
max. shift/su	0.001
$\Delta \rho_{max} / \Delta \rho_{min.} [e \text{\AA}^{-3}]$	1.857/-2.230

$$\label{eq:R1} \begin{split} &^{2}R_{1} = \Sigma || \; F_{o} \; || \; F_{c} \; || \; \Sigma |F_{o} \; | \\ &^{3}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [(wF_{o}^{2})^{2}]]^{1/2} \\ &^{4}w = 1 / [s^{2}(F_{o}^{2}) + (aP)^{2} + bP] \; mit \; P = (F_{o}^{2} + 2 \; F_{c}^{2}) / 3 \\ &^{5}GOOF = S = \{ \Sigma \; [w(F_{o}^{2} - F_{c}^{2})^{2}] / (n-p) \}^{1/2} \end{split}$$

Bi1-O1	2.368(6)	Bi2···Bi3	2.9265(4)
Bi1-O3	2.376(6)	Bi3-O6	2.336(7)
Bi1-O4a	2.389(6)	Bi3-O12	2.337(7)
Bi1-O2a	2.406(5)	Bi3-08	2.399(6)
Bi1…Bi1a	2.9382(5)	Bi3-O10	2.424(6)
Bi2-O5	2.356(6)	Bi1-F103	3.076(4)
Bi2-O11	2.371(7)	Bi1-09	3.157(6)
Bi2-O7	2.376(7)	Bi2-O2a	3.183(5)
Bi2-09	2.387(6)	Bi2-F21a	3.227(9)
Bi1…Bi2	4.5309(4)		

Tab. 47: ausgewählte Bindungslängen [Å] in 15

Tab. 48: ausgewählte Bindungswinkel [°] in 15

O1-Bi1-O3	88.8(2)	O5-Bi2-Bi3	80.62(15)
O1-Bi1-O4a	89.8(2)	O11-Bi2-Bi3	79.99(16)
O3-Bi1-O4a	163.1(2)	O7-Bi2-Bi3	81.59(14)
O1-Bi1-O2a	163.6(2)	O9-Bi2-Bi3	83.88(14)
O3-Bi1-O2a	90.2(2)	O6-Bi3-O12	85.4(3)
O4a-Bi1-O2a	86.5(2)	O6-Bi3-O8	82.8(2)
O1-Bi1-Bi1a	81.65(14)	O12-Bi3-O8	161.2(2)
O3-Bi1-Bi1a	82.50(15)	O6-Bi3-O10	161.5(2)
O4a-Bi1-Bi1a	80.67(15)	O12-Bi3-O10	88.3(3)
O2a-Bi1-Bi1a	81.99(14)	O8-Bi3-O10	98.4(2)
O5-Bi2-O11	92.1(2)	O6-Bi3-Bi2	82.32(15)
O5-Bi2-O7	84.8(2)	O12-Bi3-Bi2	82.92(16)
O11-Bi2-O7	161.6(2)	O8-Bi3-Bi2	81.00(15)
O5-Bi2-O9	164.5(2)	O10-Bi3-Bi2	79.62(15)
O11-Bi2-O9	85.0(2)	Bi1a-Bi1-Bi2	116.804(13)
07-Bi2-O9	93.1(2)	Bi3-Bi2-Bi1	117.980(11)

Atom	x/a	y/b	z/c	U_{eq}^{-1}
Bi1	0.11695(4)	0.075970(16)	0.009725(12)	0.02309(10)
Bi2	0.13991(4)	0.261845(17)	-0.153841(12)	0.02477(10)
Bi3	-0.06583(4)	0.424796(18)	-0.163871(13)	0.02789(10)
O1	0.0736(9)	0.0553(4)	0.1138(3)	0.0349(14)
O2	-0.1021(8)	-0.0636(4)	0.1009(2)	0.0288(12)
03	0.3154(9)	-0.0427(4)	0.0234(3)	0.0344(13)
O4	0.1368(9)	-0.1587(4)	0.0104(3)	0.0353(14)
05	0.1173(9)	0.2866(4)	-0.2614(3)	0.0337(13)
O6	-0.0077(10)	0.4227(4)	-0.2656(3)	0.0396(16)
07	-0.1234(8)	0.1915(4)	-0.1782(3)	0.0341(13)
08	-0.2731(9)	0.3165(4)	-0.2040(3)	0.0355(14)
09	0.1181(8)	0.2728(4)	-0.0462(3)	0.0311(13)
O10	-0.0547(10)	0.3913(5)	-0.0546(3)	0.0416(16)
011	0.3483(9)	0.3739(4)	-0.1325(3)	0.0395(15)
012	0.1902(10)	0.4972(4)	-0.1399(4)	0.0430(16)
C1	-0.0186(11)	-0.0031(5)	0.1313(3)	0.0301(17)
C2	-0.0307(4)	0.0019(2)	0.20262(14)	0.0328(18)
C3	0.2760(10)	-0.1231(5)	0.0236(3)	0.0280(17)
C4	0.4210(5)	-0.1934(3)	0.04176(17)	0.0331(18)
C5	0.0574(11)	0.3562(6)	-0.2878(3)	0.0331(18)
C6	0.0597(6)	0.3627(3)	-0.35967(18)	0.050(3)
C7	-0.2506(11)	0.2348(5)	-0.1999(3)	0.0308(17)
C8	-0.4020(5)	0.1731(3)	-0.2252(2)	0.044(2)
С9	0.0330(12)	0.3325(5)	-0.0254(3)	0.0321(18)
C10	0.0350(5)	0.3359(2)	0.04680(15)	0.0341(19)
C11	0.3235(11)	0.4557(6)	-0.1280(4)	0.0340(19)
C12	0.4790(6)	0.5168(3)	-0.1059(2)	0.038(2)
F21	-0.1237(6)	-0.0645(3)	0.21762(13)	0.0402(13)
F22	-0.0964(6)	0.0794(3)	0.21514(13)	0.0426(14)
F23	0.1181(6)	-0.0051(3)	0.23447(13)	0.0370(12)

Tab. 49: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 15

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i}a_{j}a_{i}a_{j}$

Atom	x/a	y/b	z/c	U _{eq} ¹
F41	0.3870(6)	-0.2439(3)	0.0866(2)	0.0581(18)
F42	0.5580(6)	-0.1505(3)	0.0591(3)	0.074(2)
F43	0.4366(7)	-0.2434(4)	-0.0057(2)	0.073(3)
F61	0.0820(10)	0.4464(4)	-0.37483(17)	0.079(3)
F62	-0.0809(8)	0.3338(5)	-0.38906(16)	0.083(3)
F63	0.1798(8)	0.3132(4)	-0.37454(16)	0.0584(18)
F81	-0.4104(6)	0.1056(3)	-0.1874(3)	0.070(2)
F82	-0.3832(6)	0.1421(4)	-0.2797(3)	0.072(2)
F83	-0.5382(6)	0.2203(3)	-0.2296(3)	0.0587(18)
F101	-0.1168(7)	0.3425(4)	0.05894(14)	0.0556(17)
F102	0.1208(7)	0.4060(3)	0.06961(14)	0.0603(19)
F103	0.1028(7)	0.2620(3)	0.07184(14)	0.0462(15)
F121	0.4551(7)	0.5611(5)	-0.0586(3)	0.074(2)
F122	0.5011(9)	0.5708(6)	-0.1487(3)	0.124(5)
F123	0.6055(7)	0.4675(5)	-0.0928(5)	0.126(5)

Fortsetzung

Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome von 15

3.6 Das Reaktionssystem Bi₂(O₂CCF₃)₄/para-Xylol

Bismut(II)-trifluoracetat (15) ist in *para*-Xylol gut löslich. Aus der resultierenden roten Lösung, die merklich lichtempfindlich ist, kristallisiert beim Einengen oder Abkühlen ein roter, arenhaltiger Feststoff, der im weiteren Verlauf der Untersuchungen als Bis(Aren)-Komplex des Bismut(II)-trifluoracetats charakterisiert wurde. Wird das gesamte Lösungsmittel entfernt, erhält man ein orangefarbenes Feststoffgemisch, dass seine Farbe im Laufe von wenigen Tagen nach und nach über grünschwarz nach schwarz ändert. Auch wenn letztlich durch Disproportionierung dabei Bismut und Bismut(III)-trifluoracetat entstehen, könnte die zwischenzeitlich auftretende grüne Farbe als Indiz für ein Bismut(I)-Intermediat gedeutet werden^[116b-d]. Nähere Untersuchungen des Befundes müssen aber weiteren Arbeiten vorbehalten bleiben. Hinweise für die Existenz eines 1:1-Adduktes aus den Komponenten wurden auch bei Verwendung eines *p*-Xylol-Unterschusses nicht erhalten.

¹³C-NMR-Untersuchungen einer Lösung von **15** in *p*-Xylol wurden in einem abgeschmolzenen NMR-Rohr durchgeführt. Als Lockmittel diente C_6D_6 in geringer Menge. Die ¹³C-Signale des *p*-Xylols zeigen - wie bei dem großen Überschuss nicht anders zu erwarten - keine merkliche Verschiebung bei Zugabe der Bismut-Verbindung.

Das Signal der Carboxylatkohlenstoffatome im ¹³C-{¹H}-NMR-Spektrum ist bei $\delta_{\rm C} = 172.4$ ppm zu beobachten, ist also im Vergleich zu dem entsprechenden Signal im ¹³C-NMR-Spektrum des Bismut(III)-trifluoracetats um 7 ppm zu tieferem Feld verschoben, was auf eine stärkere Entschirmung der Carboxylatkohlenstoffatome schließen lässt. Die ²J_{C, F}-Kopplungskonstante konnte nicht bestimmt werden; offensichtlich ist sie zu klein, um aufgelöst werden zu können. Die Kohlenstoffatome der CF₃-Gruppen treten bei $\delta_{\rm C} = 115.75$ ppm in Resonanz, das Signal ist also zum entsprechenden Signal im ¹³C-NMR-Spektrum des dreiwertigen Trifluoracetats um 6.5 ppm zu höherem Feld verschoben. Die Kopplungskonstante ¹J_{C,F} beträgt hier 288.2 Hz, ist also um 1.2 Hz größer als die entsprechende Kopplungskonstante bei den CF₃-Gruppen des Bismut(III)-trifluoracetats.

Wie NMR-spektroskopisch belegt werden konnte, erwies sich 15 in p-Xylol über mehrere Tage bei 140 °C als thermolysestabil.

3.6.1 π -Arenkomplexe des Bismut(II)-trifluoracetats – Eigenschaften und Kristallstruktur von [Tetrakis(μ -trifluoracetato- κ O, κ O')bis(η^6 -para–Xylol) dibismut(Bi-Bi)] (16)

Die bei der Besprechung des Reaktionssystems erwähnten roten Kristalle besitzen die elementaranalytisch bestimmte Zusammensetzung Bi $(O_2CCF_3)_2 \cdot 2 C_8H_{10}$. Die Vermutung, dass es sich dabei um ein Bis(aren)-Addukt des (dimeren) Bismut(II)-trifluoracetats handeln könnte, wurde durch kristallstrukturanalytische Untersuchungen bestätigt. Aus *p*-Xylol-Lösung kristallisiert die Verbindung in Form zinnoberroter Tafeln in der triklinen Raumgruppe $P\bar{1}$ mit a = 9.1230(18) Å, b = 9.7420(19) Å, c = 10.079(2) Å, $\alpha = 80.45(3)$ °, $\beta = 76.18(3)$ °, $\gamma = 78.83(3)$ ° und Z = 1.

Im Gegensatz zu dem in^[10] beschriebenen dunkelroten Hexamethylbenzol-Addukt von **15** und dem isotypen Pentametylbenzol-Addukt, die Schaufelradmoleküle und Arenmoleküle jeweils im Verhältnis 1:1 enthalten, liegt bei **16** ein 1:2-Verhältnis vor, wobei jeweils ein Arenmolekül an ein Bismutatom gebunden ist (Abb. 58).

Abbildung 58: Molekülstruktur des Bis(*p*-xylol)-Komplexes im Festkörper von **16** (Symmetrie-Codes: a = -x, -y, 1-z)

Das Bismutatom in der asymmetrischen Einheit der Festkörperstruktur von **16** ist leicht verzerrt tetragonal bipyramidal koordiniert (Abb. 59); die Bi-O-Abstände bewegen sich im Bereich von 2.369(7) bis 2.402(8) Å.

Abbildung 59: Koordinationsfigur des Bismutatoms in der Festkörperstruktur von **16** (Symmetrie-Code: a = -x, -y, 1-z)

Wie schon bei **15** sind die äquatorialen Bi-O-Bindungen infolge der unzureichenden Spannweite der Carboxylatliganden gegen die Bismut-Hantel geneigt. Weiterhin lässt die Schiefe der Bismut-Aren-Koordination eine signifikante lone-pair-Aktivität am Bismut erkennen (Abb. 60).

Abbildung 60: Zur Schiefe der Bismut-Aren-Koordination in 16

Die Koordination weicht von der η^6 -Koordination ab und ist hier eher als η^4 -artig zu beschreiben. Als quantitatives Maß für die Asymmetrie der π -Wechselwirkung dient die "ring slippage" (Ringverschiebung). Man versteht darunter den Abstand zwischen dem Schwerpunkt der Ringatome (COR) und dem Aufpunkt des Lots, gefällt vom Bismutatom auf die Ringebene. Sie beträgt in **16** 0.66 Å und liegt damit im typischen Bereich für Bismut-Aren-Koordinationen. Die Längsachsen der Arene sind gestaffelt zu den Trifluoracetat-gruppen des Schaufelradmoleküls angeordnet (Abb. 60).

Der Bi-Bi-Abstand in **16** beträgt 2.9472(10) Å, und ist damit etwa gleich lang wie im HMB-Addukt **14** (2.9466(11) Å, Abb. 61). Der Bi-Aren-COR-Abstand in **16** ist mit 3.099(10) Å im Vergleich zum Hexamethylbenzol-Addukt **14** (3.053(2) Å) trotz der nur einseitigen Koordination des Aromaten deutlich größer, was eine direkte Folge der erheblich geringeren Basizität des *p*-Xylols ist.

Bezieht man auch das solvatfreie Carboxylat in die Betrachtungen ein, stellt man fest, dass bei dem mittleren Schaufelradmolekül der "Dreier-Baugruppen" von 15 trotz gänzlich unterschiedlicher Art der Wechselwirkung eine ähnliche koordinative Beanspruchung durch nichtkovalente Bindungen vorliegt, wie bei 14 und 16.

Bei der IR-spektroskopischen Untersuchung von 16 ergaben sich ähnliche Bandenlagen für die $Bi_2(O_2CCF_3)_4$ -Baueinheiten wie bei 14 und 15. Sie sind im experimentellen Teil aufgelistet.

Abbildung 61: Ausschnitt des supramolekularen Kettenverbandes in 14 zum Vergleich

Die diskreten Moleküle von **16** sind im Kristall zu Schichten parallel zur b,c-Ebene geordnet, wobei der Aufbau dieser Schichten im Wesentlichen durch van der Waals-Kontakte zwischen CF₃-Gruppen und Aromaten bestimmt ist (Abb. 62).

Abbildung 62: Zur Anordnung der Bausteine im Molekülgitter von 16, Blickrichtung [1 0 0]

Verbindung Nr.	16
Empirische Formel	$Bi_2(O_2CCF_3)_4 \cdot 2 C_8H_{10}$
Molekulargewicht [g mol ⁻¹]	1082.36
Kristallsystem	triklin
Raumgruppe	$P\bar{1}$
Gitterkonstanten	a = 9.1230(18) Å
	b = 9.7420(19) Å
	c = 10.079(2) Å
	$\alpha = 80.45(3)^{\circ}$
	$\beta = 76.18(3)^{\circ}$
	$\gamma = 78.83(3)^{\circ}$
Volumen der Elementarzelle [Å ³]	846.6(3)
Zahl der Formeleinheiten	1
Berechnete Dichte [g cm ⁻³]	2.123
Kristallform, Kristallfarbe	tafelig 0.4x0.64x0.4 mm, zinnoberrot
F(000)	502
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _α (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	11907
Messbereich [°]	5.80 < 20 < 52.22
Unabhängige (beobachtete) Reflexe	3069 (2736)
Korrekturen	LP, Absorption
Verfeinerte Reflexe/Parameter	3069/188
Restraints	13
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0451
$wR_2(all data)^3$	0.1218
Wichtungsschema ⁴	0.0490 0.3489
GOOF (GOOF _{restrain}) ⁵	1.096/1.095
max. shift/su	0.000
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.775/-1.391

Tab. 50: Daten zum Kristall und zur Strukturbestimmung von 16

$$\label{eq:relation} \begin{split} & {}^2R_1 \!=\! \Sigma || \ F_o \, || \ F_c \ || \Sigma || \ F_o \, | \\ & {}^3wR_2 \!=\! [\Sigma [w(F_o{}^2 \!-\! F_c{}^2)^2] / \Sigma [(wF_o{}^2)^2]]^{1/2} \\ & {}^4w \!=\! 1 / [s^2(F_o{}^2) + (aP)^2 + bP] \ mit \ P = (F_o{}^2 \!+\! 2 \ F_c{}^2) / 3 \\ & {}^5GOOF \!=\! S \!=\! \{\Sigma \ [w(F_o{}^2 \!-\! F_c{}^2)^2] / (n\!-\!p)\}^{1/2} \end{split}$$

Bi1-O3	2.369(7)	Bi1-O2a	2.402(8)
Bi1-O4a	2.393(7)	Bi1…Bi1a	2.9472(10)
Bi1-O1	2.401(8)	Bi1-COR(C11-C16)	3.099(10)

Tab. 51: ausgewählte Bindungslängen [Å] in 16

Tab. 52: ausgewählte Bindungswinkel [°] in 16

O3-Bi1-O4a	162.7(3)
O3-Bi1-O1	90.5(3)
O4a-Bi1-O1	88.7(3)
O3-Bi1-O2a	85.1(3)
O4a-Bi1-O2a	90.5(3)
O1-Bi1-O2a	162.3(3)
O3-Bi1-Bi1a	82.85(19)
O4a-Bi1-Bi1a	79.96(19)
O1-Bi1-Bi1a	80.4(2)
O2a-Bi1-Bi1a	82.03(19)
Bila-Bil-COR(C5-C10)	169.26(2)

Tab. 53: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 16

Atom	x/a	y/b	z/c	U_{eq}^{1}
Bi1	-0.00478(3)	0.14321(3)	0.42413(3)	0.0617(2)
01	0.1721(10)	0.0131(9)	0.2536(9)	0.090(2)
02	0.1718(8)	-0.2036(8)	0.3633(8)	0.0833(19)
03	0.1955(8)	0.1503(8)	0.5340(9)	0.087(2)
04	0.2096(9)	-0.0700(9)	0.6426(10)	0.097(3)
C1	0.2044(9)	-0.1143(10)	0.2616(8)	0.067(2)
C2	0.3080(8)	-0.1754(7)	0.1326(7)	0.099(3)
C3	0.2498(11)	0.0488(13)	0.6100(11)	0.083(3)
C4	0.3735(7)	0.0764(8)	0.6816(8)	0.126(5)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{i}a_{j}$

Fortsetzung

F1	0.3965(10)	-0.0909(10)	0.0696(7)	0.169(5)
F2	0.2266(9)	-0.1938(14)	0.0549(9)	0.233(9)
F3	0.3848(14)	-0.2911(10)	0.1685(8)	0.218(8)
F4	0.4521(10)	-0.0413(11)	0.7191(11)	0.185(6)
F5	0.3079(9)	0.1393(12)	0.7873(11)	0.184(6)
F6	0.4619(10)	0.1538(12)	0.5970(10)	0.183(6)
C5	-0.1725(9)	0.4445(10)	0.2631(13)	0.137(7)
C6	-0.0787(9)	0.5034(8)	0.3204(10)	0.108(4)
Н6	-0.1215	0.5613	0.3891	0.130
C7	0.0792(9)	0.4759(9)	0.2749(10)	0.101(4)
H7	0.1420	0.5153	0.3132	0.121
C8	0.1433(10)	0.3894(10)	0.1722(10)	0.152(9)
С9	0.0494(17)	0.3305(11)	0.1150(9)	0.171(12)
H9	0.0923	0.2726	0.0462	0.206
C10	-0.1085(16)	0.3580(11)	0.1604(12)	0.171(12)
H10	-0.1712	0.3186	0.1221	0.206
C11	-0.3436(12)	0.468(2)	0.317(3)	0.28(2)
H111	-0.3720	0.5465	0.3696	0.422
H112	-0.3944	0.4876	0.2414	0.422
H113	-0.3732	0.3849	0.3752	0.422
C12	0.3157(14)	0.356(2)	0.127(2)	0.230(17)
H121	0.3569	0.2874	0.1944	0.345
H122	0.3418	0.3199	0.0399	0.345
H123	0.3586	0.4409	0.1174	0.345

3.7 Das Reaktionssystem Sb₂O₃/TFAA – Bisheriger Kenntnisstand

Die in der Einleitung erwähnten Untersuchungen von Bullivant et al.^[7] zeigen einen relativ einfachen Zugang zu Antimon(III)-trifluoracetat auf. Durch Sublimation des Rohproduktes der Umsetzung von Sb₂O₃ mit TFAA gemäß

 $Sb_2O_3 + 3 (CF_3CO)_2O \longrightarrow 2 Sb(O_2CCF_3)_3$

erhielten sie kleine farblose Würfel von kubischem Sb $(O_2CCF_3)_3$. Der von ihnen untersuchte Kristall der bei ca. 116 °C schmelzenden Substanz kristallisierte in der Raumgruppe $P4_332$.

3.7.1 Eigene Untersuchungen des Reaktionssystems Sb₂O₃/TFAA

Eine genauere Betrachtung der von Bullivant et al. berichteten Reaktionsbedingungen, insbesondere der Reaktionsdauer von zwei Tagen bei einer Reaktionstemperatur von 120 °C, wirft einige Fragen auf und fordert zum Vergleich mit dem Reaktionssystem Bi₂O₃/TFAA heraus. Im Prinzip sollten bei der oben vorgestellten Bildungsreaktion in Analogie zur Reaktion des Bismutoxids Zwischenstufen wie SbO(O₂CCF₃), Sb₂O(O₂CCF₃)₄ und Sb₃O(O₂CCF₃)₇ zu erwarten sein. Das Produkt wird jedoch offenbar vergleichsweise schnell gebildet und besitzt eine verglichen mit den oxozentrierten basischen Spezies thermodynamisch gesehen recht große Stabilität. Das zweikernige oxozentrierte basische Trifluoracetat Sb₂O(O₂CCF₃)₄ lässt sich indirekt charakterisieren (siehe 3.12). Die Existenz einer dreikernigen oxozentrierten Spezies ist wahrscheinlich, sie konnte aber bislang weder direkt noch indirekt identifiziert werden.

Die Umsetzung von Sb₂O₃ mit einem Überschuss an siedendem TFAA führt nach etwa sechs Tagen zu einem weißen hygroskopischen Pulver. Aus der Mutterlauge bilden sich nach ein bis zwei Tagen bei 5 °C farblose dünne, systematisch verzwillingte Nadeln. Das weiße Pulver besitzt einen Schmelzpunkt von ca. 103 °C. Weitere thermische Effekte konnten nicht beobachtet werden. Dies deutet darauf hin, dass eine reine Verbindung vorliegt. Eine durchgeführte Elementaranalyse bestätigte das Vorliegen von Antimon(III)-trifluoracetat, Sb(O₂CCF₃)₃. Die physikalischen Daten stehen jedoch im Widerspruch zur Literatur.

3.7.1.1 Festkörperstruktur und Eigenschaften der monoklinen Modifikation des Antimon(III)-trifluoracetats (3b)

Durch Kristallisation des wie zuvor beschrieben erhaltenen Feststoffs aus TFAA oder alternativ durch langsame Sublimation des Feststoffs bei etwa 80 °C wurden jeweils nadelige, notorisch verzwillingte Kristalle mit identischen Gitterkonstanten gewonnen.

Durch genaue Betrachtung der zum Gesamtbeugungsbild beitragenden zwei Individuen mittels des Programms "Twin" der Fa. Stoe konnte festgestellt werden, dass etwa 25% der Reflexe der Zwillinge teilweise oder ganz überlappen. Die zum Beugungsbild der einzelnen Individuen gehörenden Reflexe konnten zugeordnet und getrennt entsprechenden Reflexdateien zugewiesen werden, welche eine Vollständigkeit der Daten von 75% aufwiesen. Eine dieser Dateien wurde für die Verfeinerung verwendet.

Die Substanz kristallisiert in der monoklinen centrosymmetrischen Raumgruppe C2/c mit den Gitterkonstanten a = 20.462(2) Å, b = 13.4373(11) Å, c = 10.8504(11) Å, $\beta = 117.964(12)$ ° und Z = 8. Die Strukturanalyse zeigt, dass die monokline Modifikation aus supramolekularen Doppelketten (Abb. 63) besteht, die in einer verzerrt hexagonalen Stabpackung (Abb. 64) angeordnet sind. Kettenaufbauende Symmetrieelemente sind die Schraubenachse entlang [0 1 0] und die Gleitspiegelebene mit Gleitkomponente entlang der Kettenfortpflanzungsrichtung [0 0 1]. Die Frage, ob ein Polymer aus Dimeren oder ein Dimer aus zwei Polymeren vorliegt, kann nur an Hand einer näheren Betrachtung der Festkörperstruktur geklärt werden.

Abbildung 63: Ausschnitt aus der Doppelkette der monoklinen Modifikation des Antimon(III)-trifluoracetats (**3b**) (Symmetrie-Codes: a = 1-x, y, 0.5-z; b = x, y, 0.5+z; c = 1-x, -y, 1-z; d = x, -y, -0.5+z, e = 1-x, -y, -z)

Abbildung 64: Verzerrt hexagonale Stabpackung der Kettenpolymere in **3b**; Blickrichtung [0 0 1]

Bei entsprechender Wahl der Atome enthält die asymmetrische Einheit der Kristallstruktur ein Antimonatom mit einem chelatisierend koordinierten und zwei zu unterschiedlichen Antimonnachbarn verbrückend koordinierten Trifluoracetatliganden. Die Schweratome der ,Einzelketten' sind durch einen syn-anti- μ_2 -verbrückenden Acetatliganden, welcher der Kettenaufbaurichtung folgend abwechselnd vor und hinter der Papierebene angeordnet ist, verknüpft (Abb. 63). Die Einzelketten sind durch je einen dreizähnig verbrückenden Trifluoracetatliganden mit dem Nachbarfragment verbunden. Der dritte Trifluoracetatligand nimmt nicht an der Assoziation der Bausteine teil, sondern ist chelatisierend an das Antimonzentrum gebunden.

Abbildung 65: Koordinationsfigur des Antimonatoms in **3b** (Symmetrie-Codes: a = 1-x, y, 0.5-z; b = x, -y, 0.5+z)

Die Koordinationszahl des Antimonatoms kann mit 3 (primär) +3 (sekundär, intramolekular) +2 (sekundär, intermolekular) angegeben werden (Abb. 65). Die Sb-O-Abstände bewegen sich im Bereich von 2.028(5) Å bis 3.092(6) Å. Ein signifikanter lone-pair-Einfluss ist erkennbar an einer deutlichen Koordinationslücke, die sich in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befindet. Damit ergibt sich in primärer Koordinationssphäre eine pyramidale bzw. ψ -tetraedrische Umgebung des Sb^{III}-Zentrums. Die zwei sekundären intermolekularen Sb-O-Kontakte sind mit empirischen Bindungsordnungen^[142] von 0.051 bzw. 0.049 recht schwach, aber wichtig für die supramolekulare Assoziation. Sie sind ein Merkmal für den reduzierten Vernetzungsgrad des polymeren Verbandes: Im Gegensatz zu der kubischen (Kap. 3.7.1.2 bzw.^[7]) Modifikation dieser Verbindung sind hier nämlich nur zwei intermolekulare sekundäre Wechselwirkungen gegeben.

An Hand der nichtbindenden Sb-Sb-Abstände benachbarter Schweratome (Sb-Sb1a: 5.0281(12) Å, Sb1-Sb1b: 5.4885(6) Å) allein kann man die eingangs gestellte Frage, ob ein Polymer aus Dimeren oder ein Dimer aus Polymeren vorliegt, nicht beantworten. Der Trifluoracetatligand, welcher zu benachbarten Antimonzentren der einzelnen Ketten koordiniert (Sb1-Sb1b), besitzt Sb-O-Abstände von 2.080(5) bzw. 2.596(5) Å, während die relevanten Sb-O-Abstände zwischen den einzelnen Ketten 2.028(5) bzw. 2.901(5) Å betragen. Die Vernetzung ist also innerhalb der einzelnen Ketten stärker; deshalb ist **3b** als Dimer von Kettenpolymeren aufzufassen.

Die korrekte Beschreibung der vorliegenden Modifikation erfolgt nach dem sogenannten Pearson-Code^[147], im vorliegenden Fall mS176, wobei m für das monokline Kristallsystem und S für die C-zentrierte Zelle stehen. Die Zahl 176 repräsentiert die Anzahl der Atome in der Elementarzelle.

Der Vollständigkeit halber muss erwähnt werden, dass zwei der drei Trifluoracetatgruppen der asymmetrischen Einheit eine Rotationsfehlordnung der CF₃-Gruppen aufweisen und mit Splitlagen für die Fluoratome verfeinert wurden.

Der Schmelzpunkt des grobkristallinen Materials liegt bei 103.2 °C^[129] und ist damit identisch mit dem experimentell bestimmten Schmelzpunkt des Rohmaterials der in Kap. 3.7.1 beschriebenen Synthese. Weitere thermische Effekte sind nicht zu beobachten. Auch Ramanspektroskopische Untersuchungen der Kristalle im Vergleich zu dem bei der Synthese anfallenden Rohprodukt ergeben identische Resultate, welche in Kap. 3.8. aufgeführt sind.

Verbindung Nr.	3b (RT)
Empirische Formel	$^{1}_{\infty}$ [Sb(O ₂ CCF ₃) ₃]
Molekulargewicht [g mol ⁻¹]	460.81
Kristallsystem	monoklin
Raumgruppe	C2/c
Gitterkonstanten	a = 20.462(2) Å
	<i>b</i> = 13.4373(11) Å
	c = 10.8504(11) Å
	$\beta = 117.964(12)^{\circ}$
Volumen der Elementarzelle [Å ³]	2635.0(5)
Zahl der Formeleinheiten	8
Berechnete Dichte [g cm ⁻³]	2.323
Kristallform, Kristallfarbe	nadelig 0.3x0.2x0.7 mm, farblos
F(000)	1728
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	11150
Messbereich [°]	$4.84 < 2\theta < 54.20$
Unabhängige Reflexe	2115
Beobachtete Reflexe	1537
Korrekturen	LP, Absorption
Verfeinerte Reflexe	2115
Parameter	215
Restraints	3
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0501
$wR_2(all data)^3$	0.1437
Wichtungsschema ⁴	0.1010
GOOF (GOOF _{restrain}) ⁵	0.995 (0.996)
max. shift/su	0.000
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	0.757/-0.610

Tab. 54: Daten zum Kristall und zur Strukturbestimmung von 3b

$$\label{eq:relation} \begin{split} ^2 &R_1 = \Sigma || \ F_o \, || \ F_c \ || \ \Sigma || \ F_o \, | \\ ^3 &w R_2 = [\Sigma [w (F_o^2 - F_c^{-2})^2] / \Sigma [(w F_o^2)^2]]^{1/2} \\ ^4 &w = 1 / [s^2 (F_o^2) + (a P)^2 + b P] \ mir \ P = (F_o^2 + 2 \ F_c^{-2}) / 3 \\ ^5 &GOOF = S = \{ \Sigma \ [w (F_o^2 - F_c^{-2})^2] / (n-p) \}^{1/2} \end{split}$$

Sb1-O1	2.028(5)
Sb1-O3	2.040(5)
Sb1-O5	2.080(5)
Sb1-O2a	2.901(5)
Sb1-O6b	2.596(5)
Sb1-O4	2.672(6)
Sb1-O6	3.074(5)
Sb1-O2	3.092(6)
Sb1…Sb1b	5.4885(6)
Sb1…Sb1a	5.0281(12)

Tab. 55: ausgewählte Bindungslängen [Å] in 3b

Tab. 56: ausgewählte Bindungswinkel [°] in 3b

O1-Sb1-O3	82.9(2)	O3-Sb1-O6	109.11(19)
O1-Sb1-O5	83.0(2)	O5-Sb1-O6	46.27(17)
O3-Sb1-O5	85.0(2)	O6b-Sb1-O6	160.05(6)
O1-Sb1-O6b	75.43(18)	O4-Sb1-O6	65.6(2)
O3-Sb1-O6b	75.0(2)	O2a-Sb1-O6	64.02(16)
O5-Sb1-O6b	152.04(19)	O1-Sb1-O2	45.99(18)
O1-Sb1-O4	132.5(2)	O3-Sb1-O2	121.25(18)
O3-Sb1-O4	53.4(2)	O5-Sb1-O2	109.8(2)
O5-Sb1-O4	76.4(2)	O6b-Sb1-O2	66.79(17)
O6b-Sb1-O4	105.4(2)	O4-Sb1-O2	172.1(2)
O1-Sb1-O2a	83.3(2)	O2a-Sb1-O2	58.3(2)
O3-Sb1-O2a	156.2(2)	O6-Sb1-O2	122.10(15)
O5-Sb1-O2a	74.17(19)	Sb1a-Sb1-Sb1b	84.804(17)
O6b-Sb1-O2a	119.78(17)	Sb1a-Sb1-Sb1d	95.196(17)
O4-Sb1-O2a	129.2(2)	Sb1b-Sb1-Sb1d	162.583(17)
O1-Sb1-O6	124.08(18)		

Atom	x/a	y/b	z/c	U _{eq} ¹
Sb1	0.36148(2)	0.03092(3)	0.10628(5)	0.0578(3)
01	0.3863(3)	0.1443(4)	0.2444(5)	0.0666(13)
O2	0.4989(3)	0.0851(5)	0.3837(6)	0.0833(17)
03	0.2569(3)	0.0537(4)	0.0789(6)	0.0706(14)
O4	0.2353(4)	-0.0270(5)	-0.1118(8)	0.094(2)
05	0.3373(3)	0.1464(4)	-0.0363(5)	0.0646(13)
06	0.3604(3)	0.0493(4)	-0.1771(5)	0.0665(13)
C1	0.4490(4)	0.1433(5)	0.3562(7)	0.0637(17)
C2	0.4541(3)	0.2225(5)	0.4643(6)	0.095(3)
C3	0.2128(4)	0.0160(7)	-0.0410(11)	0.076(2)
C4	0.1299(3)	0.0280(6)	-0.0798(8)	0.109(4)
C5	0.3386(4)	0.1262(5)	-0.1511(8)	0.0609(18)
C6	0.3071(4)	0.2120(4)	-0.2592(6)	0.083(3)
F1	0.4011(5)	0.2116(8)	0.4903(12)	0.108(5)
F2	0.4516(10)	0.3075(5)	0.4158(11)	0.159(11)
F3	0.5136(5)	0.2120(9)	0.5740(10)	0.157(11)
F11	0.5097(7)	0.2758(10)	0.4964(15)	0.179(10)
F21	0.4593(8)	0.1800(5)	0.5710(9)	0.27(2)
F31	0.3973(7)	0.2754(8)	0.4127(8)	0.24(2)
F4	0.1111(3)	0.1169(7)	-0.1097(12)	0.202(5)
F5	0.1204(3)	0.0026(8)	0.0216(11)	0.191(5)
F6	0.0914(3)	-0.0258(9)	-0.1824(11)	0.264(10)
F7	0.3218(9)	0.1957(7)	-0.3581(10)	0.110(6)
F8	0.3361(8)	0.2932(5)	-0.2010(7)	0.127(7)
F9	0.2380(5)	0.2168(10)	-0.3063(15)	0.168(11)
F71	0.2754(9)	0.2748(8)	-0.2188(12)	0.195(15)
F81	0.2611(8)	0.1772(5)	-0.3759(9)	0.192(13)
F91	0.3592(5)	0.2537(8)	-0.2706(13)	0.25(2)

Tab. 57: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 3b

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{i}a_{j}$

3.7.1.2 Die kubische Modifikation des Antimon(III)-trifluoracetats (3a)

Durch langsame Sublimation des nach 3.7.1 synthetisierten Rohproduktes bei etwa 95 °C sind isometrische Kristalle der kubischen Modifikation des Antimon(III)-trifluoracetats zugänglich.

Diese Struktur ist bereits seit über 20 Jahren bekannt; eine selbst durchgeführte Neubestimmung ergab nur geringfügige Abweichungen von den in [7] publizierten Daten. Zutreffend für den untersuchten Kristall war die chirale kubische Raumgruppe $P4_332$, die Gitterkonstante betrug a = 13.854(2) Å bei Z = 8.

Zu Vergleichszwecken soll die Struktur der kubischen Modifikation noch einmal kurz erläutert werden: Das Antimonatom liegt auf einer dreizähligen Achse, um welche die in primärer Koordination einzähnigen Trifluoracetatliganden propellerförmig angeordnet sind (Abb. 2, Einleitung). Die resultierende trigonal-pyramidale Koordination wird ergänzt durch sekundäre Antimon-Sauerstoffwechselwirkungen, so dass die gesamte Koordination des Antimonatoms mit 3 (primär) +3 (sekundär, intramolekular) +3 (sekundär, intermolekular) zu beschreiben ist (Abb. 66). Der lone-pair-Einfluss ist wiederum erkennbar an einer deutlichen Koordinationslücke, die sich in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befindet. Die quasimolekularen Sb(O_2CCF_3)₃-Einheiten sind über die sekundären, intermolekularen Sb-O-Wechselwirkungen zu einem dreidimensional unendlichen Verband verknüpft, wobei jede Trifluoracetatgruppe an einer Verknüpfung zu einem Nachbarmolekül beteiligt ist (Abb. 66 und 67). Die Abstände zwischen benachbarten Antimonatomen betragen 5.1338(7) Å.

Als Bezeichnung dieser Modifikation soll im Sinne der Pearson-Symbolik cP176 eingeführt werden. C steht dabei für das kubische System und P für das primitive Gitter, während die Zahl 176 die Zahl der Atome in der Elementarzelle wiedergibt.

Der Schmelzpunkt der Verbindung ist in der Literatur mit 114-117 °C angegeben^[7]; eine Neubestimmung ergab ca. 116 °C. In 3.8 sind schwingungsspektroskopische Daten für **3a** und Literaturdaten zu Vergleichszwecken aufgeführt.

Abbildung 66: Quasimolekulare Sb(O₂CCF₃)₃-Einheit in **3a** (Kugel-Stab-Modell) mit benachbarten Formeleinheiten (Drahtmodell; die CF₃-Gruppen der benachbarten Formeleinheiten sind der Übersichtlichkeit wegen weggelassen) (Symmetrie-Codes: a = y, z, x; b = z, x, y; c = 0.25+x, -0.25+z, 0.75-y; d = -0.25+y, 0.75-x, 0.25+z; e = 0.75-y, 0.25+x, -0.25+z)

Abbildung 67: Raumnetzverband im Festkörper von 3a

Verbindung Nr.	3a	
Empirische Formel	3 _∞ [Sb(O ₂ CCF ₃) ₃]	
Molekulargewicht [g mol ⁻¹]	460.81	
Kristallsystem	kubisch	
Raumgruppe	P 4 ₃ 32 (untersuchter Kristall)	
Gitterkonstanten	a = 13.854(2) Å	
Volumen der Elementarzelle [Å ³]	2659.0(7)	
Zahl der Formeleinheiten	8	
Berechnete Dichte [g cm ⁻³]	2.302	
Kristallform, Kristallfarbe	isometrisch 0.25x0.25x0.25 mm, farblos	
F(000)	1728	
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)	
Messtemperatur [K]	293(2)	
Gemessene Reflexe	21546	
Messbereich [°]	$6.58 < 2\theta < 50$	
Unabhängige Reflexe	739	
Beobachtete Reflexe	728	
Korrekturen	LP	
Verfeinerte Reflexe	739	
Parameter	68	
Restraints	0	
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0182	
$wR_2(all data)^3$	0.0470	
Wichtungsschema ⁴	0.328/0.6625	
GOOF (GOOF _{restrain}) ⁵	1.086 (1.086)	
Flack-Parameter	-0.01 (0.05)	
max. shift/su	0.001	
$\Delta \rho_{max} / \Delta \rho_{min.} [e Å^{-3}]$	0.204/-0.205	

Tab. 58: Daten zum Kristall und zur Strukturbestimmung von 3a

$$\begin{split} & \frac{{}^{2}R_{1}\!=\!\Sigma ||\;F_{o}\!|\!-\!|\;F_{c}\;|\!/\Sigma|F_{o}\;|}{{}^{3}wR_{2}\!=\![\Sigma[w(F_{o}^{2}\!-\!F_{c}^{-2})^{2}]\!/\Sigma[(wF_{o}^{-2})^{2}]]^{1/2}} \\ & ^{4}w=1/[s^{2}(F_{o}^{-2})+(aP)^{2}+bP]\;mit\;P=(F_{o}^{-2}+2\;F_{c}^{-2})/3 \\ & ^{5}GOOF=S=\{\Sigma\;[w(F_{o}^{-2}\!-\!F_{c}^{-2})^{2}]/(n\!-\!p)\}^{1/2} \end{split}$$

Sb1-O1	2.039(2)
Sb1-O2	2.867(3)
Sb1-O2c	3.047(3)
Sb1…Sb1c	5.1338(7)

Tab. 59: ausgewählte Bindungslängen [Å] in 3a

Tab. 60: ausgewählte Bindungswinkel [°] in 3a

O1-Sb1-O1a	84.68(10)
O1-Sb1-O2	49.96(8)
O1-Sb1-O2a	76.53(9)
O1-Sb1-O2b	131.71(9)
O1-Sb1-O2c	148.98(9)
O1-Sb1-O2d	108.57(8)
O1-Sb1-O2e	69.34(8)
O2-Sb1-O2a	118.77(2)
O2-Sb1-O2c	158.93(10)
O2-Sb1-O2d	59.46(8)
O2-Sb1-O2e	73.82(5)
O2c-Sb1-O2d	102.39(6)
Sb1d-Sb1-Sb1c	117.075(1)

Tab. 61: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 3a

Atom	x/a	y/b	z/c	U_{eq}^{1}
Sb1	0.430490(13)	0.430490(13)	0.430490(13)	0.04756(16)
O1	0.39847(16)	0.55945(17)	0.49381(17)	0.0604(5)
02	0.2844(2)	0.47811(17)	0.5691(2)	0.0764(7)
C1	0.3254(2)	0.5519(2)	0.5504(2)	0.0557(7)
C2	0.2925(3)	0.6482(3)	0.5922(3)	0.0763(10)
F1	0.2424(3)	0.69460(19)	0.5253(2)	0.1180(11)
F2	0.3640(3)	0.7034(2)	0.6178(3)	0.1258(11)
F3	0.2361(3)	0.6359(3)	0.6662(2)	0.1430(14)

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{j}a_{i}a_{j}$

3.8 Das Reaktionssystem Sb(O₂CCF₃)₃/para-Xylol

Die Untersuchungen am System $Bi(O_2CCF_3)_3/para-Xylol ergaben, dass dieses eine vielfältige Chemie und Koordinationschemie der Hydrolyse- bzw. Thermolyseprodukte besitzt. Untersuchungen am System <math>Sb(O_2CCF_3)_3/para-Xylol lassen eine ähnlich vielfältige Chemie erwarten.$

Für die Untersuchungen am Reaktionssystem wurde kubisches Sb(O₂CCF₃)₃ in *para*-Xylol aufgelöst. Nach vollständiger Auflösung des Feststoffs liegt eine farblose Lösung vor, aus der nach Einengen (ohne Erwärmen!) beim Lagern bei 5 °C sehr dünne farblose sechseckige Tafeln auskristallisieren.

