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Summary

This thesis at hand deals with crystalline phases of colloidal particles under confine-
ment. In particular, we mainly investigate the equilibrium structures of confined
colloidal crystals, and present recently obtained results in five self-contained chap-
ters. These five chapters, and thus the thesis, can be divided into three parts, each
characterized by the type of the confinement.

In the first part, containing the Chapter 1, we applied a hard cylindrical con-
finement to a model system of point-like particles interacting via a Yukawa pair
potential. We investigate the ground state stability phase diagram of the crystalline
Yukawa system by using lattice sum minimizations. The cylindrical confinement
displays the origin of the quasi-one-dimensionality; By continuously increasing the
cylinder radius from zero to a finite value, we open the way to an intermediate
regime between one and three dimensions. In this regime, we obtain chiral and achi-
ral helical structures, which help a lot to understand the nature of e.g., biomolecules
such as DNA.

In the second part (Chapter 2), we combine real-space experiments (by
Reinmüller et al) and Brownian Dynamics computer simulations in order to study
the driven crystallization of charged particles in two-dimensional flow fields in aque-
ous solvents. These flow fields occur due to electrolyte gradients caused by cation
exchange resin fragments. Colloidal macroparticles follow the flow. Consequently,
the crystallization takes place at these fragments, acting as seed particles. Regard-
ing the experimental situation, the point-like Yukawa particles in simulations are
exposed to an attractive, long-ranged circular trapping potential to mimic the sol-
vent flow. Good agreement is achieved between experiments and simulations. As a
result, we obtain mono- and polydomain crystals with corresponding grain bound-
aries, depending on the shape of the seed.

The third part of this thesis comprises the Chapters 3,4, and 5. Here, the con-
finement is given by a hard slit, i.e., two parallelly aligned hard flat walls. This
special confinement gives rise to a quasi-two-dimensional system, which interpolates
between two and three dimensions. Three different pair interactions are considered
in three different chapters, all involving the quasi-two-dimensionality: In Chap-
ter 3, we investigate the zero-temperature crystalline phase diagram of unscreened
Coulomb particles embedded in a parabolic soft potential (in addition to the hard
slit). By energetic considerations using lattice sum minimization methods, we fig-
ure out stable mono-, bi-, and multilayers. In Chapter 4, we analyze crystalline
multilayers of charged colloids confined between two glass plates. Here, we com-
bine experiments (by Reinmüller et al) and lattice sum minimizations. Charged
colloids are modelled with a Yukawa potential, whereas the wall-particle repulsion
is assumed to be of hyperbolic cosine form in accordance to the linear screening the-
ory. We obtain complex phases (e.g., the vertically aligned triangular layers hcp⊥
equivalent to hcp(110)), which are not present in three-dimensional bulk. Chapter 5
addresses the packing problem of confined hard spheres. By combining experiments
(by Ramiro-Manzano et al), Monte Carlo computer simulations (by Marechal), and
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theory (using a recently reported penalty method), we investigate the dense packed
crystalline structures in a hard slit. We achieve an excellent agreement between the
three approaches, and recover the novel adaptive phases, which brings new oppor-
tunities and insights into the field of the packing problems.



ix

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit kristallinen Phasen kolloidaler Teilchen
unter eingeschränkten Geometrien sowie in externen Feldern. Wir präsentieren un-
sere kürzlich erlangene Resultate in fünf in sich abgeschlossenen Kapiteln. Diese
Arbeit besteht aus drei Teilen, in denen sich die fünf Kapiteln wiederfinden.

Im ersten Teil dieser Arbeit (Kapitel 1) untersuchen wir ein in einem harten
zylindrischen Behälter eingeschlossenes, aus Punktteilchen bestehendes Modellsys-
tem. Die Teilchen wechselwirken sich untereinander mit einem Yukawa-Potential.
Die zylindrische Einschränkung ermöglicht dem System, kontinuierlich von einer Di-
mension in drei Dimensionen zu übergehen. Dieses ”Zwischenregime” wird in dieser
Arbeit als quasi-eindimensionales System bezeichnet. Desweiteren stellen wir das
Phasendiagram der kristallinen Yukawa-Teilchen im Grundzustand auf. Zu diesem
Zweck minimieren wir numerisch die vorhandenen Gittersummen, und erhalten als
resultierende Strukturen chirale sowie achirale Helices.

Der zweite Teil der vorliegenden Arbeit (Kapitel 2) handelt von getriebener
Kristallisation geladener Teilchen in zweidimensionalen Flussfeldern. Die physikalis-
che Fragestellung dieses Kapitels wird anhand von Kolloidexperimenten
(durchgeführt von Reinmüller et al) sowie Brownscher Dynamik Simulationen un-
tersucht. Fragmente des Kationenaustauschers in wässrigen Lösungen verursachen
Elektrolytgradienten in ihrer unmittelbaren Umgebung, so dass sich ein radiales und
nach innen gerichtetes Flussfeld einsetzt, welches die Kolloide mitzieht. Diese Frag-
mente dienen als Kristallisationskeime. Denn aufgrund der erhöhten Kolloiddichte
an diesen Keimen findet anschliessend die Kristallisation statt. In Computersim-
ulationen analysieren wir diese Effekte, indem wir die o.g. Flussfelder durch ein
anziehendes und langreichweitiges externes Potential modellieren. Unsere beider
Ergebnisse zeigen deutliche Übereinstimmung: abhängig von der Form des Keims
entstehen Polykristalle mit zugehörigen Korngrenzen sowie auch Einkristalle.

Im dritten und letzten Teil der Arbeit, bestehend aus Kapiteln 3,4, und 5, unter-
suchen wir eine harte Schlitzgeometrie. Diese besteht aus zwei harten, zueinander
parallel ausgerichteten, ebenen Wänden. Diese spezielle Einschränkung führt zu
einem quasi-zweidimensionalen System, welches den kontinuerlichen Übergang von
zwei zu drei Dimensionen ermöglicht, und vice versa. In dieser speziellen Geometrie
erforschen wir das Phasenverhalten dreier Teilchensorten, die sich hauptsächlich
in Paarwechselwirkungspotentialen unterscheiden: im Kapitel 3 werden sich im
Schlitz befindliche unabgeschirmte Coulomb-Teilchen (z.B. Elektronen) zusätzlich
einem parabolischen Potentialfeld ausgesetzt. Anhand Gittersummenberechnungen
im Grundzustand erhalten wir strukturelle Informationen über die stabilen Kristalle.
Im Kapitel 4 untersuchen wir kristalline Multilagen geladener Kolloide zwischen
zwei Glasplatten. Dieses Projekt besteht aus Experimenten (durchgeführt von
Reinmüller et al) und theoretischen Gittersummenberechnungen. Im theoretischen
Modell wird die Teilchen-Teilchen-Wechselwirkung mit einer Yukawa-Abstoßung
beschrieben. Gemäß der linearen Abschirmungstheorie kann die durch die Ladung
der Wände verursachte Wand-Teilchen-Wechselwirkung innerhalb der Wände mit
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einer effektiven Abstoßung beschrieben werden, die eine Kosinus-Hyperbolicus-Form
annimmt. Wir erzielen gute Übereinstimmung, und erhalten komplexe Phasen
wie z.B. die hcp⊥ Phase (diese Struktur entspricht der 110-Schnittebene des hcp-
Gitters), die in drei dimensionalen Systemen so nicht existieren. Im Kapitel 5 han-
delt es von der dichtesten Packung harter Kugeln in der Schlitzgeometrie. Wir kom-
binieren Kolloidexperiment (durchgeführt von Ramiro-Manzano et al), Monte Carlo
Computersimulationen (durchgefḧrt von Marechal), und Theorie, um die dichtest
gepackte kristalline Strukturen zu studieren. In all den drei unterschiedlichen Vorge-
hensweisen entdecken wir gemeinsam neue sog. adaptive Phasen, die Herangehens-
bzw. Betrachtungsweisen an die Packungsproblematik revolutionieren könnten.
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Introduction

At given conditions, matter in nature can be classified into phases like gas, liquid,
and solid1, where throughout each phase, the essential properties of a material, e.g.,
density or refraction index, is homogeneous. This thesis at hand deals with the
crystalline phase behavior of confined colloidal particles.

The title of this thesis may raise many questions about colloids, crystallization,
and confinement. Each topic is individually addressed in the following.

Colloids are probably among the most prominent objects belonging to the Soft
Condensed Matter (a subfield of the Condensed Matter physics), and have drawn a
lot of attention in the last decades. By taking into account that Soft Matter contains
a vast number of divers systems such as (just to name only a few) polymers, gels,
colloids, emulsions, proteins, and biomembranes, the enormous importance of this
field becomes clear. Not only a wealth of everyday realizations like paint, ink, food,
pharmaceuticals, etc. [1], can be counted to the strenghts of this field, also the fact
that Soft Matter stimulates fruitful interdisciplinary interactions between scientists
from physics, chemistry, and biology.

The studies in this work are based on the concept of effective interactions, which
represent an indispensable tool for understanding the nature of colloids. Colloidal
suspensions comprise mesoscopic solid particles with typical sizes ranging from few
nanometers to few tens of micrometers. Being suspended in a molecular fluid sol-
vent [2], they undergo Brownian motion due to collisions with the solvent con-
stituents. There are different time and length scales, which stem from the presence
of microscopic and ’fast’ solvent particles, on the one hand, and mesoscopic and
’slow’ colloids, on the other hand. Therefore, a coarse graining is necessary to
predict the macroscopic properties of colloidal suspensions from the microscopic in-
teractions. As a consequence, effective interactions can be derived in order to bridge
from microscopic to mesoscopic systems.

Crystals made up of colloids, termed shortly as colloidal crystals, appear in var-
ious forms in nature as in many suspensions of viruses (e.g., tobacco and Tipula
viruses [3,4]) and in opals reflecting crystalline ordering [5]. Furthermore, they can
be synthetically produced at a low-cost level, e.g., using silica [5], giving rise to
numerous studies. Colloidal crystals possess physical properties different from ’nor-

1Please note that in addition to these classical states of matter, further ones also exist like e.g.,
plasma, superconducting phase, and Bose-Einstein condensate.
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mal’ crystals, whose repeating units are atoms or molecules. While the interaction
energies between colloids are almost comparable to the ones in atomic systems, the
mesoscopic length scale involved in colloidal crystals is much greater than typical
atomic and molecular distances (i.e., < nm) and therefore leads to relatively low en-
ergy densities [6]. Consequently, colloidal crystals are supposed to be very soft, i.e.,
they feature relatively low elastic and/or shear moduli (up to ten to twelve orders of
magnitude smaller than those known from atomic systems). Furthermore, colloidal
crystals can diffract the visible light due to their mesoscopic size. Bragg reflections
easily occur for the mean distances involved in colloidal crystals. For these reasons,
colloidal crystals are widely used to study e.g., crystallization phenomena.

In this spirit, colloidal systems serve as excellent model systems for the study of
physical problems such as crystallization. Given the fact that colloids are highly sus-
ceptible to external fields, their phase behavior can be controlled externally. More-
over, the interactions between colloids in aqueous suspension can be easily tuned
such that, for example, sterically stabilized colloids (whose surfaces are polymer-
coated) represent realization of a hard-sphere system [7], while charged stabilized col-
loids are mainly governed by a Yukawa-like pair interaction [8,9]. The latter displays
an effective pair interaction based on the electrostatic repulsion in colloidal suspen-
sions and is essentially given by the Derjaguin-Landau-Verwey-Overbeek (DLVO)
pair interaction involving the linear Poisson-Boltzmann theory [10–12]. Importantly,
individual colloidal particles can be comfortably visualized in space and time e.g., by
video microscopy [13]. Hence, colloidal systems enables studies at a single-particle
level by providing real-space access to e.g., crystallization phenomena in contrast to
atomic systems.

Crystallization is a central topic of tremendous importance in the condensed
matter physics offering giant possibilities for many applications [14]. Yet the fun-
damental understanding of crystallization represents still a challenge, numerous ex-
periments, extensive computer simulations as well as theories helped a lot to obtain
a deeper insight into the nature of crystallization in the last decades.

For numerous industrial applications such as semiconductors, sensors, optical
elements, and nanomaterials, a quantitative understanding of non-equilibrium pro-
cesses as crystal growth and nucleation is indispensable. Crystalline structures can
be achieved through many technical methods like epitaxial growth, and chemical va-
por deposition. An important step towards understanding the crystal growth from
a metastable liquid is delivered by the classical nucleation theory [15] providing the
homogeneous nucleation. Homogeneous nucleation involves the creation of a crystal
nuclei of a critical minimum size in the liquid phase, which initiates the crystal forma-
tion. Heterogeneous nucleation — widely seen as the counter part of homogeneous
nucleation — however, requires pre-existing seeds as e.g., impurities and walls to
proceed the crystal nucleation at these positions. Although, both homogeneous and
heterogeneous nucleation in colloidal suspensions are extensively studied in terms
of experiments and computer simulations in recent decades, the crystallization pro-
cess remains still a challenging task in the condensed matter physics: as scientists
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delivered widely accepted theories for the freezing/melting in two-dimensional (2D)
bulk, the nature of crystallization in three spatial dimensions (3D) is far from being
completely understood.

The particular interest of this thesis concerns the static crystallization under
confinement. Therefore, the concept of confinement should be clarified and its im-
portance should be emphasized at this point: Geometrical restrictions to a system
like slit-pores or slit-like cavities can be regarded, in general, as confinement. But
also, energetic contributions from outside of the system — external potential fields
— are subject to confinement. In nature, confined systems often appear. Well known
examples are complex biological environements such as cells, which are confined by
elastic membranes. Strictly speaking, every colloidal system must be confined as
there always exists either natural boundaries or external fields such as gravity in
real systems. In absence of an external potential, one speaks of confinement when
the finite size effects play a not negligible role on the phase behavior.

The confinement affects the phase behavior in a way such that it can drastically
differ from the bulk behavior [16,17]. More precisely, phase transitions such as crys-
tallization can be strongly shifted in confining geometries [16]. A very prominent
example is the confined water, whose freezing transition can be shifted below the
natural freezing point in bulk [18, 19]. Not only the structural, but also dynamical
behavior of e.g., hard-sphere fluid is altered with respect to the bulk [20]. More gen-
erally, confinement may induce drastic changes in physical properties of a fluid such
as viscosity, relaxation times, and flow profiles. Also non-equilibrium phenomena
can be affected by the confinement: Recent computer simulations of hard-sphere
systems indicate a speed up of the crystal growth in the presence of a flat wall [21].
In case of templated surfaces, the structure as well as the orientation can even be
controlled, giving rise to tailored crystals.

The crystallization process under confinement as well as in bulk critically depends
on the dimension of the system. Turning the attention to bulk systems, crystalliza-
tion phenomena in different dimensions are briefly summarized in the following. In
one dimension (1D), a crystalline phase does not exist at all for systems bearing
fluctuations (i.e., for finite temperature T ). Even in 2D, long-wavelength fluctua-
tions destroy the long-ranged translational order (see [22, 23]) so that 2D crystals
(T �= 0) can only exhibit quasi-long-ranged translational order. Strictly speaking,
perfect positional order can only exist at zero temperature in 2D [24]. However, for
2D freezing and melting, important theories have been developed, whereas for 3D
a comparable understanding of the underlying physical mechanisms for liquid-solid
transition represents still a challenge. In case of 2D melting, a crystal-based the-
ory (i.e., crystal → liquid) has been developed by Kosterlitz, Thouless, Halperin,
Nelson, and Young (KTHNY), see [25–27]. Experiments have been performed in
order to confirm the predictions of this theory [28, 29]. Furthermore, the liquid-
based (i.e., liquid → crystal) density functional theory, a mean-field approach from
statistical physics, has been proven to be useful to study the freezing transition in
2D [30]. In all cases, two distinct phases, liquid and solid, need to be distinguished
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from each other. Phenomenological criteria for freezing/melting have been made
like the Lindemann criterion for melting [31] and the Hansen-Verlet criterion for
freezing [32].

Due to the fact that hard spheres involve no energy scale, their bulk phase dia-
gram is completely independent on T , but it is dictated by the volume fraction φ. In
this case, the crystallization is entropy driven. The reduction of the configurational
entropy due to a crystal formation is overcompensated by an increase of the entropy
due to a larger free volume in a crystal lattice. Therefore, a 3D hard-sphere system
exhibits a first-order fluid-solid transition. It freezes at φf ≈ 0.54 [2]. Beyond this
freezing point, the face-centered-cubic (fcc) crystal becomes stable. Furthermore,
the melting density is given as φm ≈ 0.49. Between φm and φf , the fluid and fcc
crystal coexist. It is noteworthy that there is a natural upper limit of φ as the hard
spheres cannot overlap and, thus, the mutual densest packing of spheres is obtained
at packing fraction φ ≈ 0.74 in 3D.

In case of an effective Yukawa pair interaction, the inverse Debye screening length
κ represents another control parameter. Hence, the stability phase diagram naturally
becomes also a function of κ. For κ = 0, one recovers the one-component plasma,
where the pair interactions are governed by the long-ranged Coulomb interactions.
As a function of κ, the Yukawa system features three phases: liquid, fcc as well as
body-centered cubic (bcc) crystals [33, 34] in 3D bulk.

In 2D, both hard disks and soft Yukawa particles exhibit fluid-crystal transitions
into the triangular (hexagonal) lattice. For Wigner crystals (point-like electrons,
with interact via unscreened Coulomb potential), the stable lattice in 2D is also the
triangular one [35]. More structured interaction potentials involving at least two
length scales can lead to more complex solids such as quasicrystals [36].

The particular interest of this thesis concerns the static crystallization under
confinement. Here, two classes of confinement are provided: topographical confine-
ment consisting of ’hard’ geometrical containers (HC), and energetic confinement
involving ’soft’ external potential fields (SC). While bulk phase behavior of soft
Yukawa (YUK) and Coulomb (COU) particles as well as of hard-sphere (HS) sys-
tems have been elaborately studied in the last decades (as briefly reported above),
their crystalline phase behavior under both soft and hard confinement has still many
open questions, and therefore, it is subject of this thesis.

