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Zusammenfassung

Die hier vorgestellte Arbeit befasst sich mit der theoretischen Beschreibung der Mikrostruktur,

Diffusionseigenschaften, und rheologischen Eigenschaften geladener Brownscher Teilchen.

Wir haben diverse analytisch-theoretische Methoden zur Berechnung statischer und

dynamischer Größen entwickelt, getestet, und angewendet. Die Methoden zeichnen sich

aus durch Genauigkeit, universelle Anwendbarkeit, und numerische Effizienz. Eine Vielzahl

von Gleichgewichtsgrößen und Eigenschaften der Kurzzeit- und Langzeitdynamik sind im

Rahmen dieser Arbeit berechnet worden. Die berechneten Größen umfassen den statischen

Strukturfaktor, translative Diffusionskoeffizienten für kollektive Diffusion und Selbstdiffu-

sion, die hydrodynamische Funktion, sowie die Hochfrequenzviskosität und die statische

Scherviskosität.

In enger Zusammenarbeit mit experimentellen Arbeitsgruppen in Jülich, Tübingen, Utrecht

(Niederlande) und Košice (Slowakei) wurden Suspensionen von geladenen synthetischen

Silicakugeln, leicht asphärischen Rinderalbumin Proteinen, und dünnen Gibbsit-Plättchen

untersucht. (Dynamische) Licht- und Röntgenstreudaten, und Viskositätsdaten dieser drei

Systeme wurden bis in die Nähe des Übergangs zwischen der flüßigen und festen oder

flüßigkristallinen Phase mit hoher Genauigkeit analytisch berechnet. Hierdurch ist eine genaue

Charakterisierung der suspendierten Partikel gelungen. In Zusammenarbeit mit Prof. Banchio

(Uni. Córdoba, Argentinien) haben wir unsere analytischen Methoden zur Berechnung der

Gleichgewichts-Paarkorrelationen und der Kurzzeitdynamik in umfassenden Parameterstu-

dien anhand von Computersimulationen validiert.

Als Grundlage unserer analytischen Verfahren dient ein Modell monodisperser geladener

Kugeln in einer strukturlosen Flüssigkeit, die über ein abgeschirmtes Coulomb-Potential

wechselwirken. Die Reichweite der elektrostatischen Abstoßung hängt vom Salzgehalt der

Suspension ab, sodass bei niedriger Salzkonzentration bereits stark verdünnte Systeme aus-

geprägte Paarkorrelationen aufweisen. Einen wichtigen Teil dieser Arbeit bildet eine neu

entwickelte, analytische Integralgleichungsmethode, bezeichnet als „Modified Penetrating

Background corrected Rescaled Mean Spherical Approximation“. Diese Methode erlaubt

eine schnelle und genaue Berechnung statischer Paarkorrelationen. Die so berechneten

Paarkorrelationsfunktionen dienen als Eingabegrößen für verschiedene analytische Methoden
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zur Berechnung der Diffusionseigenschaften und der Scherviskosität ladungsstabilisierter kol-

loidaler Suspensionen und Proteinlösungen.

Eine besondere Herausforderung bei der Berechnung dynamischer Größen ist die

notwendige Berücksichtigung der langreichweitigen und nichtsuperponierenden hydrody-

namischen Wechselwirkungen. Hierzu haben wir Verbesserungen an der approximativen δγ
Methode von Beenakker und Mazur zur Berechnung der hydrodynamischen Vielteilchen-

Wechselwirkungen entwickelt. Durch die eingeführten Modifikationen erweitert sich die

Anwendbarkeit der δγ Methode von ungeladenen auf ladungsstabilisierte Kolloide. Eine

Alternative zur (modifizierten) δγ Methode bildet die Näherung der paarweise additiven

hydrodynamischen Wechselwirkungen (PA Methode). Unter Verwendung präziser analytis-

cher Lösungen des hydrodynamischen Zweikörper-Mobilitätsproblems sind die Ergebnisse

der PA Methode exakt für verdünnte Systeme. Die PA Methode eignet sich daher beson-

ders zur Anwendung auf Suspensionen niedriger Salzkonzentration, mit stark unterdrück-

ter Annäherung der geladenen Teilchen und der damit einhergehenden hydrodynamischen

Dreikörper-Wechselwirkungen.

Zusammen mit den in dieser Arbeit diskutierten experimentellen Daten und Comput-

ersimulationen erlauben unsere theoretischen Methoden insbesondere Tests der Anwend-

barkeit diverser generalisierter Stokes-Einstein (GSE) Relationen zwischen Diffusionsgrößen

und Viskosität in konzentrierten Dispersionen. Die (näherungsweise) Gültigkeit einer GSE

Relation ist nicht allein in theoretischer Hinsicht interessant. Vielfach ist man interessiert

an Suspension deren Menge für mechanisch-rheologische Experimente nicht ausreicht, wie

beispielsweise Lösungen aufwendig isolierter, biologisch relevanter Makromoleküle. Für

solche Systeme erlaubt eine gültige GSE Relation die indirekte Bestimmung rheologischer

Eigenschaften aus dynamischen Streuexperimenten. Unsere Tests zeigen jedoch, dass selbst

diejenigen GSE Relationen, welche für neutrale Kolloide näherungsweise erfüllt sind, im Fall

geladener Kolloide stark verletzt sind.



Summary

This thesis comprises a theoretical description of the microstructure, diffusion and rheological

properties of dispersions of charged Brownian particles. We have developed, and thoroughly

tested, various analytical theoretical methods to calculate static and dynamic properties, and

have applied them to various experimental systems. The common features of these analytic

methods are their high levels of accuracy, versatility, and numeric efficiency. We have calcu-

lated a large variety of equilibrium and short-time dynamic properties and also some long-time

properties, including static structure factors, translational collective and self-diffusion coeffi-

cients, hydrodynamic functions, and static and high-frequency shear viscosities.