3.8.1 Die trigonale Modifikation des Antimon(III)-trifluoracetats (3c)

Die gewonnenen dünnen sechseckigen Tafeln sind extrem luft- und feuchtigkeitsempfindlich. Trotzdem gelang es, eine Röntgenstrukturanalyse durchzuführen, die zeigt, dass eine in der trigonalen Raumgruppe $P\bar{3}$ kristallisierende Modifikation von Sb(O₂CCF₃)₃ (**3c**) vorliegt.

Verbindung Nr.	3c
Empirische Formel	2 _∞ [Sb(O ₂ CCF ₃) ₃]
Molekulargewicht [g mol ⁻¹]	460.81
Kristallsystem	trigonal
Raumgruppe	$P\overline{3}$
Gitterkonstanten	<i>a</i> = 8.9788(13) Å
	<i>c</i> = 8.8966(14) Å
Volumen der Elementarzelle [Å ³]	621.14(16)
Zahl der Formeleinheiten	2
Berechnete Dichte [g cm ⁻³]	2.464
Kristallform, Kristallfarbe	tafelig 0.41x0.26x0.2 mm, farblos
F(000)	432
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _α (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	8359
Messbereich [°]	$4.58 < 2\theta < 56.86$
Unabhängige Reflexe	1034
Beobachtete Reflexe	829
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	1034
Parameter	132
Restraints	56
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0655
$wR_2(all data)^3$	0.1890
Wichtungsschema ⁴	0.0905 4.5457
GOOF (GOOF _{restrain}) ⁵	1.094 (1.095)
max. shift/su	0.000
$\Delta \rho_{max} / \Delta \rho_{min.} [e Å^{-3}]$	1.351/-1.063

Tab. 62: Daten zum Kristall und zur Strukturbestimmung von 3c

$$\label{eq:relation} \begin{split} & {}^2R_1 \!=\! \Sigma [\!| \; F_o \left|\!| \; F_c \; \left|\!| \; \Sigma [\!| \; F_o \;\!| \right. \\ & {}^3wR_2 \!=\! [\Sigma [w(F_o{}^2 \!-\! F_c{}^2)^2] / \Sigma [(wF_o{}^2)^2]]^{1/2} \\ & {}^4w \!=\! 1 / [s^2(F_o{}^2) \!+\! (aP)^2 \!+\! bP] \; mit \; P \!=\! (F_o{}^2 \!+\! 2\; F_c{}^2) / 3 \\ & {}^5GOOF \!=\! S \!=\! \{\Sigma \; [w(F_o{}^2 \!-\! F_c{}^2)^2] / (n\!-\! p)\}^{1/2} \end{split}$$

Im Festkörper von 3c liegen supramolekulare Schichten vor, die sich entlang $[0 \ 0 \ 1]$ übereinander stapeln und durch hydrophobe zueinandergewandte CF₃-Gruppen abgegrenzt sind (Abb. 68 und 69).

Abbildung 68: Schichtenbildung der trigonalen Modifikation **3c**, Blickrichtung [0 0 1]; Oben: geordnete Struktur, unten: Fehlordnungsmodell

Abbildung 69: Stapelfolge der Schichten in 3c (geordnete Struktur)

Die Anordnung der Trifluoracetatmoleküle um das auf einer dreizähligen Achse gelegenen Antimonatoms ist eher krakenartig als - wie beim kubischen Polymorph - propellerartig. Alle Trifluoracetatliganden koordinieren dreizähnig verbrückend zu benachbarten Antimonatomen. Die Koordination des Antimonatoms ist mit 3 (primär) +3 (sekundär, intramolekular) +3 (sekundär, intermolekular) Sauerstoffatomen zu beschreiben, wobei die intramolekularen Wechselwirkungen stärker, die intermolekularen schwächer als beim kubischen Polymorph sind (Abb. 70). Der Einfluss des lone-pairs ist hier ebenfalls erkennbar an einer deutlichen Koordinationslücke, die sich in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befindet. Die primäre Umgebung des Antimonatoms ist wie in der kubischen Modifikation pyramidal, wobei das lone-pair an der Spitze dieser Pyramide lokalisiert ist. Die Verknüpfung zu den Nachbarfragmenten erfolgt über die sekundären Kontakte.

Abbildung 70: Zur Koordinationsfigur des Antimonatoms in trigonalem Antimon(III)-trifluoracetat (**3c**) (links: ohne, rechts mit Fehlordnung; Symmetrie-Codes: a = 1-x+y, 1-x, z; b = 1-y, x-y, z; c = 2-x, 1-y, -z; d = x-y, -1+x, -z; e = y, 1-x+y, -z)

Innerhalb der Schichten sind die Antimonatome dem Muster gewellter Sechsringe folgend angeordnet. Benachbarte Antimonatome sind 5.267(1) Å voneinander entfernt.

Genauere Betrachtungen der Struktur offenbaren eine Fehlordnung. Das unter Berücksichtigung der Fehlordnung entwickelte Strukturmodell beinhaltet eine Trifluoracetatgruppe mit nicht fehlgeordneter CF₃-Gruppe und eine zweite Trifluoracetatgruppe mit rotationsfehlgeordneten Fluoratompositionen der CF₃-Gruppe und im Vergleich zum ersten "Satz' von Atomen etwas abweichenden Koordinaten. Mit Ausnahme von O1, das nicht erkennbar von der Fehlordnung betroffen ist, ist jede Teillage halb besetzt, die Besetzungsfaktoren der Fluorpositionen des rotationsfehlgeordneten Trifluoracetats sind entsprechend nochmals halbiert.

Die Bezeichnung der Modifikation im Sinne der Pearson-Nomenklatur ist hP44, wobei h für das trigonal/hexagonale Kristallsystem, P für das einfach primitive Kristallgitter und 44 für die Anzahl der Atome in der Zelle stehen. **3c** besitzt einen Schmelzpunkt von etwa 110 °C.

Nachfolgend sind Raman-spektroskopische Daten für **3c** im Vergleich zu den beiden anderen Modifikationen **3a** und **3b** angegeben. Zu Vergleichszwecken stehen Banden gleicher Wellenzahl nebeneinander. Berichtete Daten von Bullivant et al.^[7] sind dem gegenüber gestellt.

3b	3a	3c	Berichtete Werte
		1905 (vw. hr. sh)	Tul Ja
1719 (w, vbr, mit sh)	1705 (s, sharp)	1707 (s)	1704 (m)
1663 (w, vbr, mit sh)			
1439 (vw sh)			
1400 (vw, sh)	1409 (m)	1409 (w)	1410 (m)
	1227 (vw, br)		
	1189 (vw, br)		
	1156 (vw, br)		1154 (vw, br)
		1076 (w, br, sh)	
871 (s-vs)	866 (vs)	866 (vs)	863 (s)
	734 (vw)		730 (w)
	626 (m)		
	620 (s)	621 (s)	616 (m)
539 (m, br, sh)	532 (s)	532 (s)	532 (m)
516 (w, sh)			524 (m)
424 (w, br)	423 (w)	425 (w)	419 (w)
313 (m-s, br, sh)	311 (vs, sharp)	312 (vs)	307 (s)
			280 (s)
	210 (m)	209 (w)	214 (m), 208 (m)
192 (m, br, sh)			
	179 (s, sh)	179 (m)	176 (m)
	163 (s)	160 (w, sh)	157 (m)
142 (s-vs)			
	106 (s)	115 (w)	

Tab. 63: Raman-spektroskopische Daten [cm⁻¹] für **3a**, **3b** und **3c** im Vergleich zu

Literaturdaten

Sb1-O1	2.026(7)
Sb1-O21c	2.67(3)
Sb1-O2c	2.93(5)
Sb1-O2	2.99(5)
Sb1-O21	3.24(3)
Sb1…Sb1c	5.267(1)

Tab. 64: ausgewählte Bindungslängen [Å] in 3c

Tab. 65: ausgewählte Bindungswinkel [°] in 3c

01 Sh1 $01a$	on (())	01 Sh1 02	156 1(11)
01-501-01a	82.0(5)	01-501-028	130.1(11)
O1-Sb1-O21	43.9(6)	O2-Sb1-O2a	119.89(13)
O1-Sb1-O21a	105.8(5)	O2-Sb1-O2c	54.3(19)
O1-Sb1-O21b	121.9(6)	O2-Sb1-O2d	67.2(18)
O1-Sb1-O21c	83.0(7)	O2-Sb1-O2e	160.4(8)
O1-Sb1-O21d	77.6(5)	O2c-Sb1-O2d	112.3(10)
O1-Sb1-O21e	156.8(6)	O21-Sb1-O21a	119.83(13)
O1-Sb1-O2	43.0(11)	O21-Sb1-O21c	54.1(10)
O1-Sb1-O2a	107.4(10)	O21-Sb1-O21d	67.4(8)
O1-Sb1-O2b	119.8(11)	O21-Sb1-O21e	159.0(4)
O1-Sb1-O2c	80.7(11)	O21c-Sb1-O21d	111.4(6)
O1-Sb1-O2d	78.4(10)	Sb1c-Sb1-Sb1f	116.93(1)
		(Symmetrie-Code:	
		f = 1-x, 1-y, -z)	

Atom	x/a	y/b	z/c	U _{eq} ¹
Sb1	0.6667	0.3333	0.05244(12)	0.0516(5)
01	0.8306(9)	0.3184(9)	0.1999(8)	0.0623(17)
O2	1.013(6)	0.362(6)	0.041(6)	0.106(18)
O21	1.049(4)	0.383(4)	0.037(3)	0.045(4)
C1	0.978(4)	0.346(5)	0.157(4)	0.064(17)
C2	1.083(2)	0.330(2)	0.286(2)	0.061(8)
F1	1.094(4)	0.191(3)	0.267(3)	0.095(9)
F2	1.008(3)	0.320(4)	0.414(2)	0.089(8)
F3	1.237(3)	0.464(3)	0.287(3)	0.080(9)
F4	1.132(4)	0.458(3)	0.378(3)	0.097(12)
F5	1.218(3)	0.330(4)	0.231(2)	0.111(16)
F6	0.989(3)	0.186(4)	0.358(3)	0.16(3)
C11	0.976(3)	0.343(4)	0.168(2)	0.058(14)
C21	1.0750(15)	0.3467(16)	0.3111(16)	0.076(11)
F21	0.997(2)	0.1977(19)	0.3747(17)	0.104(10)
F22	1.081(3)	0.461(3)	0.4028(18)	0.130(8)
F23	1.229(2)	0.385(3)	0.2754(18)	0.097(5)

Tab. 66: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 3c

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{i}a_{j}a_{i}a_{j}$

3.9 Crystal Engineering der polymorphen Antimon(III)-trifluoracetate – Lösungsmittelkontrollierte Dimensionalität der koordinationspolymeren Verbände

Betrachtet man die Bindungsabstände und -winkel in den drei vorgestellten Modifikationen des Antimon(III)-trifluoracetats und die prinzipiell verschiedenen räumlichen Anordnungen der quasimolekularen Bausteine genauer, so kann die Bildung der drei Polymorphe im Lichte der Prinzipien des Crystal Engineering sehr gut verstanden und beschrieben werden: Bei Kristallisation aus der Gasphase entsteht die kubische Modifikation 3a, aus p-Xylol kristallisiert die trigonale Modifikation 3c, während bei Kristallisation aus TFAA die monokline Modifikation 3b gebildet wird. In 3a und 3c besitzt das Antimonatom die Koordination 3+3(+3) (primär+sekundär intramolekular (+sekundär intermolekular)), wobei die sekundären intramolekularen Kontakte bei 3c vergleichsweise stärker, die sekundären intermolekularen Kontakte vergleichsweise schwächer sind. Im Fall von 3b ist die Koordination mit 3+3(+2) zu beschreiben. Ohne Lösungsmittel kann die Assoziation zum Raumnetz von 3a unbehindert stattfinden. Im reduzierten Vernetzungsgrad der koordinationspolymeren Verbände von 3c und 3b drückt sich die mit der koordinativen Beanspruchung durch die Solvensmoleküle einhergehende abgestufte Einschränkung der Selbstassoziationsfähigkeit der Antimon(III)-trifluoracetatmoleküle aus: para-Xylol beansprucht eine, TFAA beansprucht zwei der Koordinationsstellen des Antimonatoms. Das Lösungsmittel dient als Werkzeug beim (Phasen)-Crystal-Engineering supramolekularer Verbände. Die Modifikationen geben ein gutes Beispiel für die Gültigkeit der Ostwald'schen Stufenregel ab, wie die folgende Tabelle verdeutlicht:

Modifikation	Solvens	Raumgruppe	F.p. [°C]
Sb(O ₂ CCF ₃) ₃ <i>cP</i> 176	Gasphase	<i>P</i> 4 ₃ 32 (bzw. <i>P</i> 4 ₁ 32)	116
$Sb(O_2CCF_3)_3hP44$	<i>p</i> -Xylol	$P\bar{3}$	110 (metastabil)
Sb(O ₂ CCF ₃) ₃ mS176	TFAA	C2/c	103 (metastabil)

Die mangelnde Stabilität der trigonalen Modifikation hängt wahrscheinlich damit zusammen, dass in ihr im Prinzip zum großen Teil das Koordinationsmuster gegeben ist, das auch in der kubischen Modifikation gefunden wird. Die Umordnung der Bausteine entsprechend der Festkörperorganisation der kubischen Modifikation erfolgt damit einfacher als bei der notwendigerweise stark rekonstruktiven Umwandlung der monoklinen in die kubische Modifikation.

3.10 Das Reaktionssystem Sb(O₂CCF₃)₃/Trifluoressigsäure – Saure Antimon(III)-trifluoracetate

3.10.1 Festkörperstruktur und Eigenschaften von $Sb(O_2CCF_3)_3$. CF_3COOH (26)

26 wurde aus einer Lösung von Antimon(III)-trifluoracetat in Trifluoressigsäure erhalten und ist ein Addukt aus Trifluoressigsäure und Antimon(III)-trifluoracetat mit der Summenformel $Sb(O_2CCF_3)_3 \cdot CF_3COOH$.

Die Verbindung kristallisiert in Form farbloser dünner Plättchen in der monoklinen Raumgruppe $P2_1/c$ mit den Gitterkonstanten a = 20.436(5) Å, b = 9.4188(12) Å, c = 8.7714(12) Å, $\beta = 93.42(2)$ ° und Z = 4. Im Festkörper liegen supramolekulare Ketten mit Fortpflanzungsrichtung entlang [0 0 1] vor (Abb. 71), die sich zu einer verzerrt hexagonalen Stabpackung stapeln. (Abb. 72). Kettenaufbauendes Symmetrieelement ist die Gleitspiegelebene senkrecht zur kristallographischen b-Achse.

Abbildung 71: Kettenfortpflanzung in **26** (Blickrichtung [0 1 0]) (Symmetrie-Codes : a = x, 0.5-y, 0.5+z ; b = x, 0.5-y, -0.5+z)

Abbildung 72: Verzerrt hexagonale Stabpackung der Kettenpolymere in **26**; Blickrichtung [0 0 1]

Die asymmetrische Einheit der Struktur umfasst eine Formeleinheit. Drei Trifluoracetatgruppen sind an das Antimonatom chelatisierend und zum Nachbaratom verbrückend koordiniert (Abb. 71 bzw. 73). Der Trifluoressigsäureligand ist einzähnig über O7 an das Antimonatom gebunden. Eine genauere Betrachtung zeigt eine Lagefehlordnung auf, die durch zwei unterschiedliche Sb-O-Abstände von 2.821(9) Å bzw. 2.536(14) zwischen O7 bzw. O71 und Sb1 gekennzeichnet ist. Dies repräsentiert eine Bindungsordnung von 0.101 bzw. 0.218. Das Wasserstoffatom der Säure ist an einer sehr starken Wasserstoffbrücke zu O6 beteiligt, welches außerdem locker an zwei benachbarte Antimonatome koordiniert ist.

Abbildung 73: Topologie der pseudomolekularen Einheit des Antimonatoms in **26** mit Kontakten zu benachbarten Fragmenten

Die Koordination des kristallographisch unabhängigen Antimonatoms ist mit 3+4(+3) (drei primäre + vier sekundäre intramolekulare + drei sekundäre intermolekulare Kontakte) Sauerstoffatomen anzugeben (Abb. 74). Das Sb-O-Abstandsspektrum reicht von 2.011(7) bis 3.529(9) Å. Wie bei den zuvor beschriebenen Verbindungen ist eine im Zuge der unsymmetrischen Koordination ausgeprägte lone-pair-Aktivität an einer Koordinationslücke erkennbar, die sich in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befindet.

Abbildung 74: Koordinationsfigur des Antimonatoms in **26** (Symmetrie-Codes: a = x, 0.5-y, 0.5+z; b = x, 0.5-y, -0.5+z)

Die Packung der Moleküle erlaubt eine hohe Mobilität des koordinierten Trifluoressigsäureliganden; er ist, wie bereits oben erwähnt, fehlgeordnet modelliert mit entsprechender Besetzung in die Verfeinerung miteinbezogen.

Raman-spektroskopische Daten, die zur Identifizierung von 26 dienen können, sind im experimentellen Teil aufgelistet.

Verbindung Nr.	26
Empirische Formel	$^{1}_{\infty}$ [Sb(O ₂ CCF ₃) ₃ · CF ₃ COOH]
Molekulargewicht [g mol ⁻¹]	574.84
Kristallsystem	monoklin
Raumgruppe	$P2_{1}/c$
Gitterkonstanten	a = 20.436(5) Å
	b = 9.4188(12) Å
	c = 8.7714(12) Å
	$\beta = 93.42(2)^{\circ}$
Volumen der Elementarzelle [Å ³]	1685.4(5)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	2.265
Kristallform, Kristallfarbe	tafelig 0.2x0.42x0.52 mm, farblos
F(000)	1088
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	13485
Messbereich [°]	$4.00 < 2\theta < 52.04$
Unabhängige Reflexe	3300
Beobachtete Reflexe	1901
Korrekturen	LP, num. Absorption
Verfeinerte Reflexe	3300
Parameter	280
Restraints	136
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0699
$wR_2(all data)^3$	0.2017
Wichtungsschema ⁴	0.1414
GOOF (GOOF _{restrain}) ⁵	0.916/0.916
max. shift/su	0.000
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.058/-0.932

Tab. 67: Daten zum Kristall und zur Strukturbestimmung von 26

$$\label{eq:R1} \begin{split} &^2R_1 = \Sigma || \ F_o \, || \ F_c \, || \Sigma |F_o \, | \\ &^3wR_2 = [\Sigma [w(F_o{}^2 - F_c{}^2)^2] / \Sigma [(wF_o{}^2)^2]]^{1/2} \\ &^4w = 1/[s^2(F_o{}^2) + (aP)^2 + bP] \ mit \ P = (F_o{}^2 + 2 \ F_c{}^2) / 3 \\ &^5GOOF = S = \{\Sigma \ [w(F_o{}^2 - F_c{}^2)^2] / (n-p)\}^{1/2} \end{split}$$

Sb1-O5	2.011(7)	Sb1-O6	3.214(8)
Sb1-O3	2.028(7)	Sb1-O6a	3.357(9)
Sb1-O1	2.055(7)	Sb1-O4b	3.529(9)
Sb1-07	2.821(9)	08…06	2.769(13)
Sb1-O71	2.536(14)	081…06	2.804(14)
Sb1-O2b	2.748(8)	H1O6	1.977(7)
Sb1-O2	2.944(8)	H11O6	1.992(4)
Sb1-O4	2.946(9)	Sb1…Sb1a	4.9416(8)

Tab. 68: ausgewählte Bindungslängen [Å] in 26

Tab. 69: ausgewählte Bindungswinkel [°] in 26

Sb1b-Sb1-Sb1a	125.12(3)	O2-Sb1-O2b	101.6(2)	O1-Sb1-O6a	99.5(2)
O5-Sb1-O3	84.7(3)	O7-Sb1-O2	137.6(3)	O71-Sb1-O6a	95.7(3)
O5-Sb1-O1	80.4(3)	O5-Sb1-O4	131.6(3)	O2b-Sb1-O6a	83.5(2)
O3-Sb1-O1	86.9(3)	O3-Sb1-O4	47.8(3)	O7-Sb1-O6a	102.3(2)
O5-Sb1-O71	90.9(3)	O1-Sb1-O4	102.2(3)	O2-Sb1-O6a	57.9(2)
O3-Sb1-O71	72.1(4)	O71-Sb1-O4	68.7(3)	O4-Sb1-O6a	68.6(2)
O1-Sb1-O71	157.9(4)	O2b-Sb1-O4	152.0(3)	O6-Sb1-O6a	124.8(2)
O5-Sb1-O2b	76.1(3)	O7-Sb1-O4	71.7(3)	O5-Sb1-O4b	105.2(2)
O3-Sb1-O2b	160.0(3)	O2-Sb1-O4	66.2(2)	O3-Sb1-O4b	132.5(3)
O1-Sb1-O2b	84.3(3)	O5-Sb1-O6	42.0(2)	O1-Sb1-O4b	140.2(2)
O71-Sb1-O2b	113.4(4)	O3-Sb1-O6	107.4(3)	O71-Sb1-O4b	61.7(3)
O5-Sb1-O7	84.6(3)	O1-Sb1-O6	116.2(2)	O2b-Sb1-O4b	60.1(2)
O3-Sb1-O7	69.6(3)	O71-Sb1-O6	66.0(3)	O7-Sb1-O4b	65.5(2)
O1-Sb1-O7	153.1(2)	O2b-Sb1-O6	61.4(2)	O2-Sb1-O4b	118.7(2)
O2b-Sb1-O7	113.6(2)	O7-Sb1-O6	62.2(3)	O4-Sb1-O4b	102.4(2)
O5-Sb1-O2	127.8(3)	O2-Sb1-O6	160.2(2)	O6-Sb1-O4b	63.7(2)
O3-Sb1-O2	85.4(3)	O4-Sb1-O6	133.6(2)	O6a-Sb1-O4b	61.9(2)
O1-Sb1-O2	48.0(2)	O5-Sb1-O6a	159.6(2)	O8-H1-O6	162.1(7)
O71-Sb1-O2	133.5(3)	O3-Sb1-O6a	115.7(3)	O81-H11-O6	171.30(76)

Atom	x/a	y/b	z/c	U _{eq} ¹
Sb1	0.28550(3)	0.12912(7)	0.39634(6)	0.0692(3)
01	0.3773(4)	0.0872(7)	0.4947(7)	0.0795(18)
O2	0.3527(4)	0.2237(10)	0.6848(9)	0.103(2)
03	0.2533(4)	-0.0357(8)	0.5203(8)	0.0858(19)
04	0.2031(4)	0.1163(10)	0.6604(10)	0.101(2)
05	0.3142(4)	-0.0223(7)	0.2532(7)	0.0791(18)
06	0.2617(4)	0.0466(10)	0.0418(9)	0.104(2)
07	0.1576(5)	0.0502(6)	0.2903(11)	0.111(5)
08	0.1273(5)	0.0769(8)	0.0532(7)	0.169(8)
H1	0.1650	0.0505	0.0424	0.254
071	0.1663(7)	0.0851(13)	0.3129(15)	0.089(3)
O81	0.1262(5)	0.0721(18)	0.069(2)	0.174(8)
H11	0.1659	0.0740	0.0609	0.261
C1	0.3907(4)	0.1512(9)	0.6232(10)	0.071(2)
C2	0.4616(2)	0.1251(6)	0.6934(5)	0.086(3)
C3	0.2122(5)	-0.0015(12)	0.6184(11)	0.082(3)
C4	0.1730(4)	-0.1307(7)	0.6805(8)	0.103(4)
C5	0.3033(5)	-0.0167(10)	0.1094(11)	0.072(2)
C6	0.3556(3)	-0.0981(6)	0.0223(6)	0.106(4)
C7	0.1167(5)	0.0848(7)	0.2062(9)	0.156(6)
C8	0.0523(5)	0.1420(9)	0.2555(15)	0.174(8)
C71	0.1140(5)	0.0783(8)	0.211(2)	0.158(7)
C81	0.0405(6)	0.0744(10)	0.228(3)	0.170(8)
F21	0.4669(3)	0.1753(8)	0.8279(7)	0.145(3)
F22	0.5025(2)	0.1861(9)	0.6119(8)	0.158(4)
F23	0.4732(2)	-0.0073(8)	0.6976(8)	0.132(3)
F41	0.1460(5)	-0.0944(9)	0.7968(11)	0.189(5)
F42	0.2112(5)	-0.2298(9)	0.7117(15)	0.232(8)
F43	0.1311(6)	-0.1696(10)	0.5820(10)	0.222(7)
F61	0.4104(3)	-0.0399(9)	0.0472(9)	0.195(5)

Tab. 70: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 26

Atom	x/a	y/b	z/c	U_{eq}^{1}
F62	0.3401(3)	-0.0957(7)	-0.1182(7)	0.212(6)
F63	0.3586(4)	-0.2243(8)	0.0677(8)	0.191(5)
F81	0.0422(7)	0.2562(16)	0.199(2)	0.263(10)
F82	0.0546(5)	0.1529(13)	0.3917(17)	0.33(2)
F83	0.0091(8)	0.0624(13)	0.215(2)	0.34(2)
F811	0.0191(7)	0.178(2)	0.195(4)	0.256(9)
F812	0.0307(6)	0.051(3)	0.347(4)	0.246(9)
F813	0.0183(6)	-0.008(3)	0.153(4)	0.246(9)

Fortsetzung

 $^{1}U_{eq} = (1/3)\Sigma_{i}\Sigma_{j}U_{ij}a_{i}a_{j}a_{j}a_{i}a_{j}$

3.10.2 Bildung und Kristallstruktur von {[(Sb(O₂CCF₃)₃]₂ • CF₃COOH}₂ (27)

27 kristallisiert bei der Sublimation von mit Feuchtigkeitsspuren verunreinigtem kubischen Antimon(III)-trifluoracetat als Nebenprodukt. Es ist ein Addukt von Antimontrifluoracetat und Trifluoressigsäure im Molverhältnis 2:1 und entsteht wahrscheinlich durch eine Festkörperreaktion von zunächst gebildetem Hydroxocarboxylat mit dem im Überschuss vorhandenen Trifluoracetat unter Freisetzung flüchtiger Trifluoressigsäure gemäß

und nachfolgender Gasphasenreaktion der Trifluoressigsäure mit weiterem Sb(O₂CCF₃)₃. Die Substanz fällt in Form farbloser Quader an, die einen Schmelzpunkt von etwa 73 °C besitzen. Die Festkörperstruktur von **27** ist in der Raumgruppe $P\overline{1}$ mit den kristallographischen Daten a = 11.5163(13) Å, b = 12.4762(13) Å, c = 12.5412(15) Å, $\alpha = 87.253(13)$ °, $\beta = 64.366(12)$ °, $\gamma = 62.913(12)$ ° und Z = 1 (170 K) zu beschreiben. Strukturell ist die Verbindung als Trifluoressigsäure-Addukt eines Antimon(III)-trifluoracetat-Dimeren aufzufassen, welches seinerseits im Festkörper zu diskreten Molekülen aus zwei Formeleinheiten verknüpft ist. Eine angemessene Summenformel ist $\{[(Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH)_2.$

In einem Molekül sind vier chelatisierende, sechs zweizähnig verbrückende und zwei vierzähnig μ_3 -verbrückende Trifluoracetatliganden vorhanden (Abb. 75). Die Säurefunktionen sind über O41 bzw. O41a einzähnig mittelstark (2.409(5) Å) an Sb1 bzw. Sb1a gebunden und bilden je eine starke intramolekulare Wasserstoffbrücke (2.13(3) Å) zu einem der Sauerstoffatome (O72 bzw. O72a) der chelatisierenden Trifluoracetatliganden aus (Abb. 75).

Abbildung 75: molekulare Einheit der Verbindung **27**; schwache Sb-O-Kontakte über 3 Å sind als gestrichelte Linien gezeichnet. (Symmetrie-Code: a = 1-x, -y, 1-z)

Die unabhängigen 9 zwei kristallographisch Antimonatome sind ieweils von Sauerstoffatomen umgeben. Die Abstufung der Kontakte an Sb1 ist mit 3 (primär) +4 (sekundär intramolekular) +2 (sekundär intermolekular), die an Sb2 ist mit 3 (primär) +6 (sekundär) zu beschreiben, wobei drei der sekundären Kontakte intermolekulare sind (Abb. 76). Das Sb-O-Abstandsspektrum erstreckt sich von 1.993(5) bis 3.401(6) Å. Die stereochemische Aktivität der lone-pairs der Antimonatome ist erkennbar an deutlichen Koordinationslücken, die sich jeweils in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befinden.

In Projektion entlang [0 0 1] weist 27 eine verzerrt hexagonale Packung auf (Abb. 77).

Abbildung 76: Koordinationsfiguren der kristallographisch unabhängigen Antimonatome in
 27; Kontakte mit Sb-O-Abständen über 3 Å sind durch gestrichelte Bindungen gekennzeichnet (Symmetrie-Code: a = 1-x, -y, 1-z)

Abbildung 77: Packung der Moleküle in 27 (Blickrichtung [0 0 1])

Verbindung Nr.	27
Empirische Formel	$\{ [Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH \}_2 \}$
Molekulargewicht [g mol ⁻¹]	2071.30
Kristallsystem	triklin
Raumgruppe	PĪ
Gitterkonstanten	a = 11.5163(13) Å
	b = 12.4762(13) Å
	c = 12.5412(15) Å
	$\alpha = 87.253(13)^{\circ}$
	$\beta = 64.366(12)^{\circ}$
	$\gamma = 62.913(12)^{\circ}$
Volumen der Elementarzelle [Å ³]	1421.2(3)
Zahl der Formeleinheiten	1
Berechnete Dichte [g cm ⁻³]	2.420
Kristallform, Kristallfarbe	tafelig 0.4x0.28x0.5 mm, farblos
F(000)	976
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	170(2)
Gemessene Reflexe	14205
Messbereich [°]	4.6 < 2θ < 57.24
Unabhängige (beobachtete)Reflexe	6576 (4351)
Verfeinerte Reflexe/Parameter	6576/415
Restraints	16
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0600
$wR_2(all data)^3$	0.1839
Wichtungsschema ⁴	0.1059
GOOF (GOOF _{restrain}) ⁵	1.008 (1.007)
max. shift/su	0.000
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min.}} [e \text{\AA}^{-3}]$	1.913/-1.212

Tab. 71: Daten zum Kristall und zur Strukturbestimmung von 27

$$\label{eq:relation} \begin{split} ^2 &R_1 = \Sigma || \ F_o \, || \ F_c \, || \ \Sigma |F_o \, | \\ ^3 &w R_2 = [\Sigma [w (F_o^2 - F_c^{-2})^2] / \Sigma [(w F_o^2)^2]]^{1/2} \\ ^4 &w = 1 / [s^2 (F_o^2) + (a P)^2 + b P] \ mit \ P = (F_o^{-2} + 2 \ F_c^{-2}) / 3 \\ ^5 &GOOF = S = \{ \Sigma \ [w (F_o^2 - F_c^{-2})^2] / (n - p) \}^{1/2} \end{split}$$

Sb1-O11	2.019(4)	Sb2-O51	2.007(5)
Sb1-O21	2.030(5)	Sb2-O61	2.046(5)
Sb1-O31	2.050(5)	Sb2-O12	2.664(4)
Sb1-O41	2.409(5)	Sb2-O62	2.805(5)
Sb1-O52	2.739(5)	Sb2-O22a	2.857(5)
Sb1-O22	2.816(6)	Sb2-O72	2.906(6)
Sb1-O32	3.012(5)	Sb2-O52	3.035(5)
Sb1-O12	3.166(5)	Sb2-O32a	3.401(6)
Sb1-O32a	3.289(5)	O72H1	2.13(2)
Sb2-O71	1.993(5)	042…072	2.96(2)
Sb1…Sb2	3.9819(12)	Sb1a…Sb1	4.3137(8)
Sb1a…Sb2	5.0864(11)		

Tab. 72: ausgewählte Bindungslängen [Å] in 27

Tab. 73: ausgewählte Bindungswinkel [°] in 27

Sb1-Sb2-Sb1	55.198(16)
Sb2-Sb1a-Sb1	75.79(9)
Sb2-Sb1-Sb2	124.802(16)
Sb1-Sb1-Sb2	49.285(15)

Atom	x/a	y/b	z/c	U_{eq}^{1}
Sb1	0.37966(4)	0.02093(4)	0.40114(4)	0.02989(15)
Sb2	0.72080(5)	-0.31580(4)	0.26439(4)	0.03146(15)
011	0.3537(5)	0.0034(5)	0.2548(4)	0.0363(11)
012	0.5419(5)	-0.1844(5)	0.1718(5)	0.0385(11)
O21	0.1576(5)	0.1266(5)	0.4805(4)	0.0363(11)
O22	0.1943(6)	0.2051(5)	0.6092(5)	0.0414(12)
O31	0.3821(6)	0.1751(4)	0.3385(5)	0.0355(11)
O32	0.4982(6)	0.1780(5)	0.4410(5)	0.0463(14)
O41	0.3167(5)	-0.1414(5)	0.4260(4)	0.0378(11)
O42	0.3114(7)	-0.3101(6)	0.4943(6)	0.0545(15)
051	0.8375(5)	-0.2480(5)	0.1410(4)	0.0369(11)
O52	0.6661(5)	-0.0568(5)	0.2346(5)	0.0401(11)
061	0.9238(6)	-0.4483(5)	0.2391(5)	0.0422(12)
O62	0.8016(6)	-0.5453(5)	0.3341(5)	0.0456(13)
071	0.7609(5)	-0.4242(5)	0.1271(4)	0.0360(10)
072	0.5515(6)	-0.4230(6)	0.2456(5)	0.0487(13)
C11	0.4349(7)	-0.0942(7)	0.1767(6)	0.0327(14)
C12	0.3780(4)	-0.0907(4)	0.0837(3)	0.0413(17)
C21	0.1129(6)	0.1987(6)	0.5766(6)	0.0338(14)
C22	-0.0558(4)	0.2799(4)	0.6452(4)	0.058(2)
C31	0.4479(7)	0.2183(6)	0.3713(6)	0.0345(14)
C32	0.4552(7)	0.3308(5)	0.3197(5)	0.052(2)
C41	0.2683(7)	-0.1922(6)	0.5080(6)	0.0347(15)
C42	0.1482(3)	-0.1145(3)	0.6331(3)	0.0436(17)
C51	0.7844(7)	-0.1310(7)	0.1587(6)	0.0341(15)
C52	0.8931(3)	-0.0898(3)	0.0717(3)	0.0466(18)
C61	0.9142(8)	-0.5387(7)	0.2820(7)	0.0442(18)
C62	1.0638(5)	-0.6468(4)	0.2626(6)	0.064(3)
C71	0.6583(8)	-0.4510(6)	0.1494(6)	0.0371(15)
C72	0.6851(5)	-0.5262(4)	0.0397(3)	0.054(2)

Tab. 74: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 27

Fortsetzung

Atom	x/a	y/b	z/c	${\rm U_{eq}}^1$
F11	0.2619(7)	-0.1001(7)	0.1335(4)	0.103(3)
F12	0.4754(7)	-0.1789(5)	-0.0040(5)	0.132(4)
F13	0.3505(7)	0.0097(5)	0.0460(5)	0.090(2)
F21	-0.0932(3)	0.3189(6)	0.7528(5)	0.114(3)
F22	-0.1172(3)	0.2173(5)	0.6456(5)	0.086(2)
F23	-0.0955(4)	0.3701(5)	0.5938(6)	0.128(4)
F31	0.3724(12)	0.4226(6)	0.4012(6)	0.194(7)
F32	0.4158(8)	0.3475(6)	0.2398(7)	0.121(4)
F33	0.5833(9)	0.3131(6)	0.2764(9)	0.180(6)
F41	0.1785(4)	-0.0331(4)	0.6600(3)	0.0561(12)
F42	0.1430(4)	-0.1858(4)	0.7136(3)	0.0676(15)
F43	0.0205(4)	-0.0582(4)	0.6326(3)	0.0662(15)
F51	0.9981(4)	-0.1182(4)	0.1007(3)	0.0562(13)
F52	0.8242(4)	0.0283(4)	0.0787(4)	0.0693(16)
F53	0.9491(4)	-0.1447(4)	-0.0379(3)	0.0612(14)
F61	1.0433(5)	-0.7318(4)	0.3145(6)	0.094(2)
F62	1.1228(6)	-0.6097(4)	0.3073(9)	0.151(5)
F63	1.1486(5)	-0.6882(6)	0.1500(7)	0.147(4)
F71	0.6922(7)	-0.4650(5)	-0.0453(4)	0.082(2)
F72	0.5794(7)	-0.5497(5)	0.0688(4)	0.102(3)
F73	0.8059(7)	-0.6265(5)	0.0046(5)	0.133(4)

 $^{1}U_{eq} = (1/3)\Sigma_i\Sigma_jU_{ij}a_{i\bullet}a_{j\bullet}a_{i}a_{j}$

3.11 Das Reaktionssystem Sb(O_2CCF_3)₃/Hexamethylbenzol – Synthese, Eigenschaften und Kristallstruktur von Antimon(III)-trifluoracetat- η^6 hexamethylbenzol (25)

Abbildung 78: Molekulare Einheit von 25

Wie im System $Bi(O_2CCF_3)_3/HMB^{[10]}$ lässt sich auch die Flüchtigkeit von $Sb(O_2CCF_3)_3$ in Gegenwart von HMB erhöhen. So lässt sich in einer Festkörperreaktion von kubischem Antimon(III)-trifluoracetat mit Hexamethylbenzol in einer abgeschmolzenen Duranglasampulle bei etwa 80 °C über die Gasphase ein Hexamethylbenzolkomplex definierter Zusammensetzung herstellen. Innerhalb von zwei Wochen wachsen sehr schwach gelbliche Plättchen an der Glaswand. Die synthetisierte Verbindung besitzt die elementaranalytisch bestimmte Zusammensetzung $Sb(O_2CCF_3)_3 \cdot C_{12}H_{18}$.

Sie kristallisiert in der azentrischen orthorhombischen Raumgruppe $P2_12_12_1$ mit den Elementarzellenabmessungen a = 9.080(2) Å, b = 15.954(3) Å, c = 16.439(3) Å und Z = 4. Im Festkörper liegen diskrete monomere Einheiten vor, von denen bei entsprechender Wahl eine die asymmetrische Einheit der Kristallstruktur repräsentiert. Die Trifluoracetatliganden sind alle unsymmetrisch chelatisierend, d. h. mit einem kurzen und einem langen Sb-O-Abstand an das Antimonatom gebunden.

Die Koordinationsfigur des Antimonatoms erinnert an eine pentagonale Bipyramide (Aromat = eine Koordinationsstelle), die Koordinationszahl ist mit 3+3+1(Aromat) zu beschreiben (Abb. 78). Die Sb-O-Abstände bewegen sich im Bereich von 2.062(3) bis 2.874(5) Å. Der Abstand Sb-(COR) Abstand beträgt 2.789(3) Å und dokumentiert eine erwartungsgemäß schwächere Wechselwirkung als beim Hexamethylbenzol-Addukt des Bismut(III)-trifluoracetats. Der Aromat ist in nahezu unverzerrtem η^6 -artigen Modus an das Antimonatom koordiniert (Ringverschiebung = 0.018 Å). Das stereochemisch aktive lone-pair am Antimonatom ist erkennbar an einer Koordinationslücke, die sich in trans-Stellung zu den drei kürzesten Sb-O-Kontakten befindet. Als Maß für die Verzerrung können die in Tab. 77 angegebenen Winkel, die die Atome C1, C3, C5 und der Ringmittelpunkt jeweils paarweise mit dem Antimonatom einschließen, dienen.

