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Summary

Recent advances in the search for Majorana fermions within condensed matter systems
inspired the first part of the thesis. These hypothetical particles which are their own an-
tiparticles are predicted to arise in the form of quasi-particle excitations called Majorana
bound states at the surface of engineered condensed matter systems. An experimental
detection is challenging since their defining property also implies that they possess no
charge, no energy and no spin. This significantly reduces the possibilities to interact with
them and get a proof of their existence from a measurement. The most promising experi-
mental results are based on transport measurements where current-voltage-characteristics
play the role of a spectroscopy signal. In this thesis, we investigate a single electron tran-
sistor setup which hosts a spatially separated pair of Majorana fermions with respect to
their influence on its transport characteristics. We focus on a master equation approach
including sequential and cotunneling contributions. After deducing all relevant rates we
solve the system numerically over a broad parameter regime. For some limits, we also
elaborate analytical solutions. In comparison with collaboratively worked out other meth-
ods we provide a broad understanding of the setup and make a proposal how our results
could be used as a detection scheme for Majorana fermions.

The second part of the thesis investigates the spinless Anderson-Holstein model which
is the minimal model for molecular transport. It models a molecule with electronic and
vibronic degrees of freedom which is placed between metallic leads at different chem-
ical potentials to investigate again its transport properties. Also here we intended to
gain access to a broad parameter regime and successfully extended the numerical “it-
erative summation of path-integrals” scheme to this model. It is based on a real-time
path-integral approach in combination with the nonequilibrium Keldysh technique and
is numerically exact. Within a finite memory time the scheme fully takes into account
all time-nonlocal correlations within the self energies of the leads and we extended it
to also handle time-nonlocal interactions originating from the electron-phonon coupling.
The latter was possible by exactly mapping the Anderson-Holstein model to an effective
three-state-system and the introduction of a spin 1 auxiliary field within each short-time
propagator of the real-time path-integral. An extrapolation scheme which is based on
a least dependence approach then allows to eliminate the errors introduced by the fi-
nite memory time and the time discretization in a systematic way. We benchmarked
our scheme against three other analytical methods, valid in three different corners of the
parameter space where approximative expansions are possible. Finally we could demon-
strate with our method the persistence of the Franck-Condon blockade in a deep quantum
regime, inaccessible by the other methods.
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Zusammenfassung

Der erste Teil dieser Arbeit wurde durch neue Fortschritte auf der Suche nach Majorana
Fermionen in Festkörpersystemen inspiriert. Die Existenz dieser hypothetischen Teilchen,
die ihre eigenen Antiteilchen sind, wurde in Form von Quasiteilchen, sogenannten gebun-
denen Majorana Zuständen, an der Oberfläche speziell konstruierter Festkörpersysteme
vorhergesagt. Ihr experimenteller Nachweis gestaltet sich jedoch als schwierig, da ihre
definierende Eigenschaft impliziert, dass sie ladungs-, energie- und spinlos sein müssen.
Die Möglichkeiten sie zu detektieren werden dadurch entschieden reduziert. Die bisher
vielversprechendsten Experimente basieren auf Transportmessungen, bei denen eine
charakteristische Strom-Spannungs Relation als spektroskopisches Signal dient. In dieser
Arbeit untersuchen wir an einem Einzelelektronentransistoraufbau, der zwei räumlich
getrennte Majorana Fermionen beherbergt, deren Einfluss auf seine Strom-Spannungs
Charakteristik. Den Schwerpunkt legen wir hierbei auf einen Mastergleichungsansatz,
der sequentielle Raten sowie Kotunnelraten berücksichtigt. Nachdem wir alle Raten
hergeleitet haben, lösen wir die Mastergleichung numerisch über einen weiten Pa-
rameterbereich und in einigen Bereichen auch noch analytisch. Durch den Vergleich
mit noch anderen kollaborativ ausgearbeiteten Methoden, ergänzen wir abschließend
das physikalisches Verständnis des Aufbaus zu einem möglichst großen Gesamtbild.
Basierend auf unseren Erkenntnissen schlagen wir dann ein Detektionsschema für
Majorana Fermionen mit Hilfe unseres Aufbaus vor.

Im zweiten Teil dieser Arbeit untersuchen wir das spinlose Anderson-Holstein Mod-
ell, welches das minimale theoretische Studienobjekt für die Untersuchung molekularen
Transports ist. Es modelliert ein Molekül mitsamt seinen elektronischen und vibronischen
Freiheitsgraden, welches von zwei Seiten durch metallische Elektroden unterschiedlichen
chemischen Potentials kontaktiert ist. So wird wiederum die Untersuchung von Trans-
porteigenschaften ermöglicht. Ziel war es diese Eigenschaften über einen großen Param-
eterbereich zu charakterisieren. Hierzu erweitern wir erfolgreich die Methode der “itera-
tiven Summation von Pfadintegralen” auf dieses Modell. Sie basiert auf einem Echtzeit
Pfadintegralansatz zusammen mit der Nichtgleichgewichts Keldyshtechnik und ist nu-
merisch exakt. Alle zeitlich nicht lokalen Korrelationen des Modells werden innerhalb
einer endlichen Gedächtniszeit vollständig berücksichtigt. Wir erweitern die Methode, um
neben den Korrelationen innerhalb der durch die Kontakte induzierten Selbstenergie auch
Korrelationen einer nicht lokalen Wechselwirkung, in unserem Falle der Elektron-Phonon
Kopplung, mitzunehmen. Letzteres gelingt uns durch die exakte Abbildung des spinlosen
Anderson-Holstein Systems auf ein effektives Drei-Zustandssystem. Hierzu führen wir ein
Spin 1 Hilfsfeld innerhalb jedes Kurzzeitpropagators des Pfadintegrals ein. Alle Fehler,
die durch die endliche Gedächtniszeit und die Diskretisierung der Zeit auftreten, wer-
den systematisch durch ein Extrapolationsschema, basierend auf der Methode minimaler
Abhängigkeiten, eliminiert. Wir testen unser entwickeltes Schema gegen drei analytische
Methoden, welche jeweils in anderen Bereichen des Parameterraumes gültige Approxima-
tionen darstellen. Zum Abschluss, demonstrieren wir, dass eine Frank-Condon Blockade
auch im tiefen Quantenregime, welches den anderen Methoden unzugänglich ist, weiter
Bestand hat.
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Introduction

Almost 60 years ago, the invention of the transistor marked the beginning of a new age.
A first working example was a huge macroscopic device but soon it was miniaturized
and finally integrated circuits became possible. From there on the race for a further
miniaturization started and by today structural sizes of 22 nanometer are standard and
quantum mechanical effects will become relevant within the design of further miniaturized
devices. Up to now connections between different functional parts of an integrated circuit
are assumed to behave classical and potential quantum mechanical effects are unwanted
sources of errors.

Approaching this problem from another perspective is to ask what are the smallest
possible structures which might be used as functional electronic devices. This gave rise to
the field of molecular electronics which is still under fundamental research and represents
the context of the second part of the thesis but hystorically the beginning of our research.
A lot of experimental and theoretical effort is made to understand for example transistor
setups where the active region consists of a single molecule. It is attached from two sides
by metallic leads playing the role of the source and the drain for electrons. The transport
behavior is strongly influenced by the internal structure of the molecule which possesses
beside its electronic structure also vibronic degrees of freedom. Both can be tuned by
attaching specially designed functional groups to the molecule or changing external pa-
rameters like electric fields or the presence of a surrounding solvent. A minimal theoretical
model of such a molecular transistor setup is presented in the second part of this thesis
and its transport properties are analyzed by extending a numerically exact method to it.

The typical transport setup used to study the conductivity of a molecule can be seen
from two different points of view. On one hand the results of fundamental research will
lead to an understanding how to design a molecule in the way that it will later behave as
miniaturized functional device exactly in an intended way. On the other hand the analysis
of current measurements can also help to understand internal structures of a molecule and
therefore the whole setup also serves as a spectroscope.

Following this perspective, we get a motivation for the first and more recent part of
the thesis, where we investigate a single electron transistor constructed out of a semicon-
ductor and a superconductor in a way to give rise to Majorana bound states. They are a
delocalized pair of Majorana fermions. However, their existence has not been proven yet
experimentally, although there are promising experiments. Majorana fermions correspond
to particles which are their own antiparticles and this property is also the reason why they
are so hard to detect. It implies that they must be spinless, chargeless and posses no en-
ergy but their presence within a transistor setup modifies its differential conductance and
might open a spectroscopic way to detect them. Beside of proposing a detection scheme
the general transport properties of our investigated device within a large parameter regime
are of fundamental interest and will be covered by different methods.

In addition to this general introduction each part will begin with a second detailed
introduction motivating each part within its special field of research.
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Part I

The Majorana Single-Charge
Transistor (MSCT)
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1 Introduction

Topologically nontrivial insulators and superconductors exhibit many remarkable nonlocal
features such as non-Abelian statistics or teleportation ([1, 2] & Sec. 1.2.3). For a one-
dimensional topological superconductor (TS) wire, such effects can be traced back to the
existence of a zero-energy Majorana bound state (MBS) localized at each end ([3, 4, 5, 6, 7]
& Sec. 1.2).

When a grounded TS is weakly contacted by a normal metal, the MBS is expected to
produce a characteristic zero-bias anomaly peak in the tunnel conductance [8, 9, 10, 11,
12]. Recently, such a feature has been experimentally observed in tunnel spectroscopy
using InSb or InAs nanowires [13, 14, 15, 16], where Majorana fermions are theoretically
expected due to the interplay of strong spin-orbit coupling, Zeeman field, and proximity-
induced superconducting pairing ([17, 18, 19], Sec. 1.2.1 and 1.2.2) Recent reviews [1, 2,
6, 7, 19] have also summarized alternative MBS proposals.

In this thesis we discuss an interacting variant of previously studied Majorana wire
set-ups, the floating “Majorana single-charge transistor” (MSCT) which consists of a TS
wire hosting two MBS which is tunnel coupled with two metallic leads at both ends and
Josephson coupled to a superconducting substrate (see also Fig. 2.1). A comprehensive
picture of its transport properties in the presence of interactions emerges from our later
analysis in Sec. 2.2 and 2.5. Noting that the experimentally observed peak features
could be related to a disorder-induced spectral peak [20, 21], our results should help to
distinguish the Majorana state from alternative explanations in future experiments.

Previous works [22, 23, 24] have studied electron-electron interactions in an isolated
TS wire and found that Majoranas still exist under rather general conditions. We study
instead a generalization of the set-up in Ref. [13], where source and drain metallic elec-
trodes contact the TS wire. We stress that the MSCT could be realized not only with
nanowires but using most other Majorana proposals as well. In such a geometry, Coulomb
blockade effects due to the finite charging energy Ec of the TS can play a decisive role.
For instance, one expects Coulomb oscillations of the conductance as a function of a gate
voltage parameter ng, with peaks (valleys) near half-integer (integer) ng, while in the
noninteracting (Ec = 0) limit, the MBSs pinned to zero energy cause resonant Andreev
reflection (AR) [8, 9, 10, 11], with ng-independent linear conductance G = 2e2/h at tem-
perature T = 0. Resonant AR also survives for Ec . Γ = ΓL + ΓR, albeit with reduced
conductance [25]. For Ec ≫ Γ, Coulomb blockade is firmly established, and the peak con-
ductance approaches the (spinless) resonant tunneling value G = e2/h, which has been
pointed out as a signature of electron teleportation [26].

In this work, we consider Coulomb blockaded charge transport through the MSCT; for
a variant with one superconducting and one metallic lead, see Ref. [27]. We provide an
exact expression for the current in this interacting system, and develop three different
approximation schemes to study Coulomb oscillations in the MSCT both for T = 0 and
finite T . We quantitatively describe the T = 0 crossover of the peak conductance from
G = 2e2/h to e2/h as Ec/Γ increases, which constitutes a characteristic signature of Majo-
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4 1. Introduction

ranas. Remarkably, this “halving” of the peak conductance is universal and found to hold
for arbitrary T . For the valley conductance, we find that elastic cotunneling dominates
while AR is subleading. We predict finite-voltage sidebands in the nonlinear differen-
tial conductance which are directly related to anomalous tunneling processes where the
Majorana state and the Cooper-pair number change simultaneously. The presence of Ma-
joranas can be unambiguously identified in experiments by the magnetic field dependence
of the sideband location.

If not explicitly stated otherwise, we set e=~=kB=c=1 throughout the whole thesis and
before we explicitly introduce the MSCT setup, we will first provide the necessary back-
ground information which directly leads to the MSCT setup and also explains a possible
way for its experimental realization. Since all of the interesting features of the MSCT
are based on the MBS, which are nothing else than a condensed matter realization of
Majorana Fermions we start from their definition.

1.1 Majorana fermions

The relativistic extension of quantum mechanics by Dirac led to the prediction [28] of
the existence of antiparticles. The most prominent and also first observed example is the
positron as the antiparticle of the electron. Dirac’s prediction was in 1928 and the discov-
ery [29] in 1932 within the cosmic radiation. From his framework antiparticles naturally
arise as an always existing second complex conjugate solution of the Dirac equation with
respect to an existing one. They always posses the negative energy of the corresponding
particle and the opposite charge but the same spin. This symmetry imposes the ques-
tion if there are particles which are their own antiparticles. The mathematical possibility
requires a real solution to the Dirac equation which was found in 1937 by Ettore Majo-
rana [30]. Since the equation itself describes spin-1/2-particles they are called Majorana
fermions (MF). Within the framework of the second quantization, a fermionic creation
operator γ†i and its conjugate annihilation operator γi must be equal for a Majorana state

γ†i = γi . (1.1)

These Majorana operators still obey a fermionic anticommutation relation but generate
an unconventional algebra since the definition of a number operator leads to a constant
and leaves the occupation number of a single Majorana state undefined

{γi, γ†j} = δi,j ⇒ γ†i γi = γ2
i = 1/2 . (1.2)

The only way to associate an occupation number to Majorana states is to use their
relation to a conventional Dirac fermion state composed of two Majorana fermion states.
Formally, one can construct Majorana fermion operators from the real and imaginary part
of a conventional Dirac fermion operator

γB = 1√
2
(d+ d†)

γA = 1
i
√

2
(d− d†)

 ⇔


d = 1√

2
(γB + iγA)

d† = 1√
2
(γB − iγA)

. (1.3)

but without a mechanism to spatially separate such Majorana pairs, this remains a local
purely mathematical transformation.



1.2. Majorana bound states (MBS) 5

Up to now, we only argued from a mathematical point of view that Majorana fermions are
an allowed solution to the Dirac equation. But if there really exist fundamental particles
which are Majorana fermions is still an open question. One possible candidate is the
neutrino. A consequence would be the possibility of a neutrinoless double beta decay.
This extremely seldom process consists of a decay of two neutrons into two electrons, two
protons, and usually two electron antineutrinos. If the neutrino is a Majorana fermion, the
two (anti)neutrinos could annihilate each other and represent a purely virtual excitation,
rendering the double beta decay neutrinoless.

Opposed to searching for MFs among elementary particles, there are different proposals
how to generate them as quasi-particles within engineered condensed matter systems. A
very good review on this is given in Ref. [19] and we will now follow the argumentation
from there.

In metallic systems, excitations are described by the creation and annihilation of elec-
trons and holes in certain states with the possibility of electron hole annihilation. But
since they always carry opposite charge, they are no candidates for MFs. If they ex-
ist in condensed matter systems they must be nontrivial excitations constructed out of
fundamental building-blocks.

Based on (1.3) we can already claim that they can only appear in pairs and must be
linked to superpositions of electrons and holes which are charge-neutral and naturally
arise for example as excitations in superconductors. In a s-wave superconductor, forming
singlet Cooper-pairs, these excitations schematically take the form

γ̃ = uc†↑ + vc↓ ⇒ γ̃† = v∗c†↓ + u∗c↑ ̸= γ̃ ∀ u, v ∈ C , (1.4)

in terms of electron creation and annihilation operators c†↑ and c↓ with opposite spins.
Therefore the spin prevents these excitations from being candidates for MFs. Avoiding
this problem is possible in “spinless” superconductors, i.e. systems with only one active
spin species. Due to the Pauli exclusion principle their pairing must occur with odd
parity like in exotic p-wave superconductors forming triplet Cooper-pairs. Schematically
the desired excitations have the form of Eq. (1.5) after dropping spin indices {↑, ↓}.

d = uc† + vc ⇒ d† = v∗c† + u∗c = d for u = v∗, v = u∗ . (1.5)

We will now proceed with a minimal 1D model which includes a p-wave pairing term and
allows for the existence as well as for the spatial separation of a MF pair.

1.2 Majorana bound states (MBS)

Next, we deal with a 1D toy model proposed by Kitaev in [3]. His work was motivated by
quantum computation. Since MF in condensed matter systems always appear as pairs,
only these pairs posses a defined occupation number. A spatial separation of such a pair
still can store information in the form of a conventional fermion, but its delocalization
will render the state immune to local perturbations and thus protect it from most types of
decoherence. Although his model is quite simple, it allows to understand how a spatially
separated pair of MF can arise.



6 1. Introduction

1.2.1 Kitaev’s toy model: The spinless p-wave chain with MBS

Kitaev’s toy model is a finite 1D tight-binding chain of spinless fermionic sites, including
a nearest neighbor hopping term and proximity induced p-wave superconductivity

H = −µ
N
n=1

c†ncn −
1

2


n

(tc†ncn+1 + ∆cncn+1 + H.c.) . (1.6)

Operators c†n refer to conventional Dirac fermions and the index labels the chain sites.
The occupation of the sites is determined by the chemical potential µ. The formation of
Cooper-pairs involving adjacent sites is governed by the superconducting gap ∆ = |∆|eiχ
including the superconducting phase χ. The next neighbor hopping is proportional to the
hopping amplitude t. Without loss of generality we choose χ = 0 in this section1. The
interesting properties of the chain arise after decomposing each fermionic site into its real
and imaginary part using the identity from Eq. (1.3)

cn =
1√
2
(γB,n + iγA,n) . (1.7)

By choosing appropriate parameters one can now drive the system into two different
phases. The first is reached by switching off the superconductivity ∆ = 0 and setting
a negative chemical potential µ < 0. It is topologically equivalent to the vacuum and
therefore called “trivial”. Topologically equivalent in this context means, that by still
respecting the parameter definition of the phase, there exists the smooth transformation
µ → −∞ which completely empties the chain and establishes the equivalence to the
vacuum. The Hamiltonian (1.6) reduces to be

(a) topologically trivial: (1 ground state: “vacuum”): t = ∆ = 0 ; µ < 0

H = −µ
N
n=1

iγB,nγA,n .
γA,2 γB,2γA,1 γB,1 γA,3 γB,3 γA,N γB,N

The schematic illustration right to the Hamiltonian emphasizes the local pairing of Ma-
jorana operators on each site resulting in a conventional fermionic chain.

The second and topologically nontrivial phase of the system is reached by setting the
chemical potential to zero and the finite hopping equal to the superconducting gap. Again
by decomposing all fermionic operators into their real and imaginary parts the Hamilto-
nian now reduces to be

(b) topologically nontrivial: (2 ground states: “differ by parity”) t = ∆ > 0 ; µ = 0

H = 0d†d− t
N−1
n=1

iγB,nγA,n+1 .
γA,2 γB,2γA,1 γB,1 γA,3 γB,3 γA,N γB,N

The schematic illustration shows again the Majorana operator pairings which now always

1For arbitrary χ see Ref. [3] or [19].
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involve adjacent sites. Due to the two ends of the chain there are two locally unpaired
Majorana operators left which correspond to two Majorana bound states (MBS) forming
a highly nonlocal fermionic level fixed at zero energy, represented by the operator

d = (γA,1 + iγB,N)/
√

2 . (1.8)

The occupation number of this level is called parity of the system. Since it can be occupied
at no cost of energy it causes a parity degenerate ground state. For this second phase, there
is no continuous transformation into the vacuum, without closing the superconducting
gap which contradicts its definition. Consequently, both phases are topologically different
[1]. The topological invariant which distinguishes the two phases is the existence of the
two MBS. They only disappear after a topological phase transition to the trivial phase.
Regarding conductivity, in the topological phase the wire is superconducting in the bulk
but metallic at its surface, the ends. This difference between the bulk to surface properties
also gave rise to the name topological superconductor (TS). This concept is an extension
of the classification of insulators based on topological invariants to superconductors. For
more details on this classification we refer to [1].

We derived the existence of MBS from a “spinless” chain model. Allowing for a second
spin species doubles the chain and leads to the formation of MF pairs at the ends of
the chain. These pairs would form local conventional fermions again and destroy the
nontrivial topological phase of the system.

1.2.2 MBS in spin-orbit coupled semiconducting wires

Kitaev’s chain is a theoretical toy model and the most crucial point is that the model
is spinless, but also involves a term creating Cooper-pairs. An experimental realization
must be based on an energetic separation of the different spin species to enter a “spinless”
regime. Consequently a pairing in this regime must occur within the same spin species.
This is only possible for an intrinsic p-wave superconductor or a system which effectively
behaves like one. The first option faces serious problems since p-wave superconductivity is
extremely rare in nature and also not long-ranged ordered enough as assumed in Kitaev’s
model. But due to the proposals [17, 18] based on engineering the desired system out
of well known and controllable building-blocks the second option became feasible and is
promising.

The fundamental setup behind the proposals is depicted in Fig. 1.1 (a) and consists
of a 1D wire with strong intrinsic spin-orbit coupling in the proximity of an ordinary
s-wave superconductor and an external magnetic field B perpendicular to the wire. The
corresponding wire Hamiltonian reads

Hwire =


dxψ†


k2

2m
− µ+ αkσy + Ezσz


ψ ; ψ =


ψ↑
ψ↓


(1.9)

and includes the usual kinetic term along the x-direction, a Rashba spin-orbit term [31]
with coupling constant α > 0 that favors a spin alignment along the y-direction and
a Zeeman term introducing an energy split of 2Ez ≥ 0 due to the magnetic field B in
z-direction. As long as the magnetic field axis is perpendicular to the spin-orbit axis,
their absolute position is irrelevant. The σx,z are Pauli matrices and ψ†σ adds an electron
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with effective mass m, chemical potential µ and spin σ to the wire. The proximity to
the underlying s-wave superconductor additionally induces an electron pairing mechanism
proportional to the superconducting gap ∆. The complete Hamiltonian of the setup from
Fig. 1.1 (a) is phenomenologically modeled by

H = Hwire +


dx (∆ψ↑ψ↓ + H.c.) . (1.10)

Despite of the following qualitative explanation why this setup is one possible realization
of Kitaev’s chain, the exact mapping is given in [32].

(a)

x

y

z

s-wave superconductor

1D wire

B (b) E

k

μ

Δ

Figure 1.1: (a) Experimental setup: Semiconducting InAs or InSb wire with
large g-factor and large Rashba spin-orbit coupling on top of a s-wave super-
conductor in a magnetic field B perpendicular to the wire. (b) Schematic
illustration of the effective dispersion relation E(k) between energy E and mo-
mentum k. Red and blue with Rashba field only, black for Zeeman and Rashba
field present. If the chemical potential µ is tuned into the gap at k = 0, the
wire appears “spinless” (cf. text below). The gray arrow indicates the effective
p-wave pairing. Figure based on [19].

The fundamental idea is illustrated in Fig. 1.1 (b). Without a magnetic field (Ez = 0)
and without spin-orbit coupling (α = 0) the wire Hamiltonian corresponds to a spin
degenerate parabolic dispersion. Switching on the spin-orbit coupling will result in a
horizontal shifting of the two parabolas associated with the two spin species and locks the
spin to the momentum at a given energy. This situation is represented by the red and
blue parabola in Fig. 1.1 (b). Adding now the magnetic field also lifts the spin degeneracy
at k = 0 and will result in the gapped dispersion shown in black. The band energies are

ϵ±(k) =
k2

2m
− µ±


(αk)2 + E2

z . (1.11)

By tuning the chemical potential to somewhere within this gap it only intersects the
dispersion twice instead of four times like in a high energy situation above the gap. This
halves the number of available states of the system and corresponds to a projection of the
system onto the lower band. In this limit, spin is not anymore a good quantum number
and we end up with an effectively spinless system. For the full Hamiltonian which also
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includes the proximity induced s-wave pairing, a similar argumentation holds and the
spinless phase is defined by the criterion

Ez >


∆2 + µ2 (1.12)

which ensures that the chemical potential has only two intersections with the dispersion
relation. Formally the connection between Eq. (1.10) and Kitaev’s chain can be estab-
lished by introducing new field operators ψ†± which add electrons with energies ϵ±(k)
to the wire, using them as a new basis for Eq. (1.10) and then projecting the resulting
Hamiltonian on its lower band. What remains is a “spinless” Hamiltonian and the basis
rotation also creates the essential p-wave pairing term (∝ αk∆/Ez) within the new basis
from the initial proximity induced s-wave pairing term in the old basis. To conclude, one
needs materials with a strong Rashba spin-orbit field and a large g-factor to access the
topological phase of this setup. Both can be fulfilled by using InAs and InSb wires.

1.2.3 Electron “teleportation” through MBS

Before we introduce our transistor setup in the next chapter, let us first consider the
following: if the wire is only weakly coupled to the superconducting substrate, Coulomb
interactions will become important. Their influence on a TS wire has been studied first
by Fu in Ref. [26]. A simple way to model them is to idealize the setup from Fig. 1.1 as
an “floating” (not grounded) TS wire with a capacitance C which introduces a charging
energy Ec = e2

2C
. We label the MBS by γi with an index referring to the both ends

i = L/R of the wire and remember the definition of the associated nonlocal fermion
operator d = (γL + iγR)/

√
2 which defines the parity operator of the wire n̂d = d†d.

Together with the number of Cooper-pairs in the wire, counted by the operator N̂ , its
instantaneous charge state is defined by the corresponding set (N, nd) of eigenvalues.
Additionally also taking into account the influence of a gate potential Vg by a dimensionless
parameter ng ∝ Vg, we arrive at the effective wire Hamiltonian

Hc = Ec(2N̂ + d†d− ng)2. (1.13)

Without the nonlocal single fermion state at zero energy, we assume that there are only
single fermion states above the superconducting gap ∆. Whenever the total number of
electrons on the wire is even, an additional one must occupy a state above the super-
conducting gap and must at least posses the gap energy ∆ to tunnel in. On the other
hand, when the total number of electrons on the wire is odd and another one enters from
the leads, a Cooper-pair can be built and this electron doesn’t need to exceed the gap in
energy. This separation in energy between charge states involving and even or odd total
number of electrons is independent of the concept of an charging energy and vanishes
with the presence of a MBS pair forming a level at zero energy, cf. Fig. 1.2. The intrinsic
ground state degeneracy of a TS wire, like depicted in Fig. 1.2 (b) on the left gets also
lifted by the additional inclusion of interactions in the form of an charging energy. The
presence of a back-gate potential can be used to restore a single parity degenerate ground
state if it is tuned to an half integer value.
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(a)

1D wire

(b)

2N-1 2N+1

2N-2 2N 2N+2

2N-2 2N 2N+12N-1 2N+2

Δ

Δ

E

N

Figure 1.2: Energy spectrum of a superconductor as a function of the total
number of electrons. States with an even (odd) number of electrons are marked
black (red). The (right) left illustrations depict a situation with (non)zero
charging energy Ec. (a) Without the existence of a MBS pair adjacent even
and odd states differ at least by ∆ in energy. (b) With a MBS pair present,
the even-odd effect vanishes. Figure based on [26].

This situation is highlighted by a dashed box in Fig. 1.2 (b) on the right. Changing the
parity of this ground state does not cost energy. Due to the presence of the charging
energy it is energetically separated from all other states. In a low energy transport
situation electrons will tunnel only through this highly nonlocal ground state formed by
the two MBSs. This gave rise to talk of “teleportation” in this context since the process
is phase coherent and the electron travels through this state from one end of the wire to
the other by delocalization and not as a local quantity. The maximal conductance in this
situation is G = e2/h at T = 0 because this teleportation through the ground state is the
only open channel if the charging energy dominates and separates higher states involving
cooper pair creation. In the case of vanishing Ec (situation Fig. 1.2 (b) left) another
channel is open. A normal electron can create a Cooper-pair in the wire by the reflection
of a hole at the interface. This is called a local Andreev reflection and causes a maximal
conductance of 2e2/h in the Ec = 0 limit. We will get back to these processes and their
contribution to the total conduction in detail during the derivation of a master equation
approach in Sec. 2.2. Next we introduce our central study object of this first part of the
thesis.



2 The Majorana single-charge transistor

With the Majorana single-charge transistor (MSCT) we investigate a model which extends
a previously studied transport setup from Ref. [25] by the explicit inclusion of a bulk
superconductor which can exchange Cooper-pairs with a TS wire placed between metallic
leads and hosting MBS at its ends. The exchange is possible through a thin normal
conducting barrier creating a Josephson contact. This coupling introduces the additional
parameter EJ to the model from [25], representing the maximal Josephson energy of the
junction. A schematic illustration of the complete setup is given in Fig. 2.1 and we will
explain all remaining details below.

TSN N

SC

VL VR

Figure 2.1: Majorana single-charge transistor: A topological superconductor
(TS) wire hosting two MBS (γL/R) tunnel coupled (ΓL/R) to normal metal
leads (N) and Josephson coupled (EJ) to another bulk superconductor (SC).
Capacitive charging effects are encoded by Ec and can be tuned by a gate
voltage parameter ng ∝ Vg.

The MSCT device from Fig. 2.1 is a typical transport setup. We have a central region
involving dominant interactions to study (tunable to some extend by gate parameters) and
place it in between two normal conducting (metallic) leads separated by tunnel junctions.
By applying a bias voltage V = VL − VR to the leads, they will act as source and drain
for electrons tunneling through the junctions and the central region. This nonequilibrium
transport situation then allows for the study of quantities like the current as function
of the bias voltage I(V ) or the differential conductance dI/dV in different parameter
regimes. Both will show unique fingerprints of the physics within the central region and
lead to a characterization of the MSCT within a wide range of its parameter space.