Suspensions of synthetic silica spheres, moderately aspheric bovine serum albumin proteins,

and thin gibbsite platelets have been examined in collaboration with experimental groups in

Jülich, Tübingen, Utrecht (Netherlands) and Košice (Slovakia). (Dynamic) Light- and X-ray

scattering data, and shear viscosities for these systems have been calculated for concentrations

up to the liquid-solid or liquid-liquid crystal phase transition point, allowing for a detailed

characterization of the suspended particles. In comprehensive parameter studies, we have val-

idated our analytic methods of calculating equilibrium pair-correlations and (short-time) dy-

namics against numerous computer simulation results. The computer simulations were con-

ducted by Prof. Banchio (Uni. Córdoba, Argentina), in the course of an extended collaboration.

A model of monodisperse, charged Brownian spheres, suspended in a structureless fluid,

and interacting via a screened Coulomb potential, serves as the basis of our analytic schemes.

The salt content of the suspension affects the range of electrostatic repulsion, which can cause

pronounced pair correlations in low-salinity systems at very low colloid concentrations. An

important advancement of this thesis is the development of a new analytic integral equation

scheme, named Modified Penetrating Background corrected Rescaled Mean Spherical Ap-

proximation, which allows for fast and accurate calculation of static pair correlations. The

pair correlation functions computed by this method serve as input for various analytic methods

of calculating diffusion properties, and static and high-frequency shear viscosities of charge-

stabilized suspensions.

A severe complication in computing dynamic properties arises from the necessary inclusion

of long-ranged, non-pairwise additive hydrodynamic interactions. To this end, we provide cor-
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rections for the approximate δγ scheme by Beenakker and Mazur, a method accounting for

hydrodynamic many-body interactions in an approximate way. Our corrections extend the δγ
scheme in its range of applicability from neutral to charge-stabilized colloidal suspensions. As

an alternative to the (modified) δγ scheme, we have analyzed the approximation of pairwise

additive hydrodynamic interactions (PA scheme). Employing precise analytic solutions of the

hydrodynamic two-body mobility problem, the PA scheme gives results for short-time dy-

namic properties which are exact for hydrodynamically dilute systems. Hence, the PA scheme

applies especially well to low-salinity suspensions of charged particles, where near-contact

configurations and the accompanying hydrodynamic three-body interactions are strongly sup-

pressed. To calculate the static viscosity and the long-time self-diffusion coefficient, we have

used simplified mode-coupling theory expressions with the inclusion of far-field hydrody-

namic contributions.

In conjunction with the experimental and computer simulation data provided by our col-

laborators, our theoretical methods have allowed us to test the validity of various general-

ized Stokes-Einstein (GSE) relations between diffusion properties and the static and high-

frequency viscosities in dense media. The (approximate) validity of a GSE relation is of inter-

est not only from a theoretical point of view, but has also experimental applications. Colloidal

suspensions containing laboriously isolated biomolecules for instance, are often only avail-

able in amounts that are too small for mechanical rheological experiments. In these cases,

a valid GSE relation can be used to deduce rheological properties indirectly from dynamic

scattering experiments. However, our numerous tests on suspensions of charged colloids have

revealed manifest violations of all considered GSE relations, including the ones which are

approximately valid for neutral colloid suspensions.



CONTENTS

1 Introduction 1

2 Physical Systems 7

2.1 Model system: One-component fluid of monodisperse macroions . . . . . . . 7

2.2 Silica spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Bovine serum albumin proteins . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Static and dynamic light scattering . . . . . . . . . . . . . . . . . . . 15

2.3.3 Small-angle X-ray scattering . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 Static viscosity measurements . . . . . . . . . . . . . . . . . . . . . 17

2.4 Gibbsite platelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Size- and shape-characterization . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Static and dynamic light scattering . . . . . . . . . . . . . . . . . . . 20

2.4.3 Viscosity measurements . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Theory of pair-structure 23

3.1 Pair-structure functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Ornstein-Zernike equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 From the MSA to the MPB-RMSA closure relation . . . . . . . . . . . . . . 26

3.3.1 MSA closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 RMSA closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 PB-RMSA closure . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.4 MPB-RMSA closure . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 HNC and RY closure relations . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Decoupling approximation for aspherical and polydisperse particles . . . . . 37

4 Theory of short- and long-time dynamics 43

4.1 Short-time dynamics: General expressions . . . . . . . . . . . . . . . . . . . 43

4.2 Approximation of pairwise additive hydrodynamic interactions . . . . . . . . 47

ix



x Contents

4.3 δγ scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Self-part corrected δγ-scheme . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Mode-coupling expressions for long-time dynamic properties . . . . . . . . . 57

4.5.1 Long-time self-diffusion coefficient . . . . . . . . . . . . . . . . . . 57

4.5.2 Static shear viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Pair-structure results: Theory, simulation and experiment 59

5.1 Validation of the MPB-RMSA using simulations and alternative closures . . . 59

5.1.1 Monte Carlo computer simulation results . . . . . . . . . . . . . . . 59

5.1.2 Systems with strong Yukawa repulsion . . . . . . . . . . . . . . . . 59

5.1.3 Systems with non-zero contact values . . . . . . . . . . . . . . . . . 63

5.1.4 Test of thermodynamic consistency . . . . . . . . . . . . . . . . . . 67

5.2 Concentration scaling and fluid-phase behavior . . . . . . . . . . . . . . . . 69

5.3 Static structure of charged silica spheres . . . . . . . . . . . . . . . . . . . . 77

5.4 Static structure of bovine serum albumin proteins . . . . . . . . . . . . . . . 80

5.4.1 Form factor fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.2 Effective sphere diameter . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Concentration series results . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Static structure of gibbsite platelets . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Form factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Effective sphere diameter . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.3 Static mean scattered intensity . . . . . . . . . . . . . . . . . . . . . 94