Der molekulare Komplex mit seinem HMB- und den drei unterschiedlich koordinierten Trifluoracetatliganden hat lediglich C₁-Symmetrie und ist damit chiral. Die chiralen Einheiten bilden chirale Kristalle, die nach kristallstrukturanalytischem Befund als Inversionszwillinge auftreten (Abb. 79). Das Volumenverhältnis der enantiomorphen Domänen betrug im Falle des untersuchten Kristalls etwa 66% zu 34% für das in Abb. 78 gezeigte Enantiomorph bzw. sein Spiegelbild.

Alle Trifluoracetatgruppen sind bezüglich ihrer CF₃-Gruppen rotationsfehlgeordnet und wurden mit Splitlagen der Fluoratompositionen verfeinert.

Unter dem Aspekt des "Crystal Engineering" lässt sich die Festkörperstruktur des HMB-Addukts **25** als Resultat der permanenten Blockierung von drei schwachen sekundären oder zwei stärkeren sekundären Koordinationsstellen betrachten. Eine Vernetzung der Sb-Zentren unterbleibt, d. h. verglichen mit den Polymorphen des Sb(O₂CCF₃)₃ liegt ein "nulldimensionaler" supramolekularer Verband mit diskreten molekularen Einheiten vor.

Dies ist in der Carboxylatchemie des Antimons ungewöhnlich: selbst in dem in der Literatur beschriebenen Antimontribenzoat^[132] stehen die einzelnen Formeleinheiten über intermolekulare Wechselwirkungen in Kontakt, wobei die entsprechenden Sb-O-Abstände mit 3.363(2) Å signifikant kleiner sind als die Summe der van der Waals-Radien von Antimon und Sauerstoff. Trotz ihrer Schwäche sind sie für die Organisation im Festkörper von entscheidender Bedeutung.

Abbildung 79: Packung der diskreten Moleküle in **25**; Blickrichtung [1 0 0]

Verbindung Nr.	25
Empirische Formel	$Sb(O_2CCF_3)_3 \cdot C_6Me_6$
Molekulargewicht [g mol ⁻¹]	623.07
Kristallsystem	orthorhombisch
Raumgruppe	<i>P</i> 2 ₁ 2 ₁ 2 ₁
Gitterkonstanten	a = 9.080(2) Å
	b = 15.954(3) Å
	c = 16.439(3) Å
Volumen der Elementarzelle [Å ³]	2381.5(8)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	1.738
Kristallform, Kristallfarbe	tafelig 0.23x0.12x0.4 mm, sehr schwach gelblich
F(000)	1224
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	36803
Messbereich [°]	3.56 < 20 < 52.52
Unabhängige Reflexe	4779
Beobachtete Reflexe	3382
Verfeinerte Reflexe	4779
Parameter	309
Restraints	18
Flack-Parameter	0.34(3)
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0351
$wR_2(all data)^3$	0.0831
Wichtungsschema ⁴	0.0546
GOOF (GOOF _{restrain}) ⁵	0.867/0.869
max. shift/su	0.001
$\Delta \rho_{max} / \Delta \rho_{min}$ [eÅ ⁻³]	0.430/-0.559

Tab. 75: Daten zum Kristall und zur Strukturbestimmung von 25

$$\label{eq:relation} \begin{split} ^2R_1 &= \Sigma \parallel F_o \mid \mid F_c \mid \mid \Sigma \mid F_o \mid \\ ^3wR_2 &= [\Sigma[w(F_o{}^2 - F_c{}^2)^2]/\Sigma[(wF_o{}^2)^2]]^{1/2} \\ ^4w &= 1/[s^2(F_o{}^2) + (aP)^2 + bP] \text{ mit } P = (F_o{}^2 + 2 \ F_c{}^2)/3 \\ ^5GOOF &= S = \{\Sigma \ [w(F_o{}^2 - F_c{}^2)^2]/(n-p)\}^{1/2} \end{split}$$

Sb1-O1	2.062(3)
Sb1-O3	2.0750(18)
Sb1-O5	2.081(4)
Sb1-O4	2.750(2)
Sb1-O2	2.758(4)
Sb1-O6	2.874(5)
Sb1-COR	2.789(3)

Tab. 76: ausgewählte Bindungslängen [Å] in 25

Tab. 77: ausgewählte Bindungswinkel [°] in 25

O1-Sb1-O3	78.88(11)
O1-Sb1-O5	84.82(15)
O3-Sb1-O5	85.50(12)
O1-Sb1-O4	128.57(11)
O3-Sb1-O4	51.4
O5-Sb1-O4	79.58(12)
O1-Sb1-O2	51.25(14)
O3-Sb1-O2	127.63(12)
O5-Sb1-O2	76.19(15)
O4-Sb1-O2	155.68(11)
01-Sb1-O6	117.88(14)
O3-Sb1-O6	125.88(12)
O5-Sb1-O6	49.67(14)
O4-Sb1-O6	87.31(12)
O2-Sb1-O6	75.58(15)
C3-Sb1-C1	128.44(15)
C3-Sb1-C5	96.44(12)
C1-Sb1-C5	86.75(18)
C1-Sb1-COR (C11-C16)	105.89(12)
C3-Sb1-COR	106.26(10)
C5-Sb1-COR	136.51(10)

Atom	x/a	y/b	z/c	U_{eq}^{-1}
Sb1	0.30421(4)	0.400348(18)	0.263462(18)	0.06153(11)
01	0.5259(4)	0.3776(2)	0.2477(2)	0.0737(9)
02	0.4854(6)	0.4500(3)	0.1377(3)	0.0945(13)
03	0.3370(3)	0.30211(12)	0.34417(11)	0.0768(11)
04	0.0971(3)	0.30163(11)	0.33909(11)	0.1079(15)
05	0.2756(5)	0.3074(2)	0.1760(2)	0.0779(11)
06	0.1185(5)	0.3966(3)	0.1219(3)	0.1103(14)
C1	0.5655(6)	0.4123(4)	0.1810(3)	0.0728(14)
C2	0.7317(2)	0.39776(17)	0.16117(18)	0.0935(18)
C3	0.2112(3)	0.27608(11)	0.36422(11)	0.0842(18)
C4	0.2178(3)	0.20341(12)	0.43002(12)	0.119(3)
C5	0.1867(8)	0.3333(3)	0.1214(3)	0.0729(13)
C6	0.1706(6)	0.2716(2)	0.0479(2)	0.101(2)
F1	0.7532(2)	0.32216(18)	0.14780(16)	0.176(2)
F2	0.8079(3)	0.42046(17)	0.2199(2)	0.209(3)
F3	0.7661(3)	0.4391(3)	0.1001(3)	0.216(4)
F4	0.2428(3)	0.13485(13)	0.39527(12)	0.151(7)
F5	0.0969(3)	0.19936(12)	0.46684(13)	0.270(17)
F6	0.3188(3)	0.21855(13)	0.48001(13)	0.178(9)
F41	0.1962(3)	0.23366(13)	0.49948(14)	0.196(12)
F51	0.3421(3)	0.16915(12)	0.42790(12)	0.231(12)
F61	0.1202(3)	0.14996(12)	0.41474(12)	0.219(13)
F7	0.0402(8)	0.2538(5)	0.0385(4)	0.306(17)
F8	0.2411(12)	0.2076(4)	0.0615(4)	0.127(6)
F9	0.2177(11)	0.3052(4)	-0.0141(3)	0.271(16)
F71	0.2925(7)	0.2572(6)	0.0188(5)	0.308(19)
F81	0.0916(10)	0.3035(3)	-0.0042(3)	0.107(4)
F91	0.1150(13)	0.2059(4)	0.0714(3)	0.227(14)
C11	0.2899(5)	0.60019(18)	0.28255(16)	0.0758(13)
C12	0.4152(3)	0.5716(2)	0.3224(2)	0.0763(15)

Tab. 78: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 25

Fortsetzung

Atom	x/a	y/b	z/c	U_{eq}^{1}
C13	0.4018(3)	0.5208(2)	0.3907(2)	0.0737(15)
C14	0.2630(4)	0.49853(19)	0.41909(17)	0.0732(16)
C15	0.1377(3)	0.5271(2)	0.3792(2)	0.0720(16)
C16	0.1511(4)	0.5779(2)	0.3109(2)	0.0758(16)
C21	0.3043(12)	0.6560(4)	0.2083(4)	0.123(3)
H211	0.3673	0.7025	0.2208	0.184
H212	0.2088	0.6763	0.1928	0.184
H213	0.3460	0.6244	0.1642	0.184
C22	0.5656(7)	0.5976(5)	0.2940(5)	0.123(3)
H221	0.6364	0.5561	0.3101	0.184
H222	0.5909	0.6506	0.3178	0.184
H223	0.5656	0.6026	0.2358	0.184
C23	0.5403(8)	0.4924(5)	0.4356(5)	0.118(3)
H231	0.6123	0.5364	0.4343	0.176
H232	0.5795	0.4433	0.4096	0.176
H233	0.5160	0.4796	0.4911	0.176
C24	0.2495(9)	0.4442(4)	0.4951(3)	0.102(3)
H241	0.3392	0.4134	0.5030	0.154
H242	0.1690	0.4058	0.4887	0.154
H243	0.2318	0.4793	0.5415	0.154
C25	-0.0131(8)	0.5036(5)	0.4112(5)	0.116(3)
H251	-0.0810	0.4993	0.3666	0.173
H252	-0.0465	0.5459	0.4484	0.173
H253	-0.0073	0.4507	0.4389	0.173
C26	0.0173(8)	0.6085(5)	0.2660(5)	0.128(3)
H261	-0.0691	0.5821	0.2879	0.191
H262	0.0263	0.5949	0.2094	0.191
H263	0.0091	0.6682	0.2722	0.191

3.12 Synthese und Kristallstruktur eines π -Arenkomplexes eines basischen Antimon(III)-trifluoracetats [Sb₂O(O₂CCF₃)₄]₂ • 2 C₈H₁₀ (24)

Abbildung 80: Struktur der quasimolekularen Einheit [Sb₂O(O₂CCF₃)₄]₂ im Arensolvat **24** Die Endpunkte der gestrichelten Linien markieren die Ringmittelpunkte der Arenliganden (Symmetrie-Code : a = 1-x, y, 0.5-z)

Aus einer Lösung des kubischen Antimon(III)-trifluoracetats in *p*-Xylol, die 24 Stunden lang bei 60 °C einer moderaten thermischen Belastung ausgesetzt war, kristallisiert beim Abkühlen ein *p*-Xylolsolvat des basischen Trifluoracetats Sb₂O(O₂CCF₃)₄ (**24**) (Abb. 80) in Form farbloser Plättchen. **24** kristallisiert monoklin in der centrosymmetrischen Raumgruppe *C*2/*c* und besitzt die Kristalldaten a = 11.3979(16) Å, b = 21.230(4) Å, c = 22.682(4) Å, $\beta =$ 99.462(19)° und Z = 4.

Die Koordinationsfiguren der beiden kristallographisch unabhängigen Antimonatome der quasimolekularen $[Sb_2O(O_2CCF_3)_4]_2$ -Einheit sind einander sehr ähnlich und erinnern an pentagonale Bipyramiden (Aromat = eine Koordinationsstelle), wobei die Koordinationszahl jeweils mit 3+3+1 (primär+sekundär +Aromat) anzugeben ist (Abb. 81). Es liegt damit eine ähnliche Situation wie im HMB-Addukt **25** vor (siehe Kap. 3.11).

Abbildung 81: Koordinationsfiguren der beiden kristallographisch unabhängigen Antimonatome in **24**. Die Endpunkte der gestrichelten Linien markieren die Ringmittelpunkte (COR) der Arenliganden an Sb1 und Sb2 (Symmetrie-Code : a = 1-x, y, 0.5-z)

Je zwei der stärkeren sekundären Kontakte (zu O11 und O21 bzw. O12 und O22) kommen mit zweizähnigen Trifluoracetatliganden zu Stande, die "intramolekular" zwischen Sb1 und Sb2 verbrücken. Die beiden schwächeren der sekundären Sb-O-Kontakte (zu O32 und O42a bzw. O42 und O32a) verknüpfen die Sb₂O(O₂CCF₃)₄-Einheiten zu Dimeren mit zueinander verkippt angeordneten Sb₂O-Fragmenten, wobei der Winkel zwischen den Ebenen dieser Fragmente ca. 37° beträgt (Abb. 80 bzw. 83). Die an diesen Kontakten beteiligten O-Atome gehören zu je zwei dreizähnig verbrückenden Trifluoracetatliganden. Die [Sb₂O(O₂CCF₃)₄]₂-Bausteine sind über μ - η ⁶-koordinierte *p*-Xylol-Liganden zu einem koordinationspolymeren Schichtengefüge verknüpft (Abb. 83). Die auf diese Weise generierten gewellten Schichten liegen in der von a und c aufgespannten Ebene und werden untereinander nur durch van der Waals-Kräfte der CF₃-Gruppen zusammengehalten (Abb. 84).

Die bemerkenswert großen Abstände zwischen den Schweratomen und den Ringmittelpunkten (COR) der auf speziellen Lagen lokalisierten para-Xylol-Moleküle sprechen den Arenen eher die Funktion eines Packungsvermittlers als die einer Lewisbase im Sinne einer Menshutkinverbindung zu. Für die Funktion als Packungsvermittler spricht auch Befund, beide para-Xylol-Moleküle Lagefehlordnung der dass besitzen. Im Fehlordnungsmodell wurden sie als starre Moleküle mit je zwei Teillagen mit halber Besetzung behandelt. Die Kohlenstoffatome der Teillagen des Fehlordnungsmodells liegen

jeweils etwa in einer Ebene. Bei C111-C118 bzw. C111a-C118a sind sie um ca. 0.55 Å zueinander verschoben angeordnet (Abb. 82 links), während sie bei C211-C218 bzw. C211b-C218b um einen Winkel von ca. 27° um den Ringmittelpunkt gedreht zueinander angeordnet sind, wobei die Ringmittelpunkte beider Teillagen nahezu identisch sind (Abb. 82 rechts). Die schwachen Sb-Aren-Wechselwirkungen werden durch die Sb-COR-Abstände von 3.280(12) und 3.387(12) Å (bei Sb1) bzw. 3.225(17) und 3.242(18) Å (bei Sb2) dokumentiert.

Abbildung 82: Teillagen der packungsvermittelnden *p*-Xylol-Moleküle im verfeinerten Strukturmodell (Symmetrie-Codes: a = 1.5-x, 0.5-y, 1-z; b =-x, y, 0.5-z)

Das Sb-O-Abstandsspektrum reicht von 1.914(4) bis 3.032(6) Å. Die Abstände zwischen den Antimonzentren und den Oxoliganden von 1.922(4) bzw. 1.914(4) Å entsprechen Bindungsordnungen von 1.148 bzw. 1.173 und liegen damit am unteren Rand des Bereichs der bei anderen Antimon(III)-verbindungen mit all-sauerstoffkoordinierten Antimonzentren für Oxoliganden beobachtet wurde (1.982(3), 1.962(3) Å^[134]; 1.921 Å^[136]).

Der Einfluss des stereochemisch aktiven einsamen Elektronenpaares ist bei beiden Antimonatomen an Hand einer deutlichen Koordinationslücke zu beobachten, die sich jeweils in trans-Position zu den drei primären Sb-O-Kontakten befindet.

Abschließend ist noch anzumerken, dass die zwischen den symmetrieabhängigen Sb₂O-Einheiten angeordneten Trifluoracetatliganden rotationsfehlgeordnete CF₃-Gruppen besitzen und mit entsprechenden Splitlagen der Fluorpositionen verfeinert wurden.

Abbildung 83: Umgebung des [Sb₂O(O₂CCF₃)₄]₂- Moleküls und der packungsvermittelnden *p*-Xylol-Moleküle in der gewellten Schicht von **24**

Abbildung 84: Packung des 2D-Koordinationspolymers; Blickrichtung [1 0 0]

Tab.	79 : Daten	zum Kristall	und zur	Strukturbes	stimmung	von 24	4
------	-------------------	--------------	---------	-------------	----------	--------	---

Verbindung Nr.	24
Empirische Formel	$^{2}_{\infty}\{[Sb_{2}O(O_{2}CCF_{3})_{4}]_{2} \cdot 2 C_{8}H_{10}\}$
Molekulargewicht [g mol ⁻¹]	1635.48
Kristallsystem	monoklin
Raumgruppe	C2/c
Gitterkonstanten	<i>a</i> = 11.3979(16) Å
	b = 21.230(4) Å
	c = 22.682(4) Å
	$\beta = 99.462(19)^{\circ}$
Volumen der Elementarzelle [Å ³]	5414.0(15)
Zahl der Formeleinheiten	4
Berechnete Dichte [g cm ⁻³]	2.006
Kristallform, Kristallfarbe	tafelig 0.16x0.04x0.1 mm, farblos
F(000)	3104
Messgerät, Strahlung und Wellenlänge	Stoe IPDS MoK _{α} (0.71073 Å)
Messtemperatur [K]	293(2)
Gemessene Reflexe	23793
Messbereich [°]	$4.1 < 2\theta < 52.42$
Unabhängige Reflexe	5042
Beobachtete Reflexe	1948
Korrekturen	LP, Absorption
Verfeinerte Reflexe	5042
Parameter	409
Restraints	114
$R_1(F_o^2 > 2\sigma(F_o^2))^2$	0.0424
$wR_2(all data)^3$	0.1032
Wichtungsschema ⁴	0.0334
GOOF (GOOF _{restrain}) ⁵	0.705/0.708
max. shift/su	0.000
$\Delta \rho_{max} / \Delta \rho_{min} \ [e Å^{-3}]$	0.587/-0.425

$$\begin{split} & \frac{^{2}R_{1} = \Sigma || F_{o} || - | F_{c} || /\Sigma |F_{o} ||}{^{3}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] /\Sigma [(wF_{o}^{2})^{2}]]^{1/2}} \\ & ^{4}w = 1 / [s^{2}(F_{o}^{2}) + (aP)^{2} + bP] \text{ mit } P = (F_{o}^{2} + 2 F_{c}^{2}) /3 \\ & ^{5}GOOF = S = \{\Sigma [w(F_{o}^{2} - F_{c}^{-2})^{2}] / (n-p)\}^{1/2} \end{split}$$

Sb1-O1	1.922(4)	Sb2-O41	2.120(5)
Sb2-O21	2.084(5)	Sb2-O22	2.503(5)
Sb1-O31	2.120(6)	Sb2-O32a	2.811(7)
Sb1-O11	2.490(5)	Sb2-O42	3.032(6)
Sb1-O42a	2.743(6)	Sb2-COR1(C211-C218)	3.225(17)
Sb1-O32	2.955(7)	Sb2-COR2(C211b-C218b)	3.242(18)
		Symmetrie-Codes:	
		siehe Abb. 84	
Sb1-COR1(C111-C118)	3.387(12)	Sb1…Sb2	3.5709(9)
Sb1-COR2(C111a-C118a)	3.280(12)	Sb1…Sb2a	4.6615(10)
Symmetrie-Codes:			
siehe Abb. 84			
Sb2-O1	1.914(4)	Sb1…Sb1a	5.866(2)
Sb2-O12	2.074(5)	Sb2…Sb2a	5.4299(13)

Tab. 80: ausgewählte Bindungslängen [Å] in 24

Tab. 81: ausgewählte Bindungswinkel [°] in 24

O1-Sb1-O21	95.73(19)	O1-Sb1-COR1	170.1(2)	O22-Sb2-O42	157.10(18)
O1-Sb1-O31	88.3(2)	O1-Sb1-COR2	178.7(2)	O32a-Sb2-O42	62.58(19)
O21-Sb1-O31	78.5(2)	O1-Sb2-O12	95.37(18)	O1-Sb2-COR1	161.3(2)
O1-Sb1-O11	83.65(16)	O1-Sb2-O41	89.66(19)	O1-Sb2-COR2	161.3(2)
O21-Sb1-O11	77.93(19)	O12-Sb2-O41	78.6(2)	O1-Sb1-Sb2	21.44(12)
O31-Sb1-O11	154.2(2)	O1-Sb2-O22	83.91(17)	O1-Sb1-Sb2a	60.55(12)
O1-Sb1-O42a	77.20(18)	O12-Sb2-O22	78.6(2)	Sb2-Sb1-Sb2a	81.369(19)
O21-Sb1-O42a	167.9(2)	O41-Sb2-O22	155.58(19)	O1-Sb2-Sb1	21.57(11)
O31-Sb1-O42a	110.7(2)	O1-Sb2-O32a	79.73(19)	O1-Sb2-Sb1a	68.94(11)
O11-Sb1-O42a	91.39(18)	O12-Sb2-O32a	172.1(2)	Sb1-Sb2-Sb1a	89.88(2)
O1-Sb1-O32	83.82(17)	O41-Sb2-O32a	107.4(2)	O1-Sb2-Sb2a	37.29(11)
O21-Sb1-O32	125.2(2)	O22-Sb2-O32a	94.6(2)	Sb1-Sb2-Sb2a	58.078(16)
O31-Sb1-O32	46.7(2)	O1-Sb2-O42	93.33(16)	Sb1-Sb2a-Sb2	40.555(14)
O11-Sb1-O32	154.68(18)	O12-Sb2-O42	124.3(2)	Sb2-O1-Sb1	137.0(2)
O42a-Sb1-O32	64.37(19)	O41-Sb2-O42	46.53(19)		

Atom	x/a	y/b	z/c	U_{eq}^{-1}
Sb1	0.55099(4)	0.21271(2)	0.381026(19)	0.08529(15)
Sb2	0.28608(4)	0.15969(3)	0.287863(18)	0.09639(18)
01	0.4476(4)	0.1868(2)	0.30938(16)	0.0895(13)
011	0.4381(5)	0.1329(2)	0.42957(19)	0.1004(15)
012	0.2901(4)	0.0981(3)	0.3591(2)	0.1155(17)
O21	0.4251(5)	0.2682(2)	0.4137(2)	0.1088(16)
O22	0.2497(4)	0.2331(3)	0.3693(2)	0.1203(19)
031	0.5722(6)	0.3002(3)	0.3390(3)	0.131(2)
O32	0.7067(6)	0.2556(3)	0.2969(3)	0.152(2)
O41	0.3459(5)	0.0757(3)	0.2519(2)	0.1248(19)
O42	0.3193(6)	0.1203(3)	0.1632(3)	0.143(2)
C11	0.3568(7)	0.0972(3)	0.4107(3)	0.098(2)
C12	0.3240(4)	0.04273(17)	0.45059(17)	0.145(4)
C21	0.3121(8)	0.2698(3)	0.4021(3)	0.107(3)
C22	0.2539(4)	0.3214(2)	0.43626(19)	0.155(4)
C31	0.6535(9)	0.3010(4)	0.3090(4)	0.117(3)
C32	0.6944(7)	0.3643(3)	0.2858(3)	0.181(5)
C41	0.3401(7)	0.0748(3)	0.1954(4)	0.116(3)
C42	0.3571(7)	0.0096(2)	0.1676(3)	0.163(5)
F11	0.3496(6)	-0.01057(19)	0.4283(2)	0.209(3)
F12	0.2115(5)	0.0448(2)	0.4528(2)	0.201(3)
F13	0.3836(5)	0.0486(2)	0.5039(2)	0.201(3)
F21	0.2960(6)	0.3189(2)	0.4902(2)	0.200(3)
F22	0.1450(5)	0.3127(3)	0.4295(3)	0.304(5)
F23	0.2743(7)	0.3740(2)	0.4164(3)	0.274(4)
F31	0.7938(10)	0.3786(4)	0.3146(5)	0.246(7)
F32	0.6208(11)	0.4062(3)	0.2923(7)	0.273(11)
F33	0.7019(14)	0.3592(4)	0.2317(4)	0.232(7)
F311	0.6172(10)	0.3840(5)	0.2445(6)	0.42(2)
F321	0.7902(10)	0.3565(3)	0.2668(6)	0.50(3)

Tab. 82: Ortskoordinaten und äquivalente isotrope Auslenkungsparameter der Atome in 24

Fortsetzung

Atom	x/a	y/b	z/c	U _{eq} ¹
F331	0.7091(15)	0.4035(3)	0.3274(4)	0.42(2)
F41	0.4361(11)	0.0131(3)	0.1358(5)	0.196(6)
F42	0.2620(8)	-0.0072(4)	0.1364(6)	0.213(6)
F43	0.3868(13)	-0.0295(3)	0.2082(3)	0.173(6)
F411	0.2872(11)	-0.0289(3)	0.1845(6)	0.359(12)
F421	0.4613(8)	-0.0085(3)	0.1839(5)	0.374(18)
F431	0.3365(13)	0.0138(3)	0.1121(3)	0.340(17)
C111	0.8186(8)	0.1823(3)	0.5020(5)	0.100(5)
C112	0.7206(8)	0.1944(4)	0.5294(5)	0.104(5)
H112	0.6886	0.1625	0.5500	0.125
C113	0.6703(8)	0.2542(4)	0.5261(5)	0.083(4)
H113	0.6047	0.2624	0.5445	0.099
C114	0.7180(9)	0.3019(3)	0.4954(6)	0.092(5)
C115	0.8160(9)	0.2898(3)	0.4679(5)	0.095(5)
H115	0.8480	0.3217	0.4473	0.114
C116	0.8664(8)	0.2300(4)	0.4712(5)	0.123(6)
H116	0.9320	0.2219	0.4528	0.147
C117	0.8718(15)	0.1186(5)	0.5048(10)	0.200(7)
H171	0.9412	0.1177	0.5352	0.299
H172	0.8939	0.1084	0.4669	0.299
H173	0.8149	0.0884	0.5142	0.299
C118	0.6646(15)	0.3657(5)	0.4925(10)	0.200(7)
H181	0.6003	0.3663	0.5150	0.299
H182	0.6351	0.3763	0.4516	0.299
H183	0.7239	0.3957	0.5090	0.299
C211	0.0017(13)	0.0990(3)	0.2346(3)	0.137(6)
C212	0.0101(12)	0.1437(3)	0.1908(3)	0.084(4)
H212	0.0161	0.1310	0.1521	0.101
C213	0.0095(14)	0.2075(3)	0.2046(4)	0.101(5)
H213	0.0151	0.2374	0.1753	0.122
C214	0.0005(17)	0.2265(3)	0.2623(4)	0.130(5)

Atom	x/a	y/b	z/c	U_{eq}^{1}
C215	-0.0079(16)	0.1818(4)	0.3062(4)	0.134(6)
H215	-0.0139	0.1945	0.3448	0.161
C216	-0.0073(15)	0.1180(3)	0.2923(3)	0.123(6)
H216	-0.0129	0.0881	0.3217	0.148
C217	0.000(2)	0.0321(4)	0.2197(6)	0.220(12)
H271	-0.0743	0.0141	0.2254	0.331
H272	0.0640	0.0111	0.2451	0.331
H273	0.0099	0.0271	0.1787	0.331
C218	-0.004(3)	0.2946(4)	0.2760(7)	0.256(14)
H281	-0.0652	0.3143	0.2482	0.384
H282	0.0716	0.3135	0.2727	0.384
H283	-0.0197	0.3001	0.3159	0.384

Fortsetzung

4. Zusammenfassung

In dieser Arbeit ist die Chemie der Reaktionssysteme $M_2O_3/O(OCCF_3)_2$ (M = Sb, Bi) und $Bi(O_2CCF_3)_3/Bi$ beschrieben. Aus den gewonnenen Trifluoracetaten wurden Donor-Addukte mit Arenen, Trifluoressigsäure und Trifluoressigsäureanhydrid synthetisiert. Die Hydrolyse und Thermolyse der Trifluoracetate wurde mit und ohne strukturdirigierende Donorsolvatisierung durchgeführt.

Die folgenden Bismut- und Antimontrifluoracetate konnten hergestellt, isoliert und erfolgreich einer Kristallstrukturanalyse zugeführt werden:

Verbindung	Raumgruppe	Nummer
$\int_{\infty}^{1} [Bi(O_2CCF_3)_3]$	$P2_{1}/c$	6
$^{1}{}_{\infty}[\operatorname{Bi}(\operatorname{O_2CCF_3})_3 \cdot \operatorname{O}(\operatorname{OCCF_3})_2]^*$	<i>P</i> 2 ₁	10 ^[10]
$[(C_6H_6)_2Bi_3O(O_2CCF_3)_7]_2 \cdot C_6H_6$	PĪ	20
$^{1}_{\infty}\{[Bi(O_{2}CCF_{3})_{3}]_{4}\}\cdot 1,4-Me_{2}C_{6}H_{4}$	$P2_{1}/c$	17
$[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 1,4-Me_{2}C_{6}H_{4} mS2036$	<i>C</i> 2/ <i>c</i>	18a
$[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 1, 4 - Me_{2}C_{6}H_{4} mP712$	$P2_1/n$	18b
$^{1}_{\infty}$ {[Bi ₂ O(O ₂ CCF ₃) ₄] ₂ · 3 1,4-Me ₂ C ₆ H ₄ }	PĪ	19
Bi ₂ (O ₂ CCF ₃) ₄	$P2_{1}/n$	15
$Bi_2(O_2CCF_3)_4 \cdot 2 1, 4-Me_2C_6H_4$	PĪ	16
$^{2}_{\infty}$ [Bi ₃ (OH)(O ₂ CCF ₃) ₈]	$P2_{1}/c$	21
${}^{3}_{\infty}\{[Bi_{10}O_{8}(O_{2}CCF_{3})_{20}] \cdot [Bi_{6}O_{4}(OH)_{4}]\}$	IĀ	22
$^{2}_{\infty} \{ [Bi_{6}O_{5}(OH)_{3}(H_{2}O)_{2}(O_{2}CCF_{3})_{2}]_{2} [Bi(O_{2}CCF_{3})_{5}]_{3} \cdot 4 H_{2}O \}$	<i>C</i> 2/ <i>c</i>	23
$\int_{\infty}^{1} [Sb(O_2CCF_3)_3] mS176$	<i>C</i> 2/ <i>c</i>	3b
${}^{3}_{\infty}$ [Sb(O ₂ CCF ₃) ₃] <i>cP</i> 176*	P4 ₃ 32	3 a ^[7]
2_{∞} [Sb(O ₂ CCF ₃) ₃] <i>hP</i> 44	$P\overline{3}$	3c
$Sb(O_2CCF_3)_3 \cdot C_6(CH_3)_6$	P212121	25
$^{1}_{\infty}$ [Sb(O ₂ CCF ₃) ₃ · CF ₃ COOH]	$P2_{1}/c$	26
$\{[Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH\}_2$	PĪ	27
$^{2}_{\infty}$ {[Sb ₂ O(O ₂ CCF ₃) ₄] ₂ ·2 1,4-Me ₂ C ₆ H ₄ }	C2/c	24

Tab. 83: Kristallstrukturanalytisch untersuchte Verbindungen

* = Neubestimmung
4.1 Bismuttrifluoracetate

Das folgende Reaktionsschema gibt einen Überblick über die gefundenen Bildungs- und Reaktions- bzw. Zerfallswege der Bismuttrifluoracetate.

Schema 9: Bildungs- und Reaktions- bzw. Zerfallswege der in dieser Arbeit vorgestellten Bismutverbindungen

Die Umsetzung von Bismut(III)-oxid (7) mit Trifluoressigsäureanhydrid (2) führt zu einem Produktgemisch bestehend aus $Bi(O_2CCF_3)_3$ (6), $Bi(O_2CCF_3)_3 \cdot O(OCCF_3)_2$ (10) und Bi₃O(O₂CCF₃)₇ (12). 6 und 10 bilden bei der Festkörperassoziation supramolekulare Ketten. Die Verknüpfung der Bausteine zu den Ketten erfolgt über "nichtkovalente" sekundäre die die primären, starken Bi-O-Bindungen in Bismut-Sauerstoffbindungen, den quasimolekularen Bausteinen zu unsymmetrischen Koordinationsmustern ergänzen. Mit dem langsamen Fortschritt der mehrstufigen Reaktion des gelben Oxids zum farblosen Trifluoracetat treten schrittweise oxidärmere bzw. carboxylatreichere Verbindungen (Bi₂O_{3-x}(O₂CCF₃)_{2x} bzw. BiO_{1.5-x}(O₂CCF₃)_{2x} als Zwischenstufen auf, die durch Optimierung der Reaktionsbedingungen gezielt hergestellt und in Form der Arenkomplexe 19, 18a, 18b, 20, und 17 kristallstrukturanalytisch charakterisiert werden konnten (Schema 9). Die Einzelschritte der Synthese sind Gleichgewichtsreaktionen. Sie lassen sich durch geschickte Wahl der Reaktionsbedingungen, wenn auch unterschiedlich schnell und nicht immer vollständig, in die gewünschte Richtung lenken.

Im Festkörper des *para*-Xylol-Komplexes von $Bi_2O(O_2CCF_3)_4$, **19**, liegt eine dimere molekulare Einheit vor. In Kristallen der Arensolvate **20**, **18a** und **18b** liegt das oben bereits erwähnte basische Carboxylat $Bi_3O(O_2CCF_3)_7$ (**12**) jeweils als dimer-quasimolekulare Einheit vor. Bismut(III)-trifluoracetat bildet mit *para*-Xylol ein 4:1-Addukt **17**, welches im Festkörper eine komplexe supramolekulare Kettenstruktur besitzt.

Die schrittweise Thermolyse – ausgehend vom Trifluoressigsäureanhydrid-Addukt – führt in einem reversiblen Schritt unter Abgabe von Trifluoressigsäureanhydrid zunächst wieder zum einkernigen Bismut(III)-trifluoracetat **6**. Weitere Thermolyse liefert unter weiterer Trifluoressigsäureanhydrid-Abgabe dann das basische dreikernige Trifluoracetat **12**. **12** besitzt eine bemerkenswerte thermische Stabilität in flüssigen Methylbenzolen. So entsteht bei der Thermolyse von **6** in *para*-Xylol und nachfolgender schneller Kristallisation **18a**, im Verlauf weiterer Thermolyse wird bei etwas langsamerer Kristallisation **18b** gebildet. **18a** und **18b** sind als Stereoisomere zu betrachten und können nach Pearson als *mS*2036 bzw. *mP*712 bezeichnet werden und sind beide in *para*-Xylol zum vierkernigen **19** thermolysierbar. Das vierkernige basische Trifluoracetat **19** reagiert in Lösung bei Raumtemperatur teilweise wieder zurück zu **18a** bzw. **18b**. Triebkraft letztgenannter Reaktion ist wahrscheinlich die Abspaltung eines BiOCl-analogen BiO(O₂CCF₃).

6 lässt sich durch Reduktion mit Bismutmetall zu gelborangem Bismut(II)-trifluoracetat 15 reduzieren. Dieses erste solvatfreie reduzierte Hauptgruppenelementcarboxylat besitzt im

Festkörper die Schaufelradstruktur, die von vielen zweiwertigen Carboxylaten der Übergangsmetalle bekannt ist, für Hauptgruppenelemente aber bislang vergeblich gesucht wurde. Durch Umsetzung von 15 mit *para*-Xylol ist das zinnoberrote Bis(*p*-Xylol)-Addukt 16 zugänglich, welches im Gegensatz zu dem verwandten dunkelroten Hexamethylbenzol-Addukt 14 eine 1:2 Stöchiometrie besitzt und im Kristall nicht in Form supramolekularer Ketten, sondern in Form diskreter sandwichartiger Einheiten vorliegt.

Bei der Reaktion eines großen Überschusses 6 mit Wasser entsteht 21, welches im Festkörper aus gewellten supramolekularen Schichten besteht, die aus dreikernigen Einheiten mit einer μ_3 -OH-Gruppe und acht Trifluoracetatgruppen aufgebaut sind. Aufgrund der Bindungsverhältnisse ist 21 als ein parzielles Hydrolyseprodukt von 6 mit einer Formel Bi₂(OH)(O₂CCF₃)₅ · Bi(O₂CCF₃)₃ zu beschreiben.

Aus wässrigen Lösungen von 6 lassen sich je nach Reaktionsbedingungen das Raumnetzcarboxylat 22 bzw. das Schichtencarboxylat 23 kristallisieren. Wesentliche Bausteine beider Materialien sind komplexe $[Bi_6O_{8-x}(OH)_x]^{(2+x)+}$ -Kationen und $[Bi(O_2CCF_3)]_5^{2-}$ -Anionen. Sie bilden im Festkörper supramolekulare Strukturen mit hydrophoben Mikroporen zwischen zueinander gewandten CF₃-Gruppen.

Endprodukte der Hydrolysekaskade von Bismut(III)-trifluoracetat sind BiOF, β -Bi₂O₃ und α -Bi₂O₃, die bei unterschiedlichen Reaktionsbedingungen entstehen.

4.2 Antimon(III)-trifluoracetate

Die gefundenen Bildungs- und Reaktions- bzw. Zerfallswege der entdeckten Antimontrifluoracetate bzw. Polymorphe der Stammverbindung sind im folgenden Reaktionsschema zusammengefasst:

Schema 10: Bildungs- und Reaktions- bzw. Zerfallswege der in dieser Arbeit vorgestellten Antimonverbindungen

Die schnelle Bildungsreaktion des Antimon(III)-trifluoracetats erschwert die Charakterisierung der in Analogie zur Bildungsreaktion der analogen Bismutverbindung zu erwartenden Zwischenstufen wie SbO(O₂CCF₃), Sb₂O(O₂CCF₃)₄ und Sb₃O(O₂CCF₃)₇. Lediglich Sb₂O(O₂CCF₃)₄ konnte indirekt in Form des *para*-Xylol-Komplexes **24** strukturell charakterisiert werden. Die Existenz der Spezies Sb₃O(O₂CCF₃)₇ ist wahrscheinlich; konkrete Hinweise auf dessen Existenz wurden jedoch nicht erhalten.

Durch die Herstellung und kristallstrukturanalytische Charakterisierung von zwei neuen Modifikationen des Antimon(III)-trifluoracetats (Schema 10) konnte gezeigt werden, dass das Lösungsmittel eine entscheidende Rolle beim Aufbau supramolekularer Verbände spielt: aus Trifluoressigsäureanhydrid entsteht die monokline Modifikation mit Doppelkettenstruktur, aus *para*-Xylol die trigonale Modifikation mit einer Schichtenstruktur und aus der Gasphase die kubische Modifikation mit Raumnetzstruktur. Die Strukturen können als Resultat eines (Phasen)-Crystal Engineering durch selektive Blockierung einer unterschiedlichen Zahl von Koordinationsstellen in der gelösten Substanz angesehen werden.

Das Trifluoressigsäure-Addukt Sb $(O_2CCF_3)_3 \cdot CF_3COOH$ (26) wurde aus einer thermisch unbelasteten Lösung von Antimon(III)-trifluoracetat in Trifluoressigsäure erhalten. Es liegt im Kristall als supramolekulare Kette vor. 27 kristallisiert bei der Sublimation von mit Antimon(III)-trifluoracetat 3a Feuchtigkeitsspuren verunreinigtem kubischen als Nebenprodukt. Es ist als Trifluoressigsäure-Addukt eines dimeren Antimon(III)trifluoracetats zu verstehen und liegt im Festkörper als diskretes Molekül $\{[(Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH\}_2 \text{ vor.}$

Im Rahmen der systematischen Untersuchung der π -Arenkomplexe des Antimon(III)trifluoracetats wurde das Addukt Sb(O₂CCF₃)₃ · HMB (**25**) mittels einer Festkörperreaktion in nahezu quantitativer Umsetzung erhalten. **25** liegt im Festkörper in Form monomerer chiraler Moleküle vor. Im Zusammenhang mit dem lösungsmittelkontrollierten Crystal Engineering der Antimon(III)-trifluoracetate kann **25** als "nulldimensionales" Resultat der permanenten Blockierung sekundärer Koordinationsstellen des Antimonzentrums angesehen werden.

Durch thermische Belastung einer Lösung von Sb $(O_2CCF_3)_3$ in *p*-Xylol konnte **24**, der bereits oben erwähnte *para*-Xylol-Komplex des basischen Trifluoracetats Sb₂O $(O_2CCF_3)_4$, synthetisiert werden. Im Schichtenverband von festem **24** komplexiert jedes *para*-Xylol-Molekül als Packungsvermittler zwei Antimonatome benachbarter dimerer molekularer Einheiten.

5. Experimenteller Teil

Allgemeine Arbeitstechniken und Geräte

Soweit nicht anders beschrieben, wurden sämtliche Untersuchungen unter Inertgasbedingungen (über Phosphorpentoxid und Molsieb getrockneter und desoxygenierter Stickstoff minimaler Reinheit 4.6 oder Argon der Lieferqualität 4.8) in einer modifizierten Stock'schen Vakuumapparatur^[156] durchgeführt. Sämtliche Glasgeräte wurden mehrfach ausgeheizt, evakuiert und mit Inertgas geflutet.

Die zur Herstellung der Verbindungen 6, 21, 15, 3a und 3b, 3c, 27, 25 unter Vakuum ($p \approx 0.2$ bar N₂) abgeschmolzenen Duran-Glasampullen wurden in einem Aluminiumblockofen auf die in den einzelnen Synthesevorschriften beschriebenen Temperaturen erhitzt. Die Synthese des Schichtencarboxylats 23 und des dreidimensionalen Netzwerks 22 erfolgte in wässrigem Medium an Luft. Die Thermolyse von 22 und 23 zu BiOF, zum tetragonalen β -Bi₂O₃ bzw. zum monoklinen α -Bi₂O₃ erfolgte in offenen Glasgefäßen in einem Ofen bei den explizit angegebenen Bedingungen. Für die kristallstrukturanalytischen Untersuchungen wurden diffraktometergeeignete (Ein)kristalle unter dem Polarisationsmikroskop ausgesucht, wenn notwendig, mit Hilfe einer problemangepassten Kristallabfüllanlage in Glaskapillaren eingebracht und anschließend darin eingeschmolzen. Für Raman-spektroskopische Untersuchungen an empfindlichen Verbindungen wurden diese unter Schutzgas in Glaskapillaren eingebracht entsprechend und vermessen. IR-spektroskopische Untersuchungen empfindlicher Substanzen wurden als Nujolsuspensionen durchgeführt.