11
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2.1 The MSCT Hamiltonian

For our proposed setup the theoretical description starts from the MSCT Hamiltonian
consisting of three parts

H = Hc +Ht +Hl , (2.1)

with Hc modeling the central region, Ht the tunneling and Hl the left and right (j = L/R)
metallic leads. The central part is a TS wire hosting a single unpaired MBS (γL/R) near
each end based on the argumentation in Sec. 1.2.1 and 1.2.2. Additionally the TS wire
is explicitly Josephson coupled to another bulk superconductor (substrate) [27, 33]. The
maximal Josephson energy of this junction is EJ and depends on the phase difference
between the TS phase χ and the fixed bulk SC phase φS. Experimentally the Cooper-
pair transfer via this Josephson junction is controllable by modifying EJ with an small
magnetic field parallel to the junction. The coupling to the superconducting substrate
plays the role of a controllable grounding of the TS wire. If the Cooper-pair exchange
via this Josephson junction is small compared to the tunneling rates Γα, the Coulomb
interaction within the wire becomes important. Like previously discussed in Sec. 1.2.3 we
include it via a charging energy Ec. This also breaks the ground state degeneracy of a
perfectly grounded TS wire with MBS. If the charging energy dominates all energy scales
of the system we are in the Coulomb blockade (CB) regime and transport can become
impossible. With the TS phase χ conjugate to N̂ , where [χ, N̂ ] = i and e−iχ (e+iχ)
lowering (raising) N by one, Hc is an extension of Eq. (1.13) from Sec. 1.2.3:

Hc = Ec(2N̂ + n̂d − ng)2 − EJ cos(χ− φS). (2.2)

The length of the TS wire is assumed sufficiently long to exclude a direct tunnel coupling
between γL and γR, corresponding to an overlap and decreasing the nonlocality of the d
state. However, note that Ec introduces a dynamical coupling between the two Majoranas.
We focus on the most interesting case of a large proximity gap ∆TS > max(Ec,Γ, T ), where
charge transport involves MBSs and the contribution of quasi-particles above the gap can
be neglected. The lead part Hl is

Hl =

jk

ϵjkc
†
jkcjk , ϵjk = ϵk + µj , (2.3)

with electrons in lead j corresponding to free fermions with chemical potential2 µj=µj(V ),
dispersion relation ϵk and (effectively spinless [25]) fermionic operators cj,k for momen-
tum k. Hl is treated within the usual wide-band approximation3 and the bias voltage is
eV = µL−µR. Taking into account charge conservation and expressing the Majoranas in
terms of the nonlocal d fermion, the tunnel Hamiltonian reads [25]

Ht =

j

λjc
†
jηj + H.c., ηj =

1√
2
(d+ sje

−iχd†), (2.4)

where cj =


k cj,k, sL/R = ±1 and λL,R denotes the respective tunnel matrix elements
[11]. Tunneling from the TS to lead j thus proceeds either by destroying the d state

2Measured with respect to the chemical potential µs =0 of the TS condensate.
3It is straightforward to go beyond this approximation by allowing for energy-dependent Γj(ϵ) in the
equations below.
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without changing N (“normal” tunneling - later also called channel “a”) or by occupying
the d state and simultaneously splitting a Cooper-pair (“anomalous” tunneling - later also
called channel “b”), plus the conjugate processes.

During the following derivations we use the hybridization scales Γj = 2πνj|λj|2, where
νj is the density of states in lead j at the Fermi level. Experimentally, the Γj (and ng)
can be changed via gate voltages [13]. Realistic parameter estimations for an experimen-
tal realization of an MSCT setup can be found in [13] since they deal with the same
components but a different setup.

We will now start to analyze the transport properties of the MSCT from a master
equation approach.

2.2 Master equation approach

For finite temperature and the time between tunneling events being the largest time scale
in the system (ΓL +ΓR = Γ≪ T = 1/β) the occupation probabilities PQ of a wire charge
state |Q⟩ ≡ |N, nd⟩ in the presence of the leads are accessible after solving a master
equation. For simplicity we have set EJ = 0 here4 and defined Q = 2N +nd. We are only
interested in a stationary state solution (ṖQ = 0) and not in the time evolution. This
defines the master equation for the occupation probabilities

ṖQ =

Q′ ̸=Q

[WQ′→QPQ′ −WQ→Q′PQ] = 0 ;

Q

PQ = 1 . (2.5)

The transition rates WQ→Q′ are a summation of all rates contributing to a transition from
|Q⟩ to |Q′⟩ up to a maximal order taken into account

WQ→Q±1 =

j=L/R

Γ
(SEQ)
j,Q→Q±1 ; WQ→Q±2 = Γ

(AR)
LR,Q→Q±2 +


j=L/R

Γ
(AR)
jj,Q→Q±2 . (2.6)

Schematically Fig. 2.2 shows all transitions possible in our expansion. Next, we will first
present a systematic second-order T -matrix expansion in ΓL,R to derive the sequential

tunneling rates Γ
(SEQ)
j,Q→Q±1 and local and nonlocal cotunneling rates associated with Andreev

reflection processes Γ
(AR)
jj′,Q→Q±2. (A detailed description of the processes is given during

their derivation.)
Afterwards we define the exact relations for the currents through the MSCT. The master

equation (2.5) represents a net charge flow analysis between different wire charge states,
leading to a stationary distribution. Once the distribution is known a similar net flow
analysis between the leads, based on the known occupation probabilities, provides the
currents in the system. Finally we provide numerical and analytical strategies to solve
the master equation.

4Additional rates (not specified here) involving Cooper-pair transfer between the TS and the bulk su-
perconductor must be included for finite EJ .
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W
(EC)
Q WQ→Q±2

. . .. . .

. . . . . .PQ+3

PQ+2PQ−2

PQ−1 PQ+1

PQ

WQ→Q±1

Figure 2.2: Schematic illustration of the infinite set of states involved in the
master equation (labeled by their occupation probabilities PQ ≡ Pnd(N)) and
all possible transition rates taken into account. The upper and lower states
have different parity.

2.2.1 Rate derivation up to second order from golden rule

We consider the weak tunneling regime with Γ being the smallest energy in the system
and treat Ht as a perturbation. We work in a charge basis and the dot is described by a
nonequilibrium (V ̸= 0) distribution function PQ ≡ Pnd(N ; t) that gives the probability
to find the dot in the instantaneous charge state |Q⟩ ≡ |nd, N⟩, where nd ∈ {0, 1} and
N ∈ N0 are eigenvalues of n̂d and N̂ , respectively. Transition rates between various dot
states can be calculated from Fermi’s golden rule using a T -matrix expansion [34] in Ht:

T = Ht +HtG(Ei)T , G(Ei) =
1

Ei −H0 + i0
, H0 = Hc +Hleads , (2.7)

where Ei is the energy of a given initial state of the decoupled ’dot plus leads’ system.

Sequential tunneling

To lowest order in Ht, the transition rate between an initial |i⟩ and a final |f⟩ state is

Γ
(1)
fi =

2π

~
|⟨f |Ht|i⟩|2 δ (Ei − Ef ) . (2.8)

According to Eq. (2.4), there are two types of tunneling processes between the dot and
the leads in the lowest order:

(a) not involving the condensate, |0, N⟩ ↔ |1, N⟩

(b) involving the condensate, |0, N⟩ ↔ |1, N − 1⟩.

Below we refer to these processes as channel a (’normal’) and b (’anomalous’), respectively.
Note that in the deep CB regime, these channels become basically decoupled for half-
integer ng, which leads to the unitary conductance value e2/h instead of 2e2/h [26]. This
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regime corresponds to the energy situation depicted in Fig. 1.2, bottom right. For large
enough Ec only the two states marked with the dashed box are accessible by the system.
Regarding for example the right state, marked black, the two channels correspond to
transitions either to the adjacent left or right red state. While for the left transition no
energy must be paid, the transition to the right state costs energy and gets supressed and
finally blocked in the deep CB regime.

Throughout the thesis we define the Fermi- and the Bose-distribution without chemical
potentials

nF (ϵ) =
1

eβϵ + 1
; nB(ϵ) =

1

eβϵ − 1
, (2.9)

to facilitate calculations when using symmetry relations like

nF (ϵ) = 1− nF (−ϵ) ; 1 + nB(ϵ) = −nB(−ϵ) . (2.10)

Assuming that the dot is initially in the state |nd, N⟩, the rates Γ
(SEQ,+)
j,α (nd, N) for tun-

neling through channel α = a/b from lead j = L/R onto the dot are given by:

Γ
(SEQ,+)
j,a (nd, N) = π |λj|2


k

nF (ϵk) δ

E1(N)− (E0(N) + ϵjk)


δnd,0 , (2.11)

Γ
(SEQ,+)
j,b (nd, N) = π |λj|2


k

nF (ϵk) δ

E0(N + 1)− (E1(N) + ϵjk)


δnd,1 , (2.12)

where End(N) are charging-energy eigenvalues of Hc for EJ = 0:

End(N) = Ec (2N + nd − ng)2 . (2.13)

In the wide-band approximation, summation over k yields:
k

nF (ϵk)δ

ϵjk − ϵ+α (N)


=


dξ

k

δ(ξ − ϵk)nF (ξ)δ

ξ + µj − ϵ+α (N)


≈ νjnF


ϵ+α (N)− µj


, (2.14)

where νj =


k δ(ϵk) is the density of states in each lead, and

ϵ+α (N) =


E1(N)− E0(N), for α = a

E0(N + 1)− E1(N), for α = b

 (2.15)

is a single-charge excitation energy in the channel α. As a result, one obtains:

Γ
(SEQ,+)
j,α (nd, N) =

Γj
2
nF

ϵ+α (N)− µj


(δα,aδnd,0 + δα,bδnd,1) , (2.16)

where Γj is the previously defined hybridization. Similarly, defining

ϵ−α (N) =


E1(N)− E0(N), for α = a

E0(N)− E1(N − 1), for α = b

 (2.17)
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the rates Γ
(SEQ,−)
j,α (nd, N) for tunneling out of the dot into lead j = L/R are given by

Γ
(SEQ,−)
j,a (nd, N) = π |λj|2


k

[1− nF (ϵk)] δ

E1(N)− (E0(N) + ϵjk)


δnd,1 , (2.18)

Γ
(SEQ,−)
j,b (nd, N) = π |λj|2


k

[1− nF (ϵk)] δ

E0(N)− (E1(N − 1) + ϵjk)


δnd,0 . (2.19)

In the wide-band limit this is equivalent to:

Γ
(SEQ,−)
j,α (nd, N) =

Γj
2


1− nF


ϵ−α (N)− µj


(δα,aδnd,1 + δα,bδnd,0) . (2.20)

At sufficiently low temperature and bias voltage, quantum coherent processes will domi-
nate5, so we also need the tunneling rates of the next order:

Cotunneling

To second order in Ht, the transition rate between initial |i⟩ and final |f⟩ states is given
by [see Eq. (2.7)]

Γ
(2)
fi =

2π

~
|⟨f |HtG(Ei)Ht|i⟩|2 δ (Ei − Ef ) , G(Ei) =

1

Ei −H0 + i0
. (2.21)

Explicitly, one finds:

HtG(Ei)Ht ∝


j,j′=L,R

 
c†j′d+ sj′e

+iχdcj′

G(Ei)


d†cj + sje

−iχc†jd
†


+

d†cj′ + sj′e

−iχc†j′d
†

G(Ei)


c†jd+ sje

+iχdcj

 
. (2.22)

Note that these two terms operate in the mutually orthogonal Fock subspaces corre-
sponding to nd = 0 and nd = 1, respectively. In Eq. (2.22), one can distinguish the
following processes which may contribute to the current:

(i) elastic cotunneling of an electron from lead j to the opposite lead (−j) through channel

(a) :


c†−jdG(Ei) d

†cj (nd = 0)

d†cj G(Ei) c
†
−jd (nd = 1)

, (b) :


−e+iχdcj G(Ei) e

−iχc†−jd
† (nd = 0)

−e−iχc†−jd†G(Ei) e
+iχdcj (nd = 1)

;

(2.23)
In this context, “elastic” reflects the fact that the dot state is not changed after this
process and no energy has been transferred to the dot. In contrast to this,

(ii) inelastic cotunneling involves two electrons from leads j and j′ by creating (’gluing’)
or destroying (’splitting’) one Cooper-pair in the final state. This will change the dot

5cf. conductance in the Coulomb blockade valleys of Fig. 3.2.
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state and thus transfers energy to/from it which gives rise to the term “inelastic”.

’split’:


c†j′dG(Ei) e

−iχc†jd
† (nd = 0)

e−iχc†j′d
†G(Ei) c

†
jd (nd = 1)

, ’glue’:


e+iχdcj′ G(Ei) d

†cj (nd = 0)

d†cj′ G(Ei) e
+iχdcj (nd = 1)

.

(2.24)
Additionally, note that the cases j′ = j and j′ = −j correspond to the processes of
local and crossed Andreev reflection, respectively. (Both transport a charge of 2e across
an interface between a superconductor and a normal metal, i.e. they convert between a
normal and a supercurrent.)

Elastic cotunneling rates

For the dot in the initial state |nd, N⟩, the rates Γ
(EC)
j (nd, N) for elastic cotunneling from

lead j to the opposite lead (−j) are given by a superposition of the a- and b-channel
contributions [see Eq. (2.23)]:

Γ
(EC)
j (0, N) =

π |λLλR|2

2


i

⟨f |c†−jdG(Ei) d
†cj − e+iχdcj G(Ei) e

−iχc†−jd
†|i⟩
2wi δ (Ei−Ef ) ,

(2.25)

Γ
(EC)
j (1, N) =

π |λLλR|2

2


i

⟨f |d†cj G(Ei) c
†
−jd− e−iχc

†
−jd

†G(Ei) e
+iχdcj|i⟩

2wi δ (Ei−Ef ) ,

(2.26)
where the sum runs over all states in the (decoupled) leads, each weighted by a thermal
distribution function wi. Explicitly, one finds:

Γ
(EC)
j (0, N) =

π |λLλR|2

2


k,k′

nF (ϵk) [1− nF (ϵk′)] δ (ϵjk − ϵ−j,k′) (2.27)

×
 1

ϵjk − ϵ+a (N) + i0
+

1

ϵ−b (N)− ϵ−j,k′ + i0

2
=

ΓLΓR
4


dϵ

2π
nF (ϵ− µj)nF (µ−j − ϵ)

 1

ϵ− ϵ+a (N) + i0
− 1

ϵ− ϵ−b (N)− i0

2
Γ

(EC)
j (1, N) =

ΓLΓR
4


dϵ

2π
nF (ϵ− µj)nF (µ−j − ϵ)

 1

ϵ− ϵ+b (N) + i0
− 1

ϵ− ϵ−a (N)− i0

2 ,
with ϵ+α (N) given by Eq. (2.15) and ϵ−α (N) by Eq. (2.17).

Inelastic cotunneling rates (Andreev reflection processes)

Assuming the dot in initial state |nd, N⟩, we introduce inelastic cotunneling rates

Γ
(AR,±)
j′,j (nd, N) for the processes which involve electrons from lead(s) j and j′ and result
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in a creation/annihilation of one Cooper-pair [see Eq. (2.24)]. One finds for nd = 0:

Γ
(AR,−)
j′,j (0, N) =

π |λjλj′ |2

2


i

wi δ (Ei − Ef )

×
⟨f |c†j′dG(Ei) e

−iχc†jd
† + (1− δj′,j) sjj′c†jdG(Ei) e

−iχc†j′d
†|i⟩
2

=
π |λjλj′ |2

2


k,k′

1 + δj′,−j
2

[1− nF (ϵk)] [1− nF (ϵk′)]

× δ

E0(N)− E0(N − 1)− ϵjk − ϵj′,k′


×

 1

ϵ−b (N)− ϵjk + i0
− sjj′

ϵ−b (N)− ϵj′,k′ + i0

2
= ρjj′

ΓjΓj′

4


dϵdϵ′

2π
δ

ϵ+ ϵ′ −∆−

0 (N)

nF [−(ϵ− µj)]nF [−(ϵ− µj′)]

×
 1

ϵ− ϵ−b (N)− i0
− sjj′

ϵ′ − ϵ−b (N)− i0

2 , (2.28)

where sjj′ = sjsj′ , ρjj′ = (1 + δj′,−j) /2 and [see also Eq. (2.13)]

∆±
nd

(N) = ±(End(N ± 1)− End(N)) . (2.29)

Note that for j′ = j (local Andreev reflection) the two fractions in Eq. (2.28) come
from the superposition of the two scattering amplitudes, c†jkG(Ei) c

†
jk′ + c†jk′ G(Ei) c

†
jk,

corresponding to different orderings in the emission of lead electrons with energies ϵjk
and ϵj,k′ , while the factor ρjj = 1/2 is included to avoid double counting in the sum over
initial states of the lead. Also note that for j′ = j the terms with ϵjk = ϵjk′ , which
are not allowed by the Pauli exclusion principle, automatically do not contribute to the
cotunneling rate (2.28). Similarly, one finds:

Γ
(AR,+)
j′,j (0, N) =

π |λjλj′ |2

2


i

wi δ (Ei − Ef )

×
⟨f |e+iχdcj′ G(Ei) d

†cj + (1− δj′,j) sjj′e+iχdcj G(Ei) d
†cj′ |i⟩

2
=

π |λjλj′ |2

2
ρjj′


k,k′

nF (ϵk)nF (ϵk′)δ

E0(N)− E0(N + 1) + ϵjk + ϵj′,k′


×

 1

ϵjk − ϵ+a (N) + i0
− sjj′

ϵj′,k′ − ϵ+a (N) + i0

2
= ρjj′

ΓjΓj′

4


dϵdϵ′

2π
δ

ϵ+ ϵ′ −∆+

0 (N)

nF [+(ϵ− µj)]nF [+(ϵ′ − µj′)]

×
 1

ϵ− ϵ+a (N) + i0
− sjj′

ϵ′ − ϵ+a (N) + i0

2 . (2.30)



2.2. Master equation approach 19

The corresponding rates for nd = 1 are given by:

Γ
(AR,−)
j′,j (1, N) =

π |λjλj′ |2

2


i

wi δ (Ei − Ef )

×
⟨f |e−iχc†j′d†G(Ei) c

†
jd+ (1− δj′,j) sjj′e−iχc†jd†G(Ei) c

†
j′d|i⟩

2
= ρjj′

ΓjΓj′

4


dϵdϵ′

2π
δ

ϵ+ ϵ′ −∆−

1 (N)

nF [−(ϵ− µj)]nF [−(ϵ′ − µj′)]

×
 1

ϵ− ϵ−a (N)− i0
− sjj′

ϵ′ − ϵ−a (N)− i0

2 , (2.31)

Γ
(AR,+)
j′,j (1, N) =

π |λjλj′ |2

2


i

wi δ (Ei − Ef )

×
⟨f |d†cj′ G(Ei) e

+iχdcj + (1− δj′,j) sjj′d†cj G(Ei) e
+iχdcj′ |i⟩

2
= ρjj′

ΓjΓj′

4


dϵdϵ′

2π
δ

ϵ+ ϵ′ −∆+

1 (N)

nF [+(ϵ− µj)]nF [+(ϵ′ − µj′)]

×
 1

ϵ− ϵ+b (N) + i0
− sjj′

ϵ′ − ϵ+b (N) + i0

2 . (2.32)
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2.2.2 Compact rate expressions

During the derivation of the tunneling rates we emphasized the involved channels a and
b. Additionaly we always distinguished between charge stored as Cooper-pairs and the
parity of the wire, defined by the charge state of the nonlocal fermionic level formed
from the MBS. One basic assumption of our setup is that the superconducting gap is
the highest energy scale in the system and therefore no single fermionic levels above the
gap are involved. This allows to always reconstruct the charge state of the nonlocal d
level from the knowledge of the island’s total charge number Q = 2N + nd. For a unified
description of all processes included in our master equation approach we will now express
all rates in terms of Q ∈ N0, introducing electrostatic level energies EQ and transition
energies ϵQ→Q′

EQ = Ec(Q− ng)2 ; ϵ(Q→Q′) = sgn(Q′ −Q)(EQ′ − EQ) . (2.33)

Within this notation, sequential tunneling yields the rate

Γ
(SEQ)
j,Q→Q±1 =

Γj
2
nF (±(ϵ(Q→Q±1) − µj)) (2.34)

for one particle tunneling into (out of) the TS from (to) lead j = L,R. Next, elastic
cotunneling transfers a particle from lead j to the opposite lead −j with virtual excitation
of the TS states Q± 1. The elastic cotunneling rate is

Γ
(EC)
j,Q =

ΓLΓR
8π


dϵ nF [+(ϵ− µj)]nF [−(ϵ− µ−j)] (2.35)

×
 1

ϵ− ϵ(Q→Q+1) + i0
− 1

ϵ− ϵ(Q→Q−1) − i0

2 ,
where the two terms come from the interference of normal and anomalous tunneling
(Former channel a and b). We note in passing that for large ∆TS, inelastic cotunneling does
not contribute at all, while the conventional elastic cotunneling rate due to quasi-particle
states above the gap (and without MBSs) would be much smaller, Γ(EC) ∝ ΓLΓR/∆TS

[35]. To the same order in ΓL,R, we also have local (and crossed) AR processes, where an
electron and a hole from the same (different) lead(s) are combined to form a Cooper-pair,
Q→ Q+2; the reverse process describes Cooper-pair splitting, Q→ Q−2. Some algebra
yields the unified picture for the AR rates:

Γ
(AR)
j,j′,Q→Q±2 =

1 + δj,−j′

2

ΓjΓj′

8π


dϵ


dϵ′δ(ϵ+ ϵ′ − ϵ(Q→Q±2)) (2.36)

× nF (±(ϵ− µj))nF (±(ϵ′ − µj′))
 1

ϵ− ϵ(Q→Q±1) ± i0
− sjsj′

ϵ′ − ϵ(Q→Q±1) ± i0

2 ,
where j = j′ (j ̸= j′) corresponds to local (crossed) AR. The i0 terms indicate that
a regularization of the integrals in Eq. (2.35) and Eq. (2.36) is necessary. Following
the regularization scheme from Refs. [36, 37] the correct cotunneling rates correspond to
keeping only the principal values of the integrals involved. The detailed regularization
procedure and its motivation is presented in Appendix A. Next, we derive the expressions
needed to obtain the current from the master equation.
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2.2.3 Expectation value of the current

The solution of our master equation represents a stationary state of the system, which
is completely determined by the knowledge of all occupation probabilities PQ. Together
with the level dependent net flow rates JQ through the MSCT from the left to the right
lead, the weighted average

⟨J⟩ =

Q

JQPQ , (2.37)

gives the total current through the system. The net flow rates follow directly from the
tunneling rates and allow for a separation of the total current into contributions from the
different tunneling processes involved.

Local and symmetrized current

We only treat the limit EJ = 0 with our master equation where the dot is not grounded
and current conservation I = IL = −IR always holds. Nevertheless, given the normalized
solution PQ of Eq. (2.5), we define a symmetrized steady-state current

I =
IL − IR

2
=
e

~

j=L/R

sj
2


Q

Jj,QPQ ; sL/R = ±1, (2.38)

to emphasize lead dependencies since we plan to extend the master equation for EJ > 0
in the future. This would also allow to study nonlocal conductance effects. The local
current for given Q is composed of the following contributions

Jj,Q = J
(SEQ)
j,Q + J

(EC)
j,Q + J

(AR)
j,Q + J

(CAR)
j,Q . (2.39)

The local current from cross Andreev reflection (CAR) processes will give no contribution

to the symmetrized current because the rates are symmetric, Γ
(AR)
RL = Γ

(AR)
LR , and cancel

out in Eq. (2.38). But they must be included in Ij via

J
(CAR)
j,Q = Γ

(AR)
j,−j,Q→Q+2 − Γ

(AR)
j,−j,Q→Q−2 (2.40)

to obtain the current conservation IL+IR=0. The sequential tunneling contribution is

J
(SEQ)
j,Q =


Γ

(SEQ)
j,Q→Q+1 − Γ

(SEQ)
j,Q→Q−1


. (2.41)

Elastic cotunneling for tunneling from lead j to −j is encoded in the rates Γ
(EC)
j,Q with

J
(EC)
j,Q = Γ

(EC)
j,Q − Γ

(EC)
−j,Q, (2.42)

while inelastic Andreev cotunneling yields

J
(AR)
j,Q = 2


Γ

(AR)
j,j,Q→Q+2 − Γ

(AR)
j,j,Q→Q−2


. (2.43)

The prefactor stems from the fact that the processes involved always transfer two electrons
at once from/to the leads. We have now defined everything needed to set up the master
equation and compute the current from its solution. Next, we present how to solve it
numerically.
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2.3 Numerical solution of the master equation

Setting up the master equation for a finite number of levels

The master equation for the MSCT represent an infinite6 system of coupled equations,
defined by Eq. (2.5). After limiting Q to a finite range we get a finite dimensional matrix-
vector equation. A minimal example involving only three states is shown below

WP⃗ = 0 ; P⃗ = (PQ−1, PQ, PQ+1)
T (2.44)

W=

−(WQ−1→Q +WQ−1→Q+1) WQ→Q−1 WQ+1→Q−1

WQ−1→Q −(WQ→Q−1 +WQ→Q+1) WQ+1→Q

WQ−1→Q+1 WQ→Q+1 −(WQ+1→Q +WQ+1→Q−1)

 .

The choice of Qmin/max depends on the choice of ng and must be checked. This can be
done after solving the system by inspecting the resulting PQ, e.g. see Fig. 2.3. The
important criterion is, that the occupation probability of the energetically lowest and
highest levels involved must decay to zero due to physics and not due to the limitation
to a finite set of |Q⟩ states. This can be always achieved for the interacting case Ec ̸= 0.
For the data shown in Sec. 3 we used 26 level which was always sufficient.

ΒG = 0.50 Ec�G = 4.0 ng = 12.00
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Figure 2.3: Example solution for PQ from the MSCT master equation as a
function of voltage and Q−ng. The left plot shows an integer choice of ng:
Only a single level has a significant occupation probability at eV = 0 in the
case of (Γ, 1/β) ≪ EC . The right plot for a half integer choice of ng shows
the reduction of PQ to two equally probable significant level at zero voltage
for (Γ, 1/β) ≪ EC . All other parameters are shown above the distributions.
Increasing the total energy in the system by applying a bias voltage broadens
the distribution as expected.

For Ec = 0 all levels have the same energy and therefore the same probability
PQ = 1/(Qmax − Qmin + 1), but this is no problem, since in this case also all rates lose

6The total number of charge states within the wire is finite but in the order of 1023 and compared to the
number of relevant states treated as not fixed.
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their Q-dependence7 and a summation over all Q states is not necessary to compute the
currents (see also Eq. (2.37) with JQ → J).

Singular value decomposition

Investigating Eq. (2.44) we directly see that we have to solve an eigenvalue equation
and only might get a solution if there exists exactly one nontrivial eigenvector for the
eigenvalue zero. Accordingly, W is singular and puts dim(P⃗ ) − 1 constraints on the

solution of Eq. (2.44). Uniqueness of P⃗ is only reached by an additional constraint -
the normalization condition


Q PQ = 1 with all PQ ≥ 0. (Including the normalization

condition directly in Eq. (2.44) would be another way to tackle the problem but one still
has to check for all PQ ≥ 0.) Due to numerical stability we will solve the problem using
a singular value decomposition (SVD) [38].

In general W has not to be quadratic for a SVD to work but in our case it always is.
Starting from Eq. (2.44) the SVD decomposes W in a product of three matrices

W = ΛΣΠ† ; ΛΛ† = ΠΠ† = 1 ; Σij = ξiδij , (2.45)

with Λ,Π being unitary, and Σ only containing the so called singular values on its diagonal.
Picking one singular value ξi, the following holds

WP⃗ = ξiL⃗ ; W †L⃗ = ξiP⃗ , (2.46)

with L⃗ and P⃗ being the left-singular and right-singular vectors for ξi. They can be read
off from the corresponding columns of Λ and Π. As mentioned before, a unique nontrivial
solution P⃗ of Eq. (2.44) can only exist if W has exactly one singular value ξi = 0 which
corresponds to the fact that the Qmax − Qmin + 1 equations from (2.5) are coupled in a
way, that one of them is redundant.

Applying this to our problem, we first have to find the P⃗ which corresponds to ξi = 0.
If we have found it, we ensure, that all elements of P⃗ have the same sign, and therefore
can be normalized to probabilities using the normalization condition


Q PQ = 1 and

PQ ≥ 0. If this normalization and interpretation as probabilities cannot be achieved due
to numerical instability, the corresponding data point is thrown away.

2.4 Analytical solutions of the master equation

Before we present numerical results obtained from our master equation, we will focus now
on some limits where an analytical solution of the master equation is possible. We will
first analyze the limit Ec = 0. As already mentioned, in that limit the rates become Q
independent and the master equation trivial. Consequently also the currents JQ become
level independent and directly yield the total current. Afterwards, we will focus on the
linear conductance at zero bias voltage. In a deep CB limit the charging energy is the
dominant energy scale. This limits the number of accessible charge states to one or two,
dependent on the choice of the gate voltage parameter ng (integer or half integer). Again
the master equation becomes trivial and allows for an analytical solution. See also Fig. 2.3.

7Ec = 0 implies EQ−EQ′ = 0. All states are energetically equal. See also left side of Fig. 1.2 (b).
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2.4.1 Current through the grounded wire

Without a regularization the cotunneling rates become divergent under peak conditions
at finite temperatures, e.g. for zero bias voltage and half integer ng. For Ec = EJ = 0 the
system is analytically solvable and we will now compare our regularized expressions with
the exact result from [25]. Since all rates become Q-independent in this limit we have to
reintroduce the ± sign next to the rate type to distinguish between charge creation or
annihilation on the dot.