In the present work, two different hard confinements are addressed: First, an
infinitely long cylindrical cavity is applied to study the crystalline phases of Yukawa
particles in the ground state (T = 0, see Chapter 1). Upon a continuous increase
of the cylinder radius from zero to a finite value, one can interpolate the regime
between 1D and 3D bulk. This regime is referred to as quasi-one-dimension (Q1D).
Second, the further important hard confinement at consideration is the hard-slit,
which consists of two parallelly aligned hard flat walls (see Chapters 3, 4, and 5).
This realization represents a quasi-two-dimensional (Q2D) system, which defines
the crossover from 2D to 3D in this thesis.

Soft confinements have been studied in Chapters 2, 3, and 4. This thesis considers



CONTENTS Introduction

three types of energetic confinements: First, an attractive trap potential is applied to
study the driven nucleation process of Yukawa colloids around seed particles in 2D,
see Chapter 2. Second, Yukawa particles confined between two charged plates clearly
show how complex the crystalline phase structures can become in Q2D (cf. Chapter
4). The charged plates, and thus a strong repulsion between the particles and the
walls, denotes here the origin of an effective soft confining potential. Moreover,
Coulomb particles confined in a hard slit are further exposed to a soft harmonic
confinement (Chapter 3). This mixture of hard and soft confinement yield similar
multilayered phases as for Yukawa particles in Chapter 4.

The ’intermediate’ dimensionality Q1D (Q2D), caused by the cylindrical (slit)
confinement, is tremendous for understanding the basic questions such as melting
in the crossover regime from 1D (2D) to 3D. Recent experiments analyzed the melt-
ing process of hard-sphere-like particles in Q2D by using a slit geometry [37]. By
interpolating the regime between 2D and 3D, different melting processes have been
noticed, which develop i) from grain boundaries (as in 3D) or ii) from both the grain
boundaries and within the crystalline domain (as in 2D). In addition, an understand-
ing of freezing phenomena in the aforementioned intermediate dimensions (especially
Q2D) is essential for applications like optical fibers [38] and micro-sieves [39].

Last but not least, a few words should be said about the techniques used in this
thesis. This thesis combines real-space experiments with polystyrene spheres (Chap-
ters 2, 4, 5), Monte Carlo and Brownian Dynamics computer simulations (Chapters
2, 5), and theory (Chapters 1, 3, 2, 4, 5). On a technical basis, the involved theoreti-
cal approaches contain analytical calculation of crystal growth (Chapter 2, Appendix
5) as well as analytical and numerical investigations with penalty (Chapter 5) and
lattice summation (Chapters 1, 3, 4, Appendix 5) methods. Detailed descriptions
are provided in the corresponding Chapters.

In brief conclusion, this thesis mainly deals with structural investigations of
crystalline phases of colloidal particles in different dimensions. In a general manner,
it can be roughly divided into three parts: In the first part, containing the Chapter 1,
a Q1D Yukawa system is analyzed, which is realized with a cylindrical confinement.
The zero-temperature crystalline phase diagram is investigated in detail. The second
part, comprising the Chapter 2, concerns a pure 2D system, in which the driven
crystallization of Yukawa particles is studied extensively. The third part, comprising
the Chapters 3, 4, and 5, is dedicated to Q2D systems, where the phase behavior
of particles with Coulomb, Yukawa, and hard-core pair interaction potentials are
investigated.
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Chapter 1

Helicity in cylindrically confined

Yukawa systems 1

By lattice sum minimization, we predict the ground state of particles interacting via a

Yukawa potential which are confined in a quasi-one-dimensional cylindrical tube. As a

function of screening strength and particle density, the zero-temperature phase diagram

exhibits a cascade of stable crystals with both helical and non-helical structures. These quasi

one-dimensional crystals can be confirmed in experiments on confined charged colloidal

suspensions, trapped dusty plasmas or ions in nanotubes.

Understanding the origin of helical structures in nature is of basic importance
given the fact that many biomolecules (such as DNA [40]) and inner cell structures
are helical. More specifically, if particles are confined to narrow cylinders under
high pressure they will spontaneously assemble into helical structures [41–44]. This
has been rationalized by considering a simple model of hard spheres in cylindrical
tubes where the close-packed configuration have been analyzed and indeed show
helical structures [45]. Furthermore, dipolar colloidal particles [46] and thermore-
sponsive microspheres [44] have been shown to self-organize into chiral aggregates
and C60 molecules [47–49] as well as polymers [50–52] confined to nanotubes exhibit
spiral-like structures. Understanding the details of this pattern formation bears a
high technological potential as photonic band gap fibers can be formed in cylindri-
cal geometry [53,54] and colloidal nanowires with novel electrical properties may be
fabricated out of helical structures. Moreover, helical colloidal clusters itself can fur-
ther serve as ”super”-molecules [46] which in solution self-assemble into fascinating
novel liquid crystalline phases [55].

In this chapter, we consider charged particles in hard cylindrical confinement

1This chapter was published in a very similar form by E. C. Oğuz, R. Messina, H. Löwen,
Europhys. Lett. 94, (2011) 164511.
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interacting via a Yukawa pair potential. Thereby we generalize the hard-sphere
model studied previously in Ref. [45] towards finite screening lengths. By lattice-sum
minimization we obtain the ground state (at zero temperature) and predict a cascade
of different helical and non-helical structures as a function of screening strength
and particle density. In contrast to the hard-sphere case, some phases disappear at
small screening and reentrant transitions show up. Our model is realized for charged
colloidal suspensions under cylindrical confinement (cf. [56–65]), for trapped dusty
plasmas [66, 67] and for charged supramolecular aggregates or molecular ions in
nanotubes [68–70]. We also remark that microspheres explored in [44] are governed
by soft interactions such that our work here might be relevant for the findings in
Ref. [44].

.

*
0 0L  = b L

z
z

2a b)a)

2a1θ

Figure 1.1: Schematic illustration of cylindrically confined particles in side (a) and
top (b) view. The cylinder is shadowed and has a radius of 2a. A helical phase
structure is sketched. In (a) the dashed lines indicate the primitive cell of height
L0. Here, we have n = 1 such that the order parameter b∗ equals 1. In the top view
(b), the torsion angle θ1 between two primitive cells is shown.

In our model, we consider point-like particles interacting via the Yukawa pair-
potential

V (r) = V0
e−κr

κr
, (1.1)

where r is the interparticle distance, 1/κ the screening length, and V0 denotes an
energy amplitude. N particles are confined inside a hard cylindrical tube of radius
a and length L along the z-direction. At zero-temperature, for a given reduced line
density η = Na/L, the system will minimize its total potential energy per length L
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Figure 1.2: Zero-temperature phase diagram of a Yukawa system confined to a hard
cylinder. As a function of screening strength λ and reduced density η, we obtain
helical (H1, H2, H3) as well as non-helical phases (N2, N4, N6). For λ → 0, the
stability domain of H2 shrinks to 0, while H3 (N6) already vanishes for λ � 30
(λ � 7). The dashed (full) lines indicate a 2nd (1st) order phase transition. The
two arrows indicate the reentrant transitions of H2 and N4.

and the resulting optimal structure will only depend on the reduced inverse screening
length λ = κa. By varying λ, one interpolates between the unscreened Coulomb
limit (λ → 0) and the hard-sphere limit2 (λ → ∞) where the interaction is getting
discontinuous.

At zero-temperature and at given density η and reduced screening length λ, we
have performed lattice sum minimizations for a broad set of candidate structures
including helical ones. A candidate possesses a unit cell containing n ≤ 6 particles
inside a cylindrical cavity which is then periodically replicated along the z-direction
by a joint translation about L0 along the z-axis (see fig. 1.1a) and rotation about
a torsion angle θ around the z-axis. We restrict ourselves to 0 ≤ θ ≤ π selecting
one special chirality (note that opposite chirality leads to the same energy). Thus, a
most general unit cell with n = 6 can contain multiple primitive cells with n = 1, 2, 3,
resulting in the same phase structure. However, the corresponding torsion angles

2Note that in our model we have point-like particles. Nevertheless, at infinite screening (λ →
∞), by taking an effective hard-core diameter corresponding to the smallest lattice constant, one
expects to recover the phase behavior of hard spheres.
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might differ. To distinguish between them we denote the n-dependence of the torsion
angle explicitly and refer them as θn in general (cf. see fig. 1.1b). There are two
classes of structures, namely non-helical ones which by definition are torsion-free,
i.e. they can be generated with a vanishing torsion angle θn = 0, or helical ones
which necessarily involve a nonvanishing one. Nevertheless, some special non-helical
structures with θn = 0 can also be generated with a finite torsion angle albeit with
a different n.

The minimization of the total potential energy per particle is performed with
respect to the positions of the n particles in the unit cell and the torsion angle while
L0 = na/η is prescribed by the fixed line density η. First we classify the resulting
structures into helical and non-helical ones. Next, in case a helical structure is
degenerated with respect to different n, we select from all the possible structures the
one with the smallest n. For the non-helical structures, we select the structure with
the smallest n as well, which also satisfies a vanishing torsion angle. To characterize
the height distribution of the particles in the unit cell, we assign, for each structure,
a dimensionless order parameter b∗ = n mini�=j{|zi − zj |/L0}, which describes the
smallest (reduced) interparticle distances among all distinct particle pairs (i, j) along
the z-direction.

We explore the stability phase diagram in the regime λ = 0.5, · · · , 100 for 0 < η ≤
2.2. The results are shown in fig. 1.2. Three helical structures H1, H2, H3 are stable
which are labelled according to their (minimal) number of particles per unit cell while
H stands for ”helical”. Besides three stable non-helical structures N2, N4, N6 set
in. All these non-helical structures Nn (with n = 2, 4, 6) can also be generated by a
nonvanishing torsion angle θn with smaller unit cell number n = 1, 2, 3 as compared
to that corresponding to the torsion-free generation. Details are summarized in
Tab. 1.1 where also the corresponding values of the order parameters b∗ and θ6 are
given. For instance, for the H1 structure, b∗ = 1 while for H2 and H3, 0 < b∗ < 1.
The non-helical phase N2 has a zigzag arrangement which can also be considered as
a helix with θ1 = π and b∗ = 1. For the non-helical phase N2 (N4), each two (three)
particles in the same unit cell possess the same z-coordinate. Furthermore, the non-
helical “doublets” (“triplets”) of N4 (N6) are generated with a torsion angle
theta6 = π/2 (θ6 = 0) with b∗ = 0. In case of N6 θ6 can also be chosen as
2π/3, which yields the same phase. In all phases, all particles are located on the
cylindrical surface although this was not assumed a priori. At higher densities, this
will no longer be true in general.

Let us now discuss in greater depth the ground state phase diagram in the ηλ-
plane (fig. 1.2). For large λ, we recover the stability sequence put forward for hard
spheres in cylindrical confinement in Ref. [45], namely

N2 → H1 → H2 → N4 → H2 → H1

→ H2 → H3 → N6, (1.2)

for increasing density η. On the other hand, the opposite Coulomb limit λ → 0
corresponding to unscreened ions in a cylinder, has not been considered before.
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Here we find the stability sequence

N2 → H1 → N4 → H1 → H2 → N4, (1.3)

i.e. the phases H3 and N6 vanish and the stability domain of H2 shrinks to a single
point at η = 1.50. This implies that non-helical phases are preferred for the Coulomb
limit (relative to the hard sphere case). This general trend can be intuitively ex-
pected since the long-ranged Coulomb potential prefers more isotropic structures
than the hard-sphere interaction which considers local packing constraints.

Interpolating between these two extremes at finite λ, the phase behavior is not
just a simple interpolation but exhibits interesting reentrance effects, which are
indicated by the vertical and the horizontal arrow in fig. 1.2. For increasing λ,
the H2 phase is reentrant at about 1.68 < η < 1.74. Another reentrance effect
occurs for the N4 phase upon increasing η at fixed λ ≈ 7. This is in line with
the general observation that confinement effects (or external fields in general) yield
reentrance [56].

We remark that the reentrance of solid phases resembles the isostructural solid-
to-solid transition which occur in three-dimensional square-well [71,72] and square-
shoulder [73] systems. However, in the latter case, there is a true coexistence region
between the two solids and a critical point shows up. Both features are absent
here. Moreover, the pure Yukawa bulk system does not exhibit any reentrance in
the density-temperature plane, hence reentrance is induced by confinement alone.

0.8 1 1.2 1.4 1.6 1.8 2
η

1e-06

1e-05

1e-04

u 
/ V

0

λ = 5

N2 H1 H2 N4

H2

H1 N4

Figure 1.3: (Color online) The static potential energy per particle u as a function
of η for λ = 5.



1
2

H
e
li
c
it
y

in
c
y
li
n
d
r
ic

a
ll
y

c
o
n
fi
n
e
d

Y
u
k
a
w

a
sy

st
e
m

s

Table 1.1: Stable phase structures of the confined Yukawa system. The cylindrical confinement is illustrated by a gray
tube of diameter 2a. Two categories of stable phases are obtained: helical (H1, H2, H3) and non-helical phases (N2, N4,
N6). The helical geometry of H1, H2, and H3 is indicated by the helical lines connecting periodically repeated particles
of the unit cell. Different particles of the unit cell are connected by different helices and are shown in different colors. For
each phase, we show a top (upper) and a side (lower) view. Furthermore, possible values of b∗ and θ6 for each structure
are also given. We also show the height of each primitive cell of helical phases as well as the height and the torsion angle
of the torsion-free unit cell of the non-helical ones. Additionally, we show θ3 for N6, for clarity.

N2 H1 H2 N4 H3 N6

θ6 = 0 0 < θ6 ≤ π π/3 < θ6 < 2π/3 theta6 = π/2 π/2 < θ6 < 2π/3 θ6 = 0 (or θ6 = 2π/3)
θ2 = 0 θ4 = 0 θ3 = π/3
b∗ = 1 b∗ = 1 0 < b∗ < 1 b∗ = 0 0 < b∗ < 1/3 b∗ = 0
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Figure 1.4: (Color online) Order parameters b∗ (red line) and θ6 (blue line) for λ = 5
versus η.

We finally address the order of the various solid-solid transitions in fig. 1.2 which
results from the behavior of the energy per particle across the phase transition lines.
Both, first-order and second-order transitions do occur and are indicated by solid
and broken transition lines in fig. 1.2. This is captured by monitoring the energy per
particle u and the order parameters b∗ and θ6 of the stable phase. These observables
are plotted in figs. 1.3, 1.4, 1.5, 1.6 as a function of η at two different λ. The cusps
where θ6 = π in the regime of H1 in the figs. 1.4, 1.6 are due to the fact that we
restrict the torsion angle to the interval [0, π]. Hence, the cusps are not indicating
a phase boundary. In fact the energy is smooth at the cusps (see fig. 1.4, 1.4). The
continuously non-differentiable points of the energy functions will indicate the first-
order transitions. These points are revealed by the discontinuous jumps in b∗ and
θ6 as a function of η while a continuous behavior implies a second-order transition
(see figs. 1.4,1.6).

In summary, we investigated the crystalline stability phase diagram of the cylin-
drically confined Yukawa particles at zero-temperature. Our calculations yield sev-
eral stable helical (H1, H2, H3) as well as non-helical phase structures (N2, N4,
N6), where the integers denote the particles number in the corresponding unit cell.
Within the density range considered here, we find that all particles are located on
the surface of the cylinder. In the high screening regime, the stability cascade is
given by eq. 1.2. In the plasma limit, on the other hand, the phases H3 and N6 are
not stable anymore and the stability regime of the H2 phase shrinks to zero. Fur-
thermore, both first as well as second-order phase transitions and a rich reentrant
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Figure 1.5: (Color online) Same as fig. 1.3 for λ = 80.
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Figure 1.6: (Color online) Same as fig. 1.4 for λ = 80. For the N6 phase, θ6 is
assumed to be 2π/3 here since the second order of the H3 → N6 becomes evident.

behavior is found.

Future work should include the consideration of higher reduced densities. For
finite screening λ > 0, this will yield structures with particles inside the cylinder.
We further remark that for λ = 0 a homogeneously smeared opposite charge on the
cylindrical surface will result in the same model as considered here since the inner
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electric field vanishes.
Since there is no strict phase transition in one-dimensional systems with short-

ranged interactions for T > 0 [74,75], any finite temperature will smear out the solid-
solid transitions found here leading to crossovers rather than strict discontinuities.
The crossover behavior, however, can be very sharp in practice such that it is still
useful to discriminate between phases.

In case we considered chiral structures in the present work, only one sign of chi-
rality was presumed. However, in real biological systems, arrangements (e.g. helices)
of two different signs of chirality could coincide, leading to a crossover between the
both. Hence, this first-order transition will yield an interface region, which can be
analyzed in a future work and the interface structure can be determined by given
system parameters.

In order to study the stability of helical arrangements and non-helical crystals
in a driven suspension, one could model a Poiseuille flow through the cylinder. The
results could be compared to confined colloidal bilayers under shear [76]. Moreover,
more complicated confining potentials like a combination of a parabolic potential [77]
and a cylindrical hard void can be studied in the future.
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Chapter 2

Colloidal crystallization in 2D

induced by electrolyte gradients 1

We investigated driven crystal formation events in thin layers of sedimented colloidal par-

ticles under low salt conditions. Using optical microscopy, we observe particles in a ther-

modynamically stable colloidal fluid to move radially converging towards cation exchange

resin fragments acting as seed particles. When the local particle concentration has become

sufficiently large, subsequently crystallization occurs. Brownian dynamics simulations of

a 2D system of purely repulsive point-like particles exposed to an attractive potential, yield

strikingly similar scenarios and kinetics of accumulation and micro-structure formation.

This offers the possibility of flexibly designing and manufacturing thin colloidal crystals

at controlled positions and thus to obtain specific micro-structures not accessible by con-

ventional approaches. We further demonstrate that particle motion is correlated with the

existence of a gradient in electrolyte concentration due to the release of electrolyte by the

seeds.