Zur Durchführung der Experimente, ihrer Aufarbeitung sowie zu spektroskopischen und analytischen Untersuchungen wurden folgende Geräte verwendet:

Ofen	Heizofen der Firma Nabertherm
Aluminiumblockofen	Stuart Scientific
Röntgenstrukturanalysen:	Stoe IPDS mit Mo-K $_{\alpha}$ -Strahlung und Kühlanlage der Firma
	Oxford-Cryosystems, Stoe Stadi CCD
Pulverdiffraktometrie:	Huber Pulverdiffraktometer mit ortsempfindlichem
	Detektor

Elementaranalysen (EA):	Perkin-Elmer Elementar-Analyser EA 240			
Massenspektrometrie (MS):	Finnigan MAT 90, MAT 311 A (EI-MS)			
	bzw. MAT 8200 (FAB); alle Werte sind in % auf den			
	höchsten Massenpeak angegeben (Rel. Int.).			
Differentialthermoanalysen:	Linseis L 62, STA 449C Jupiter			
¹ H-NMR-Spektroskopie:	Bruker AMX 400 (400.13 MHz), Tetramethylsilan			
	(TMS) bzw. Lösungsmittelsignal als interner Standard.			
	Bruker DRX 500 (500.13 MHz)			
¹³ C-NMR-Spektroskopie:	Bruker AMX 400 (100.62 MHz), Tetramethylsilan			
	(TMS) bzw. Lösungsmittelsignal als interner Standard.			
	Bruker DRX 500 (125.77 MHz)			
NIR-Spektroskopie:	NIR Spektrometer der Firma Foss			
IR-Spektroskopie:	FT-IR-Spektrometer FTS 3500 der Firma Bio-Rad,			
	gegebenenfalls mit ATR-Zubehör der Firma Pike (ZnSe-			
	Kristall)			
IR-Mikroskop:	IR-Mikroskop UMA 250 der Firma Bio-Rad			
Raman-Spektroskopie:	FT-IR-Spektrometer der Firma Bio-Rad FTS 3500 mit			
	Raman-Accessory			

Für die Dokumentation der Ergebnisse NMR-spektroskopischer Messungen erfolgt die Angabe der chemischen Verschiebung in der δ -Skala (in ppm). Die Kopplungskonstanten werden in Hertz (Hz) angegeben, wobei die Vorzeichen der Kopplung unberücksichtigt bleiben. Zur Charakterisierung der Spinmultiplizität werden folgende Abkürzungen verwendet:

s = Singulett

q = Quartett

m = Multiplett

Zur Angabe der Banden in IR- und Raman-Spektren werden folgende Abkürzungen verwendet: vs = very strong, s = strong, m = medium, w = weak, vw = sehr schwach, br = breit, vbr = sehr breit, sh = Schulter, sharp = scharf; alle Werte sind Wellenzahlen in cm⁻¹. Der Messbereich des IR-Spektrometers im MIR reicht von 4000 bis 400 cm⁻¹ bei Transmissionsmessungen (Nujolverreibungen); mittels ATR (abgeschwächte Totalreflexion) kann von 4000 bis etwa 510 cm⁻¹ gemessen werden, wobei ab 650 cm⁻¹ zu kleineren

Wellenzahlen hin verrauschte Signale detektiert werden. Das IR-Mikroskop besitzt detektorbegrenzt einen Messbereich von 4000 bis 700 cm⁻¹. Bei Spektren von Nujolsuspensionen müssen folgende Bereiche unberücksichtigt bleiben, obwohl dort teilweise Substanzbanden zu erwarten sind: die Bereiche von 2955-2850 cm⁻¹, um 1458, um 1377 und um 722 cm⁻¹. Die IR-Messungen besitzen eine Auflösung von 4 cm⁻¹. Bei Ramanspektroskopischen Messungen liegt das erfassbare Spektrum zwischen 4000 und etwa 80 cm⁻¹. Die Raman-Spektren besitzen eine Auflösung von 8 cm⁻¹.

Ausgangsverbindungen und Lösemittel

Chemikalien wurden in p.A.-Qualität von den gängigen Firmen (Sigma-Aldrich, Fluka, Janssen, Merck) bezogen und folgendermaßen getrocknet und gereinigt:

Pentan	Das Pentan wurde mehrere Tage über Natrium-Kalium-Legierung		
	refluxiert, anschließend auf Natriumdraht destilliert und unter		
	Schutzgas aufbewahrt.		
Flüssige Arene:	Die flüssigen Arene wurden mehrere Tage über		
	Lithiumaluminiumhydrid oder Natrium-Kalium-Legierung		
	refluxiert, anschließend auf Molekularsieb destilliert und unter		
	Schutzgas aufbewahrt.		
Feste Arene (bei RT):	Zur Reinigung wurden diese mehrfach sublimiert und unter		
	Inertgas aufbewahrt. Vor jeder Umsetzung wurden sie erneut		
	sublimiert.		
Dibismuttrioxid:	Das Metalloxid wurde vor jeder Umsetzung mehrere Stunden bei		
	erhöhter Temperatur (120 °C) am Hochvakuum getrocknet.		
Diantimontrioxid:	Diese Verbindung wurde, wie das Dibismuttrioxid, vor jeder		
	Umsetzung mehrere Stunden bei erhöhter Temperatur (180 °C) am		
	Hochvakuum getrocknet.		
Trifluoressigsäure-			
anhydrid (TFAA):	Diese Verbindung wurde wie erhalten eingesetzt.		

Trifluoressigsäure (TFA): Vor jeder Umsetzung wurde die Verbindung frisch destilliert.

Synthesevorschriften

5.1 Herstellung von $Bi(O_2CCF_3)_3$ (6)

Einwaage:	$Bi_{2}O_{3}(7)$	15.102 g (32.4 mmol)
	(F ₃ CCO) ₂ O (2)	im Überschuss (30 ml)

Eine Suspension von Bismut(III)-oxid 7 in Trifluoressigsäureanhydrid wird etwa 2 Wochen unter Rückfluss erhitzt. Ihre Farbe verändert sich mit zunehmender Reaktionszeit von schwach gelb nach farblos und der flüssige Reaktionspartner verschwindet allmählich. Nach Beenden der Reaktion liegt ein weißer pulveriger Feststoff mit grau-braunen Bestandteilen vor. Das überschüssige Trifluoressigsäureanhydrid wird mittels einer D3-Fritte vom Reaktionsgemisch abgetrennt. Lagert man die abgetrennte flüssige Phase bei 5 °C, erhält man daraus im Laufe einiger Tage kristallines, überwiegend nadeliges Material. Zerkleinern des pulverigen Feststoffes, Versetzen mit Pentan, mehrstündiges Rühren bei Raumtemperatur, erneutes Abfritten und Trocknen des so gereinigten Materials am Hochvakuum liefert Bismut(III)-trifluoracetat Bi(O₂CCF₃)₃ (**6**) in Form eines feinkristallinen farblosen Pulvers.

Mikrokristallines Material:

Summenformel:	$C_6O_6F_9Bi$
Molmasse:	548.04 gmol ⁻¹
Formel:	Bi(O ₂ CCF ₃) ₃
Ausbeute:	91 % (32.33 g, basierend auf Bi_2O_3)

Elementaranalyse:

	C (%)	H (%)
Berechnet	13.15	-
Gefunden	13.02	-

DTA/DSC: endotherme Peaks bei 152.1 °C und 165.8 °C **Massenspektrum (EI, FAB):** siehe folgende Seite

IR/Raman: siehe folgende Seite

Makrokristallines Material:

Für die Herstellung von makrokristallinem Material werden etwa 200 mg des wie oben beschrieben hergestellten Rohprodukts in einer Duranglasampulle in einem Aluminiumblockofen auf 125°C erhitzt. Im Verlauf von etwa zwei Wochen bilden sich dünne farblose Nadeln aus. Wird dieser Vorgang weiter fortgeführt, so ist eine nahezu quantitative Umwandlung beobachtbar.

Summenformel:	C ₆ O ₆ F ₉ Bi
Molmasse:	548.04 gmol ⁻¹
Formel:	Bi(O ₂ CCF ₃) ₃
Ausbeute:	95 % (190 mg, basierend auf dem Rohprodukt 6)

Elementaranalyse:

	C (%)	H (%)
Berechnet	13.15	-
Gefunden	13.02	-

DTA/DSC: zwei endotherme Effekte bei 154.9 und 166 °C

IR (Nujol) $[cm^{-1}]$:

1776 (m), 1634 (vs, vbr, sh), 1230 (sh), 1186 (s, br), 1150 (s, sh), 973 (vw), 862 (s, sharp, mit sh), 790 (s, sharp), 606 (m, sharp), 521 (m, sharp), 460 (w, sharp), 427 (m, sharp)

Raman $[cm^{-1}]$:

1685 (m-w), 1629 (vs mit sh), 1448 (s, br), 1270 (vw, sh), 1181 (w, sh), 871 (s), 852 (vs), 774 (vw), 724 (vw), 606 (w), 483 (s-vs), 458 (s, sh), 428 (w, sh), 368 (vw), 289 (w, sh), 184 (vs, sh), 154 (vs, sh), 111 (s, sh)

Gitterkonstanten weiterer untersuchter Kristalle: a = 8.9470(8) Å, b = 8.6912(5) Å, c = 15.6012(13) Å, $\beta = 91.60(11)^{\circ}$ (293 K)

Tab. 84: Massenspektrometrische Daten von	n 6 (EI (70 eV)	, FAB/NBA (He)):
---	------------------------	------------------

EI (70 eV)	Rel. Int.	Fragment	F	FAB/NBA	Rel. Int.	Fragment
M/z			N	M/z		
644.1	13.5	Bi ₃ O ⁺ od	er 6	591	26.7	Bi ₃ O ₄ ⁺
		Bi ₂ (O ₂ CCF ₃) ₂	-			

Fortsetzung

EI (70 eV)	Rel. Int.	Fragment	FAB/NBA	Rel. Int.	Fragment
M/z			M/z		
530.9	10.4	$Bi_2(O_2CCF_3)^+$	675	7.5	$\operatorname{Bi}_2\operatorname{O}_2(\operatorname{O}_2\operatorname{CCF}_3)_2^+$ oder $\operatorname{Bi}_3\operatorname{O}_3^+$
434.9	74.8	Bi ₂ O ⁺	659	3.3	$\operatorname{Bi}_2\operatorname{O}(\operatorname{O}_2\operatorname{CCF}_3)_2^+$ oder $\operatorname{Bi}_3\operatorname{O}_2^+$
417.9	13.1	Bi ₂ ⁺	563	21.4	$Bi_2O_2(O_2CCF_3)^+$
340.8	28.1	Bi(O ₂ CCF ₃)F ⁺	547	10.1	$Bi_2O(O_2CCF_3)^+$
322.0	44.7	$Bi(O_2CCF_3)^+$	451	10.1	$\mathrm{Bi_2O_2}^+$
290.8	6.4	Bi(CO ₂)F ₂ ⁺	434	7.5	Bi_2O^+
208.9	100.0	Bi ⁺	362	8.3	Bi(O ₂ CCF ₃)F ₂ ⁺
114.0	2.7	$CF_3COO(H)^+$	226	7.5	BiO ⁺
97.0	8.7	CF ₃ CO ⁺	209	71.2	Bi ⁺
94.9	6.6	CF ₂ CO ₂ ⁺	165.1	5.4	CF ₃ COCF ₃ ⁺
68.9	84.3	CF ₃ ⁺	154.1	47.4	$F_3C(F)CF_3^+$
50.9	32.3	CF ₂ ⁺	152.1	12.8	CF ₃ OCF ₃ ⁺
46.9	5.4	COF ⁺	136.1	58.8	CF ₃ CF ₃ ⁺
44.9	89.4	$CO_2(H)^+$	120	10.2	$CF_3CF_2^+$
44.0	75.1	$\mathrm{CO_2}^+$	115	7.8	CF ₃ COF ⁺
			95.1	8.1	$CF_2CO_2^+$
			89.1	95.2	CF_4^+
			77.0	89.5	FCOOF ⁺
			69.0	30.9	CF ₃ ⁺
			65.0	29.6	CF_2O^+
			62.0	40.0	$\rm CO_2F^+$
			51.0	100.0	CF_2^+

5.2 Herstellung von $Bi_3O(O_2CCF_3)_7$ (12)

Einwaage:	${\rm Bi}_{2}{\rm O}_{3}\left(7 ight)$	4.815g (10.33 mmol)
	(F ₃ CCO) ₂ O (2)	5 ml

Die Suspension von Bismut(III)-oxid 7 in Trifluoressigsäureanhydrid wird ca. 15 Tage unter Rückfluss erhitzt. Dabei verblasst die Farbe der Suspension allmählich, nach 15 Tagen ist alles Trifluoressigsäureanhydrid umgesetzt und es bleibt ein weißer Feststoff zurück, der in geringen Mengen auch braune und graue Bestandteile enthält. Die Suspension des Feststoffes in 15 ml Pentan wird mehrere Stunden bei Raumtemperatur gerührt. Das Abtrennen der überstehenden leicht grauen Lösung über eine D3-Fritte und anschließendes Trocknen des weißen Feststoffes am Hochvakuum liefert **12** in Form eines grauweißen Pulvers.

Summenformel:	$C_{14}O_{15}F_{21}Bi_3$
Molmasse:	1434.05 gmol ⁻¹
Formel:	Bi ₃ O(O ₂ CCF ₃) ₇
Ausbeute:	84 % (8.30 g, basierend auf $\mathrm{Bi}_2\mathrm{O}_3$ unter der Annahme, dass nur 12
	entsteht)

Elementaranalyse:

	C (%)	H (%)
Berechnet	11.72	-
Gefunden	11.23	-

DTA/DSC: endotherme Effekte bei 137.9 und 148.5 °C

IR (Nujol) $[cm^{-1}]$:

2177 (vw, br), 2030 (vw), 1783 (w), 1668 (s, vbr, nicht aufgelöste Banden), 1652 (s, vbr, nicht aufgelöste Banden), 1301 (vw), 1189 (s, vbr, nicht aufgelöste Banden), 890 (vw), 858 (m, mit sh), 793 (m, sharp) 605 (w, mit sh), 521 (m, mit sh), 449 (vw, sh), 436 (w, br) **Raman** [cm⁻¹]:

1607 (s, br, sh, unaufgelöste Schultern), 1452 (s), 1182 (w), 869 (s, sh), 853 (vs), 790 (vw), 727 (vw), 605 (w), 472 (m, br), 425 (sh), 297 (s), 174 (vs, br)

5.3 Herstellung von $Bi(O_2CCF_3)_3 \cdot O(O_2CCF_3)_2$ (10)

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	0.800g (13.04 mmol)
	(F ₃ CCO) ₂ O (2)	im Überschuss (2 ml)

Das Anhydrid-Addukt **10** wurde durch Herstellen einer gesättigten Lösung von **6** in TFAA (800 mg in 2 ml TFAA) und anschließendem Erhitzen hergestellt. Dabei löst sich der gesamte Feststoff auf. Durch langsame Temperaturerniedrigung wachsen nach einigen Tagen bei 5 °C aus der Lösung farblose Plättchen, die sich bei kurzem Lagern bei Raumtemperatur (einige Stunden) wieder langsam auflösen. Isolierter Feststoff verliert schnell TFAA.

Eine Elementaranalyse konnte aufgrund der Empfindlichkeit der Substanz nicht durchgeführt werden.

Summenformel:	$C_{10}O_9F_{15}Bi$
Molmasse:	758.08 gmol^{-1}
Formel:	$Bi(O_2CCF_3)_3 \cdot O(OCCF_3)_2$
Ausbeute:	wurde nicht bestimmt

Raman $[cm^{-1}]$:

1752 (w), 1664 (m), 1601 (m), 1467 (m, br), 1419 (vw), 1176 (m), 880 (s), 856 (w, sh), 814 (w), 600 (w), 491 (m), 292 (m, br), 183 (s), 153 (w, mit sh)

5.4 Herstellung von $[(C_6H_6)_2Bi_3O(O_2CCF_3)_7]_2 \cdot C_6H_6$ (20)

Einwaage:

Methode a:	$Bi(O_2CCF_3)_3$ (6)	250 mg
	C_6H_6	4 ml
Methode b:	Bi ₃ O(O ₂ CCF ₃) ₇ (12)	240 mg (0.167 mmol)
	C_6H_6	im Überschuss (4 ml)

Methode a:

6 löst sich in Benzol schlecht unter Bildung einer farblosen Lösung, aus der im Laufe mehrerer Wochen bei 5 °C farblose sehr dünne Nadeln wachsen, die für eine Röntgenstrukturanalyse ungeeignet sind.

Wird die Suspension 6 in Benzol etwa 24 Stunden unter Rückfluss erhitzt, löst sich dabei langsam immer mehr Feststoff auf und die Lösung nimmt allmählich eine intensiv gelbe Farbe an. Unlösliche Bestandteile werden mit Hilfe einer D3-Fritte abgetrennt und die Lösung bei 5 °C gelagert. Im Laufe eines Tages entstehen farblose blockförmige Kristalle.

Methode b:

240 mg des basischen dreikernigen Trifluoracetats **12** werden in 4 ml Benzol aufgelöst. Nach einstündigem Rühren bei RT werden die unlöslichen Bestandteile abgetrennt und die farblose Lösung auf etwa ein Drittel des ursprünglichen Volumens eingeengt. Im Laufe von ein bis zwei Tagen werden bei 5 °C farblose blockförmige Kristalle gewonnen.

Summenformel:	$C_{58}H_{30}O_{30}F_{42}Bi_6$
Molmasse:	3258.70 gmol ⁻¹
Formel:	$[Bi_3O(O_2CCF_3)_7]_2 \cdot 5 C_6H_6$
Ausbeute:	80 % (0.218 g, basierend auf $Bi_3O(O_2CCF_3)_7$ nach Methode b

Elementaranalyse:

	C (%)	H (%)
Berechnet	21.38	0.93
Gefunden	21.09	1.07

DTA/DSC: endotherme Effekte bei 97.55, 100.3 und 121.0 °C

Gitterkonstanten weiterer untersuchter Kristalle: a = 12.953(5) Å, b = 17.552(17) Å, c = 21.608(9) Å, $\alpha = 94.31(9)$, $\beta = 98.88(5)^{\circ}$, $\gamma = 106.78(9)$ (293 K)

5.5 Herstellung von $[Bi(O_2CCF_3)_3]_4 \cdot C_8H_{10}$ (17)

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	0.230 g (0.420 mmol)
	<i>para-</i> Xylol	im Überschuss (2 ml)

Der farblose Feststoff 6 wird in *p*-Xylol aufgelöst. Nach einstündigem Rühren bei RT werden die unlöslichen Bestandteile mittels einer D3-Fritte abgetrennt und die hellcremefarbene, nahezu farblose Lösung auf etwa ein Viertel des Volumens eingeengt. Im Laufe von ein bis

zwei Tagen wachsen daraus bei ca. 5 °C sehr schwach bräunlich gelbe dünne sechseckige Plättchen.

Es bleibt zu bemerken, dass diese Verbindung sich bei Lagerung bei RT und Anwesenheit von anhaftendem *p*-Xylol nach ca. 1 Woche langsam zersetzt, was an einer punktuellen Rotfärbung der Probe zu sehen ist. Die roten Bestandteile der Probe zerfallen nachfolgend langsam zu schwarzem Bismut und farblosem kristallinem Material.

Summenformel:	$C_{32}H_{10}O_{24}F_{36}Bi_4$
Molmasse:	2298.32 gmol ⁻¹
Formel:	$[\mathrm{Bi}(\mathrm{O}_{2}\mathrm{CCF}_{3})_{3}]_{4}\cdot\mathrm{C}_{8}\mathrm{H}_{10}$
Ausbeute:	78 % (188 mg, basierend auf Bi(O ₂ CCF ₃) ₃)

Elementaranalyse:

	C (%)	H (%)
Berechnet	16.72	0.44
Gefunden	16.85	0.43

DTA/DSC: 100 °C (endotherm), 119.7 °C (endotherm)

¹³C-NMR: Für NMR-spektroskopische Untersuchungen wurde eine Lösung von 200 mg **6** in *p*-Xylol hergestellt, mit wenig C₆D₆ versetzt und in einem NMR Rohr eingeschmolzen. Das Thermolyseexperiment erfolgte bei 140 °C. Nach Abkühlen der abgeschmolzenen NMR-Röhrchen wurde jeweils ein ¹³C{¹H}-NMR-Spektrum angefertigt.

Tab. 85: ${}^{13}C{}^{1}H$ -NMR-spektroskopische Daten von 6 in *p*-Xylol im Verlauf der Thermolyse

Bi(O ₂ CCF ₃) ₃ /	Nach 1 d	Nach 2 d	Nach 4 d	Nach 7 d	Zuordnung
para-Xylol					
165.38	165.00	165.06	165.10	165.21	q, RCO ₂ ,
					$^{2}J_{C,F} = 41.2 \text{ Hz} \text{ (unbehandelt)}$
					$^{2}J_{C,F} = 41.2 \text{ Hz} (\text{nach 7 d})$
135.08	135.08	135.08	135.08	135.09	m, quartäre Ring-C-Atome
129.59	129.59	129.59	129.59	129.59	m, tertiäre Ring-C-Atome
122.20	121.52	121.54	121.49	121.37	q, RCF ₃ ,
					${}^{1}J_{C,F} = 287.0 \text{ Hz} \text{ (unbehandelt)}$
					${}^{1}J_{C,F} = 287.0 \text{ Hz} (\text{nach 7 d})$
21.18	21.18	21.18	21.18	21.18	s, R-CH ₃ ,

IR (Nujol):

1780 (m, br), 1663 (s, vbr mit sh), 1653 (s, vbr mit sh), 1512 (w, sharp), 1340 (vw), 1188 (vs, vbr), 1170 (vs, vbr), 975 (vw, sharp), 862 (s, sharp), 817 (m, sharp), 794 (s, sharp), 685 (w, sharp), 612 (m, sharp), 542 (sh, w), 522 (m, sharp), 490 (w, sharp), 434 (m, br)

Gitterkonstanten weiterer untersuchter Kristalle:

a = 16.3171(15) Å, b = 19.181(4) Å, c = 20.145(2) Å, $\beta = 107.603(11)^{\circ}$ (293 K)

5.6 Herstellung von $[Bi_3O(O_2CCF_3)_7]_2 \cdot 4 C_8H_{10}$ (18a)

Methode a:

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	240 mg (0.167 mmol)
	para-Xylol	im Überschuss (3 ml)

Nach Auflösen des Feststoffs wird die Lösung etwa 24h unter Rückfluss (bei ca. 140 °C) erhitzt. Nach Abtrennen unlöslicher Bestandteile durch eine D3-Fritte und Einengen der intensiv gelben Lösung wachsen bei langsamem Abkühlen nahezu farblose Tafeln.

Methode b:

Einwaage:	Bi ₃ O(O ₂ CCF ₃) ₇ (12)	240 mg (0.167 mmol)
	para-Xylol	im Überschuss (3 ml)

Der farblose Feststoff **12** wird in *p*-Xylol aufgelöst. Nach einstündigem Rühren bei RT werden die unlöslichen Bestandteile mittels einer D3-Fritte abgetrennt und die schwach gelbe Lösung auf etwa ein Viertel des ursprünglichen Volumens eingeengt. Im Laufe von ein bis zwei Tagen kristallisieren bei 5 °C sehr schwach gelbe Tafeln aus.

Methode c:

Ein weiterer präparativer Zugang gelingt über die Thermolyse des Bismut(II)-trifluoracetats in Gegenwart eines Überschusses an *para*-Xylol in Gegenwart von Spuren an Luftsauerstoff (siehe auch 5.8). Triebkraft der Reaktion von entstehendem **19** zu **18a** und später **18b** ist die Abspaltung des BiOCl-analogen BiO (O_2CCF_3) . Die tafeligen Kristalle von **18a** sind gut von den intensiver gelben Stäbchen der Verbindung **19** zu unterscheiden und durch manuelle Auslese zu trennen.

Summenformel:	$C_{60}H_{40}O_{30}F_{42}Bi_6$
Molmasse:	3292.80 gmol ⁻¹
Formel:	[Bi ₃ O(O ₂ CCF ₃) ₇] ₂ · 4 C ₈ H ₁₀

Ausbeute:

Ausbeute nach Methode a nicht bestimmt

Ausbeute nach Methode b: 80 % (0.220 g, basierend auf [Bi₃O(O₂CCF₃)₇])

Ausbeute nach Methode c nicht bestimmt

Elementaranalyse:

	C (%)	H (%)
Berechnet	21.89	1.22
Gefunden	21.88	1.21

DTA/DSC: 87 °C (schwach, endotherm), 120 °C (schwach, endotherm), 143 °C (endotherm)

5.7 Herstellung von $[Bi_3O(O_2CCF_3)_7]_2 \cdot 4 C_8H_{10}$ (18b)

Die Synthese erfolgt wie in 5.6 unter Methode a beschrieben. Die entstandene intensiv gelbe Lösung wird bei 160 °C etwa weitere 24h behandelt. Die entstandene honigfarbene Lösung wird auf etwa ein Viertel des Volumens eingeengt. Bei 5 °C bilden sich im Laufe einer Woche sehr schwach gelbe tafelige Kristalle mit zum Teil mehreren Millimetern Kantenlänge und gut ausgebildeten Flächen.

Summenformel:	$C_{60}H_{40}O_{30}F_{42}Bi_6$
Molmasse:	3292.80 gmol ⁻¹
Formel:	$[Bi_3O(O_2CCF_3)_7]_2 \cdot 4 C_8H_{10}$
Ausbeute:	wurde nicht bestimmt, ist aber mit der von 18a vergleichbar
Elementaranalyse/DTA:	siehe 5.6

Gitterkonstanten weiterer untersuchter Kristalle:

 $a = 12.2693(11) \text{ Å}, b = 22.8987(19) \text{ Å}, c = 16.2389(14) \text{ Å}, \beta = 108.276(10)^{\circ} (120 \text{ K});$ $a = 12.3200(10) \text{ Å}, b = 23.0486(17) \text{ Å}, c = 16.3409(13) \text{ Å}, \beta = 107.759(9)^{\circ} (220 \text{ K})$

5.8 Herstellung von $Bi_2O(O_2CCF_3)_4 \cdot 3 C_8H_{10}$ (19)

Einwaage:	$Bi_2(O_2CCF_3)_4$ (15)	0.250 g (0.287 mmol)
	para-Xylol	im Überschuss (3 ml)

Der goldgelbe Feststoff Bi₂(O₂CCF₃)₄ wird in *p*-Xylol aufgelöst. Die sofortige Rotfärbung zeigt die unmittelbare Bildung eines Charge-Transfer-Komplexes zwischen den π -Systemen der Aromaten und den lewisaciden Bismut-Zentren an. Lässt man die Lösung mit der entstandenen Verbindung (siehe auch 5.13) bei Raumtemperatur mehrere Stunden rühren, so fällt nach und nach Bismut aus der Lösung aus und die rote Farbe der Lösung hellt sich mehr und mehr auf. Nach einem Tag wird die Lösung von ausgefallenem Bismut und vorhandenen Schwebstoffen befreit und auf ca. ein Viertel des ursprünglichen Volumens eingeengt. Lagern der jetzt gelben Lösung bei etwa 5 °C lässt innerhalb von ein bis zwei Tagen schwach gelbe, stäbchenförmige Kristalle wachsen, wobei immer nahezu farblose Tafeln von **18a** und nach längerem Lagern auch Kristalle von **18b** entstehen. Durch manuelle Auslese gewonnene Kristalle von **19** können am HV kurz getrocknet werden.

Summenformel:	$C_{40}H_{30}O_{18}F_{24}Bi_4$
Molmasse:	2090.56 gmol ⁻¹
Formel:	$[Bi_2O(O_2CCF_3)_4]_2 \cdot 3 C_8H_{10}$
Ausbeute:	wurde nicht bestimmt

Elementaranalyse:

	C (%)	H (%)
Berechnet	22.98	1.45
Gefunden	23.68	1.53

5.9 Herstellung von $Bi_3(OH)(O_2CCF_3)_8$ (21)

Die "Synthese" erfolgt wie in Kap. 5.1 bei der Gewinnung von makrokristallinem Material von **6** beschrieben; lediglich die Temperatur beträgt hier ca. 140 °C. Durch eingeschleppte Spuren von Feuchtigkeit oder Reaktion von OH-Gruppen der Glaswand mit dem nadeligen

Hauptprodukt $Bi(O_2CCF_3)_3$ entsteht **21**, welches sich in Form einiger farbloser kleiner Plättchen an der Glaswand der Ampulle abscheidet. Bemerkenswert in diesem Zusammenhang ist, dass der Rückstand bei dieser Temperatur eine zähflüssige braune bis schwarze Konsistenz aufweist. Bei RT erstarrt der Rückstand zu glasartigem Material der gleichen Farbe.

Eine detaillierte Analytik konnte aufgrund der Vermischung mit dem Hauptprodukt und der zu geringen Menge nicht durchgeführt werden. Ferner ist die Substanz äußerst empfindlich gegenüber weiterer Hydrolyse.

Summenformel:	$C_{16}HO_{17}F_{24}Bi_3$
Molmasse:	1548.11 gmol ⁻¹
Formel:	$Bi_2(OH)(O_2CCF_3)_5 \cdot Bi(O_2CCF_3)_3$
Ausbeute:	>2 % (basierend auf Bi(O ₂ CCF ₃) ₃)
Elementaranalyse:	konnte aufgrund zu geringer Menge nicht durchgeführt werden.
IR (Nujol) [cm ⁻¹]:	
3675 (w, sharp), 178	5 (m, sharp), 1666 (vs, br), 1192 (vs, br), 1154 (vs, sh), 861 (m), 795 (m),
728 (s), 708 (w, sh),	519 (w), 420 (w)

5.10 Herstellung von $[Bi_{10}O_8(O_2CCF_3)_{20}][Bi_6O_4(OH)_4]$ (22)

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	2.740 g (5.00 mmol)
	Wasser	5.0 ml
für eine Soll-Konz	entration von 1 mol/l	
Finwaaga	$B_i(\Omega_{\bullet}CCE_{\bullet})_{\bullet}(6)$	1.370 g (2.45 mmol)
Elliwaage.	$\mathbf{BI}(\mathbf{O}_2\mathbf{C}\mathbf{C}\mathbf{\Gamma}_3)_3(0)$	1.370 g (2.43 mmor)
	wasser	5.0 ml
für eine Soll-Konz	entration von 0.5 mol/l	
Einwaage:	$Bi(O_2CCF_3)_3$ (6)	0.685 g (1.25 mmol)
	Wasser	5.0 ml
a : a 11 m		1

für eine Soll-Konzentration von 0.25 mol/l

Allgemeine Verfahrensweise:

6 wird unter Schutzgas eingewogen. Dann wird der Feststoff mit dem entsprechenden Volumen an bidestilliertem, durch Ultraschall entgastem Wasser versetzt. Nicht lösliche bräunliche Bestandteile werden durch Filtration entfernt und anschließend der pH-Wert der Lösung gemessen.

Für die Gewinnung von kristallinem Material von **22** wird eine Lösung der Sollkonzentration 0.5 mol/l stark eingeengt und die entstandene merklich viskose Lösung wird langsam in einem liegend zu lagernden Reagensglas oder einem vergleichbaren Gefäß eingedampft. Nach etwa zwei bis drei Wochen haben sich vorwiegend isometrische, aber auch teils dreieckige, teils sechseckige, teils stäbchenförmige kleine und kleinste Kristalle neben großen Teilen mikrokristallinen verwachsenen Materials gebildet. Das entstandene Rohprodukt zeigt nach einigen Tagen Lagerung an Luft eine leichte Rosafärbung, ohne dass sich die entstandenen luft- und vakuumstabilen Kristalle sichtbar verändern. Nach etwa 3-4 Wochen hat sich das ursprünglich farblose Gemisch über rosa nach gelblich verfärbt. IR-spektroskopisch ist während dieser Zeit keine wesentliche Änderung der Bandenlagen und Intensitäten feststellbar. Gleiches gilt für aufgenommene Raman-Spektren.

Summenformel:	$C_{40}H_4O_{56}F_{60}Bi_{16}$
Molmasse:	5864.12 gmol ⁻¹
Formel:	$[Bi_{10}O_8(O_2CCF_3)_{20}][Bi_6O_4(OH)_4]$
Ausbeute:	wurde nicht bestimmt

Elementaranalyse: wurde nicht durchgeführt

NIR: Bei dem aus konzentrierteren Lösungen (0.5molar, 1molar) gewonnenen Material wird mit einer Intensität, die proportional zur Konzentration ist, eine Bande bei 425 nm gefunden, wie sie auch für α -Bi₂O₃ typisch ist. In Material, das aus 0.25molaren Lösungen stammt, ist die Bande nicht nachweisbar.

IR (Nujol) $[cm^{-1}]$:

3659 (w, sharp), 3556 (w, sharp), 1661 (br, mit sh), [1458 (vs)], 1192 (vs, br), 1155 (vs, sh), 852 (m), 794 (m), [726 (s)], 521 (m, br), 422 (vw) **Raman** [cm⁻¹]:

5.11 Herstellung von { $[Bi_6O_5(OH)_3(H_2O)_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_5]_3 \cdot 4$ H_2O } (23)

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	0.660 g (0.18 mmol)
	Wasser	2.5 ml

Die allgemeine Präparationsvorschrift wurde schon in 5.10 erläutert. Im Folgenden wird die Gewinnung aus einer Lösung der Sollkonzentration 0.5 mol/l beschrieben: Ohne weiter einzuengen, wird die Lösung in eine Kristallisierschale eingebracht, mit einem Uhrglas mit Schlitz, perforierter Frischhaltefolie o.ä. abgedeckt und langsam eingedampft. Nach etwa 3-4 Tagen entsteht zunächst ein weißes Gel mit Essigsäuregeruch. Lässt man weiter die flüchtigen Bestandteile verdunsten, entsteht ein weißes feinkristallines Material, welches wenig grobkristalline Anteile in Form von teils dreieckigen tafeligen, teils dünnen sechseckigen tafeligen, teils stäbchenförmigen kleinen Kristallen enthält. Die Kristalle sind luft- und vakuumstabil. Das Rohmaterial ist zunächst farblos, nach mehreren Wochen Lagern an Luft und Licht nimmt das Gemisch eine sehr schwach gelbe Farbe an. IR- und Ramanspektroskopisch sind über diesen Zeitraum - wie bei **22** - keine wesentlichen Veränderungen detektierbar.

 Summenformel:
 $C_{38}H_{22}O_{62}F_{57}Bi_{15}$

 Molmasse:
 5688.26 gmol⁻¹

 Formel:
 $[Bi_6O_5(OH)_3(H_2O)_2(O_2CCF_3)_2]_2[Bi(O_2CCF_3)_5]_3 \cdot 4 H_2O$

 Ausbeute:
 wurde nicht bestimmt

Elementaranalyse:

	C (%)	H (%)
Berechnete Werte für 22	8.19	0.07
Berechnete Werte für 23	8.02	0.39
Gefunden	7.81	0.25

Die gefundenen Werte gelten für ein Gemisch bestehend aus 22 und 23 IR (ATR) [cm⁻¹]:

3655 (w, sharp), 3555 (w, sharp), ca. 3400 (w, vbr), ca. 3080 (vw, sh) 1628 (vs mit sh), 1440 (s), 1185 (vs), 1145 (vs), 851 (m, sharp), 793 (m-s, sharp), 723 (s-vs, sharp)

Raman $[cm^{-1}]$ (Auflösung 4 cm⁻¹):

1694 (w, sharp), 1653 (w, br, sh), 1642 (w, br, sh), 1452 (vs), 1230 (w, br, sh), 1198 (w, br, sh), 1179 (w, br, sh), 861 (s-vs), 845 (m, sh), 735 (vw), 727 (vw, sh), 606 (w), 520 (vw), 464 (w, sh, br), 444 (w, br, sh), 420 (w, br, sh), 404 (w, sh, br), 295, 288 (w, br, sh), 265 (w, sh), 248 (vw, br), 179 (vs, sharp), 160 (s-vs), 140 (s, sh), 118 (s, sh)

Die Messungen (auch Strukturanalysen) wurden mehrfach an verschiedenen Proben wiederholt.

5.12 Herstellung von BiOF aus dem Gemisch der Hydrolyseprodukte 22 und 23

Wie im Ergebnisteil bereits erwähnt, sind neben der Reaktionsdauer die Temperatur und die Korngröße des eingesetzten Materials richtungsweisende Faktoren für die Zusammensetzung der Produkte des Thermolyseprozesses der Verbindungen 22 und 23. Deshalb werden etwa 150 mg-Proben des Hydrolyseproduktes aus 22 und 23 vor der Thermolysereaktion in einem Achatmörser gut homogenisiert und dann gleichmäßig dünn im Reaktionsgefäß, einem offenen Duran- oder Quarzglasgefäß mit einem Innendurchmesser von ca. 10-15 cm, verteilt und für die angegebene Zeit in einem Ofen erhitzt, der vor Beginn der Thermolyse auf die im Ergebnisteil angegebene Temperatur vorgeheizt wird. Nach Ende der Reaktionszeit wird das Gefäß aus dem Ofen genommen. Nach Abkühlen auf Raumtemperatur werden von allen thermolysierten Proben IR-Spektren (ATR) und Raman-Spektren in Glaskapillaren aufgenommen; es zeigen sich bei keiner der untersuchten Proben Banden, wie sie für Trifluoracetatliganden typisch sind (symmetrische und antisymmetrische CO-Valenzschwingungen bei ca. 1650 und 1450 cm⁻¹, CF₃-Valenzschwingungen bei ca. 1180-1200 cm⁻¹, C-C-Valenzschwingungen bei ca. 850 cm⁻¹). Ergänzend werden von den meisten Proben Pulverdiffraktogramme angefertigt.

Bei einer Reaktionstemperatur von ca. 330 °C über einen Zeitraum von ca. 20 Stunden wird ein nahezu farbloses homogenes Pulver mit einem kaum merklichen Gelbstich gebildet. Der Vergleich eines aufgenommenen Pulverdiffraktogramms mit Literaturdaten von BiOF zeigen, dass die Probe zum großen Teil aus BiOF besteht (siehe Ergebnisteil).

IR [cm⁻¹]: 1466 (w, sh), 1393 (m)

Raman [cm⁻¹]: 418 (vw, br), 238 (w, br), 164 (vs)

5.13 Herstellung des tetragonalen β -Bi₂O₃ (7b) aus dem Gemisch der Hydrolyseprodukte 22 und 23

Die Art der Reaktionsführung ist bereits in 5.12 beschrieben. Die Thermolyse des Gemisches der Hydrolyseprodukte aus **22** und **23** bei etwa 400 °C führt zu phasenreinem β -Bi₂O₃, erkennbar an der in der Hitze braunorangen Farbe, die beim Abkühlen nach gelborange verblasst. Das nach etwa ein bis zwei Tagen Reaktionszeit gewonnene Oxid wurde pulverröntgenographisch und Raman-spektroskopisch eindeutig als tetragonale β -Modifikation identifiziert (siehe Ergebnisteil).

Die β -Form wandelt sich bei RT langsam in die schwach gelbe monokline α -Modifikation um.

Raman $[cm^{-1}]$:465 (m), 314 (vs), 232 (w), 157 (w, sh), 127 (s), 92 (s)[Literaturdaten: 462 (m, br), 311 (vs), 124 (m)^[82]]

5.14 Herstellung des monoklinen α -Bi₂O₃ (7a) aus dem Gemisch der Hydrolyseprodukte 22 und 23

Die Reaktion wird wie in 5.12 beschrieben bei ca. 450 °C durchgeführt. Dabei entsteht nach etwa 30 h quantitativ in der Hitze intensiv gelbes, bei Raumtemperatur schwach gelbes α -Bi₂O₃.

Bei Temperaturen zwischen 400 und 450 °C wird noch die Bildung der tetragonalen Modifikation als Nebenprodukt beobachtet. Nur bei einer Temperatur von etwa 450 °C kann die schnelle quantitative Umwandlung der orangegelben β -Modifikation in die schwach gelbe α -Modifikation sichergestellt werden.

Das nach etwa 3 Tagen Reaktionszeit bei 450 °C entstandene mikrokristalline Oxid ist in der Hitze intensiv gelb, in der Kälte schwach gelb. Es wurde pulverröntgenographisch, NIR- und Raman-spektroskopisch eindeutig als monokline α -Modifikation identifiziert (siehe Ergebnisteil). Vergleichsmessungen wurden an käuflichen Proben von Bi₂O₃ durchgeführt und ergaben sehr gute Übereinstimmungen.

Raman $[cm^{-1}]$:

448 (vs, br), 411 (m, br, sh), 314 (vs, br), 281 (s, br, sh), 211 (s), 184 (s), 152 (s), 139 (m), 119 (vs), 103 (m, sh), 94 (s), 84 (w, sh)

[Literaturdaten: 446 (s, br), 410 (vw, br), 314 (vs, br), 282 (m, br), 210 (s), 184 (s), 151 (s), 139 (m), 118 (vs), 102 (w, sh), 93 (vs), 83 (s), 67 (s), 59 (m), 53 (vs)^[81]] NIR: eine intensive Bande bei 425 nm

5.15 Herstellung von $Bi_2(O_2CCF_3)_4$ (15)

Einwaage:	$Bi(O_2CCF_3)_3$ (6)	0.216 g (0.394 mmol)
	Bismutpulver	41.2 mg (0.197 mmol)

Methode a:

Das Rohprodukt von 6 wird mit Bismutpulver in einer Duranglasampulle eingewogen, innig vermengt und nach Abschmelzen der Ampulle in einem Aluminiumblockofen auf 120 °C erhitzt. Nach einigen Tagen wachsen in der kälteren Zone der Ampulle an der Glaswand gelborange Stäbchen.