Assuming symmetric conditions, ΓL = ΓR = Γ/2 and µL/R =±eV/2, the sequential rates
are reduced to the simple expression

Γ
(SEQ,±)
j =

Γ

4
nF [∓µj] . (2.47)

From Eq. (2.38) and Eq. (2.41) we get

I(SEQ) =
e

2~
((Γ

(SEQ,+)
L − Γ

(SEQ,−)
L )− (Γ

(SEQ,+)
R − Γ

(SEQ,−)
R ))

=
eΓ

4~
(nF [−eV/2]− nF [eV/2]) =

eΓ

4~
tanh


βeV

4


. (2.48)

According to Eq. (A.4) from the appendix, the elastic rates require to set s = −1 in
Eq. (A.13) which directly sets these rates and the corresponding current I(EC) to zero.
The same is true for the crossed Andreev process and the associated current. For the
local Andreev process we get

Γ
(AR)
j,j,Q→Q±2


Ec=0

=
Γ2
j

16π


Kreg|α=± ;µ1=µ2=µj ; ϵ(a)=ϵ(b)=ϵ(c)=0 ; s=1


=


Γj
2π

2

αβ nB(−2αµj) Im


ψ1


1

2
− i

αβ

2π
µj


, (2.49)

with the definition of Imψ1 from Eq. (A.11). The following symmetry relations hold

Γ
(AR)
R,R,Q→Q+2


Ec=0

= − Γ
(AR)
L,L,Q→Q−2


Ec=0

; Γ
(AR)
R,R,Q→Q−2


Ec=0

= − Γ
(AR)
L,L,Q→Q+2


Ec=0

,

and lead to a vanishing current contribution from the local Andreev processes

J
(AR)
Q


Ec=0

=

(Γ

(AR)
L,L,Q→Q+2 − Γ

(AR)
L,L,Q→Q−2)− (Γ

(AR)
R,R,Q→Q+2 − Γ

(AR)
R,R,Q→Q−2)


Ec=0

(2.50)

=

(Γ

(AR)
L,L,Q→Q+2 − Γ

(AR)
L,L,Q→Q−2) + (Γ

(AR)
L,L,Q→Q−2 − Γ

(AR)
L,L,Q→Q+2)


Ec=0

= 0 .

In total we only get a contribution from the sequential rate in the limit Ec = 0.
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Figure 2.4: Exact differential conductance from Eq. (2.76) (black lines with
dots) for different temperatures T ∈ {2, 3, 4}Γ and Ec = EJ = 0, compared
to the result from the master equation with regularized rates for the same
parameters. Due to Ec = 0, the dependence on the gate voltage parameter
ng ∝ Vg/Γ drops out. As expected, the master equation becomes quantitatively
a better approximation with increasing temperature.

Next, we compare this current with the exact analytical result from [25], which is the
Ec = EJ = 0 limit of Eq. (2.76), presented later.

I(exact) =
eΓ

2h

 +∞

−∞
dϵ


F (ϵ− eV/2)− F (ϵ+ eV/2)

2

−Γ/2

ϵ2 + (Γ/2)2


=
eΓ

4~

 +∞

−∞
dϵ (nF (ϵ− eV/2)− nF (ϵ+ eV/2))

Γ/2

π(ϵ2 + (Γ/2)2)

≈ eΓ

4~
tanh


β eV

4


= I(SEQ) . (2.51)

For the last approximation we used a Lorentzian representation of the delta distribution

lim
ξ→0

ξ

π(ϵ2 + ξ2)
= δ(ϵ) , (2.52)

which is justified in the limit Γ ≪ 1 that coincides with the regime, where the master
equation holds. The quality of this approximation is demonstrated in the Fig. 2.4, depict-
ing the analytical differential conductance and data from our master equation for different
temperatures. As expected, deviations between the master equation and the exact solu-
tion vanish in the limit T/Γ→∞. Nevertheless, already for T/Γ = 2 the master equation
is a very good approximation.
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2.4.2 Linear conductance from analytics

We consider again a symmetric system, ΓL = ΓR = Γ/2 and µL = −µR = eV/2→ 0 and
define a dimensionless linear conductance g by

G(Ec, β, ng) =
e2

h
g(Ec, β, ng) . (2.53)

The only free parameter beside Ec, β and ng is the hybridization Γ. For the linear
conductance, we actually need the rates only at V = 0, since the PQ are needed only
in equilibrium. Regarding JQ, the leading coefficient

GQ = lim
V→0

2π

eV
JQ (2.54)

must be computed and g in Eq. (2.53) then follows with knowledge of the charge state
distribution PQ in the same fashion like the current before

g = ⟨GQ⟩Q =

Q

GQPQ . (2.55)

Equilibrium rates

Here we determine the µα = 0 rates entering the equilibrium master equation. The
sequential tunneling rate (2.34) and Eq. (2.6) yield

WQ→Q±1 =
Γ

2
nF (±ϵ(Q±1)) . (2.56)

Inelastic cotunneling rates are reduced to

WQ→Q±2 =
(Γ/2)2

8π


dϵ nF (±(ϵ))nF (±(ϵ(Q±2) − ϵ))

×

s=±

 1

ϵ− ϵ(Q±1) ± i0
− s

ϵ(Q±2) − ϵ(Q±1) − ϵ± i0

2 . (2.57)

Level dependent conductances

For convenience we first introduce the negative derivative of the Fermi distribution, which
will become a delta distribution in the limit T → 0 (β →∞)

δβ(ϵ) ≡ −∂ϵnF (ϵ) ≡ β

4 cosh2

βϵ
2

 ≡ βnF (ϵ)nF (−ϵ) . (2.58)

From Eq. (2.54) and with the level dependent current definitions from Sec. 2.2.3, we
obtain the sequential contribution

G(SEQ)
Q = lim

eV→0

2π

eV
J

(SEQ)
Q

= lim
eV→0

π

eV


Γ

(SEQ)
L,Q→Q+1 − Γ

(SEQ)
L,Q→Q−1 − Γ

(SEQ)
R,Q→Q+1 + Γ

(SEQ)
R,Q→Q−1



=
π

4
Γ (δβ(ϵQ+1) + δβ(ϵQ−1)) . (2.59)
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For the last identity we used the auxiliary relation

lim
eV→0

nF [ϵQ+1 − eV
2

]− nF [−(ϵQ−1 − eV
2

)]− nF [ϵQ+1 + eV
2

] + nF [−(ϵQ−1 + eV
2

)]

eV
= −∂ϵQ+1

nF [ϵQ+1]− ∂ϵQ−1
nF [−ϵQ−1] = δβ(ϵQ+1) + δβ(ϵQ−1) , (2.60)

and the definition of δβ(ϵ) from Eq. (2.58). The elastic cotunneling contribution is given
by

G(EC)
Q = lim

eV→0

2π

eV
J

(EC)
Q = lim

eV→0

2π

eV


Γ

(EC)
L,Q − Γ

(EC)
R,Q


=

Γ2

16


dϵ δβ(ϵ)

 1

ϵ− ϵ(Q+1) + i0
− 1

ϵ− ϵ(Q−1) − i0

2 , (2.61)

again using an auxiliary relation

lim
eV→0

nF [ϵ− eV
2

]nF [−(ϵ+ eV
2

)]− nF [ϵ+ eV
2

]nF [−(ϵ− eV
2

)]

eV

= lim
eV→0

nF [ϵ− eV
2

]− nF [ϵ+ eV
2

]

eV
= −∂ϵnF (ϵ) = δβ(ϵ) . (2.62)

Similar ideas, the symmetry δβ(ϵ) = δβ(−ϵ) and a more lengthy calculation finally lead
to the inelastic cotunneling contribution

G(AR)
Q =

Γ2

32


±


±

dϵ


[δβ(ϵ)nF (±(ϵQ±2 − ϵ)) + nF (±ϵ)δβ(ϵQ+2 − ϵ)]

×
 1

ϵ− ϵQ±1 ± i0
+

1

ϵ− (ϵQ±2 − ϵQ±1)± i0

2 . (2.63)

In the master equation, defined by Eq. (2.5), the overall prefactor Γ cancels out, i.e., the
distribution function PQ is determined only by Ec/Γ, ng and βΓ (universality). Remember
that ng ∝ Vg/Γ holds. The same is now found for the conductance coefficients GQ, and
thus universality is valid for the conductance, g = g(Ec/Γ, βΓ, ng).
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2.4.3 Low temperature strong Coulomb blockade limit

Below we study sequential tunneling and cotunneling processes and the linear conductance
in the strong Coulomb blockade (CB) regime Γ ≪ 1/β ≪ Ec at low temperature. We
approximate the Fermi function with the Heaviside function θ, and introduce consistently
its derivative, the delta distribution δ(ϵ), as low temperature limit of δβ(ϵ):

lim
β→∞

nF (ϵ) = θ(−ϵ) ; lim
β→∞

δβ(ϵ) = δ(ϵ) = −∂ϵθ(−ϵ). (2.64)

The equilibrium rates entering the master equation are further simplified in this limit

WQ→Q±1 ≈
Γ

2
θ(∓ϵ(Q±1)) ; (2.65)

WQ→Q±2 ≈
(Γ/2)2

8π


dϵ θ(∓(ϵ))θ(∓(ϵ(Q±2) − ϵ))

×

s=±

 1

ϵ− ϵ(Q±1) ± i0
− s

ϵ(Q±2) − ϵ(Q±1) − ϵ± i0

2 . (2.66)

The conductance matrix elements for β →∞ are

G(SEQ)
Q ≈ π

4
Γ (δ(ϵQ+1) + δ(ϵQ−1)) , (2.67)

G(EC)
Q ≈Γ2

16


dϵ δ(ϵ)

 1

ϵ− ϵ(Q+1) + i0
− 1

ϵ− ϵ(Q−1) − i0

2 =
Γ2

16

 1

ϵ(Q+1) − i0
− 1

ϵ(Q−1) + i0

2 ,

G(AR)
Q ≈Γ2
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±


±

dϵ


[δ(ϵ)nF (±(ϵQ±2 − ϵ)) + nF (±ϵ)δ(ϵQ±2 − ϵ)]

×
 1

ϵ− ϵQ±1 ± i0
+

1

ϵ− (ϵQ±2 − ϵQ±1)± i0

2 ≈ 0 .

For the last low temperature approximation we used the fact, that

δ(ϵ)nF (±(ϵQ±2 − ϵ)) + nF (±ϵ)δ(ϵQ±2 − ϵ) = nF (±(ϵQ±2))(δ(ϵ) + δ(ϵQ±2 − ϵ)) (2.68)

holds and the ± prefactor in the summation then extinguishes the whole AR conduc-
tance. Next, we focus on the two scenarios of integer and half-integer gate potential
ng, corresponding to a valley and peak situation in a Coulomb oscillation plot (see also
Fig. 3.2).
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CB valley conductance

First consider an ’even’ valley, ng = 2ℓ with ℓ ∈ N0. The charging energy (2.33) selects
the only possible state N = ℓ and nd = 0, i.e., PQ = δQ,ng solves the master equation:
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Figure 2.5: Left: Charging energy EQ as function of Q−ng in the situation of
an integer ng. The solid black line represents a low energy situation of the sys-
tem (eV = 0, T < Ec). Only the state Png has a finite occupation probability.
Right: Numerical solution of the master equation in the same parameter limit.
For eV = 0 only the state |Q = ng⟩ has a significant occupation probability.

The corresponding transition energy ϵQ±1 = Ec implies that G(SEQ)
Q is always exponentially

small, cf. Eq. (2.67) and δβ(Ec) = 0 holds for Ec ̸= 0 in the limit β → ∞. Only G(EC)
Q

remains and by introducing small gate charge fluctuations (ng → ng − δ ; |δ| ≪ 1) we
get an analytical expression for the valley conductance, valid in a small region around the
valley center where it is also safe to put put i0 = 0 without any regularization procedure

ϵQ±1|Q=ng
= ±Ec(1± 2δ) ; G(EC)

ng ≈


Γ

4Ec

2
1

1 + 2δ
− 1

1− 2δ

2

. (2.69)

We have only one finite weight for Q = ng, i.e. PQ = δQ,ng . Therefore the valley
conductance is always

Gvalley =
e2

h


Γ

2Ec

2
1

(1− 4δ2)2
. (2.70)

Since experiments so far were conducted in the regime T > Γ [13], let us specify next the
line shape near a conductance peak.
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CB peak conductance

For a conductance peak and Ec ≫ Γ, we need to keep two states (two-state approxima-
tion). For ng = 2ℓ + 1/2 − δ (again allowing for small fluctuations |δ| ≪ 1), we have
Png∓1/2 = 1

2
and thus the transition energies

Q = ng − 1/2 : ϵQ−1 = 2Ec(δ − 1) ; ϵQ+1 = 2Ecδ
Q = ng + 1/2 : ϵQ+1 = 2Ec(δ + 1) ; ϵQ−1 = 2Ecδ

. (2.71)

A schematic illustration of the dispersion and a numerical example solution clarifies the
situation:
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Figure 2.6: Left: Charging energy EQ as function of Q− ng in the situation
of half integer ng. The solid black line represents a low energy situation of the
system (eV = 0, T < Ec). Only the states Png∓1/2 have a finite occupation
probability. Right: Numerical solution of the master equation in the same
parameter limit. For eV = 0 only the states |Q = ng ∓ 1/2⟩ have a significant
occupation probability.

Now inelastic cotunneling is negligible for Ec ≫ T since the symmetry of the transition
energies involved just cancels the interference term in G(EC)

Q from Eq. (2.67). Only G(SEQ)
Q

survives and for each Q involved the two δβ-functions pick only the one transition without
energy cost, cf. Eq. (2.71)

g(SEQ) ≈ π

4
Γ

Q

1

2


δβ(ϵQ+1)δQ,ng−1/2 + δβ(ϵQ−1)δQ,ng+1/2


=
π

4
Γ (δβ(2Ecδ)) . (2.72)

Inserting the definition of δβ we get the analytical result for Gpeak = g(SEQ)(e2/h) valid
close around a peak

Gpeak =
e2

h

πΓ

16

β

cosh2(δβEc)
. (2.73)

We stress that the peak conductance [Gpeak(δ = 0)] is indeed halved compared to Ec = 0
[8]. (Decoupling of Q-summation, no factor 1/2 and all transition energies equal zero in
Eq. (2.72)) Moreover, it exhibits both a thermal and an interaction-induced reduction.
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2.5 Other methods used for comparison

Our master equation approach has two limitations. First, we need to have a finite tem-
perature in the system to fulfill Γ ≪ 1/β, second we neglected the Josephson coupling
(EJ = 0). To get a full picture of our MSCT device we also compare with other methods
in [39]. They are the result of a collaborative work and therefore only directly cited in this
chapter. More details are given in the supplementary material of [39]. Relations between
the different Keldysh Green’s functions and the connection to the Meir-Wingreen formula
are in detail discussed in the second part of this thesis in Sec. 8.2.

2.5.1 Exact expression for the current

Using nonequilibrium Green’s function (GF) techniques [35, 34, 40], the current Ij flowing
from lead j to the TS can be expressed in terms of the Keldysh GF

Ǧηj(t, t
′) = −i⟨TCηj(t)ηj(t′)⟩, (2.74)

where TC denotes Keldysh time ordering and the pseudo-fermion ηj has been defined in
Eq. (2.4). With the Fourier-transformed retarded, GR

ηj
(ϵ), and Keldysh, GK

ηj
(ϵ), compo-

nents of Ǧηj , we obtain

Ij = (eΓj/h)


dϵ[F (ϵ− µj) ImGR

ηj
(ϵ) + (i/2)GK

ηj
(ϵ)], (2.75)

where F (ϵ) = 1− 2nF (ϵ) = tanh(ϵ/2T ). Next we note that GK
ηj

(t, t) = 0 as a consequence

of η†jηj = ηjη
†
j = 1/2. Hence we find the exact result

Ij =
eΓj
h


dϵF (ϵ− µj) ImGR

ηj
(ϵ), (2.76)

stating that the current can be computed from the spectral function ∝ ImGR
ηj

. The
well-known Meir-Wingreen formula for interacting quantum dots [41] has thereby been
extended to the interacting Majorana wire; note that there are two spectral functions
associated to the currents IL and IR. Current conservation here implies IL + IR + IS = 0,
with the supercurrent IS flowing through the interface to the bulk superconductor. Below
we define the conductance G = dI/dV using the symmetrized current I = (IL − IR)/2.
For Ec = 0, the pseudo-fermions ηj reduce to Majorana fermions γj, and the Lorentzian
spectral function,

A(ϵ) = −2ImGR
γj

(ϵ) =
2Γj

(ϵ2 + Γ2
j)
, (2.77)

implies resonant AR with G = 2e2/h [8, 9, 10]. For finite Ec, we shall present several
complementary approximations in order to achieve a broad physical understanding of
the MSCT transport properties. Eq. (2.76) should also be useful for numerically exact
calculations, e.g., using the numerical or density-matrix renormalization group.
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2.5.2 Equation-of-motion (EOM) approach

We constructed an EOM approach for GR
ηj

to access the linear conductance near a peak.

Within this method, we introduce the Nambu spinors Ψd =

d, e−iχd†

T
and the corre-

sponding retarded GF, GR
dd = −iΘ(t − t′)⟨{Ψd(t),Ψ

†
d(t

′)}⟩. The EOM for GR
dd generates

higher-order GFs of the type ΓRNmdd = −iΘ(t− t′)⟨{N̂m(t)Ψd(t),Ψ
†
d(t

′)}⟩, which we trun-
cate at the level m = 2 and solve in a self-consistent way - see supplementary material
of [39]. The resulting GF GR

dd then yields GR
ηj

= 1
2
Tr

(1 + sjσx)G

R
dd


with Pauli matrix

σx. Finally, we obtain the conductance from Eq. (2.76). This approximation is valid by
construction for Ec & Γ, but the imposed self-consistency (supplementary material of
[39]) allows us to extend it to Ec < Γ, where the resulting conductance (being determined
by truncated fluctuations) gives a lower bound for the exact result.

2.5.3 Zero-bandwidth model (ZBWM)

In the Zero-bandwidth model (ZBWM) each lead is represented by just a single fermionic
level and the number of Cooper-pairs on the wire is limited (N < Nmax). The associated
Hilbert space then has the finite dimension 8Nmax, which allows for a numerical calculation
of the spectral density ∝ ImGR

ηj
(ϵ) via its Lehmann representation, with poles phenomeno-

logically broadened by Γ. A similar description has been pursued before for Ec = EJ = 0
in Ref. [42]. With this spectral function, again Eq. (2.76) yields the conductance within
the ZBWM.

2.5.4 Weak coupling limit

For Ec = 0 and EJ = 0 the MSCT setup reduces to a resonant tunneling setup with only
one degenerate level at zero energy coupled by the two channels a and b to the metallic
leads and is exactly solvable. Due to the two channels the maximum conductance at T = 0
is 2e2/h and starting from this exact solution one can perform a perturbative expansion
in Ec like done in Ref. [25].



3 Results

3.1 Peak conductance halving

We focus on the symmetric problem defined by Γα = Γ
2

and µL=−µR = eV
2

in all figures.
Results for the peak conductance are shown in Fig. 3.1 below.
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Figure 3.1: Peak conductance G vs Ec/Γ on a semi-logarithmic scale. Main
panel: Results from the master equation for several temperatures T > Γ and
EJ = 0. Inset: Comparison of T = 0 results using perturbation theory in
Ec/Γ [25] (blue solid curve), the EOM approach (red dotted-solid curve), and
the ZBWM (black dashed curve). The shown EOM results are quantitatively
valid only for Ec & Γ (solid part) but give a lower bound when Ec . Γ (dotted
part). Also here EJ = 0 since G only weakly depends on EJ for EJ . Ec.

The main panel of Fig. 3.1 is obtained from the master equation and confirmes the uni-
versal halving of the peak conductance also holds at finite-T when Ec/Γ increases. It
represents the crossover from resonant AR [8, 9, 10] to electron teleportation [26] and
arises due to the increasing domination of the charging energy which leads to a blockade
of one of the two possible transport channels (a or b). The effect is also observable in
Fig. 3.2. For T = 0 (inset) the maximal conductance values in both regimes are realized
and we obtain a decay from G = 2e2/h to G = e2/h. The known small-Ec behavior [25]
is nicely reproduced by the ZBWM calculation. In the opposite large-Ec limit, the EOM
method is very accurate and Fig. 3.1 suggests that the simple ZBWM already captures
the crossover surprisingly well.
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3.2 Coulomb blockade

3.2.1 Coulomb oscillations

Let us address next the ng-dependence of the linear (V → 0) conductance, see Fig. 3.2
and also 3.5. In Fig. 3.2 both the master equation (main panel, finite T ) and the ZBWM
(inset, T = 0) reveal clear conductance oscillations in the MSCT for Ec ≫ Γ, with peaks
(valleys) for half-integer (integer) gate voltage parameter ng.
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Figure 3.2: Coulomb oscillations in the MSCT. Main panel: Conductance
G vs ng from the master equation for EJ = 0, T = 2Γ and several Ec. Inset:
Same but from ZBWM for T = 0, Ec = 5Γ and several EJ .

The main panel of Fig. 3.2 additionally depicts that the peak (valley) conductance is
halved (strongly suppressed) when going from the noninteracting to the deep Coulomb
blockade limit. The peaks are dominated by sequential contributions while the valleys
are dominated by elastic cotunneling. The inset of Fig. 3.2 shows that G increases when
the Josephson coupling EJ grows. One can understand this by noting that for EJ ≫ Ec,
one ultimately reaches the resonant AR limit of a grounded TS, with the ng-independent
T = 0 conductance G = 2e2/h. If a Cooper-pair exchange via the Josephson junction
with the SC substrate is always energetically favorable this limit corresponds to an almost
“infinite” capacitance of the wire which sets its charging energy to zero and opens again
both channels.
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3.2.2 Finite-voltage sidebands

Next we discuss the differential conductance at finite bias voltage V . Master equation
results for T = 2Γ are shown in Fig. 3.3.

0 20 40 60 80
eV/Γ

0

0.04

0.08

0.12

0.16

G
 (

e2 / h
)

E
c
 = Γ

E
c
 = 2Γ

E
c
 = 4Γ

E
c
 = 8Γ

E
c
 = 16Γ

0 20 40
0

0.04

0.08

0.12

0.16

Figure 3.3: Differential conductance G=dI/dV vs voltage V from the master
equation for T = 2Γ, EJ = 0, and several Ec/Γ. The main panel (inset) is for
half-integer (integer) ng.

Starting with the main panel, we find sideband peaks when eV is equal to an integer
multiple of 4Ec. For these voltages, the chemical potentials µL,R are resonant with two
(almost) degenerate higher-order charge states, implying additional sequential tunneling
contributions beyond the resonant transition determining the linear conductance peak
[Eq. (2.73)]. Note that the fluctuations in N needed to reach higher-order charge states
can only be achieved through anomalous tunneling processes [see Eq. (2.4)]. Similar
sideband peaks are also found for other ng; the integer-ng valley case is shown in the inset
of Fig. 3.3.

In Fig. 3.4 we show the evolution of the sideband peaks as EJ is changed, determined
from the ZBWM at T = 0. For half-integer ng, the sideband peak position observed in

the main panel of Fig. 3.4 is well described by eV ≃ 4Ec


1 + (EJ/2Ec)2, which comes
from the Josephson coupling between the two relevant charge states. Since EJ can be
tuned by applying a small magnetic field parallel to the junction between the TS and
the bulk superconductor, an experimental observation of the sideband peak and its shift
with magnetic field (cf. the expression for the peak position above) would provide clear
evidence for the anomalous tunneling mechanism, and thereby for the presence of MBSs.
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Figure 3.4: Same as Fig. 3.3 but from ZBWM for T =0, Ec=5Γ and several
EJ .

Coulomb diamonds

Figure 3.5 illustrates the differential conductance of the MSCT as function of the bias
voltage V and the gate potential ng. The differential conductance is color coded in units
of e2/h with the scale given for each plot individually. Except for the top two plots, the
color codes coincide. The previously shown dI/dV (eV ) and dI/dV (ng) plots represent
single vertical and horizontal cuts through the three dimensional plots from Fig. 3.5.
The only difference is that eV is scaled now in units of the charging energy Ec. This
pins the transitions between peaks and valleys also to the voltage axis and allows for a
better analysis of the Coulomb diamond formation with increasing Ec. In the top left
plot temperature alone is enough for the electrons to overcome the charging energy and
enter the MSCT. Like also expected for the grounded situation Ec = 0, we observe one
Lorentzian conductance peak without sidebands and independent of the gate potential.
Already for a charging energy Ec = 4Γ which is twice of the temperature in the system,
a Coulomb blockade starts to build up. The blockaded conductance valleys and the
conductance sidepeaks get further pronounced until for Ec = 16Γ we have extremely sharp
peak to valley transitions. Together with their gate potential dependence, theses peaks
form the typical Coulomb diamond structure, also observable in quantum dot systems
whenever charging effects dominate the transport behavior.
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Figure 3.5: The typical diamond like structure of a Coulomb blockade builds
up in the system when increasing the charging energy Ec. From left to right
and then from top to bottom we have Ec = {2, 4, 6, 8, 10, 16}Γ. The colors
encode the differential conductance dI/dV in units of e2/h as a function of the
gate potential ng and the dimensionless bias voltage eV/Γ. All plots are at
temperature T = 2Γ and obtained from the master equation for EJ = 0.
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4 Conclusions

In this first part of the thesis, we have studied the transport properties of an interacting
Majorana single-charge transistor and provided a comprehensive picture in a wide pa-
rameter regime. From an experimental point of view, our results should also be directly
relevant for extending existing work, see, e.g., Ref. [13], where conductance peaks for
tunneling into Majorana wires were reported.

The inclusion of interactions in form of a charging energy together with the interplay
of a normal and an anomalous (involving the condensate) tunneling channel predicts a
sideband structure in the differential conductance.

When varying the gate voltage parameter ng, we find Coulomb oscillations and have
characterized the behavior of the peak and valley conductances in detail.

Building the MSCT as a spectroscopy setup and comparing the dI/dV signal with
our predictions, Majorana fermions in this system could be identified by observing the
sideband peaks in the nonlinear conductance and verifying their dependence on tunable
system parameters. Also the crossover behavior of the Coulomb peak conductance with
respect to the charging energy provides another identifying feature which is observable at
zero as well as at finite temperature. Regarding our master equation approach in the limit
of EJ = 0, current conservation prevents us from accessing intrinsic nonlocal features of
the Majorana fermions involved. Consequently the next step would be the inclusion of
the Josephson coupling in a perturbative way which corresponds to attaching a third lead
within the master equation framework and yields access to nonlocal features which could
strengthen a hypothesis of the presence of Majorana fermions in our MSCT setup, if our
results could be experimentally reproduced.
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Iterative Summation of
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5 Introduction

Understanding quantum transport in nanoscale electronic systems with vibrational or me-
chanical (“phonon”) degrees of freedom is of topical interest in several areas of physics,
including molecular electronics [43, 44], inelastic tunneling spectroscopy [45], nanoelec-
tromechanical systems [46, 47], break junctions [48], and suspended semiconductor or
carbon-based nanostructures [49, 50, 51, 52]. The electron-phonon interaction allows to
observe a rich variety of intriguing phenomena, such as negative differential conductance,
the Franck-Condon blockade of transport, rectification, vibrational sidebands or step-
like features in the current-voltage (IV ) characteristics, and current-induced heating or
cooling. Already the simplest nonequilibrium spinless “Anderson-Holstein” (AH) model
[53, 54], where the nanostructure corresponds to just one spinless electronic level cou-
pled to a single oscillator mode, captures much of this richness [55, 56]; for a review, see
Ref. [45].

Analytical approaches allow us to understand the AH model in various corners of its
parameter space, but no controlled approximation, let alone exact solution, connecting
these corners seems in reach. One may expect that a unified picture is available from nu-
merics. However, numerical renormalization group [57] or quantum Monte Carlo (QMC)
calculations [58, 59] are usually restricted to equilibrium. For the nonequilibrium AH
model, Han [60] employed an imaginary-time QMC approach followed by a double an-
alytical continuation scheme; unfortunately, the latter step is plagued by instabilities
[61]. A promising avenue for the AH model has recently been suggested by real-time
path-integral QMC simulations [62, 63], where one directly computes the time-dependent
current. Such calculations have to deal with the infamous dynamical sign problem at
long times, but in several parameter regions, especially when a secondary phonon bath is
present, the stationary steady-state regime can be reached.

In this second part of the thesis, we formulate and apply an alternative numerical
approach, which in practice is useful unless both the temperature T and the bias voltage
V are small. It is also based on a Keldysh path-integral formulation but does not involve
stochastic sampling schemes and thus remains free from any sign problem. To that end,
we extend the “iterative summation of path integrals” (ISPI) technique [64, 65] to the
AH model. Technical aspects of the present approach, in particular our mapping to
an effective three-state system via the ”spin-1 Hirsch-Fye transformation” in Eq. (6.36),
should also be of interest to QMC schemes [59]. In essence, the ISPI method exploits that
time correlations of the auxiliary three-state Keldysh variable, which arise after functional
integration over the phonon and the (dot and lead) fermion degrees of freedom, can be
truncated beyond a certain memory time τc when either T or V is finite. Together with
a convergence scheme designed to eliminate systematic errors due to the finiteness of τc,
such calculations allow to obtain numerically exact results. The ISPI method has already
been successfully applied to the spinful Anderson model [64, 66, 67], where instead of the
phonon a local charging interaction is present and also to the magnetic Anderson model
which consists of a spinful single-orbital quantum dot with an incorporated quantum
mechanical spin-1/2 magnetic impurity [68].
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While we focus on the simplest version of the AH model with a single unequilibrated8

phonon mode here, the conceptual generalization to include Coulomb interactions, more
phonon modes, or several dot levels is straightforward. We benchmark our ISPI code
against three different analytical approaches and then study the crossover between the
respective regimes.

5.1 The spinless Anderson-Holstein model

A starting point in molecular electronics is the study of molecular transport junctions
(MTJ). They are typical transistor setups where the central “active” region consists of a
single molecule which is contacted by leads from two sides. In a nonequilibrium situation
caused by an applied bias voltage V they act as electron source and drain and often
also a third gate electrode is coupled capacitatively to the molecule. The gate electrode
allows for changing the energy of molecular states with respect to the leads and hence the
interplay of the potentials of all three electrodes generates a characteristic bias current
vs voltage signal I(V ). Dependent on the point of view or stage of development one
can either see this signal as the desired characteristics of a miniaturized device or as
the output signal from some type of molecular spectroscopy. Since the molecule itself
possesses mechanical degrees of freedom and the whole setup might also be placed within
some solvent, a general theoretical description is quite complex [45].