2.1 Introduction

Many of the properties of crystalline solids are strongly influenced by the micro-
structure of the sample. This micro-structure is controlled during crystallization by a
complex interplay of crystal nucleation, growth and ripening. For bulk situations but
also for crystal growth from substrates it is successfully modelled by classical theories
and their adaptations to the particular boundary conditions [78–84]. This behaviour
is known well for metals and other atomic substances, but is also observed in colloidal

1This chapter was published in a very similar form by A. Reinmüller, E. C. Oğuz, R. Messina,
H. Löwen, H. J. Schöpe, T. Palberg, J. Chem. Phys. 136, (2012) 164505.
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model systems. Their crystallization has intensely been investigated [85–88] due
to the advantages of space and time resolved measurements and tunability of the
interparticle interaction [89]. Colloidal melts and crystals are particularly well suited
to surpass the restrictions for structure, growth kinetics and morpholgy present in
crystallization from an undercooled melt. Rather the crystallization scenario is
flexibly altered by external influences. External fields [58,90–93], like e. g. electric
fields [94–97], optical fields [98,99], shear forces [100], structured templates [101,102]
or specific confining geometries [58, 103], have been sucessfully applied to achieve
particular micro-structures not available from undisturbed bulk samples.

Experiments were also conducted in confinement to narrow slit geometries. The-
oretically, crystallization in strictly 2D systems may proceed via a two step process
involving an intermediate hexatic phase rather than by a first order transition involv-
ing nucleation and growth [104–106] (Kosterlitz-Thouless-Halperin-Nelson-Young).
Experimentally this possibility is still under discussion [90], mainly due to the fact
that many experimental systems are not strictly 2D. In both situations, 2D and
3D, the main focus so far was on a control of the crystallite size [107], the compe-
tition between wall-crystal and bulk-crystal formation [108, 109] or crystal orienta-
tion [100, 110].

We here report preliminary experimental studies combined with Brownian Dy-
namics simulations aiming at a controlled positioning of heterogeneously nucleated
crystals of predetermined size. We demonstrate experimentally, that positioning of
crystals can be achieved by arbitrarily locating seed particles which release micro-
ions. The charged colloidal spheres move in reaction to the formed lateral elec-
trolyte concentration gradients and gravity to accumulate at the seeds and there
subsequently crystallize. Starting from a thermodynamically stable colloidal fluid,
the final crystallite size is determined by the strength and range of the electrolyte
gradients. Furthermore, the particular seed size and shape determine whether single
domain or multi-domain crystals emerge. The experiments reported are at present
restricted to the study of crystal formation at single seeds of some ten μm size placed
on the lower plate in a narrow slit geometry. Due to gravity and the use of large
colloidal particles this results in monolayer colloidal fluids and crystals. Our method
of micro-structure control should, however, be applicable also to 3D situations with
many seeds and/or meta-stable colloidal shear melts, thus offering the potential to
grow large microstructured polycrystalline solids with arbitrary crystallite patterns.
While the underlying microscopic mechanism is not unequivocally identified from
the crystallization experiments and subsequent additional investigations, the phe-
nomenology of the crystal formation is well reproducible; as is the confirmation of
the observed microstructures in simulations assuming a convergent solvent flow. In
principle, this offers the future possibility to design extended multi-crystal micro-
structures based on given experimental flow direction and strength. The detailed
correlation of these flow conditions to the experimental boundary conditions remains
an open question at present. We therefore also present further experiments moti-
vated by earlier findings on particle motion in electrolyte gradients both in the bulk
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and close to a substrate [111–114].

The remainder of the paper is organized as follows. We first shortly introduce
the employed colloidal particles, seed particles and the microscopic techniques in the
experimental section. We then explain the analysis of the microscopically observed
crystal growth by image processing and analysis techniques and present our results
obtained on isolated seed particles. In the following simulation section we shortly
present the employed techniques and then highlight our results on flow driven crys-
tallization with respect to dependence of the microstructure on seed size and shape
and the finite final crystallite size. The discussion section compares the obtained
results and demonstrates the good qualitative agreement between experimental find-
ings and simulation results. This section also presents the additional measures taken
to explore the underlying mechanism and discusses their results in the light of pre-
vious experimental and theoretical work. It is demonstrated, that crystallization is
unequivocally linked to the application of electrolyte gradients. The resulting flow
conditions, however, seem to be crucially dependent on the background electrolyte
concentration and the chosen cell geometry. This discussion part therefore poses
the interesting challenge of clearly discriminating electrophoretic, chemiphoretic,
osmotic and electro-osmotic contributions to flow generation in future experiments
and their description in a combined model. Finally a short conclusion is given. The
future perspective of crystal patterning is shortly touched. Further theoretical con-
siderations can be found in the appendix. Further photographic material can be
found online in the supplemental materials.

2.2 Experimental section

2.2.1 Experiment

In our experiments we used suspensions of negatively charged colloidal Polystyrene
spheres (diameter 2a = 5.19 ± 0.08μm, Batch No PS/Q-FB1036, Microparticles
Berlin GmbH, Germany) in water. The suspension was prepared at a bulk vol-
ume fraction φ ≈ 8% under strongly deionized conditions in a special tube circuit
containing a mixed bed ion exchanger column [115]. Samples were observed in a
home-built microscopy cell with parallel plate geometry which was connected to the
conditioning circuit. Care was taken to seal the cell interior against contamination
with airborne Carbon Dioxide and the ion concentration was monitored in situ using
an integrated conductivity measurement cell. The distance between the opposing
flat quartz glass windows was adjusted by piezo actuators. During conditioning the
slit height was large to allow for fast and efficient homogenization and deionization of
the sample. After reducing the ion concentration to significantly less than 1μmol/l
the pump was stopped and the horizontal confining cell walls were adjusted to a
typical distance of d ≈ 15μm for observations on colloidal monolayers crystallizing
at small seed particles. The cell was placed on the stage of an inverted optical scien-
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Figure 2.1: Voids free of particles in a bilayer system (a), 565×420μm2) and particle
accumulation in a monolayer system (b), 360× 290μm2) around isolated fragments
of ion exchange resins. Similar influences of macroscopic ion exchange resin objects
on sedimented colloidal particles were frequently observed: Void formation around
anion exchange resin (”‘A-seed”’, (c), 1170 × 880μm2) and accumulation of mobile
particles in the circular gap between a cation exchanger sphere and the quartz
substrate (”‘C-seed”’, (d), 720 × 540μm2).

tific microscope (DM-IRBE, Leica, Germany) and observed through a 20x objective
using a standard video camera. The employed seed particles were small pieces of
ion exchange resin (Amberlite, Roth GmbH, Germany) which either were already
present in the cell after escaping from the ion exchange column of the circuit or
were deliberately added. Their position was directed by the flow conditions during
conditioning, but the seeds remained stationary during measurements. For the ex-
periments with large (700μm) seed particles larger cell heights or ion exchange resin
seeds placed on a quartz substrate covered by a drop of suspension were employed.

Fluid monolayers settled under gravity formed within less than one minute after
stopping the pump. Strong effective interactions between the small ion exchange
resin fragments and the surrounding colloidal particles were observed: In some cases,
voids free of particles formed (cf. Fig. 2.1(a)). In other cases, attraction of particles
happened leading to accumulation and even to crystallization (cf. Fig. 2.1(b)), on
which we focus in this report. Both effects occurred on timescales of about five
minutes. Similar particle depletion and accumulation effects were frequently ob-
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Figure 2.2: Growth of a three-domain monolayer crystal on a seed at t = 0s (A),
t = 100s (B), t = 200s (C), t = 300s (D), t = 400s (E) and t = 500s (F); field of
view: 360 × 290μm2.

served also at macroscopic anion (cf. Fig. 2.1(c)) exchange resin beads (A-seeds)
and cation (cf. Fig. 2.1(d)) exchange resin beads (C-seeds). In particular for the
case of cation exchanger, significant convection-like fluid flow leading to particle
accumulation could be traced under suitable experimental geometries.

Fig. 2.2 shows a sequence of optical micrographs of the same crystal growing
from a small seed particle at different times with time intervals of each 100s. The
Airy-discs of the particles appear as bright circular dots on a dark background with
strongly increased camera contrast in the phase contrast mode. The irregularly
shaped seed in the image center consists of an ion exchange resin fragment of greenish
appearance and immobile colloidal particles. In this example an almost circular
monolayer crystal with triangular structure is formed. The three domains grow
with a steadily decreasing radial growth velocity. Recording of frames was stopped
when there were no significant changes in the system evident any more. Each new
incoming particle arranged without a noticeable delay time into the crystal. Thus
the crystal growth velocity was limited by the particle transport. Except for a few
particles already attached to the seed all particles stayed mobile. At other seed
particles, mono domain crystals but also crystals with more than one domain were
observed. Typical crystal lattice constants were in the range dNN ∼ (8.0 ± 0.5)μm,
i.e. dNN ∼ 3a, and small crystal distortions were present. Some of the crystals
were noticeably asymmetric, i.e. not perfectly circular (cf. Fig. 2.1B), and not well
centered around the seed.
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Figure 2.3: Particle trajectories of the same sequence from Fig. 2.2 between t = 120s
and t = 180s. Initially a fast ceasing fluid flow was running from right to left as a
result of positioning the confining walls.

Fig. 2.3 shows particle trajectories corresponding to Fig. 2.2 in the time interval
beginning at t = 120s and ending at t = 180s. The trajectories display mainly a
directed radial motion superimposed by random Brownian motion. A slight asym-
metry in the field of trajectories is visible: Particles at the right margin display a
more pronounced directed motion than particles at the left margin. This might be
due to small local asymmetries in the confining geometry or the released electrolyte
gradient or due to weak large-scale drift currents as a result of slow mechanical
relaxation processes of the setup components. Significant initial fluid flow resulting
from positioning the confining walls ceased within one minute.

Experimental observations were qualitatively well reproducible after homogeniz-
ing the suspension again by pumping or by fast vertical movements of the piezo
actuators. Both induce strong solvent currents which shear melt existing crystalline
structures. Without external disturbance crystals were stable as long as the exper-
imental conditions were stable. However, the lattice constant shrank by some 10%
over about one hour due to contamination with salt ions screening the inter-particle
repulsion.

2.2.2 Analysis of crystal growth

For quantitative analysis of the crystallization process first a standard tracking algo-
rithm [13] was applied on the image sequences. Using the gathered particle positions
the six-fold bond order parameter

p6 =
√

ψ∗6ψ6 ≥ 0.9 (2.1)
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Figure 2.4: Analysis of the eperimentally observed three domain crystal (a), cf.
Fig. 2.2) and mono-domain crystal (b) each at t = 500s; crystalline particles fulfilling
the local criteria according to Eqs. 2.1 and 2.2 are drawn in red, all others in
black. A few doublets of coagulated particles lead to local defects in the crystal.
(360 × 290μm2)

with ψ6 = 1
6

∑6
j=1 e6iθj and θj denoting the angle between a nearest neighbor bond

and a fixed reference axis and the relative bond length deviation

b6 =
1

6

6∑
j=1

|lj − l̄|
l̄

≤ 0.1 (2.2)

with l̄ denoting the average bond length between a particle and its six nearest
neighbors were used for identifying crystalline particles [116]. Both p6 and b6 were
calculated for each particle individually. Fig. 2.4 shows the final state of two growth
sequences each after 500s. Crystalline particles with respect to formulae 2.1 and
2.2 are plotted in red, all others in black. The poly-domain structure in Fig. 2.4(a)
and the mono-domain structure in Fig. 2.4(b) are clearly visible. Further, from
image analysis, also the average nearest neighbor distance of crystalline particles of
dNN = (7.6 ± 0.3)μm in both cases was obtained.

The corresponding crystal sizes in terms of crystalline particle numbers Nc(t)
and the effective crystal radii

Rc(t) =
√

Nc(t)/πρc (2.3)

as a function of time are shown in Figs. 2.5(a) and 2.5(b) respectively. Here ρc

denotes the area particle number density of the crystal calculated out of the average
nearest neighbor distance dNN , that both did not change significantly during growth.
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Figure 2.5: Experimentally observed crystal growth: Number of crystalline particles
Nc(t) (a) and effective crystal radius Rc(t) (b) vs. time t; black curves correspond to
the three domain crystal (Fig. 2.4(a)) and red curves correspond to the mono domain
crystal (Fig. 2.4(b)). The green dashed line in (B) is an exponentially saturating fit
to the black curve.

Flattening of the curves indicate an exponentially decreasing growth velocity,
which is explained in detail with a theoretical model in the Appendix A (cf. Eq. 5.14)
:

Rc(t) = R∞ − R̄e−λt, (2.4)

where R̄ is a fit parameter and λ the characteristic rate constant. R∞ denotes
the saturation radius, which is expected to set in for large times. An according fit
function is drawn in green in Fig. 2.5(b).

For the crystallization events presented here the saturation radii amount to R∞ ≈
95μm (three domain crystal) and R∞ ≈ 80μm (mono-domain crystal), and the
characteristic time constants amount to ca. λ−1 ≈ 215s and λ−1 ≈ 200s, respectively.
Those values may later serve for comparison with results of the theoretical modeling
of the system.

2.3 Simulations

We performed Brownian dynamics simulations of purely repulsive point-like particles
in two dimensions. We assume the particles to be confined in a disk and interact
via a Yukawa pair potential [117, 118]

V (s) = V0
e−κs

κs
(2.5)

with s denoting the inter-particle separation and κ the inverse screening length. The
strength of the potential energy is thereby set by the amplitude V0. Motivated by the
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experimentally observed convection-like currents leading to particle accumulation at
large cation exchanger seeds, we model the effective attractive trap force in 2D by
a stationary radial flow field of the form:

F0(r) = γu(r) = −γ
A

r3
r, (2.6)

where γ is the Stokesian friction coefficient, u the flow velocity at r (relative to the
origin with r = |r|), and A a positive flow amplitude. Herein, we physically assume
that the convective flow is sufficiently weak that accumulated particles stay confined
to the monolayer due to gravity. The inverse square distance dependency of the flow
is justified by the incompressibility of the fluid ∇ · u(r) = 0 in three dimensions.
The equation for the trajectory ri(t) of colloidal particle i obeying Brownian motion
(neglecting hydrodynamic interactions) after a finite time step δt reads:

ri(t + δt) = ri(t) +
D0

kBT
Fi(t)δt + u(ri)δt + δWi, (2.7)

where D0 = kBT/γ denotes the free diffusion constant, kBT the thermal energy,
and Fi(t) is the total conservative force acting on particle i stemming from the pair
interactions (i.e. V (s)) and a repulsive particle-wall interaction due to an outer
circular boundary. The latter is chosen to be a truncated and shifted 6-12 Lennard-
Jones potential confining the particles within a disk of a large radius R = 900/κ.
The third term on the right hand side of Eq. 2.7 is merely due to the flow field,
see Eq. 2.6. Finally, the random displacement δWi is sampled from a Gaussian
distribution with zero mean and variance 2D0δt (for each Cartesian component)
fixed by the fluctuation-dissipation relation.

In the simulations, the system consists of N = 5000 particles with an initial
overall fluid density ρf/κ

2 ≈ 0.002. We achieved good qualitative agreement with
the experimental findings for a flow amplitude of Aκ/D0 = 104 and an interaction
strength V0/kBT = 5 × 107. The time step is choosen as δt = 3 × 10−5τ where
τ = 1/(κ2D0). The crystal formation process strongly depends on the shape of
the seed. Seeds were realized by placing an arbitrarily shaped area of suitable
extension in the disk centre which acted for the particles as hard core repulsive area.
The particles in the first layer are thus still mobile and may adjust their spacing
according to their mutual interaction. Upon inspecting the experimental data (cf.
Fig. 2.4), we have considered different typical shapes of impenetrable seeds. Thereby,
differently shaped poly-crystals grow depending on the seed shape. Representative
snapshots can be found in Fig. 2.6 for two different shapes of the seed. About the
kite-like shaped seed in Fig. 2.6(a) we obtained a three-domain crystal with three
grain boundaries. We further show a second example of a circular seed yielding a
mono-domain crystal with one grain boundary (cf. Fig. 2.6(b)).
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Figure 2.6: Simulation snapshots of a three-domain (a) and a mono domain crystal
(b) each at t = 500τ . The green dots in both illustrations indicate the origin of the
system. The particle flow into the polygonal (a) and spherical (b) area is prohibited.
Analogue to Fig. 2.4, the red particles are crystalline, the black ones not. Field of
view: 250 × 250/κ2

Figure 2.7: Simulated crystalline particle number Nc(t) (a) and effective crystal
radii κRc(t) (b) of the three-domain (black curve/circles) and the mono domain
(red curve/squares) crystals of Figs. 2.6(a) and 2.6(b) vs. the reduced time t/τ .
The blue dashed curve in (b) corresponds to an exponentially saturating fit curve
with characteristic decay time λτ ≈ 5 × 10−3.
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The three-domain crystal as well as the mono domain crystal ceased to grow
at κR∞ ≈ 340. The three-domain crystal density accounts to ρc/κ

2 ≈ 0.0027 at
saturation, whereas the density of the mono domain crystal is ρc/κ

2 ≈ 0.003. The
number of crystalline particles Nc(t) and the crystal radii Rc(t) from the simulation
data are plotted in Fig. 2.7, from which we extract the characteristic decay time of
the exponentially saturating crystal growth by fitting Rc(t), see Fig. 2.7(b). In the
considered time interval (0 < t/τ < 500) the characteristic time has been determined
to be λτ ≈ 5 × 10−3.

2.4 Discussion

2.4.1 Crystal growth

Our simulations agree qualitatively well with our experimental observations. The
main equivalences are the formation of triangular monolayer crystals, the evolution
of different micro-structures on different seeds as well as the exponentially saturat-
ing crystal growth. In addition they also clearly show that crystallization follows
accumulation by the imposed flow.

The occurrence of only triangular crystal symmetry in both experiments and
simulations is in agreement with a long range attraction that enforces an efficient
packing with respect to potential energy due to the short range particle interactions.
In many cases there are slight lattice distortions visible that might be correlated with
the local attractive force, but on the other hand, those also might occur to reduce
stress at domain boundaries. Significant radial variations of the lattice constant
were not resolved.