Methode b:

Die Substanzen werden unter Schutzgas vermengt und das Gemenge wird bei etwa 200 °C aufgeschmolzen. Die entstandene, in der Hitze rotbraune, Schmelze wird langsam abgekühlt und der entstandene gelbbraune Schmelzkuchen fein zerkleinert. Durch langsame Sublimation des Rohproduktes in einer Ampulle bei etwa 120 °C entsteht im Laufe mehrerer Tage kristallines $Bi_2(O_2CCF_3)_4$ in Form gelboranger Stäbchen. Die Reaktion kann auch in einem Ofen mit einem Temperaturgefälle von etwa 20 °C (140-120 °C) durchgeführt werden.

Summenformel:	$C_8O_8F_{12}Bi_2$
Molmasse:	870.04 gmol ⁻¹
Formel:	$Bi_2(O_2CCF_3)_4$
Ausbeute:	90 % (231.5 mg, basierend auf $Bi(O_2CCF_3)_3$) nach Methode b

Elementaranalyse:

	C (%)	H (%)
Berechnet	11.04	-
Gefunden	10.86	-

DTA/DSC:146.8 °C (endotherm)NIR:eine Bande bei ca. 440 nm

IR-Daten für 15	Raman offset für 15	IR für 14 (IR-	Raman offset für 14	Zuordnung
(Nujol)		Mikroskop)		
		3082 (m)	2916 (m-w, br)	$\nu_{CH \ streck}$
		3019 (s)		$v_{CH \ streck}$
		2948 (vs)		$v_{CH \ streck}$
2422 (vw, br)		2421 (w)		
1782 (m, sh zu		1788 (w)		Vasymm streck CO2
kleineren WZ)				
		1746 (w)		Vasymm streck CO2
1645 (s, br)		1634 (vs)		Vasymm CO2
		1593 (s)	1565 (vw)	V _{C=C Aren}
1454 (vs, sh zu	1438 (s)	1445 (vs)	1438 (w)	V _{symm} streck CO2
höheren und				
kleineren WZ)				
1375 (s, sh zu	1329 (vw, br)	1390 (s)	1393 (w)	$v_{symm\ streck\ CO2}$
kleineren WZ)				
1225 (s, sh)		1247 (s)	1293 (w-m)	V _{C-F streck}
1187 (s, br)	1182 vw (mit sh)	1187 (vs)	1199 (vw)	$v_{C-F \ streck}$
1127 (s, sh)				V _{C-F streck}
		999 (m)		
847 (s, sharp)	850 (s-vs sh zu	846 (m)	848 (w)	V _{C-C streck}
	kleineren WZ)			
791 (s, sharp)		796 (m)		$\delta_{OCO\ def}$
725 (s, sh zu		728 (m)	726 (vw)	δ _{OCO def}
kleineren WZ)				
609 (w)		603 (m)		$\delta_{CF3 def}$
521 (m)				δ _{CF3 def}

Tab. 86: IR- und Raman-spektroskopische Daten für 15 und 14 (alle Werte in d	cm ⁻¹):
--	---------------------

IR-Daten für 15	Raman offset für 15	IR für 14 (IR-	Raman offset für 14	Zuordnung
(Nujol)		Mikroskop)		
	467 (vw)		460 (w, sh)	Bi-O-Streck-
444 (m, br)			448 (w, sh)	schwingungen,
			376 (vw)	rock-, wag-
			224 (vw)	und
	176 (s, sh)		166 (vs, sh)	Gittermoden
	150 (vs, sharp)		155 (vs)	ν_{Bi-Bi}
	119 (s, sh)			Gittermoden

Fortsetzung

Tab.	87: Massens	pektrometrische	Daten (EI-N	MS. 70 eV) von 15
	0		2		,

M/z ber.	M/z gef.	Rel. Int.	Zuordnung zu Fragment
870.0	869.8	39.1	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_4^+$
757.0	758.0	69.0	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_3^+$
644.0	643.6	10.0	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)_2^+$
531.0	530.5	6.9	$\operatorname{Bi}_2(\operatorname{O}_2\operatorname{CCF}_3)^+$
491.0	490.6	0.9	Bi ₂ OF ₃ ⁺
472.0	471.6	3.2	Bi ₂ OF ₂ ⁺
453.0	452.7	5.2	Bi ₂ OF ⁺
437.0	436.7	3.0	Bi_2F^+
434.0	434.7	12.9	Bi_2O^+ oder $\operatorname{Bi}(O_2\operatorname{CCF}_3)_2^+$
418.0	417.7	17.4	Bi ₂ ⁺
341.0	340.7	13.6	$BiF(O_2CCF_3)^+$
322.0	321.8	65.9	$\operatorname{Bi}(O_2\operatorname{CCF}_3)^+$
291.0	290.8	2.1	$\operatorname{Bi}(O_2 CF_2)^+$
228.0	228.0	2.7	BiF^+
225.0	225.0	7.2	BiO+
209.0	209.0	100.0	Bi ⁺
113.0 (114.0)	114.1	3.8	$CF_3COO(H)^+$
97.0	97.1	6.3	CF ₃ CO ⁺
94.0	95.1	9.2	$CF_2CO_2^+$
85.0	86.1	2.4	CF_3O^+

M/z ber.	M/z gef.	Rel. Int.	Zuordnung zu Fragment
78.0	78.1	2.4	CF_2CO^+
69.0	69.1	73.6	CF ₃ ⁺
51.0	51.1	53.0	CF_2H^+
50.0	50.1	28.5	CF ₂ ⁺
45.0	45.2	81.5	$\rm CO_2 H^+$
44.0	44.2	12.9	CO_2^+

Fortsetzung

5.16 Herstellung von $Bi_2(O_2CCF_3)_4 \cdot 2 C_8H_{10}$ (16)

Einwaage:	Bi ₂ (O ₂ CCF ₃) ₄ (15)	0.250 g (0.287 mmol)
	para-Xylol	im Überschuss (3 ml)

Der goldgelbe, kristalline Feststoff **15** wird in *p*-Xylol aufgelöst. Die sofortige Rotfärbung zeigt eine unmittelbare Reaktion im Sinne der Bildung eines Charge-Transfer-Komplexes zwischen den π -Systemen der Aromaten und den lewisaciden Bi^{II}-Zentren an. Die Lösung wird bei Raumtemperatur noch eine halbe Stunde gerührt und dann eingeengt. Dabei ausfallendes Bismutmetall wird mittels einer D3-Fritte abgetrennt. Innerhalb eines Tages wachsen zinnoberrote Tafeln aus der filtrierten Lösung.

Summenformel:	$C_{24}H_{20}O_8F_{12}Bi_2$
Molmasse:	1082.36 gmol ⁻¹
Formel:	$Bi_2(O_2CCF_3)_4 \cdot 2 C_8H_{10}$
Ausbeute:	79 % (245.7 mg, basierend auf Bi ₂ (O ₂ CCF ₃) ₄)

Elementaranalyse:

	C (%)	H (%)
Berechnet	26.63	1.86
Gefunden	28.09	1.9

DTA: 65.91 °C (endotherm)

IR (Nujol) $[cm^{-1}]$:

1886 (w, sh), 1786 (m, br mit sh), 1663 (s, vbr, sh), 1517 (s, sharp), 1220 (vs, sh), 1189 (vs, br, sh), 1127 (s, sh), 1044 (w, sh), 856 (m, sh), 794 (vs, sharp), 725 (s), 611 (m, sharp), 550 (w, br), 521 (m, sharp), 484 (s, sharp), 434 (w, sh), 410 (w, sh)

¹³C-NMR (C₆D₆):

Für die NMR-spektroskopische Untersuchung wurde eine Lösung von etwa 240 mg in 1 ml *p*-Xylol hergestellt. Die Art der Reaktionsführung und Messung ist bereits in 5.4 erwähnt.

 $^{13}C[^{1}H]$ - NMR-Daten (in ppm): 172.4 (m, br, COO, $^{2}J_{CF}$ Kopplung nicht aufgelöst), 115.75 (q, CF₃, $^{1}J_{CF}$ = 288.2 Hz), 135.15 (s), 129.64 (s, Ringkohlenstoffatome), 21.14 (s, Methylkohlenstoffatome)

Gitterkonstanten weiterer untersuchter Kristalle:

a = 9.0315(11) Å, b = 9.6301(11) Å, c = 9.9395(11) Å, $\alpha = 80.522(13)^{\circ}$, $\beta = 77.440(14)^{\circ}$, $\gamma = 78.860(13)$ (220 K)

5.17 Herstellung von $Sb(O_2CCF_3)_3$ (3) (Rohprodukt)

Einwaage:	Sb_2O_3	3.800g (13.04 mmol)
	(F ₃ CCO) ₂ O (2)	im Überschuss (5 ml)

Eine Suspension von Antimon(III)-oxid in Trifluoressigsäureanhydrid wird ca. 6 Tage unter Rückfluss erhitzt. Nach Entfernen des überschüssigen Trifluoressigsäureanhydrids mittels einer D3-Fritte wird ein weißer mikrokristalliner Feststoff erhalten, der in geringen Mengen auch braune und graue Bestandteile enthält. Der Feststoff wird in 15 ml Pentan suspendiert und mehrere Stunden bei Raumtemperatur gerührt. Das Abtrennen der überstehenden leicht grauen Lösung über eine D3-Fritte und anschließendes Trocknen des weißen Feststoffes am Hochvakuum liefert **3b** in Form eines weißen Pulvers. Das Vorliegen der reinen monoklinen Modifikation wurde an Hand des Vergleichs von thermoanalytischen und Ramanspektroskopischen Daten mit Daten des makrokristallinen Materials von **3b** bestätigt.

Summenformel:	$C_6O_6F_9Sb$
Molmasse:	460.81 gmol ⁻¹
Formel:	Sb(O ₂ CCF ₃) ₃
Ausbeute:	$95 \% (11.41 \text{ g}, \text{basierend auf } \text{Sb}_2\text{O}_3)$

Elementaranalyse:

	C (%)	H (%)
Berechnet	15.64	-
Gefunden	14.99	-

DTA/DSC: ein endothermer Effekt bei 103 °C

Raman: siehe 5.18

5.18 Herstellung von Kristallen der monoklinen Modifikation des $Sb(O_2CCF_3)_3$ (3b)

Die monokline Modifikation des Antimon(III)-trifluoracetats ist phasenrein sowohl thermisch als auch nasschemisch präparativ zugänglich.

a) thermisch:

Etwa 200 mg des nach der in Kap. 5.17 beschriebenen Methode synthetisierten Rohprodukts werden in einer Duranglasampulle auf ca. 80 °C erhitzt. Nach mehreren Tagen scheiden sich farblose Stäbchen an der Glaswand ab.

b) nasschemisch:

Die monokline Modifikation des Antimon(III)-trifluoracetats fällt bereits bei der Synthese an (siehe auch Kap. 5.17 und Ergebnisteil). Aus der überstehenden Lösung lässt sie sich durch Temperaturerniedrigung in Form farbloser feiner verzwillingter Nadeln erhalten.

Phasenreines Material lässt sich durch Auflösen einer Suspension des Rohproduktes (oder der kubischen oder trigonalen Modifikation) in äquimolarer Menge Trifluoressigsäureanhydrid gewinnen. Langsames Abkühlen lässt aus der gesättigten Lösung innerhalb eines Tages farblose Nadeln wachsen.

Summenformel:	$C_6O_6F_9Sb$
Molmasse:	460.81 gmol ⁻¹
Formel:	Sb(O ₂ CCF ₃) ₃
Ausbeute:	wurde nicht bestimmt, kann aber bei a) und b) als quantitativ angesehen
	werden

Elementaranalyse:

	C (%)	H (%)
Berechnet	15.64	-
Gefunden	15.36	-

DTA/DSC: ein endothermer Peak bei 103.2 °C und eine Schulter bei 99 °C. Untersuchungen am Rohmaterial ergeben nahezu identische Messungen. Offensichtlich fällt das synthetisierte Rohprodukt in der monoklinen Modifikation an.

Raman: 1719 (w, vbr, mit sh), 1663 (w, vbr, mit sh), 1439 (vw sh), 1400 (vw, sh), 871 (s-vs), 539 (m, br, sh), 516 (w, sh), 424 (w, br), 313 (m-s, br, sh), 192 (m, br, sh), 142 (s-vs)

Gitterkonstanten weiterer untersuchter Kristalle:

a = 20.062(2) Å, b = 12.9409(14) Å, c = 10.7804(10) Å, $\beta = 117.216(10)^{\circ}$ (150 K)

5.19 Herstellung der kubischen Modifikation des $Sb(O_2CCF_3)_3$ (3a)

Etwa 150 mg des nach der in Kap. 5.17 beschriebenen Methode synthetisierten Rohprodukts werden in einer Duranglasampulle langsam auf ca. 95 °C erhitzt. Nach mehreren Tagen scheiden sich farblose isometrische Einkristalle an der Glaswand ab.

Summenformel:	$C_6O_6F_9Sb$
Molmasse:	460.81 gmol ⁻¹
Formel:	Sb(O ₂ CCF ₃) ₃
Ausbeute:	wurde nicht bestimmt, kann aber als quantitativ angesehen werden

Elementaranalyse:

	C (%)	H (%)
Berechnet	15.64	-
Gefunden	15.4	-

[
ber. M/z	gef. M/z	Rel. Int.	Zuordnung zu
			Fragment
347.78	346.6	36.1	$Sb(CF_3COO)_2^+$
297.50	296.4	3.2	$Sb_2OF_2^+$
253.76	252.3	80.4	Sb(CF ₃ COO)F ⁺
234.77	233.4	7.6	$Sb(CF_3COO)^+$
203.76	202.6	37.3	Sb(COO)F2 ⁺
159.75	158.7	83.9	SbF_2^+
140.75	139.7	24.5	SbF^+
137.75	136.7	6.7	SbO^+
121.75	120.8	5.5	Sb^+
97.02	96.8	3.1	CF_3CO^+
69.01	68.8	41.3	CF_3^+
50.01	49.8	6.6	CF_2^+
113.02	113.8	1.1	CF_3COO^+
44.01 (45.01)	43.9 (44.9)	100.0/41.2	$\overline{\text{COO(H)}^+}$

Tab. 88: Massenspektrometrische Daten von 3a (EI, 70 eV):

DTA/DSC: ein endothermer Peak bei 116.4 °C

Raman: 1705 (s, sharp), 1409 (m), 1227 (vw, br), 1189 (vw, br), 1156 (vw, br), 866 (vs), 734 (vw), 620 (s), 532 (s), 423 (w), 311 (vs, sharp), 210 (m), 179 (s, sh), 163 (s), 106 (s) [Literaturwerte für **3a** ^[7]: 1704 (m), 1410 (m), 1154 (vw, br), 863 (s), 730 (w), 616 (m), 532 (m), 524 (m), 419 (w), 307 (s), 280 (s), 214 (m), 208 (m), 176 (m), 157 (m)]

5.20 Herstellung der trigonalen Modifikation des $Sb(O_2CCF_3)_3$ (3c)

Einwaage:	$Sb(O_2CCF_3)_3$ (3a)	0.700g (1.519 mmol)
	<i>p</i> -Xylol	im Überschuss (5 ml)

Das kristalline Edukt wird in *p*-Xylol aufgelöst. Dabei fällt die extrem gute und vollständige Löslichkeit des Trifluoracetats in diesem Lösungsmittel auf. Nach einer halben Stnude Rühren bei RT wird die Lösung langsam eingeengt. Aus der stark eingeengten Lösung wachsen bei +5 °C im Laufe eines Tages sechseckige farblose dünne Plättchen. Bemerkenswert ist die Bildung von Kristallen der trigonalen Modifikation als Nebenprodukt der Synthese von **3a** (s. 5.19)

Die Kristalle sind äußerst empfindlich gegen Luftsauerstoff und Feuchtigkeit und verlieren selbst bei sorgfältiger Lagerung unter Schutzgas im Laufe von etwa einer Woche ihre Form und Kristallinität.

Summenformel:	$C_6O_6F_9Sb$
Molmasse:	460.81 gmol ⁻¹
Formel:	Sb(O ₂ CCF ₃) ₃
Ausbeute:	588 mg (84 %, basierend auf Sb(O ₂ CCF ₃) ₃)

Elementaranalyse:

	C (%)	H (%)
Berechnet	15.64	-
Gefunden	15.4	-

DTA/DSC: ein endothermer Peak bei 110 °C

Raman [cm⁻¹]: 1905 (vw, br, sh), 1707 (s), 1409 (w), 1076 (w, br, sh), 866 (vs), 621 (s), 532 (s), 425 (w), 312 (vs), 209 (w), 179 (m), 160 (w, sh), 115 (w)

Gitterkonstanten weiterer untersuchter Kristalle:

a = 8.9810(9) Å, *c* = 8.8987(10) Å (293 K)

a = 8.9348(11) Å, c = 8.6574(14) Å (150 K)

5.21 Herstellung von $Sb(O_2CCF_3)_3 \cdot CF_3COOH(26)$

Einwaage:	$Sb(O_2CCF_3)_3$ (3a)	0.200g (0.434 mmol)
	Trifluoressigsäure	im Überschuss (2 ml)

Die nach Auflösen von **3a** in Trifluoressigsäure entstandene farblose Lösung wird etwas eingeengt und bei 5 °C gelagert. Im Laufe von mehreren Tagen kristallisieren farblose dünne Plättchen des Trifluoressigsäure-Addukts **26** aus.

Summenformel:	$C_8HO_8F_{12}Sb$
Molmasse:	574.84 gmol ⁻¹
Formel:	$Sb(O_2CCF_3)_3 \cdot CF_3COOH$
Ausbeute:	$80 \% (0.200 \text{ g}, \text{basierend auf } \text{Sb}(O_2 \text{CCF}_3)_3)$

Elementaranalyse:

	C (%)	H (%)
Berechnet	16.72	0.18
Gefunden	15.86	0.29
	15.5	0.19

Raman [cm⁻¹]: 1719 (m), 1701 (m, sh), 1660 (m), 1434 (w), 1400 (w), 1184 (vw, br), 867 (s), 814 (vw, sh), 737 (vw), 625 (s), 536 (m), 424 (w, br), 313 (s), 196 (m), 142 (s)

5.22 Herstellung von {[Sb(O₂CCF₃)₃]₂ · CF₃COOH}₂ (27)

Diese Verbindung wurde aus der Gasphase als Nebenprodukt der Sublimation von kubischem Sb(O₂CCF₃)₃ erhalten, welches offensichtlich Spuren von Feuchtigkeit ausgesetzt war oder **OH-Funktionen** mit der Glaswand reagiert hat (siehe Ergebnisteil). Die Sublimationstemperatur betrug 95 °C. Die farblosen Kristalle unterscheiden sich von isometrischen Kristallen des kubischen Trifluoracetats durch ihre quaderförmige Gestalt und zeigen im Gegensatz zu Kristallen des Hauptprodukts kein isotropes Verhalten gegenüber polarisiertem Licht. Sie verlieren nach etwa einer Woche selbst bei Lagerung unter Schutzgas ihre Form und Kristallinität.

Summenformel:	$C_{28}H_2O_{28}F_{42}Sb_4$
Molmasse:	2071.30 gmol ⁻¹
Formel:	$\{[Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH\}_2$
Ausbeute:	> 2%
Schmelzpunkt:	ca. 73 °C
Elementaranalyse:	wegen zu geringer Ausbeute nicht möglich.

5.23 Herstellung von $Sb(O_2CCF_3)_3 \cdot C_6Me_6$ (25)

Einwaage:	$Sb(O_2CCF_3)_3$ (3a)	0.200g (0.434 mmol)
	Hexamethylbenzol	75 mg (0.462 mmol)

Das kristalline Edukt **3a** und Hexamethylbenzol werden in eine Duranglasampulle eingewogen und innig vermengt. Nach Abschmelzen der Ampulle wird das Gemenge in einem Aluminiumblockofen auf etwa 80 °C erhitzt. Im Laufe von etwa 2 Wochen wachsen sehr schwach gelbliche Plättchen von **25** an der Glaswand. Die Kristalle sind äußerst empfindlich gegen Luftsauerstoff und Feuchtigkeit.

Summenformel:	$C_{18}H_{18}O_6F_9Sb$	
Molmasse:	623.07 gmol ⁻¹	
Formel:	$Sb(O_2CCF_3)_3 \cdot C_6(CH_3)_6$	
Ausbeute:	70 % (0.189 g, basierend auf Sb(O ₂ CCF ₃) ₃)	

Elementaranalyse:

	C (%)	H (%)
Berechnet	34.7	2.91
Gefunden	33.5	2.8

Raman $[cm^{-1}]$:

2932 (s), 1700 (vw, sh), 1558 (vw), 1397 (m, sh), 1291 (w-m), 1169 (vw), 868 (w, sh), 610 (w), 553 (s), 521 (m), 448 (m), 380 (vw), 301 (m), 189 (s, sh) 151 (vw)

5.24 Synthese von $[Sb_2O(O_2CCF_3)_4]_2 \cdot 2 C_8H_{10}$ (24)

Einwaage:	$Sb(O_2CCF_3)_3$ (3a)	0.170g (0.369 mmol)
	<i>p</i> -Xylol	2 ml

Die durch Auflösen von **3a** in *p*-Xylol (siehe 5.20) entstandene farblose, klare Lösung wird über einen Zeitraum von etwa 24 Stunden auf 60 °C erhitzt. Eine schwachrosa Färbung der Lösung zeigt den Beginn des Zersetzungsprozesses des Antimon(III)-trifluoracetats in *p*-Xylol an. Die Lösung wird auf etwa ein Viertel des ursprünglichen Volumens eingeengt. Beim Lagern der Lösung bei 5 °C entstehen innerhalb von einigen Tagen farblose Tafeln. Nach längerer Lagerung der Lösung ist eine teilweise Rückreaktion zu einzelnen Kristallen der kubischen Modifikation **3a** zu beobachten, wobei sich ein Teil der Lösung schwarz verfärbt hat.

Summenformel:	$C_{32}H_{20}O_{18}F_{24}Sb_4\\$	
Molmasse:	1635.48 gmol ⁻¹	
Formel:	$[Sb_2O(O_2CCF_3)_4]_2 \cdot 2 C_8H_{10}$	
Ausbeute:	79 % (0.238 g, basierend auf Sb(O ₂ CCF ₃) ₃)	

Elementaranalyse:

	C (%)	H (%)
Berechnet	23.5	1.23
Gefunden	20.98	0.55

Zu geringe gefundene Werte sind durch entwichenes *p*-Xylol zu begründen.

DTA/DSC: ein endothermer Effekt bei 70 °C

6. Literatur

- [1] F. Swarts, Bull. Soc. Chim. Belg. 1939, 48, 176.
- [2] R. Hara, G. H. Cady, J. Am. Chem. Soc. 1954, 76, 4285.
- [3] G. S. Fujioka, G. H. Cady, J. Am. Chem. Soc. 1956, 79, 2451.
- [4] M. J. Baillie, D. H. Brown, K. C. Moss, D. W. A. Sharp, J. Chem. Soc. (A) 1968, 3110.
- [5] a) C. D. Garner, B. Hughes, *Inorg. Chem.* 1975, *14*, 1722.
 b) C. D. Garner, B. Hughes, *Adv. Inorg. Chem. Radiochem.* 1975, *17*, 1.
- [6] D. Rosmann, K. W. Klinkhammer, A. Schmidt, Monatsh. Chem. 1996, 127, 1215.
- [7] D. C. Bullivant, M. F. A. Dove, M. J. Haley, J. Chem. Soc. Dalton. Trans. 1980, 105.
- [8] P. V. Radheshwar, R. Dev, G. H. Cady, J. Inorg. Nucl. Chem. 1972, 34, 3914.
- [9] G. J. Reiß, W. Frank, J. Schneider, *Main Group Metal Chemistry* 1995, 287.
- [10] V. Reiland, *Promotionsschrift*, Universität Kaiserslautern 2000.
- [11] T. Birchall, J. P. Johnson, J. Chem. Soc. Dalton Trans. 1981, 69.
- [12] C. Elschenbroich, A. Salzer, Organometallchemie, Teubner Verlag, Stuttgart 1993.
- [13] W. C. Zeise, Pog. Ann. Phys 1827, 9; 632; Pog. Ann. Phys 1837, 40; 234.
- [14] a) E. O. Fischer, H. P. Kögler, Chem. Ber. 1957, 90, 250.
 - b) E. O. Fischer, W. Hafner, Z. Naturforsch. 1955, B10, 665.
 - c) E. O. Fischer, H. O. Stahl, Chem. Ber. 1956, 89, 1805.
 - d) E. O. Fischer, F. Röhrscheid, Z. Naturforsch. 1962, B17, 483.
 - e) E. O. Fischer, A. Wirtzmüller, Chem. Ber. 1957, 90, 1725.
 - f) E. O. Fischer, H. H. Lindner, J. Organomet. Chem. 1964, 1, 307.
 - g) E. O. Fischer, H. H. Lindner, J. Organomet. Chem. 1968, 12, P18.
- [15] W. Smith, G. W. Davis, J. Chem. Soc. 1882, 41, 411.
- [16] a) B. N. Menshutkin, *Chem. Zentr.* **1910**, 378.
 - b) B. N. Menshutkin, Chem. Zentr. 1912, 1436.
 - c) B. N. Menshutkin, J. Russ. Phys. Chem. Soc. 1912, 43, 1805.
 - d) B. N. Menshutkin, J. Russ. Phys. Chem. Soc. 1912, 43, 1329.
- [17] H. J. Breunig, H. Althaus, C. Silvestru, Chem. Rev. 1999, 99 (11), 3277.
- [18] D. Mootz, V. Händler, Z. Anorg. Allg. Chem. 1986, 533, 23, dort weitere Literatur.
- [19] R. Hulme, D. J. E. Mullen, J. C. S. Dalton Trans. 1976, 802.
- [20] H. Schmidbaur, R. Nowak, B. Huber, G. Müller, Organometallics 1987, 6 (10), 2266.
- [21] W. Frank, J. Schneider, S. Müller-Becker, J. Chem. Soc. Chem. Commun. 1993, 799.
- [22] H. Schmidbaur, A. Schier, J. M. Wallis, G. Müller, Angew. Chem. 1986, 98 (8), 742.
- [23] H. Schmidbaur, R. Nowak, O. Steigelmann, G. Müller, *Chem. Ber.* 1990, 123, 1221, dort weitere Literatur.
- [24] A. G. Gash, P. F. Rodesiler, E. L. Amma, *Inorg. Chem.* 1974, 13, 2429, dort frühere Literatur.
- [25] S. Müller-Becker, W. Frank, J. Schneider, Z. Anorg. Allg. Chem. 1993, 619, 1073.
- [26] W. Frank, J. Weber, E. Fuchs, Angew. Chem. 1987, 99, 68.
- [27] W. Frank, J. Organomet. Chem. 1990, 386, 177.
- [28] G. R. Desiraju, Angew. Chem. 1995, 107, 2541.
- [29] G. R. Desiraju in *Material Science Monographs* 54, Elsevier Amsterdam 1989.
- [30] A. Gavezzotti, J. Am. Chem. Soc. 1991, 113, 4622.
- [31] I. Haiduc, Coord. Chem. Rev. 1997, 158, 325.
- [32] T. Kuroda-Sowa, M. Lam, A. L. Rheingold, C. Frommen, W. M. Reiff, M. Nakano, J. Voo, A. L. Maniero, L.-C. Brunel, G. Christou, D. N. Hendrickson, *Inorg. Chem.* 2001, 40, 6469.
- [33] Z. Zheng, Chem. Comm. 2001, 2521.
- [34] J.-M. Lehn, Angew. Chem. 1988, 100, 91.
- [35] J.-M. Lehn, Angew. Chem. 1990, 102, 1347.
- [36] J.-M. Lehn, Supramolecular Chemistry-Concepts and Perspectives, VCH Weinheim 1995.
- [37] F.-G. Wittmer, *Promotionsschrift*, Universität Kaiserslautern 1999.
- P. R. Ashton, R. Ballardini, V. Balzani, E. C. Constable, A. Credi, O. Kocian, S. J. Langford, J. A. Preece, L. Prodi, E. R. Schofield, N. Spencer, J. Fraser Stoddart, S. Wenger, *Chem. Eur. J.* 1998, *4*, 2413.
- [39] H. D. Flack, Acta Cryst. 1983, A39, 876.
- [40] B. Viard, M. Poulain, D. Grandjean, J. Amadrut, J. Chem Res. (M) 1983, 853.
- [41] C. I. Stalhandske, Acta Chem. Scand. 1969, 23, 1525.
- [42] a) S. I. Troyanov, A. P. Pisarevskii, *Russ. J. Coord. Chem.* 1991, 489; *Koord. Khim.* 1991, *17 (7)*, 909.
 b) A. P. Pisarevskii, *Russ. J. Inorg. Chem.* 1990 *35*, 843.
 c) M. Hall, D. B. Sowerby, *J. Chem. Soc. Dalton Trans.* 1980, 1293.
- [43] S. I. Troyanov, A. P. Pisarevskii, *Chem. Comm.* 1993, 335.
- [44] A. D. Rae, G. J. Gainsford, T. Kemmitt, Acta Cryst. 1998, C54, 583.
- [45] G. B. Deacon, R. J. Phillips, Coord. Chem. Rev. 1980, 33, 227.

- [46] A. Ouchi, Y. Suzuki, Y. Okhi, Y. Koizumi, Coord. Chem. Rev. 1988, 92, 29.
- [47] persönliche Mitteilung W. Frank.
- [48] a) F. A. Charez, R. Y. N. Ho, M. Pink, V.G. Young Jr, S. V. Kryato, E. V. Rybak-Akimova, H. Andres, E. Münck, L. Que Jr., W. B. Tolman, *Angew. Chem.* 2002, *114(1)*, 157.
 b) J. D. Cohen, S. Payne, K. S. Hagen, J. Sanders-Loehr, *J. Am. Chem. Soc.* 1997, *119*, 2960.
- [49] B. Bedliver, K. Mereiter, Am. Mineralogist 1982, 67, 833.
- [50] H. Hatop, M. Ferbinteanu, H. W. Roesky, F. Cimpoesu, M. Schiefer, H.-G. Schmidt, M. Noltemeyer, *Inorg. Chem.* 2002, *41*, 1022.
- [51] M. T. Andras, S. A. Duraj, A. F. Hepp, P. E. Fanwick, M. M. Bodnar, J. Am. Chem. Soc. 1992, 114, 786.
- [52] B. Aurivillus, Acta Chem. Scand. 1988, A42, 95.
- [53] W. Frank, G. J. Reiß, J. Schneider, Angew. Chem. 1995, 107, 2572, Angew. Chem. Int. Ed. Engl. 1995, 621, 1663.
- [54] a) K-H. Tytko, *Chemie in unserer Zeit* 1979, *6*, 184.
 b) D. Diemente, *J. Chem. Ed.* 1997, *74(4)*, 398.
- [55] W. Frank, B. Kugel, Z. Anorg. Allg. Chemie 2002, 628 (9-10), 2178.
- [56] a) S. R. Breeze, L. Chen, S. Wang, J. Chem. Soc. Dalton Trans. 1994, 2545.
 b) A. S. Antsyshkina, M. A. Porai-Koshits, V. N. Ostrikova, Koord. Khim. 1983, 9, 1118.
- [57] M. Mehring, M. Schürmann, Chem. Comm. 2001, 2354.
- [58] a) V. A. Maroni, T. G. Spiro, *J. Chem. Soc.* 1966, 1410.
 b) V. A. Maroni, T. G. Spiro, *Inorg. Chem.* 1968, 7(2), 183.
- [59] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
- [60] M. Schindler, F. C. Hawthorne, W. H. Baur, Acta Cryst. 1999, B55, 811.
- [61] a) K. H. Whitmire, S. Hoppe, O. Sydora, J. L. Jolas, C. M. Jones, *Inorg. Chem.* 2000, 39, 85.

b) C. M. Jones, M. D. Burkart, R. E. Bachman, D. L. Serra, S.-J. Hwu, K. H. Whitmire, *Inorg. Chem.* **1993**, *32*, 5136.

c) C. M. Jones, M. D. Burkart, K. H. Whitmire; J. Chem. Soc. Chem. Comm. 1992, 1638.

[62] a) F. Lazarini, *Acta Cryst.* 1979, *B35*, 448.
b) F. Lazarini, *Acta Cryst.* 1978, *B34*, 3169.

c) N. Henry, M. Evain, P. Deniard, S. Jobic, O. Mentré, F. Abraham, *J. Solid State Chem.* 2003, *176*, 127.

- [63] a) B. Sundvall, *Acta Chem. Scand.* 1979, *A33*, 219.
 b) F. Lazarini, *Acta Cryst.* 1979, *C8*, 69.
- [64] B. Sundvall, Inorg. Chem. 1983, 22, 1906.
- [65] a) E. Asato, K. Katsura, M. Mikuriya, U. Turpeinen, I. Mutikainen, J. Reedijk, *Inorg. Chem.* 1995, *34*, 2447 und dort zitierte Literatur.
 b) E. Asato, K. Katsura, M. Mikuriya, T. Fuji I. Mutikainen, J. Reedijk, *Chem. Lett.* 1992, 1967.
- [66] P. J. Sadler, H. Li, H. Sun, Chem. Rev. 1999, 185-86, 689 und dort zitierte Literatur.
- [67] G. G. Briand, N. Burford, Chem. Rev. 1999, 99(9), 2601.
- [68] H. Sun, H. Li, P. J. Sadler, Chem. Ber. 1997, 130, No. 6, 669.
- [69] a) W. A. Herrmann, N. W. Huber und O. Runte, *Angew. Chem.* 1995, *107*, 2371.
 b) H. W. Roesky, M. G. Walawalkar, R. Murugawel, *Acc. Chem Res.* 2001, *34*, 201.
- [70] a) J. Storre, T. Belgardt, D. Stalke and H. W. Roesky, *Angew. Chem.* 1994, *106 (12)*, 1365; *Angew. Chem. Int. Ed. Engl.*, 1994, *33*, 1244.
 b) C. C. Landry, C. J. Harlan, S. G. Bott and A. R. Barron, *Angew. Chem.* 1995, *107*, 1315; *Angew. Chem. Int. Ed. Engl.* 1995, *34*, 1201.
- [71] a) B. Aurivillius, Acta Chem. Scand. 1964, 18, 1823.
 b) Gmelins Handbuch der anorgan. Chemie, Bi-Ergänzungsband, 8. Auflage, VCH Weinheim 1964, 663ff.
- [72] H. A. Harwig, Z. Anorg. Allg. Chem. 1978, 444, 151.
- [73] S. K. Blower, C. Greaves, Acta Cryst. 1988, C44, 587.
- [74] S. A. Ivanov, R. Tellgren and H. Rundlöf, V. G. Orlov, *Powder Diffraction* 2001, 16(4), 227.
- [75] B. Begemann, M. Jansen, J. Less Comm. Metals 1989, 156, 123.
- [76] A. N. Romanov, D. P. Shashkin, E. V. Khaula, *Russ. J. Inorg. Chem.* 2000, *Vol. 45, No. 4*, 500.
- [77] G. Gattow, W. Klippel, Z. Anorg. Allg. Chem. 1980, 470, 25.
- [78] N. Kumada, N. Kinomura, J. Solid State Chem. 1995, 116, 281.
- [79] E. Oniyama, P. G. Wahlbeck, J. Phys. Chem. B 1998, 102, 4418.
- [80] S. N. Narang, N. D. Patel, V. B. Kartha, J. Molecular Structure 1994, 327, 221.
- [81] R. J. Betsch, W. B. White; *Spectrochimica Acta* 1978, 34A, 505.
- [82] F. A. Hardcastle, I. E. Wachs, J. Solid State Chem. 1992, 97, 319.

- [83] M. Bienati, V. Bonsai-Kouteck, F. Fantucci, J. Phys. Chem. A 2000, 104, 6983.
- [84] F. Fielicke, K. Rademann, J. Phys. Chem. A 2000, 104(30), 6979.
- [85] M. Kinne, A. Heidenreich, K. Rademann, Angew. Chem. 1998, 110(18), 2637.
- [86] E. Swift, J. E. Bozik, J. A. Ondrey, J. Catal. 1971, 21, 212.
- [87] M. Devillers, O. Tirions, L. Cadus, P. Ruiz, B. Delmon, *Solid State Chem.* 1996, 126, 152.
- [88] G. Kickelbick, M. P. Feth, H. Bertagnolli, M. Puchberger, D. Holzinger, S. Gross, J. Chem. Soc. Dalton Trans. 2002, 3892.
- [89] D. M. Jollie, P. G. Harrison; J. Chem. Soc. Perkin Trans. 1997, 2, 1571.
- [90] W. Frank, V. Reiland, G. J. Reiß, Angew. Chem. 1998, 110, 3154; Angew. Chem. Int. Ed. Engl. 1998, 37, 2983.
- [91] S. Adams, M. Dräger, B. Mathiasch, J. Organomet. Chem. 1987, 326, 173.
- [92] a) F. A. Cotton, R.A. Walton, *Multiple Bonds between Metal Atoms*, 2nd Ed., Oxford University Press, 1992.
 b) F. A. Cotton, R. A. Walton, *Struct. Bonding* 1985, 62, 1.
 c) F. A. Cotton, Chem. Soc. Rev. 1983, 12, 35.
 d) M. H. Chisholm, I. P. Rothwell, *Progr. Inorg. Chem.* 1982, 29, 1.
- [93] F. A. Cotton, E. V. Dikarev, X. Feng, *Inorg. Chim. Acta* 1995, 237, 19.
- [94] F. A. Cotton, E. V. Dikarev, S.-E. Stiriba, Organometallics 1999, 18, 2724.
- [95] F. A. Cotton, E. V. Dikarev, S.-E. Stiriba, *Inorg. Chem.* 1999, 38, 4877.
- [96] F. A. Cotton, E. V. Dikarev, M. A. Petrukhina, S. S. Stiriba, *Polyhedron* 2000, 19, 1829.
- [97] S. A. Johnson, H. R. Hunt, H. M. Neumann, Inorg. Chem. 1963, 5, 960.
- [98] J. F. Bickley, R. P. Bonar-Law, C. Femoni, E. J. MacLean, A. Steiner, S. J. Teat, J. Chem. Soc. Dalton Trans. 2000, 4025.
- [99] a) F. A. Cotton, C. Lin, C. A. Murillo, *Inorg. Chem.* 2001, 40, 5886.
 b) F. A. Cotton, C. Lin, C. A. Murillo, *Acc. Chem. Res.* 2001, *Vol. 34, No. 10*, 759.
- [100] S. Lo Schiavo, S. Serroni, F. Puntoriero, G. Tresoldi, P. Piraino, *Eur. J. Inorg. Chem.* 2002, 79.
- [101] H. Miyasaka, C. S. Campos-Fernandez, R. Clérac, K. R. Dunbar, Angew. Chem. 2000, 112, 3989.
- [102] F. A. Cotton, E. V. Dikarev, M. A. Petrukhina, Inorg. Chem. 2000, 39, 6072.
- [103] F. A. Cotton, X. Feng, P. A. Kibala, M. J. Matusa, J. Am. Chem. Soc. 1988, 110, 2807.
- [104] F. A. Cotton, L. M. Daniels, P. A. Kibala, Inorg. Chem. 1992, 31, 1865.

- [105] F. A. Cotton, L. R. Falvello, M. Gerards, G. Snatzke, J. Am. Chem. Soc. 1990, 112, 8979.
- [106] M. Goto, Y. Kani, M. Tsuchimoto, S. Ohba, H. Matsushina, T. Tokii, *Acta Cryst.* 2000, *C56*, 7.
- [107] C. Bellitto, G. Dessy, V. Fares, Inorg. Chem. 1985, 24, 2815.
- [108] C. Bellitto, A. Flamini, L. Gastaldi, L. Scaramuzza, Inorg. Chem. 1983, 22, 444.
- [109] M. Handa, T. Nakao, M. Mikuriya, T. Kotera, R. Nukada, K. Kasuga, *Inorg. Chem.* **1998**, *37*, 149.
- [110] F. D. Cukiernik, D. Luneau, J.-C. Marchon, P. Maldivi, *Inorg. Chem.* **1998**, *37*, 3698.
- [111] W. Lau, J, K. Kochi, J. Org. Chem. 1986, 51, 1810.
- [112] W. A. Wojtczack, M. J. Hampden-Smith, E. N. Duesler, Inorg. Chem. 1998, 37, 1781.
- [113] O. Mundt, G. Becker, M. Rössler, C. Witthauer, Z. Anorg. Allg. Chem 1983, 506, 42.
- [114] A. J. Ashe III, J. W. Kampf, D. B. Puranik, S. M. Al-Taweel, Organometallics 1992, 11, 2743.
- [115] a) F. Calderazzo, A. Morvillo, G. Pelizzi, R. Poli, J. Chem. Soc. Chem. Commun. 1983, 507.
 b) F. Calderazzo, R. Poli, G. Pelizzi, J. Chem. Soc. Dalton Trans. 1984, 2365.
- c) K. H.Whitmire, J. M. Cassidy, *Acta Cryst.* 1992, *C48*, 917.
 [116] a) B. Murray, J. Hvoslef, H. Hope, P. P. Power, *Inorg. Chem.* 1983, *22*, 3421.
 - b) L. Balazs, H.-J. Breunig, E. Lork, C. Silvestru, Eur. J. Inorg. Chem. 2003, 1361.
 - c) G. Balazs, H.-J. Breunig, E. Lork, Organometallics 2002, 21, 2584.
 - d) L. Balázs, H.-J. Breunig, E. Lork; Angew. Chem. 2002, 114(13), 2411.
 - e) A. Kuczkowski, S. Schulz, M. Nieger, Angew. Chem. 2001, 113(22), 4351.
- [117] a) F. A. Cotton, J.G. Norman Jr., J. Coord. Chem. 1971, 1, 161.
 - b) Raman-Spektrum von Natriumtrifluoracetat aus: McCreery Raman Library, unter http://spectra.galactic.com/SpectraOnline/code/Details.asp
 - c) H. Kalpen, W. Hönle, M. Somer, U. Schwarz, K. Peters, H. G. v. Schnering,
 - Z. Anorg. Allg. Chem. 1998, 624, 1137.
 - d) V. E. Bondybey, J.H. English, J. Chem. Phys. 1980, 73(1), 42.
 - e) F. J. Kohl, O. M. Uy, K. D. Carlson, J. Chem. Phys. 1967, 47(8), 2667.
 - f) R. J. H. Clark, M. L. Franks, J. Am. Chem. Soc. 1975, 97, 2691.
- [118] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Application in Inorganic Chemistry, J. Wiley & Sons, 5th Ed. 1997.