λ

~ω0

ΓL

ΓR

eV

µL

µR

ϵ0

Figure 5.1: Schematic illustration of the spinless Anderson-Holstein model.
The molecular dot (central region) consists of a single relevant electronic level
of energy ϵ0 and one phonon mode of frequency ω0 coupled linearly to it with
strength λ. The two metallic leads are at different chemical potentials µL/R
due to an attached bias voltage eV = µL − µR. In the usual wide band ap-
proximation the tunneling between the leads and the molecular dot introduces
the hybridization energy scales ΓL/R.

8For an equilibrated mode, i.e., in the presence of a secondary phonon bath, both ISPI and other numerical
schemes [56, 62, 63] simplify substantially.
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By an appropriate parameter choice we can reduce or neglect much of the complexity of
an MTJ without rendering the problem trivial and out of touch with reality. We don’t
include any surrounding solvent and assume a large energy spacing between molecular
orbitals to describe the relevant electronic structure in terms of the highest occupied
and lowest unoccupied molecular orbital, referred to as the HOMO and the LUMO. We
model the LUMO by a single level of energy ϵ0. The charging energy of the molecule is
assumed to be high enough so that we can set it at infinity and neglect spin and Coulomb
interaction at all. Vibrational degrees of freedom are assumed to be dominated by a
single resonant frequency ω0 and included by a single harmonic phonon mode. The inter-
molecular electron phonon coupling is taken linear in the phonon coordinate and only
couples to the one electronic level with strength λ. With all these assumptions made we
end up at the spinless Anderson-Holstein (AH) model, schematically shown in Fig. 5.1
including all relevant parameters. Despite of all simplifications made, the remaining
spinless AH model for a MTJ is far away from being simple and still provides much of its
richness to explore.

Since the properties of the molecule are related to a level structure split into an elec-
tronic and a vibronic part, it is also common to speak of a quantum dot with a phonon
coupled to it or a molecular quantum dot. We will use all expressions equivalently. If not
stated explicitly otherwise, we set ~ = kB = 1 in all following derivations.

5.2 The Hamiltonian

We will split the Hamiltonian of the spinless AH in two parts Ĥ = Ĥmol+Ĥenv, represent-
ing the isolated molecule and the environment. Using bosonic {b̂†, b̂} (fermionic {d̂†, d̂})
creation and annihilation operators for the phonon mode (electronic dot level) we get

Ĥmol = ω0 b̂
†b̂+ (ϵ0 + λ Q̂)d̂†d̂ ; Q̂ = (b̂† + b̂) . (5.1)

The electron-phonon coupling has strength λ and we already define the oscillators position
operator Q for later reference. The coupling reflects the fact that adding an electron to
the molecule modifies its charge distribution and therefore also the equilibrium distances
between its nuclei which again affects its vibration [69]. Regarding the environmental part
Ĥenv we introduce fermionic creation and annihilation operators {ĉ†kα, ĉkα} for electrons
with momentum k in the noninteracting lead α = L/R at chemical potential µα.

Ĥenv =

k,α


ϵkĉ

†
kαĉkα − tα[ĉ

†
kαd̂+ d̂†ĉkα]


. (5.2)

The chemical potential difference defines the bias voltage eV = µL − µR. The tunneling
amplitudes are directly assumed to be real and momentum independent since we will use
again the wide band approximation and they get absorbed in the hybridization9 energy
scales Γα ≡ πνα(ϵF )|tα|2. As usual this approximation assumes the local density of states
να to be constant around the Fermi energy ϵF . All relevant parameters of our system will
be later scaled in units of the total hybridization energy Γ = ΓL + ΓR.

9Note that there is some freedom of choice in the definition of this scale and that we have defined it
without the factor 2 present in the MSCT chapter. The main reason was to achieve a better comparability
of expressions regarding existent results in different parameter limits of the AH model.
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5.3 The current operator

As motivated before we are interested in the current-voltage characteristics of the AH
model and want to extend the accessible parameter regime to close the gap between
existing methods working well in different regimes. We start from the current operator
and develop a scheme that allows for the numerical exact computation of its expectation
value. As long as possible we stay at analytic expressions before we will switch to numerics.
The derivation of the current operator for the AH model is the first step and we start
from the total number operator N̂α in lead α = L/R

N̂α =

k

ĉ†kαĉkα . (5.3)

Its time evolution is governed by Heisenberg’s equation of motion which only involves the
tunneling part of the total AH Hamiltonian since all other parts commute

˙̂
Nα = i[Ĥ, N̂α]− = −i


k,k′,α′

tα′

[ĉ†k′α′ d̂, ĉ

†
kαĉkα] + [d̂†ĉk′α′ , ĉ

†
kαĉkα]


. (5.4)

A further simplification originates from the usual fermionic anticommutation relations

˙̂
Nα = i


k,k′,α′

tα′

ĉ†kα {ĉkα, ĉ†k′α′}  
δα,α′δk,k′

d̂− d̂† {ĉk′α′ , ĉ†kα}  
δα,α′δk,k′

ĉkα

 = i


k

tα


ĉ†kαd̂− d̂

†ĉkα


.

Since
˙̂
Nα is the operator for the net rate of electrons tunneling into lead α, we directly

get the current operator Îα for the current flowing from lead α to the dot by multiplying
˙̂
Nα with the electron charge −e

Îα = −e ˙̂
Nα . (5.5)

Note that there is no truncation in the tunneling and processes of all orders are included
within our method. Finally the operator for the symmetrized current I = (IL − IR)/2 is
defined using the convention α = L/R = ±

Î = −ie
2


kα

αtα


ĉ†kαd̂− d̂

†ĉkα


. (5.6)

The challenge for the rest of this second part of the thesis is to compute the nonequilibrium
expectation value of the symmetrized current. For this we need the Keldysh path-integral
formalism which we will introduce and directly apply to our AH model in the next chapter.
We will end up with a so called Keldysh generating function in a special form which allows
for a numerically exact computation of the symmetrized current after adapting the ISPI
scheme [64] to our problem in Sec. 9.



6 The Keldysh path-integral formalism

Many tools in statistical physics are only valid for systems in a thermodynamic equilib-
rium situations since they involve the following assumption: adiabatic modification of an
equilibrium quantum state during its time evolution is reversible and always allows to
restore an initial state of a system up to a global phase factor in the future. For a system
entering a nonequilibrium situation during its time evolution this is not true anymore
and a final state in the future is unknown. Nevertheless it is possible to get access to
expectation values under nonequilibrium situations if one circumvents the necessity to
know the state of a system in the future and only relies on the knowledge of a defined
initial state in the past. The corresponding technique was developed by L.V. Keldysh in
1964 [70]. We will apply it together with the framework of real-time path integrals and
recommend [40] as a very good introduction.

6.1 The Keldysh formalism

The AH Hamiltonian with all couplings and interactions present [Eqs. (5.1) and (5.2)]
corresponds to a not exactly solvable system and at some point we will have to proceed
numerically. The eigenstates are unknown and equivalently the corresponding nonequi-
librium density operator ρ̃ is also not directly accessible. Nevertheless it exists and we
can write down a formal definition of our desired expectation value

I(tm) = tr[ρ̃(tm)Î] . (6.1)

The computation of this expectation value is equivalent to performing a measurement on
the system and we explicitly assign a measurement time tm to the resulting symmetrized
current.

A way to reformulate Eq. (6.1) in terms of objects which are known or at least allow for
good approximations was invented by Keldysh [70] in 1965. His idea is to take advantage
of the determinism of the time evolution of a quantum state. Accessible initial conditions
are gained from the equilibrium density matrix ρ̃0 in a distant past, originating from
a Hamiltonian where all “complicated” parts which render the system unsolvable are
switched off. What follows is a forward and backward time evolution along the time
contour C shown in Fig. 6.1. At the beginning and the end of this time-evolution the
“complicated” parts - namely the interactions - are adiabatically switched on and off
again. The determinism of this time evolution loop together with the adiabatic switching
guarantees to end up in the same quantum state but having passed the measurement time
with the full interacting system.

47
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∞

t+2 . . . + t+N

t−2 . . . − t−N

t2N t2N−1 . . . tN+1

tNt1 t2 . . . t+m

t+1

t−1

ρ0 ρ(tm)

Figure 6.1: Black: Keldysh contour with discrete times labeled for later
discretization in slices (t±1 to t±N with boundary condition t+N = t−N) respec-
tively for a discretization along the contour (t1 to t2N with boundary condi-
tion tN = tN+1). Red: Forward and backward evolution of the density matrix.
Arrow pointing to reference time.

The corresponding contour time evolution operator UC must equal unity and is defined
by a contour ordered exponential where TC is the contour ordering operator. It results in
(anti-) time-ordering for the (lower) upper branch of the contour, respectively.

UC = TC e−i
H
C dt

′Ĥ(t′) = 1 . (6.2)

A time evolution and thus the corresponding operator must behave transitive and we
can split up the loop evolution at different points and rewrite it as products of evolution
operators propagating a state from time t1 to t2 on the contour

U(t2, t1) = TC e−i
R t2
t1
dt′Ĥ(t′) . (6.3)

How useful this time evolution construction is, will turn out shortly after introducing
explicitly times on the contour [cf. Fig. 6.1] and establishing the connection back to
Eq. (6.1).

6.1.1 The initial equilibrium partition function

We have a composite system, consisting of coupled parts, each one of them individually
representing a “free” purely fermionic or bosonic system with well known eigenstates. In
the absence of tunnel- and electron-phonon-coupling the corresponding density operator
ρ̃0 factorizes with respect to each subsystem and together with its definition we also
introduce the equilibrium partition function Z. In contrast to [40] we do not define
a normalized Z and keep the equilibrium definition as long as there is no source term
present

ρ̃0 =
ρ0

Z
; Z = tr(ρ0) ; ρ0 = e−βp ω0 b̂†b̂−βd(ϵ−µd) d̂†d̂−β

P
kα(ϵk−µα) ĉ†kαĉkα . (6.4)

Note that Z is a time and interaction independent constant. In principle, ρ̃0 allows
for different (inverse) temperatures for phonon, dot and leads (βp, βd, β), and for some
chemical potential µd of the dot (such that it is initially depopulated or full). From now
on, we take βp = βd = β and set µd = 0 but a generalization is straight forward.
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6.1.2 The Keldysh generating function

Based on the above argumentation the initial and final state are physically identical and
associated with the times 0 = t±1 . For convenience we also double the return time t = t±N
and define the corresponding periodic boundary condition U(t−N , t

+
N) = 1 connecting the

upper “+” branch and the lower “−” branch of the contour. Exploiting the invariance
of the trace operation under cyclic permutation condenses the whole argumentation into
Eq. (6.5) and we get tr(ρ(tm)) = tr(ρ0) as it should be

tr(ρ(tm)) = tr

U(tm, t

+
1 ) ρ0 U(t−1 , t

−
N)U(t−N , t

+
N)U(t+N , tm)


= tr(UC ρ0) = tr(ρ0) = Z .

(6.5)
Placing now the operator Î only on the “+”-branch of the contour at t′ = tm breaks the
symmetry between the branches and allows for the computation of its expectation value.
Formally this “placing” corresponds to multiplying ρ(tm) by Î(tm)/Z within Eq. (6.5)
which establishes the connection to Eq. (6.1). Alternatively placing half of it on the
upper and half on the lower branch also works, as long as it still breaks the symmetry
in the correct way. Equivalently, we will use the concept of a generating function for
convenience. After adding a so called source term iηÎδ(t′ − tm) (respectively iηÎδj,m/δt
for the discrete path-integral used later) to the Hamiltonian within the definition of the
contour evolution operator UC, the partition function becomes the so called generating
function Z[η]

UC → UC[η] = TC e−i
R
C dt

′Ĥ(t′)+iηÎδ(t′−tm) ; Z → Z[η] = tr(UC[η] ρ0) ̸= tr(ρ0). (6.6)

The name stems from the fact that performing a functional derivative of lnZ[η] with
respect to η generates the definition of the expectation value at a measurement time tm
from Eq. (6.1)

∂

∂η
lnZ[η]


η=0

=
tr[U(t−1 , tm)Î U(tm, t

+
1 ) ρ0 ]

tr[U(t−1 , tm)U(tm, t
+
1 ) ρ0 ]

=
tr[ ρ(tm)Î ]

Z
= I(tm) . (6.7)

The next step is to evaluate the time evolution of the AH model along the Keldysh
contour. We will use a real-time coherent state path integral for this, which we introduce
in the following.

6.2 The real-time coherent state path-integral

Evaluating the trace in the definition of the Keldysh generating function [Eq. (6.6)] in-
cludes the evaluation of the contour evolution operator UC[η] on some complete set of
states. Since the eigenstates of the full Hamiltonian Ĥ are unknown, we have to expand
the exponential into its series and then evaluate it on a known complete set of states
forming a basis of the Hilbert space. It will turn out to be useful to use coherent states
which we will now first introduce before getting back to the actual evaluation of the
contour evolution operator and the introduction of bosonic and fermionic coherent state
path-integrals. A very good introduction to the general ideas presented in this section
can be found in [71].
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6.2.1 Fermionic and bosonic coherent states

For the evaluation of normal ordered products of creation and annihilation operators it
turns out to be very useful to choose a basis of coherent states. They are defined as
eigenstates of the annihilation operator. In the case of bosons the eigenvalue is just a
complex number and we get

b̂|φ⟩ = φ|φ⟩ d.c.←→ ⟨φ|b̂† = ⟨φ|φ∗ . (6.8)

The bosonic dual correspondence (d.c.) is achieved by normal Hermitian conjugation
of the eigenvalue equation. Introducing a similar relation for fermions is possible, but
due to the anticommutative fermionic algebra, the eigenvalues also have to anticommute
and cannot be normal complex numbers. Using anticommuting Grassmann numbers ψ, ψ̄
solves the problem and we get a similar relation

d̂|ψ⟩ = ψ|ψ⟩ d.c.←→ ⟨ψ|d̂† = ⟨ψ|ψ̄ . (6.9)

Two different Grassmann numbers fulfill the following anticommutation relations

ψαψβ + ψβψα = 0 ⇒ ψ2
α = 0 . (6.10)

A similar connection to the dual space like for bosons is obtained by defining a conjugation
operation for Grassmann numbers as done in [71]. Since the definition of a conjugation
involves an arbitrary mapping of generators of the Grassmann algebra to each other we
assign a (̄.) to this operation and not the usual (.∗). Consequently ψ and ψ̄ have to be
interpreted as independent quantities of the same type and Eq. (6.10) is the only existent
anticommutation relation for all of them. The rules for Grassmann conjugation are similar
to the ones for complex numbers

¯̄ψ = ψ ; ψnψn−1 . . . ψ1 = ψ̄1 . . . ψ̄n−1ψ̄n ; zψ = z∗ψ̄ , z ∈ C . (6.11)

We will also need to integrate over functions of Grassmann numbers but since their square
equals zero only linear functions can be defined from them and there is no difference
between Grassmann integration and Grassmann differentiation. The only rule to follow is
that one always has to anticommute Grassmann variables directly next to the “integration
operator” before performing the integration. Some examples are

dξα ξβ = δα,β ⇒

dξ 1 = 0 ;


dξ ξ̄ = 0

(6.12)
dξ ξ̄ξ = −


dξ ξξ̄ = − ξ̄ .

The equations (6.12) also hold if one replaces all ξ by ξ̄ and vice versa. All integrations
performed later, can be reduced to these examples by applying Eq. (6.10). Finally we
will end this section with a summary of all important coherent state relations later needed:
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Bosons:

[b̂α, b̂
†
β]− = δαβ

⟨φ|φ′⟩ = e
P
α φ

∗
αφ
′
α

⟨φ|A(b̂†α, b̂α)|φ′⟩ = e
P
α φ

∗
αφ
′
αA(φ∗α, φα)

dµ(φ) : =
1

2πi


α

dφ∗αdφα

1 =


dµ(φ) e−

P
a φ

∗
αφα|φ⟩⟨φ|

tr(Â) =


dµ(φ) e−

P
a φ

∗
αφα⟨φ|Â|+ φ⟩

Fermions:

[d̂α, d̂
†
β]+ = δαβ (6.13)

⟨ψ|ψ′⟩ = e
P
α ψ̄αψ

′
α (6.14)

⟨ψ|A(d̂†α, d̂α)|ψ′⟩ = e
P
α ψ̄αψ

′
αA(ψ̄α, ψα) (6.15)

dµ(ψ) : =

α

dψ̄αdψα (6.16)

1 =


dµ(ψ) e−

P
a ψ̄αψα |ψ⟩⟨ψ| (6.17)

tr(Â) =


dµ(ψ) e−

P
a ψ̄αψα⟨ψ|Â| − ψ⟩ (6.18)

The resolution of unity and the trace operation with respect to fermionic coherent states
involve the Grassmann integration and we emphasize the small differences like the
prefactor of the measure or the antiperiodic boundary condition hidden in the trace
definition which are likely to be overseen.

6.2.2 The Trotter Suzuki break-up

We assume that during a noninfinitesimal time interval [t, t′] our Hamiltonian Ĥ is time-
independent10 and decompose it in two noncommuting parts Ĥ0 and Ĥ1. Since the eigen-
states of Ĥ are unknown, we have to evaluate

U(t′, t) = e∓iĤ(t−t′) = e∓i(Ĥ0+Ĥ1)(t−t′) (6.19)

involving an expansion of the exponential and afterwards the evaluation of an infinite
series containing recursive commutator relations of Ĥ0 and Ĥ1 with respect to some basis.
This direct evaluation is impossible and since we intend to use a basis of coherent states,
we have to get at least a normal ordered version of the time-evolution operator. In the
following we will show how this is possible by decomposing the time evolution along the
interval [t, t′] into a sequence of evaluable normal ordered short-time propagations.

10The switching between the full interacting and noninteracting system needed during the Keldysh time
propagation will be done in between two short-time propagations of the system, each with duration δt.
See also [40].
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We start from the exact Trotter Suzuki decomposition [72] which is valid for any bounded11

operators Ĥ0 and Ĥ1

e∓i(t−t
′)(Ĥ0+Ĥ1) = lim

N→∞


e∓iδtĤ0e∓iδtĤ1

N
; δt = (t− t′)/N . (6.20)

Keeping in mind, that we later need to use numerics, we have to split up the time-evolution
operator into a finite product of normally ordered short-time evolution operators Uδt and
thus have to fix N at some large number. As a consequence the relation is not exact
anymore and we introduce the so-called Trotter error

U(±δt) = e∓iδtĤ0e∓iδtĤ1 = e∓iδt(Ĥ0+Ĥ1) +O(δ2
t ) ; δtΓ≪ 1 . (6.21)

As shown in [73] this introduces an error in our observable which scales with O(δ2
t )

and we will explain in Sec. 9.5 how it is possible to eliminate it from our results. Now
we have introduced all tools needed to formally construct the real-time path integral
representation of the Keldysh generating function in the next section. Afterwards we can
start to explicitly evaluate all expressions for the AH model.

6.2.3 Generating function from real-time path-integral

We discretize the Keldysh contour into (2N − 1) segments introducing times t1 up to t2N
around the contour [cf. Fig. 6.1]. By assigning t1 = t2N = 0 and tN = tN+1 = t, the
duration of each time interval in one of the branches of the contour is δt = t/(N−1)

Z[η] = tr(UC[η]ρ0) = tr


N+1

j=2N−1

U−δt [η]


1


1

j=N−1

U+δt [η]


ρ0


+O(δ2

t ) . (6.22)

Now we insert 2N − 1 coherent state identities 1j at each time slice j ∈ {2N − 1, . . . , 1}

1j =


d(Reφj)d(Imφj)

π


dψ̄jdψj e

−φ∗jφj−ψ̄jψj
 

kα


dΨ̄kα,jdΨkα,j


× e−

P
kα Ψ̄kα,jΨkα,j |φjψjΨj⟩⟨φjψjΨj| ; |Ψj⟩ =


kα

|Ψkα,j⟩ (6.23)

and also perform the trace over the same coherent state basis at time 2N . The {|φj⟩} span
the phonon subspace, and accordingly {|ψj⟩} and {|Ψj⟩} span the subspaces of the dot
and the leads. In total this will give 2N integrations over the complete Hilbert space of
the AH model; each at a different time. We directly shorten the notation by introducing
the path-integral measure [34] for the bosonic degrees of freedom

D[φ∗, φ] =
2N
j=1

d(Reφj)d(Imφj)

π
=

2N
j=1

dφ∗jdφj

2πi
(6.24)

and a corresponding relation for the fermionic degrees of freedom

D[ψ̄, ψ] =
2N
j=1

dψ̄jdψj ; D[Ψ̄,Ψ] =
2N
j=1


kα

dΨ̄kα,jdΨkα,j . (6.25)

11Since we are dealing with Hamiltonians this is always fulfilled.
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With these definitions Eq. (6.22) transforms to a real-time path integral

Z[η] =


D[φ∗, φ]D[ψ̄, ψ]D[Ψ̄,Ψ]e−

P2N
j=1 |φj |2+ψ̄jψj+

P
kα Ψ̄kα,jΨkα,j

2N
j=1

Uj+1,j . (6.26)

To establish the connection to the action of the system we now have to evaluate the
matrix elements Uj+1,j of the short-time evolution operator with respect to the coherent
state basis. Two of them are special and represent the periodic/antiperiodic boundary
conditions of the closed Keldysh loop evolution while the rest only differs in the direction
of the time evolution

Uj+1,j



⟨φ1, ψ1,Ψ1|ρ0|φ2N ,−ψ2N ,−Ψ2N⟩ ; j = 2N

⟨φj+1, ψj+1,Ψj+1|e−iδtĤ0e−iδtĤ1 |φj, ψj,Ψj⟩ ; j ∈ {1 . . . N − 1}

⟨φN+1, ψN+1,ΨN+1|1|φN , ψN ,ΨN⟩ ; j = N

⟨φj+1, ψj+1,Ψj+1|e+iδtĤ0e+iδtĤ1 |φj, ψj,Ψj⟩ ; j ∈ {N+1 . . . 2N−1}

.

(6.27)

By choosing N big enough, Eq. (6.21) is a controlled approximation. The systematic
error introduced will be later extrapolated out. Next, we explicitly evaluate the short-
time evolution operators from Eq. (6.27).

6.3 The AH short-time propagators

Before we proceed, let us shortly motivate our proceeding. In this section we are dealing
with the evaluation of short-time propagators which will result in expressions being de-
pendent on complex or Grassmann fields. Once we have them, we can assemble all parts
according to Eq. (6.26) into one path-integral representing the whole generating function.
The general form of that path-integral will involve an action S dependent on the fields
involved

Z[η] ∝

D[φ∗, φ]D[ψ̄, ψ]D[Ψ̄,Ψ] eiS[φ∗, φ, ψ̄, ψ, Ψ̄,Ψ] . (6.28)

For its evaluation we need to carry out all remaining field integrations. They are analyt-
ically solvable if the corresponding action is in leading order quadratic in its fields. The
exact formulas are given later and we only keep in mind that the goal of this section is
to get exponential expressions for the short-time propagators which are quadratic in all
fields introduced so far.

We start by deriving auxiliary relations from Eq. (6.15) for evaluating the already
quadratic propagator parts corresponding to “free” subsystems

⟨φ′|eζ b̂†b̂|φ⟩ = ee
ζφ′∗φ ; ⟨ψ′|eζ d̂†d̂|±ψ⟩ = e±e

ζ ψ̄′ψ ; ⟨Ψ′
kα|eζ ĉ

†
kαĉkα|±Ψkα⟩ = e±e

ζΨ̄′kαΨkα .
(6.29)
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With (anti-)periodic boundary conditions for (fermions) bosons, using the initial distri-
bution (6.4) and the auxiliary relation (6.29), the matrix element U1,2N directly follows
from Eq. (6.27) as

U1,2N = exp


e−βω0φ∗1φ2N − e−βϵ0ψ̄1ψ2N −


kα

e−β(ϵk−αV/2)Ψ̄kα,1Ψkα,2N


. (6.30)

The matrix element connecting tN and tN+1 [no dynamical evolution, cf. Eq. (6.27)] follows
with Eq. (6.14)

UN+1,N = eφ
∗
N+1φN+ψ̄N+1ψN+

P
kα Ψ̄kα,N+1Ψkα,N . (6.31)

By construction, the source term enters only in one12 short-time propagator as additional
term to the Hamiltonian and thus must be proportional to a discrete representation of
the delta-distribution. For the present arbitrary decomposition Ĥ = Ĥ0 + Ĥ1, we choose

Ĥ0 =

ϵ0 + λ(b̂† + b̂)


d̂†d̂+


kα

ϵkĉ
†
kαĉkα (6.32)

Ĥ1[η] = ω0b̂
†b̂−


kα

tα


1− ηα

2

δj,m
δt


ĉ†kαd̂+ tα


1 + η

α

2

δj,m
δt


d̂†ĉkα . (6.33)

We insert again the coherent-state unity from (6.23) between the two factors of the short-
time propagator which will allow for their evaluation (These intermediate fields do not
get an extra time index, since they will not enter the final path-integral.)

Uj+1,j =


d(Reφ)d(Imφ)

π
e−|φ|

2


dψ̄dψ e−ψ̄ψ

 
kα


dΨ̄kαdΨkα


e−

P
kα Ψ̄kαΨkα

× ⟨φj+1ψj+1Ψj+1|e∓iδtĤ0|φψΨ⟩⟨φψΨ|e∓iδtĤ1|φjψjΨj⟩. (6.34)

Let us first evaluate the second factor which is unproblematic since it does not contain
the electron-phonon coupling13 and already has a quadratic field structure. Now we use
again the auxiliary relations from Eq. (6.29) together with Eq. (6.15) and get

⟨φψΨ|e∓iδtĤ1|φjψjΨj⟩≃ee
∓iω0δtφ∗φje

ψ̄ψj+
P

kαΨ̄kαΨkα,j±itαδt
hh

1−η α
2

δj,m
δt

i
Ψ̄kαψj+

h
1+η α

2

δj,m
δt

i
ψ̄Ψkα,j

i
.

(6.35)

Strictly speaking, the tα terms are here only treated to lowest order, but we do not expect
any problem since the discretization of the lead self-energy is known to be unproblematic

12As mentioned before it is also possible to place the source term equally weighted by 1/2 on the upper and
lower branch. Due to the finite time discretization we now even have four possibilities. On both branches
exist two short-time propagator involving the measurement-time (t±m − δt → t±m and t±m → t±m + δt in the
contour sense). To rule out uncertainties one could use a source term weighted by 1/4 and include it in
all four propagators involving the measurement time but we found out that there is no difference in the
current and include only one source term in the propagation t+m → t+m + δt.
13It is also possible to proceed in another way at this point by performing a polaron transformation and
later introduce auxiliary fields for the lead integrations. However we proceed differently to be closer to
[64].
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from earlier studies. In the other term, we first exploit that n̂d = d†d = 0, 1, i.e., we have
the operator identity

e∓iδt(ϵ0+λ[b̂†+b̂])d̂†d̂ = 1− n̂d +Mn̂de
∓iδtϵ0e∓iδtλb̂

†
e∓iδtλb̂ (6.36)

with
M = e−

1
2
[∓iδtλb̂†,∓iδtλb̂] = e−λ

2δ2t /2 (6.37)

where we switched to boson normally-ordered form (needed for computing the coherent-
state expectation value) via Baker-Hausdorff

eÂ+B̂ = eÂ eB̂ e−[Â,B̂]/2 if [Â, [Â, B̂]] = [[Â, B̂], B̂] = 0 . (6.38)

The equation (6.36) is the crucial step to disentangle the boson and fermion fields by
introducing a summation variable Sj+1 = 0,±1 picking up the resulting three terms in
the matrix element. The Sj+1 = 0 part corresponds to the empty dot, and Sj+1 = ±1 to
the occupied dot (the fact that one needs ±1 instead of just +1 has technical reasons –
maybe there is a way to avoid this). Physically, |Sj+1| = 0, 1 corresponds to the occupation
of the dot level. Technically, Sj+1 plays the role of a Hubbard-Stratonovich auxiliary field
in this scheme (cf. ISPI method for the Anderson model [64])

⟨φj+1ψj+1Ψj+1|e∓iδtĤ0|φψΨ⟩

= eφ
∗
j+1φ+ψ̄j+1ψ+

P
kα e

∓iϵkδt Ψ̄kα,j+1Ψkα


1− ψ̄j+1ψ  
e−ψ̄j+1ψ

+Mψ̄j+1ψ e
∓iδt[ϵ0+λ(φ∗j+1+φ)]



= eφ
∗
j+1φ+

P
kα e

∓iϵkδt Ψ̄kα,j+1Ψkα


1 +M(e+ψ̄j+1ψψ̄j+1ψ  

ψ̄j+1ψ

) e∓iδt[ϵ0+λ(φ∗j+1+φ)]



= eφ
∗
j+1φ+

P
kα e

∓iϵkδt Ψ̄kα,j+1Ψkα


1 +M

1

2


e+ψ̄j+1ψ − e−ψ̄j+1ψ


  

ψ̄j+1ψ

e∓iδt[ϵ0+λ(φ∗j+1+φ)]



= eφ
∗
j+1φ+

P
kα e

∓iϵkδt Ψ̄kα,j+1Ψkα


Sj+1=0,±1

ASj+1
eSj+1·ψ̄j+1ψ∓iδt[ϵ0+λ(φ∗j+1+φ)]·|Sj+1| . (6.39)

Now Eq. (6.39) immediately yields the exact matrix element for the Ĥ0 propagation in
Eq. (6.34) with three auxiliary field values

ASj+1
= (Sj+1 ·M/2)|Sj+1| ≡


A0 = +1
A±1 = ±M/2 .