Our observations indicate that no nucleation barrier is present in both simula-
tion and experiment. Therefore the number of domains formed depends neither on
thermodynamics nor on nucleation kinetics. Rather, the micro-structure crucially
depends on the seed geometry. Hence we payed particular attention to this point
in a large number of simulation runs. Point-like seeds geometrically allow perfect
single-domain crystals that actually occurred in simulations. Seeds incommensurate
with a triangular symmetry like squares or irregular forms induced poly-domain
structures (cf. Fig. 2.6(a)) in the simulations. By contrast, the experimental seed
geometries were rather irregular and not well specified. Therefore, so far no reliable
relation between seed geometry and resulting morphology can be obtained experi-
mentally. Seed materials providing the opportunity of specifically being shaped as
an alternative to brittle ion exchange resins would here be of great advantage.

Further, the exponentially saturating crystal growth is evident in experiments as
well as in simulations, where also saturation sets in for large times (cf. Figs. 2.5(b)
and 2.7(b)). As theoretically clearly shown (see Appendix A) this behavior is also
the result of a competition between the attractive, time independent, radially decay-
ing force field and the inter-particle repulsion by already crystalline particles. The
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evaluated saturation radii R∞ of both experiments and simulations might be biased
if too small particle numbers in the system are used. In this case crystallization
stops when no further incoming particles are available. This effect does obviously
not influence our experimental observations since the area particle number densities
of the surrounding fluid (ρf ≈ 0.007/μm2 and ρf ≈ 0.009/μm2 for the three- and
the mono-domain crystal respectively) do not change significantly during the crys-
tallization processes. In our simulations, this artifact was avoided by using particle
numbers significantly larger than that of the saturated crystal.

A quantitative comparison, however, is difficult since two important experi-
mental parameters, namely the experimental inverse screening length κ and the
interaction amplitude V0 in the narrow slit between the charged substrates, are
principally unknown due to presence of substrate counter ions as well as salt ions
set free by the seed. Further, the particle diffusion coefficient D0 in the surface
plane of the substrate is difficult to estimate due to hydrodynamic particle-wall
interactions as well as particle-particle interactions. Still, good qualitative agree-
ment was obtained using physically sensible estimates of these values. Using the
bulk values κ = (2.7 ± 0.7)/μm obtained from conductivity measurements and
D0,Bulk = 0.085μm2/s obtained from the Stokes-Einstein relation together with
the experimental values λ and R∞ extracted from the image sequences, we get
λτ = (7, 5 ± 2, 8) × 10−3 and κR∞ = (260 ± 70) for the three domain crystal and
λτ = (8, 1±3, 0)×10−3 and κR∞ = (220±60) for the mono domain crystal. Despite
the fact that these experimental values do not perfectly match the simulated values
λτ ≈ 5 × 10−3 and κR∞ ≈ 340, their orders of magnitude are equal.

Although the particle motion happens in quasi-2D, the attractive force field
(cf. Eq. 2.6) was modelled assuming a velocity field |u(r)| ∝ 1/r2 rather than a
field |u(r)| ∝ 1/r. This is justified since a convection-like solvent flow field will
also under the given experimental conditions have vertical velocity components. For
comparison also simulations using velocity fields |u(r)| ∝ 1/r were performed. These
lead to similar accumulation and crystallisation scenarios, which, however, matched
the experimental observations less quantitatively. Extremely long ranged attractions
compared to typical interparticle distances occured. In summary it can be said, that
here reasonably good qualitative agreement between experiments and simulations
is achieved by using an effective, pure 2D, long ranged attractive potential for the
theoretical description instead of an explicit hydrodynamic model.

2.4.2 Gradient-induced particle transport

The crystallization experiments can be well reproduced using certain experimental
boundary conditions, and, furthermore, the experiments can be qualitatively well
modelled by referring only to the flow field. The details of the underlying mech-
anism are, however, still not fully understood. Their explicit discrimination and
theoretical treatment is beyond the scope of the present paper and would require
monitoring of micro-ion currents and solvent flow. As this question nevertheless is
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extremely relevant for applications, we here give a preliminary collection of possibil-
ities for particle transport. Based on additional experiments we can exclude several
of these and suggest an ion gradient-induced particle transport as explanation of
our observations.

Particle transport may, in principle, be caused by a direct seed-particle inter-
action, by a seed-induced gradient of some kind or by solvent flow. As in all our
experiments with C-seeds, we observe an accumulation of colloidal particles in the
sedimented layer(s), while at A-seeds, we regularly observed void formation, we
may safely exclude thermal convection due to seed heating under illumination. This
mechanism would change the amplitude of convective flow in dependence on seed
material, but not its sign. Further, we observed the accumulation also under con-
ditions of very low initial particle concentration. Particles as far away from the
seed as a hundred microns were attracted or repelled immediately after stopping
the mixing flow. By this observation, we can exclude a direct electrostatic attrac-
tion or repulsion, which is strongly screened over these distances even at very low
particle and salt concentration (κ−1 ≤ 1μm). In addition, we also may exclude
gradients in particle-particle interaction. Particles far away from the C-seed are
non-interacting under these conditions. Accumulated particles are interacting with
a strong repulsion. Therefore the direct particle-particle interaction would tend to
push the accumulated particles outward. This argument also holds for the A-seeds,
where the osmotic pressure in the bulk will tend to refill any void.

In all our experiments at large cell heights or without upper confining wall we
observed the formation of annular currents. In particular, directly above large C-
seeds we observed colloidal particles with a pronounced upward particle motion. For
large seeds the currents often were too fast to allow for crystallization. As a general
trend, the convection diminished with decreasing seed size. For cell heights below
30μm (limiting the seed size to less than 30μm) convection was not demonstrable,
as the presumably present current became too weak, to lift our large colloidal par-
ticles from their monolayer. A demonstration would be possible with much smaller
particles not subject to gravitational settling. These would become traceable using
image correlation velocimetry [119, 120], which is currently under development in
our group.

Recently, Ibele et al. [114] reported similar particle depletion and/or accumula-
tion effects, although without order formation. Using different chemicals in detail,
they especially have observed the formation of both ’schools’ and voids of colloidal
tracer particles around seeds on a substrate. Based on analytical calculations by An-
derson and Prieve [111–113] they identify as physical origin different concentration
profiles of positive and negative ions released by the seeds.

To test the presence of ion concentration gradients we used pH-indicator liquids
together with isolated pieces of resins. Significant characteristic color changes close
to the resins were observed after minutes (c.f. Fig. 2.8). Both types of resin (Am-
berlite, Roth GmbH, Germany) release large amounts of their activator elctrolytes.
Those are hydrochloric acid (HCl) and sodium hydroxide (NaOH) for C-seeds and
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Figure 2.8: Color change of pH-indicator liquid close to isolated pieces of ion ex-
change resin on a glass microscopy slide: Acidic color change at cation exchange
resins (yellow, pH  4) and basic color change at anion exchange resins (blue,
pH ≥ 8) occurred within ca. 5 minutes.

A-seeds, respectively. According to the observed color changes we find a change of
electrolyte concentration of about 2-3 orders of magnitude over distances of a few
mm.

According to Anderson et al. [111–113] a gradient of electrolyte concentration is
inevitably coupled to the existence of local electric fields. This is due to the differ-
ent micro-ionic diffusivities creating a space charge region of extension O(κ), with
the faster micro-ion drifting ahead and determining the field direction. The field
strength is determined by the diffusivity difference and the local average concen-
tration. Charged colloidal particles will react both to the gradient itself (drifting
upward due to the entropy of mixing) and the field. Their electrophoretic reaction
to the field depends on their charge sign and the field direction. In the case of HCl
released by a C-seed, H+ has a significantly larger bulk diffusion coefficient than Cl−

(D(H+) = 9.3 × 10−5cm2/s and D(Cl−) = 2.0 × 10−5cm2/s at infinite dilution at
25◦C). Negatively charged particles in such a gradient, where the proton is ahead
and the field is directed towards the large concentration region, will show an elec-
trophoretic drift against the gradient. Both effects superimpose and the resulting
so-called diffusiophoretic drift velocity and direction can be estimated analytically
for κa > 1 or have to be calculated numerically for smaller values of κa [111, 112].

The local fields will further interact with the electrical double layer (EDL) of
the cell walls [114]. Again two points have to be considered. First, the imposed
electrolyte gradient superimposes with the concentration profile of the wall-EDL. A
lateral difference in osmotic pressure within the EDL results. This will induce an
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osmotic flow of solvent volume elements of the EDL directed along the wall towards
smaller electrolyte concentrations. Second, for a negatively charged wall, the EDL
contains dominantly cationic species. Volume elements of the solvent within the EDL
hence carry a space charge and will be accelerated by the local, gradient induced
field. Similarly to the electro-osmotic effect of solvent flow along a charged wall
under the influence of an externally applied field, this reaction of the solvent to the
local gradient-induced fields results in a macroscopic flow along the cell wall. For
the example of a C-seed lying on the quartz wall, the direction of the electro-osmotic
flow is towards the seed. Both osmotic and electro-osmotic effects superimpose. Due
to the incompressibility of the solvent an annular convection pattern has to evolve
either with the formation of a centrosymmetric depletion zone or with an upward
flow in the centre of the convergent flow. For the case of an A-seed osmotic and
electro-osmotic effects will drive the solvent outward. For a C-seed both effects
compete. According to our experimental observations, however, we find that the
electro-osmotic term dominates at least for large C-seeds. The flow induced by C-
seed released gradients or other kinds of gradients [114] may even become strong
and fast enough to prevent order formation.

Combining our experimental observations with the theoretical considerations we
unequivocally identify the presence of an electrolyte gradient to be the cause of the
particle transport. The involved mechanism for large C-seeds is convective and thus
dominated by the convergent electro-osmotic solvent flow. Crystallization is possi-
ble, once the local particle number density exceeds the salt concentration dependent
freezing density and the local shear forces are small enough. We qualitatively sketch
the field generating electrolyte gradients around a cation exchange resin particle
in Fig. 2.9(a). Fig. 2.9(b) exemplarily shows the resulting laterally converging,
electro-osmotically induced fluid flow for the case of a large C-seed. Due to mass
conservation the geometry of this flow field enforces an upwards directed vertical
flow in the convergence region, i.e. at the seed position. For suitable combinations
of particle mass density and current strength, the sedimented colloidal particles are
dragged along towards the resin fragment, but cannot follow the upward flow due
to the presence of gravity.

For smaller seeds the cause of particle transport is also given by the presence of an
electrolyte gradient. The involved mechanisms could, however, not be discriminated
from the present experiments. We anticipate that a dominance of electro-osmotic
currents is still present, but, in particular for an additional upper wall present and
small cell heights also significantly altered flow patterns or even a suppression of con-
vective flow could in principle occur. In that case the other mechanisms would gain
importance. In principle, an attraction may even occur for the case of a small A-seed,
when the inward diffusiophoretic particle motion exceeds an outward electro-osmotic
solvent flow. Fortunately, for the qualitative comparison between experimental ob-
servations and simulations using an attractive potential the details of the actual
mechanisms do not play a crucial role. Rather we have shown that whenever there
is some kind of particle accumulation enhancing the local particle concentration
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Figure 2.9: Qualitative sketch of the electro-osmotic mechanism: (b) Spatial con-
centration profiles of H+ ions (red curve) and Cl− ions (blue curve) around a C-
seed (brown) releasing HCl; a balancing electric field E arises that drives the mo-
bile counter ions (plus-signs) of the substrate (grey bar; immobile substrate surface
charges are indicated by minus-signs). (b) Sketch of the electro-osmotically driven
flow (blue arrows) inducing accumulation of colloidal particles (orange) next to the
seed (brown).

beyond the threshold density, crystallization occurs.

2.5 Conclusion

In this report we investigated driven colloidal crystallization by complementary
experimental and theoretical approaches. Quasi-2D transport, accumulation and
crystal structure formation in a colloidal monolayer were experimentally induced
using locally applied ion concentration gradient fields around cation exchange resin
seed objects in slit confinement. Qualitatively equivalent results were obtained by
Brownian dynamics simulations using a long-ranged trapping potential in 2D and
competitive inter-particle repulsion. While we have presented strong evidence for
a dominance of electro-osmotic currents in the case of large seeds, the detailed
weighting of the different particle transport mechanims possibly involved remains to
be clarified in future experiments. For each given experimental boundary condition
we actually expect a complex scenario which poses a number of interesting questions
to theory and engineering.
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The observed driven crystallization process has, to our knowledge, not been de-
scribed in detail before. The pioneering work of Hachisu [121], who reported the
very existence of crystals grown at ion exchange resin beads has, in fact, not been
followed by further investigations to observe the crystal formation kinetics. Nor
have there been attempts to study the involved transport mechanisms. Similar ob-
servations of crystal formation at sedimented ion exchange resin beads rather have
occasionally been mistaken as equilibrium phenomena [122–124]. Hence our obser-
vations are innovative and may provide a novel, flexible method for designing and
manipulating spatial distribution and morphology of thin colloidal crystals in fluid
dispersion media. Conventional homogeneous and heterogeneous bulk crystalliza-
tion provide no control of crystallite position and morphology, and fabrication of
patterned substrates to induce a particular wall crystal growth pattern is (at least)
tedious. Efficient modeling together with the experimental feasibility of flexibly
manufacturing seeds, however, would provide the opportunity of designing specific
crystalline material. It is conceivable that a printing process can be used to flexibly
fabricate substrates e.g. by soft lithography or just by jet printing. Therefore it
will be necessary to fabricate appropriate seed materials, e.g. a polymeric or gelling
matrix that can flexibly be imprinted onto a substrate, where it releases appropriate
ionic solutes slowly, and possibly even under external control. The simulations pre-
sented above on the other side reproduced the experimental findings for the given
boundary conditions remarkably well. This shows in principle, that they will be-
come very useful in designing appopriate seed distributions enforcing desired crystal
microstructures. Apart from industrial relevance for the fabrication of textured iri-
descent coatings or photonic materials in general, we further anticipate possible uses
of such combined approaches for fundamental studies, e.g to obtain monodisperse
grain sizes in polycrystalline materials or well defined multiple grain boundaries.
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Chapter 3

Multilayered crystals of macroions

under slit-confinement 1

The crystalline ground state of macroions confined between two neutral parallel plates

in the presence of their homogeneously spread counterions is calculated by lattice-sum

minimization of candidate phases involving up to six layers. For increasing macroion

density, a cascade of solid-solid transitions is found involving various multilayered crystals.

The cascade includes triangular monolayer and buckled bilayer as well as rhombic, squared

and triangular phase structures.

3.1 Introduction

Strong correlations in Coulomb systems lead to a variety of new effects which are
absent for neutral particles, see e.g. Refs. [57, 125] for a review. Among those are
nonlinear screening effects [8, 126–128], charge inversion [129], Coulomb criticality
[130, 131], like-charge attraction for multivalent ions [56, 132–134] as well as exotic
binary crystalline structures unknown for uncharged systems [135, 136].

By using charged colloidal suspensions [137] or dust particles in plasmas [138], it
is possible to realize strongly asymmetric mixtures of oppositely charged particles.
These systems consist of mesoscopic highly charged ”macroions” and microscopic
counterions with a low valency resulting in strong charge and size asymmetries.
Since the charges of the macroions are high, strong Coulomb correlations are typical
for macroions. Most of the physics can still be encaptured by viewing these systems
as strongly asymmetric and strongly coupled electrolytes. In recent years, it was

1This chapter was published in a very similar form by E. C. Oğuz, R. Messina, H. Löwen, J.
Phys.: Condens. Matter 21, (2009) 424110.
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possible to confine macroions in sheets between two parallel plates [137, 139–142]
and to observe the resulting lateral structure of the particles. The gross features
can be understood in terms of an (effective) one-component system with a Yukawa
pair interaction [9,143–147]. In fact, the mono- and bilayer ground-state structures
which were obtained from a Yukawa model [56] describe the experimentally found
structures [103]. For multilayers beyond the bilayer regime, a rich variety of stable
phases are found in experiments [148–150] as well as in simulations [151], which are
all theoretically confirmed for a Yukawa system between two neutral walls [60]. This
motivates a study about the influence of the wall-particle interaction on the phase
behaviour of multilayered crystalline sheets in slit-like confinement [152].

In this chapter, we consider a model for macroions confined between two par-
allel neutral walls 2. There is a direct Coulomb interaction between the point-like
particles. The total system is charge-neutral and the counterions are kept at high
temperature and are homogeneously spread between the plates resulting in an at-
traction acting on the macroions towards the middle of the plates. The system is
realized for highly charged colloidal particles or dust particles in plasmas. Some early
theoretical and simulational investigations on clusters of artificial atoms [154–156]
and dusty plasmas [138,157] as well as one-component plasmas [158–160], including
all the parabolic potentials acting as confinement, reveals the existence of multi-
layers. We therefore include the regime beyond bilayers in our discussion. Lattice
sum minimizations among a broad set of candidate structures are used to determine
the structure which minimizes the potential energy per particle. For increasing
macroion density, we find a cascade of solid-solid transitions which includes triangu-
lar monolayer, buckled bilayer and squared, rhombic and triangular bi-, tri-, tetra-,
penta- and hexalayers 3. Comparing the results to those involving a Yukawa interac-
tion [60], we show that the topology of the phase diagram depends crucially on the
particle-wall interaction. In fact, some complicated tetralayered structures which
were found stable for the confined Yukawa model are unstable in the present model.
The strong correlation between phase behaviour and wall-particle interactions sug-
gests to tailor new crystalline structures (e.g. with desired filtering properties [162])
by a suitable surface treatment of the plates.

The paper is organized as follows: the model is introduced in section II. After
discussing the structure of different crystalline multilayers, results for the cascade of
solid-solid transition are presented in section III. Finally we conclude in section IV.

2Different from [153] we include here a neutralizing background of counterions
3For colloid-polymer films, see [161]
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3.2 The Model

We consider N classical point-like particles of charge q (macroions) interacting via
the unscreened Coulomb pair potential

V (r) =
q2

εr
, (3.1)

where r denotes the interparticle distance and ε the (relative) dielectric constant
of surrounding medium. The system is confined between two parallel hard walls of
area A and separation L, see figure 3.1. The global charge neutrality of the system
is ensured by counterions. The latter are taken into account by an homogeneous
neutralizing background that is smeared out over the whole slit. We mention that
we neglect the discrete nature of the counterions in this approach, as well as any
local ion-counterion coupling.

z = −L/2 z = 0 z = + L/2

V(z)

zV ~ z²

V ~ z
D

L

Figure 3.1: A schematic illustration of the model. The ions (e.g., charged colloids)
are represented by filled circles. The counterions are smeared out between the two
hard walls located at z = ±L/2. This charge distribution generates a quadratic
potential V (z) ∼ z2 in between as shown. The separation between outermost layers
(dashed lines) is denoted by D.