- [119] L. Xu, S. Bobev, J. El-Bahraoui, S. D. Sevov, J. Am. Chem. Soc. 2000, 122, 1838.
- [120] N. Tokitoh, Y. Arai, R. Okazaki, Science 1997, 277, 78.
- [121] B. Twamley, C. D. Sofield, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 1999, 121, 3357.
- [122] N. J. Hardman, B. Twamley, Ph. P. Power, Angew. Chem. 2000, 39, 2884, Angew. Chem. Int. Ed. 2000, 39, 2771.
- [123] F. Gascoin, S. C. Sevov, J. Am. Chem. Soc. 2000, 122 (41), 10251.
- [124] T. Sasamori, N. Takeda, N. Tokitoh, Chem. Comm. 2000, 1353.
- [125] N. Tokitoh, Y. Arai, T. Sasamori, R. Okazaki, S. Nagase, H. Uekusa, Y. Ohashi, J. Am. Chem. Soc. 1998, 120, 433.
- [126] T. Sasamori, Y. Arai, N. Takeda, R. Okazaki, Y. Furukawa, M. Kimura, S. Nagase, N. Tokitoh, Bull. Soc. Chim. Jpn. 2002, 75(4), 664.
- [127] T. Lewe, D. Naumann, G. Nowicki, H. Schneider, W. Tyrra, T. Gilles, K. F. Tebbe, Z. Anorg. Allg. Chem. 1996, 622, 2009.
- [128] M. Sikirica, D. Grdenic, Acta Cryst. 1974, B30, 147.
- [129] W. Frank, B. Kugel, Z. Krist. Suppl. 2000, 17, 62.
- [130] S. I. Troyanov, A. P. Pisarevskii, Soviet J. Coord. Chem. 1991, 715, Koord. Khim.
 1991, 17(10), 1349.
- [131] D. Rosmann, K.-W. Klinkhammer, A. Schmidt, Monatsh. Chemie 1996, 127, 461.
- [132] D. Rosmann, K. Hubler, A. Schmidt, Monatsh. Chemie 1995, 126, 1045,
- [133] B. Kamenar, M. Bruvo, J. Butumovic, Z. Anorg. Allg. Chem. 1993 (619), 943.
- [134] S. M. Biros, B. M. Bridgewater, A. Villeges-Estrada, J. M. Tanski, G. Parkin, *Inorg. Chem.* 2002, 41(15), 4051.
- [135] G. A. Horley, M. F. Mahon, K. C. Molloy, P. W. Haycock, C. P. Myers, *Inorg. Chem.* 2002, 41(20), 5052.
- [136] R. Mercier, J. Douglade, F. Theobald, Acta Cryst. 1975, B31, 2081.
- [137] H-J. Breunig, M. A. Mohammed, K. H. Ebert, Polyhedron 1994, 626, 595.
- [138] T. Birchall, R. Faggiani, C. J. L. Lock, V. Manivannan, J. Chem. Soc. Dalton Trans. 1987, 1675.
- [139] R. J. Batchelor, T. Birchall, J. P. Johnson, Can. J. Chem. 1987, 2187.
- [140] I. Nahringbauer, J.-O. Lundgren, E. K. Andersen, Acta Cryst. 1979, B35, 508.
- [141] J. T. Gleghorn, R. W. H. Small, Acta Cryst. 1995, B51, 346.
- [142] I. D. Brown, D. Altermatt, Acta Cryst. 1985, B41, 244.
- [143] G. H. Rao, I. D. Brown, Acta Cryst. 1998, B54, 221.

- [144] I. D. Brown, Acta Cryst. 1988, B44, 545.
- [145] N. E. Brese, M. O'Keefe, Acta Cryst. 1991, B47, 192.
- [146] N. W. Alcock in: Bonding and structure, Ellis Horwood 1990.
- [147] IUPAC (Hrsg.), Nomenklatur der anorganischen Chemie, VCH Weinheim, 1994.
- [148] a) S. Konietzny, *Promotionsschrift*, Universität Kaiserslautern 2003.
 b) H.-H. Perkampus, *Wechselwirkungen von π-Elektronensystemen mit Metallhalogeniden*, Springer Berlin 1973.
- [149] T. Hahn, *International Tables for Crystallography, Vol. A, Space-Group Symmetry*,
 4th Ed., Kluwer Acadamic Publishers, Dordrecht/Boston/London, 1995.
- [150] W. Kleber, *Einführung in die Kristallographie*, 17. Auflage, Verlag Technik GmbH Berlin, **1990**.
- [151] Handbook of Chemistry and Physics, 72nd Edition 1991-1992, CRC Press, Cleveland - Ohio.
- [152] M. F. C. Ladd, R. A. Palmer, *Structure Determination by X-Ray Crystallography*, Plenum Press, New York and London, **1977**.
- [153] A. F. Hollemann, E. Wiberg, *Lehrbuch der Anorganischen Chemie*, 101. Auflage, Walter de Gruyter, Berlin-New York, **1995**.
- [154] N. N. Greenwood, A. Earnshaw, *Chemie der Elemente*, VCH, Weinheim, 1990.
- [155] D. F. Shriver, M. A. Drezdon in ,, *The Manipulation of Air-Sensitive Compounds* ", 2nd Ed., J. Wiley & Sons, New York 1986.
- [156] a.) A. Stock, Ber. Dtsch. Chem. Ges. 1914, 47, 3112.
 b.) A. Stock, Ber. Dtsch. Chem. Ges. 1916, 49, 143.
- [157] G. M. Sheldrick, SHELXS-86, Program for Crystal Structures Solution, Universität Göttingen, 1986.
- [158] G. M. Sheldrick, SHELXTL-Plus, Ver. 4.22, Siemens X-ray Analytical Instruments Inc., Madison (Wisconsin), 1991.
- [159] G. M. Sheldrick, SHELXL-97-2, Program for the Refinement of Crystal Structures, Universität Göttingen, 1997.
- [160] Klaus Brandenburg, Diamond Version 2.1e, Crystal Impact GbR, **1998-2001**.
- [161] STOE & Cie GmbH, X-RED STOE Data Reduction Program, Version 1.07, Darmstadt, Germany, 1996.
- [162] STOE & Cie GmbH, STOE X-SHAPE Program for Numerical Absorption Correction, Version 1.04, Darmstadt, Germany, 1998.

7. Anhang

Tab. 89: Formeln und Bezeichnungen der kristallstrukturanalytisch charakterisierten

Verbindungen

Verbindung	Nr.
$\int_{\infty}^{1} [Bi(O_2CCF_3)_3]$	6
$\int_{\infty}^{1} [Bi(O_2CCF_3)_3 \cdot O(OCCF_3)_2]$	10
$[(C_6H_6)_2Bi_3O(O_2CCF_3)_7]_2 \cdot C_6H_6$	20
$\int_{\infty}^{1} \{ [Bi(O_2CCF_3)_3 \cdot 0.25 \ 1, 4 - Me_2C_6H_4]_4 \} $	17
$\{[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 1, 4 - Me_{2}C_{6}H_{4}\} mS2036$	18a
${[Bi_{3}O(O_{2}CCF_{3})_{7}]_{2} \cdot 4 1, 4 - Me_{2}C_{6}H_{4}} mP712$	18b
$\int_{\infty}^{1} \{ [Bi_2O(O_2CCF_3)_4]_2 \cdot 3 \ 1, 4 \cdot Me_2C_6H_4 \} $	19
$^{2}_{\infty}\{[Bi_{3}(OH)(O_{2}CCF_{3})_{8}]\}$	21
$\int_{\infty}^{3} \{ [Bi_{10}O_8(O_2CCF_3)_{20}] [Bi_6O_4(OH)_4] \} \}$	22
$^{2}_{\infty}$ {[Bi ₆ O ₅ (OH) ₃ (H ₂ O) ₂ (O ₂ CCF ₃) ₂] ₂ [Bi(O ₂ CCF ₃) ₅] ₃ · 4 H ₂ O}	23
Bi ₂ (O ₂ CCF ₃) ₄	15
$\{Bi_2(O_2CCF_3)_4 \cdot 2 \ 1, 4 - Me_2C_6H_4\}$	16
$^{1}_{\infty}\{\mathrm{Sb}(\mathrm{O}_{2}\mathrm{CCF}_{3})_{3}\}\ mS176$	3b
$^{3}_{\infty}{\rm Sb}({\rm O}_{2}{\rm CCF}_{3})_{3}\ cP176$	3a
$^{2}_{\infty}$ {Sb(O ₂ CCF ₃) ₃ } <i>hP</i> 44	3c
$\int_{\infty}^{1} [Sb(O_2CCF_3)_3 \cdot CF_3COOH]$	26
$\{[Sb(O_2CCF_3)_3]_2 \cdot CF_3COOH\}_2$	27
$Sb(O_2CCF_3)_3 \cdot C_6Me_6$	25
$^{2}_{\infty}\{[Sb_{2}O(O_{2}CCF_{3})_{4}]_{2} \cdot 2 1, 4 - Me_{2}C_{6}H_{4}\}$	24

Die Lösung des Phasenproblems gelang bei allen Strukturen unter Verwendung Direkter Methoden^[157, 158]. Die Verfeinerung^[159] aller Strukturmodelle erfolgte unter Minimierung der Fehler-Quadratsummen über mehrere Zyklen. Dabei wurde, wenn notwendig, unter Anwendung angemessener statistischer Einschränkungen ("restraints") gearbeitet. In mehreren Fällen wurden einzelne Strukturfragmente fehlgeordnet modelliert in die Verfeinerung einbezogen. Einzelheiten wurden bei den entsprechenden Strukturen vermerkt und behandelt. Wasserstoffatome in entsprechenden Strukturen wurden mit idealisierten C-H-

bzw. O-H-Abständen behandelt und es wurden idealisierte Winkel vorgegeben. Die Wasserstoffatome wurden isotrop in die Verfeinerung der einzelnen Strukturen einbezogen.

Alle in dieser Arbeit gezeigten Darstellungen von Strukturen und von Ausschnitten aus Festkörperverbänden wurden mit Hilfe von kristallographischen Grafikhilfsprogrammen^[160] erzeugt. Im Folgenden sind U_{ij} -Werte und gegebenenfalls Flächen untersuchter Kristalle angegeben.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.02407(14)	0.01453(16)	0.02166(13)	-0.00015(6)	-0.00023(8)	0.00052(6)
01	0.0285(18)	0.028(2)	0.0272(17)	-0.0031(14)	0.0024(13)	0.0012(15)
O2	0.0201(16)	0.019(2)	0.0305(16)	0.0019(14)	0.0014(13)	0.0012(14)
C1	0.025(2)	0.026(3)	0.024(2)	0.007(2)	-0.0045(17)	-0.001(2)
C2	0.029(3)	0.030(4)	0.046(3)	0.000(3)	-0.001(2)	-0.001(2)
F1	0.046(2)	0.032(2)	0.076(3)	-0.016(2)	-0.001(2)	-0.0107(18)
F2	0.050(2)	0.045(3)	0.138(4)	-0.001(3)	-0.054(3)	-0.0029(19)
F3	0.062(3)	0.064(4)	0.073(3)	-0.005(2)	0.027(2)	-0.035(2)
03	0.038(2)	0.022(2)	0.0269(19)	-0.0038(14)	0.0125(15)	0.0021(16)
O4	0.0294(19)	0.027(2)	0.0352(19)	0.0088(15)	0.0087(15)	0.0005(15)
C3	0.020(2)	0.025(3)	0.028(2)	0.002(2)	0.0001(18)	-0.0029(19)
C4	0.035(3)	0.030(4)	0.032(3)	0.003(2)	0.004(2)	-0.002(2)
F4	0.076(3)	0.041(3)	0.0315(16)	-0.0073(15)	0.0030(16)	0.005(2)
F5	0.039(2)	0.106(4)	0.052(2)	0.009(2)	0.0165(17)	-0.014(2)
F6	0.081(3)	0.038(3)	0.037(2)	0.0151(14)	0.0072(19)	0.0103(18)
05	0.037(2)	0.028(2)	0.0290(19)	0.0064(16)	-0.0054(16)	0.0046(17)
O6	0.046(2)	0.036(3)	0.036(2)	-0.0055(17)	-0.0085(17)	-0.0116(19)
C5	0.022(2)	0.018(3)	0.024(2)	0.0015(19)	-0.0025(17)	0.005(2)
C6	0.035(3)	0.026(3)	0.033(3)	0.004(2)	-0.010(2)	-0.006(2)
F7	0.047(2)	0.038(3)	0.048(2)	-0.0004(14)	-0.0233(17)	-0.0107(15)
F8	0.055(2)	0.123(5)	0.0253(16)	0.009(2)	-0.0042(16)	-0.023(3)
F9	0.068(3)	0.029(3)	0.102(3)	0.008(2)	-0.052(3)	0.002(2)

Tab. 90: U_{ij} -Werte [Å²] von 6

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

h	k	1	D[mm]	h	k	l	D[mm]	h	k	1	D[mm]
7	-3	10	0.075	-1	0	0	0.026	0	1	-7	0.076
1	5	2	0.221	-2	3	-5	0.140	1	0	5	0.083
1	0	0	0.032	2	2	5	0.137	-1	-3	-6	0.140

Tab. 91: U_{ij} -Werte [Å²] von 10

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.04886(19)	0.02803(13)	0.05446(18)	-0.0012(3)	0.00400(12)	0.0005(3)
01	0.049(4)	0.042(3)	0.069(4)	0.008(3)	0.007(4)	0.004(3)
O2	0.041(4)	0.032(3)	0.054(4)	-0.003(2)	0.008(3)	-0.005(2)
C1	0.054(5)	0.040(4)	0.050(5)	-0.008(3)	0.011(4)	-0.002(3)
C2	0.051(5)	0.056(4)	0.063(5)	0.000(4)	0.016(4)	0.004(4)
F21	0.087(6)	0.057(5)	0.120(6)	0.029(4)	0.037(5)	-0.007(3)
F22	0.137(10)	0.092(7)	0.222(14)	-0.010(8)	0.137(11)	-0.014(6)
F23	0.086(9)	0.140(9)	0.140(10)	0.033(7)	-0.012(7)	-0.068(7)
O3	0.059(5)	0.042(4)	0.065(4)	0.003(3)	-0.012(4)	-0.003(2)
O4	0.048(4)	0.039(3)	0.080(5)	-0.013(3)	-0.003(4)	-0.003(3)
C3	0.045(5)	0.053(4)	0.047(5)	-0.002(4)	0.016(4)	-0.013(3)
C4	0.054(6)	0.059(5)	0.058(5)	-0.001(4)	0.007(5)	-0.002(4)
F41	0.24(2)	0.33(2)	0.065(7)	-0.036(10)	0.035(10)	-0.173(19)
F42	0.164(17)	0.33(3)	0.147(13)	-0.111(15)	-0.101(12)	0.120(16)
F43	0.35(2)	0.087(11)	0.121(9)	-0.014(7)	-0.101(12)	-0.066(12)
05	0.085(6)	0.058(4)	0.052(4)	-0.014(3)	0.030(4)	-0.006(3)
O6	0.105(7)	0.058(4)	0.085(6)	0.000(4)	0.033(5)	-0.021(4)
C5	0.058(5)	0.046(4)	0.044(4)	-0.015(3)	0.017(4)	-0.001(4)
C6	0.079(6)	0.074(5)	0.062(5)	-0.008(5)	0.013(5)	-0.013(5)
F61	0.253(18)	0.153(14)	0.131(9)	0.006(7)	0.111(11)	-0.093(12)
F62	0.138(16)	0.59(5)	0.068(7)	0.014(15)	0.011(9)	-0.12(2)
F63	0.52(5)	0.171(15)	0.32(3)	-0.082(19)	0.34(4)	-0.04(2)
O7	0.125(11)	0.096(7)	0.074(7)	0.000(5)	0.034(7)	-0.016(6)
08	0.102(7)	0.079(8)	0.063(4)	-0.014(6)	0.002(5)	0.012(6)
C7	0.072(8)	0.078(6)	0.070(7)	-0.013(5)	0.014(6)	0.008(5)
C8	0.111(10)	0.110(9)	0.111(10)	-0.012(8)	0.024(8)	-0.008(8)
F81	0.190(18)	0.25(2)	0.205(18)	-0.161(17)	0.060(15)	-0.080(15)
F82	0.081(13)	0.32(3)	0.192(18)	-0.035(17)	0.028(12)	-0.016(12)
F83	0.28(2)	0.190(17)	0.245(19)	0.04(3)	-0.161(19)	0.00(2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
09	0.087(6)	0.073(5)	0.054(5)	0.001(4)	0.011(4)	-0.003(4)
С9	0.081(7)	0.054(5)	0.058(6)	0.004(4)	0.014(5)	-0.001(5)
C10	0.105(9)	0.100(8)	0.073(7)	0.003(7)	0.023(7)	-0.009(7)
F91	0.184(11)	0.135(13)	0.110(7)	-0.014(7)	0.088(8)	0.010(9)
F92	0.25(2)	0.121(11)	0.137(11)	0.069(9)	0.075(14)	0.024(10)
F93	0.124(12)	0.232(17)	0.118(10)	-0.020(10)	0.039(9)	-0.071(11)

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

h	k	1	D [mm]	h	k	1	D [mm]
-4	-5	-1	0.574	8	1	10	0.395
4	-1	-5	0.442	0	-4	-1	0.408
-9	7	2	0.420	0	0	-1	0.116
-4	7	2	0.343	0	0	1	0.037
0	7	-1	0.322	-9	-1	2	0.666
2	10	-1	0.394	10	-3	-4	0.499

Tab. 92: U_{ij} -Werte [Å²] von 20

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0212(2)	0.0208(2)	0.0176(2)	0.00421(17)	0.01189(19)	0.00797(17)
Bi2	0.0183(2)	0.0286(3)	0.0234(3)	0.00097(18)	0.0145(2)	0.00821(18)
Bi3	0.0185(2)	0.0193(2)	0.0137(2)	0.00163(16)	0.00972(18)	0.00625(16)
Bi4	0.0205(2)	0.0259(3)	0.0239(3)	0.00898(18)	0.0112(2)	0.00617(17)
Bi5	0.0167(2)	0.0235(3)	0.0161(2)	0.00118(17)	0.01003(19)	0.00525(16)
Bi6	0.0209(2)	0.0183(2)	0.0239(3)	-0.00216(17)	0.0097(2)	0.00673(17)
01	0.008(4)	0.024(5)	0.017(4)	0.006(3)	0.007(3)	0.005(3)
02	0.021(4)	0.016(4)	0.020(5)	0.000(3)	0.004(4)	0.008(3)
011	0.031(5)	0.034(6)	0.042(6)	0.006(4)	0.014(5)	0.006(4)
012	0.032(5)	0.030(6)	0.031(6)	0.010(4)	0.012(4)	0.008(4)
O21	0.024(5)	0.027(5)	0.021(5)	0.002(3)	0.009(4)	0.006(3)
O22	0.025(5)	0.032(6)	0.030(6)	-0.004(4)	0.009(4)	0.001(4)
031	0.033(5)	0.027(5)	0.056(7)	-0.002(4)	0.034(5)	0.010(4)
O32	0.037(5)	0.033(6)	0.038(6)	-0.002(4)	0.016(5)	0.014(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O41	0.027(5)	0.031(5)	0.020(5)	-0.001(4)	0.005(4)	0.014(4)
O42	0.022(5)	0.037(6)	0.034(6)	-0.002(4)	0.009(4)	0.010(4)
051	0.036(5)	0.037(6)	0.019(5)	-0.004(4)	0.015(4)	0.008(4)
052	0.026(5)	0.048(6)	0.030(5)	0.007(4)	0.026(4)	0.015(4)
O61	0.095(9)	0.010(5)	0.028(6)	0.001(4)	0.023(6)	0.004(5)
O62	0.025(4)	0.022(5)	0.013(4)	-0.008(3)	0.012(4)	0.006(3)
071	0.031(5)	0.023(5)	0.020(5)	0.001(4)	-0.002(4)	0.005(3)
072	0.023(4)	0.028(5)	0.026(5)	0.001(4)	0.007(4)	0.007(3)
O81	0.031(5)	0.044(7)	0.033(6)	0.009(4)	0.009(5)	0.015(4)
082	0.041(6)	0.044(6)	0.023(5)	0.007(4)	0.016(5)	0.023(4)
091	0.035(5)	0.020(5)	0.049(6)	-0.011(4)	0.026(5)	0.000(4)
092	0.030(5)	0.030(5)	0.021(5)	-0.002(4)	0.017(4)	0.012(4)
O101	0.031(5)	0.060(7)	0.016(5)	0.006(4)	0.017(4)	0.012(4)
O102	0.029(5)	0.043(6)	0.005(4)	0.001(4)	0.004(4)	0.006(4)
0111	0.027(5)	0.023(5)	0.022(5)	0.007(3)	0.012(4)	0.006(3)
0112	0.048(6)	0.063(7)	0.023(5)	0.015(4)	0.025(5)	0.035(5)
0121	0.052(6)	0.013(5)	0.016(5)	-0.006(3)	0.005(4)	0.004(4)
0122	0.042(6)	0.033(6)	0.034(6)	-0.004(4)	0.007(5)	0.014(4)
0131	0.041(6)	0.018(6)	0.126(13)	-0.015(6)	-0.029(7)	0.015(4)
0132	0.025(5)	0.026(6)	0.044(6)	-0.002(4)	-0.003(5)	0.000(4)
0141	0.069(9)	0.095(12)	0.073(10)	0.025(8)	0.050(8)	0.027(7)
0142	0.037(6)	0.073(10)	0.073(10)	-0.014(7)	0.012(6)	0.021(6)
C11	0.035(6)	0.024(6)	0.025(6)	-0.002(5)	0.000(5)	0.007(5)
C12	0.029(8)	0.064(11)	0.058(10)	0.025(8)	0.016(8)	0.009(7)
C21	0.017(5)	0.032(6)	0.012(5)	0.005(4)	0.000(5)	0.010(4)
C22	0.039(8)	0.035(8)	0.029(8)	-0.014(6)	0.007(7)	0.007(6)
C31	0.026(6)	0.030(6)	0.028(6)	-0.006(5)	-0.002(5)	0.013(5)
C32	0.054(9)	0.038(9)	0.044(9)	-0.012(7)	0.013(8)	0.026(7)
C41	0.022(6)	0.030(6)	0.025(6)	-0.005(5)	0.007(5)	0.007(4)
C42	0.036(8)	0.035(8)	0.043(9)	-0.013(6)	0.018(7)	-0.005(6)
C51	0.025(6)	0.038(7)	0.025(6)	-0.001(5)	0.013(5)	0.009(5)
C52	0.040(9)	0.087(12)	0.032(9)	0.009(8)	0.025(8)	0.010(8)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C61	0.042(5)	0.036(5)	0.015(4)	-0.003(3)	0.019(4)	0.012(4)
C62	0.042(5)	0.036(5)	0.015(4)	-0.003(3)	0.019(4)	0.012(4)
C71	0.020(5)	0.021(6)	0.017(5)	-0.003(4)	0.010(5)	0.003(4)
C72	0.049(9)	0.029(8)	0.043(9)	0.007(6)	0.018(8)	0.002(6)
C81	0.038(6)	0.024(6)	0.021(6)	0.001(4)	0.015(5)	0.021(5)
C82	0.037(7)	0.042(8)	0.024(7)	0.007(6)	0.013(6)	0.014(6)
C91	0.018(5)	0.025(6)	0.029(6)	0.002(5)	0.010(5)	0.007(4)
C92	0.035(7)	0.041(8)	0.030(8)	-0.009(6)	0.012(6)	0.014(6)
C101	0.027(6)	0.031(6)	0.014(6)	0.002(4)	0.004(5)	0.011(5)
C102	0.045(8)	0.050(9)	0.018(7)	0.007(6)	0.007(7)	0.015(6)
C111	0.034(6)	0.028(6)	0.022(6)	-0.002(4)	0.016(5)	0.017(5)
C112	0.046(9)	0.056(10)	0.041(9)	0.020(7)	0.020(8)	0.023(7)
C121	0.021(5)	0.020(6)	0.016(6)	-0.006(4)	-0.001(5)	0.004(4)
C122	0.034(7)	0.036(8)	0.032(8)	-0.012(6)	0.008(7)	0.005(6)
C131	0.035(6)	0.017(6)	0.024(6)	-0.004(4)	0.016(5)	0.012(4)
C132	0.046(9)	0.035(9)	0.060(11)	-0.010(7)	-0.016(8)	0.013(6)
C141	0.040(7)	0.059(8)	0.029(7)	0.008(6)	0.014(6)	0.013(6)
C142	0.058(10)	0.076(12)	0.055(11)	-0.002(9)	0.009(9)	0.047(9)
F11	0.040(6)	0.104(10)	0.088(9)	0.071(7)	0.014(6)	0.023(5)
F12	0.063(7)	0.103(10)	0.128(11)	0.062(8)	0.068(7)	0.060(6)
F13	0.037(6)	0.076(9)	0.121(12)	0.038(8)	-0.028(7)	-0.013(5)
F21	0.128(10)	0.022(6)	0.067(8)	-0.012(5)	0.021(7)	0.004(5)
F22	0.067(7)	0.086(9)	0.052(7)	-0.045(6)	0.024(6)	0.006(6)
F23	0.062(7)	0.081(9)	0.057(7)	-0.033(6)	-0.028(6)	0.028(6)
F31	0.102(9)	0.064(8)	0.045(7)	-0.029(5)	-0.027(6)	0.042(6)
F32	0.062(6)	0.056(7)	0.073(7)	-0.010(5)	0.028(6)	0.032(5)
F33	0.101(8)	0.035(6)	0.094(9)	-0.003(5)	0.063(7)	0.020(5)
F41	0.109(10)	0.040(7)	0.155(13)	-0.042(7)	0.099(10)	-0.023(6)
F42	0.029(6)	0.061(9)	0.199(17)	-0.012(9)	-0.015(7)	-0.005(5)
F43	0.162(13)	0.037(7)	0.075(9)	0.011(6)	0.058(9)	-0.005(7)
F51	0.074(8)	0.128(12)	0.028(6)	0.021(6)	0.011(6)	0.012(7)
F52	0.21(2)	0.28(3)	0.042(8)	0.046(12)	0.006(11)	-0.19(2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F53	0.32(3)	0.35(3)	0.051(9)	0.084(13)	0.113(14)	0.29(3)
F61	0.094(7)	0.046(6)	0.034(5)	0.025(4)	0.040(5)	0.030(5)
F62	0.149(11)	0.057(7)	0.027(5)	-0.013(5)	0.029(7)	0.033(7)
F63	0.046(6)	0.103(9)	0.071(8)	0.012(6)	0.047(6)	0.032(5)
F71	0.052(5)	0.035(5)	0.036(5)	-0.004(4)	-0.007(4)	0.011(4)
F72	0.080(7)	0.024(6)	0.071(8)	0.001(5)	-0.004(6)	-0.015(5)
F73	0.034(6)	0.098(10)	0.083(9)	-0.012(7)	0.027(6)	-0.001(5)
F81	0.040(5)	0.071(7)	0.053(6)	0.020(5)	0.034(5)	0.029(4)
F82	0.057(6)	0.052(6)	0.080(8)	0.039(5)	0.030(6)	0.032(4)
F83	0.062(6)	0.075(8)	0.044(6)	-0.025(5)	-0.015(5)	0.031(5)
F91	0.146(11)	0.035(6)	0.078(8)	-0.034(5)	0.072(8)	-0.026(6)
F92	0.052(6)	0.069(7)	0.061(7)	-0.021(5)	0.025(5)	0.016(5)
F93	0.127(10)	0.112(12)	0.038(7)	-0.020(6)	-0.024(7)	0.080(9)
F101	0.083(8)	0.077(8)	0.019(5)	0.001(5)	-0.013(5)	-0.011(6)
F102	0.095(8)	0.066(8)	0.024(5)	0.020(5)	-0.001(6)	0.021(5)
F103	0.111(10)	0.138(13)	0.036(6)	-0.022(7)	0.021(7)	0.069(9)
F111	0.060(8)	0.219(18)	0.090(11)	0.101(11)	0.052(8)	0.061(9)
F112	0.25(2)	0.22(2)	0.133(14)	0.150(15)	0.146(15)	0.197(18)
F113	0.19(2)	0.22(2)	0.021(7)	0.022(9)	0.002(10)	0.009(15)
F121	0.077(7)	0.062(7)	0.020(5)	-0.008(4)	-0.017(5)	0.004(5)
F122	0.075(7)	0.027(6)	0.065(7)	-0.014(4)	0.001(6)	0.002(4)
F123	0.021(5)	0.108(10)	0.098(10)	-0.048(8)	0.007(5)	-0.004(5)
F131	0.048(7)	0.118(13)	0.26(2)	-0.124(15)	-0.052(10)	0.046(7)
F132	0.058(6)	0.029(6)	0.091(9)	-0.012(5)	-0.029(6)	0.004(4)
F133	0.196(17)	0.082(12)	0.069(10)	0.028(8)	-0.078(12)	-0.037(11)
F141	0.082(11)	0.33(3)	0.115(15)	-0.001(16)	0.030(10)	0.120(15)
F142	0.29(3)	0.15(2)	0.31(3)	-0.10(2)	0.26(3)	-0.055(19)
F143	0.24(2)	0.52(5)	0.16(2)	0.26(3)	0.18(2)	0.29(3)
C211	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)
C212	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)
C213	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)
C214	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)

						
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C215	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)
C216	0.034(4)	0.110(8)	0.106(7)	0.025(5)	0.047(5)	0.025(4)
C311	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C312	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C313	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C314	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C315	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C316	0.036(3)	0.043(4)	0.036(3)	0.008(2)	0.001(3)	0.021(2)
C511	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C512	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C513	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C514	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C515	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C516	0.023(3)	0.054(4)	0.068(5)	0.003(3)	0.014(3)	0.013(3)
C611	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C612	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C613	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C614	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C615	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C616	0.062(5)	0.046(5)	0.072(6)	-0.004(4)	0.005(4)	0.035(3)
C711	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)
C712	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)
C713	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)
C714	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)
C715	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)
C716	0.051(4)	0.065(5)	0.053(5)	0.007(4)	0.022(4)	0.010(3)

Tab. 93: U_{ij} -Werte [Å²] von 17

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0634(3)	0.0380(2)	0.0424(3)	0.00478(18)	0.0233(2)	0.00092(19)
Bi2	0.0626(3)	0.0402(2)	0.0410(3)	-0.00295(18)	0.0186(2)	0.0002(2)
Bi3	0.0672(4)	0.0360(2)	0.0575(3)	0.00520(19)	0.0252(3)	-0.0048(2)
Bi4	0.0607(4)	0.0444(2)	0.0662(3)	0.0052(2)	0.0235(3)	-0.0077(2)
011	0.061(6)	0.070(5)	0.048(5)	0.001(4)	0.021(5)	-0.017(5)
012	0.071(7)	0.053(4)	0.043(5)	-0.018(4)	0.019(4)	0.002(4)
O21	0.060(7)	0.101(7)	0.085(7)	0.017(6)	0.037(6)	0.025(6)
O22	0.065(7)	0.095(7)	0.049(5)	0.012(5)	0.024(5)	0.009(5)
031	0.082(7)	0.054(4)	0.049(5)	-0.012(4)	0.033(5)	-0.016(4)
032	0.078(7)	0.052(4)	0.045(5)	-0.004(4)	0.033(5)	-0.015(4)
O41	0.095(8)	0.058(5)	0.049(5)	-0.008(4)	-0.003(5)	-0.018(5)
O42	0.087(8)	0.046(4)	0.074(6)	0.002(4)	0.022(6)	-0.018(5)
051	0.127(10)	0.074(6)	0.060(6)	-0.007(5)	0.063(6)	-0.011(6)
052	0.099(9)	0.070(6)	0.079(7)	0.001(5)	-0.002(6)	-0.042(6)
O61	0.120(9)	0.034(4)	0.078(7)	0.006(4)	0.037(6)	0.024(5)
O62	0.118(9)	0.046(5)	0.058(6)	0.005(4)	0.032(6)	0.014(5)
071	0.096(8)	0.037(4)	0.071(6)	-0.012(4)	0.025(6)	0.009(4)
072	0.102(8)	0.045(4)	0.056(5)	-0.003(4)	0.039(5)	0.002(5)
O81	0.094(8)	0.049(4)	0.046(5)	0.006(4)	-0.001(5)	0.007(5)
082	0.047(6)	0.048(4)	0.087(7)	0.011(4)	0.014(5)	-0.008(4)
O91	0.113(10)	0.045(5)	0.140(10)	0.007(5)	0.084(9)	-0.001(5)
092	0.090(8)	0.048(5)	0.103(8)	-0.014(5)	0.053(7)	-0.017(5)
O101	0.097(8)	0.040(4)	0.074(6)	0.006(4)	0.035(6)	0.010(4)
0102	0.065(7)	0.077(6)	0.062(6)	-0.005(5)	0.004(5)	-0.006(5)
0111	0.063(7)	0.051(5)	0.062(6)	0.004(4)	0.008(5)	-0.013(4)
0112	0.058(7)	0.073(6)	0.095(8)	0.025(6)	0.006(6)	-0.009(5)
O121	0.050(6)	0.074(6)	0.083(7)	0.008(5)	0.016(5)	-0.011(5)
0122	0.072(8)	0.088(7)	0.085(8)	0.023(6)	0.029(6)	-0.010(6)
C11	0.054(9)	0.042(6)	0.059(8)	0.003(5)	0.031(7)	-0.005(5)
C12	0.083(13)	0.082(10)	0.064(10)	-0.021(8)	0.031(9)	0.000(9)
C21	0.052(10)	0.098(10)	0.049(8)	-0.020(8)	0.021(7)	-0.015(8)
C22	0.090(18)	0.26(3)	0.074(14)	0.057(18)	-0.012(12)	-0.05(2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C31	0.074(10)	0.041(6)	0.045(7)	-0.001(5)	0.018(7)	-0.013(6)
C32	0.083(12)	0.055(7)	0.057(9)	-0.016(6)	0.025(8)	-0.023(7)
C41	0.083(11)	0.038(6)	0.049(8)	-0.009(5)	0.027(7)	-0.008(6)
C42	0.170(19)	0.047(7)	0.033(7)	0.017(6)	0.009(9)	-0.018(9)
C51	0.061(9)	0.049(6)	0.052(8)	0.015(6)	0.014(7)	-0.002(6)
C52	0.077(12)	0.069(8)	0.072(10)	0.006(7)	0.037(9)	-0.029(8)
C61	0.085(12)	0.045(6)	0.067(9)	-0.012(6)	0.025(8)	0.004(7)
C62	0.15(2)	0.096(12)	0.064(11)	-0.004(10)	0.022(12)	0.038(13)
C71	0.070(10)	0.037(6)	0.060(8)	-0.023(6)	0.019(7)	0.008(6)
C72	0.110(15)	0.066(9)	0.078(11)	0.017(8)	0.052(11)	0.012(9)
C81	0.062(9)	0.047(6)	0.045(7)	0.012(5)	0.017(6)	0.010(6)
C82	0.074(12)	0.054(8)	0.096(12)	0.020(8)	-0.002(10)	0.000(8)
C91	0.062(10)	0.057(8)	0.086(11)	0.005(7)	0.019(8)	0.004(7)
C92	0.113(17)	0.080(10)	0.112(15)	-0.006(10)	0.075(13)	-0.013(10)
C101	0.067(10)	0.044(6)	0.050(7)	0.003(6)	0.018(7)	0.004(6)
C102	0.14(2)	0.092(12)	0.070(12)	0.019(10)	0.029(12)	0.001(13)
C111	0.090(13)	0.042(6)	0.071(10)	-0.007(6)	0.032(9)	-0.016(7)
C112	0.101(15)	0.080(10)	0.062(10)	0.014(8)	-0.013(10)	-0.026(10)
C121	0.054(10)	0.074(9)	0.084(11)	0.004(8)	0.024(9)	-0.014(7)
C122	0.093(16)	0.122(15)	0.102(15)	0.025(12)	0.054(13)	0.006(12)
F11	0.130(12)	0.151(11)	0.187(14)	0.033(10)	-0.043(10)	-0.082(9)
F12	0.104(9)	0.204(12)	0.051(5)	0.007(6)	0.016(6)	0.024(8)
F13	0.077(8)	0.240(14)	0.116(9)	-0.073(9)	-0.020(7)	0.061(9)
F21	0.147(11)	0.161(10)	0.079(7)	0.013(7)	0.050(7)	-0.064(9)
F22	0.134(14)	0.42(3)	0.193(17)	0.117(18)	0.104(13)	0.152(17)
F23	0.181(16)	0.63(4)	0.091(9)	-0.035(16)	0.050(10)	-0.28(2)
F31	0.146(10)	0.078(5)	0.065(5)	-0.027(4)	0.047(6)	-0.011(5)
F32	0.222(14)	0.053(5)	0.090(7)	-0.005(5)	0.020(8)	0.033(6)
F33	0.137(11)	0.103(7)	0.185(12)	-0.071(8)	0.082(10)	-0.065(7)
F41	0.226(16)	0.127(9)	0.085(7)	0.017(7)	-0.029(9)	-0.094(10)
F42	0.28(2)	0.269(18)	0.076(8)	0.011(10)	0.016(10)	-0.207(17)
F43	0.174(17)	0.172(14)	0.55(4)	-0.26(2)	-0.05(2)	0.029(12)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F51	0.30(2)	0.205(14)	0.142(11)	-0.069(11)	0.170(14)	-0.099(14)
F52	0.27(2)	0.120(9)	0.276(19)	0.092(11)	0.199(17)	0.012(11)
F53	0.085(10)	0.41(3)	0.160(13)	0.081(15)	0.029(9)	-0.098(14)
F61	0.248(18)	0.109(8)	0.084(7)	-0.041(6)	0.028(9)	0.015(9)
F62	0.226(19)	0.258(18)	0.085(8)	0.003(10)	-0.018(10)	0.134(16)
F63	0.27(2)	0.259(18)	0.100(10)	0.029(11)	0.087(13)	-0.065(17)
F71	0.35(2)	0.125(9)	0.148(11)	0.061(9)	0.180(14)	0.051(12)
F72	0.37(3)	0.239(18)	0.168(15)	-0.108(14)	0.190(18)	-0.129(19)
F73	0.203(17)	0.43(3)	0.151(13)	0.109(16)	0.123(13)	0.204(19)
F81	0.096(11)	0.131(11)	0.42(3)	0.017(15)	-0.049(15)	-0.027(9)
F82	0.089(10)	0.150(11)	0.271(19)	-0.049(12)	0.006(11)	0.040(8)
F83	0.132(15)	0.55(4)	0.100(10)	0.040(17)	-0.030(10)	-0.12(2)
F91	0.31(2)	0.076(7)	0.266(19)	-0.015(9)	0.212(18)	0.010(9)
F92	0.63(5)	0.32(3)	0.145(15)	0.060(16)	0.24(2)	0.24(3)
F93	0.173(19)	0.28(2)	0.51(4)	-0.20(3)	0.21(2)	-0.046(16)
F101	0.193(17)	0.179(13)	0.27(2)	0.126(13)	0.146(15)	0.128(12)
F102	0.152(14)	0.136(10)	0.29(2)	0.141(12)	0.065(13)	0.035(9)
F103	0.23(2)	0.246(19)	0.140(13)	0.005(13)	-0.065(13)	0.008(16)
F111	0.136(10)	0.059(5)	0.110(7)	0.026(5)	0.028(7)	-0.029(5)
F112	0.109(10)	0.163(11)	0.184(13)	0.121(10)	-0.018(9)	-0.008(8)
F113	0.30(2)	0.112(8)	0.059(6)	-0.016(6)	0.055(9)	-0.057(10)
F121	0.178(15)	0.132(10)	0.266(18)	0.068(11)	0.136(14)	-0.036(9)
F122	0.103(11)	0.194(13)	0.194(15)	0.010(12)	0.073(11)	-0.002(10)
F123	0.173(15)	0.31(2)	0.159(13)	-0.093(13)	0.125(12)	-0.111(14)
C1	0.14(2)	0.099(14)	0.15(2)	-0.027(15)	0.096(19)	-0.009(14)
C2	0.25(4)	0.074(12)	0.091(15)	0.000(11)	0.05(2)	-0.014(17)
C3	0.107(17)	0.064(10)	0.124(17)	0.003(10)	0.012(13)	0.003(10)
C4	0.094(15)	0.057(8)	0.130(16)	-0.007(10)	0.048(13)	-0.004(9)
C5	0.110(18)	0.066(10)	0.143(18)	-0.012(11)	0.028(16)	0.013(11)
C6	0.078(14)	0.084(12)	0.16(2)	-0.046(13)	0.047(15)	-0.015(10)
C7	0.37(5)	0.16(2)	0.46(6)	-0.08(3)	0.37(5)	-0.05(3)
C8	0.14(2)	0.071(11)	0.37(4)	0.019(18)	0.11(3)	-0.051(13)

h	k	l	D[mm]	h	k	1	D[mm]	h	k	1	D[mm]
2	1	9	0.068	6	-3	-10	0.119	0	-7	-6	0.142
2	3	-5	0.123	-2	1	-9	0.052	1	1	2	0.091
-7	-6	-10	0.104	8	-1	4	0.133	-6	10	-3	0.084
-3	0	5	0.099	-1	3	5	0.100	3	-3	-4	0.106
1	-8	10	0.079								