(6.40)

Note the appearance of the Sj+1 factor in the ψ̄j+1ψ term from Eq. (6.39) – the propagation
(and boson interaction) only happens when the dot is occupied. The dot fermion (even
after integrating out the leads) and the boson are then effectively noninteracting, and
we may integrate out all boson/fermion fields to get a path integral over the Sj+1 fields.
Before doing so, let us integrate over the intermediate fields φ, ψ,Ψkα in Eq. (6.34).
Inserting Eq. (6.35) and Eq. (6.39) into (6.34), let us first collect the terms depending on
Ψ̄kα and Ψkα (different kα decouple, so it is enough to consider just one choice for the



56 6. The Keldysh path-integral formalism

moment – this is named Ψ during the integration steps and the index is restored in the
end). Expanding the exponentials needs to be done for each one individually and due to
the Grassmann algebra truncating at first order, we get

dΨ̄dΨ(1− Ψ̄Ψ)(1 + e∓iϵkδtΨ̄j+1Ψ)


1 + Ψ̄


Ψj ± itαδt


1− ηα

2

δj,m
δt


ψj


=


dΨ̄dΨ


−Ψ̄Ψ + e∓iϵkδtΨ̄j+1ΨΨ̄


Ψj ± itαδt


1− ηα

2

δj,m
δt


ψj


= 1 + e∓iϵkδtΨ̄j+1


Ψj ± iδttα


1− ηα

2

δj,m
δt


ψj


= exp


e∓iϵkδtΨ̄kα,j+1


Ψkα,j ± itαδt


1− ηα

2

δj,m
δt


ψj


. (6.41)

The integrations are done using the rules from Eq. (6.12) and carefully respecting the
anticommutation relation from Eq. (6.10). Likewise, we carry out the intermediate ψ̄ and
ψ integrals, which produce the contribution to Uj+1,j

dψ̄dψ (1− ψ̄ψ)(1 + Sj+1ψ̄j+1ψ)


1 + ψ̄


ψj ± iδt


kα

tα


1 + η

α

2

δj,m
δt


Ψkα,j



=


dψ̄dψ


−ψ̄ψ + Sj+1ψ̄j+1ψψ̄


ψj ± iδt


kα

tα


1 + η

α

2

δj,m
δt


Ψkα,j



= exp


Sj+1ψ̄j+1


ψj ± iδt


kα

tα


1 + η

α

2

δj,m
δt


Ψkα,j


. (6.42)

Finally, the boson integration over φ = u+ iv is a complex Gaussian integral
du dv

π
exp


−u2 − v2 + (φ∗j+1 ∓ iλδt|Sj+1|)(u+ iv) + e∓iω0δt(u− iv)φj


=

1

π


du e−u

2+(φ∗j+1∓iδtλ|Sj+1|+e∓iω0δtφj)u

 
dv e−v

2+i(φ∗j+1∓iδtλ|Sj+1|−e∓iω0δtφj)v


= exp


1

4


φ∗j+1 ∓ iδtλ|Sj+1|+ e∓iω0δtφj

2 − 1

4


φ∗j+1 ∓ iδtλ|Sj+1| − e∓iω0δtφj

2
= exp


e∓iω0δt(φ∗j+1 ∓ iλδt|Sj+1|)φj


. (6.43)

One observes here the ‘backaction’ of the dot on the oscillator. For consistency with
O(δ2

t ) = 0 we set δte
∓iϵkδt = δt ∓ iϵkδ

2
t + ...→ δt in the tunneling contribution. The same

argumentation holds for the e∓iω0δt term in the formula below. Collecting all terms, we
arrive at the short-time propagator [see Eq. 6.34]

Uj+1,j =


Sj+1=0,±1

ASj+1
e∓iδt|Sj+1|[ϵ0+λ(φ∗j+1+✘✘✘✘

e∓iω0δtφj)]ee
∓iω0δtφ∗j+1φj

× eSj+1ψ̄j+1ψje
P

kα e
∓iϵkδt Ψ̄kα,j+1Ψkα,j

× e
±iδt

P
kα tα

“h
1−η α

2

δj,m
δt

i
✘✘✘
e∓iϵkδt Ψ̄kα,j+1ψj+Sj+1

h
1+η α

2

δj,m
δt

i
ψ̄j+1Ψkα,j

”
, (6.44)

which now is quadratic in all of the original fields and in the next section we will introduce
a compact matrix vector notation which allows us to integrate out all quadratic fields at
once in a clear way and will only leave the summation over the auxiliary fields unsolved.
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6.4 Gaussian integration and matrix notation

All boson and fermion integrations within Z[η] are reduced to 2N -dimensional Gaussian
integrals, i.e., can be carried out analytically. Their solution will be given by the general
formula from [34], after rewriting Z[η] in an appropriate form

D[ξ†, ξ]e−ξ
†G−1ξ+ η†ξ+ ξ†η′ = (detG)ζ eη

†Gη′ ; ζ =


+1 bosons
−1 fermions

. (6.45)

The usage of η′ instead of η is crucial and reflects the fact that for the complex bosonic
integration the fields η and η′ may be chosen independent of each other. The adjunction
symbol † is well defined and refers to Grassmann conjugation in the case of fermions.
For the correct path-integral “measures” see Eqs. (6.24) and (6.25). The matrix G in
Eq. (6.45) has in our case dimension 2N × 2N and will correspond to discrete matrix
representations of the inverse Green’s function (GF) of the “free” subsystems involved14.
They are defined below, following the conventions from [40] and involving periodic bound-
ary conditions (indices are defined modulo 2N):

(iG)−1
i,j = δi,j − δi−1,j(U)j+1,j ; i, j ∈ {1, ..., 2N} ; 0 ≡ 2N . (6.46)

The contour dependent time direction is encoded by introducing the branch-operator σ

σi =


+1 ; i ∈ {2, . . . , N}

0 ; i ∈ {1, N + 1}
−1 ; i ∈ {N+2, . . . , 2N}

. (6.47)

For one mode with wave-vector k in lead α we get the associated fermionic inverse GF
(iGkα)

−1 by defining

(Ukα)j+1,j =


ρkα = +e−β(ϵk−αV/2) ; j = N

e−iσj+1δtϵk ; j ∈ {1, 2N − 1} . (6.48)

For the bosonic phonon the difference in statistics enters by the leading sign of ρb and we
get the inverse phonon GF (iGb)

−1 using the definitions

(Ub)j+1,j =


ρb = −e−βω0 ; j = N

e−iσj+1δtω0 ; j ∈ {1, 2N − 1} . (6.49)

Due to the introduction of the auxiliary spin fields Sj and the effective decoupling of the
dot degrees from the phonon degrees there is no inverse GF of the free dot left. Instead
we get an object with a similar structure but dependent on these auxiliary fields which
we will call (iGS[S⃗])−1. It is defined from

(US)j+1,j =


ρd = +e−βϵ0 ; j = N

Sj+1 ; j ∈ {1, 2N − 1} . (6.50)

14Except for the dot part where an object with similar structure is defined. The “short-time propagators”
involved are the spins themselves and they also become zero.
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Since we also have to respect the Keldysh boundary conditions, SN+1 = S1 = 0 is set,
and inserting Eq. (6.44) in Eq. (6.26) introduces a summation over all Sj+1 ∈ Sj+1. Thus

we define the 2N -dimensional configuration “vector” (tupel) S⃗, respecting the Keldysh
boundary conditions. We define it from the Cartesian product of the spin sets at each
discrete time

S⃗ = (S1, . . . , S2N) ∈ S
2N :=

2N
i=1

Si ; Si :=


{0,±1} ; i /∈ {1, N + 1}
{0} ; i ∈ {1, N + 1} . (6.51)

With these definitions and 2N dimensional vectors φ containing the fields φj, and likewise
for the fermionic fields we get the generating function in a more compact form

Z[η]=

S⃗∈S2N

2N
j=1


ASj+1

e[−iδtϵ0σj+1|Sj+1|]


(6.52)

×

D[φ∗, φ] e−φ

∗,T (iGb)
−1φ−iδtλ

P
j σj+1|Sj+1|(φ∗j+1+φj)


D[ψ̄, ψ] e−ψ̄

T (iGS [S⃗])−1ψ

×

D[Ψ̄,Ψ] e

P
kα−Ψ̄Tkα(iGkα)−1Ψkα+iδttα

P
j σj+1

“h
1−η α

2

δj,m
δt

i
Ψ̄kα,j+1ψj+Sj+1

h
1+η α

2

δj,m
δt

i
ψ̄j+1Ψkα,j

”
.

Up to now we only rewrote the “free” parts, the next step is to also rewrite the tunneling
and source part using the same field vectors. Therefore we represent the branch-operator
σj and the spins Sj as diagonal operators

(σ)i,j = σiδi,j ; (S)i,j = Siδi,j . (6.53)

Furthermore we need the measurement time projector ∆m and the shift operator R

(∆m)i,j =
δi,m
δt
δi,j ; (R)i,j = δi,j+1 . (6.54)

Now we can perform the Gaussian integrations by the application of Eq. (6.45). Again

ignoring S⃗-independent constant prefactors and exploiting the fact that |Sj| = S2
j holds,

the boson field integration produces the factor
D[φ∗, φ] e−φ

∗,T (iGb)
−1φ−iδtλ

P
j σj+1|Sj+1|(φ∗j+1+φj) (6.55)

=


D[φ∗, φ] e−φ

∗,T (iGb)
−1φ+


−iδtλ1⃗TS2σR


φ+φ∗,T


−iδtλS2σR1⃗


= exp


−λ2δ2

t 1⃗
TS2σR(iGb)S

2σR1⃗


✘✘✘✘✘
det(iGb) = exp


1⃗
TS2 (−λ2δ2

t )σR(iGb)σ  
Λjj′=σj(iGb)j−1,j′σj′

S2
1⃗


,

introducing the 2N×2N matrix Λjj′ = σj(iGb)j−1,j′σj′ and the 2N -vector 1⃗ = (.., 1, 1, ..)T .
The last identity in Eq. (6.55) follows from the fact that both σ and R are diagonal. Note
that Λj+1,j′ ∝ e±iω0(tj−tj′ ) is highly oscillatory, especially with increasing correlation time.
We can rewrite the first factor of Eq. (6.52) together with the result Eq. (6.55) from the
phonon integration defining the diagonal matrix B
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2N
i=1


ASi+1

e−iδtϵ0σi+1|Si+1|

e
P2N
j,j′=1 |Sj |Λjj′ |Sj′ | (6.56)

=
2N
i=1


Si
2
e−iδtϵ0σi

|Si|
  

(B0[Si])i,i


Me

P2N
j=1 Λij |Sj |

|Si|
  

(Bλ[S⃗])i,i

= det(B0[S⃗]) det(Bλ[S⃗]) =: det(B[S⃗]) .

We end up with Eq. (6.52) in a compact form only dependent on fermionic fields:

Z[η] =

S⃗∈S2N

det(B[S⃗])


D[ψ̄, ψ]e−ψ̄

T (iGS [S⃗])−1ψ


D[Ψ̄,Ψ] exp


−

kα

Ψ̄T
kα(iGkα)

−1Ψkα

+ {(−iδttα)(Ψ̄T
kα σ R [1− ηα

2
∆m]ψ}+ {(−iδttα)(ψ̄T S σ R [1 +

ηα

2
∆m] Ψkα}


.

All integrations left, are integrations over Grassmann-field-vectors, and the complete ac-
tion is quadratic in these fields. Therefore we can introduce combined field-vectors for
the lead and dot degree of freedoms

ζ̄ = (ψ̄, . . . , Ψ̄kα, . . .) ; ζ = (ψ, . . . ,Ψkα, . . .)
T . (6.57)

With respect to these fields the total action S[ζ̄ , ζ] = iζ̄Φζ is quadratic and defined from

Φ[S⃗] =



(iGS[S⃗])−1 . . . −iδttα S σ R [1+ ηα
2

∆m] . . .

...
. . .

−iδttα σ R [1− ηα
2

∆m] (iGkα)
−1

...
. . .


. (6.58)

We are left with a single Gaussian integration, leading to an almost final analytical result

Z[η] =

S⃗∈S2N

detB[S⃗]


D[ζ̄ , ζ]eiS[ζ̄,ζ] =


S⃗∈S2N

detB[S⃗] · det(Φ[S⃗]) . (6.59)

A Schur decomposition of Φ now separates the contribution from the lead action

det(Φ) = det


Φa Φb

Φc Φd


= det(Φd) · det(Φa − Φb · Φ−1

d · Φc) . (6.60)

The advantage of this transformation is that η-independent scalar factors and terms in
O(η2) can be omitted in Z[η] since they drop out during the functional derivative in (6.7).
Thus we divide by det(Φd) and reduce the dimensionality of our problem

Z[η] =

S⃗∈S2N

detB[S⃗]
det(Φ[S⃗])

det Φd

:=

S⃗∈S2N

detB[S⃗] (iG[S⃗])−1 . (6.61)
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The reduction corresponds to the encoding of the leads influence on the dot within its
own Hilbert space in form of an self-energy. Note that a similar transformation holds in
the λ = 0 case and directly corresponds to the exact solvable Dyson equation [34] of that
problem. For the exact mapping, see Eqs. (8.4) and (8.5) presented later

(iG[S⃗])−1 = det


(iGS[S⃗])−1 +


α

δ2
t


S σ R [1+

ηα

2
∆m]Xα σ R [1− ηα

2
∆m]


= det


(iGS[S⃗])−1 + δ2

t S σ R


X(+) σ R +

η

2


∆mX(−) σ R−X(−) σ R∆m


.

Note that there is still a summation over all momenta hidden in the definition of X(±)

X(±) =

α

α
1±1
2 Xα ; Xα =


k

t2αiGkα . (6.62)

In chapter 7 we will show how to get convergent expressions for this infinite summa-
tion and therefore we treat X(±) as a well known object from now on. The influence
of the leads to the dot still enters after this separation as a self-energy contribution
Σ[S⃗, η] = Σ(+)[S⃗] + ηΣ(−)[S⃗] in the dot space

Σ(+)[S⃗] := −iδ2
t S σ RX

(+) σ R =: S Σ
(+)
0 (6.63)

Σ(−)[S⃗] := −iδ2
t S σ R

1

2


∆mX(−) σ R−X(−) σ R∆m


=: S Σ

(−)
0 . (6.64)

Note, that Σ
(+)
0 is the lead induced self-energy of the remaining resonant level model,

when the phonon is decoupled. We will explicitly establish this connection in chapter 8.
We also define the spin-independent self-energy Σ0[η] = Σ

(+)
0 +ηΣ

(−)
0 including the source

term and split (iGS)
−1 in a constant and a S⃗-dependent part

(iGS[S⃗])−1 =



1 e−βϵ0

. . .

1
−1 1

. . .

1


  

(iGS)−1
stat

−



0

S2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

S2N 0


  

(iGS)−1
dyn[S⃗]=S R

. (6.65)

This structure will simplify the numerical implementation and emphasizes the row-wise
spin dependence within Eq. (6.66).
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The final result for our AH model is a finite spin summation over determinants of row-
wise spin-dependent matrices which has the appropriate form for solving it with the ISPI
algorithm from [64]

Z[η] =

S⃗∈S2N

detB[S⃗] det


(iGS[S⃗])−1 + i


Σ(+)[S⃗] + ηΣ(−)[S⃗]



=

S⃗∈S2N

detB[S⃗] det


(iGS)

−1
stat − S[S⃗] (R− iΣ0[η])


: =


S⃗∈S2N

det

B[S⃗] (iG[S⃗])−1


. (6.66)

Before we develop the algorithm to solve Eq. (6.66) in chapter 9 we will first perform
the momentum summation hidden in the definition of Xα and also establish the exact
connection to the resonant level model which remains from the AH model if the phonon
is detached (λ = 0).
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7 Fourier transformation of the free lead GF

In this section we present different ways how to treat the momentum summation involved
in the definition of Xα, cf. Eq. (6.62). The main contribution to the lead self-energy
comes from Xα and its definition includes a Fourier transformation of a Fermi-function
from energy to time space with respect to integer multiples of a “minimal” correlation
time δt. Since these integer multiples also involve a zero correlation time, we will get
convergence problems at this equal time correlator, depending on how we model the leads
density of states. In the following we present all details and also show how to circumvent
the convergence problems by the introduction of a cut-off.

7.1 General expression in continuum limit

In order to calculate the correlation matrix Xα defined in Eq. (6.62), we need the free
Green’s function Gkα for lead α at fixed momentum k. It is defined by its inverse from
Eq. (6.48). For the example N = 3, we get the following matrix structure:

Gkα =
i

1+ρkα



−1 ρkαe
+iϵkδt ρkαe

+2iϵkδt ρkαe
+2iϵkδt ρkαe

+iϵkδt ρkα

−e −iϵkδt −1 ρkαe
+iϵkδt ρkαe

+iϵkδt ρkα ρkαe
−iϵkδt

−e−2iϵkδt −e−iϵkδt −1 ρkα ρkαe
−iϵkδt ρkαe

−2iϵkδt

−e−2iϵkδt −e−iϵkδt −1 −1 ρkαe
−iϵkδt ρkαe

−2iϵkδt

−e −iϵkδt −1 −e+iϵkδt −e +iϵkδt −1 ρkαe
−iϵkδt

−1 −e+iϵkδt −e+2iϵkδt −e+2iϵkδt −e+iϵkδt −1


.

To perform the momentum summation, we first rewrite Gkα using an index notation.
We will introduce separate indices for real-times and for the Keldysh branch. Real-time
indices i, j are running from 1 to N and Keldysh indices σ, σ′ over ± (See also Fig. 6.1).
Within the discretized real-time we introduce a correlation-time-operator ∆Ti,j = δt(i−j).
Fermi-functions are recovered from the equilibrium distributions ρkα by the relations

ρkα

1 + ρkα

= nF (ϵkα) ;
1

1 + ρkα

= nF (−ϵkα) ; ϵkα = ϵk − µα . (7.1)

The Keldysh contour ordering can be compactly encoded in a time space operator Ci,j
with 2× 2 Keldysh substructure

Ci,j = θ(i− j)


+1 −1
+1 −1


+ θ(j − i)


−1 −1
+1 +1


+ δi,j


+1 −1
+1 +1


; θ(0) = 0 . (7.2)

Based on the definitions above Xα takes a compact form, valid for arbitrary N

(Xα)
σ,σ′

i,j =

k

t2αC
σ,σ′

i,j nF [−Cσ,σ′

i,j (ϵk − µα)]e−iϵk∆Ti,j . (7.3)
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To perform the momentum summation in the leads we first take the continuum limit

(Xα)
σ,σ′

i,j = Cσ,σ′

i,j t2α

 +∞

−∞
dϵ να(ϵ)nF [−Cσ,σ′

i,j (ϵ− µα)]e−iϵ∆Ti,j (7.4)

by introducing the side-dependent density of states να(ϵ). The next step is to model
the density of states by some function to get a convergent expression. For keeping the
notation compact we drop the time and Keldysh indices in the next sections and only
focus on the convergence of the integral involved.

7.2 Flat infinite band limit

The simplest band model for the leads is the assumption of an infinite band with a constant
density of states, named flat and wide band approximation in the following. In this model
one fixes the density of states at its value at the Fermi-energy να(ϵF ) and introduces the
hybridization energy Γα as universal energy scale

dϵ να(ϵ) ≈
2Γα
|tα|2


dϵ

2π
; Γα = πνα(ϵF )|tα|2 . (7.5)

The justification of this approximation is based on the idea that all relevant processes
only involve states around the Fermi-energy and that the continuum of states in the leads
around the Fermi-energy is assumed to be locally homogeneous. Under these assumptions,
the integral (7.4) is transformed to

Xα = ΓαC

 +∞

−∞

dϵ

π

e−iϵ∆T

e−βC(ϵ−µα) + 1
; |C| = 1 ; ∆T = δtZ . (7.6)

Exploiting the fact that |C| = 1 holds, substituting z := β(ϵ− µα)C and after defining

ξ =
ΓαC

πβ
e−iµα∆T ; ϑ =

C∆T

β
∈ R , (7.7)

we have to solve the integral

Xα = Γα
C

β

 +∞

−∞
dz

e−i∆T (C
β
z+µα)

e−z + 1
= ξ lim

η→0+

 +∞

−∞
dz

e−(η+iϑ)z

e−z + 1
. (7.8)

The solution, at least for ∆T ̸= 0, is provided by Eq. (3.311.9) from Gradshteyn &
Ryzhik [74]:

Xα = lim
η→0+

πξ

sin(π(η + C∆T
β

))
=

Γαe
−iµα∆T

iβ sinh(π
β
∆T )

. (7.9)

The case of matching times cannot be treated this way due to the singularity at ∆T = 0.
We solve this problem by the introduction of a finite bandwidth in the leads.
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7.3 Flat finite band (hard cut-off)

The arising singularity in the flat wide band approximation is directly related to the
(unphysical) assumption of an infinite band. By limiting the width of the band one gets
an finite value for Xα at all correlation times and circumvents this problem. Nevertheless
the exact value at matching times is directly related to the width and the shape of the
band taken into account. In our work [75] we use a hard cut-off for limiting the flat band
to the energy range (ϵ − µα) ∈ [−D,D]. The corresponding definition for the density of
states is

να(ϵ) = να(ϵF )θ(−(ϵ− µα −D))θ(+(ϵ− µα +D)) ; θ(0) = 1 . (7.10)

Note that D has to be chosen reasonable. It must be always the highest energy in the
system and due to the fact that we are in principle dealing with an “free” object, the
symmetry of a cut-off function should be aligned with the chemical potential µα. Following
the notation in Eqs. (7.6) and (7.7) and introducing D̃ = βD, we have to calculate

Xα = ΓαC

 µα+D

µα−D

dϵ

π

e−iϵ∆T

e−βC(ϵ−µα) + 1
= ξ

 +D̃

−D̃
dz

eiϑz

ez + 1
. (7.11)

The integral is solved by using the definition of the incomplete beta function

B[z, a, b] =

 z

0

ua−1(1− u)b−1du (7.12)

and the the substitution ez = −u:

Xα = −ξ
 −e+D̃

−e−D̃

e(iϑ−1)z

1− u
du

= ξ(−1)iϑ
 −e+D̃

−e−D̃
uiϑ−1(1− u)−1du

= ξ(−1)iϑ

B[−e+D̃, iϑ, 0]−B[−e−D̃, iϑ, 0]


. (7.13)

Applying now the relation B[z, a, b] = za

a
1
2F[a, 1 − b, a + 1, z] between the incomplete

beta function and the hypergeometric function 1
2F together with the Pfaff transformation

2
1F[a, b, c, z] = (1− z)c−a−b21F[c− a, c− b, c, z] we get the final expression used in the code:

Xα = i
ξ

ϑ


e−iD̃ϑ 2

1F

1, iϑ, 1 + iϑ,−e−D̃


− e+iD̃ϑ 2

1F

1, iϑ, 1 + iϑ,−e+D̃


. (7.14)

In the case of matching times (∆T = 0), the integral reduces to

Xα|∆T=0 =
ΓαC

πβ

 +D̃

−D̃
dz

1

ez + 1
=

ΓαC

πβ


2D̃ − ln


1 + e+D̃

1 + e−D̃


. (7.15)

This is further simplified in the limit β →∞

lim
β→∞

Xα|∆T=0 =
2ΓαC D

π
− ΓαC

π
lim
β→∞

1

β
ln


1 + e+βD

1 + e−βD


  

=D

= C
Γα
π
D, (7.16)

and shows the direct connection of the correlation at matching times with the width of
the band taken into account and is consistent with setting nF (ϵ) = θ(−ϵ) in Eq. (7.6).
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7.4 Comparison of flat wide and flat finite band

Since Eq. (7.9) has a singularity at matching times (∆T = 0), we had to use a more
realistic band model and introduced a cut-off. This resulted in the use of Eq. (7.14) for
the computation of the matrix elements of Xα. Per construction we only need values
of Eq. (7.14) at correlation times which are integer multiples of the fundamental time

discretization length δt of the path-integral. The self-energy Σ
(+)
0 encodes the influence of

the leads, is directly proportional to XL +XR and exhibits best the effect of a cut-off.
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Figure 7.1: (a) Real and (b) imaginary part of iΣ(+)(t+i −t+j ). The param-
eters of this example are δtΓ = 0.1 ; βΓ = 5 ; eV = Γ ; D = π

δt
. The black

lines are the continuous solutions from our flat finite band model (cf. Sec. 7.3).
The red circles depict the values of the self-energy entering our matrix repre-
sentation. The blue dashed line corresponds to the flat infinite band model,
which is divergent for zero correlation time and not suitable for our numerics.
(cf. Sec. 7.2)

Figure 7.1 above illustrates the real and the imaginary part of iΣ
(+)
0 (t+i−t+j ) as a function of

the correlation time t− t′. The red points represent the values which enter the self-energy
matrix we used in our ISPI code. They are based on Eq. (7.14). Ignoring the discretization
and continuously evaluating the same formula leads to the black line. The dashed blue
line is also a continuous evaluation, but based on Eq. (7.9). Note that for the real part the
cut-off and the non-cut-off version have almost everywhere the same results, while for the
imaginary part almost everywhere the non-cut-off result is an average of neighbored values
of the cut-off result. We will now use different cut-off values and analyze their effect on
the real and imaginary part of iΣ(+)(t+i −t+j ) separately to find the optimal cut-off value.
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7.4.1 Finding the optimal cut-off

We found that a reduction in error for the extrapolated ISPI-current is achieved by using
an optimal cut-off for each time-discretization. Optimal means that the cut-off choice is
based on the fundamental relation between the minimal resolved difference in time δt and
the corresponding maximal frequency ωmax taken into account within the leads

2π/δt = ωmax . (7.17)

Setting this maximal frequency equal to the bandwidth 2D of the discrete Fourier-
transformation used for the self-energy computation, we get the optimal cut-off frequency.
Disadvantages of other choices are discussed further below

2D = ωmax ⇒ D = π/δt . (7.18)

Effects on the imaginary part of the self-energy
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Figure 7.2: Real part of iΣ(+)(t+i −t+j ) for different cut-off frequencies and
fixed δtΓ = 0.1 ; βΓ = 5 ; eV = Γ. The colored points refer to the matrix
elements of iΣ(+) while the same colored dashed lines refer to the continuous
solution. The black line is the solution for the flat infinite band model. Note
that integer multiples of π

δt
chosen as cut-off frequency only affect the peak

height at equal times and generate a singularity for D →∞.

Although usually one tries to choose a cut-off frequency as big as possible, this does not
make any sense here. For the real part of iΣ(+) an increase of the cut-off frequency only
affects the value at zero correlation time and decreases therefore the numerical stability,
cf. Fig. 7.2.
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Effects on the real part of the self-energy
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Figure 7.3: Imaginary part of iΣ(+)(t+i −t+j ) for different cut-off frequencies
and fixed δtΓ = 0.1 ; βΓ = 5 ; eV = Γ. The colored points refer to the matrix
elements of iΣ(+) while the same colored dashed lines refer to the continuous
solution. The black line is the solution for the flat infinite band model.

The effect on the imaginary part of iΣ(+) is seen in Fig. 7.3. Since only values marked
with a symbol will enter the discretized version of Σ(+) we have to distinguish two cases.
Firstly, odd multiples of π

δt
just increase the oscillation frequency of the continuous solution

without changing the discretized object itself. In this case, only the numerical precision of
the discrete values is decreased by an increase of the cut-off. Secondly, even multiples of π

δt
will set all entries in the imaginary part to zero and the resulting matrix is useless anyway.
To conclude, the optimal solution is D = π

δt
. Without any relation between the cut-off and

the time-discretization or by using noninteger multiples of π/δt we encountered the worst
results. A starting point to further investigate the relations between an optimal cut-off
and the current could be the Nyquist-Shannon sampling theorem, but this is beyond the
scope of this work.

Due to the direct dependence of the cut-off on δt, an extrapolation δt → 0 directly implies
an cut-off extrapolation D →∞. Therefore an extrapolated result does not have a cut-off
in energy space and allows for a numerically exact result after an extrapolation. A similar
argumentation also holds for our least dependence method. We assume convergence when
the current is approximately stationary over an interval of different δt values. This directly
implies a stationary current for an increasing cut-off and therefore it does not affect the
result and is already big enough.



8 The resonant level model

A first check of the final form from Eq. (6.66) is to investigate its limit for λ→ 0 which
corresponds to the resonant level (RL) model. There are two different motivations behind:

(a) We want to recover the inverse GF of the “free” dot [(Gd)
−1] from [(GS)

−1]. This
proofs that both encode the same information and nothing is omitted by our splitting
procedure.

(b) We want to check that our discrete expressions can be mapped to known continuous
results for the RL model by performing a continuum limit.

As a byproduct we will get a discrete and the continuous analytic current-voltage relation.