As a consequence of Gauss law, the electric field Eb (stemming from the neutral-
izing background) is linear in z inside the slit and constant outside the slit. More
specifically, we have

Eb(z) =

⎧⎪⎨
⎪⎩
−4π

ε

Nq

A

z

L
for − L/2 ≤ z ≤ +L/2,

−2π

ε

Nq

A

z

|z| else.
(3.2)
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We thereby implicitly neglect image charge effects [163], meaning that we assume
that there is no dielectric contrast at the interfaces (at z = ±L/2). The resulting
electrostatic potential Φb, verifying the matching condition at z = ±L/2, then reads

Φb(z) =

⎧⎪⎨
⎪⎩

2πηq

εL3
z2 for − L/2 ≤ z ≤ +L/2,

2πηq

εL2
|z| − πηq

2εL
else,

(3.3)

where the reduced density

η ≡ N

A
L2 (3.4)

was introduced. Hence, the potential of interaction Vb(r) between a macroion and
the counterion background is merely given by

Vb(z) = qΦb(z). (3.5)

We are now in a position to write the total potential energy per particle u as 4

u =
1

2N

N∑
i=1

N∑
j=1

V (rij) +
1

N

N∑
i=1

Vb(zi). (3.6)

In its appropriate rescaled form, u reads (within the slit)

u
εL

q2
=

1

2N

N∑
i=1

N∑
j=1

1

r∗ij
+

1

N

N∑
i=1

2πηz∗i
2, (3.7)

with r∗ij ≡ rij/L and z∗i = zi/L, showing that at prescribed confinement width L the
energy of the system depends only on η. Consequently the phase diagram at zero
temperature is given as a function of η.

At each given density η, we have performed lattice sum minimizations for a
broad set of candidates of crystalline lattices. In order to handle the long ranged
Coulomb potential, we have used the Lekner summation method [164] for three-
dimensional systems with two-dimensional periodicity [165], see also [166]. More
explicitly, we consider in this work three-dimensional crystals with two-dimensional
periodicity in x- and y-direction whose primitive cell is a parallelepiped containing
n particles. This parallelepiped is spanned by the three lattice vectors a = a(1, 0, 0),
b = aγ(cos θ, sin θ, 0) and c = D(0, 0, 1), where γ is the aspect ratio (γ = |b|/|a| =
b/a) and θ is the angle between a and b. Furthermore, the n particles are distributed,
not necessarily evenly, on m layers in the z-direction such that c = |c| corresponds

4To remedy the divergence occurring with the first term of (3.6), a two-dimensional neutralizing
background is introduced in the Lekner (or equivalently Ewald) sum. This neutralizing background
(implicitly present in the Lekner and/or Ewald sum) has to be distinguished from the one that we
use to model the counterions, which is smeared out over the whole volume of the slit.
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to the distance between outermost layers (see also figure 3.1). Hereby we restrict
ourselves to layered situations with an up-down inversion symmetry in the averaged
occupancy reflecting the up-down symmetry of the confining slit. Under this sole
restriction, we consider possible candidates with n = 1, · · · , 8 and m = 1, · · · , 6 up
to symmetric six-layer structures with a basis of up to 8 particles. Furthermore,
we also examine the stability of several asymmetric buckling phases, as predicted
in [167]. For given η, the total potential energy per particle is minimized with
respect to the particle coordinates of the basis and the cell geometry (γ and θ). The
resulting stability phase diagrams are shown and discussed in the following sections.

3.3 Mono- and bilayer phase behavior

3.3.1 Phase diagram

An increase of η within the mono- and bilayer regime reveals the existence of five
stable crystalline mono- and bilayers: 1Δ (triangular), 3Δ (staggered triangular),
2� (square), 2R (rhombic) and 2Δ (staggered triangular). The integers indicate the
number of layers. For increasing η, the stability cascade therefore reads:

1Δ → 3Δ → 2� → 2R → 2Δ. (3.8)

Most of these phases, corresponding to Wigner crystals predicted in earlier
theoretical investigations [56, 153], are also found in experiments on charged col-
loidal suspensions [168, 169] as well as in Monte Carlo simulations of confined hard
spheres [170]. The detailed phase diagram is reported in figure 3.2.

3.53 4.49

1Δ 2 R
η

2 2 Δ

Δ3

1.37 1.53 

Figure 3.2: Stability phase diagram of crystalline mono- and bilayers. The five stable
phases 1Δ, 3Δ, 2�, 2R and 2Δ correspond to Wigner crystals, found in earlier
investigations (see text for details). Note that the monolayer-trilayer transition
occurs at η ≈ 1.37.

We emphasize that the 3Δ phase (staggered in an ABC manner, see also table
3.1) intervenes between 1Δ and 2� rather than a buckled phase which is present in
a situation where the external potential has a vanishing curvature at the origin.

At small reduced densities η, particles tend to stay in the potential minimum (cf.
figure 3.1) created by the counterion background. This is precisely the origin of the
stability of monolayered Wigner crystals, which never occurs in purely unscreened
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Figure 3.3: Order parameter h in the transition regime 1Δ to 2� via 3Δ. The
monolayer 1Δ buckles at a critical density ηc ∼ 1.360901 to a trilayer.

Coulomb systems. 5 The triangular monolayer 1Δ is stable up to η = 1.37. At larger
densities the mutual repulsive interparticle interactions, first term in equation (3.7),
dominates the competition between the interparticle (macroion-macroion) repulsion
and particle-background (macroion-counterion) attraction.

The structure with triangular base shape 3Δ appears as the first stable multilayer
(see figure 3.3), interpolating between 1Δ and 2�. The associated order parameter,
namely the reduced separation

h ≡ D

2L
(3.9)

between the mid-plane and the outer macroion layer (see also figure 3.1), is contin-
uous at the transition 1Δ → 3Δ but discontinuous across the 3Δ → 2� transition,
see figure 3.3 and [170].

By further increase of η, one recovers the rhombic phase 2R, which is continu-
ously achievable from the square phase 2� by changing θ, as indicated in the inset of
figure 3.4. The two geometrical order parameters h and sin θ, see figure 3.4, indicate
thereby a continuous transition for 2B → 2�. On the other hand, at larger values
of η, the transition 2R → 2Δ is of first order as signaled by the jumps of the two
geometrical order parameters h and sin θ, see figure 3.4. The staggered triangular

5Indeed, we found that a rectangular bilayer with size ratio γ =
√

3, proposed as a stable
structure for very small η in [153], is always energetically beaten by a buckled (2B) bilayered
phase. Seen from the top, this structure corresponds to the triangular lattice.
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Figure 3.4: Order parameter h in the transition regime 2� to 2Δ via 2R. The
discontinuity Δh in the developing of the layer-layer separation by the transition
2R → 2Δ is also shown for clarity. In the inset one can regard how θ changes in
the same regime. Corresponding structures are also sketched in the inset. Different
colors indicate different layers.

phase 2Δ corresponds to the ultimate stable structure in the high density regime of
bilayers.

3.3.2 From monolayer to trilayer - An analytic approach

We now would like to address the transition 1Δ → 3Δ analytically. To do so, we
apply a Taylor expansion to u(h) around h = D/2L = 0, see the Appendix 5 for
details. The resulting asymptotic expression for small interlayer distances h reads

u(h)

q2/εL
= B0

√
η + B1η

3/2h2 + B2η
5/2h4 +

4

3
πηh2. (3.10)

with

B0 = −1.960516 . . . , B1 = −3.590668 . . . , B2 = 4.968827 . . . . (3.11)

The profile of the reduced half layer-layer distance h(η) is obtained upon minimizing
u with respect to h, i.e. ∂u/∂h = 0, leading to

h2(η) = −B1
√

η + 4
3
π

2B2η3/2
. (3.12)
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Figure 3.5: Plot of equation equation (3.14) (dashed line) and numerical calculations
for finite h(η) (solid line) based on full lattice sum minimization near the monolayer-
trilayer 1Δ → 3Δ transition.

It is now a simple matter to obtain the reduced density ηc at which the monolayer-
trilayer transition (1Δ → 3Δ) takes place. The mathematical condition is thereby
h(η = ηc) = 0 yielding

√
ηc = − 4π

3B1
⇒ ηc = 1.360901 . . . , (3.13)

which is in quantitative agreement with the lattice sum minimization results from
previous section, see figure 3.5.

By inserting the expression (3.13) of ηc in (3.12) one obtains

h2(η) = − B1

2B2

η − ηc

η2 + η3/2√ηc

. (3.14)

Noticing that the last denominator in equation (3.14) can be approximated (valid
in the relevant limit η → η+

c ) by 2η2, we obtain a square-root singularity:

lim
η→η+

c

h(η) =

√
− B1

4B2η2
c

(η − ηc)
1/2 ∼ (η − ηc)

1/2. (3.15)

This theoretical prediction (3.14) is visualized in figure 3.5.
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4R 4Δ R5 Δ5 R6

10.14 12.89 17.96 31.9730.03 42.45 66.24 85.49 123.11
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Figure 3.6: Stability phase diagram of crystalline multilayers in the presence of a
neutralizing background. 3�, 3R, 3Δ, 4�, 4R, 4Δ, 5R, 5Δ and 6R are obtained
as stable in the analyzed η-regime. The corresponding structures are given in table
3.1.

3.4 Multilayers

The presence of the neutralizing background allows the formation of multilayers with
m ≥ 3 for large enough densities η, which is forbidden in the absence of a background
6. The physical origin of the stability of multilayers in the present system at large η
is basically a balance between the mutual unscreened macroion-macroion repulsion
and the attractive macroion-background interaction.

We shall now analyze in detail the high density regime up to η ≈ 130. Beyond
the bilayer regime, that is limited by 2Δ, the cascade found here upon increasing η
reads:

· · · 3� → 3R → 3Δ → 4� → 4R → 4Δ → 5R → 5Δ → 6R · · · , (3.16)

where rhombic phases 3R, 4R, 5R and 6R have the stacking sequence ABA, ABAB,
ABABA and ABABAB while the triangular phases 3Δ, 4Δ and 5Δ occur as ABC,
ABCA and ABCAB, respectively. More structural details are given in table 3.1.
The corresponding phase diagram is depicted in figure 3.6.

The primitive cells of all stable phases found in this work consist of one particle
per layer. Each constitutive layer possesses the same basis shape (Δ, � or R). These
layers are shifted to each other, see table 3.1. Note that (for m > 3) the layers
become equidistant only in the limit η → ∞. A remarkable finding is the absence
of prism phases (at m = 4) that are encountered in hard sphere systems [148, 151]
and Yukawa systems at finite screening [60].

A further overview of the full phase diagram ranging from triangular monolayer
to rhombic hexalayer structures is shown in figure 3.7 where the profile of h(η) is
also sketched. Empty circles indicate transitions of second order, while the full

6There is a simple and clear electrostatic argument to explain the exclusive stability of bilayers
for charges confined between (charged or uncharged) hard walls without neutralizing volume back-
ground. One has to note that two equally charged walls do not generate any electric field within
the slit, and consequently do not alter the stable structure obtained at any other surface charge
(including neutral walls). Hence, if one considers the special case of two walls corresponding to
two-dimensional neutralizing backgrounds where the ground-state is the 2Δ bilayer, we deduce
from this that the ground state structure is always a bilayer.
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Table 3.1: Structural details of the stable crystalline multilayers. The bottom layer located at z = −D/2 corresponds to
first layer (labeled as i = 1), and the labels of the successive layers are incremented accordingly. For m > 3, the separation
between the two first layers is characterized by δD with 1/(m− 1) ≤ δ < 0.5. The relative separation vector between two
particles of a primitive cell belonging to two layers i and j is given by dij . For six layers, the separation between the first
and the third layers is specified by λD with 2/5 ≤ λ < 0.5. In the top views of 3Δ, 4Δ, 5Δ and 3R, 4R, 5R, 6R each
basis shape is emphasized with white lines. The rhombic stripes of 3R, 4R, 5R and 6R are shown again in corresponding
perspective views, for clarity. Particles from different layers are identified by different colors.
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ones denote transitions of first order. In detail, for 3- and 4-layers, the transitions
3� → 3R and 4� → 4R occur continuously by continuously changing the angle θ
between the two in plane basis vectors, in analogy to 2� → 2R (cf. figure 3.4), while
all other transitions are discontinuous. Additionally, by the transitions 3R → 3Δ,
4R → 4Δ and 5R → 5Δ, and by the transitions changing the layer number at
η = 1.53 (3Δ → 2�), η = 10.14 (2Δ → 3�), η = 30.03 (3Δ → 4�), η = 66.24
(4Δ → 5R) and η = 123.11 (5Δ → 6R) the distance between outermost layers
exhibits a certain jump Δh (indicated by thick arrows in figure 3.7). In fact, there
is here no continuous transition present between two unequal layered phases as in
the case of hard spheres 7.

Furthermore, for high densities, the concrete lattice evolves to a continuous such
that effects due to the concreteness get negligible. This means, electrostatically, that
each layer of a m-layered structure is completely compensated by a certain part of
background as much as 1/m of the whole.
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Figure 3.7: Order parameter h of all stable crystalline phases. Empty circles denote
a continuous transition, while the full circles mark a discontinuous one. The transi-
tions between different layer numbers, rendered as dashed lines, are also recorded as
a first order transition except 1Δ → 3Δ. Apart of that, the underlined h-numbers
give the limit h-value (η → ∞), for the case that no more phase transition to a
higher layered structure occurs. The dotted line indicates a scale change in η-axis.

7In the case of bilayered hard spheres, one can achieve a continuous layer increase from 2Δ to
four-layered hcp-like and hcp(100) phase [60, 149, 150].
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In this chapter we have dealt with a system consisting of particles (macroions)
interacting via the unscreened Coulomb potential and of particles of opposite charge
(counterions), which are homogeneously smeared out over a hard slit of width L,
compensating the charge of the macroions. To determine the stability diagram of
crystalline phases, we have performed lattice sum calculations of a set of candidates.
As possible candidates we have taken into account phases with up to six layers
(m = 1, · · · , 6) whose primitive cell contains up to eight particles (n = 1, · · · , 8).
Additionally, we considered the buckling phases from [167], too. We have analyzed
a regime up to η ≈ 130 in our investigations. For small densities, we could trace the
existence of the triangular monolayer 1Δ. Crossing a certain critical density ηc the
system buckles and evolves to a trilayered structure. This transition density is also
calculated analytically by applying a Taylor expansion to the lattice sum for small
separations. Furthermore the evolving of the layer separation from monolayer to tri-
layer could be characterized as h(η) ∼ (η − ηc)

1/2, qualitatively. Tuning the density
upwards, we have noticed different stable bilayered structures, same as Wigner crys-
tals. Beyond the bilayers, we could also find stable tri-, four-, five- and six-layers
in square, rhombic and triangular bases. The final stability sequence for m > 4
reads therefore: mR → mΔ → (m + 1)R with a remarkable vanish of square-based
phases, where the sequence for m = 3 and m = 4 is m� → mR → mΔ → (m+1)�.
While the stability domain of evenly layered phases gets larger with increasing m,
the stability domain of square phases (�) decreases for m > 2 and disappears finally
for m > 5. On the other hand the stability domain of rhombic (R) and triangular
(Δ) phases increases both with growing m > 2.

Apart of that, the transitions involved here are all of second order except mR →
mΔ and mΔ → (m + 1)�. The latter takes place discontinuously due to the order
parameter θ and particle positions (as in the case of nR → nΔ) as well as with
respect to h (cf. 3.7).

3.5 Conclusions

To summarize: For slit-confined ions in a smeared background, we have determined
the ground state crystalline lattice as a function of the ion density up to the six-
layer regime. A complex cascade with buckled, squared and triangular bi-, tri-
, tetra-, penta- and hexalayers was found. The results are verifiable in systems
with classical ions in a background including charged colloids, dusty plasmas and
classical ions in a trap. One important conclusion is that the details of multilayered
structures depend crucially on the particle-background interaction. More future
work is needed to include wall charges, wall particle attractions and effects of finite
temperature [65]. A detailed understanding of the stable crystalline structure as
originating from the wall properties is desirable to construct filter devices [162] or
optical band-gap crystals [171].



Chapter 4

Crystalline multilayers of charged

colloids in soft confinement 1

We combine real-space experiments and lattice sum calculations to investigate the phase

diagram of charged colloidal particles under soft confinement. In the experiments we ex-

plore the equilibrium phase diagram of charged colloidal spheres in aqueous suspensions

confined between two parallel charged walls at low background salt concentrations. Moti-

vated by the experiments, we perform lattice sum minimizations to predict the crystalline

ground state of point-like Yukawa particles which are exposed to a soft confining wall

potential. In the multilayered crystalline regime, we obtain good agreement between the

experimental and numerical findings: upon increasing the density we recover the sequence

2� → 2� → 2hcp⊥ → 3� → 3� → 3hcp⊥ → 4�.

4.1 Introduction

The behavior of particles in confinement can be drastically different from that found
in the bulk [17]. In particular, phase transitions like crystallization are strongly
shifted or even changed in nature for strong confinement [16, 172, 173]. The type
of confinement can be either topographical (”hard”) or energetic (”soft”). The
former case is typically modeled by hard system boundaries which influence the
local packing or imprint a local substrate structure onto the system. One of the
standard situation is confinement in a slit-geometry between two parallel hard plates.
Soft confinement, on the other hand, results from a smooth external potential; a
typical situation of which are particles confined in a harmonic well. The nature of

1This chapter was published in a very similar form by E. C. Oğuz, A. Reinmülller, H. J. Schöpe,
T. Palberg, R. Messina, H. Löwen, J. Phys.: Condens. Matter 24, (2012) 464123.
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experiment vs. theory

confinement needs to be distinguished from the interactions between the particles
which can also be hard (as e.g. for hard spheres) or soft (as given for e.g. Yukawa-like
pair interactions).