6 Diffusion and Rheology results: Theory, simulation and experiment 97

6.1 Short-time diffusion and high-frequency viscosity in simulation and theory . 97

6.1.1 Accelerated Stokesian Dynamics computer simulations . . . . . . . . 97

6.1.2 Diffusion properties of charged particles . . . . . . . . . . . . . . . . 100

6.1.3 Hybrid δγ scheme for diffusion of neutral hard spheres . . . . . . . . 101

6.1.4 High-frequency viscosity in simulation and theory . . . . . . . . . . 105

6.1.5 Short-time relations between viscosity and diffusion properties . . . . 108

6.2 Short-time diffusion of silica spheres . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Self-diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.2 Sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.3 Diffusion function . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.4 Hydrodynamic function . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.5 Influence of additional particle interactions . . . . . . . . . . . . . . 122

6.3 Long-time collective diffusion and static viscosity of bovine serum albumin . 123

6.3.1 Collective diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.2 Static viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.3 Test of Kholodenko-Douglas relations . . . . . . . . . . . . . . . . . 130



Contents xi

6.4 Long-time diffusion and static viscosity of gibbsite platelets . . . . . . . . . 133

7 Conclusions and Outlook 141

A MSA solution 149

B MPB-RMSA algorithm 153

C PA-scheme mobility coefficients 155

D δγ-scheme coefficients 159

E An integrated software for structure and dynamics of colloidal suspensions 161

Index 165

Bibliography 170

Acknowledgements 185



xii Contents



CHAPTER

ONE

Introduction

A widespread diversity of colloidal fluids is ubiquitously present in our every day life. Dairy

products, pharmaceuticals, and hygienic and cosmetic agents constitute only a part of the most

prominent examples encountered on a regular basis. In industrial applications, large amounts

of colloid suspensions are processed in paints, inks, glues, petroleum emulsions, liquid crys-

tals, and other systems. In addition, nearly all bodily fluids have to be considered as complex

colloid suspensions. This includes blood and the highly crowded and confined cytoplasm in-

side the cell, to name only two examples.

The knowledge gained from studying colloidal suspensions is helpful in optimizing indus-

trial and medical procedures, and in understanding biological materials and organisms. For

many decades, fundamental physics research has been pushed forward by studying a large

variety of colloids that can be synthesized with a virtually unlimited range of particle sizes,

compositions, and interactions. Colloidal particles occur in many aggregated states, including

highly dilute complex plasmas or dilute suspensions with a colloidal gas-like phase, colloidal

fluids, glasses, gels, and crystals. Compared with molecular fluids, where the structure and

the dynamic processes are observed on sub-nanometer and sub-nanosecond scales, colloidal

features are exposed on much coarser spatial and temporal scales. This allows for studying

colloidal systems in great detail by comparatively inexpensive experiments, and for gaining

a deeper understanding of phase transitions as well as equilibrium and non-equilibrium phe-

nomena such as diffusion and rheology.

Colloids are defined as solid or fluid particles of sizes ranging from a few nanometers to a

few micrometers, suspended in a fluid or gaseous solvent in which they exhibit erratic Brow-

nian motion driven by the thermal bombardment of small solvent molecules [1, 2]. The col-

loidal size range is bound from below by the requirement that a colloid should be orders of

magnitude larger than the solvent molecules. This allows to separate the solvent and colloidal

length- and time-scales, and to treat the colloids as an individual phase in a continuous sol-

vent background. The colloidal size range is bound from above by the requirement that the
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particle kinetic energy, which is of the order of kBT , suffices to cause noticeable Brownian

motion. Moreover, colloidal particles should be small enough for thermal motion to prevent

pronounced sedimentation, driven under gravity by a density mismatch between colloid and

solvent.

In the work presented in this thesis, we restrict our studies to solid colloidal particles sus-

pended in a fluid solvent such as water or different types of organic low-molecular weight

solvents. The smallest particles studied are globular bovine serum albumin (BSA) proteins,

which have a mean linear extension of approximately 7 nm, whereas the largest particles stud-

ied are synthetic silica spheres with a mean diameter of 272 nm. As a third experimental

system, we have investigated thin gibbsite platelets with a mean disk diameter of 88 nm. Each

of the studied systems has been investigated in its fluid phase, in thermodynamic equilibrium.

The colloidal volume fractions probed range from the very dilute regime up to the fluid-crystal

or fluid-liquid crsytal (for gibbsite) phase transition point.

A common feature of all the systems studied is the dissociation of charged microionic sur-

face groups from the particles into the solvent. The colloidal particles thereby attain charges

of equal sign, giving rise to electrostatic repulsion. In the theoretical model applied here, the

electrostatic repulsion of non-overlapping particles is described as an exponentially screened

Coulomb potential of Derjaguin-Landau-Verwey-Overbeek type [3]. The screening length of

the electric repulsion depends on the ionic strength. By adding salt, the total pair-potential

can be continuously varied from long-ranged repulsion to a short-ranged hard-core potential

describing uncharged, hard spheres.

A suspension of uncharged, monodisperse hard spheres in thermodynamic equilibrium is

entirely described by a single control parameter, namely the colloidal volume fraction [4]. For

this reason, hard spheres constitute the most simple and most extensively studied model sys-

tem in theoretical [5–8] and experimental [9, 10] colloid science, and in computer simulation

studies that date back to the pioneering simulation work in the 1950’s [11–13]. In contrast,

the characterization of colloidal fluids with hard-sphere plus screened Coulomb interactions

requires at least two independent parameters, namely the coupling and screening constants of

the electrostatic pair-potential. If the electrostatic interaction is weak enough to render direct

hard-core contact configurations likely, the volume fraction enters as a third independent pa-

rameter. The three-dimensional parameter space makes comprehensive parameter studies of

charged colloidal suspensions, as presented in this thesis, an elaborate task.

To sample a representative part of parameter space, analytical tools are required that com-

bine high accuracy with fast evaluation. In this work, we have constructed and validated a

hierarchy of (partially novel) interrelated analytic schemes. In the first step, the equilibrium

pair-correlation functions are computed from the given pair-potential by a newly developed,

analytical integral equation scheme [14, 15]. In the second step, the pair-structure functions

are used as the only required input for different kinds of analytic schemes that allow for the

calculation of diffusion properties and the suspension shear viscosity [16–20].