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

Tab. 94: U_{ij} -Werte [Å²] von 18a

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0647(4)	0.0902(5)	0.0636(3)	-0.0074(3)	0.0119(3)	0.0070(4)
Bi2	0.0653(4)	0.0926(6)	0.0827(4)	-0.0086(4)	0.0271(3)	-0.0056(4)
Bi3	0.0701(4)	0.0937(6)	0.0641(3)	0.0048(4)	0.0155(3)	0.0041(4)
Bi4	0.0831(9)	0.0494(8)	0.0782(7)	-0.0117(7)	0.0111(7)	0.0080(7)
Bi41	0.0730(8)	0.0498(9)	0.0729(8)	-0.0058(7)	0.0094(7)	0.0054(7)
Bi5	0.0767(8)	0.0735(10)	0.0881(8)	0.0002(7)	0.0223(7)	-0.0226(8)
Bi51	0.0712(8)	0.0645(10)	0.0917(8)	0.0030(7)	0.0248(7)	-0.0126(8)
Bi6	0.1251(11)	0.0553(9)	0.0732(7)	0.0127(7)	0.0199(8)	0.0201(9)
Bi61	0.0908(9)	0.0368(8)	0.0745(7)	0.0015(6)	0.0205(7)	0.0034(7)
Bi7	0.0676(4)	0.0967(6)	0.0735(4)	0.0024(4)	0.0105(3)	-0.0151(4)
Bi8	0.0719(4)	0.0761(5)	0.0938(4)	-0.0017(4)	0.0313(3)	-0.0006(4)
Bi9	0.0763(4)	0.0776(5)	0.0708(3)	-0.0065(3)	0.0183(3)	-0.0044(4)
01	0.036(5)	0.098(9)	0.057(5)	0.014(5)	0.017(4)	-0.001(5)
O2	0.070(6)	0.089(9)	0.058(5)	-0.006(5)	0.017(5)	0.018(6)
O3	0.072(5)	0.045(6)	0.062(5)	0.005(5)	0.027(4)	-0.008(5)
011	0.076(8)	0.177(16)	0.053(6)	0.000(8)	-0.011(6)	-0.012(10)
012	0.092(8)	0.123(11)	0.055(6)	0.013(7)	-0.002(6)	-0.024(8)
O21	0.122(9)	0.069(9)	0.102(7)	0.000(7)	0.033(7)	0.007(8)
O22	0.135(10)	0.092(10)	0.085(7)	-0.033(7)	0.015(7)	-0.057(8)
O31	0.086(8)	0.118(11)	0.117(8)	-0.058(8)	0.010(7)	0.015(8)
O32	0.161(10)	0.066(9)	0.131(8)	-0.033(7)	0.066(7)	0.016(8)
O41	0.074(7)	0.176(16)	0.082(7)	-0.004(9)	0.015(6)	-0.032(9)
O42	0.141(11)	0.176(15)	0.082(8)	-0.031(9)	0.013(8)	-0.086(10)
051	0.088(7)	0.113(12)	0.144(8)	0.018(8)	0.059(6)	0.026(8)
052	0.163(8)	0.160(17)	0.185(9)	0.030(10)	0.126(6)	0.031(10)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O61	0.096(11)	0.174(19)	0.145(13)	0.033(13)	-0.023(10)	-0.019(12)
O62	0.138(8)	0.109(11)	0.119(7)	-0.032(7)	0.080(6)	-0.027(8)
071	0.107(9)	0.105(12)	0.152(10)	0.035(9)	0.042(8)	-0.009(9)
072	0.123(8)	0.117(12)	0.134(8)	0.021(8)	0.071(6)	0.039(8)
O81	0.174(12)	0.177(16)	0.079(7)	0.036(9)	0.045(7)	0.070(12)
082	0.096(8)	0.160(15)	0.084(7)	0.003(8)	0.029(6)	-0.014(9)
O91	0.169(13)	0.096(12)	0.100(8)	-0.006(8)	0.028(9)	-0.006(11)
092	0.167(11)	0.209(17)	0.093(8)	-0.013(10)	0.022(8)	-0.122(11)
O101	0.085(7)	0.102(11)	0.099(7)	-0.009(7)	0.022(6)	-0.015(8)
O102	0.40(2)	0.135(12)	0.095(8)	0.001(9)	0.080(10)	0.150(13)
O111	0.126(13)	0.18(2)	0.174(16)	-0.001(16)	-0.006(13)	-0.023(15)
O112	0.203(18)	0.27(2)	0.118(9)	-0.134(10)	-0.011(11)	-0.081(17)
O121	0.068(9)	0.110(12)	0.164(13)	-0.002(11)	-0.029(9)	0.030(9)
0122	0.228(12)	0.156(14)	0.087(6)	0.061(7)	0.082(7)	0.087(11)
O131	0.313(13)	0.28(2)	0.144(9)	0.027(11)	0.105(8)	0.131(14)
O132	0.313(13)	0.28(2)	0.144(9)	0.027(11)	0.105(8)	0.131(14)
O141	0.311(18)	0.31(2)	0.212(14)	0.128(13)	0.054(13)	-0.168(16)
O142	0.095(8)	0.21(2)	0.205(12)	0.021(14)	0.077(8)	0.036(11)
0151	0.185(14)	0.138(15)	0.086(8)	0.015(9)	0.018(9)	-0.021(13)
0152	0.071(7)	0.169(14)	0.071(6)	-0.024(8)	0.018(5)	0.014(8)
O161	0.072(7)	0.130(13)	0.144(10)	0.041(9)	0.031(7)	0.023(8)
O162	0.087(7)	0.114(12)	0.146(9)	0.029(9)	0.046(7)	0.002(8)
0171	0.119(10)	0.099(11)	0.110(9)	0.000(9)	0.009(8)	0.031(9)
0172	0.047(7)	0.271(19)	0.123(8)	-0.114(9)	0.012(7)	-0.032(9)
O181	0.083(8)	0.097(11)	0.161(11)	-0.045(9)	0.032(8)	-0.031(8)
O182	0.202(12)	0.112(13)	0.150(9)	0.013(9)	0.091(8)	0.050(11)
O191	0.063(8)	0.159(15)	0.172(14)	-0.030(12)	-0.016(9)	0.047(9)
O192	0.113(9)	0.128(13)	0.077(7)	0.010(7)	0.031(6)	0.024(9)
O201	0.142(9)	0.24(2)	0.189(11)	-0.031(12)	0.112(7)	-0.049(12)
O202	0.165(11)	0.132(13)	0.103(8)	0.001(9)	0.035(8)	0.072(10)
O211	0.120(8)	0.133(13)	0.084(6)	-0.009(7)	0.046(6)	0.005(9)
O212	0.185(11)	0.27(2)	0.150(9)	0.121(10)	0.103(7)	0.107(13)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F11	0.184(6)	0.148(8)	0.128(5)	0.015(5)	0.058(4)	-0.046(6)
F12	0.184(6)	0.148(8)	0.128(5)	0.015(5)	0.058(4)	-0.046(6)
F13	0.184(6)	0.148(8)	0.128(5)	0.015(5)	0.058(4)	-0.046(6)
F21	0.240(6)	0.208(7)	0.234(6)	-0.001(5)	0.062(5)	-0.010(5)
F22	0.240(6)	0.208(7)	0.234(6)	-0.001(5)	0.062(5)	-0.010(5)
F23	0.240(6)	0.208(7)	0.234(6)	-0.001(5)	0.062(5)	-0.010(5)
F31	0.262(12)	0.190(11)	0.313(13)	-0.118(10)	0.068(10)	-0.073(11)
F32	0.262(12)	0.190(11)	0.313(13)	-0.118(10)	0.068(10)	-0.073(11)
F33	0.262(12)	0.190(11)	0.313(13)	-0.118(10)	0.068(10)	-0.073(11)
F41	0.161(10)	0.165(11)	0.378(18)	-0.075(12)	-0.081(11)	-0.030(9)
F42	0.161(10)	0.165(11)	0.378(18)	-0.075(12)	-0.081(11)	-0.030(9)
F43	0.161(10)	0.165(11)	0.378(18)	-0.075(12)	-0.081(11)	-0.030(9)
F51	0.343(13)	0.134(8)	0.278(10)	-0.034(8)	0.097(10)	0.094(9)
F52	0.343(13)	0.134(8)	0.278(10)	-0.034(8)	0.097(10)	0.094(9)
F53	0.343(13)	0.134(8)	0.278(10)	-0.034(8)	0.097(10)	0.094(9)
F61	0.274(12)	0.200(13)	0.273(11)	-0.055(10)	0.110(9)	0.016(10)
F62	0.274(12)	0.200(13)	0.273(11)	-0.055(10)	0.110(9)	0.016(10)
F63	0.274(12)	0.200(13)	0.273(11)	-0.055(10)	0.110(9)	0.016(10)
F71	0.192(8)	0.236(14)	0.349(14)	0.023(11)	0.106(8)	-0.069(8)
F72	0.192(8)	0.236(14)	0.349(14)	0.023(11)	0.106(8)	-0.069(8)
F73	0.192(8)	0.236(14)	0.349(14)	0.023(11)	0.106(8)	-0.069(8)
F81	0.198(8)	0.141(9)	0.138(6)	-0.002(6)	0.032(6)	-0.012(7)
F82	0.198(8)	0.141(9)	0.138(6)	-0.002(6)	0.032(6)	-0.012(7)
F83	0.198(8)	0.141(9)	0.138(6)	-0.002(6)	0.032(6)	-0.012(7)
F91	0.74(3)	0.193(16)	0.249(11)	-0.033(10)	0.232(15)	0.008(19)
F92	0.74(3)	0.193(16)	0.249(11)	-0.033(10)	0.232(15)	0.008(19)
F93	0.74(3)	0.193(16)	0.249(11)	-0.033(10)	0.232(15)	0.008(19)
F101	0.340(14)	0.275(16)	0.57(2)	-0.222(18)	0.152(16)	-0.119(17)
F102	0.340(14)	0.275(16)	0.57(2)	-0.222(18)	0.152(16)	-0.119(17)
F103	0.340(14)	0.275(16)	0.57(2)	-0.222(18)	0.152(16)	-0.119(17)
F111	0.207(11)	0.295(17)	0.297(12)	-0.134(12)	0.052(10)	-0.022(11)
F112	0.207(11)	0.295(17)	0.297(12)	-0.134(12)	0.052(10)	-0.022(11)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F113	0.207(11)	0.295(17)	0.297(12)	-0.134(12)	0.052(10)	-0.022(11)
F121	0.49(3)	0.153(14)	0.40(2)	0.011(17)	-0.12(2)	-0.044(19)
F122	0.49(3)	0.153(14)	0.40(2)	0.011(17)	-0.12(2)	-0.044(19)
F123	0.49(3)	0.153(14)	0.40(2)	0.011(17)	-0.12(2)	-0.044(19)
F131	0.40(2)	0.204(18)	0.47(2)	-0.047(18)	0.170(18)	-0.036(16)
F132	0.40(2)	0.204(18)	0.47(2)	-0.047(18)	0.170(18)	-0.036(16)
F133	0.40(2)	0.204(18)	0.47(2)	-0.047(18)	0.170(18)	-0.036(16)
F141	0.621(13)	0.37(2)	0.524(15)	0.015(13)	0.427(10)	-0.156(13)
F142	0.621(13)	0.37(2)	0.524(15)	0.015(13)	0.427(10)	-0.156(13)
F143	0.621(13)	0.37(2)	0.524(15)	0.015(13)	0.427(10)	-0.156(13)
F151	0.219(10)	0.295(17)	0.145(6)	-0.053(9)	0.034(7)	0.045(11)
F152	0.219(10)	0.295(17)	0.145(6)	-0.053(9)	0.034(7)	0.045(11)
F153	0.219(10)	0.295(17)	0.145(6)	-0.053(9)	0.034(7)	0.045(11)
F161	0.243(11)	0.135(9)	0.292(12)	0.041(10)	0.042(10)	0.044(10)
F162	0.243(11)	0.135(9)	0.292(12)	0.041(10)	0.042(10)	0.044(10)
F163	0.243(11)	0.135(9)	0.292(12)	0.041(10)	0.042(10)	0.044(10)
F171	0.60(3)	0.251(17)	0.357(16)	0.071(16)	0.142(18)	0.22(2)
F172	0.60(3)	0.251(17)	0.357(16)	0.071(16)	0.142(18)	0.22(2)
F173	0.60(3)	0.251(17)	0.357(16)	0.071(16)	0.142(18)	0.22(2)
F181	0.565(13)	0.244(12)	0.324(11)	-0.108(9)	0.285(8)	-0.237(10)
F182	0.565(13)	0.244(12)	0.324(11)	-0.108(9)	0.285(8)	-0.237(10)
F183	0.565(13)	0.244(12)	0.324(11)	-0.108(9)	0.285(8)	-0.237(10)
F191	0.287(11)	0.47(2)	0.336(13)	0.222(14)	0.127(9)	0.243(12)
F192	0.287(11)	0.47(2)	0.336(13)	0.222(14)	0.127(9)	0.243(12)
F193	0.287(11)	0.47(2)	0.336(13)	0.222(14)	0.127(9)	0.243(12)
F201	0.334(7)	0.336(7)	0.337(7)	-0.007(6)	0.096(5)	0.012(6)
F202	0.334(7)	0.336(7)	0.337(7)	-0.007(6)	0.096(5)	0.012(6)
F203	0.334(7)	0.336(7)	0.337(7)	-0.007(6)	0.096(5)	0.012(6)
F211	0.307(10)	0.163(11)	0.307(10)	0.016(9)	0.143(8)	-0.053(10)
F212	0.307(10)	0.163(11)	0.307(10)	0.016(9)	0.143(8)	-0.053(10)
F213	0.307(10)	0.163(11)	0.307(10)	0.016(9)	0.143(8)	-0.053(10)

h	k	1	D[mm]	h	k	1	D[mm]
1	-7	-3	0.291	-1	-10	-8	0.172
0	2	-1	0.272	-3	0	5	0.160
1	10	7	0.199	4	-8	9	0.248
-2	0	9	0.105	-3	8	-7	0.183
1	-1	-9	0.151	4	2	-9	0.242

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

Tab. 95: U_{ij} -Werte [Å²] von **18b**

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃ U ₁₃		U ₁₂
Bi1	0.02869(19)	0.02297(15)	0.0281(2)	-0.00037(12)	0.00917(15)	0.00113(12)
Bi2	0.02785(18)	0.02328(15)	0.0321(2)	-0.00098(13)	0.01019(15)	0.00329(12)
Bi3	0.02583(18)	0.02445(15)	0.0295(2)	0.00187(12)	0.00793(15)	0.00314(12)
01	0.024(3)	0.024(3)	0.023(3)	0.001(2)	0.007(3)	0.005(2)
011	0.034(4)	0.030(3)	0.044(5)	0.004(3)	0.012(4)	-0.003(3)
O12	0.054(5)	0.037(3)	0.042(5)	-0.002(3)	0.033(4)	0.001(3)
O21	0.041(4)	0.024(3)	0.041(4)	0.007(3)	0.019(3)	0.007(3)
O22	0.045(4)	0.034(3)	0.039(5)	0.005(3)	0.015(4)	0.005(3)
O31	0.044(4)	0.042(4)	0.040(5)	-0.002(3)	0.008(4)	0.007(3)
O32	0.031(4)	0.033(3)	0.039(4)	0.003(3)	0.013(3)	0.000(3)
O41	0.042(4)	0.027(3)	0.034(4)	0.005(3)	0.019(3)	0.000(3)
O42	0.044(4)	0.026(3)	0.044(5)	0.000(3)	0.025(4)	-0.005(3)
051	0.027(3)	0.029(3)	0.035(4)	-0.002(3)	0.010(3)	-0.004(2)
O52	0.031(4)	0.031(3)	0.039(4)	-0.003(3)	0.012(3)	-0.002(3)
O61	0.021(3)	0.031(3)	0.039(4)	-0.005(3)	0.004(3)	-0.001(2)
O62	0.035(4)	0.023(3)	0.040(4)	-0.002(3)	0.014(3)	-0.008(3)
O71	0.033(4)	0.044(3)	0.031(4)	0.008(3)	0.011(3)	0.005(3)
O72	0.036(4)	0.038(3)	0.027(4)	-0.002(3)	0.016(3)	0.006(3)
C11	0.037(5)	0.021(4)	0.031(6)	0.003(4)	0.016(5)	-0.002(3)
C12	0.038(6)	0.035(5)	0.039(6)	-0.003(4)	0.019(5)	-0.006(4)
C21	0.036(5)	0.022(4)	0.043(7)	0.002(4)	0.014(5)	0.007(4)
C22	0.066(8)	0.040(5)	0.043(8)	0.000(5)	0.028(6)	-0.009(5)
C31	0.040(6)	0.031(4)	0.023(5)	0.007(4)	0.005(5)	-0.002(4)
C32	0.029(5)	0.045(5)	0.048(7)	0.011(5)	0.012(5)	0.002(4)
C41	0.028(5)	0.021(4)	0.038(6)	0.000(4)	0.005(5)	-0.003(3)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C42	0.051(7)	0.035(5)	0.054(8)	-0.003(5)	0.028(6)	-0.013(5)
C51	0.023(5)	0.030(4)	0.039(6)	0.004(4)	0.005(4)	0.003(4)
C52	0.047(7)	0.031(5)	0.061(8)	-0.008(5)	0.031(6)	-0.013(4)
C61	0.038(6)	0.029(4)	0.026(5)	0.004(4)	0.014(4)	-0.002(4)
C62	0.033(6)	0.033(5)	0.064(9)	-0.010(5)	0.005(6)	-0.007(4)
C71	0.046(6)	0.027(4)	0.032(6)	-0.005(4)	0.017(5)	-0.013(4)
C72	0.028(6)	0.054(6)	0.046(7)	0.000(5)	0.011(5)	0.000(5)
F11	0.089(7)	0.099(6)	0.213(14)	0.099(8)	0.092(8)	0.022(5)
F12	0.056(5)	0.078(4)	0.110(7)	-0.048(5)	0.054(5)	-0.022(4)
F13	0.060(5)	0.170(9)	0.073(7)	-0.063(6)	0.033(5)	-0.057(6)
F21	0.171(11)	0.068(5)	0.127(9)	-0.025(5)	0.094(9)	-0.070(6)
F22	0.082(7)	0.021(4)	0.43(3)	-0.008(7)	0.041(11)	0.010(4)
F23	0.284(17)	0.070(5)	0.055(6)	-0.017(4)	0.037(8)	-0.084(8)
F31	0.054(4)	0.060(4)	0.067(5)	-0.023(3)	0.004(4)	0.022(3)
F32	0.038(4)	0.136(7)	0.084(7)	0.049(5)	0.025(4)	0.004(4)
F33	0.040(4)	0.050(3)	0.064(5)	-0.010(3)	-0.009(4)	0.007(3)
F41	0.121(8)	0.028(3)	0.157(10)	0.013(4)	0.089(7)	-0.006(4)
F42	0.249(15)	0.076(5)	0.128(10)	-0.047(6)	0.143(11)	-0.089(7)
F43	0.071(7)	0.143(9)	0.177(13)	0.076(9)	-0.006(8)	-0.054(6)
F51	0.103(7)	0.036(3)	0.107(7)	-0.015(4)	0.071(6)	-0.022(4)
F52	0.037(4)	0.087(5)	0.184(12)	0.039(6)	0.033(6)	-0.006(4)
F53	0.137(9)	0.079(5)	0.062(6)	0.002(4)	0.058(6)	-0.042(5)
F61	0.069(5)	0.028(3)	0.108(7)	0.003(3)	0.017(5)	-0.005(3)
F62	0.065(5)	0.060(4)	0.182(11)	-0.041(5)	0.066(7)	-0.032(4)
F63	0.085(6)	0.062(4)	0.065(6)	-0.021(4)	-0.013(5)	-0.015(4)
F71	0.084(6)	0.124(6)	0.047(5)	0.041(5)	0.028(5)	0.043(5)
F72	0.048(5)	0.156(8)	0.047(5)	0.025(5)	0.028(4)	0.014(5)
F73	0.127(8)	0.101(6)	0.049(5)	-0.035(4)	0.030(6)	-0.032(6)
C211	0.047(6)	0.021(4)	0.053(7)	-0.005(4)	0.014(6)	0.013(4)
C212	0.042(6)	0.026(4)	0.060(8)	-0.016(4)	0.012(6)	0.005(4)
C213	0.072(9)	0.039(5)	0.059(8)	-0.003(5)	0.030(7)	0.021(5)
C214	0.058(8)	0.037(5)	0.107(13)	-0.019(6)	0.066(9)	-0.014(5)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C215	0.028(6)	0.047(6)	0.097(12)	-0.032(7)	0.022(7)	-0.008(5)
C216	0.042(6)	0.032(5)	0.053(7)	0.000(4)	0.001(6)	0.022(4)
C217	0.109(12)	0.026(5)	0.086(11)	0.000(5)	0.060(10)	0.007(6)
C218	0.128(16)	0.059(8)	0.18(2)	-0.021(10)	0.126(17)	-0.011(9)
C311	0.024(5)	0.043(5)	0.049(7)	-0.003(5)	-0.009(5)	0.003(4)
C312	0.009(4)	0.063(7)	0.075(9)	0.028(6)	0.004(5)	0.004(4)
C313	0.039(7)	0.097(10)	0.057(9)	0.028(7)	0.028(7)	0.023(7)
C314	0.044(7)	0.058(6)	0.035(6)	-0.002(5)	0.003(5)	0.029(5)
C315	0.037(6)	0.030(4)	0.041(7)	0.004(4)	0.005(5)	0.007(4)
C316	0.033(5)	0.031(4)	0.049(7)	0.008(4)	0.005(5)	0.014(4)
C317	0.042(7)	0.051(6)	0.071(10)	-0.012(6)	-0.024(7)	0.009(5)
C318	0.088(12)	0.112(12)	0.061(11)	-0.030(9)	-0.004(9)	0.060(10)

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

h	k	1	D[mm]	h	k	1	D[mm]
8	-9	1	0.081	8	3	8	0.246
-10	7	1	0.102	0	-8	3	0.315
7	-4	-7	0.071	0	2	-1	0.263
-5	5	3	0.094	-3	-9	5	0.394

Tab. 96: U_{ij} -Werte [Å²] von 19

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bil	0.0660(2)	0.07102(18)	0.06120(16)	-0.00813(11)	-0.01594(11)	-0.02750(12)
Bi2	0.0810(2)	0.0729(2)	0.07126(19)	0.00607(13)	-0.02560(14)	-0.02431(15)
01	0.064(3)	0.064(3)	0.063(2)	-0.0030(19)	-0.0156(19)	-0.025(2)
011	0.108(5)	0.118(5)	0.109(5)	-0.049(4)	-0.003(4)	-0.034(4)
012	0.089(5)	0.143(6)	0.117(5)	-0.054(5)	-0.029(4)	0.011(4)
O21	0.117(5)	0.088(4)	0.084(4)	-0.031(3)	-0.015(3)	-0.035(3)
O22	0.116(5)	0.100(4)	0.103(4)	-0.027(3)	-0.046(4)	-0.029(4)
031	0.156(8)	0.072(4)	0.204(8)	0.013(4)	-0.103(7)	-0.041(4)
032	0.131(6)	0.077(4)	0.134(5)	0.005(4)	-0.052(5)	-0.055(4)
O41	0.096(6)	0.205(8)	0.069(4)	-0.014(4)	-0.011(3)	-0.020(5)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O42	0.097(5)	0.178(7)	0.058(3)	-0.007(4)	0.000(3)	-0.047(5)
C11	0.069(6)	0.120(8)	0.112(7)	-0.055(7)	-0.012(5)	-0.013(5)
C12	0.130(12)	0.137(11)	0.168(14)	-0.083(11)	-0.023(10)	-0.015(9)
C21	0.100(7)	0.102(7)	0.091(6)	-0.035(5)	-0.019(5)	-0.039(5)
C22	0.23(2)	0.157(14)	0.103(9)	-0.059(9)	-0.010(11)	-0.059(13)
C31	0.100(7)	0.069(5)	0.086(5)	-0.017(4)	-0.008(4)	-0.034(4)
C32	0.184(16)	0.075(7)	0.165(13)	-0.006(7)	-0.035(11)	-0.052(8)
C41	0.093(6)	0.108(6)	0.052(4)	-0.015(4)	-0.005(4)	-0.045(5)
C42	0.135(13)	0.25(2)	0.082(8)	-0.048(10)	0.008(7)	-0.076(14)
F11	0.27(3)	0.23(3)	0.139(15)	-0.124(17)	-0.045(17)	0.04(2)
F12	0.24(3)	0.14(2)	0.27(4)	-0.11(3)	-0.11(3)	0.10(2)
F13	0.18(2)	0.090(13)	0.31(4)	-0.079(17)	-0.05(2)	-0.041(13)
F111	0.51(9)	0.12(2)	0.23(3)	-0.03(2)	-0.03(4)	-0.10(3)
F121	0.43(6)	0.118(17)	0.47(6)	-0.14(3)	-0.35(5)	0.06(2)
F131	0.23(3)	0.24(4)	0.28(4)	-0.18(4)	-0.01(3)	0.05(2)
F21	0.24(2)	0.101(10)	0.186(18)	-0.081(11)	-0.060(16)	-0.025(13)
F22	0.39(6)	0.18(3)	0.15(3)	-0.08(2)	0.12(3)	-0.10(3)
F23	0.47(5)	0.153(16)	0.15(2)	-0.036(13)	-0.19(3)	-0.07(2)
F211	0.55(7)	0.17(2)	0.083(10)	-0.041(12)	0.06(2)	-0.13(3)
F221	0.72(5)	0.57(4)	0.19(3)	-0.23(4)	0.14(3)	-0.540
F231	0.50(8)	0.46(7)	0.17(3)	-0.22(4)	-0.11(4)	0.24(6)
F31	0.107(15)	0.122(15)	0.48(7)	-0.02(3)	-0.01(3)	-0.078(12)
F32	0.23(3)	0.076(10)	0.25(3)	0.006(13)	-0.04(2)	-0.071(15)
F33	0.81(6)	0.60(4)	0.45(5)	-0.45(4)	0.40(4)	-0.584
F311	0.19(2)	0.123(16)	0.53(7)	-0.18(3)	-0.01(3)	-0.046(16)
F321	0.29(3)	0.111(12)	0.23(3)	-0.019(13)	-0.15(3)	-0.088(16)
F331	0.35(6)	0.27(4)	0.156(17)	0.04(2)	-0.01(3)	-0.25(4)
F41	0.23(2)	0.24(2)	0.051(6)	-0.038(9)	0.021(8)	-0.145(16)
F42	0.22(4)	0.70(11)	0.111(16)	-0.11(4)	0.055(19)	-0.32(6)
F43	0.23(4)	0.28(3)	0.18(2)	-0.13(2)	-0.03(2)	0.01(3)
F411	0.113(18)	0.44(5)	0.150(17)	-0.16(2)	0.022(13)	-0.01(2)
F421	0.27(4)	0.92(13)	0.34(5)	-0.50(8)	0.10(4)	-0.27(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F431	0.32(6)	0.28(4)	0.27(5)	0.02(4)	0.16(4)	-0.14(4)
C111	0.081(7)	0.106(10)	0.125(9)	-0.010(8)	-0.021(7)	-0.043(8)
C112	0.081(7)	0.107(10)	0.111(9)	-0.004(8)	-0.022(7)	-0.043(8)
C113	0.086(7)	0.108(10)	0.124(9)	-0.008(8)	-0.025(7)	-0.040(8)
C114	0.087(7)	0.116(11)	0.127(9)	-0.021(9)	-0.021(7)	-0.047(8)
C115	0.089(8)	0.124(11)	0.120(9)	-0.023(8)	-0.018(7)	-0.042(8)
C116	0.090(8)	0.115(10)	0.128(9)	-0.013(8)	-0.024(7)	-0.036(8)
C117	0.16(5)	0.18(4)	0.22(5)	-0.10(3)	0.01(3)	-0.04(3)
C118	0.09(3)	0.22(4)	0.27(5)	-0.15(4)	0.01(3)	-0.07(2)
C211	0.139(12)	0.084(7)	0.119(9)	0.022(6)	-0.018(8)	0.004(7)
C212	0.175(15)	0.107(9)	0.100(8)	0.044(7)	-0.025(9)	-0.034(9)
C213	0.141(12)	0.171(14)	0.068(6)	0.018(7)	-0.011(6)	0.002(10)
C214	0.150(14)	0.163(13)	0.102(9)	-0.003(9)	-0.058(9)	-0.010(11)
C215	0.109(10)	0.120(9)	0.131(10)	0.013(7)	-0.054(8)	-0.019(7)
C216	0.096(9)	0.130(10)	0.127(10)	0.015(8)	-0.012(7)	0.004(8)
C217	0.26(2)	0.112(11)	0.190(17)	-0.010(11)	-0.059(16)	-0.010(12)
C218	0.36(3)	0.190(18)	0.166(16)	-0.060(14)	-0.126(19)	0.000(19)

Tab. 97: U_{ij} -Werte [Å²] von 21

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bil	0.0617(2)	0.05318(17)	0.0557(2)	0.01086(16)	-0.00315(16)	-0.01070(17)
Bi2	0.0594(6)	0.0760(9)	0.0368(5)	-0.0065(9)	0.0113(4)	-0.0047(9)
Bi21	0.0568(6)	0.0587(7)	0.0380(5)	-0.0059(7)	0.0101(4)	-0.0068(8)
Bi3	0.0551(2)	0.06587(19)	0.0406(2)	0.00522(16)	0.01281(15)	-0.00522(17)
01	0.036(3)	0.064(3)	0.095(5)	-0.038(3)	0.029(3)	-0.014(3)
011	0.072(5)	0.155(7)	0.051(5)	-0.001(4)	0.022(4)	-0.057(5)
012	0.089(6)	0.062(4)	0.114(7)	0.025(4)	0.036(5)	0.002(4)
O21	0.054(4)	0.101(5)	0.058(5)	0.019(4)	-0.004(4)	-0.020(4)
O22	0.048(9)	0.090(10)	0.034(10)	0.019(8)	0.015(7)	-0.014(8)
O221	0.18(4)	0.20(3)	0.08(2)	0.04(2)	0.03(2)	-0.04(2)
O31	0.063(9)	0.090(10)	0.054(9)	-0.002(7)	0.027(7)	-0.001(7)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O32	0.055(10)	0.094(10)	0.035(8)	0.000(7)	0.010(7)	0.013(8)
0311	0.042(9)	0.117(13)	0.052(10)	-0.001(8)	-0.001(7)	0.004(8)
O321	0.098(11)	0.075(8)	0.053(9)	-0.005(6)	0.038(8)	-0.008(8)
O41	0.056(5)	0.109(6)	0.092(6)	0.019(5)	0.014(4)	-0.002(4)
O42	0.14(2)	0.13(3)	0.12(2)	-0.068(18)	-0.035(18)	0.108(18)
O421	0.060(10)	0.087(15)	0.052(9)	-0.021(10)	-0.026(8)	0.059(10)
051	0.076(6)	0.188(9)	0.061(6)	0.004(5)	0.020(4)	0.012(6)
052	0.073(5)	0.118(5)	0.044(4)	-0.007(4)	0.013(3)	-0.004(4)
O61	0.076(16)	0.22(3)	0.10(2)	0.056(19)	0.048(15)	0.039(19)
O611	0.11(2)	0.25(3)	0.022(12)	0.017(14)	0.025(12)	0.08(2)
O62	0.166(10)	0.065(5)	0.107(7)	-0.007(5)	0.001(7)	0.011(5)
071	0.065(5)	0.102(5)	0.058(5)	-0.001(4)	0.016(4)	0.001(4)
072	0.088(6)	0.126(6)	0.068(5)	0.016(5)	0.016(5)	0.040(5)
O81	0.075(5)	0.088(5)	0.078(5)	0.029(4)	0.007(4)	-0.010(4)
082	0.075(6)	0.124(6)	0.061(5)	0.001(4)	0.015(4)	-0.003(5)
C11	0.077(7)	0.057(5)	0.052(6)	-0.009(4)	0.026(5)	-0.009(5)
C12	0.121(12)	0.076(7)	0.092(10)	0.009(7)	0.042(9)	0.036(7)
C21	0.060(6)	0.079(6)	0.059(8)	0.030(5)	0.019(6)	0.005(5)
C22	0.071(7)	0.103(8)	0.055(7)	-0.013(6)	-0.009(6)	-0.013(6)
C31	0.046(10)	0.069(11)	0.032(10)	0.006(8)	0.020(8)	-0.010(8)
C32	0.067(13)	0.084(14)	0.102(17)	-0.036(13)	0.015(13)	-0.021(12)
C311	0.076(15)	0.065(12)	0.030(11)	-0.007(9)	0.012(11)	-0.019(10)
C321	0.066(12)	0.097(15)	0.085(16)	0.014(13)	0.030(12)	0.022(11)
C41	0.054(7)	0.130(10)	0.044(7)	-0.018(6)	0.007(5)	0.022(7)
C42	0.084(10)	0.122(10)	0.101(11)	-0.035(9)	-0.013(8)	0.043(9)
C51	0.043(5)	0.102(7)	0.052(7)	0.000(5)	0.005(5)	0.001(5)
C52	0.068(9)	0.206(16)	0.059(9)	-0.024(9)	0.007(7)	-0.035(10)
C61	0.077(7)	0.057(6)	0.063(8)	0.001(5)	-0.002(6)	-0.012(5)
C62	0.137(16)	0.114(12)	0.124(15)	0.007(10)	0.001(13)	0.043(11)
C71	0.068(7)	0.092(7)	0.062(7)	0.004(6)	0.024(6)	0.015(6)
C72	0.123(13)	0.137(12)	0.062(9)	0.010(8)	0.006(9)	0.031(10)

Atom	U11	U22	Um	U23	U13	U12
C81	0.073(7)	0.074(6)	0.058(7)	0.016(5)	0.032(6)	0.001(5)
C82	0 126(14)	0 076(9)	0 155(16)	0.025(9)	0.042(12)	0.018(9)
F11	0.074(6)	0 220(10)	0 201(11)	-0.086(9)	-0.009(6)	0.023(6)
F12	0.116(7)	0 230(10)	0.121(7)	-0.048(7)	0.027(6)	0.023(7)
F13	0.259(15)	0.165(9)	0.309(17)	0.131(11)	0.112(13)	0.111(10)
F21	0.125(6)	0.173(7)	0.061(5)	-0.022(5)	0.005(4)	-0.050(5)
F22	0.093(6)	0 188(9)	0.224(12)	-0.039(8)	0.003(7)	0.041(6)
F23	0.126(7)	0.226(9)	0.070(5)	0.021(6)	-0.003(5)	-0.111(7)
F31	0.27(3)	0.120(13)	0.142(19)	0.069(13)	0.11(2)	-0.016(15)
F32	0.073(10)	0.165(15)	0.144(17)	0.025(13)	0.043(11)	-0.005(10)
F33	0.112(15)	0.39(4)	0.053(13)	0.012(17)	-0.014(11)	-0.03(2)
F321	0.19(3)	0.29(4)	0.38(5)	-0.22(4)	0.21(3)	-0.09(3)
F322	0.40(5)	0.131(17)	0.38(5)	-0.09(2)	0.29(4)	0.00(2)
F323	0.35(6)	0.65(9)	0.12(3)	0.15(4)	0.13(3)	0.15(6)
F41	0.074(6)	0.177(9)	0.38(2)	-0.052(11)	-0.053(9)	0.041(6)
F42	0.171(12)	0.49(3)	0.193(13)	0.222(16)	0.072(10)	0.184(15)
F43	0.115(7)	0.253(12)	0.206(12)	-0.097(10)	-0.013(7)	0.100(8)
F51	0.092(6)	0.322(14)	0.135(8)	-0.056(9)	-0.018(6)	0.110(8)
F52	0.097(6)	0.236(9)	0.056(5)	-0.015(5)	-0.017(4)	0.009(6)
F53	0.104(7)	0.284(13)	0.125(8)	-0.006(8)	0.009(6)	-0.097(8)
F61	0.45(3)	0.128(10)	0.81(6)	0.017(18)	0.46(4)	0.056(14)
F62	0.51(3)	0.208(13)	0.274(18)	0.175(14)	-0.20(2)	-0.169(17)
F63	0.201(13)	0.176(10)	0.277(16)	0.080(10)	0.019(13)	-0.090(10)
F71	0.110(7)	0.234(10)	0.133(8)	-0.020(7)	0.028(6)	0.079(7)
F72	0.168(9)	0.201(9)	0.076(6)	-0.025(6)	0.055(6)	0.043(7)
F73	0.310(16)	0.104(6)	0.309(16)	-0.011(8)	0.233(14)	0.017(8)
F81	0.205(14)	0.173(10)	0.46(3)	0.152(13)	0.215(17)	0.033(9)
F82	0.49(3)	0.097(6)	0.251(16)	-0.007(8)	0.241(18)	-0.087(10)
F83	0.32(2)	0.292(17)	0.213(15)	0.195(14)	-0.037(14)	0.106(14)

h	k	1	D[mm]	h	k	1	D[mm]
-7	28	2	0.106	-22	-2	-11	0.062
22	-29	5	0.029	-11	-29	9	0.058
30	8	11	0.020	29	-12	-26	0.095
1	6	-8	0.171	-23	6	15	0.040
4	3	0	0.053	-1	1	0	0.088

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

Tab. 98: U_{ij} -Werte [Å²] von 22

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0696(9)	0.0560(8)	0.0409(6)	0.000	0.000	-0.0084(7)
Bi2	0.0522(5)	0.0509(5)	0.0566(4)	-0.0022(4)	0.0089(4)	-0.0064(4)
Bi3	0.0705(9)	0.0666(8)	0.0350(6)	0.000	0.000	-0.0046(7)
Bi4	0.0549(5)	0.0530(5)	0.0489(4)	0.0008(4)	0.0012(4)	-0.0049(4)
Bi5	0.0654(6)	0.0967(7)	0.0637(4)	0.0052(5)	0.0215(4)	0.0092(5)
01	0.063(10)	0.056(9)	0.055(7)	0.008(6)	0.003(6)	0.007(7)
02	0.045(8)	0.056(8)	0.053(7)	0.008(6)	-0.008(5)	-0.013(6)
03	0.084(11)	0.056(9)	0.049(7)	0.003(6)	0.007(6)	-0.013(8)
04	0.066(9)	0.044(8)	0.067(8)	0.006(6)	-0.004(7)	-0.008(7)
05	0.131(17)	0.123(16)	0.094(11)	-0.054(11)	0.058(11)	0.010(13)
06	0.14(2)	0.18(2)	0.144(19)	0.008(16)	0.013(16)	-0.03(2)
07	0.063(10)	0.117(14)	0.110(12)	-0.008(10)	0.041(9)	0.021(10)
08	0.091(12)	0.119(15)	0.097(11)	0.043(10)	0.057(10)	0.036(11)
09	0.108(16)	0.17(2)	0.177(19)	0.003(17)	0.075(15)	0.012(15)
O10	0.098(11)	0.153(14)	0.070(8)	0.015(10)	0.045(10)	-0.001(11)
011	0.056(12)	0.24(3)	0.33(3)	0.10(3)	-0.07(2)	-0.025(15)
012	0.82(10)	0.50(6)	0.065(14)	0.00(3)	0.10(3)	0.51(7)
C1	0.070(18)	0.12(2)	0.14(2)	0.03(2)	0.03(2)	-0.066(18)
C2	0.10(2)	0.072(16)	0.076(14)	0.017(12)	0.017(14)	-0.011(15)
C3	0.10(2)	0.18(3)	0.053(13)	0.007(14)	0.039(13)	-0.062(19)
C4	0.098(15)	0.057(11)	0.076(12)	-0.021(9)	-0.024(11)	0.030(11)
C5	0.111(16)	0.084(14)	0.074(12)	-0.042(12)	0.016(12)	0.014(13)
C6	0.18(2)	0.128(19)	0.123(17)	-0.084(15)	0.052(16)	0.017(17)
C7	0.19(5)	0.13(4)	0.26(5)	0.08(4)	0.10(5)	0.03(3)
C8	0.024(15)	0.47(9)	0.17(3)	0.08(4)	-0.042(18)	-0.02(3)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
С9	0.18(2)	0.21(3)	0.18(2)	0.013(19)	0.007(19)	-0.033(19)
C10	0.17(2)	0.21(2)	0.109(17)	-0.035(17)	0.046(16)	0.045(18)
F1	0.24(2)	0.29(2)	0.226(18)	-0.167(19)	0.027(18)	-0.072(18)
F2	0.30(3)	0.19(2)	0.40(3)	-0.04(2)	0.01(3)	-0.06(2)
F3	0.33(3)	0.23(2)	0.29(2)	-0.08(2)	0.09(2)	-0.11(2)
F4	0.25(2)	0.20(2)	0.37(3)	0.18(2)	-0.09(2)	0.045(18)
F5	0.33(3)	0.28(3)	0.31(3)	0.07(2)	0.01(2)	-0.11(2)
F6	0.40(3)	0.128(17)	0.23(2)	0.052(16)	0.02(2)	0.070(19)
F7	0.066(9)	0.31(2)	0.137(11)	0.040(14)	-0.013(11)	0.040(11)
F8	0.27(3)	0.26(3)	0.28(2)	0.08(2)	-0.06(2)	-0.01(2)
F9	0.19(2)	0.33(3)	0.098(11)	-0.023(16)	-0.017(12)	-0.022(18)
F10	0.24(2)	0.34(3)	0.103(12)	0.006(16)	-0.051(14)	-0.03(2)
F11	0.73(4)	0.79(4)	0.70(4)	0.02(3)	0.01(3)	-0.612
F12	0.31(3)	0.27(2)	0.28(2)	-0.13(2)	-0.03(2)	0.01(2)
F13	0.74(3)	0.449(18)	0.49(3)	-0.06(2)	0.05(3)	-0.552
F14	0.47(4)	0.31(3)	0.38(3)	0.08(3)	0.02(3)	0.08(3)
F15	0.34(3)	0.19(2)	0.31(3)	0.017(19)	-0.01(2)	0.15(2)