Colloidal suspensions have been used as model systems for various types of in-
teractions and confinement [174] thanks to the tunability of their interactions [89]
and the susceptibility of particles to external fields. Sterically-stabilized colloids are
a realization of hard-sphere systems, while charged colloids are mainly described by
Yukawa pair interactions [8,9,144]. Likewise hard and soft slit-geometry confinement
can be realized by constraining the suspensions between plates. Uncharged plates
provide a hard confinement while a large surface charge leads long-ranged repulsions
resulting in a soft confinement. One big advantage of colloidal systems is that in-
dividual particle positions are observable directly (e.g. by video microscopy) [175]
providing real-space access to crystallization phenomena [103,148,176–178]. Under-
standing crystallization phenomena in quasi-two-dimensional system is important
not only for a fundamental understanding but also for applications like optical fil-
ters [38] and micro-sieves [39].

Regarding crystallization in slit geometry, hard confinement has been studied for
both hard particles [45, 63, 64, 148–151, 170, 179–182] and soft particles [56, 58–62,
103,152,183–185]. More recently, also the case of hard particles in soft confinement
has been addressed, see e.g. [186, 187]. Complex cascades of multilayered crystals
were predicted and confirmed in colloidal experiments of which the details depend
on the interparticle and particle-wall interactions. Detailed comparisons between
experiment and theory were performed for hard [148, 151, 181] and soft [103] par-
ticles in hard confinement but for soft particles in soft confinement such a direct
comparison is missing.

In this chapter, we close this gap and compare crystallization of soft particles in
soft confinement, both by theory and experiment. In the experiments, charged col-
loidal spheres in a highly deionized solvent are confined between two charged glass
plates. In theory, we consider point-like Yukawa interactions between the particles
thereby interpolating between two known extreme limits of unscreened Coulomb
particles [59, 67, 188] and hard spheres [187] in soft confinement. Focusing on mul-
ticrystalline layering, we combine both real-space studies of charged suspensions
with lattice sum calculations of a Yukawa model at zero temperature in soft confine-
ment. The comparison between the experimental data and a DLVO-type model for
the interparticle and particle-wall interactions performs quantitatively well within
the given uncertainties. In particular, we confirm the basic multilayer phase se-
quence 2� → 2� → 2hcp⊥ → 3� → 3� → 3hcp⊥ → 4� if the system density
increases.

This chapter is organized as follows: in section II, we discuss the experiments
and present real-space data for multilayered crystals. The lattice sum calculations
are briefly explained and the resulting ground state phase diagrams are compared to
the experimental findings in section III and IV. We finish with concluding remarks
in section V.
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4.2 Experiments

4.2.1 Principles

We experimentally explored the equilibrium phase diagram of charged colloidal
spheres in aqueous suspensions under spatial confinement in slit geometry at low
background salt concentrations using a home-made setup. The suspensions were
prepared in a closed tube system [189] including the microscopy cell, a mixed bed
ion exchanger column and a syringe pump. The ion concentration was monitored
using an integrated conductivity measurement cell. The arrangement of compo-
nents in a circuit facilitated efficiently deionizing and homogenizing the suspensions
via pumping. The measurement cell consisted of optically flat quartz substrates
attached to piezo actuators for adjusting the confining geometry. The confined vol-
ume between the circular substrates had a lateral diameter of 25mm and was in
contact with the surrounding bulk volume. A proper choice of materials of high
ionic purity as well as carefully sealing the whole setup guaranteed sufficiently low
contamination with salt ions. Optionally the whole setup could be enclosed into a
glove bag providing a nitrogen atmosphere. Conditions were reasonably stable for
more than 20 minutes each time after stopping the pump. Observations were made
using a conventional inverted optical scientific microscope (Leica, DM-IRB, Ger-
many). Two mono-disperse aqueous suspensions of negatively charged polystyrene
spheres with diameters 2a1 = (5.19 ± 0.08)μm and 2a2 = (2.59 ± 0.04)μm (batch
nos. PS/Q-F-B1036 and PS-F-B233 by Micro Particles Berlin GmbH, Germany; in
the following those will be termed ’PS 5.2μm’ and ’PS 2.6μm’) were used. In order
to suppress gravity the solvent mass density was matched to that of polystyrene by
adding 20% vol. glycerol. Prior to the measurements the stock suspensions were in
contact with mixed bed ion exchange resins for several weeks.

At constant chemical properties of both particle and substrate surfaces we inves-
tigated the equilibrium phase diagram in terms of the emerging crystal structures
depending on the dimensionless parameters, namely the reduced area number den-
sity η and the reduced inverse screening length λ:

η = nAd2 = nP d3, (4.1)

λ = κd. (4.2)

Herein nA and nP denote the area and volume particle number density respectively,
d is the width of the confining slit, and κ is the inverse screening length of the
assumed repulsive, screened Coulomb inter-particle potential. In our experiments
these parameters could be varied and determined quantitatively.

The area number density nA = N/A was evaluated by counting the number N of
particles observed in the specified field of view A of an optical micrograph showing
a well-defined phase. Counting was performed partly automated by using image
analysis algorithms [190].
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The separation d between the confining walls was in situ accessible via white light
interferometry. To that end the quartz substrates were specifically coated with a
beam splitting gold layer (10nm gold on 1.5nm chromium on quartz; optical trans-
mission ca. 50%; sputtering was performed by Max Planck Institute for Polymer
Research, Mainz, Germany). To induce a negative wall charge in contact with aque-
ous suspensions further coatings were produced in a dip procedure [191]: First the
gold layer was coated with a cysteamine monolayer (Cysteamine hydrochloride by
Sigma-Aldrich) that chemically bonded via a thiol group and that provided a positive
surface charge. Subsequently a sodium-polystyrene sulfonate coating (Poly(sodium
4-styrenesulfonate) by Sigma-Aldrich) was produced. The latter polymeric layer
provided a negative surface charge and bonded electrostatically to the cationic cys-
teamine layer. At wall separations below d ≤ 50μm and at sufficiently low area
number densities nA, i.e. when the observed area A was not completely covered
with particles but when there were free interstices visible between the particles,
the transmitted spectrum of a white light illumination (e. g. the microscopy lamp)
showed pronounced interference peaks and dips typical for Fabry-Pérot resonators.
These interference patterns allowed quantitatively evaluating the local wall separa-
tion according to

d =
c

2nrΔf
=

1

2nr(λ
−1
i − λ−1

i+1)
, (4.3)

where nr denotes the refractive index of the suspension, Δf the frequency shift
between two succeeding interference peaks and λi and λi+1 the corresponding optical
wave lengths.

Taking into account the particle counter ions and additional monovalent salt ions
in the suspensions the bulk inverse screening length reads [189]:

κ =

√
e2

εε0kBT
(Z∗nP + 2000NAcS + 2000NA10−7mol/l), (4.4)

where e is the elementary charge, εε0 is the electrical permittivity, kBT is the thermal
energy, NA is Avogadro’s number, cS is the salt concentration (in mol/l) and Z∗

is a parameter representing an effective particle charge. The third term within the
brackets describes the contribution due to autoprotolysis of water. The quantities cS

and Z∗ were gathered from bulk conductivity measurements. The total conductivity
σ reads [192]:

σ = nP eZ∗(μH+ + μP ) + 1000NAcSe(μsalt,+ + μsalt,−) + σH2O, (4.5)

where the first term on the right hand side describes the contribution of particles and
particle counter ions, the second term describes the salt contribution and σH2O =
0.055μS/cm (at 25◦C) is the conductivity background due to autoprotolysis of water.
We assume only contamination with airborne CO2 so that in this particular case,
the salt cations and particle counter ions are both H+. Otherwise, the complete
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Figure 4.1: Experimentally observed crystalline equilibrium phases of charged col-
loidal spheres in slit confinement. (A: PS 5.2μm; B: PS 2.6μm; the tokens in the
diagram label the data points.) See main text for further information.

formula by Hessinger et al. [192] would have to be used. The quantities μH+ =
36.2 × 10−8m2/Vs (in pure water at 25◦C), μP , μsalt,+ and μsalt,− are the ionic
mobilities of hydrogen cations, particles, salt cations and salt anions respectively.
We can identify μsalt,+ ≈ μH+ and μsalt,− ≈ μHCO3

− (= 4.6 × 10−8m2/Vs in pure
water at 25◦C).

Laser Doppler velocimetry measurements [193] of electrophoretic particle mobili-
ties of the PS 5.2μm particles revealed values in the range of μP = 3.3×10−8m2/Vs ≈
0.1μH+ for highly diluted suspensions in pure water under CO2-saturated conditions.
However, the glycerol within the suspension is expected to affect especially the mo-
bilities μHCO3

− and μP , which are assumed to depend inversely on the solutions
viscosity. We therefore multiplied both μHCO3

− and μP by a factor 0.56 taken from
literature [194]. The parameter Z∗ could be estimated from the bulk conductivity
σ0 of the totally desalinated suspensions, i.e. when cS = 0, under which conditions
Eq. (4.5) simplifies to:

σ0 = nPeZ∗(μH+ + μP ) + σH2O. (4.6)

Under the assumption of generally small particle mobilities μP ≈ 0.05μH+, Eq. 4.6
yields:

Z∗ ≈ σ0 − σH2O

1.1μH+nP e
. (4.7)

At increased salt concentrations then from combining Eqs. (4.5) and (4.6) follows:

cS =
σ − σ0

1000NAe(μsalt,+ + μsalt,−)
. (4.8)
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Figure 4.2: Selected data points corresponding to fluid structures (red circles) and
crystalline structures (black triangles) (A: PS 5.2μm; B: PS 2.6μm).

4.2.2 Observations

We performed several measurement series exploring crystalline phases at salt con-
centrations between cS ≈ 0.02μmol/l and cS ≈ 0.3μmol/l and at volume fractions
in the confined volume between φ ≈ 8% and φ ≈ 10.5% for the larger PS 5.2μm
particles and between φ ≈ 2.4% and φ ≈ 3.6% for the smaller PS 2.6μm parti-
cles. The experiments were made at room temperature. After stopping the pump
and adjusting the confining geometry both optical micrographs and transmission
spectra from the local field of view were recorded at different wall separations or
at different spatial positions. The wall separation was varied in a range between
d ≈ 10μm and d ≈ 30μm. Sudden changes of d induced strong fluid currents
that shear melted the existing colloidal structures. Re-formation of colloidal struc-
tures happened within typically one minute. Measurements were usually performed
during time periods of less than 20min before deionizing and homogenizing the
suspension was started again. Within this time period the conductivity typically in-
creased by Δσ ≤ 0.05μS/cm which corresponds to an increase of salt concentration
of ΔcS ≤ 0.15μmol/l.

In the chosen range of parameters we reproducibly observe crystalline but also a
fluid phase for both species of particles. Typical in-plane nearest neighbor distances
were dNN ≈ 9μm for the larger PS 5.2μm particles and dNN ≈ 6.5μm for the smaller
PS 2.6μm particles. Phase diagrams indicating the measured crystalline data points
are shown in Fig. 4.1, while additional diagrams displaying also fluid data points are
given in Fig. 4.2. A selection of optical micrographs showing exemplary crystalline
structures for both species of particles is given in Figs. 4.3 and 4.4.

We clearly observe a sequence of crystalline structures depending on the parame-
ters λ and η (cf. Fig. 4.1). Basically layered structures of triangular symmetry (n�)
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Figure 4.3: Examples of crystalline structures observed in our experiments with the
larger PS 5.2μm particles: 1� (A), 2� (B), coexistence of 2� and 2� (C), 2hcp⊥
(central large domain) in coexistence with 2� (grain at the right margin, D), 3�
with different appearances of fcc(111) and hcp(001) faces (E) and Moiré rosettes in
coexistence with 2hcp⊥ and 2� (F). (Field of view: 280 × 210μm2)

Figure 4.4: Examples of crystalline structures observed in our experiments with the
smaller PS 2.6μm particles: 1� (A), 2� (B), 2� (C), 3� with different appearances
of fcc(111) and hcp(001) faces (D), 4� (E) and Moiré rosettes in coexistence with
2hcp⊥ and 2� (F). (Field of view: 350 × 265μm2)
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and square symmetry (n�) alternate with increasing d:

· · · → n� → (n + 1)� → (n + 1)� → · · · , (4.9)

where n denotes the number of layers. The structures n� correspond to fcc-(111)
or hcp-(001) faces aligned parallel to the confining walls, while the structures n�

correspond to fcc-(100) faces respectively.

Different transition structures are superimposed on the basic sequence accord-
ing to Eq. (4.9). First, the buckling transition [170,180] B was frequently observed.
More or less pronounced line buckling occurred, but no unconventional types of buck-
ling [167] were evident. Secondly, structures of vertically aligned triangular layers
(nhcp⊥) [150] equivalent to hcp-(110) faces were observed. Further, coexisting with
2� and 2hcp⊥ some specific structures featuring pronounced rosette-shaped particle
arrangements were observed. Those have recently been identified to be meta-stable
Moiré rotation patterns consisting of two unconventionally stacked triangular mono-
layers [62]. These structures formally correspond to 1×1Rα superstructures, where
α denotes discrete rotation angles. In summary the whole observed experimental
sequence reads (without the transient Moiré-patterns):

1� → B → 2� → 2� → 2hcp⊥ → 3� → 3� → 3hcp⊥ → 4�. (4.10)

The range containing the observed crystalline phases is bordered by a geometrically
forbidden range, where particle number densities exceed the maximum packing limit,
and the region of fluid structures (cf. Fig. 4.2). The borderline (blue lines) of the
geometrically forbidden range was estimated assuming a constant maximum volume
fraction of φ = 60% in the confining slit and a minimum total ion concentration
c = 2 × 10−7mol/l neglecting particle counter ions and salt ions. Reasonably, fluid
structures were observed at larger λ, i.e. at weaker particle interactions, with respect
to crystalline structures.

Fluid structures in the regime of more than two layers as well as crystalline
phases with more than 4 layers were not evaluated quantitatively. Too large area
number densities nA did not allow measurements of the wall separation d nor of
the locally observed particle numbers N due to too many visually overlapping par-
ticles. Further, particle fluctuations made structures more difficult to identify, and
sufficiently large crystalline grains did not form within a reasonable time period.

The formation of monolayer and bi-layer crystals typically occurred quasi-
instantaneously within 10s, while systems with more layers required longer times
to emerge. On timescales of about 5min slow changes of morphology were observed
that did not affect the crystalline structures. Defects were annealed as well as grain
boundaries slowly vanished by diffusive particle rearrangement. Further long-term
relaxation processes of the system were observed on time-scales of 20min. A slow
decrease of the local particle number density nP in the confined suspension occurred
which induced an increase of crystal lattice constants and even led to melting of
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crystalline structures. This temporary loss of particles during measurements is pre-
sumably due to a difference between the chemical potentials of confined and bulk
suspensions. This was the main obstacle to long time measurements. The original
values nP could afterwards be restored via homogenizing.

Major error sources in our experiments are inexact particle counting, weak in-
terferometric contrast in estimating d, salt contaminations and thermal effects. The
former two are considerable especially for more than two particle layers, when many
particles are visually overlapping due to the large particle diameter 2a with respect
to their typical distance dNN ≈ 1.5 − 2.5 × 2a. Salt contaminations are always
present and more significant for lower overall salt concentrations. Further uncer-
tainty arises from the fact, that conductivity could not be measured in situ, but
only apart from the confinement cell in bulk. Local ion sources, like e. g. tiny frag-
ments of ion exchange resins [195], cannot generally be excluded. But it is also
not a priori clear, how wall counter ions affect the local ion concentration and thus
the local inter-particle interactions. This might give rise to systematic errors that
were not further considered. Thermal effects, e.g. induced by the microscopy illu-
mination, might appear as local thermal gradients. Thermogradients may influence
particle concentrations by thermophoresis. Of more interest probably would be local
changes of the particle interaction. The dependence is complex but can be assumed
small [196]. Carefully estimated error bars are indicated in Figs. 4.1 and 4.2.

4.3 Theory

4.3.1 The model

We consider N point-like particles interacting via a Yukawa pair-potential

V (r) = V0
exp(−κr)

κr
, (4.11)

where r is the interparticle distance and V0 denotes an energy amplitude. For charged
suspensions, this interaction amplitude is given within DLVO theory [11, 12] as

V0 =
Z∗2e2κ

4πε0ε

(
exp(κa)

1 + κa

)2

(4.12)

where a denotes the physical hard core radius of the particles and ε is the dielectric
permittivity of the solvent. We further invoke linear screening theory to describe
the wall-particle interaction by the confining potential [197]

Vc(z) = W0 cosh(κz), (4.13)

with z denoting the direction perpendicular to the plates. The amplitude W0 is
given by (see e.g. [8, 57, 58, 197, 198])

W0 =
2Z∗e2

ε0ε
σw

exp(κa)

κ(1 + κa)
exp(−λ/2), (4.14)
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Using the interaction potentials above, we performed lattice sum minimizations to
obtain the stability phase diagram at zero-temperature, as explained and discussed
in the following.

4.3.2 Lattice Sum Minimization

We performed lattice sum minimizations for a broad set of candidates of crystalline
lattices. Here, we focus on the nontrivial multilayer regime beyond the stability of
the squared bilayer 2� phase. For fixed λ, a sufficient increase of the reduced density
yields the squared tetralayer structure 4�. The precise goal of our work is to figure
out the corresponding regime between 2� and 4� by investigating the stability of
intervening crystalline multilayers.

For our lattice sum minimization problem the possible candidates are three-
dimensional crystals with two-dimensional periodicity in x- and y-direction and a
finite extension in the z-direction. The primitive cell of these candidates is a paral-
lelepiped containing k particles and its xy-basis (which is a parallelogram) is spanned
by the two lattice vectors a = a(1, 0) and b = aγ(cos θ, sin θ), where γ is the aspect
ratio (γ = |b|/|a| = b/a) and θ is the angle between a and b. Furthermore the k
particles are distributed, not necessarily evenly, on n layers in the xy-plane. Hereby
we restrict ourselves to layered situations with an up-down inversion symmetry in
the averaged occupancy reflecting the up-down symmetry of the confining external
field. Under this restriction, we consider possible candidates with k = 2, ..., 6 and
n = 1, ..., 6 (up to symmetric six-layer structures with a basis of up to 6 particles).
At prescribed system parameters, the total potential energy per particle is mini-
mized with respect to the particles’ coordinates of the cell and its geometry (γ and
θ).