In computing dynamic properties, a particularly severe difficulty arises from the necessity
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of including the indirect hydrodynamic interactions (HIs) that couple the particle motions

via the intervening viscous fluid motion [21, 22]. In the systems studied here, HIs are the

longest-ranged interactions, decaying asymptotically as the inverse center-to-center distance

between two particles. In combination with the non-pairwise additive character of HIs revealed

in denser systems, this makes an exact analytic treatment of HIs at larger volume fractions

infeasible. A nearly exact account of many-body HIs is only possible in numerically expensive

computer simulations [23–26]. In search for fast, analytic methods, one has to resort to an

approximate treatment of the HIs. Two such analytic methods, namely the approximation of

pairwise additive HIs (PA scheme), and a modified new version of the so-called δγ-expansion

method by Beenakker and Mazur [17, 27–29], are discussed in detail in the present work and

applied to analyze experimental systems.

It is demonstrated that our modifications of the δγ scheme extend its applicability from

uncharged hard-sphere systems to charged particles with long-ranged electric repulsion. For

both kinds of systems, the modified δγ scheme makes predictions in good agreement with

experiments and computer simulations, up to concentrations where the fluid-crystal phase

transition in spherical-particle systems takes place.

Both the PA and δγ schemes are restricted in their application to the colloidal short-time

regime, where particles diffuse only distances small compared to their size. For the computa-

tion of long-time dynamic properties, such as the static low-shear rate limiting viscosity and

the long-time self-diffusion coefficient, we use a simplified mode-coupling theory which in-

cludes far-field HIs, and applies approximately to suspensions of moderately correlated spher-

ical particles.

The experiments on the three studied systems, conducted by our experimental collaborators,

include static and dynamic light scattering, small angle X-ray scattering, and rheological ex-

periments. The experimentally obtained data contain information on single-particle properties,

static pair-correlation functions, and short- and long-time dynamical suspension properties. In

comparing the experimental data to predictions by our analytic models, we have succeeded in

characterizing the suspended silica spheres, BSA proteins and gibbsite platelets. Most notably,

reaching quantitative accuracy in most cases, we have been able to determine particle sizes,

and the concentration- and salinity-dependent effective particle charges. In our theoretical

treatment of the aspherical BSA proteins and gibbsite platelets, we demonstrate that analytical

simplifying effective sphere models with isotropic pair-interactions are useful in explaining

the behavior of the measured static and dynamic properties for extended concentration and

salinity ranges.

The calculated, simulated, and experimentally measured quantities comprise the particle

form factor P(q), static structure factor S(q), mean scattered intensity I(q), radial distribution

function g(r), high-frequency viscosity η∞ and steady-shear viscosity η , rotational diffusion

coefficient dr, and the hydrodynamic function H(q). The hydrodynamic function includes the

translational self-diffusion coefficient ds, the collective diffusion coefficient dc, and the cage-

diffusion coefficient dcge as special cases. Using our analytic methods, we have studied the
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behavior of these static and dynamic properties, and their dependence on concentration, salt

content, effective charge, and particle size and shape. We have explained all observed trends

in terms of intuitive physical pictures involving concepts such as hydrodynamic shielding and

concentration-scaling in low-salinity systems.

Comprehensive comparisons with Monte Carlo and accelerated Stokesian Dynamics sim-

ulations conducted by our collaborator, Prof. Adolfo J. Banchio (National University of Cór-

doba, Argentina), have enabled us to assess the accuracy of the analytic methods employed.

The discussed theoretical methods have been implemented into an integrated and user-

friendly software package which is very useful both for experimental and theoretical appli-

cations.

We have applied our comprehensive experimental and computer simulation results, and

our analytic theoretical schemes, to explore the validity ranges of several generalized Stokes-

Einstein (GSE) relations between viscosity and diffusion properties in concentrated systems.

In particular, we report the first comprehensive test of GSE relations proposed by Kholo-

denko and Douglas (KD-GSEs) [30]. Our tests cover the full fluid phase regime of charged

and uncharged spheres. The KD-GSE relations combine the collective diffusion coefficient

with the isothermal osmotic compressibility and the suspension viscosity, and are regularly

used in biophysical and soft matter studies [31–34]. A valid GSE relation is interesting both

from theoretical and experimental viewpoints, since it can be used to infer rheological proper-

ties indirectly from dynamic scattering experiments. This helps to characterize the rheological

properties of suspensions that are available only in small amounts, rendering mechanical rhe-

ological measurements infeasible. Our tests show that the KD-GSE relations are fulfilled to

decent accuracy by uncharged spheres only. Like several other GSE relations studied earlier,

the KD-GSE relation is manifestly violated even in very dilute suspensions of charged parti-

cles under low-salinity conditions.

The outline of this thesis is as follows:

In Chapter 2, the considered physical systems are introduced, beginning with the one-

component macroion fluid model of spheres with screened electrosteric repulsion, on which

our theoretical calculations are based. The basic properties of the three experimentally studied

systems are then summarized. The systems are: suspensions of silica spheres in a toluene-

ethanol mixture; bovine serum albumin proteins in water; and gibbsite platelets in dimethyl

sulfoxide. Brief descriptions of the instrumentation used by our experimental collaborators are

included.

Chapter 3 presents the theory of equilibrium pair-structure of colloidal fluids. In particu-

lar, a detailed derivation of our newly developed Modified Penetrating Background corrected

Rescaled Mean Spherical Approximation (MPB-RMSA) for calculating pair-structure func-

tions is presented.

Various analytic schemes for the short- and long-time dynamic properties of colloidal fluids
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are presented in Chapter 4, including our new improved version of the δγ-expansion method

by Beenakker and Mazur.

Chapter 5 starts with a comprehensive test of the accuracy of the MPB-RMSA in com-

parison to computer simulation results and more elaborate Rogers-Young integral equation

scheme calculations. The validation of the MPB-RMSA is followed by an extensive param-

eter study of the scaling behavior of pair-structure functions, for parameters representing the

full fluid-phase regime of Yukawa-type colloidal particles. Our novel analytic scheme for cal-

culating the static structure factor and radial distribution function is then applied to analyze

the equilibrium microstructure of the three considered experimental systems.