8.1 Discrete solution for the RL model

Without the phonon attached, the Hamiltonian becomes quadratic in the fields and the
Keldysh partition function is analytically solvable. This is equivalent to the fact that the
corresponding Dyson equation [34], which treats the influence of the leads with respect to
a “free” dot as self-energy, is also analytically solvable. Consequently we should be able
to recover the inverse GF of the “free” dot from Eq. (6.66) in the limit λ → 0 and get
an analytic expression for the Keldysh generating function which is equivalent to known
analytic expressions for the system’s symmetrized current. The free inverse GF (iGd)

−1

of the dot is defined by inserting

(Ud)j+1,j =


ρd = +e−βϵ0 ; j = N
e−iσj+1δtϵ0 ; j ∈ {1, 2N − 1} (8.1)

for U in Eq. (6.46). Unlike in [64] the connection between (iG)−1 and (iGd)
−1 in this limit

is not obvious. First we need to break down the determinant involved in Eq. (6.66) to a
definition on the level of matrix elements. For a 2N × 2N matrix Y its determinant can
be defined by the Leibniz formula

det(Y ) =


s∈S2N

sgn(s)
2N
i=1

(Y )i,s(i) (8.2)

with the sum running over all permutations s from the symmetric group S2N of degree
2N . Therefore the generating function Z without phonon interaction is

Z[η]|λ=0 =

S⃗∈S2N

detB0[S⃗] det


(iGS)

−1
stat − S[S⃗] (R− iΣ0[η])


(8.3)

=


s∈S2N

sgn(s)
2N
i=1


Si

(B0)ii[Si]

(iGS)
−1
stat


i,s(i)  

≡Fa

−Si (R− iΣ0[η])i,s(i)  
≡Fb

 . (8.4)
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Inserting the definition of B0[S⃗] leads to the auxiliary relation


Si

(B0[S⃗])i,i {Fa − Si Fb} =

Si


Si
2
e−iδtϵ0σi

|Si|
{Fa − Si Fb} = Fa − σ2

i e
−iδtϵ0σi Fb ,

with σ2
i fixing the Keldysh boundary conditions. Remembering that σ3

i = σi holds and
terms in O(δ2

t ) are treated as zero we arrive at the final result for the RL model

Z[η]|λ=0 =


s∈S2N

sgn(s)
2N
i=1


(iGS)

−1
stat


i,s(i)

− σ2
i e

−iδtϵ0σi

R− iΣ0[η]


i,s(i)

=


s∈S2N

sgn(s)
2N
i=1

(iGd)
−1
i,s(i) +✘✘✘✘✘✘

σ2
i e
−iδtϵ0σi


iΣ0[η]


i,s(i)  

∝σiδ2t

= det

(iGd)

−1 + iΣ0[η]

≡ det


G−1
d − Σ0[η]


. (8.5)

The last identity in Eq. (8.5) holds since the current is invariant for Z[η] modulo any
η-independent constant, cf. Eq. (6.7). The order δ2

t is again important here - the relations
δ2
t ϵ0 ≪ 1/Γ ; δ2

t ϵk ≪ 1/Γ and δ2
tω0 ≪ 1/Γ have to be fulfilled and will become

a restriction to the parameter space accessible with our method. Without a phonon
involved, the generating function is directly dependent on the inverse GF G−1

d of the

“free” dot and the self-energy Σ
(+)
0 of the leads. We recover the standard result, that

both are related by a Dyson equation for the total inverse GF of the RL model

G−1
0 = G−1

d − Σ
(+)
0 . (8.6)

By this we have accomplished task (a) from the beginning of this chapter and for further
reference we call the corresponding current Iλ=0 = ∂η Z[η]|λ=η=0, the “direct current”.
The terminology refers to the fact that for λ = 0 Eq. (8.5) provides a direct way for get-
ting numerically a current from the discrete inverse GFs without the need of an iteration.
(We also used this expression to check our extrapolation schemes since it allows for arbi-
trary truncations of correlations, cf. chapter 9, without changing the runtime. Although
Eq. (8.5) represents a quite compact expression, it is only exact in the limit (N → ∞)
which we will explore in the next section.

8.2 Continuous solution for the RL model

In the limit (N → ∞) all fields become continuous functions of contour times and all
matrices introduced so far will become operators acting on these fields. After introducing
general relations and definitions we get back to the RL model, remaining from the AH
model in the limit λ = 0, and will recover known analytic results15 including the exact
current-voltage relation.

15They are identical with the relations from [64], except for a factor of two due to the spin.
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8.2.1 Continuous time representation of GFs

Within the Keldysh formalism we have doubled all fields in time. Consequently, the gen-
eral definition of a single particle GF is proportional to the expectation value of a contour
ordered16 product of creation and annihilation operators {ξ†, ξ} referring to different times
{tµ, t′ν} on the contour [40]

Gµν(tµ, t
′
ν) = −i


TC

ξ(tµ) ξ

†(t′ν)


. (8.7)

The upper (lower) branch of the contour are labeled by “+”(“−”) which allows for four
different combinations of the time arguments {tµ, t′ν} with respect to their branch depen-
dencies {µ, ν}. Encoding this branch dependency in a 2 × 2 matrix and then projecting
the time arguments back on the real-time axis results in

G(t, t′) =


G++(t, t′) G+−(t, t′)
G−+(t, t′) G−−(t, t′)


=


GT (t, t′) G<(t, t′)

G>(t, t′) GT̃ (t, t′)


. (8.8)

The off-diagonal components G<,> are called lesser and greater GFs while the diagonal
ones GT ,T̃ are called causal and anticausal GFs. All names refer to the ordering of the
fields with respect to their projected times. On the one hand, times from the “−” branch
are always “greater” than the ones from the “+” branch and vice versa. On the other
hand we have forward time evolution on the “+” branch, associated with causality, and
antitimeevolution on the “−” branch giving rise to anticausality. The exact definitions
are:

G<(t, t′) = −i⟨ ξ†(t′) ξ(t) ⟩ ; G>(t, t′) = −i⟨ ξ(t) ξ†(t′) ⟩ , (8.9)

GT (t, t′) = θ(t−t′)G>(t, t′) ; GT̃ (t, t′) = θ(t−t′)G<(t, t′) (8.10)

+ θ(t′−t)G<(t, t′) + θ(t′−t)G>(t, t′) .

For completeness we also introduce the retarded and advanced GFs usually encountered
in equilibrium theories and needed within the Meir Wingreen formula, later introduced
in Eq. (8.18).

GR(t, t′) = θ(t− t′)[G> −G<](t, t′) ; GA(t, t′) = θ(t′ − t)[G< −G>](t, t′) . (8.11)

Their connection to the four Keldysh blocks defined in Eq. (8.8) is given by the relation
GT G<

G> GT̃


=


(GR +G<) G<

(GR −GA +G<) (G< −GA)


. (8.12)

The identity above is easily shown by exploiting the fact that the four Keldysh components
are not independent but fulfill the cyclic relations

GR −GA = G> −G< ; GR +GA = GT −GT̃ ; GT −GT̃ = G> +G< . (8.13)

This dependency allows for a basis transformation called Keldysh rotation which elimi-
nates one component of the 2 × 2 Keldysh substructure and simplifies analytical calcu-
lations. However we stay in the unrotated basis which is more convenient for our later
numerics.
16Cf. Fig. 6.1. Contour time ordering equals normal time ordering along the contour. With respect to
normal time two operators from the upper (lower) contour must be timeordered (antitimeordered).
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8.2.2 Continuous frequency representation of GFs

We switch now to frequency space by Fourier transformation and exploit the fact that for
a steady state situation all GF only depend on time differences. We rename t− t′ = t and
t′−t = −t. While the off-diagonal blocks of Eq. (8.8) are related to their Fourier-transform
by the definition

G±∓(t) =


dω

2π
e−iωtG<,>(ω) , (8.14)

the relation for the diagonal blocks needs some calculation. We first introduce continuous
versions of the Heaviside step function and its derivative, the delta distribution

θ(t) = − lim
η→0


dω

2πi

e−iωt

ω + iη
; δ(t) =

dθ(t)

dt
=


dω

2π
e−iωt . (8.15)

Analogously, we get in frequency space

θ(ω) = + lim
η→0


dt

2πi

e+iωt

t− iη
; δ(ω) =

dθ(ω)

dω
=


dt

2π
e+iωt . (8.16)

The G±± components of Eq. (8.8) in frequency space are given by

G±±(ω) =


dt eiωt[θ(±t)G>(t) + θ(∓t)G<(t)]

= −

dω1

2π


dω2

2πi


dt eiωt


e∓iω2t

ω2 + iη
e−iω1tG>(ω1) +

e±iω2t

ω2 + iη
e−iω1tG<(ω1)


= −


dω1

2π


dω2

2πi


dt


ei(ω−ω1∓ω2)t

ω2 + iη
G>(ω1) +

ei(ω−ω1±ω2)t

ω2 + iη
G<(ω1)


=


dω1

2πi


G>(ω1)

±(ω1 − ω)− iη
− G<(ω1)

±(ω1 − ω) + iη


. (8.17)

To conclude, the knowledge of the greater and lesser GFs in frequency space allows for
computing the whole GF and thus a comparison with known results from [64].

8.2.3 The Meir Wingreen formula

The current formula for a transport setup, consisting of metallic leads and a central
interacting region was worked out in general by Meir and Wingreen [41]. It is expressed
in terms of Keldysh GFs and shifts the problem of current computation to the problem
of evaluating GFs. We already stated a Meir Wingreen formula for the MSCT in the first
part of the thesis. For the full interacting AH model in wide band approximation and
with ΓL + ΓR = Γ, it reads

I(V ) =
2e

h

ΓLΓR
Γ


dϵ A(ω)


nF (ω − µL)− nF (ω − µR)


, (8.18)

and depends again on a spectral function, defined from the retarded GF

A(ω) = −2 Im(GR(ω)) ; GR(ω) = G++(ω)−G+−(ω) . (8.19)
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For the AH model we get a dependency on only one spectral function which is again not
known in general. Within the next section we will show how to get it it exactly in the
limit λ = 0 from the retarded GF of the RL model. How to get it the limit λ ≪ Γ will
be demonstrated in chapter 10 by a perturbative expansion of the self-energy in terms of
the electron-phonon coupling.

8.2.4 The GF of the RL model

We will now perform the limit (N →∞) to Eq. (8.6). Let us first focus on the self-energy.

The discrete definition of Σ
(+)
0 is given in Eq. (6.63). We also insert the definition of X(+)

and regroup the product

Σ
(+)
0 = δ2

t


α

(tασR) (Gα) (tασR) ; Gα =

k

Gkα . (8.20)

For (N → ∞) we have to drop the prefactor δ2
t since it will become the measure of a

contour-time integration. The product σR encodes the branch dependent forward and
backward direction of real-time evolution including periodic boundary conditions. A small
timeshift (∝ δt) originating from the discrete path-integral is encoded in R. The correct
continuum limit for this product is R → 1 and due to the (usually hidden) boundary
conditions σ → σz with a standard Pauli matrix σz in the 2× 2 Keldysh space

tασR→

tα 0
0 −tα


. (8.21)

For a continuous version of the GF of lead α we remember our previous definition
Gα = Xα

i|tα|2 and start from Eq. (7.4) which represents one matrix element

(Gα)
µ,ν
i,j ≡ −iC

µ,ν
i,j

 +∞

−∞
dϵ να(ϵ)nF [−Cµ,ν

i,j (ϵ− µα)]e−iϵ∆Ti,j . (8.22)

We choose the infinite flat band model from Eq. (7.5), and the discrete time structure
within Eq.(7.4) is removed by the following replacements

∆Ti,j → (t−t′) ; Ci,j → C(t−t′) = θ(t−t′)


+1 −1
+1 −1


+θ(t′−t)


−1 −1
+1 +1


. (8.23)

The result is a continuous expressions for all four Keldysh components. The Heavisides
from the off-diagonals just add to one and we can directly read off the greater and lesser
GF of the leads in energy space

G±∓α (t, t′) =


dϵ

2π


±i Γα
|tα|2

2nF (±(ϵ− µα))

e−iϵ(t−t

′) =


dϵ

2π
e−iϵ(t−t

′) G<,>
α (ϵ) .

(8.24)

Now the knowledge of G<,>
α (ϵ) and Eq. (8.17) allow for the computation of G±±α (ϵ):

G±±α (ϵ) =


dϵ1
2πi


G>
α (ϵ1)

±(ϵ1 − ϵ)− iη
− G<

α (ϵ1)

±(ϵ1 − ϵ) + iη


=

Γα
|tα|2


dϵ1
π


nF (ϵ1 − µα)


1

±(ϵ1 − ϵ)− iη
− 1

±(ϵ1 − ϵ) + iη


− 1

±(ϵ1 − ϵ)− iη


= i

Γα
|tα|2

(2nF (ϵ− µα)− 1) . (8.25)
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In the last step we used the Cauchy formula [see Eq. (8.26)] together with the fact that
the principal part of (1/ϵ′) is zero and the principal parts of the integrals involving the
Fermi-function cancel each other:

dϵ′

π

f(ϵ′)

ϵ′ − ϵ± iη
= P


dϵ′

π


f(ϵ′)

ϵ′ − ϵ


∓ i


dϵ′ δ(ϵ′ − ϵ)f(ϵ′) . (8.26)

An analogous argumentation holds for G−−α (ϵ) and adding all Keldysh components we
end up with the full Keldysh GF of the leads

Gα(ϵ) = i
Γα
|tα|2


2nF (ϵ− µα)− 1 2nF (ϵ− µα)
2nF (ϵ− µα)− 2 2nF (ϵ− µα)− 1


. (8.27)

Getting now back to Eq. (8.20), we can replace all parts by their continuous representa-
tions. Consistent with [64] we finally get the continuous self-energy of lead α

Σα =


tα 0
0 −tα


·Gα ·


tα 0
0 −tα


= iΓα


2nF (ϵ− µα)− 1 −2nF (ϵ− µα)
2− 2nF (ϵ− µα) 2nF (ϵ− µα)− 1


. (8.28)

The continuous version of the dot’s inverse GF in energy space is

G−1
d (ϵ) =


+(ϵ− ϵ0)

−(ϵ− ϵ0)


. (8.29)

Defining now NF = nF (ϵ−µL)+nF (ϵ−µR), setting symmetric conditions for the tunneling
ΓL = ΓR = Γ/2, the bias µL = −µR = eV/2 and using again the Dyson equation

G0(ϵ) =

G−1
d (ϵ)− ΣL(ϵ)− ΣR(ϵ)

−1
we get the full GF of the RL model

G0(ϵ) =
1

(ϵ− ϵ0)2 + Γ2


(ϵ− ϵ0) + iΓ(NF − 1) iΓNF

iΓ(NF − 2) −(ϵ− ϵ0) + iΓ(NF − 1)


. (8.30)

8.2.5 The analytical current for the RL model

From Eq. (8.30) and the definition (8.19) we get the spectral function

A(ϵ) = −2 Im


ϵ− ϵ0 + iΓ(NF − 1)− iΓNF

(ϵ− ϵ0)2 + Γ2


=

2Γ

(ϵ− ϵ0)2 + Γ2
. (8.31)

Finally, Eq. (8.18) provides the exact I(V ) relation for the RL model.

I(V ) =
eΓ

h


dϵ

Γ

Γ2 + (ϵ− ϵ0)2


nF (ϵ− µL)− nF (ϵ− µR)


. (8.32)

The resonant level model is now completely solved, in the sense that we know analytically
the full Green’s function and also know the exact analytical current-voltage relation. In
the next chapter we proceed solving the AH model by extending the numerical ISPI
scheme to it.



9 Extension of the ISPI scheme to the AH model

We will now get back to our approach for the AH model and develop the numerical
scheme to solve the spin summation in Eq. (6.66). In principle one could directly imple-
ment Eq. (6.66) using standard numerical routines for determinant computation17 but the
problem is the resulting runtime. By discretizing the Keldysh contour and constructing
a path-integral along it, we introduced a spin summation for almost all time points, each
running over three values Sj ∈ {0,±1}. To be precise, we introduced 32(N−1) possible spin
combinations to sum over. For each individual combination we have to compute a deter-
minant of a 2N × 2N matrix. To estimate an appropriate value for N one has to consider
the following things. First of all we introduced a Trotter discretization error, which can
and will be extrapolated out but nevertheless assumes δt to be in principle small. We
restrict ourselves to δtΓ ≤ 0.5. The next scale to consider is the time interval between
our initial equilibrium state encoded in ρ0 and the measurement time tm itself. We start
in the “distant past” and evolve the system along the contour. We are interested in a
stationary current and therefore the initial switching of interactions must be far enough
away from the measurement time. Otherwise we would measure the transient behavior of
the system which might be also dependent on the details of the initial conditions encoded
in ρ0, cf. [76]. The data we will present later was computed for tmΓ = 12. One further
numerical detail to consider is to place the measurement time roughly in the middle of the
upper Keldysh branch so that the source term contribution does not end up at the borders
of the GF matrices which might give rise to discretization artifacts (cf. [64]). In total this
gives a lower bound of 2N & 100. Decreasing the time-discretization increases this lower
bound. A direct implementation leads to at least 32N−2 ≈ 1047 matrices which need to
be filled, and their determinants to be summed up to get Z[η]. Without a significant
decrease of the number of summations it is (at the moment) impossible to numerically
solve this problem.

In the next sections we present the extension of the ISPI scheme from [64] to the AH
model, i.e., we create a scheme to compute Z[η] numerically. To mark our starting point,
we cite Eq. (6.66) once again

Z[η] =

S⃗∈S2N

det

B[S⃗] (iG[S⃗])−1


.

The ISPI scheme exploits the exponential decay of long time correlations at finite temper-
ature. Based on this, a maximal correlation time τc is introduced which leads to a band
structure of correlation matrices with respect to time space. Finally this band structure
will allow to decouple some of the spin summations of Eq. (6.66) and rewrite it as a prod-
uct of sums over determinants of matrices with lower dimension. A dramatic reduction of
the number of total summations is the consequence and a numerical solution of Eq. (6.66)

17We use a QR decomposition [38] for computing the determinants remaining in the final ISPI scheme
from Eq. (9.22).
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becomes feasible. In the following we will develop the ISPI scheme for the AH model in
four steps. First we create the necessary band structure by a cut-off scheme. Afterwards
we decouple the fermionic and the bosonic part of Eq. (6.66) separately. And finally we
present a strategy to eliminate all remaining systematic errors from the scheme, i.e., the
Trotter error and the memory truncation error induced by the introduction of τc.

9.1 Change to the ISPI basis-ordering

The first step before defining a truncation rule is to perform a change in the basis-ordering
from “Keldysh ⊗ time”, used so far and also in [40], to the ISPI basis-ordering “time ⊗
Keldysh”, used in [64]. All time dependent matrix-objects Y (GFs, Self-energies, their
inverse counterparts,...) are relabeled after the basis transformation. In index notation
the transformation reads

Yi,j(ti, tj)|i,j∈{1,2N} → Y σ,σ′

k,l (tσk , t
σ′

l )
 σ,σ′∈{±}
k,l∈{1,N}

. (9.1)

Every time argument gets a subscript index {1, . . . , N} representing its real-time pro-
jection and a superscript index {±} labeling the Keldysh branch-dependence. See also

Fig. 6.1 for the exact mapping of time indices. Consequently, from now on the vector S⃗
is also changed to the new basis ordering

S⃗ = (S±1 , .., S
±
N) ∈ S

±N :=
N
i=1


σ=±

S
σ
i ; S

σ
i :=


{0,±1} ; (i, σ) /∈ {(1,+), (N,−)}
{0} ; (i, σ) ∈ {(1,+), (N,−)} .

9.2 Cut-off scheme

We already mentioned that we use the natural decay of correlations for a truncation. For
the spinless AH model we use the decay of the self-energy Σ

(+)
0 (shown in Fig. 9.1) to

justify the truncation of G−1 to a band structure in real-time. We define the maximal
correlation time τc = Kδt and the explicit truncation rule is

(G−1)σ,σ
′

i,j −→ θ(K − |i− j|)(G−1)σ,σ
′

i,j ; θ(0) = 1 . (9.2)

Since G−1
S is almost18 diagonal in time, the decay of Σ

(+)
0 is sufficient to justify Eq. (9.2).

Furthermore to be consistent with this cancellation of long time-time correlations, we also
have to introduce the maximal spin-spin correlation which will lead to a consistent scheme

S±i · S±
′

j =


S±i · S±

′

j ; |i− j| ≤ K
0 ; |i− j| > K

. (9.3)

This spin-spin correlation relation can be also motivated by the fact that the truncation
of G−1 is equivalently achieved by performing the transformation of Eq. (6.60) prior to
the Gaussian integration (6.59) accompanied by the introduction of a maximal field-field
correlation time for the (appropriately transformed) fields ζ̄(t) and ζ(t′).

18Only the diagonal and the sub-diagonal with respect to time are occupied. Each time element possesses
a 2× 2 Keldysh substructure.
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Figure 9.1: (a) Real and (b) imaginary part of iΣ(+)(t+i −t+j ) for δtΓ=0.1 ;
βΓ = 5 ; eV = Γ ; D = π

δt
. Black lines: Continuous solutions from our flat

finite band model used for the leads (cf. Sec. 7.3). Red circles: Values of the
self-energy entering our matrix representation when calculating the discrete
path sum (6.66). Blue dashed line: Flat infinite band model – divergent for
zero correlation time and not suitable for our numerics (cf. Sec. 7.2).

9.3 Construction of the ISPI scheme - fermionic part

The starting point for the fermionic part of the iterative scheme is the application of
Eq. (9.2) on G−1 and the grouping of the remaining occupied bands into blocks of time
dimension K×K with NK = N/K chosen integer. For a shorter notation and since the
resulting object only depends on the fermionic degrees of freedom we abbreviate it with
F only

F = (iG)−1 =



F 11 F 12 0 . . . 0

F 21 F 22 F 23 . . .
...

0 F 32 F 33 . . . 0
...

. . .
. . .

. . . FNK−1NK

0 . . . 0 FNKNK−1 FNKNK


. (9.4)

The band structure implies that blocks F l,l+1 (F l+1,l) correspond to lower (upper) trian-
gular matrices while the blocks on the diagonal are fully occupied.
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The exact structure is

F ll′ =

F(l−1)K+1,(l′−1)K+1 . . . F(l−1)K+1,l′K

...
. . .

...
FlK,(l′−1)K+1 . . . FlK,l′K

 ; Fi,j = −i


(G−1)++
i,j (G−1)+−

i,j

(G−1)−+
i,j (G−1)−+

i,j


.

(9.5)

Each element of these blocks still possesses a 2× 2 Keldysh substructure kept implicitly.
Due to ((iG)−1)±i,j = ((iG)−1)±i,j[S

±
i ], cf. Eq. (6.66), each block is in general dependent on

2K different pseudo-spins

F ll′ [S±(l−1)K+1, .., S
±
lK ] =: F ll′ [S⃗(l)] . (9.6)

We store them in vectors/arrays S⃗(l) which are elements of spin-sets of cardinality19 32K .

S⃗(l) := (S±(l−1)K+1, .., S
±
lK) ∈ S

(l) := S
+
(l−1)K+1 × S

−
(l−1)K+1 × · · · × S

+
lK × S

−
lK . (9.7)

Based on the block-wise spin dependence [cf. Eq. (9.5)] and the spin correlation relation
(9.3) we get a block-product cancellation rule which also holds if inverse blocks are involved

F ii′ [S⃗(i)]F jj′ [S⃗(j)] =


F ii′ F jj′ ; |i− j| ≤ K

0 ; |i− j| > K
. (9.8)

The block structure introduced together with the block-block correlation relation and the
spin-spin correlation relation [see Eq. (9.3)] are the fundamental ingredients to develop
an iterative scheme similar to the one for the Anderson model in [64]. Keep in mind that

Z[η] also depends on a bosonic part B[S⃗] which we will address later.

The idea of the ISPI-scheme is to perform a block wise Gaussian elimination on F under
application of the block-block correlation relation. In the end the matrix F is transformed
to an upper triangular matrix with respect to the K ×K-blocks. The determinant of F
therefore corresponds to the product of the determinants of all (transformed) K × K-
blocks on the diagonal. Due to the block-block correlation relation each of these blocks
will only depend on 4K different pseudo spins and therefore the summation in Eq. (6.66)
can be decoupled.

19Except for |S(1)| = 32K−2 due to the Keldysh boundary conditions.
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Gaussian elimination on F:

The whole Gaussian elimination scheme will be applied in time space. Therefore each
element still possesses a 2× 2 Keldysh substructure kept implicit and we are only dealing
with N × N block matrices from now on. The starting point of the elimination is F(1)

alias F itself. Whenever needed, we attach the iteration step as a subcript in brackets
to an object. The whole scheme will need NK = N/K transformations, performed by
a transformation-matrix L(l) with the convention that F(l+1) = L(l)F(l). The scheme is
finished when F(NK) is reached, which will be an upper triangular block matrix. Each
block has dimension K ×K in time space.

Let us begin with a definition on how to divide F(l) into a 2 × 2 block matrix in time
space with varying sizes for each iteration step l

F(l) =

α(l) β(l)

γ(l) δ(l)

 ; α(l) =

 (F(l))1,1 . . . (F(l))1,lK

...
. . .

...
(F(l))lK,1 . . . (F(l))lK,lK

 . (9.9)

Note that the definition of α(l) implies the definition of all other blocks. The transforma-
tion matrix is defined as

L(l) :=

 1lK 0

−γ(l)α
−1
(l) 1NK−lK

 ; det(L(l)) = 1 (9.10)

and performs one Gaussian elimination step from F(l) to F(l+1)

F(l+1) = L(l)F(l) =

α(l) β(l)

0 δ(l) − γ(l)α
−1
(l) β(l)

 . (9.11)

With respect to the 2 × 2 block matrix the element δ(l) − γ(l)α
−1
(l) β(l) is called Schur

complement. When the Gaussian elimination scheme is finished we can rewrite detF
based on the fact, that F(NK) is an upper diagonal block matrix with respect to K ×K
blocks in time space and that all applied transformation matrices have a determinant
equal one

detF = detF(NK) =

NK
i=1

det F ii
(NK) . (9.12)

This was the first step on the way to achieve a decoupling of the summations in Eq. (6.66).
We rewrote the determinant of one N × N matrix into a product of determinants of
K×K matrices. Due to the iterative construction of the Schur complements, all diagonal
blocks do in general still dependent on the complete spin-vector S⃗. A decoupling of the
summations of Eq. (6.66) is achieved by carefully inspecting the spin-dependencies and
applying the block-block correlation relation from Eq. (9.8) in each elimination step when
constructing the Schur-complement. For more insight the first two elimination steps are
presented in detail in the following. We start with F(1) grouped in the corresponding four



80 9. Extension of the ISPI scheme to the AH model

blocks

F(1) =



F 11
(1) F 12

(1) 0 . . . 0

F 21
(1) F 22

(1) F 23
(1)

. . .
...

0 F 32
(1) F 33

(1)

. . . 0

...
. . .

. . .
. . . F

NK−1NK
(1)

0 . . . 0 F
NKNK−1

(1) F
NKNK
(1)


≡

α(1) β(1)

γ(1) δ(1)

 .

The first elimination step transforms F(1) to

F(2) =



F 11
(1) F 12

(1) 0 · · ·

0 F 22
(1) − F 21

(1)(F
11
(1))

−1F 12
(1) F 23

(1) 0 · · ·

0 F 32
(1) F 33

(1) F 34
(1)

... 0 F 43
(1) F 44

(1)

. . .

...
. . .

. . .


≡

α(2) β(2)

γ(2) δ(2)

 .

Despite setting γ(1) = 0 we only get one replacement in the δ(1)-block

F 22
(2)[S⃗

(2), S⃗(1)] = F 22
(1)[S⃗

(2)]− F 21
(1)[S⃗

(2)](F 11
(1)[S⃗

(1)])−1F 12
(1)[S⃗

(1)] . (9.13)

In the next elimination step the block-block correlation enters the scheme and reduces
the spin dependencies

F(3) =



F 11
(1) F 12

(1) 0 · · ·

0 F 22
(2) F 23

(1) 0 · · ·

0 0 F 33
(3) F 34

(1)

...
... F 43

(1) F 44
(1)

. . .

...
. . .

. . .


≡

α(2) β(2)

0 δ(2) − γ(2)α
−1
(2)β(2)

 .

The application of the the block-block correlation relation (9.8) inside the second and all
upcoming Schur complements now leads to a consistent iterative scheme. In the actual
step, the dependence on S⃗(1) is canceled from F 33

(3)

F 33
(3)[S⃗

(2), S⃗(3)] = F 33
(1) − F 32

(1)(F
22
(2)✭✭✭✭✭✭✭✭✭
−F 21

(1)(F
11
(1))

−1F 12
(1))

−1F 23
(1) . (9.14)
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The complete factorization of det(F [S⃗]) including the spin dependence reads

det(F [S⃗]) =

NK
l=1

det F ll
(l)[S⃗

(l−1); S⃗(l)] =

NK
l=1

det F ll
(NK)[S⃗

(l−1); S⃗(l)] . (9.15)

All relevant remaining blocks are Schur-complements and obey the rule

F ll
(l)[S⃗

(l−1); S⃗(l)] = F lK,lK [S⃗(l)]−F lK,(l−1)K [S⃗(l)]

F (l−1)K,(l−1)K [S⃗(l−1)]

−1

F (l−1)K,lK [S⃗(l−1)] ,

in the sense that contributions coming from blocks F i,j with indices i, j /∈ {1, . . . , NK}
vanish. With this factorization of det(F [S⃗]) we achieved a decoupling of the spin depen-

dencies. This is also possible for the bosonic part det(B[S⃗]) which we derive next.

9.4 Construction of the ISPI scheme - bosonic part

Analyzing now the dependencies of det(B) from Eq. (6.56), one finds for the λ = 0 part

B0[S⃗] =

NK
i=1

B
(l)
0 [S⃗(l)] ; B

(l)
0 [S⃗(l)] =

lK
i=(l−1)K+1


σ=±


Sσi
2
e−iδtσϵ0

|Sσi |
. (9.16)

Although the λ ̸= 0 part of B seems to couple all spins with each other, we can again
exploit the truncation scheme to achieve a decoupling. Based on |S±i | ∈ {0,±1}, we write

Bλ[S⃗] = M |S⃗|2eS⃗
T (SΛS) S⃗ . (9.17)

Due to the spin-spin correlation length (9.3) and also motivated by the highly oscillatory
behavior of Λ [cf. Eq. (6.55)], it is justified to cut it consistently with Eq. (9.4) to band
structure. Consequently, also the product SΛS is reduced to a band structure since S is
diagonal

SΛS =


(SΛS)11 (SΛS)12

(SΛS)21 . . .
. . .

. . .
. . . (SΛS)NK−1NK

(SΛS)NKNK−1 (SΛS)NKNK

 . (9.18)

By analyzing the exponent of Eq. (9.17) with respect to its spin-dependencies

S⃗T (SΛS) S⃗ =

NK
i=1

S⃗(i+1)(SΛS)i+1,iS⃗(i) + S⃗(i)(SΛS)i,iS⃗(i) + S⃗(i)(SΛS)i,i+1S⃗(i+1) , (9.19)

we factorize Bλ

B
(l)
λ [S⃗(l+1), S⃗(l)] = M |S⃗(l)|2 eS⃗

(l+1)(SΛS)l+1,lS⃗(l)+S⃗(l)(SΛS)l,lS⃗(l)+S⃗(l)(SΛS)l,l+1S⃗(l+1)

, (9.20)
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keeping in mind the boundary condition (SΛS)NK+1,NK = (SΛS)NK ,NK+1 = 0. The whole
bosonic contribution to the generating function gets decoupled with respect to its spin
dependencies and factorizes

det(B[S⃗]) =

NK
l=1

B
(l)
λ [S⃗(l+1), S⃗(l)]B

(l)
0 [S⃗(l)]  

:=B(l)[S⃗(l+1),S⃗(l)]

. (9.21)

Each factor depends on maximal 2K spins and we use again the boundary condition
S⃗(N+1) = ∅ to shorten notations. Now we can collect everything to gain our final iterative
result. The number of summations needed is given in the red boxes

Z[η] =

S⃗∈S±N

detB[S⃗] · detF [S⃗, η] # = 32N−2

=


S⃗(NK )∈S(NK )

NK
l=1


S⃗(l−1)∈S(l−1)

B(l)[S⃗(l+1), S⃗(l)] detF ll
(l)[S⃗

(l−1); S⃗(l)] # =


NK −

8

9


32K .