4.3.3 Matching the model parameters to the experiments

This chapter aims at a direct comparison between the theoretical results and the
experimental ones so that a quantitative analysis naturally requires the knowledge of
the two intrinsic energy scales V0 and W0 of the system. Hence, the phase behaviour
depends not only on the system density but also on the ratio W0/V0. Therefore
we introduce the surface charge ratio v = σw/σp = σw/(Z∗/4πa2) (v > 0), be-
tween the wall and the spheres. In order to implement experimental conditions
into our lattice sum calculations, we need to consider the following parameters:
Z∗, ε, κ, a, v, d, nP , T . In fact, the effective charge Z∗ of the colloid-colloid interac-
tion as well as the solvent permittivity ε scale out at zero temperature (T = 0) for
the colloids. Hence, at prescribed λ = κd and η = nP d3 the only relevant parameters
are κ, a and v.

Our primary goal is to predict the theoretical phase diagrams for large (a =
2.6μm) and small (a = 1.3μm) particles. Thereby with κ ≈ 1.5 − 3.0/μm we use
averaged values of κ resulting in κa = 6 (κa = 3) for PS 5.2μm (PS 2.6μm) particles.
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Next we estimate the surface charge ratio v which enters into the particle-wall
interaction (4.14). One has to keep in mind that, though the bare wall surface charge
density is pretty high, the colloidal particles feel the wall only at large distances
where most of the wall charge has been nonlinearly screened and the linear-screening-
regime has been reached. Actually what enters into Eq. (4.14) is not the bare surface
charge density but an effective surface charge density [8]. The latter can be brought
into relation to the bare charge density via the exact Gouy-Chapman solution of
the nonlinear Poisson-Boltzmann equation as worked out by von Grünberg and
coworkers [199]. Using the procedure described in Ref. [199] a strong reduction of
the barge wall charge to an effective wall charge is achieved.

In detail, the bare wall charge density can be estimated by the assumption that
the polyelectrolytes form a dense monolayer on the walls with a molecular area
density of ∼ 1/πrg

2 where the radius of gyration rg is taken to be that in the
concentrated solution used at coating. Under experimental conditions, the poly-
electrolyte molecules will stretch to yield a bare charge density on the order of the
molecular density. For the experimentally used polyelectrolyte-coating we therefore
estimate the real charge density of the walls as (4 ± 1) × 10−3/nm2. Following the
procedure given in Ref. [199], the effective wall charge density is reduced towards
0, 7 − 1.2 × 10−3/nm2. On the other hand, the effective surface charge density on
the colloidal spheres is typically about 2.4 × 10−3/nm2 (2.0 × 10−3/nm2) for 5.2μm
(2.6μm) particles such that v becomes roughly 0.3 ≤ v ≤ 0.5 (0.4 ≤ v ≤ 0.6) for
5.2μm (2.6μm) particles. In the following we have chosen v = 0.4 which leads to
a good agreement between theory and experiments. Moreover, as our theoretical
analysis shows, a different choice of v in the range 0.1 < v < 0.5 does not signif-
icantly change the theoretical data such that the comparison is fortunately quite
insensitive to the actual choice of v.

4.3.4 Ground state phase diagrams and comparison to ex-

periments

At zero temperature, for a given reduced density η, the system will minimize its
total potential energy, and the resulting optimal ground state structure will solely
depend on the reduced inverse screening length λ = κd. Under consideration of the
system at hand, the calculations heve been performed for 5.2μm and 2.6μm particles
and the corresponding phase diagrams are drawn in Figs. 4.5 and 4.6.

We explore the stability phase diagram for 0 < λ ≤ 70 and 0 < η ≤ 50 and we
investigate the structural transitions between the phases 2� and 4�. Thereby, we
obtain several multilayered crystalline phases with rhombic (R), triangular (�),
quadratic (�) and rectangular (hcp − like, hcp⊥) symmetry. In the transition
regime 2� → 4� there are not only bilayered (2R, 2�) and trilayered (3�, 3R,
3�) phases evident, even we further notice the stability of tetralayered (2hcp − like,
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Figure 4.5: Comparison of the theoretical prediction (dashed and full lines) for the
multilayer stability phase diagram at zero temperature to the experimental data
(tokens) taken from the phase diagram for PS 5.2μm particles in Fig. 4.1A. Here,
we use κa = 6 and v = 0.4. Please note that symbols for experimental data are as
in Fig. 4.1. See main text for further information.

2hcp⊥) as well as a hexalayered (3hcp⊥) phase.
Both the rhombic phases 2R and 3R display a tiny stability regime, which are

indicated by the red dashed lines in Figs. 4.5 and 4.6 and which vanish above a
certain threshold of λ. The phases hcp − like, hcp⊥ and 3hcp⊥, which become stable
for λ � 51.9 (λ � 59.6) for PS 5.2μm (PS 2.6μm) particles, are derivable from the
hcp lattice as recently discussed in [149, 150]. We further remark that the stacking
sequence of 3R (3�) consists of the ABA (ABC) one. In all resulting structures the
size ratio of the lattice vectors equals unity (γ = 1) except for 2hcp − like, 2hcp⊥
and 3hcp⊥. In this case, γ is larger than 1 due to its rectangular basis shape.

Clearly, for relatively small λ, the phase diagram reveals the following phase
cascade interpolating between 2� and 4�:

2� → 2R → 2� → 2hcp⊥ → 3� → 3R → 3� → 4�. (4.15)

However, for relatively large reduced inverse screening length we notice the stability
of rhombic phases 2R and 3R to vanish and the stability of 2hcp − like and 3hcp⊥
to arise yielding the following stability sequence

2� → 2� → 2hcp − like → 2hcp⊥ → 3� → 3� → 3hcp⊥ → 4�. (4.16)
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Figure 4.6: Same as in Fig. 4.5 for PS 2.6μm particles (with κa = 3 and v = 0.4).

Regarding the order of the transitions, both, first- and second-order transitions
occur and are indicated by solid and dashed transition lines in Figs. 4.5 and 4.6,
respectively. Second-order transitions are n� → nR for n = 2, 3 and 2hcp − like →
2hcp⊥, whereas all remaining transitions exhibit discontinuous paths in at least one
of the order parameters θ and/or γ.

4.4 Discussion

The charged walls in the experiments lead to a soft exponentially screened wall-
particle interaction which we implicitly considered by the effective external field
given by the Eq. 4.12 in our theoretical model. However, we did not take the hard-
core part of the walls into account explicitly there. This can be justified by the
wall charge density which was high enough to keep particles well separated from the
walls and prevent a sticking to those. Besides, the experiments being realized in
the low screening regime, the particles are not touching each other so that the pair
potential from Eq. 4.11 without explicit hard-core interaction is reasonable for the
effective colloid-colloid interaction.

We achieve a good quantitative agreement between the theoretical and exper-
imental phase diagrams (cf. Figs. 4.5 and 4.6). The stability domains of the ex-
perimentally found phase structures coincide well with the corresponding phase
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boundaries obtained by lattice sum calculations. However, the stability domains
of nhcp⊥ phases might be sligthly off the theoretically predicted ones (especially for
large particles and 3hcp⊥).

The phase diagrams for both the PS 5.2μm and the PS 2.6μm particles (cf. Figs.
4.1A,B) are in qualitative agreement, but they do not match quantitatively. For the
larger particles the fluid region is located at significantly larger values λ at given η,
while crystalline structures are also shifted to smaller values η. These discrepancies
might be attributed to the experimental non-zero particle size.

Comparing our results with those from similar experiments performed previously
by van Winkle and Murray [200] shows qualitative agreement in the basic sequence of
crystal structures with increasing d (cf. Eq. 4.9) together with the buckling transition
B. However, particle interactions have not been specified there. Their phase diagram
is rather determined by geometric parameters only.

Comparison of our experimental results under strongly deionized conditions with
those from wedge confinement experiments in the strongly screened limit [103, 179]
also shows agreement in the basic sequence (cf. Eq. 4.9) together with the transition
phases B and nhcp⊥. But we here do not observe crystalline prism phases [148,
151] (nP ) nor do we have clear evidence of rhombic phases [59, 170, 180] (nR).
Theory [60] suggests that prism phases are predominantly stable in strongly screened
suspensions, but not at weak screening as it is the case here. In fact, prism phases
have frequently been observed experimentally in the strongly screened limit [103,
148]. The prism phases apparently possess more particles in the outer layers than
in the inner ones [60, 148, 151]. Since the outer particles cause energy loss due to
the external field, absence of the prism phases is not surprising. Even for higher
densities η, we expect the multilayering scenario to favor phases that have more or
comparable weights in the inner layers as in the outer ones.

Theory further predicts that rhombic phases should especially occur in the tran-
sitions

n� → nR → n� (4.17)

for n = 2, 3, 4 [59]. The absence of clear evidence of rhombic phases in the exper-
iments might be explained by ground state stability arguments (cf. the theoretical
phase diagrams in Figs. 4.5 and 4.6): The stability domains each of 2R and 3R
are too tiny. In these transition regions we rather observe coexisting n� and n�
structures in the experiments. Interestingly, for n = 2 crystallites of 2� and 2�
favor commensurate instead of disordered grain boundaries (cf. Fig. 4.3C). Hence,
lattice distortions occur in order to reduce grain boundary energy, which give rise to
regions of rhombically ordered particles. But it remains unclear whether those are
equilibrium structures or morphologically induced, meta-stable structures. Further
discrepancies between the experimental phase diagrams (Figs. 4.1, 4.2) and theo-
retical ground state phase diagrams (Figs. 4.5, 4.6) might be attributed to finite
temperature effects.
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4.5 Conclusions

In conclusion, we have compared real-space data for the crystallization of charged
colloids in soft confinement with zero-temperature lattice-sum calculations of a
Yukawa system in a soft wall potential as predicted by linear screening theory.
We found quantitative agreement and have confirmed the basic multilayer phase
sequence

2� → 2� → 2hcp⊥ → 3� → 3� → 3hcp⊥ → 4�

as the system density increases. As one of the essential input parameters, the
quantitative comparison needed the surface charge density ratio v of the walls and
the particles. This ratio was chosen to be smaller than unity implying that the
walls are effectively less charged than the colloidal particles. The good comparison
shows that the linearized theory is applicable to confined charged colloids and that
most of the physics is contained in an effective pairwise potential model with soft
interactions.

We further obtained first- and second-order phase transitions in the ground state
phase diagrams (Figs. 4.5 and 4.6) which are shown by solid and dashed transition
lines in Figs. 4.5 and 4.6, respectively.

In future work, more subtle effects should be considered on the theoretical side
which could improve the comparison. Possibilities include a finite excluded-volume
core of the colloids, finite temperature of the particles [76], charge polydispersity
of the suspensions [201], as well as image charges resulting from the jump in the
dielectric permittivity from the aqueous solution to the wall [57]. On the experi-
mental side, to overcome the above described restrictions of small accessible layer
numbers and small accessible ranges of nP new experiments can be performed with
suspensions providing dNN/2a � 2, e. g. using suspensions of comparably interact-
ing, but smaller particles. Also confocal microscopy can be used to provide a better
three-dimensional structure analysis in similar experiments.

We expect further interesting new physics of a multicrystalline layer that is
sheared. Shear flow would promote alignment effects and could lead to novel reen-
trant behaviour [76, 202–205]. It would further be interesting to study a patterned
or curved wall which would introduce a new length scale to the confined crystalline
layer leading to novel elastic response of the crystalline sheet as pointed out in
various recent investigations [206–208].
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Chapter 5

Packing confined hard spheres

denser with adaptive prism phases
1

We show that hard spheres confined between two parallel hard plates pack denser with

periodic adaptive prismatic structures which are composed of alternating prisms of spheres.

The internal structure of the prisms adapts to the slit height which results in close packings

for a range of plate separations, just above the distance where three intersecting square

layers fit exactly between the plates. The adaptive prism phases are also observed in real-

space experiments on confined sterically stabilized colloids and in Monte Carlo simulations

at finite pressure.

How to pack the largest number of hard objects in a given volume is a classic opti-
mization problem in pure geometry [209]. The close-packed structures obtained from
such optimizations are also pivotal in understanding the basic physical mechanisms
behind freezing [210, 211] and glass formation [212]. Moreover, close-packed struc-
tures are highly relevant to numerous applications ranging from packaging macro-
scopic bodies and granulates [213] to the self-assembly of colloidal [214] and biolog-
ical [215,216] soft matter. For the case of hard spheres, Kepler conjectured that the
highest-packing density should be that of a periodic face-centered-cubic (fcc) lattice
composed of stacked hexagonal layers; it took until 2005 for a strict mathematical
proof [217]. More recent studies on close packing concern either non-spherical hard
objects [218] such as ellipsoids [219, 220], convex polyhedra [221, 222] (in particular
tetrahedra [223]), and irregular non-convex bodies [224] or hard spheres confined in

1This chapter was published in a very similar form by E. C. Oğuz, M. Marechal, F. Ramiro-
Manzano, I. Rodriguez, R. Messina, F. J. Meseguer, H. Löwen, Phys. Rev. Lett. 109, (2012)
218301.
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H
σ

Figure 5.1: Schematic illustration of hard spheres of diameter σ confined between
two parallel hard plates of separation H .

hard containers [45, 225, 226] or other complex environments.

If hard spheres of diameter σ are confined between two hard parallel plates of
distance H , as schematically illustrated in Fig. 5.1, the close-packed volume fraction
φ and its associated structure depend on the ratio H/σ. Typically, the complexity of
the observed phases increases tremendously on confining the system. Parallel slices
from the fcc bulk crystal are only close-packed for certain values of H/σ: A stack
of n hexagonal (square) layers aligned with the walls, denoted by n� (n�), is best-
packed at the plate separation Hn� (Hn�) where the layers exactly fit between the
walls. Clearly, for the minimal plate distance H ≡ H1� = σ, packing by a hexagonal
monolayer is optimal. Increasing H/σ up to H2�, a buckled monolayer [179] and
then a rhombic bilayer [170, 180] become close-packed. However, for H2� < H <
H4�, the close-packed structures are much more complex and still debated. Both,
prism phases with alternating parallel prism-like arrays composed of hexagonal and
square base [148, 151] and morphologies derived from the hexagonal-close-packed
(hcp) structure [149, 150] were proposed as possible candidates.

For confined hard spheres, the knowledge and control over the close-packed con-
figuration is of central relevance for at least two reasons: First, the hard sphere sys-
tem away from close-packing is of fundamental interest as a quasi-two-dimensional
statistical mechanics model. At low densities, a hard sphere gas is stable, which
will crystallize as the density is increased beyond some threshold value. As such,
the model represents a classical route to understand freezing between two and three
spatial dimensions [227]. The associated fluid–solid transition will be strongly af-
fected by the close-packed structure. Second, the confined hard sphere model is
almost perfectly realized in nature by mesoscopic sterically-stabilized colloidal sus-
pensions [148, 181] which can be confined between glass plates providing a slit-like
confinement. At high imposed pressures, colloids will self-assemble into the close-
packed structures. It has been shown that this is the key for the controlled fabrica-
tion of nano-sieves and of membranes with desired morphology [39].

In this chapter, we explore the close-packed structures of confined hard spheres
by combining numerical optimization, experiments and computer simulation. Using
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a systematic penalty optimization method, we find the whole cascade of close-packed
structures in the range of plate distances H1� < H < H4�. As an important building
block for close-packing, an adaptive prism is identified which adjusts its internal
structure flexibly to the slit height H/σ. This prism has a base with a rhombic
symmetry and neighboring prismatic arrays are shifted relative to each other. The
resulting adaptive structure maximizes the packing fraction in the regime beyond
H3�. We also propose a further close-packing prism phase of square symmetry that
packs densest in the regime just beyond H4� and shows a two-dimensional relative
lateral shift between the prisms. We confirm the stability of the new adaptive
prismatic structures both in real-space experiments on confined sterically stabilized
colloids and in Monte Carlo simulations at finite pressure. In the following, we
first describe the results from the penalty method, then discuss real-space data for
confined colloidal samples and subsequently turn to Monte Carlo simulation results.

In our numerical calculations, we considered a broad set of candidates of crys-
talline lattices thereby covering all hitherto proposed structures. For confined hard
spheres, the possible candidates are three-dimensional crystals with two-dimensional
periodicity in the plane parallel to the confining plates. We assumed the prim-
itive cell of these candidates to be a parallelepiped containing k particles which
are distributed, not necessarily evenly, on n layers. For k > 4, we restricted our-
selves to layered situations with an up-down inversion symmetry in the averaged
occupancy reflecting the up-down symmetry of the confining walls. Under this
sole restriction we took into account possible candidates with k = 1, . . . , 8 and
n = 1, . . . , 6. In addition, we included the unusual asymmetric buckling phases as
reported in [167, 228, 229] into our candidate set, which break the up-down sym-
metry of the confining slit. To maximize the packing fraction φ, we optimized the
cell shape and the particle coordinates of these structures. However, investigating
the dense-packing of hard spheres accommodates a constrained optimization: the
free volume must be minimized under the constraint of non-overlapping spheres. To
circumvent the discontinuous, constrained optimization, we employed the penalty

method [230] in our numerical calculations. By adding a penalty term in case the
spheres intersect which depends continuously on the overlap volume, we obtained a
continuous and unconstrained penalty function which can be minimized in the clas-
sic way to predict the optimal particle coordinates 2. For higher layer and particle
numbers, n ≥ 6 and k > 8, however, the optimization process offered difficulties
due to large number of involved parameters. Hence, we fixed the particles within
the prisms and we optimized their basis symmetry. Additionally, we adjusted the
relative positions of the prisms and the vectors that span the unit cell for the prism
phases with k = 12. Please also note that denser packed structures could occur with
larger unit cells. However, the number of particles in each unit cell are sufficiently

2The penalty method offers the flexibility to use a relatively broad range of candidate crystalline
lattices and has recently been shown to allow a very efficient handling of packing problems [231].
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Figure 5.2: Packing fraction φ versus dimensionless height H/σ. The best-packing
phases are indicated by symbols on the top axis of the middle panel and their
packing fractions are shown as the full lines. For clarity, the regions below and
above the best packing are colored differently. The new prism phases are denoted
by green lines. Dashed and dotted lines denote the non-close packed n� [fcc(100)],
n� [fcc(111)], nhcpl, nP� and nP�. The top and bottom panel show enlargements
of the regions where the new prism phases were found. Side views (middle panel)
and top views (top and bottom panels) show the structure of these phases, where
white lines denote bonds between touching particles.
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large to obtain all hitherto proposed structures.