In Chapter 6, our analytic schemes for short-time dynamic properties are first validated

in comparison with a large body of Stokesian Dynamics computer simulation results. They

are then applied to analyze the dynamics of the three experimental systems. Special empha-

sis is placed on testing several generalized Stokes-Einstein relations between viscosity and

diffusion properties in concentrated media, using analytic theory, computer simulations, and

experimental data.

Chapter 7 concludes the thesis and discusses future extensions of the presented work.

In Appendix A, analytic expressions for the static structure factor and the radial distribution

function in mean spherical approximation (MSA) are given. A comprehensive description

of the MPB-RMSA algorithm, based on the MSA expressions in Appendix A, is given in

Appendix B. Appendix C lists the mobility expansion coefficients used in our implementa-

tion of the PA-scheme for short-time dynamic properties. In Appendix D, it is explained how

the numeric coefficients of the δγ-scheme can be computed. A table of coefficients is given,

which is sufficient for implementing the δγ-scheme in the form used in this thesis. Finally,

in Appendix E, a brief introduction of the capabilities of our integrated software-package for

calculation of structure and dynamics of colloidal suspensions is given.



6



CHAPTER

TWO

Physical Systems

2.1 Model system:

One-component fluid of monodisperse macroions

Charge-stabilized systems of spherical Brownian particles form a particularly important class

of soft matter systems, ubiquitously encountered in chemical industry, food science and biol-

ogy [22, 35–42]. Moreover, Brownian spheres can serve as a reference system for more com-

plex, non-spherical particles, by selecting an appropriate effective sphere radius. The range of

particle sizes extends from large, micron-sized colloids [2, 39, 43] down to nanometer-sized

micelles [44, 45], proteins [18, 41, 46], and DNA fragments [47].

Our calculations of the equilibrium microstructure, and short- and long-time dynamic prop-

erties of colloidal suspensions, are based on the one-component macroion fluid (OMF) model,

which describes the colloidal particles as uniformly charged, monodisperse spheres with stick

hydrodynamic boundary conditions, immersed in a structureless Newtonian fluid. In an over-

all neutral suspension, the Coulomb repulsion between colloidal spheres is screened by the

diffuse part of an electric double layer consisting of microions, including the counterions re-

leased from the colloid surfaces, and additional ionic species originating, e.g., from dissolved

salt.

A well-established model for the pair-interaction potential of charged spherical colloids is

the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential [3],

uDLVO(x) = uvdW(x)+uHC(x)+uel(x), (2.1)

7
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MACROIONS

consisting of the van der Waals attractive pair energy part,

βuvdW(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 1+Δ

−AH

12

[
1

x2 −1
+

1

x2
+2ln

(
1− 1

x2

)]
, x > 1+Δ,

(2.2)

the hard-core potential,

uHC(x) =

⎧⎨
⎩

∞, x < 1+Δ

0, x > 1+Δ,

(2.3)

that forbids the overlap of colloidal spheres, and the screened electrostatic repulsion part

βuel(x) =

⎧⎨
⎩

0, x < 1

γ
e−kx

x
, x > 1.

(2.4)

Here, x = r/σ is the separation of the centers of colloids, measured in units of the diameter σ .

All potentials are expressed in units of the thermal energy kBT = 1/β , with absolute temper-

ature T and Boltzmann’s constant kB. If the cutoff distance Δ were selected equal to zero, the

van der Waals interaction potential with Hamaker constant AH ∼ 1 , and −AH/[24(x−1)] for

x ≈ 1, would unphysically diverge at contact, leading to a divergence of the second virial coef-

ficient B2(T ). This artificial divergence arises from neglecting the Born repulsion between

atoms or molecules experiencing electronic orbital overlap. By setting Δ × σ ≈ 10−10 m,

which is of the order of the microion size, the Born repulsion is approximated by an infinite

potential step.

The electrostatic interaction between two microion-dressed colloidal spheres is fully char-

acterized by the coupling parameter γ > 0 and the screening parameter k > 0 . The two dimen-

sionless parameters are related to experimentally accessible quantities via

γ =
LB

σ

(
ek/2

1+ k/2

)2

Z2, and (2.5a)

k2 =
LB/σ
1−φ

(
24φ |Z|+8πnsσ3

)
= k2

c + k2
s , (2.5b)

where LB = βe2/ε is the solvent-characteristic Bjerrum length in Gaussian units, ε is the sol-

vent dielectric constant, Z is the colloidal effective charge in units of the proton elementary

charge e, ns is the concentration of added monovalent coions originating from a 1− 1 elec-

trolyte, and φ is the fraction of the suspension volume occupied by the spherical particles. The

volume fraction is related to the number concentration, n, of colloids by φ = (π/6)nσ3. The
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Fig. 2.1: Sketch of the DLVO pair potential uDLVO(r) in Eq. (2.1), with the attractive van der
Waals part uvdW(r) and repulsive part uHSY(r). For a system of high effective charge Z and
low coion concentration ns (high γ and low k), the HSY pair potential uHSY(r) in Eq. (2.6) is
a good approximation of the full uDLVO(r). Figure is not to scale.

factor (1− φ)−1 in (2.5b) corrects, in a non-dilute system, for the free volume accessible to

the microions [48, 49].

Note that Eq. (2.5b) is the sum of two contributions: The first contribution, k2
c =

24LBφ |Z|/[σ(1− φ)], is due to monovalent counterions released from the colloid surfaces.

The second contribution, k2
s = 8πnsLBσ2/(1−φ), is due to all other monovalently assumed

microions present in the solvent, denoted as salt ions for simplicity. The total charge of all salt

ions is zero. Likewise, the total charge of the surface-released counterions equals the over-

all charge of the colloids, but differs in sign. In pH-neutral water, there is a lower bound of

ns ≥ 10−7 M, due to the self-dissociation of water molecules. Additional contributions to ns

arise from dissolved CO2, added 1−1 electrolyte such as NaCl, and counterions released from

the surfaces of other charged macroionic species such as oligomers and impurities, which are

not considered in the present one-component model.