(9.22)

Since the summation over all configurations of a spin-vector can be performed successively
and only runs over all combinations of a 2K-dimensional vector in each iterative step, the
numerical effort is dramatically reduced from 32N−2 →


NK − 8

9


· 32K summations.

9.5 Data handling, extrapolation and convergence

A priori, our numerical scheme is affected by two systematic errors. First we generate
a Trotter error, which appears in Eq. (6.21), when the short-time propagator is split
into noncommuting parts over a finite noninfinitesimal interval of length δt. Second, we
had to introduce a maximal memory time τc = Kδt for field-field correlations to partly
disentangle the spin-summations and hereby we introduced a “memory error”.

For a given set of physical parameters, i.e., (T/Γ, eV/Γ, λ/Γ, ϵ0/Γ), and fixed numerical
parameters, i.e., (δt, K), we obtain the tunneling current from Eq. (6.7). We explicitly
calculate the generating function in the presence as well as in the absence of the source
term η ≈ 10−3 and then perform a numerical derivative according to Eq. (6.7). This
yields a numerical value I = I(Kδt, δt) which is still afflicted with the two systematic
errors described above. We repeat this procedure for different values of K and δt while
keeping the physical parameters fixed and refer to the generated set of currents as raw
data for a single physical data point. An example of such a set of raw data is shown in
Fig. 9.2. To extract the physical single data point from this raw data set, we employ the
following systematic extrapolation procedure.

In contrast to Ref. [64], we use a least-dependence approach [77, 78] for the further
evaluation here. From Fig. 9.2 we see that for δtΓ ∈ [0.3, 0.4] the data points lie within a
few per cent range, also for δtΓ ∈ [0.18, 0.22]. For δtΓ ∈ [0.3, 0.35] the deviations among
the points are small as well. We take all currents computed for a given interval [δt,I , δt,F ]
and calculate the mean value

⟨I⟩[δt,I ,δt,F ] = N−1
I


I∈I[δt,I ,δt,F ]

I ; NI = | I[δt,I ,δt,F ] | ; I[δt,I ,δt,F ] = {I(Kδt, δt) | δt ∈ [δt,I , δt,F ]} .
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Figure 9.2: Raw data obtained by the ISPI scheme for the spinless AH
model. The parameters are (T = 0.33Γ, eV = 2.4Γ, λ = Γ, ω0 = Γ/2, ϵ0 = 0).
The boxes in the plot mark the three regions for which we have obtained
the current values, i.e., solid line box 0.3 ≤ δtΓ ≤ 0.35, dashed large box
0.3 ≤ δtΓ ≤ 0.4 and the small dashed box 0.18 ≤ δtΓ ≤ 0.22. The correspond-
ing IV characteristics is shown in the inset.

Usually we vary δtΓ within the interval using a step-size of 0.01. Together with the
corresponding standard deviation we get the ISPI value for the current and an error bar

IISPI[δt,I ,δt,F ] = ⟨I(Kδt, δt)⟩[δt,I ,δt,F ] ±

⟨I(Kδt, δt)2⟩[δt,I ,δt,F ] − ⟨I(Kδt, δt)⟩2[δt,I ,δt,F ] . (9.23)

Necessarily, all results presented later are obtained from the same δt-interval and
K ∈ {2, 3, 4}. In the inset of Fig. 9.2 we show as example one I(V ) data set averaged
over all three different intervals, precisely taking into account different amounts of
memory for the respective curves. Note that the color code of the data in the inset
corresponds to the colors of the rectangles marking raw-data points taken into account
for the different fit-ranges at one fixed voltage. Once, two or more curves match we are
sure that the data is converged. In the example 0.3 ≤ δtΓ ≤ 0.35 is sufficient, moreover
all results presented here are obtained within this memory window. As long as error bars
are not shown, they are in the order of the symbol size.

We were limited to K = 4 since the total number of summations is exponentially de-
pendent on it [cf. Eq. (9.22)]. For typical parameters and K = 4, our ISPI code yielding
a single raw-data point I(δt, K) runs for ≈ 11 CPU hours on a 2.93 GHz Xeon processor.
We already used special optimized libraries for matrix and vector operations but a further
parallelization of the code could increase its performance.
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10 Analytical approaches to the AH model

Before turning to a detailed discussion of our numerical results obtained from the ISPI
scheme, we briefly summarize the analytical approaches to the AH model that we employ
to benchmark our method. The following sections will explain each approach. Since our
ISPI approach is only valid for T > 0, we also present all necessary calculations to extend
some of the methods to finite temperature.

T > 0
ISPI

Γ≪ T
SEQT

PERT

NEBO

λ≪ Γ

ω0 ≪ Γ

Figure 10.1: Parameter regimes of the AH model, accessible by different an-
alytical approaches compared to ISPI. The abbreviations and exact limitations
of each approach are explained in the listing below.

(i) PERT: For λ ≪ Γ, perturbation theory in the electron-phonon coupling applies
and yields a closed IV expression for arbitrary values of all other parameters [79].
We note that the solution of the AH model with a very broad dot level [80, 81]
corresponds to this small-λ regime.

(ii) SEQT: For high temperatures, T ≫ Γ, a description in terms of a rate equation is
possible [35]. We here use the simplest sequential tunneling version with golden rule
rates [82]. For small λ, the corresponding results will match those of perturbation
theory, while in the opposite strong-coupling limit, the Franck-Condon blockade
occurs and implies a drastic current suppression at low bias voltage [51, 83].

(iii) NEBO: For small oscillator frequency, ω0 ≪ min(Γ, eV ), the nonequilibrium Born-
Oppenheimer (NEBO) approximation is controlled and allows to obtain I from a
Langevin equation for the oscillator [84, 85]. For small λ, this approach is also
consistent with perturbative theory, while for high T , NEBO and rate equation
results will be found to agree.

(iv) ISPI: For finite temperature T > 0 correlations within the relevant GF decay expo-
nentially and our ISPI approach is applicable (cf. 9.2). Despite this hard limit we
must assume the following soft limits: δ2

tω0Γ ≪ 1 and δ2
t ϵ0Γ ≪ 1 [cf. Eqs. (6.44)

and (8.5)]. For the leads δ2
t ϵkΓ ≪ 1 is required but always guaranteed by the cut-

off |ϵ| ≤ D = π
δt

and the limited δt range used. They are soft because increasing
computational power would allow for decreasing δt while keeping τc = Kδt constant
at the price of higher K.
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10.1 Perturbative expansion in the phonon coupling

In the regime of a small electron phonon coupling (λ ≪ Γ) we can compare the current
emerging from our ISPI approach with the results from a perturbation in λ, worked out
in Ref. [79]. Up to second order and in the limit of T = 0 the expressions for the resulting
current correction δI(λ) are given in [79]. Since our ISPI approach is not valid in the
regime T = 0 we need to compare to a perturbative result at finite temperature which we
develop in this section by following and extending the derivations from [79].

The analytic expression for the current given by Eq. (8.32) was derived from the Meir
Wingreen formula [Eq. (8.18)] which still holds in the presence of a phonon. The exact
retarded GF is unknown but obeys its own Dyson equation. By a diagrammatic expansion
of the self-energy up to the lowest nonvanishing order (∝ λ2) we get (see also [79])

GR = GR
0 +GR

0 ΣRGR = GR
0 +GR

0 ΣR
λ2GR

0 +O(λ3) . (10.1)

By inserting Eq. (10.1) into Eq. (8.18) we recover Eq. (8.32) plus a correction δI due to
the presence of the phonon. The corresponding self-energy corresponds to two diagrams
(tadpole and rainbow) but only the rainbow will give a contribution to the current, since
the effect of the tadpole can be absorbed by a shift in the chemical potential. The leading
correction from ΣR

λ2 is

δI(V ) = −eΓ
h


dω[nF (ω − µL)− nF (ω − µR)] Im


ΣR
λ2(ω)

(ω − ϵ0 + iΓ)2


. (10.2)

The denominator follows from the already known GF of the RL model [Eq. (8.30)]

(GR
0 (ω))2 = (G++

0 (ω)−G+−
0 (ω))2

=


ω − ϵ0 + iΓ(NF (ω)− 1)− iΓNF (ω)

(ω − ϵ0)2 + Γ2

2

=
1

(ω − ϵ0 + iΓ)2
. (10.3)

Like the retarded GF before, also the second order retarded self-energy is composed of
two Keldysh components of the full second order self-energy

ΣR
λ2(ω) = ΣT

λ2(ω) + Σ<
λ2(ω) = Σ++

λ2 (ω) + Σ+−
λ2 (ω) . (10.4)

The individual components are derived in Ref. [79] from a diagrammatic expansion leading
to their definition in terms of components of the full noninteracting GF G0(ω) and the
full GF of the “free” phonon GQ(ω)

Σ+±
λ2 (ω) = ±iλ2


dω′

2π
G+±
Q (ω′)G+±

0 (ω − ω′) . (10.5)

The GF of the “free” phonon is defined in a standard way as contour ordered displacement
correlator

GQ(t, t′) = −i⟨TC{Q̂(t)Q̂(t′)}⟩ . (10.6)
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The frequency representation follows by Fourier transformation

GQ(ω) = (nB(ω0) + 1)

 1
ω−ω0+iδ

− 1
ω+ω0−iδ −2πiδ(ω + ω0)

−2πiδ(ω − ω0)
1

ω+ω0+iδ
− 1

ω−ω0−iδ


+(nB(ω0))

 1
ω+ω0+iδ

− 1
ω−ω0−iδ −2πiδ(ω − ω0)

−2πiδ(ω + ω0)
1

ω−ω0+iδ
− 1

ω+ω0−iδ


. (10.7)

The explicit transformation is given in appendix B. The frequency integration within
Eq. (10.5) is also carried out in appendix B and we cite here only the final result (B.19)

ΣR
λ2(ω) = Σ++

λ2 (ω) + Σ+−
λ2 (ω)

=

s0=±1


s1=±1

λ2


nB(ω0) +

s0 + s1

2

  1
2
NF (−s1(ω − s0ω0))

ω − s0ω0 − ϵ0 + iΓ

+
is1

4π(ω − s0ω0 − ϵ0 − iΓ + s1iδ)
(Ψ (ϵ0 + iΓ)−Ψ (ω − s0ω0 + s1iδ)) (10.8)

− is1

4π(ω − s0ω0 − ϵ0 + iΓ + s1iδ)


Ψ̄ (ϵ0 − iΓ)− Ψ̄ (ω − s0ω0 + s1iδ)

 
.

The solution is based on the definition

Ψ(x) = ψ0


1

2
− βi

2π
(x− µL)


+ ψ0


1

2
− βi

2π
(x− µR)


(10.9)

Ψ̄(x) = ψ0


1

2
+
βi

2π
(x− µL)


+ ψ0


1

2
+
βi

2π
(x− µR)


, (10.10)

with ψ0(z) being the digamma function.

10.2 Sequential tunneling approximation

Using the sequential tunneling approximation for the spinless AH model allows to access
another limit of the parameter space, namely the limit Γ ≪ 1/β. The rate equation
approach we compare with was published in [86] and here we only summarize the exact
adoption to our model. Things get even simpler for our case compared to the model
studied in [86] since we neglect spin and have no external bath coupled to our system.
For convenience and better comparison we will introduce rescaled quantities to match
the definitions of the paper instead of rescaling all of their equations. The differences
emerge from a freedom of choice for the hybridization and the units used to describe the
oscillator position times its coupling constant. Introducing l0, the characteristic length of
the oscillator (which will later drop out again), we define

Γ̃α = 2Γα = 2πνα(ϵF )|tα|2 ; λ̃ =

√
2

l0
λ . (10.11)

The basic ingredient of this approach are the sequential tunneling rates which are derived
using Fermi’s golden rule like also done for the MSCT in the first part of the thesis.
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The steady state distribution PQ is defined by the master equation

˙⃗
P = WP⃗ = 0 ;


Q

PQ = 1 . (10.12)

The above master equation is quite simple because it describes the population of the dot
which can only be empty or full, corresponding to only two states |0⟩ and |1⟩.

P1

P0

W(1→0) W(0→1)

Figure 10.2: Schematic illustration of all levels and rates involved. The states
are labeled by their occupation probabilities PQ.

In contrast to the MSCT we can solve Eq. (10.12) analytically. We replace one redundant
rate equation by the normalization condition and get the exactly solvable system

−W(0→1) +W(1→0)

1 1


P0

P1


=


0
1


. (10.13)

The solution is given by

P0 =
W(1→0)

W(0→1) +W(1→0)

; P1 =
W(0→1)

W(0→1) +W(1→0)

. (10.14)

Let us now turn to the rates. Their computation in [86] starts with a polaron transforma-
tion followed by a golden rule calculation. The result are the lead dependent sequential
tunneling rates

W(0→1) =

α

Γα(0→1) ; Γα(0→1) = Γ̃α


dω

2π
F0(+ω)nF (+(ϵ̃0 + ω − µα)) , (10.15)

W(1→0) =

α

Γα(1→0) ; Γα(1→0) = Γ̃α


dω

2π
F0(−ω)nF (−(ϵ̃0 + ω − µα)) . (10.16)

Although the AH model used in [86] is spinful, the transition rates are the same like
for our spinless system. This stems from the fact, that Braig et al. assume to have
an infinite Coulomb repulsion energy and therefore a three state model with only single
occupied levels. The difference between the three state and two state approach enters in
the dimensionality of the master equation but not within the rates.
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Due to the polaron transformation used in Ref. [86], the rates are dependent on a level
energy ϵ̃0 which results from shifting ϵ0 by the polaron energy20 ϵP , with

ϵ̃0 = ϵ0 − ϵP ; ϵP =
1

2
λ̃l ; l =

λ̃

ω0

l20 . (10.17)

The function F0(ω) is defined by its Fourier transformation

F0(±ω) =

 ∞

−∞
e±iωtF0(t) ; F0(t) = ⟨e+ip0(t)le−ip0(0)l⟩ . (10.18)

For the spinless AH model without external bath F0(t) is given by

F0(t) = exp{g[(e+iω0t − 1)nB(+ω0)− (e−iω0t − 1)nB(−ω0)]} , (10.19)

with g being determined from the ratio of the classical displacement length and the
quantum mechanical oscillator length

g =
1

2


λ̃l0
ω0

2

. (10.20)

Braig et al. claim that the evaluation of F0(ω) from Eqs. (10.19) and (10.18) is equivalent
to the independent boson model [87], and thus the solution is given by

F0(ω) = 2π
∞

n=−∞

Pn(g)δ(ω − nω0) , (10.21)

where

Pn(g) = In


g

sinh(Ω)


enΩ−g coth(Ω) ; Ω =

βω0

2
(10.22)

and In is the modified Bessel function of the first kind. Inserting the solution into the
rates reduces them to the simple form

Γα(0→1) = Γ̃αñα ; Γα(1→0) = Γα(0→1)e
β(ϵ̃0−µα) , (10.23)

with

ñα =

 ∞

−∞

dω

2π
F0(ω)nF (ω + ϵ̃0) =

∞
n=−∞

Pn(g)nF (ϵ̃0 + nω0 − µα) . (10.24)

Knowing the rates and the occupation probabilities immediately yields the expression for
the current through the system from the net flow between the left lead and the dot21

IL = e(P0Γ
L
(0→1) − P1Γ

L
(1→0)) = −IR =

IL − IR
2

= I . (10.25)

Due to current conservation in the sequential tunneling picture this current is equivalent
to the symmetrized current computed by the ISPI method.

20The definition here is consistent with the one later used after back-substituting λ.
21Note that in the sequential tunneling picture the relation ṄL = −Ṅd holds between the lead and dot
occupation. The definition (10.25) is consistent with our initial current definition from Eq. (5.5).



90 10. Analytical approaches to the AH model

10.3 Slow phonon limit - Nonequilibrium

Born Oppenheimer approximation (NEBO)

The details of this approximation were developed in [88] and extended in [84]. We just
summarize the expressions needed to recover the data we later use for comparison to our
ISPI approach and refer to the original publication for more details.

In the limit ω0 ≪ Γ the electronic dynamics of the AH model are much faster than the
oscillation of the phonon mode and we can separate the timescales and apply a form of
Born-Oppenheimer approximation. From the viewpoint of the “fast” electronic system the
oscillator position only enters as a parameter which will slowly change in time. Therefore
the electron-phonon coupling is interpreted as a position dependent renormalization of
the level energy.

ϵλ(x) = ϵ0 + λx . (10.26)

Under these assumptions the electronic system is governed by an adiabatically changing
and position dependent GF which directly follows from Eq. (8.30) with the replacement
ϵ0 → ϵλ(x)

G±∓0,ad[ω, x] = ±2i

α

Γα
nF (±(ω − µα))

(ω − ϵλ(x))2 + Γ2
. (10.27)

On the other hand the electronic system influences the almost classical slow phonon-mode
and the oscillator is therefore governed by a Langevin equation in terms of the oscillators
coordinate x and a Gaussian noise field ξ(t)

mẍc + A(x)ẋ+mω0
2x = F (x) + ξ(t) . (10.28)

Despite the usual kinetic and potential terms, additionally a position-dependent force
F (x) and a damping A(x) enter in the equation of motion for the oscillator. Together
with the intensity D of the white noise (⟨ξ(t)ξ(t′)⟩ = D(X)δ(t − t′)) everything can be
expressed by the Keldysh components G±∓0,ad[ω, x] of the adiabatic electronic GF

F (x) = − λ

2πi


dω G+−

0,ad[ω, x] , (10.29)

A(x) = +
λ2

2π


dω G+−

0,ad[ω, x]∂ωG
−+
0,ad[ω, x] , (10.30)

D(x) = +
λ2

2π


dω G+−

0,ad[ω, x]G
−+
0,ad[ω, x] . (10.31)

The description of the dynamics in terms of a Langevin equation is equivalent to the
description by a Fokker-Planck-equation for the probability P(x, p, t) that at a given time
t the displacement and the momentum of the phonon mode are given by x and p = mẋ

∂tP = − p

m
∂xP − F (x)∂pP +

A(x)

m
∂p(pP) +

D(x)

2
∂2
pP ; P = P(x, p, t) . (10.32)

Due to the position dependence of the adiabatic electronic GF also the corresponding
spectral function becomes position dependent and from Eq. (8.18) we get a position
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dependent current formula

I(x) =
eΓ

h


dϵ

Γ

Γ2 + (ϵ− ϵ0 − λx)2


nF (ϵ− µL)− nF (ϵ− µR)


. (10.33)

By solving the Fokker Planck equation numerically and then averaging Eq. (10.33) over
the distribution P we get our final NEBO result for the current

I(t) =


dx dp P(x, p, t)I(x) . (10.34)

In the next sections we present extrapolated and converged numerical results, starting
from the noninteracting AH model as first check, then benchmarking against the other
analytical methods presented within this chapter and finally accessing the quantum co-
herent low temperature regime, inaccessible by any kind of perturbative approximation.
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11 Numerical results

All numerical results throughout this chapter are computed for the symmetric problem,
defined by µL = −µR = eV/2, and the hybridization strengths ΓL = ΓR = Γ/2.

11.1 Check against the RL model

We start with the noninteracting problem (λ = 0) and depict the result in Fig. 11.1, where
the symmetrized tunneling current I is shown as a function of the bias voltage V .

0 2 4 6 8
0

1

2

3

0 2 4 6 8
eV / Γ

0

0.5

1

1.5

2

2.5

3

3.5

I 
(e

Γ/
h)

ISPI
LB formula

0 2 4 6 8
0

0.5

1

1.5

2
T = 3 Γ

T = 1 Γ T = Γ/3

Figure 11.1: I(V ) characteristics of the RL model (ϵ0 = λ = ω0 = 0). The
ISPI data agrees well with the analytical λ = 0 result for different temperatures
and bias voltages.

The fixed parameters are in the main panel T = Γ, ϵ0 = λ = ω0 = 0. For the lower (upper)
inset only the temperature is changed to T = Γ/3 (T = 3Γ). The analytical results for
the RL model are given by Eq. (8.32) which is equal to the Landauer-Büttiker formula for
it. Figure 11.1 states excellent agreement between both. For T = 3 the overlap of ISPI
with the exact result is almost perfect and the small deviations for lower temperatures
reflect the fact that by lowering temperature and entering the deep quantum regime,
long range correlations become more important. Nevertheless our memory extrapolation
scheme works well and keeps these deviations small and controllable. Let us now turn to
the full interacting spinless AH model.
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11.2 Benchmark against approximative analytics

Next we show that the numerical ISPI results are consistent with different analytical the-
ories valid in special regions of the parameter space (cf. yellow corners in Fig. 10.1 and
see explanations at the beginning of chapter 10.) For clarity, we focus on a resonant level
with ϵ = 0 here.
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Figure 11.2: Current I (in units of eΓ/h) vs bias voltage eV (in units of Γ)
for λ = 0.5Γ, ω0 = Γ, ϵ = 0, and T = Γ. The ISPI data are depicted as filled
red circles, where the dotted red curve is a guide to the eye only and the error
bars are explained in the main text. We also show the results of perturbation
theory in λ (dashed black curve) and of the rate equation (solid blue curve).
The upper (lower) inset shows the corresponding result for T = 3Γ (T = Γ/3).

Let us start with the case of weak electron-phonon coupling, λ=0.5Γ. Figure 11.2 com-
pares our ISPI data for ω0 =Γ to the respective results of perturbation theory in λ and of
the rate equation. As expected, for this parameter choice, perturbation theory essentially
reproduces the ISPI data. The rate equation is quite accurate for high temperatures, but
quantitative agreement with ISPI was obtained only for T & 10Γ. Note that the ISPI
error bars increase when lowering T due to the growing memory time (τc) demands.

The effect of changing the phonon frequency ω0 is illustrated in Fig. 11.3, taking T = Γ
but otherwise identical parameters. Again perturbation theory is well reproduced. Next,
Fig. 11.4 shows ISPI results for a slow phonon mode, ω0 = Γ/2, with stronger electron-
phonon coupling, λ = Γ. In that case, perturbation theory in λ is not reliable and the rate
equation is only accurate at the highest temperature (T = 3Γ) studied, cf. the upper left
inset of Fig. 11.4. However, we observe from Fig. 11.4 that for such a slow phonon mode,
NEBO provides a good approximation for all temperatures and/or voltages of interest.
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Figure 11.3: Same as Fig. 11.2 but for ω0 = 0.5Γ (main panel) and ω0 = 2Γ
(inset), both for T = Γ.
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Figure 11.4: Same as Fig. 11.2 but for ω0 = 0.5Γ and λ = Γ. The main
panel is for T = Γ and compares the ISPI results to NEBO predictions. The
insets are for T = 3Γ and T = Γ/3, respectively, where also the rate equation
results are shown. Notice that in contrast to ISPI, the rate equation predicts
an unphysical current blockade for T = Γ/3.

We conclude that the ISPI technique is capable of accurately describing three different
analytically tractable parameter regimes.
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11.3 Franck-Condon (FC) blockade

Next we address the limit of strong electron-phonon coupling λ, where the rate equation
approach yields a FC blockade of the current for low bias and T ≫ Γ [83]. Sufficiently
large λ can be realized experimentally, and the FC blockade has indeed been observed in
suspended carbon nanotube quantum dots [51]. Before we proceed with our own results
we first provide a qualitative understanding of the physics behind the FC blockade from
a sequential tunneling picture, illustrated and explained in Fig. 11.5.

eVlow

S
~ λ

D

(a)

eVhigh

S D

(b)

ħω0

Figure 11.5: Schematic illustration of the FC blockade within a sequential
tunneling picture. Regime (a): Large displacement of the oscillator potential
for strong electron-phonon coupling (λ ≫ Γ). Regime (b): Weak electron-
phonon coupling (λ≪Γ). The shifted parabola (blue) represents a filled and
the unshifted (green) an empty dot level. The displacement originates from the
direct coupling of the phonon to the dot occupation [cf. Eq. (5.1)]. The shift
for λ≫ 1 in (a) suppresses the transitions between low-lying vibronic states
and thus causes the FC blockade of the current in a low-bias regime (eVlow).
In a high-bias regime (eVhigh) the same mechanism causes transitions to ex-
cited vibronic states (black vertical arrows) yielding vibrational sidebands and
a current. For regime (b) there is almost no displacement and thus higher vi-
bronic states stay almost orthogonal to the ground state and suppress sideband
excitations. Figure based on [51].

The schematic explanation of the Franck-Condon blockade within Fig. 11.5 is based on
some underlying assumptions. First of all one assumes a NEBO limit where electronic
transitions are much faster than the resulting shift of the oscillator to adapt to the changed
charge state. A factorization of the molecular wave function into a an electronic and a
vibronic part is justified in this limit and allows for the argumentation based on the
vibronic overlaps only. Second, the illustration from Fig. 11.5 only takes into account
sequential transitions. The FC blockade is most likely visible in a strong coupling regime,
where the displacement of the phonon mode for a charged electronic state with respect
to the empty electronic state is large [cf. Fig. 11.5 (a)], but not limited to this strong
interacting regime only.
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After this qualitative short description let us get back to our approach for the AH model.
For an unequilibrated phonon mode with intermediate-to-large λ, understanding the FC
blockade in the quantum-coherent low-temperature regime, T < Γ, is an open theoretical
problem. Here multiple phonon excitation and deexcitation effects imply a complicated
(unknown) nonequilibrium phonon distribution function, and the one-step tunneling in-
terpretation in terms of FC matrix elements between shifted oscillator parabolas [83] is
not applicable anymore. We study this question using our ISPI simulation, which auto-
matically takes into account quantum coherence effects.

0 2 4 6 8
eV / Γ

0

1

2

3

I 
/ (

eΓ
/h

)

 λ = 0.5Γ   Τ=0.2Γ
 λ = 1.5Γ
 λ = 2.5Γ
 λ = 3Γ
 λ = 4Γ

0 2 4 6 8
0

1

T = Γ

Figure 11.6: ISPI data for the IV curves from weak (λ = 0.5Γ) to strong
(λ = 4Γ) electron-phonon coupling, with ω0 = 2Γ. The main panel is for
T = 0.2Γ, the inset for T = Γ. We used a dense voltage grid yielding smooth
IV curves. Error bars are not shown but remain small, cf. Fig. 11.2.

In Fig. 11.6, the crossover from weak to strong electron-phonon coupling λ is consid-
ered. The inset shows IV curves for T = Γ, where we observe a current blockade for low
voltages once λ & 2Γ. The blockade becomes more pronounced when increasing λ and
is lifted for voltages above the polaron energy λ2/ω0 [83]. Remarkably, the FC block-
ade persists and becomes even sharper as one enters the quantum-coherent regime (here,
T = 0.2Γ), despite of the breakdown of the sequential tunneling picture. We also observe
a nonequilibrium smearing of phonon step features in the IV curves in Fig. 11.6, cf. also
Refs. [51, 83].
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12 Conclusions

We have extended the iterative simulation of path integrals (ISPI) technique to the
Anderson-Holstein model, which is the simplest nonequilibrium model for quantum dots
or molecules with an intrinsic bosonic (phonon) mode. Our formulation exploits a map-
ping to an effective three-state system which could also be of interest to quantum Monte
Carlo schemes. A main difference to the ISPI scheme from [64] is the usage of discrete
Green’s functions, directly constructed from the real-time path-integral approach instead
of gaining them by discretizing continuous Green’s functions. We demonstrated how to
overcome divergence and convergence problems resulting from the need to use the leads
self-energy as stand alone object instead of the full Green’s function of the RL model
like done in [64]. Extending the ISPI approach from the spinful Anderson model includ-
ing Coulomb interaction on the dot to the spinless Anderson-Holstein model involving
a phonon mode demonstrated also the capability of the ISPI approach to handle inter-
actions which are nonlocal in time. We carefully checked our scheme against the exact
solution of the RL model remaining from the AH model in the noninteracting limit and
reproduced three analytical approximations valid in different parameter regions of the full
interacting AH model. Namely a sequential tunneling approach, a perturbation in the
electron-phonon coupling and a nonequilibrium Born Oppenheimer approximation. Our
extension of the ISPI approach to the Anderson-Holstein model captures the full crossover
between those limits unless both T and V are very small. For a strong electron-phonon
coupling and an unequilibrated phonon mode, we find that the Franck-Condon blockade
becomes even more pronounced as one enters the quantum coherent regime inaccessible
by the three analytical theories. Despite the presented extension of the ISPI scheme and
the results shown, there are still open questions. We only presented on resonance results
(ϵ0 = 0) since we still encounter difficulties in perfectly reproducing expected symmetries
like I(ϵ0) = I(−ϵ0) for the RL model within the accessible parameter space of ISPI. We
can overcome these problems by smaller δt values within the direct current method which
ensures that our defined objects are correct but limits us in memory time. A possible
way to improve our scheme to become more symmetric could be the usage of a symmet-
ric trotter breakup instead of the naive one, but this might also complicate the iterative
scheme and give rise to other complications. Despite of these technical aspects an increase
of computational power in the form of more CPUs or an intrinsic parallelization of the
code will extend the possible memory-time τc and provide further access into the deep
quantum regime of the AH model. For a complete review about the ISPI method we also
recommend [65] which is to be published soon.
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A Regularization scheme for cotunneling rates

The infinitesimal complex parts 0+ introduced during the rate derivation in chapter 2.2.1
are now replaced by Γ̃1,2 which reflects the fact, that two different sequential transitions
are broadened and virtually involved in each cotunneling rate. Despite this replacement
the rates still have to be understood in the limit Γ̃1,2 → 0.

A.1 General structure of the cotunneling rates

The elastic cotunneling rate, transferring an electron from lead j to lead −j (without
changing the dot-state) becomes

Γ
(EC)
j,Q =

ΓLΓR
8π


dϵ nF [+(ϵ− µj)]nF [−(ϵ− µ−j)] (A.1)

×

 1

ϵ− ϵ(Q→Q+1) + iΓ̃1

− 1

ϵ− ϵ(Q→Q−1) − iΓ̃2


2

.