The resulting volume fractions of the densest packed phases are shown in Fig. 5.2
as a function of H/σ in the regime between the hexagonal monolayer 1� (H/σ = 1)
and the triangular tetralayer 4� (H/σ =

√
6 + 1). For H1� < H < H2� the classic

sequence [61, 170, 179, 180] 1� → B → 2� → 2R → 2� is confirmed. Here, B is
a buckled hexagonal layer with rectangular symmetry and the 2R crystal consist of
two staggered rhombic layers.

For H2� < H < H4�, there is a much more complex cascade of close-packed
structures. In the transition regime n� → (n + 1)� for n = 2, 3, on the one
hand, we recover all of the phases found previously. Here, we obtain the sequence
2� → 2P� → 2hcpl → 2hcp⊥ → 2hcpl → 2P� → 3� and 3� → 3P� → 3hcpl →
2P� → 3�, where the following phases are encountered: The 2n-layered phases nP�
and nP� consist of alternating prism-like dense-packed n-layered arrays of spheres
with triangular (�) and square (�) basis shapes ( [148, 151, 181]). Moreover, the
2n-layered phases nhcp⊥ 3 and nhcp-like with rectangular symmetry (see [149,150])
are found. For n = 3, however, the nhcp-like phase is only close-packed in a tiny
regime, whereas nhcp⊥ is not found at all (see Fig. 5.2).

In the range 3� → 3�, the new adaptive prism phase 2PA is predicted to be
close-packed. Representative intra-layer touching bonds are indicated by white lines
in Fig. 5.2 (upper and lower panel) to underline the symmetry of the corresponding
prismatic structure. The 2PA phase adapts its internal structure flexibly to an
increase of the slit width H . In fact, the symmetry of its prism blocks is rhombic
which spans the whole range between the square symmetry of the underlying phase
3� and the triangular base (see white lines in Fig. 5.2, upper panel). Likewise, we
noticed the stability of the 3P l

�
prism phase with square basis shape (cf. Fig. 5.2,

lower panel) in the transition regime 4� → 4� whose prisms exhibit a longitudinal
shift (ie. in the lenghtwise direction of the prisms) in addition to the usual shift
perpendicular to the lengthwise direction of the prisms. Finally, the other densest
packed phases are multilayered rhombic phases 3R and 4R as well as a square prism
phase 4P� see Fig. 5.2.

To verify our theoretical results, we performed real-space experiments with nanometer-
sized colloids. We employed Polystyrene particles with diameters σ in the range from
245 nm to 800 nm (Ikerlat Polymers) to study a certain of H/σ values. We created
a confining wedge cell with a very small opening angle (10−4 rad) and slit height
H < 6μm. The varying slight height inherent to the wedge geometry allows many
transitions between different crystals in the same cell. In our wedge cell, we used
hydrophilic treated glass as substrate (3 cm large) and hydrophobic polystyrene as
covering plate. We attached a 6 μm thick Mylar film along just one rim of the slides
to separate the plates of the wedge cell. We tightened the cells with several binder

3This phase structure corresponds to the (100) plane of the hexagonal close-packed solid and,
therefore, it is referred to as nhcp(100) in Ref. [149]
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2μm

a b
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Figure 5.3: SEM micrographs of the prism phase found in this work: 2PA (a) and
3P l

�
(c,d). A few particles were removed from the top layer upon detachment of

the covering plate allowing access to the structure in the layer below. A simulation
snapshot, where a particle was also removed (after the simulation), is shown in (b).
White lines indicate the symmetry of each phase (a,c) as well as the structure of the
prism arrays in the side view of 3P l

�
(d).

clips. We employed Polystyrene particles of different sizes ranging from 245 nm up
to 800 nm in diameter (Ikerlat Polymers) in different experiments. We washed and
rinsed the particles several times with deionized water (18.2 MΩcm). We put sev-
eral drops of 1% (w/w) aqueous suspension of particles into a 2-cm-high glass tube
attached to the covering plate of the cells, where the particles entered from the tube
to the cells by capillarity forces through a small hole drilled on the covering plate.
The water evaporation concentrated the particles and after several days the system
condensed into several facets. Finally, after the sample was dried, we detached the
Polystyrene covering plate. Some particles stuck to the covering plate during its
removal resulting in holes in the top layer of particles, which allowed us to study the
structure in the layers below. We recorded Scanning Electron Microscope (SEM)
images from the top facets and side edges by cleaving the samples or by Focused
Ion Beam milling following the crystal planes.

Concentrating on the regime 3� → 3�, we found evidence of the adaptive 2PA

phase. Also, the 3P l
�

phase has been observed for larger plate separation distances.
As an example, SEM images of 2PA and 3P l

�
are shown in Fig. 5.3 along with a

simulation snapshot for comparison.

Experiments on colloidal systems, such as ours, are necessarily performed at fi-
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Figure 5.4: Isobaric packing fractions φ, as measured in simulations at fixed lateral
pressure Plσ

3/kBT = 40 for confined hard spheres, versus dimensionless separation
H/σ (empty symbols) compared to the theoretical results of Fig. 5.2 (lines). Each
type of empty symbol denotes a different phase. The observed phases are indicated
by the symbols on the horizontal lines at the top (theory) and bottom (simulation)
of the graph.

nite pressure. In order to investigate the stability of the new prism phases away
from close packing, we performed Monte Carlo simulations at a fixed lateral pres-
sure Pl = −H−1∂F/∂A, where F is the free energy and A denotes the area of the
system. This definition of pressure is such that it approaches the bulk pressure as
H increases. The discovery of new crystal phases in this and previous theoretical
works at infinite pressure after the previous simulation work that addressed the sta-
bility at finite pressure begs the question how stable these phases are at a high, but
finite pressure [232]. We simulated the system at a high pressure Plσ

3/kBT = 40,
for which the system would equilibrate within a reasonable time (for comparison
the bulk crystallization pressure is Pσ3/kBT = 11.56 [233]). The success of cell

theory–effectively a single-particle theory–at high densities indicates that phase be-
havior at high pressures can be accurately modeled using relatively small systems.
Our variable-shape simulation box contained m × m × n particles, where n is the
number of layers and 4 ≤ m ≤ 8. The horizontal cross-section of the simulation
box was allowed to deform to a general parallelogram [234], for instance, upon a
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crystal–crystal transition. Nevertheless, transitions between square symmetry and
hexagonal symmetry phases were not observed for some values of H , so both square
and hexagonal layers were used as initial conditions: An fcc (100) or (111) crystal
was expanded horizontally/vertically to allow an overlap-free initial condition that
just fits in the slit. The number of layers n was adjusted to obtain the maximum
density. We performed five separate runs for each initial configuration and, if these
in total 10 runs did not all result in the same final structure, we chose the maxi-
mum density configuration, which is justified by the high pressure. In Fig. 5.4,

Figure 5.5: The 6P� phase found for 5.73(3) � H/σ � 5.88(3) from Monte Carlo
simulations. (The snapshot is periodically repeated; the original simulation box is
indicated by the gray rectangle.)

we compare finite-pressure simulation data to theoretical results at infinite pres-
sure. We clearly see that the packing fractions in both cases feature a qualitatively
similar course. However, some phases vanish for finite pressure as this regime is
dominated by broadened stability regimes of n� and n� phases. In detail, the
2R, 3R, 2hcp⊥, 3hcpl, 2P� and 3P� phases are not found for the finite pressure
and accuracy H/σ ± 0.025 chosen in the simulations. As can be further seen, the
adaptive prism phase 2PA and 3P l

�
found in this work are stable at this pressure

and, therefore, also at all higher pressures.
These simulations help explain the absence of the triangular prism phase in the

experiments (see [181]). We also performed simulations with the triangular prism
phases as initial configuration. At the values for H where the triangular prism phase
has the highest density of all possible phases, the nP� phase appears to consist of n
only slightly distorted hexagonal layers. At finite pressure, the small distortions can
quickly disappear and a regular triangular crystal can be formed. This is a typical
scenario for crystal–crystal transitions for hard particles, where the close packed
crystal phase transforms into a higher–symmetry crystal with a slightly lower den-
sity, but a greater entropy, as the pressure is decreased sufficiently. At larger values
of H than those investigated here, the triangular prisms are significantly enhanced
and do not transform so easily to triangular crystals (cf. [151]). Preliminary simula-
tions show that indeed stable triangular prim phases can be found for larger values
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for H (see 5.5).
Furthermore, recent simulation work [151] and theoretical [170, 180] investiga-

tions show that the buckling phase 2B as well as the bilayered rhombic phase 2R
are highly degenerated as there exists linear and zig-zag ordering of the unit cells
in the corresponding phase structures. Likewise, we studied the phase behavior of
rhombic phases nR for n = 3, 4 closer. As a result, we notice that higher layered
rhombic phases are degenerated in the same way: we found zig-zag rhombic in ad-
dition to the linear one. The corresponding structures are illustrated in Fig. 5.6.

Figure 5.6: Zig-zag orderings in the phase structures 3R (left) and 4R (right). In
addition to linear ordering of the unit cells of these phases, we also found close-
packed zig-zag ordering yielding a degeneracy in the packing fraction. Different
colors correspond to different layers parallel to confining walls.

In conclusion, we explored the close-packed structures of hard spheres confined
between hard plates in a broad range of plate separations by combining theory, ex-
periment and simulation. We identified adaptive prism phases with rhombic symme-
try which pack densest in certain ranges of the slit width. An adaptive prism phase
optimizes packing by adjusting its base symmetry flexibly to the slit width. Also, we
showed a high persistence of these adaptive prism phases at finite, but large pressure
using experiments and simulations. We anticipate that adaptive prism phase will
play a key role for even higher plate distances, H/σ > 3.5, as ideal interpolating
close-packed building blocks.

The adaptive prism phases found here offer new opportunities for several applica-
tions. For example, the reported structures possess pronounced symmetry directions
whose alignment can be internally controlled by the slit height instead of using ex-
ternal fields (eg. electric fields, cf. [235]). As a consequence, these phases can serve
as switchable materials. Furthermore, we expect an unusual and anisotropic dy-
namical response of the multilayered prism phases upon shear [236] with possibly
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molten grain boundaries which can be exploited to tune the rheological properties
of thin crystalline sheets. Finally, by varying H , it is possible to tune the whole
complex cascade of close-packed structures. This may be of importance to fabricate
nano-sieves or porous membranes [39] in a controlled way.
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Appendix I: Taylor expansion of Lekner sums for

unscreened Coulomb system

The total interaction energy per unit cell of a crystalline unscreened Coulomb system
can be written as

UC = Us
C + U c

C , (5.1)

where the unit cell consists of n particles of charge q located at ri. The self energy
Us

C in equation (5.1) stems from the interaction between a particle of the unit cell
and its own periodically repeated images. The term Us

C in equation (5.1), is due
to the interaction between a particle of the unit cell and all other remaining n − 1
particles of the cell including their own images. The convergence involved in these
sums is guaranteed by the inclusion of a surface neutralizing background for each
layer. Following the route of Bródka and Grzybowsky (see equations (16a), (16b)
and (17) of reference [165]), Us

C and U c
C are given below. Therefore Us

C reads

Us
C =

1

|ax|n
q2

ε

{
4

( ∞∑
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)
K0

(
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∣∣∣∣ by

ax

∣∣∣∣ m

))

+γe − ln

(
4π

∣∣∣∣ax

by
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)}

, (5.2)

with γe = 0.577215665 denoting the Euler-Mascheroni constant, K0(x) the modified
Bessel function of the second kind [237] and ax, bx and by the corresponding x- and
y-components of the lattice vectors a and b. Using the components xij = xi − xj ,
yij = yi − yj and zij = zi − zj of the relative separation vector rij between cell
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particles i and j, U c
C can be written as

U c
C =

1
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for (yij, zij) �= (0, 0) and
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(5.4)

for (yij, zij) = (0, 0), where ψ(x) is the digamma function [237].

Being interested in the transition from mono- to trilayers, we take as input
the structure characteristics of the triangular phase 1Δ into the lattice sums (5.2)-
(5.4): θ = π/3, bx/ax = 0.5, by/ax =

√
3/2, γ = 1, x12/ax = 0.5 = x23/ax,

y12/by = 1/3 = y23/by, x13/ax = 1, y13/by = 2/3, ρ = N/A = 3
axby

= 2
√

3
ax

2 and

therefore ax
2 = 2

√
3

ρ
= 2

√
3L2

η
. Here we consider for 1Δ a multicell (n = 3) consisting

of three primitive cells, containing each 1 particle. Thus, for a given η, the energy
function UC depends now only on z12 = hL = z23. Taking this feature into account,
the self energy and the cross energy finally read
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C =

1
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)}
(5.5)
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and

U c
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where λ±12 =
√

(y12 ± bym)2/a2
x =

√
3/4(1/3±m) = λ±23, λ±13 =

√
(y13 ± bym)2/a2

x =√
3/4(2/3 ± m), β12 = L/ax = β23, β13 = 2L/ax, φ12 =
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2η/3

√
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φ13 = 2
√
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√

3. Before expanding the energy function at h = 0, we first define

f(h)± = K0

(
2πk

[
λ±2

+ β2h2
]1/2

)
, (5.7)

where the first four derivatives of f(h) at h = 0 are given as follows:

f(0)± = K0 (2πkλ±) , (5.8)

f ′(0)± = 0, (5.9)

f ′′(0)± = −K1 (2πkλ±) 2πkβ2

λ± , (5.10)

f ′′′(0)± = 0, (5.11)

f ′′′′(0)± = [K0 (2πkλ±) 2πkλ± + 2K1 (2πkλ±)] 3β42πk

λ±3 . (5.12)

Here, K1(x) is a modified Bessel function of the second kind [237], too. Using
a Taylor series and (5.8)-(5.12), we now expand UC(h) from (5.1) at h = 0 and
achieve the final form of the energy:

εu(h)

q2√ρ
= −1.960516 − 3.590668ηh2 + 4.968827η2h4︸ ︷︷ ︸

UC(h)ε

3q2
√

ρ

+
4

3
πh2√η. (5.13)

The last term stems from (3.5), due to interactions with the background, respec-
tively. The coefficient −1.960516 corresponds to the static energy per particle of the
triangular lattice, which was already calculated in [35].
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Appendix II: Theory of Crystal Growth Behavior

Here, we furthermore develop a simple theory to characterize the crystal growth
behavior. We model the system with a coarse-grained one-particle density fluid
ρ(r, t) around the origin of the trap where the initial condition ρ(r, t = 0) = ρf is
imposed. Due to the external trap force we assume a crystallite of radius Rc(t) to
be formed at a density ρc > ρf around the origin. According to the repulsive inter-
particle force and the decay of the trap force with distance, the growth is supposed
to stop after a while. The size of the crystallite can be predicted by applying
the continuity equation at the boundary of the crystallite. We here consider the
crystallite as a hemisphere (3d) located at the seed. For the number of crystalline
particles in the crystallite, Nc(t), we have:

Ṅc = ρc
d

dt
(
2

3
πR3

c(t)) = 2πρcR
2
c(t)Ṙc(t). (5.14)

On the other hand, this must be balanced by the flux of incoming particles, j(Rc(t)) =

ρf
F (Rc(t))

γ
, leading to

Ṅc = −2πR2
c(t)ρf

F (Rc(t))

γ
, (5.15)

where F (r) is the total force acting on the particles

F (r) = F0(r) + F1(r), (5.16)

which stems from i) the attractive force from the external trap (F0 = |F0|, cf.
Eq. 2.6) and ii) the repulsive force from the inner crystallite particles F1. The latter
can be approximated in the mean-field theory leading to a distance independent
force. Detailed calculations with a cutoff a = ρ

−1/3
f in the interaction range lead to

F1 = πV0(ρc − ρf )
1

2κ2
e−κa(2 + κa), (5.17)

Equating Eqns. (5.14) and (5.15) yields

Ṙc =
ρf

ρc

(
A

R2
c(t)

− F1

γ

)
. (5.18)

For t → ∞, Rc will approach its equilibrium (static) value

R∞ = Rc(t → ∞) =

(
Aγ

F1

)1/2

. (5.19)

For large time, Eq. (5.18) can be linearized to yield

d

dt
(R∞ − Rc(t)) = (R∞ − Rc(t))

2Aρf

R3∞ρc

(5.20)
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with the solution
R∞ − Rc(t) = R̄e−λt, (5.21)

where R̄ denotes a fit parameter and τ = 1/λ = R3
∞ρc/2Aρf the associated decay

time. Eq. (5.21) implies that the approach towards R∞ is exponential in time as
found in the experiment and simulation, see Fig. 2.5(b) and 2.7(b). The satura-
tion radius has been calculated with Eq. (5.19) to κR∞ ≈ 330 that shows a good
aggreement between the theory and simulation, too.



78 Appendix



Bibliography

[1] R. A. L. Jones, Soft Condensed Matter (Oxford University Press, Oxford,
2002).

[2] P. N. Pusey and W. van Megen, Nature 320, 340 (1986).

[3] W. M. Stanley, Science 81, 644 (1935).

[4] R. C. Williams and K. M. Smith, Nature 179, 119 (1957).

[5] P. Pieranski, Contemp. Phys. 24, 25 (1983).
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[128] H. Löwen, J. Chem. Phys. 100, 6738 (1994).

[129] Y. Levin and J. J. Arenzon, J. Phys. A - Math. Gen. 36, 5857 (2003).

[130] G. Orkoulas, A. Z. Panagiotopoulos, and M. E. Fisher, Phys. Rev. E 61, 5930
(2000).

[131] Y. Levin, J. Phys.: Condens. Matter 14, 2303 (2002).

[132] E. Allahyarov, I. D’Amico, and H. Löwen, Phys. Rev. Lett. 81, 1334 (1998).
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