For systems with sufficiently large coupling parameter γ , and sufficiently low screening

parameter k, i.e. for a large effective charge and low salt concentration, the global maximum

of the DLVO potential (the Coulomb barrier umax
DLVO) is large compared to kBT (c.f. Fig 2.1).

In these systems, the particles virtually never overcome the Coulomb barrier and, therefore,

the strongly attractive part of the DLVO potential at separations x ≈ 1 + Δ is not probed.

Whenever umax
DLVO is substantially larger than kBT , van der Waals attraction can be neglected,
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MACROIONS

and the DLVO potential is well approximated by its repulsive parts only, i.e.

βuDLVO(x) ≈ βuHC(x)+βuel(x) = βuHSY(x) =

⎧⎨
⎩

∞, x < 1

γ
e−kx

x
, x > 1.

(2.6)

Systems described by the repulsive potential in Eq. (2.6) are denoted as hard-sphere Yukawa

(HSY) systems. In (2.6) we can skip the cutoff Δ, since it is no longer necessary to remedy an

unphysical divergence at contact. It is worthwhile to note in going from Eq. (2.1) to Eq. (2.6),

that not only the near-contact part of the pair potential is simplified, but also the long-range

asymptotic behavior is altered. At long distances, the DLVO potential is dominated by the

van der Waals part proportional to −x−6, which gives rise to a secondary minimum in the

total DLVO potential [50]. On the other hand, the purely repulsive HSY potential decays

exponentially according to exp(−kx)/x for all non-overlap distances. However, the qualitative

change from long-range attraction to long-range repulsion is well justified for strongly charged

particles at low salinity since the depth of the secondary DLVO minimum is small compared

to kBT .

Note that by using the HSY pair potential, or more generally the DLVO pair potential,

all microions are treated as pointlike and isotropically smeared out on the scale of the col-

loidal particles. Furthermore, non-Coulombic microion-microion correlations are disregarded,

which is not a valid assumption for non-monovalent counterions. Non-pairwise additive col-

loidal particle interactions, which may play a role at very low salinity, are also neglected. The

HSY pair potential has been derived as the potential of mean force in the limit φ → 0, on basis

of the linearized Poisson-Boltzmann theory [3], or likewise using the linear mean-spherical

approximation applied to a highly asymmetric ionic mixture treated in the so-called Primi-

tive Model [51–53], on assuming point-like microions and LBZ2/σ � 1. For more strongly

charged macroions, the DLVO potential can still be used, but Z should be interpreted then as

an effective macroion charge number smaller than the bare one, since it has to be corrected for

the fraction of surface-condensed counterions. The effective macroion charge Z, in relation to

the bare charge, can be estimated, e.g. using simplifying mean-field-type cell model [54, 55]

or self-consistent jellium model calculations [47, 56, 57]. There are also non-mean field ex-

tensions allowing to describe macroion overcharging, and ion-pairing effects in multivalent

electrolyte solutions [58]. Due to the approximative nature of all these calculations, different

values for Z are obtained in general.

The model system of hard spheres with a Yukawa-type repulsive pair interaction is exten-

sively used not only in colloid science. In a more general context, with differing definitions

for γ , k, and σ , the HSY model is used as a reference system for complex plasmas [59], and

for a large variety of atomic systems including plasmas, liquid metals [4, 60, 61], and alloys

[62, 63]. Part of the present thesis is devoted to applying and testing integral equation schemes

and computer simulation tools for computing the equilibrium pair-structure of the colloidal
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Fig. 2.2: Transmission electron micrograph picture of silica spheres similar to the ones used
in the present study. The spheres depicted here have a mean diameter of σ = 365 nm, and
a polydispersity of 6%. The silica particles used in the static and dynamic light scattering
experiments discussed in this thesis have a diameter σ = 272 nm at 6% polydispersity. Image
printed with kind permission of Dr. Johan Buitenhuis, Research Centre Jülich.

HSY fluid. These tools are applicable also to atomic HSY fluids and plasmas, since the equi-

librium pair-structure is solely determined by the direct interaction potential. On the other

hand, the dynamics of colloidal particles is entirely different from that of plasmas and atomic

fluids. While the particles in the latter systems move essentially ballistically, colloidal spheres

move in a viscous fluid of mass density similar to their own. In a suitable course-grained

time resolution, the dynamics of colloids appears overdamped, and the particles exhibit erratic

Brownian motion [21, 64].

2.2 Silica spheres

The static- and dynamic light scattering experiments on silica spheres in a toluene-ethanol
mixture, and the characterization of the silica spheres by small angle X-ray scattering, have
been performed by our collaborator Dr. Peter Holmqvist at Research Centre Jülich. The
light scattering data presented in this thesis have been analyzed in our joint theoretical-
experimental project.

Trimethoxysilylpropyl methacrylate (TPM)-coated silica spheres [65] dispersed in an

index-matching organic solvent constitute a well-characterized realization of a HSY-like sys-

tem of nearly monodisperse colloidal particles. Fig. 2.2 is a transmission electron micrograph

(TEM) picture of a dried specimen of silica spheres similar to the ones discussed in this thesis.

The TEM-determined average diameter of the spheres in Fig. 2.2 is σ = 365 nm with a relative
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size-polydispersity (relative standard deviation) of 6%. A similar mean diameter of σ = 272

nm, and 6% polydispersity, has been determined for the silica spheres used in the present stud-

ies by fitting the form factor recorded in small angle X-ray scattering (SAXS) experiments to

the average form factor of homogeneously scattering spheres.

The hydrophobic TPM surface groups on the silica particles allow for their dispersion in a

80:20 toluene-ethanol solvent mixture at T = 20o C with Bjerrum length LB = 8.64 nm [43].