Tab. 99: U_{ij} -Werte [Å²] von 23

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
Bil	0.0243(3)	0.0339(4)	0.0342(4)	0.0009(4)	0.0132(3)	-0.0006(3)
Bi2	0.0428(4)	0.0412(5)	0.0351(5)	-0.0062(4)	0.0207(3)	-0.0002(4)
Bi3	0.0461(4)	0.0419(5)	0.0348(5)	0.0110(4)	0.0230(3)	0.0069(4)
Bi4	0.0288(3)	0.0326(5)	0.0299(4)	-0.0053(4)	0.0138(3)	-0.0016(3)
Bi5	0.0354(3)	0.0329(5)	0.0320(4)	-0.0027(4)	0.0205(3)	-0.0053(3)
Bi6	0.0283(4)	0.0358(5)	0.0395(5)	-0.0049(4)	0.0093(3)	-0.0006(4)
Bi7	0.0382(4)	0.0762(8)	0.0510(6)	-0.0255(5)	0.0232(4)	-0.0177(5)
Bi8	0.0713(8)	0.0333(8)	0.0460(9)	0.000	0.0189(7)	0.000
01	0.092(12)	0.031(10)	0.019(9)	0.002(8)	0.010(8)	0.003(9)
02	0.105(9)	0.115(15)	0.042(9)	0.065(9)	0.054(7)	0.092(10)
03	0.042(7)	0.037(10)	0.182(19)	-0.003(11)	0.063(9)	-0.028(8)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
04	-0.028(8)	0.140(18)	0.044(11)	-0.027(11)	0.022(7)	-0.070(10)
05	0.158(9)	0.022(10)	0.292(18)	0.019(11)	0.193(10)	0.020(9)
06	0.068(7)	0.168(19)	0.033(9)	-0.042(10)	0.033(7)	-0.097(10)
07	0.064(12)	0.036(11)	0.060(15)	0.020(11)	-0.013(11)	0.014(10)
08	0.075(9)	0.097(16)	0.050(11)	0.017(11)	0.042(8)	0.042(11)
09	0.064(9)	0.16(3)	0.086(15)	0.008(16)	0.052(9)	-0.007(14)
O10	0.335(18)	0.060(17)	0.172(15)	0.006(12)	0.223(12)	0.013(16)
011	0.15(2)	0.15(3)	0.046(17)	-0.058(17)	-0.011(16)	0.05(2)
012	0.514(10)	0.513(10)	0.514(10)	-0.001(8)	0.259(6)	0.002(8)
013	0.123(12)	0.126(15)	0.104(13)	0.000(12)	0.060(9)	-0.030(11)
014	0.125(13)	0.114(15)	0.116(14)	-0.018(12)	0.045(10)	0.024(11)
015	0.079(14)	0.059(14)	0.080(19)	0.024(13)	0.004(13)	0.008(12)
016	0.054(11)	0.092(17)	0.043(14)	0.003(12)	-0.005(10)	-0.023(11)
017	0.150(13)	0.066(14)	0.091(14)	-0.008(12)	0.084(11)	0.032(13)
018	0.096(13)	0.081(15)	0.041(12)	0.013(11)	0.022(10)	-0.033(12)
019	0.112(9)	0.20(2)	0.147(14)	0.135(14)	0.110(9)	0.134(11)
O20	0.090(12)	0.118(19)	0.034(12)	-0.007(12)	0.011(10)	0.062(13)
O21	0.083(16)	0.14(2)	0.09(2)	0.095(17)	-0.053(14)	-0.045(15)
O22	0.161(9)	0.160(10)	0.161(9)	0.001(7)	0.082(6)	0.007(7)
023	0.119(16)	0.078(16)	0.023(12)	0.021(12)	0.005(11)	-0.024(14)
O24	0.072(8)	0.090(17)	0.102(13)	-0.001(12)	0.068(8)	0.001(10)
O25	0.070(13)	0.069(17)	0.19(3)	0.028(18)	0.052(15)	0.012(13)
O26	0.123(14)	0.073(16)	0.051(12)	-0.010(12)	0.052(10)	-0.004(13)
O27	0.110(10)	0.101(15)	0.166(15)	-0.108(12)	0.109(10)	-0.070(11)
O28	0.160(9)	0.026(9)	0.093(10)	-0.020(8)	0.114(7)	-0.014(9)
O29	0.048(9)	0.107(17)	0.054(12)	-0.031(12)	0.017(8)	0.019(11)
O30	0.062(6)	0.111(12)	0.095(10)	-0.013(9)	0.059(6)	0.031(8)
031	0.080(9)	0.162(16)	0.147(13)	0.007(12)	0.077(8)	0.010(10)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.02428(19)	0.02122(14)	0.02331(14)	0.00080(9)	0.00190(10)	-0.00218(9)
Bi2	0.02577(19)	0.02194(14)	0.02723(15)	0.00182(9)	0.00595(10)	0.00412(10)
Bi3	0.0296(2)	0.02231(15)	0.03183(16)	0.00127(10)	0.00463(12)	0.00529(10)
01	0.040(4)	0.035(3)	0.029(3)	-0.003(2)	0.005(2)	-0.014(3)
02	0.034(4)	0.026(2)	0.026(3)	-0.003(2)	0.006(2)	-0.004(2)
03	0.029(4)	0.021(3)	0.052(4)	0.003(2)	0.005(3)	-0.001(2)
O4	0.030(4)	0.026(3)	0.050(4)	0.006(2)	0.006(3)	0.003(2)
05	0.039(4)	0.035(3)	0.030(3)	0.000(2)	0.013(2)	0.005(3)
06	0.048(5)	0.033(3)	0.037(3)	0.011(2)	0.005(3)	0.009(3)
07	0.029(4)	0.029(3)	0.045(3)	-0.001(2)	0.007(3)	0.000(2)
08	0.037(4)	0.025(3)	0.045(3)	0.004(2)	0.003(3)	0.001(2)
09	0.028(4)	0.032(3)	0.034(3)	0.001(2)	0.007(2)	0.004(2)
O10	0.048(5)	0.040(3)	0.037(3)	0.003(3)	0.008(3)	0.021(3)
011	0.033(4)	0.031(3)	0.056(4)	0.000(3)	0.008(3)	0.001(3)
012	0.035(4)	0.027(3)	0.066(4)	-0.007(3)	0.004(3)	-0.001(3)
C1	0.029(5)	0.032(4)	0.029(4)	-0.001(3)	0.005(3)	0.003(3)
C2	0.036(6)	0.033(4)	0.031(4)	-0.001(3)	0.011(3)	0.003(3)
C3	0.028(5)	0.031(4)	0.028(4)	-0.001(3)	0.011(3)	-0.001(3)
C4	0.036(6)	0.033(4)	0.031(4)	0.007(3)	0.009(3)	0.003(3)
C5	0.020(5)	0.039(4)	0.042(4)	0.007(3)	0.010(3)	0.003(3)
C6	0.041(7)	0.072(7)	0.034(5)	0.004(5)	-0.002(4)	0.013(5)
C7	0.035(5)	0.028(4)	0.031(4)	0.000(3)	0.011(3)	0.002(3)
C8	0.037(7)	0.040(5)	0.053(6)	-0.019(4)	0.007(4)	0.002(4)
C9	0.035(6)	0.025(4)	0.037(4)	0.001(3)	0.010(3)	0.000(3)
C10	0.040(6)	0.027(4)	0.035(4)	-0.004(3)	0.003(4)	0.003(3)
C11	0.030(6)	0.036(4)	0.038(4)	-0.004(3)	0.011(3)	-0.007(4)
C12	0.033(6)	0.044(5)	0.039(4)	-0.010(4)	0.014(4)	-0.005(4)
F21	0.044(4)	0.048(3)	0.031(2)	-0.001(2)	0.010(2)	-0.013(2)
F22	0.056(4)	0.039(3)	0.035(3)	-0.010(2)	0.014(2)	0.010(2)
F23	0.036(3)	0.046(3)	0.028(2)	-0.006(2)	0.001(2)	0.000(2)
F41	0.063(5)	0.063(4)	0.053(3)	0.028(3)	0.022(3)	0.025(3)
F42	0.034(5)	0.056(4)	0.128(7)	0.018(4)	0.000(4)	0.004(3)

Tab. 100: U_{ij} -Werte [Å²] von 15

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F43	0.082(6)	0.088(5)	0.047(3)	-0.017(3)	0.000(3)	0.054(5)
F61	0.115(8)	0.078(5)	0.048(4)	0.026(4)	0.030(4)	0.011(5)
F62	0.045(5)	0.161(9)	0.039(3)	-0.009(4)	-0.006(3)	-0.001(5)
F63	0.047(5)	0.100(5)	0.029(3)	-0.008(3)	0.010(2)	0.015(4)
F81	0.053(5)	0.039(3)	0.120(7)	-0.002(4)	0.025(4)	-0.017(3)
F82	0.056(5)	0.098(6)	0.058(4)	-0.039(4)	-0.001(3)	0.001(4)
F83	0.032(4)	0.044(3)	0.100(5)	-0.020(3)	0.008(3)	0.001(3)
F101	0.062(5)	0.068(4)	0.042(3)	0.003(3)	0.024(3)	0.015(3)
F102	0.094(6)	0.035(3)	0.050(3)	-0.010(3)	0.002(3)	-0.018(3)
F103	0.073(5)	0.036(3)	0.028(2)	-0.001(2)	0.004(3)	0.007(3)
F121	0.054(5)	0.106(6)	0.063(4)	-0.044(4)	0.010(3)	-0.018(4)
F122	0.141(10)	0.169(10)	0.053(4)	0.027(5)	-0.013(5)	-0.125(9)
F123	0.036(6)	0.076(6)	0.263(16)	-0.066(8)	0.008(7)	-0.005(4)

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

h	k	1	D[mm]	h	k	1	D[mm]
0	3	5	0.106	4	2	-9	0.283
0	-3	4	0.101	-7	0	-8	0.257
0	3	-4	0.110	0	8	1	0.139
-3	-1	5	0.292	0	-4	-5	0.102
5	-8	7	0.339	8	5	-2	0.340

Tab. 101: U_{ij} -Werte [Å²] von 16

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Bi1	0.0804(3)	0.0441(3)	0.0605(3)	0.00601(14)	-0.01976(16)	-0.01432(13)
01	0.116(5)	0.068(6)	0.070(5)	-0.004(4)	0.003(4)	-0.008(4)
02	0.098(4)	0.060(5)	0.085(5)	-0.009(4)	-0.006(3)	-0.011(3)
03	0.094(4)	0.071(5)	0.109(6)	0.000(4)	-0.042(4)	-0.029(4)
04	0.095(4)	0.083(6)	0.125(7)	0.024(5)	-0.063(5)	-0.031(4)
C1	0.077(5)	0.061(6)	0.067(6)	-0.005(4)	-0.018(4)	-0.020(4)
C2	0.129(9)	0.076(9)	0.092(9)	-0.017(6)	-0.008(7)	-0.027(7)
C3	0.077(5)	0.092(8)	0.090(7)	-0.006(6)	-0.032(5)	-0.023(5)

Atom	IL.	I	Um	Um	ILa	IL.
Atom	UII	022	033	023	U ₁₃	012
C4	0.111(9)	0.135(15)	0.153(15)	-0.033(11)	-0.062(10)	-0.020(9)
F1	0.185(9)	0.200(12)	0.118(8)	-0.054(8)	0.063(7)	-0.111(9)
F2	0.191(11)	0.40(3)	0.162(11)	-0.177(15)	-0.028(8)	-0.077(13)
F3	0.252(14)	0.133(11)	0.179(12)	-0.016(9)	0.071(11)	0.043(10)
F4	0.159(8)	0.170(12)	0.266(15)	-0.039(10)	-0.151(10)	0.015(8)
F5	0.163(8)	0.247(16)	0.189(12)	-0.125(12)	-0.084(8)	-0.005(9)
F6	0.153(8)	0.259(16)	0.179(11)	0.012(10)	-0.064(8)	-0.132(10)
C5	0.154(12)	0.077(10)	0.193(19)	0.051(11)	-0.111(13)	-0.014(8)
C6	0.146(11)	0.036(7)	0.133(12)	-0.005(6)	-0.024(9)	-0.004(6)
C7	0.130(9)	0.070(8)	0.110(10)	0.006(6)	-0.035(7)	-0.037(7)
C8	0.228(19)	0.040(8)	0.122(13)	0.010(8)	0.066(13)	-0.007(8)
C9	0.38(4)	0.067(11)	0.063(8)	-0.005(7)	-0.030(16)	-0.056(17)
C10	0.33(3)	0.102(15)	0.132(18)	0.054(12)	-0.16(2)	-0.078(18)
C11	0.110(12)	0.17(2)	0.51(6)	0.12(3)	-0.10(2)	-0.006(13)
C12	0.173(19)	0.16(2)	0.27(4)	0.00(2)	0.10(2)	-0.017(15)

Tab. 102: U_{ij} -Werte [Å²] von 3b

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.0662(3)	0.0631(3)	0.0508(4)	-0.00534(18)	0.0329(2)	0.00080(19)
01	0.072(3)	0.068(3)	0.058(3)	-0.007(2)	0.029(2)	-0.002(2)
O2	0.077(3)	0.113(5)	0.066(4)	-0.010(3)	0.038(3)	0.015(3)
03	0.062(3)	0.097(4)	0.057(4)	-0.007(2)	0.031(2)	0.001(2)
04	0.093(4)	0.112(5)	0.082(5)	-0.035(4)	0.044(4)	-0.011(3)
05	0.078(3)	0.065(3)	0.059(3)	0.003(2)	0.038(2)	0.007(2)
06	0.084(3)	0.073(3)	0.050(3)	0.003(2)	0.038(2)	0.015(2)
C1	0.072(4)	0.079(4)	0.050(5)	-0.005(3)	0.036(3)	-0.008(3)
C2	0.084(6)	0.109(8)	0.086(8)	-0.035(6)	0.035(5)	-0.010(5)
C3	0.079(5)	0.085(5)	0.068(6)	-0.004(4)	0.038(4)	-0.006(4)
C4	0.072(5)	0.158(13)	0.084(10)	-0.005(7)	0.024(5)	-0.032(7)
Atom	U11	U22	U33	U23	U ₁₃	U ₁₂
------	-----------	-----------	-----------	------------	-----------------	-----------------
C5	0.064(3)	0.083(5)	0.042(4)	0.004(3)	0.030(3)	0.003(3)
C6	0.110(7)	0.087(6)	0.064(6)	0.020(5)	0.051(5)	0.025(5)
F1	0.089(7)	0.180(14)	0.065(10)	-0.013(9)	0.044(7)	0.033(8)
F2	0.33(3)	0.050(6)	0.104(13)	-0.020(6)	0.103(17)	-0.018(12)
F3	0.118(12)	0.170(18)	0.094(12)	-0.082(12)	-0.023(9)	0.055(12)
F11	0.148(18)	0.107(15)	0.24(3)	-0.050(14)	0.057(17)	-0.041(13)
F21	0.59(7)	0.177(19)	0.094(18)	-0.050(14)	0.21(3)	-0.14(3)
F31	0.18(3)	0.26(4)	0.18(3)	-0.13(3)	-0.004(18)	0.09(2)
F4	0.115(6)	0.171(9)	0.286(12)	0.048(8)	0.064(6)	0.067(7)
F5	0.089(4)	0.328(13)	0.166(11)	0.029(9)	0.069(5)	-0.032(6)
F6	0.089(5)	0.41(2)	0.257(15)	-0.198(15)	0.052(7)	-0.063(8)
F7	0.189(16)	0.109(9)	0.056(9)	0.042(7)	0.079(10)	0.060(10)
F8	0.26(2)	0.055(6)	0.101(11)	0.021(6)	0.113(13)	0.016(9)
F9	0.107(10)	0.30(3)	0.089(15)	0.069(14)	0.035(9)	0.110(15)
F71	0.35(4)	0.17(2)	0.14(2)	0.078(16)	0.17(3)	0.15(2)
F81	0.24(3)	0.135(13)	0.080(12)	0.009(9)	-0.028(14)	0.049(17)
F91	0.122(13)	0.34(4)	0.24(3)	0.20(3)	0.052(18)	-0.020(18)

Tab. 103: U_{ij} -Werte [Å²] von 3a

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.04756(16)	0.04756(16)	0.04756(16)	0.00262(7)	0.00262(7)	0.00262(7)
01	0.0656(13)	0.0604(12)	0.0553(12)	-0.0017(9)	0.0032(9)	0.0100(11)
02	0.0833(18)	0.0609(14)	0.0852(16)	0.0073(13)	0.0017(14)	-0.0002(11)
C1	0.0643(16)	0.0547(17)	0.0479(14)	0.0037(12)	-0.0010(13)	0.0108(15)
C2	0.094(3)	0.062(2)	0.073(2)	-0.0034(16)	0.019(2)	0.0123(19)
F1	0.159(3)	0.0847(17)	0.111(2)	0.0033(16)	-0.002(2)	0.0574(19)
F2	0.149(3)	0.098(2)	0.131(2)	-0.0532(18)	0.006(2)	-0.014(2)
F3	0.203(4)	0.116(2)	0.110(2)	-0.0123(18)	0.089(2)	0.028(2)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.0460(5)	0.0460(5)	0.0629(8)	0.000	0.000	0.0230(3)
01	0.051(4)	0.063(4)	0.072(4)	0.007(3)	-0.002(3)	0.027(3)
O2	0.06(2)	0.11(3)	0.12(3)	0.03(2)	0.003(18)	0.016(16)
O21	0.032(9)	0.043(8)	0.051(10)	0.004(7)	0.007(6)	0.013(8)
C1	0.040(19)	0.05(2)	0.11(4)	0.00(2)	-0.04(2)	0.030(17)
C2	0.059(19)	0.078(19)	0.065(12)	0.018(12)	0.004(11)	0.047(17)
F1	0.099(12)	0.091(12)	0.111(13)	0.017(9)	-0.014(9)	0.060(9)
F2	0.090(12)	0.103(12)	0.079(11)	0.010(9)	-0.008(9)	0.051(9)
F3	0.075(13)	0.071(12)	0.083(12)	0.006(9)	-0.009(9)	0.029(9)
F4	0.098(15)	0.100(15)	0.113(16)	-0.006(9)	-0.022(9)	0.064(11)
F5	0.107(18)	0.121(19)	0.108(18)	-0.005(10)	-0.003(10)	0.059(12)
F6	0.16(4)	0.16(4)	0.17(4)	0.012(10)	-0.009(10)	0.081(19)
C11	0.06(2)	0.027(16)	0.064(18)	0.013(12)	0.035(15)	0.001(12)
C21	0.052(18)	0.051(16)	0.12(3)	-0.015(17)	-0.003(17)	0.021(14)
F21	0.090(12)	0.082(11)	0.112(13)	0.054(9)	-0.025(9)	0.023(7)
F22	0.110(13)	0.156(17)	0.114(12)	-0.054(12)	-0.028(10)	0.059(12)
F23	0.055(8)	0.133(14)	0.098(10)	-0.011(11)	-0.015(7)	0.045(8)

Tab. 104: U_{ij} -Werte [Å²] von 3c

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

h	k	1	D[mm]	h	k	1	D[mm]	h	k	1	D[mm]
-7	10	-1	0.228	0	-7	3	0.131	-1	0	-8	0.036
10	1	1	0.196	4	-3	0	0.312	3	6	10	0.062
8	5	0	0.159	1	0	4	0.100	2	-3	-7	0.147

Tab. 105: U_{ij} -Werte [Å²] von 26

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.0767(5)	0.0727(4)	0.0582(4)	-0.0010(3)	0.0052(3)	-0.0041(3)
01	0.087(5)	0.089(4)	0.063(4)	-0.006(3)	0.003(3)	-0.005(4)
O2	0.096(6)	0.122(6)	0.090(5)	-0.020(5)	0.007(4)	0.013(5)
03	0.087(5)	0.086(5)	0.086(5)	0.015(4)	0.017(4)	-0.002(4)
04	0.108(6)	0.104(6)	0.094(5)	-0.005(5)	0.021(4)	-0.005(5)
05	0.099(5)	0.081(4)	0.058(4)	-0.003(3)	0.006(3)	-0.006(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
06	0.105(6)	0.117(6)	0.089(5)	-0.004(5)	-0.008(4)	0.010(5)
07	0.100(7)	0.119(7)	0.113(7)	0.000(6)	-0.011(6)	-0.018(6)
08	0.165(13)	0.203(13)	0.143(12)	0.007(12)	0.025(11)	0.006(12)
O71	0.080(6)	0.092(6)	0.091(6)	-0.003(6)	-0.020(5)	-0.025(5)
O81	0.170(13)	0.210(13)	0.143(12)	-0.008(12)	0.016(11)	0.011(12)
C1	0.075(6)	0.072(6)	0.067(5)	-0.004(4)	0.010(5)	0.002(5)
C2	0.095(8)	0.098(8)	0.065(6)	-0.005(5)	0.007(5)	0.002(6)
C3	0.081(7)	0.094(8)	0.073(6)	0.010(6)	0.010(5)	0.002(6)
C4	0.092(8)	0.118(10)	0.101(9)	-0.007(8)	0.030(7)	-0.016(8)
C5	0.075(6)	0.080(6)	0.061(5)	-0.002(4)	0.000(5)	-0.006(5)
C6	0.162(14)	0.088(8)	0.066(6)	-0.027(6)	-0.002(7)	0.020(8)
C7	0.149(9)	0.162(9)	0.156(9)	0.001(7)	0.007(7)	0.013(7)
C8	0.158(12)	0.184(13)	0.179(12)	-0.003(11)	-0.003(11)	0.022(11)
C71	0.151(9)	0.165(9)	0.157(9)	0.001(7)	0.007(7)	0.016(7)
C81	0.156(12)	0.176(12)	0.180(12)	-0.003(11)	0.033(11)	0.023(11)
F21	0.130(7)	0.217(9)	0.083(4)	-0.045(5)	-0.034(4)	0.032(6)
F22	0.084(5)	0.255(11)	0.132(6)	0.061(7)	-0.015(5)	-0.039(6)
F23	0.132(7)	0.114(6)	0.147(7)	-0.017(5)	-0.031(5)	0.030(5)
F41	0.226(13)	0.206(10)	0.145(8)	-0.002(8)	0.098(9)	-0.063(9)
F42	0.171(11)	0.146(9)	0.39(2)	0.136(12)	0.119(12)	0.036(8)
F43	0.231(14)	0.259(13)	0.170(10)	0.049(9)	-0.033(9)	-0.168(12)
F61	0.084(6)	0.270(14)	0.235(12)	-0.080(11)	0.050(7)	-0.026(7)
F62	0.179(11)	0.373(19)	0.084(5)	-0.049(8)	0.012(6)	0.080(11)
F63	0.249(14)	0.125(7)	0.212(11)	-0.022(7)	0.123(10)	0.030(8)
F81	0.219(17)	0.20(2)	0.37(2)	0.02(2)	0.088(18)	-0.036(15)
F82	0.147(18)	0.54(6)	0.32(3)	-0.25(4)	0.066(19)	-0.06(2)
F83	0.147(18)	0.53(6)	0.34(3)	-0.26(4)	0.059(19)	-0.08(2)
F811	0.199(15)	0.217(18)	0.36(2)	0.01(2)	0.083(17)	-0.047(13)
F812	0.184(15)	0.220(18)	0.34(2)	0.02(2)	0.081(18)	-0.058(13)
F813	0.188(15)	0.212(18)	0.35(2)	0.00(2)	0.080(18)	-0.065(13)

h	k	l	D[mm]	h	k	l	D[mm]	h	k	1	D[mm]
-8	3	6	0.108	2	-1	2	0.063	-9	-1	-7	0.199
10	-1	4	0.253	0	0	-1	0.088	10	3	7	0.364
5	10	6	0.654	3	0	1	0.323	-6	1	-7	0.171

Für die numerische Absorptionskorrektur wurden folgende Flächen verwendet:

Tab. 106: U_{ij} -Werte [Å²] von 27

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.0315(2)	0.0275(3)	0.0298(3)	0.00550(18)	-0.0150(2)	-0.01280(19)
Sb2	0.0323(3)	0.0300(3)	0.0298(3)	0.00630(18)	-0.0114(2)	-0.0161(2)
011	0.043(3)	0.033(3)	0.035(3)	0.007(2)	-0.023(2)	-0.015(2)
012	0.038(3)	0.034(3)	0.042(3)	0.006(2)	-0.020(2)	-0.015(2)
O21	0.028(2)	0.037(3)	0.034(3)	-0.005(2)	-0.014(2)	-0.009(2)
022	0.044(3)	0.043(3)	0.044(3)	0.007(2)	-0.024(3)	-0.023(2)
031	0.045(3)	0.026(3)	0.041(3)	0.012(2)	-0.025(2)	-0.018(2)
O32	0.062(4)	0.049(4)	0.051(3)	0.021(3)	-0.037(3)	-0.034(3)
O41	0.043(3)	0.042(3)	0.032(3)	0.009(2)	-0.014(2)	-0.026(2)
O42	0.054(3)	0.056(4)	0.049(4)	0.011(3)	-0.016(3)	-0.031(3)
051	0.033(2)	0.035(3)	0.035(3)	0.005(2)	-0.011(2)	-0.015(2)
052	0.031(2)	0.034(3)	0.046(3)	0.004(2)	-0.008(2)	-0.018(2)
O61	0.040(3)	0.038(3)	0.052(3)	0.019(3)	-0.026(3)	-0.019(2)
062	0.045(3)	0.042(3)	0.051(3)	0.020(3)	-0.023(3)	-0.022(2)
071	0.033(2)	0.034(3)	0.032(3)	-0.0024(19)	-0.009(2)	-0.014(2)
072	0.042(3)	0.045(4)	0.044(3)	0.001(2)	-0.005(3)	-0.023(3)
C11	0.036(3)	0.034(4)	0.033(3)	0.007(3)	-0.016(3)	-0.021(3)
C12	0.047(4)	0.051(5)	0.028(4)	0.003(3)	-0.017(3)	-0.024(4)
C21	0.037(3)	0.029(4)	0.034(4)	0.003(3)	-0.017(3)	-0.014(3)
C22	0.044(4)	0.069(7)	0.053(5)	-0.011(4)	-0.023(4)	-0.019(4)
C31	0.039(3)	0.032(4)	0.034(4)	0.008(3)	-0.018(3)	-0.017(3)
C32	0.072(6)	0.040(5)	0.075(6)	0.026(4)	-0.047(6)	-0.039(4)
C41	0.036(3)	0.035(4)	0.040(4)	0.009(3)	-0.019(3)	-0.022(3)
C42	0.047(4)	0.040(5)	0.041(4)	0.004(3)	-0.017(4)	-0.022(3)
C51	0.035(3)	0.036(4)	0.038(4)	0.014(3)	-0.020(3)	-0.019(3)
C52	0.051(4)	0.041(5)	0.046(5)	0.007(3)	-0.018(4)	-0.025(4)

For	tsetz	ung
-----	-------	-----

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C61	0.046(4)	0.045(5)	0.045(4)	0.015(4)	-0.028(4)	-0.019(4)
C62	0.046(5)	0.037(5)	0.107(9)	0.035(5)	-0.037(6)	-0.020(4)
C71	0.040(4)	0.028(4)	0.041(4)	0.007(3)	-0.020(3)	-0.014(3)
C72	0.068(6)	0.059(6)	0.042(5)	0.004(4)	-0.025(4)	-0.036(5)
F11	0.117(6)	0.199(9)	0.076(5)	0.056(5)	-0.064(5)	-0.125(7)
F12	0.115(6)	0.125(7)	0.093(6)	-0.062(5)	-0.075(5)	0.023(5)
F13	0.132(6)	0.101(5)	0.099(5)	0.056(4)	-0.094(5)	-0.069(5)
F21	0.047(3)	0.175(9)	0.074(5)	-0.061(5)	-0.009(3)	-0.028(4)
F22	0.042(3)	0.082(5)	0.116(6)	-0.023(4)	-0.020(3)	-0.029(3)
F23	0.062(4)	0.081(5)	0.129(7)	0.035(5)	-0.018(5)	0.024(4)
F31	0.346(19)	0.055(6)	0.101(8)	0.004(5)	-0.031(9)	-0.101(9)
F32	0.185(8)	0.148(8)	0.183(9)	0.131(7)	-0.154(8)	-0.140(7)
F33	0.145(8)	0.186(10)	0.351(16)	0.207(12)	-0.177(11)	-0.143(8)
F41	0.067(3)	0.055(3)	0.044(3)	-0.001(2)	-0.018(3)	-0.033(3)
F42	0.083(4)	0.069(4)	0.033(3)	0.013(2)	-0.010(3)	-0.039(3)
F43	0.037(3)	0.063(4)	0.074(4)	-0.004(3)	-0.011(3)	-0.017(2)
F51	0.043(2)	0.067(4)	0.064(3)	0.012(3)	-0.021(3)	-0.034(2)
F52	0.072(4)	0.043(3)	0.087(4)	0.028(3)	-0.027(3)	-0.034(3)
F53	0.070(3)	0.075(4)	0.032(3)	0.008(2)	-0.007(2)	-0.045(3)
F61	0.084(4)	0.067(4)	0.157(7)	0.070(5)	-0.081(5)	-0.038(4)
F62	0.129(7)	0.073(5)	0.345(16)	0.071(7)	-0.186(10)	-0.051(5)
F63	0.067(5)	0.090(6)	0.140(8)	0.037(6)	0.007(5)	0.018(4)
F71	0.132(6)	0.097(5)	0.053(4)	0.025(4)	-0.049(4)	-0.078(5)
F72	0.155(7)	0.153(8)	0.086(5)	0.040(5)	-0.067(5)	-0.132(7)
F73	0.137(7)	0.063(5)	0.135(7)	-0.063(5)	-0.084(6)	0.028(5)

Tab. 107: U_{ij} -Werte [Å²] von 25

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.06880(19)	0.05242(15)	0.06339(17)	-0.00277(14)	0.00215(16)	0.00056(16)
01	0.073(2)	0.084(2)	0.064(2)	0.0098(19)	0.0015(17)	0.0050(16)
O2	0.094(3)	0.107(3)	0.082(3)	0.023(2)	0.003(2)	0.007(3)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
03	0.082(3)	0.074(2)	0.075(2)	0.0019(18)	0.012(2)	-0.007(2)
04	0.097(4)	0.096(3)	0.131(4)	0.005(3)	0.015(3)	-0.022(3)
05	0.095(3)	0.065(2)	0.074(2)	-0.0056(16)	-0.010(2)	0.008(2)
06	0.108(3)	0.093(3)	0.129(3)	-0.014(3)	-0.022(3)	0.033(3)
C1	0.079(4)	0.071(4)	0.068(3)	-0.015(3)	0.009(3)	-0.005(3)
C2	0.093(5)	0.092(4)	0.096(4)	-0.006(4)	0.021(3)	-0.010(4)
C3	0.104(6)	0.065(3)	0.083(4)	-0.007(3)	0.012(4)	-0.014(4)
C4	0.142(8)	0.097(5)	0.119(6)	0.023(5)	0.041(6)	-0.034(6)
C5	0.074(4)	0.070(3)	0.075(3)	-0.001(2)	-0.004(3)	-0.006(4)
C6	0.112(6)	0.111(6)	0.080(4)	-0.023(4)	-0.026(5)	0.012(5)
F1	0.147(5)	0.125(4)	0.255(6)	-0.039(4)	0.068(4)	0.022(3)
F2	0.081(3)	0.353(9)	0.194(5)	-0.152(6)	0.006(4)	-0.013(4)
F3	0.137(5)	0.273(7)	0.238(6)	0.150(6)	0.108(5)	0.040(5)
F4	0.24(2)	0.036(4)	0.178(10)	0.005(5)	0.046(12)	0.006(8)
F5	0.34(3)	0.164(18)	0.31(3)	0.112(18)	0.22(3)	0.019(19)
F6	0.22(2)	0.196(17)	0.114(12)	0.047(10)	-0.065(13)	-0.049(15)
F41	0.41(4)	0.106(8)	0.072(5)	0.019(5)	0.051(14)	-0.026(15)
F51	0.29(3)	0.175(19)	0.23(2)	0.088(15)	0.08(2)	0.017(17)
F61	0.33(3)	0.172(17)	0.155(14)	0.075(12)	-0.074(18)	-0.154(19)
F7	0.105(11)	0.48(4)	0.34(3)	-0.23(3)	-0.072(18)	-0.027(19)
F8	0.208(17)	0.077(6)	0.095(7)	-0.026(5)	-0.024(7)	0.027(7)
F9	0.64(5)	0.081(6)	0.089(8)	0.003(5)	0.15(2)	0.001(16)
F71	0.140(12)	0.62(5)	0.168(18)	-0.23(2)	-0.053(13)	0.16(2)
F81	0.128(10)	0.138(7)	0.055(5)	0.015(5)	-0.034(6)	-0.032(7)
F91	0.44(4)	0.090(8)	0.153(11)	0.032(8)	-0.154(18)	-0.135(16)
C11	0.106(4)	0.046(2)	0.075(3)	-0.006(2)	0.000(3)	-0.007(4)
C12	0.078(4)	0.071(3)	0.080(4)	-0.015(3)	0.004(3)	-0.018(3)
C13	0.074(4)	0.075(4)	0.072(4)	-0.011(3)	-0.009(3)	0.009(3)
C14	0.096(5)	0.063(3)	0.061(3)	-0.013(2)	0.003(3)	0.005(3)
C15	0.078(4)	0.061(3)	0.077(4)	-0.020(3)	0.007(3)	0.005(3)
C16	0.084(4)	0.065(4)	0.078(4)	-0.011(3)	-0.015(3)	0.016(3)
C21	0.193(8)	0.081(4)	0.094(4)	0.018(3)	-0.001(6)	-0.013(6)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C22	0.101(5)	0.113(5)	0.154(6)	-0.017(5)	0.008(4)	-0.052(5)
C23	0.098(6)	0.128(6)	0.126(6)	-0.019(5)	-0.048(5)	0.028(5)
C24	0.150(8)	0.094(4)	0.063(3)	0.002(3)	0.016(4)	0.002(4)
C25	0.095(5)	0.111(6)	0.141(7)	-0.032(5)	0.031(5)	0.003(5)
C26	0.119(5)	0.121(5)	0.143(6)	-0.010(6)	-0.040(5)	0.039(5)

Tab. 108: U_{ij} -Werte [Å²] von 24

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sb1	0.0816(3)	0.0978(3)	0.0761(3)	-0.0144(3)	0.0118(2)	-0.0061(3)
Sb2	0.0743(3)	0.1453(5)	0.0690(3)	-0.0088(3)	0.0104(2)	-0.0059(3)
01	0.086(3)	0.117(3)	0.069(2)	-0.017(2)	0.023(2)	-0.009(2)
011	0.116(4)	0.107(4)	0.075(3)	0.007(2)	0.005(2)	-0.014(3)
012	0.109(4)	0.140(4)	0.098(3)	0.001(3)	0.019(3)	-0.041(3)
O21	0.112(4)	0.103(3)	0.111(3)	-0.031(3)	0.017(3)	0.008(3)
O22	0.092(4)	0.178(5)	0.093(3)	-0.032(3)	0.020(3)	0.030(3)
031	0.148(5)	0.116(4)	0.132(4)	0.002(3)	0.031(4)	-0.015(4)
O32	0.138(5)	0.155(6)	0.161(5)	-0.034(5)	0.019(4)	-0.032(4)
O41	0.143(5)	0.144(5)	0.090(3)	-0.033(3)	0.026(3)	-0.017(3)
O42	0.160(5)	0.133(5)	0.137(5)	-0.009(4)	0.029(4)	-0.053(4)
C11	0.120(6)	0.091(5)	0.087(5)	-0.009(4)	0.032(4)	-0.002(5)
C12	0.210(10)	0.080(6)	0.163(8)	0.017(6)	0.079(7)	-0.013(6)
C21	0.133(7)	0.109(6)	0.079(5)	0.013(4)	0.020(5)	0.021(6)
C22	0.163(9)	0.131(8)	0.160(8)	-0.016(7)	-0.005(7)	0.088(7)
C31	0.133(8)	0.112(7)	0.105(6)	-0.003(5)	0.016(5)	-0.040(6)
C32	0.135(10)	0.181(12)	0.243(14)	0.039(11)	0.076(9)	-0.014(9)
C41	0.111(6)	0.112(7)	0.130(7)	-0.010(6)	0.030(5)	-0.047(5)
C42	0.271(13)	0.120(8)	0.111(7)	-0.040(6)	0.067(8)	-0.070(8)
F11	0.339(9)	0.092(4)	0.228(6)	0.012(4)	0.141(6)	0.005(4)
F12	0.202(6)	0.198(6)	0.232(6)	0.032(5)	0.122(5)	-0.031(5)
F13	0.312(8)	0.183(5)	0.115(4)	0.047(4)	0.051(4)	-0.001(5)
F21	0.291(8)	0.175(5)	0.139(4)	-0.021(4)	0.052(5)	0.073(5)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F22	0.151(6)	0.334(10)	0.424(12)	-0.193(9)	0.042(7)	0.081(6)
F23	0.496(11)	0.117(4)	0.259(7)	0.067(4)	0.213(7)	0.150(6)
F31	0.283(14)	0.225(13)	0.255(14)	-0.089(10)	0.120(12)	-0.203(11)
F32	0.32(2)	0.184(15)	0.31(2)	0.083(16)	0.03(2)	-0.025(16)
F33	0.255(14)	0.316(18)	0.129(8)	0.085(10)	0.047(9)	-0.137(13)
F311	0.54(4)	0.25(2)	0.39(3)	0.20(2)	-0.18(3)	-0.13(2)
F321	0.34(3)	0.42(4)	0.82(8)	0.10(5)	0.29(4)	-0.12(3)
F331	0.89(7)	0.147(13)	0.175(14)	0.021(11)	-0.03(3)	-0.21(3)
F41	0.266(14)	0.192(13)	0.166(10)	-0.061(9)	0.140(9)	-0.045(10)
F42	0.257(13)	0.197(11)	0.183(11)	-0.136(9)	0.025(10)	-0.119(10)
F43	0.293(16)	0.070(6)	0.164(10)	-0.003(6)	0.067(10)	-0.030(8)
F411	0.62(3)	0.239(15)	0.277(17)	-0.172(13)	0.24(2)	-0.283(18)
F421	0.43(4)	0.27(3)	0.43(4)	-0.15(2)	0.08(3)	0.04(2)
F431	0.69(5)	0.228(19)	0.093(8)	-0.037(10)	0.031(19)	0.07(3)
C111	0.097(8)	0.087(7)	0.109(8)	-0.008(7)	-0.001(6)	0.023(7)
C112	0.095(8)	0.114(9)	0.105(8)	-0.005(7)	0.019(6)	-0.025(7)
C113	0.071(7)	0.103(8)	0.075(6)	-0.016(6)	0.015(5)	-0.003(6)
C114	0.091(8)	0.084(8)	0.092(7)	-0.012(6)	-0.009(6)	0.008(7)
C115	0.108(8)	0.078(8)	0.092(7)	-0.003(6)	-0.005(6)	-0.014(7)
C116	0.119(9)	0.130(9)	0.121(8)	-0.018(7)	0.027(7)	0.006(7)
C117	0.225(16)	0.119(11)	0.224(12)	-0.048(10)	-0.056(12)	0.058(10)
C118	0.225(16)	0.119(11)	0.224(12)	-0.048(10)	-0.056(12)	0.058(10)
C211	0.111(8)	0.161(9)	0.142(10)	0.014(7)	0.027(7)	-0.009(8)
C212	0.070(7)	0.082(7)	0.097(7)	0.040(6)	0.005(5)	-0.001(6)
C213	0.090(8)	0.117(8)	0.097(7)	-0.036(7)	0.015(6)	0.001(7)
C214	0.117(8)	0.150(8)	0.124(9)	-0.013(7)	0.024(7)	0.000(8)
C215	0.122(9)	0.122(9)	0.156(10)	0.011(8)	0.018(7)	-0.007(7)
C216	0.100(9)	0.151(9)	0.117(8)	-0.014(8)	0.012(7)	0.003(7)
C217	0.197(16)	0.225(17)	0.233(19)	0.003(13)	0.015(15)	0.022(14)
C218	0.243(18)	0.252(18)	0.27(2)	-0.046(14)	0.029(16)	0.010(16)

Dank:

An dieser Stelle möchte ich allen danken, die mich während meines Studiums und während meiner Promotionszeit, innerhalb und ausserhalb der Universität, freundlich begleitet und durch ihre Unterstützung zum Gelingen dieser Arbeit beigetragen haben.