The inelastic local j = j′:


sjj′ = +1
ρjj′ = 1/2


and nonlocal j ̸= j′:


sjj′ = −1
ρjj′ = 1


rates are

Γ
(AR)
j,j′,Q→Q±2 = ρjj′

ΓjΓj′

8π


dϵ nF [±(ϵ− µj)]nF [±(ϵ(Q→Q±2) − ϵ− µj′)]

×

 1

ϵ− ϵ(Q→Q±1) ± iΓ̃1

− sjj′

ϵ(Q±1→Q±2) − ϵ± iΓ̃2


2

. (A.2)

All cotunneling rates are based on the same integral K =

dϵ κ(ϵ) after introducing

κ(ϵ) = nF [α(ϵ− µ1)]nF [α(ϵ(a) − ϵ− µ2)]

 1

ϵ− ϵ(b) + αiΓ̃1

− s

ϵ(c) − ϵ+ αiΓ̃2


2

. (A.3)

Note that we will later exploit the fact that α, s ∈ {±} holds and therefore their square
equals one. The exact mapping of the rates to this generalized integral is

Γ
(EC)
j,Q =

ΓLΓR
8π

K8<: α = 1 ; µ1 = µj ; µ2 = −µ−j ; s = −1
ϵ(a) = 0 ; ϵ(b) = ϵ(Q→Q+1) ; ϵ(c) = ϵ(Q→Q−1)

9=;
, (A.4)

Γ
(AR)
j,j′,Q→Q±2 = ρjj′

ΓjΓj′

8π
K8<: α = ± ; µ1 = µj ; µ2 = µj′ ; s = sjj′

ϵ(a) = ϵ(Q→Q±2) ; ϵ(b) = ϵ(Q→Q±1) ; ϵ(c) = ϵ(Q±1→Q±2)

9=;
. (A.5)

In the next section we deduce the regularization scheme needed for nondivergent cotun-
neling rates in the limit Γ̃1,2 → 0.
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A.2 Isolation of divergent residuals

The denominator of Eq. (A.3) has leading order ϵ2 and allows for applying residual theory
and therefore isolating the divergences in terms of single divergent residual contributions.
After choosing a positive/negative oriented closed contour in the upper/lower complex
plane including the real axis and enclosing the poles

ϵ±(b) = ϵ(b) ± iαΓ̃1 ; ϵ±(c) = ϵ(c) ± iαΓ̃2

ϵ±0,a(n) = µ1 ± i
π

αβ
(2n+ 1) ; ϵ±0,b(n) = ϵ(a) − µ2 ± i

π

αβ
(2n+ 1) ; n ∈ N0,

the general (divergent) solution of the integral is the average of both contour-integrations:

K =
1

2


s=±

(Ks
div +Ks

reg) ; K±
div = ±2πi


Res(κ, ϵ±(b)) + Res(κ, ϵ±(c))


K±
reg = ±2πi

∞
n=0

Res(κ, ϵ±0,a(n)) + Res(κ, ϵ±0,b(n)) .

In principle the average is not necessary here but turns out to be useful, because calcula-
tions involve more symmetries to exploit and we stay consistent with [37] where the same
idea is used for regularization. The argumentation to justify the regularization scheme is
the following: the divergence is only caused by the four residuals

Res(κ, ϵ±(b)) =
±i

(ϵ(c) − ϵ(b))∓ iα


(1 + 2s)Γ̃1 − Γ̃2


/ 2αΓ̃1

eαβ(ϵ(b)−µ1) + e∓iβΓ̃1
 
eαβ(ϵ(a)−ϵ(b)−µ2) + e±iβΓ̃1


(ϵ(b) − ϵ(c) ± iα(Γ̃1 − Γ̃2))

Res(κ, ϵ±(c)) =
±i

((ϵ(b) − ϵ(c))∓ iα


(1 + 2s) Γ̃2 − Γ̃1


)

/ 2αΓ̃2

eαβ(ϵ(c)−µ1) + e∓iβΓ̃2
 
eαβ(ϵ(a)−ϵ(c)−µ2) + e±iβΓ̃2


(ϵ(c) − ϵ(b) ± iα(Γ̃2 − Γ̃1))

.

They can be approximated22 by their leading order in O(1/Γ̃1,2) for Γ̃1,2 → 0:

K±
div=

π

αΓ̃1

nF [α(ϵ(b) − µ1)]nF [α(ϵ(a) − ϵ(b) − µ2)]

+
π

αΓ̃2

nF [α(ϵ(c) − µ1)]nF [α(ϵ(a) − ϵ(c) − µ2)] +O(Γ̃1,2) .

The remaining contributions to the integral are all nondivergent and encoded in Kreg,
evaluated later. Having now the exact expression for Kdiv we have to justify why it is
physically necessary to omit this part in the rates.

22Anyway one can also show that the O(1/Γ̃1,2) terms will cancel each other and do not contribute to K
at all.
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A.3 The regularization scheme - Physical motivation

The idea from [37], is to argue that whatever is explicitly chosen for Γ̃1,2 must be con-
structed out of sequential rates and therefore has a leading order of Γ. Plugging this into
the divergent part of the cotunneling rates, reduces their leading order from Γ2 to only
Γ. But this corresponds per definition to something in first order, which is already fully
included in the sequential rates. Since the limit Γ̃1,2 will be performed for the nondiver-
gent part, the exact expression for Γ̃1,2 is not of interest, and the rates using Kreg in the
limit of Γ̃1,2 → 0 are the desired regularized rates.

A numerical and analytical verification of this way of regularization is given in section
2.4.1, where we have computed the linear conductance for Ec = 0 from the regularized
rates analytically and numerically and compared it to the exact solution from Eq. (2.76)
and found a very good agreement.

A.4 The regularized integral

From the two Fermi-distributions we get the following infinite sets of residues from their
poles located in the upper/lower complex plane dependent on the choice of the +/− sign

Res(κ,ϵ±0,a(n)) = +
nB[α(ϵ(a) − µ1 − µ2)]

αβ
(A.6)

×
iπ(2n+1)(1+s)

αβ
∓

ϵ(c) + ϵ(b)s− µ1(1 + s)± iα(Γ̃1s− Γ̃2)




iπ
αβ

(2n+ 1)∓ (ϵ(b) − µ1 ± iαΓ̃1)


iπ
αβ

(2n+ 1)∓ (ϵ(b) − µ1 ∓ iαΓ̃1)


×
iπ(2n+1)(1+s)

αβ
∓

ϵ(c) + ϵ(b)s− µ1(1 + s)∓ iα(Γ̃1s− Γ̃2)




iπ
αβ

(2n+ 1)∓ (ϵ(c) − µ1 ± iαΓ̃2)


iπ
αβ

(2n+ 1)∓ (ϵ(c) − µ1 ∓ iαΓ̃2)
 ,

Res(κ,ϵ±0,b(n)) = −
nB[α(ϵ(a) − µ1 − µ2)]

αβ
(A.7)

×
iπ(2n+1)(1+s)

αβ
±

ϵ(a)(1 + s)− ϵ(b)s− ϵ(c) − µ2(1 + s)∓ iα(Γ̃1s− Γ̃2)




iπ
αβ

(2n+ 1)± (ϵ(a) − ϵ(b) − µ2 ∓ iαΓ̃1)


iπ
αβ

(2n+ 1)± (ϵ(a) − ϵ(b) − µ2 ± iαΓ̃1)


×
iπ(2n+1)(1+s)

αβ
±

ϵ(a)(1 + s)− ϵ(b)s− ϵ(c) − µ2(1 + s)± iα(Γ̃1s− Γ̃2)




iπ
αβ

(2n+ 1)± (ϵ(a) − ϵ(c) − µ2 ∓ iαΓ̃2)


iπ
αβ

(2n+ 1)± (ϵ(a) − ϵ(c) − µ2 ± iαΓ̃2)
 .

Inserting these residuals in Kreg = limΓ̃1,2→0(K
+
reg + K−

reg)/2 will result in a sum of con-
vergent series.
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Based on the identity 8.363 (3.) from [74]

∞
n=0


1

y + k
− 1

x+ k


= ψ0(x)− ψ0(y) (A.8)

it is possible to express Kreg in terms of the digamma-function ψ0 and it’s derivative, the
trigamma-function ψ1:

lim
Γ̃1,2→0

K±
reg,a = ±2πi

∞
n=0

lim
Γ̃1,2→0

Res(κ, ϵ±0,a) = nB[α(ϵ(a) − µ1 − µ2)] (A.9)

×


2s

(ϵ(b) − ϵ(c))


ψ0


1

2
± iαβ

2π
(ϵ(c) − µ1)


− ψ0


1

2
± iαβ

2π
(ϵ(b) − µ1)


± αβ

2πi


ψ1


1

2
± iαβ

2π
(ϵ(c) − µ1)


+ ψ1


1

2
± iαβ

2π
(ϵ(b) − µ1)



lim
Γ̃1,2→0

K±
reg,b = ±2πi

∞
n=0

lim
Γ̃1,2→0

Res(κ, ϵ±0,b) = nB[α(ϵ(a) − µ1 − µ2)] (A.10)

×


2s

(ϵ(c) − ϵ(b))


ψ0


1

2
± iαβ

2π
(ϵ(c) − ϵ(a) + µ2)


− ψ0


1

2
± iαβ

2π
(ϵ(b) − ϵ(a) + µ2)


∓ αβ

2πi


ψ1


1

2
± iαβ

2π
(ϵ(c) − ϵ(a) + µ2)


+ ψ1


1

2
± iαβ

2π
(ϵ(b) − ϵ(a) + µ2)


.

By introducing shorthand notations with z∗ being the complex conjugated of z

Reψ0[z] :=
1

2
(ψ0[z] + ψ0[z

∗]) ; Imψ1[z] :=
1

2i
(ψ1[z]− ψ1[z

∗]) (A.11)

and adding everything we end up at the final compact and regularized version of K:

Kreg = nB[α(ϵ(a) − µ1 − µ2)] (A.12)

×


2s

(ϵ(b) − ϵ(c))


Reψ0


1

2
+

iαβ

2π
(ϵ(c) − µ1)


− Reψ0


1

2
+

iαβ

2π
(ϵ(b) − µ1)


+
αβ

2π


Imψ1


1

2
+

iαβ

2π
(ϵ(c) − µ1)


+ Imψ1


1

2
+

iαβ

2π
(ϵ(b) − µ1)


+

2s

(ϵ(c) − ϵ(b))


Reψ0


1

2
+

iαβ

2π
(ϵ(c) − ϵ(a) + µ2)


− Reψ0


1

2
+

iαβ

2π
(ϵ(b) − ϵ(a) + µ2)


−αβ

2π


Imψ1


1

2
+

iαβ

2π
(ϵ(c) − ϵ(a) + µ2)


+ Imψ1


1

2
+

iαβ

2π
(ϵ(b) − ϵ(a) + µ2)


.



A.5. Special limits 107

A.5 Special limits

Let us now also compute several limits of this expression. First there is still a singularity
inside the Bose-distribution. Whenever this singularity is hit we switch to the following
expression:

lim
ϵ(a)→(µ1+µ2)

Kreg =
s

(ϵ(b) − ϵ(c))π


Imψ1


1

2
+

iαβ

2π
(ϵ(b) − µ1)


− Imψ1


1

2
+

iαβ

2π
(ϵ(c) − µ1)


+
αβ

4π2


Reψ2


1

2
+

iαβ

2π
(ϵ(b) − µ1)


+ Reψ2


1

2
+

iαβ

2π
(ϵ(c) − µ1)


.

Secondly by carefully taking the limits ϵ(b) → ϵ(c) and E0,2 → 0 we get the regularized
Ec = 0 result used in section 2.4.1:

Kreg|Ec=0 = lim
E0,2→0


lim

ϵ(b)→ϵ(c)
Kreg


(A.13)

=

1 + nB[α(µ1 + µ2)]

αβ(1 + s)

π


Imψ1


1

2
+ i

αβ

2π
µ1


+ Imψ1


1

2
+ i

αβ

2π
µ2


.

It only gives a contribution for s ̸= −1, i.e., only processes not involving both leads
can contribute in the Ec = 0 case. This can also be seen directly from Eq. (A.3) in
the limit Ec → 0 and accordingly Γ̃1,2 → Γ̃. Again there is a singularity inside the
Bose-distribution, and in the case when it is hit we will switch to the limit

lim
µ2→−µ1


Kreg|Ec=0


=
αβ(1 + s)

2π2


Reψ2


1

2
+ i

αβ

2π
µ1


. (A.14)
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B Perturbation theory at finite temperature

B.1 Green’s function of the “free” phonon

B.1.1 Time representation

We start from the standard definition with time-arguments defined on the Keldysh contour

GQ(t, t′) = −i⟨TC{Q̂(t)Q̂(t′)}⟩ ≡


G++
Q G+−

Q

G−+
Q G−−Q


≡


GTQ(t, t′) G<

Q(t, t′)

G>
Q(t, t′) GT̃Q(t, t′)


. (B.1)

The time evolution of the position operators follows from Heisenberg’s equation of motion

Q̂(t) = b̂(t) + b̂†(t) ; b̂(t) = b̂ e−iω0t ; b̂†(t) = b̂†e+iω0t . (B.2)

As example we now write down the causal Green’s function of the phonon:

GT
Q(t, t′) = −i⟨T{Q̂(t)Q̂(t′)}⟩ = −i


θ(t− t′)⟨Q̂(t)Q̂(t′)⟩+ θ(t′ − t)⟨Q̂(t′)Q̂(t)⟩


. (B.3)

The individual correlators can be directly evaluated in terms of the Bose-distribution, e.g.

⟨Q̂(t)Q̂(t′)⟩ = ⟨(b̂ e−iω0t + b†e+iω0t)(b̂ e−iω0t′ + b†e+iω0t′)⟩
= ⟨b̂ b̂†⟩e−iω0(t−t′) + ⟨b̂†b̂⟩e+iω0(t−t′)

= (nB(ω0) + 1)e−iω0(t−t′) + nB(ω0)e
+iω0(t−t′) . (B.4)

Analogously we get

⟨Q̂(t′)Q̂(t)⟩ = (nB(ω0) + 1)e+iω0(t−t′) + nB(ω0)e
−iω0(t−t′) . (B.5)

Collecting all terms leads to the full Keldysh component

GT
Q(t, t′) = −i


(nB(ω0) + 1)e−iω0|t−t′| + nB e

+iω0|t−t′|

. (B.6)

All other Keldysh components are derived similarly and we end up with

iGQ(t, t′) = (nB(ω)+1)


e−iω0|t−t′| e+iω0(t−t′)

e−iω0(t−t′) e+iω0|t−t′|


+nB(ω)


e+iω0|t−t′| e−iω0(t−t′)

e+iω0(t−t′) e−iω0|t−t′|


. (B.7)

B.1.2 Frequency representation

For the computation of the self-energy correction according to Eq. (10.5) we need the
Fourier transform of GQ(t, t′). Since it only depends on time differences we substitute
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(t − t′) → t. The Fourier transform will only affect the phase factors. The off-diagonal
components are again simple and follow from

−i

dt eiωte±iω0t = −2πiδ(ω ± ω0) . (B.8)

For the diagonal ones we need again a functional representation of the Heaviside step
function

θ(t) = − lim
δ→0


dx

2πi

e−ixt

x+ iδ
. (B.9)

We get:

−i

dt eiωte±iω0|t| = −i


dt

θ(t)ei(ω±ω0)t + θ(−t)ei(ω±ω0)t


=

1

2π


dx

x+ iδ


dt

ei(ω±ω0−x)t + ei(ω±ω0+x)t


=


dx

x+ iδ
{δ(ω ± ω0 − x) + δ(ω ± ω0 + x)}

=
1

ω ± ω0 + iδ
− 1

ω ∓ ω0 − iδ
. (B.10)

Finally, the complete bosonic Green’s function in frequency space reads:

GQ(ω) = (nB(ω0) + 1)

 1
ω−ω0+iδ

− 1
ω+ω0−iδ −2πiδ(ω + ω0)

−2πiδ(ω − ω0)
1

ω+ω0+iδ
− 1

ω−ω0−iδ


+(nB(ω0))

 1
ω+ω0+iδ

− 1
ω−ω0−iδ −2πiδ(ω − ω0)

−2πiδ(ω + ω0)
1

ω−ω0+iδ
− 1

ω+ω0−iδ


. (B.11)

Due to ω0 > 0 and by setting nB(ω0) = −θ(−ω0) = 0 reproduces the correct T = 0
Green’s function used in [79].

B.2 The second order retarded self-energy

In this section we perform all integrations needed to get the the second order retarded
self-energy ΣR

λ2(ω) = Σ++
λ2 (ω) + Σ+−

λ2 (ω) at finite temperature by solving

Σ+±
λ2 (ω) = ±iλ2


dΩ

2π
G+±
Q (Ω)G+±

0 (ω − Ω) . (B.12)

B.2.1 The causal component of the self energy

We start with the causal component, defined by

Σ++
λ2 (ω) = iλ2


dΩ

2π
G++
Q (Ω)G++

0 (ω − Ω)

= iλ2


s0,s1=±

s1


nB(ω0) +

s0 + s1

2

  dΩ

2π

G++
0 (ω − Ω)

Ω− s0ω0 + s1iδ  
:=I0[s0,s1]

. (B.13)
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The solution of I0[s0, s1] will be carried out later, but we already state the result:

I0[s0, s1] =
iNF (ω − s0ω0)

2(ω − s0ω0 − ϵ0 + s1iΓ)
− δs1,1i(ω − s0ω0 − ϵ0 − iΓ)

(ω − s0ω0 − ϵ0)2 + Γ2

+
1

4π(ω − s0ω0 − ϵ0 − iΓ)
(Ψ (ϵ0 + iΓ)−Ψ (ω − s0ω0))

− 1

4π(ω − s0ω0 − ϵ0 + iΓ)


Ψ̄ (ϵ0 − iΓ)− Ψ̄ (ω − s0ω0)


. (B.14)

The above result involves the definition

Ψ(x) = ψ0


1

2
− βi

2π
(x− µL)


+ ψ0


1

2
− βi

2π
(x− µR)


(B.15)

Ψ̄(x) = ψ0


1

2
+
βi

2π
(x− µL)


+ ψ0


1

2
+
βi

2π
(x− µR)


, (B.16)

based on the digamma function ψ0(z).

B.2.2 The lesser component of the self-energy

We can now write Σ+−
λ2 in a form, analogous to (B.13)

Σ+−
λ2 (ω) = −iλ2


dΩ

2π
G+−
Q (Ω)G+−

0 (ω − Ω)

= −iλ2


dΩ

2π

2πΓNF (ω − Ω)

(ω − Ω− ϵ0)2 + Γ2


(nB(ω0) + 1)δ(Ω + ω0) + nB(ω0)δ(Ω− ω0)


= −iΓλ2


(nB(ω0) + 1)NF (ω + ω0)

(ω + ω0 − ϵ0)2 + Γ2
+
nB(ω0)NF (ω − ω0)

(ω − ω0 − ϵ0)2 + Γ2


= iλ2


s0,s1=±1

s1


nB(ω0) +

s0 + s1

2

 δs1,−1ΓNF (ω − s0ω0)

(ω − s0ω0 − ϵ0)2 + Γ2
. (B.17)

B.2.3 The retarded self-energy

Let us first calculate an auxiliary relation

iNF (ω − s0ω0)

2(ω − s0ω0 − ϵ0 + s1iΓ)
− δs1,1i(ω − s0ω0 − ϵ0 − iΓ)

(ω − s0ω0 − ϵ0)2 + Γ2
+

δs1,−1ΓNF (ω − s0ω0)

(ω − s0ω0 − ϵ0)2 + Γ2

=
1

(ω − s0ω0 − ϵ0)2 + Γ2


δs1,1

i

2
NF (ω − s0ω0)(ω − s0ω0 − ϵ0 − iΓ)− δs1,1i(ω − s0ω0 − ϵ0 − iΓ)

+δS1,−1
i

2
NF (ω − s0ω0)(ω − s0ω0 − ϵ0 + iΓ) + δS1,−1ΓNF (ω − s0ω0)


=

1

(ω − s0ω0 − ϵ0)2 + Γ2


δs1,1

i

2
[NF (ω − s0ω0)− 2](ω − s0ω0 − ϵ0 − iΓ)

+δS1,−1
i

2
NF (ω − s0ω0)(ω − s0ω0 − ϵ0 − iΓ)


=

i

2
[−s1NF (−s1(ω − s0ω0))]

ω − s0ω0 − ϵ0 + iΓ
. (B.18)
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Now we can collect everything and arrive at the final result for the retarded self-energy:

ΣR
λ2(ω) = Σ++

λ2 (ω) + Σ+−
λ2 (ω)

=

s0=±1


s1=±1

λ2


nB(ω0) +

s0 + s1

2

  1
2
NF (−s1(ω − s0ω0))

ω − s0ω0 − ϵ0 + iΓ

+
is1

4π(ω − s0ω0 − ϵ0 − iΓ)
(Ψ (ϵ0 + iΓ)−Ψ (ω − s0ω0)) (B.19)

− is1

4π(ω − s0ω0 − ϵ0 + iΓ)


Ψ̄ (ϵ0 − iΓ)− Ψ̄ (ω − s0ω0)

 
.

In the next sections we perform the still missing integrations.

B.3 Solving the remaining integrals

In this appendix we will solve I0[s0, s1] using residual theory. Remember the definition:

I0[s0, s1] =


dΩ

2π

G++
0 (ω − Ω)

Ω− s0ω0 + s1iδ
; s0,1 = ±1 . (B.20)

For simplifying the calculation, we first split up

G++
0 (ω−Ω) =

ω − Ω− ϵ0 + iΓ(NF (ω − Ω)− 1)

(ω − Ω− ϵ0)2 + Γ2
=

1

ω − Ω− ϵ0 + iΓ
+

iΓNF (ω − Ω)

(ω − Ω− ϵ0)2 + Γ2
,

and rewrite I0[s0, s1] := I1[s0, s1]+I2[s0, s1] as sum of two integrals to be solved separately
within the next two sections.

Solving I1[s0, s1]

The integral we want to solve is

I1[s0, s1] =


dΩ

2π

−1

Ω− (s0ω0 − s1iδ)

1

Ω− (ω − ϵ0 + iΓ)
. (B.21)

We use residual theory since the denominator has leading order Ω2 and therefore the
integrand vanishes for integrating from infinity to minus infinity over a semicircle with
infinite radius. This can be shown using the parametrization

Ω(φ) = Reiφ → dΩ = R i eiφdφ (B.22)

and a general polynomial of degree two:
semicircle

dΩ
1

aΩ2 + bΩ + c
= lim

R→∞

 2π

0

dφ
R i eiφ

aR2 e2iφ + bR eiφ + c

= lim
R→∞

 2π

0

dφ
1

R

i eiφ

a e2iφ + 1
R
beiφ + c

R2

= 0 . (B.23)
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Since the same argumentation is valid for the lower semicircle one can choose one of them.
The integrand of I1[s0, s1] has two simple poles

Ω1[s0, s1] = s0ω0 − s1iδ ; Ω2 = ω − ϵ0 + iΓ (B.24)

which correspond to the following residues:

Res(Ω1) = lim
Ω→Ω1

−1

2π

Ω− Ω1

(Ω− Ω1)(Ω− Ω2)
= − 1

2π(Ω1 − Ω2)
, (B.25)

Res(Ω2) = lim
Ω→Ω2

−1

2π

Ω− Ω2

(Ω− Ω1)(Ω− Ω2)
= +

1

2π(Ω1 − Ω2)
. (B.26)

The pole of Ω1[s0,−1] and of Ω2 are in the upper half-plane and the pole of Ω1[s0,+1] is
in the lower half-plane. Choosing a closed contour along the real axis and in the upper
half-plane with positive orientation, the integral is:

I1[s0,+1] = 2πi(Res(Ω2)) = − i

ω − s0ω0 − ϵ0 + iΓ + iδ
, (B.27)

I1[s0,−1] = 2πi(Res(Ω1) + Res(Ω2)) = 0 . (B.28)

Solving I2[s0, s1]

The first step is to do a partial fraction decomposition on the integrand of I2[s0, s1], which
can be done in a symmetric way. (Note that s1 is written as ± and NF is decomposed
with respect to its lead dependence

I2[s0,±] =


α=L/R


dΩ

2π

1

Ω− (s0ω0 ∓ iδ)

iΓnF (ω − Ω− µα)
(ω − Ω− ϵ0)2 + Γ2

=


α=L/R

Iα2 [s0,±] . (B.29)

The substitution ω − Ω = x leads to

Iα2 [s0,±] =


dx

2π

1

ω − s0ω0 ± iδ − x
iΓnF (x− µα)
(x− ϵ0)2 + Γ2

. (B.30)

The poles of the integrand are:

x±0 = ω − s0ω0 ± iδ ; x±1 = ϵ0 ± iΓ ; x±2 = ±iπ
β

(2n+ 1) + µα . (B.31)

After a partial fraction decomposition

Iα2 [s0,±] = −


dx

2π

iΓnF (x− µα)
(x− x±0 )(x− x+

1 )(x− x−1 )

= −


dx

2π

iΓ

2iΓ


nF (x− µα)

(x− x±0 )(x− x+
1 )  

g+(x)

− nF (x− µα)
(x− x±0 )(x− x−1 )  

g−(x)


(B.32)
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we need the following residues:

Res(g+, x±0 ) =
nF (x±0 − µα)
x±0 − x+

1

; Res(g−, x±0 ) =
nF (x±0 − µα)
x±0 − x−1

(B.33)

Res(g+, x−2 ) = − 1

β

1

(x−2 − x±0 )(x−2 − x+
1 )

; Res(g−, x+
2 ) = − 1

β

1

(x+
2 − x±0 )(x+

2 − x−1 )
.

All poles are of first order. For example the last residuum follows from:

Res(g−, x+
2 ) = lim

x→x+
2

(x− x+
2 )nF (x− µα)

(x− x±0 )(x− x−1 )
=

1

(x+
2 − x±0 )(x+

2 − x−1 )
lim
η→0

η

eβ(x+
2 +η) + 1

=
1

(x+
2 − x±0 )(x+

2 − x−1 )
lim
η→0

η

−eβη + 1
= − 1

β

1

(x+
2 − x±0 )(x+

2 − x−1 )
. (B.34)

Following the same argumentation as for I1 we choose a semicircle contour C+(−) in the
upper (lower) half of the complex plane for the integration of g−(+). The upper (lower)
contour has a winding number of +(-)1 and we end up with:

Iα2 [s0,±] = − 1

4π


C−�

nF (x− µα)
(x− x±0 )(x− x+

1 )
−

C+

	

nF (x− µα)
(x− x±0 )(x− x−1 )


= − 1

4π


(−2πi)(Res(g+, x−0 )δ±,− +

∞
n=0

Res(g+, x−2 ))

−(2πi)(Res(g−, x+
0 )δ±,+ +

∞
n=0

Res(g−, x+
2 ))


=

i

2


Res(g∓, x±0 ) +

∞
n=0

Res(g+, x−2 ) + Res(g−, x+
2 )


. (B.35)

Back-substitution for the first summand leads to:

Res(g∓, x±0 ) =
nF (x±0 − µα)
x±0 − x∓1

=
nF (ω − s0ω0 − µα ± iδ)

ω − s0ω0 − ϵ0 ± iΓ± iδ
. (B.36)

Next we have to evaluate the series we got from the poles of the Fermi-function. We will
again use the relation Eq. (A.8) to get a solution in terms of the digamma function ψ0(x).
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Thus, the result is

Iα2,ψ[s0,±] =
i

2

 ∞
n=0

Res(g+, x−2 ) + Res(g−, x+
2 )


=

∞
n=0


1

2βi


1

(x−2 − x±0 )(x−2 − x+
1 )

+
1

(x+
2 − x±0 )(x+

2 − x−1 )


=

∞
n=0


1

2βi


1

−x+
1 + x±0


1

x−2 − x±0
− 1

x−2 − x+
1


+

1

−x−1 + x±0


1

x+
2 − x±0

− 1

x+
2 − x−1



=
∞
n=0


1

2βi


−β

2πi(−x+
1 + x±0 )


1

n+ 1
2
− β

2πi
(µα − x±0 )

− 1

n+ 1
2
− β

2πi
(µα − x+

1 )



+
β

2πi(−x−1 + x±0 )


1

n+ 1
2

+ β
2πi

(µα − x±0 )
− 1

n+ 1
2

+ β
2πi

(µα − x−1 )



=
ψ0


1
2
− β

2πi
(µα − ϵ0 − iΓ)


− ψ0


1
2
− β

2πi
(µα − ω + s0ω0 ∓ iδ)


4π(−ϵ0 − iΓ + ω − s0ω0 ± iδ)

−
ψ0


1
2

+ β
2πi

(µα − ϵ0 + iΓ)

− ψ0


1
2

+ β
2πi

(µα − ω + s0ω0 ∓ iδ)


4π(−ϵ0 + iΓ + ω − s0ω0 ± iδ)
. (B.37)

Now we can perform the limit δ → 0 and collect all terms:

Iα2,f [s0,±] =
i

2
Res(g∓, x±0 ) =

inF (x±0 − µα)
2(x±0 − x∓1 )

=
inF (ω − s0ω0 − µα)

2(ω − s0ω0 − ϵ0 ± iΓ)
. (B.38)

The whole integral reads I2[s0, s1] =


α=L/R I
α
2,f [s0, s1] + Iα2,ψ[s0, s1] and with the defini-

tions from Eq. (B.15) we end up at the final result:

I2[s0, s1] =
iNF (ω − s0ω0)

2(ω − s0ω0 − ϵ0 + s1iΓ)
+

Ψ (ϵ0 + iΓ)−Ψ (ω − s0ω0)

4π(ω − s0ω0 − ϵ0 − iΓ)

− Ψ̄ (ϵ0 − iΓ)− Ψ̄ (ω − s0ω0)

4π(ω − s0ω0 − ϵ0 + iΓ)
. (B.39)
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ersten Zeit meiner Arbeit und für die Ermöglichung produktiver Forschungsaufenthalte
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