This organic solvent mixture allows for fine-tuning the salinity without having to worry about

self-dissociation of solvent molecules and uncontrolled CO2 adsorption, problems commonly

encountered in aqueous suspensions. Moreover, the very similar refractive index of solvent and

particles minimizes the influence of the residual van der Waals attraction. The silica spheres

with σ = 272 nm attain a concentration-dependent negative surface charge in the range of

−250 � Z � −100 by the dissociation of protons from the particle surfaces. For a residual

salinity smaller than 10−6 M, the suspension solidifies at a volume fraction of φ f ≈ 0.16.

Static light scattering (SLS) experiments were conducted using a light scattering set-up by

the ALV-Laservertriebsgesellschaft (Langen, Germany), for a series of concentrations from

φ = 0.057 to 0.159. The samples have been carefully filtered, and it was checked that there is

no noticeable multiple scattering. The scattering data are consequently quite reliable, and of

remarkably little noise even in the small wavenumber regime.

2.3 Bovine serum albumin proteins

The static and dynamic light scattering experiments, the X-ray scattering experiments, and
the rheometric measurements of aqueous solutions of bovine serum albumin have been con-
ducted by the experimental co-authors of Ref. [18], from the University of Tübingen, the
Slovak Academy of Sciences, the P. J. Šafárik University in Košice, Slovakia, the Institut
Laue-Langevin, and from the European Synchrotron Radiation Facility in Grenoble, France.
The data presented in this thesis have been jointly analyzed in our theoretical-experimental
project.

A quantitative understanding of the dynamics in concentrated solutions of interacting pro-

teins is of importance to the evaluation of cellular functions, and the improvement of drug de-

livery. Diffusion mechanisms such as collective and self-diffusion, and rheological properties

such as the static and high-frequency shear viscosities, are strongly affected by the aqueous

environment [66], and in particular by crowding effects due to a high concentration of macro-

molecules. The particles are coupled both by direct and solvent-mediated, hydrodynamic in-

teractions (HIs) [67–69]. The latter type of indirect interaction, which is both long-ranged

and of many-body nature, poses a particularly challenging task to the theoretical treatment of

diffusion and rheological transport properties.

Here, we report on a combined experimental and theoretical study on collective diffusion,
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Single particle properties:

P(q),dt,0, [η ]

Orientational

average

Cooperative properties:

S(q),dc,η(φ)
Fig. 2.3: Illustration of the spheroid-Yukawa model for serum albumin proteins. Secondary
structure image of human serum albumin protein (top, left) taken from entry 1E7I of the RCSB
Protein Data Bank [70], as created by the authors of Ref. [71].



14 2.3. BOVINE SERUM ALBUMIN PROTEINS

low shear-rate static viscosity, and static and dynamic scattering functions of concentrated

solutions of bovine serum albumin (BSA) proteins. The goal of our study is twofold. On the

one hand, we explore how far a simple colloidal model in combination with state-of-the-art

theoretical schemes can capture the microstructure and dynamics of proteins in solution. On

the other hand, we investigate the concentration- and salt-dependence of collective diffusion

and the static shear viscosity, and use our results to test the validity range of a generalized

Stokes-Einstein (GSE) relation which combines the collective diffusion coefficient with the

isothermal osmotic compressibility and the shear viscosity.

BSA is a globular protein which is readily soluble in water and stable over a wide range of

salt and protein concentrations. Its stability and reproducibility make it well-suited as a model

system of globular proteins. Proteins constitute identical solute units surpassing any synthetic

colloid suspension in terms of monodispersity. In this respect, they are ideally suited to the ap-

plication of analytical theoretical models used with good success for large colloids. However,

the construction of a quantitatively accurate theoretical model for protein solutions is con-

siderably obstructed not only by the potential presence of impurities and oligomers, but also

by the complex internal conformation and surface of a protein. The folding state depends on

various control parameters such as temperature, protein concentration, pH value, and salinity.

The irregular protein surface implies an orientation-dependent protein interaction energy with

repulsive and attractive parts, and furthermore complicates the description of hydroynamically

influenced transport properties.

In a first step towards calculating dynamic properties of proteins, it is advisable to use

a model of reduced complexity, with system parameters such as the pH-dependent particle

charge determined from a consistent fit of theoretical expressions for the scattered intensity

to the experimental static scattering functions. We use here a simple colloid model where the

BSA interactions are described by the isotropic HSY pair-potential in Eq. (2.6). The effect of

the non-spherical shape of BSA proteins is accounted for in the static intensity calculations

within the so-called translational-orientational decoupling approximation, by describing the

proteins as oblate spheroids interacting by a spherically symmetric effective pair potential.

Fig. 2.3 illustrates the simplified model of BSA used in the present study. Note that the protein

displayed in Fig. 2.3 is not BSA but human serum albumin (HSA), whose shape and size is

expected to be similar to the one of BSA [72–74], and for which structural data from crystal-

lographic and nuclear magnetic resonance spectroscopy studies are more readily available.

2.3.1 Sample preparation

BSA is a globular protein with a mean linear extension of about 7 nm. The considered aqueous

solutions of BSA with no added salt, and with monovalent added salt such as NaCl, have a pH

in between 5.5 and 7. Under these conditions, BSA is stable in solution, folded in its native

state, and carrying a negative net charge in the range of roughly 8 to 20 elementary charge
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units (see Section 5.4 for details) [75, 76]. BSA was purchased from Sigma (cat. A3059) as a

lyophilized powder, certified globulin- and protease free.

The sample preparation for all experimental techniques started with the dissolution of pro-

tein powder in a solvent, and subsequent waiting until the solution was homogenized. The

protein mass concentration, cp , in the solution volume given by VH2O +mp ·θ , is determined

by the BSA weight mp via

cp =
mp

VH2O +mp ·θ , (2.7)

where the specific protein volume θ = 0.74 ml/g [77] determines the self-volume of proteins

upon dissolution.

For small-angle X-ray scattering, deionized and degased water was used as solvent. The

samples with concentrations higher than 15 mg/ml were prepared directly, while smaller con-

centrations were prepared from a stock solution of 18 mg/ml. The samples were filled into a

plastic syringe and inserted into the capillary during the measurement.

For the viscosity measurements, the solutions were prepared similarly using as solvent both

deionized water, and solutions of NaCl in deionized water. The NaCl molarity is calculated

from the total solution volume, including the protein self-volume. All solutions used for the

viscosity experiments were further degased by a water-jet air-pump.

For our light scattering experiments, stock solutions of BSA proteins in deionized water

were mixed with solutions of NaCl in deionized water according to the required concentration.

The NaCl molarity is calculated from the total water volume. Then, every sample was pressed

with a plastic syringe through a hydrophilized nylon membrane filter with a pore size of 100

nm (Whatman Puradisc 13), and transferred into a cylindrical glass scattering cell. The cell

was sealed immediately with a plastic cap.

The effect of the difference in NaCl concentrations between light scattering and viscosity

samples, arising from the slightly differing sample preparation, is negligibly small.

2.3.2 Static and dynamic light scattering

Multi-angle DLS experiments were performed at various concentrations of protein and added

salt, at a temperature of T = 295 K. In particular, the BSA mass concentration, cp, was chosen

between 0.1 to 150 mg/ml, and the concentration of added salt was 0 (no added salt), 5×10−3,

0.15 and 0.5 M. Note that even in the zero added-salt case, the analysis of the scattering data

discussed in Sec. 5.4 reveals a residual electrolyte concentration of a few mM, which scales

roughly linearly with cp (see Tab. 5.1). This suggests a few possible sources of the residual

electrolyte ions. First, a possible source could be the surface-released counterions of charged

BSA oligomers, not contained in our monodisperse model. Second, a salt contamination of

the BSA stock, and third, the dissociation of acidic or alkaline surface groups off the BSA

proteins cannot be excluded.

SLS experiments were performed on the same samples. We used a combined SLS/DLS
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device from ALV (goniometer: CGS3, correlator: 7004/FAST), located at the Institut Laue

Langevin in Grenoble, with a minimum correlation time of 3.125 ns as initial and shortest

time. The HeNe laser was operating at wavelength λ0 = 632.8 nm, with an output power

of 22 mW. The accessible range for the scattering angle (wavenumber) was 30 - 150◦ (q

= 0.007 - 0.026 nm−1). Moreover, the DLS intensity autocorrelation function decays on a

time scale much slower than the interaction time, τI ∼ σ2
dt,0

/(4dt,0) ∼ 0.3 μs, of BSA, where

σdt,0 is an effective hydrodynamic diameter (see Sections 4.1 and 5.4.2 for a discussion of

colloidal timescales and effective sphere diameters for BSA). Hence, DLS probes the long-

time collective diffusion of BSA, in the q → 0 limit.

The normalized intensity autocorrelation function (IACF) obtained from DLS,

g2(q, t) =
〈I(q,0)I(q, t)〉

〈I(q)〉2
,

was fitted, according to the Siegert relation, by the double exponential decay function

g2(q, t)−1 =

(
∑

i=1,2

Ai · exp
[−Di q2 t

])2

+B, (2.8)

with decay constants D1 and D2, and amplitudes A1 and A2. The fit results were essentially the

same with and without the background-correction constant B. At all probed angles, the two de-

cay constants are widely separated (D1 
 D2). The faster mode coefficient, D1, is attributed to

the (long-time) collective diffusion coefficient, dL
c , of BSA monomers. The appearance of the

slower mode characterized by D2, can be attributed to the slow motion of the larger impurities

and oligomers. After having checked that D1 is overall q-independent within the experimental

resolution, it was averaged with respect to its residual scattering angle fluctuations to gain bet-

ter statistics. Data on D2 are rather noisy in comparison to D1, and show no clear dependence

on q, cp, and on the concentration of added salt.

2.3.3 Small-angle X-ray scattering

Aqueous solutions of BSA with mass concentrations in between 0.9 mg/ml and 270 mg/ml,

and without added salt, were measured by SAXS, at the beam line ID02 of the European

Synchrotron Radiation Facility (ESRF) in Grenoble, France. The standard configuration at a

2m sample-to-detector distance, and a photon energy of 16051 eV was used. Measurements

were repeated several times in the flow mode and with short detection times to ensure the

absence of radiation damage. The data from the CCD were processed with the standard rou-

tines available at the beam line for radially averaging the data and correcting for transmission.

Repeated measurements were summed up, and the solvent scattering was measured indepen-

dently and subtracted from the data. Additionally, two dilute samples (at cp = 1 and 2 mg/ml),

with 0.15 M of added NaCl, were measured for form factor fitting.
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2.3.4 Static viscosity measurements

The viscosity data were measured at T = 25◦ C, for different concentrations of protein and

added salt. The first dataset was obtained for solutions without added salt, while the second

set describes systems with 0.15 M NaCl. All measurements were performed at a shear rate

of 60 Hz � 1/τI , using the suspended couette-type viscometer described in Ref. [78]. The

important advantage of this instrument is the possibility to collect data without errors caused

by the surface shear-viscosity. A test made for cp ≈ 20 mg/ml and 100 mg/ml, without salt and

for 2M added NaCl, revealed no shear-rate dependence of the viscosity for shear rates between

50 and 95 Hz. The precision of the viscosity measurements is approximately 0.1%. In order to

minimize systematic errors, every measurement was repeated three times, including separate

sample preparations.

The viscometer directly measures the relative shear-viscosity of the solution against pure

water (for technical details see Ref. [78]). For the aqueous BSA solutions without added salt

discussed in this work, the relative viscosity was directly measured. For BSA solutions with

added salt, this quantity was obtained as the ratio of the following two values: (a) the directly

measured relative viscosity of the BSA solution with salt against water divided by (b) the

directly measured relative viscosity of the salt solution (without BSA) against water.

2.4 Gibbsite platelets

The static- and dynamic light scattering experiments on gibbsite platelets in dimethyl sul-
foxide (DMSO), and the characterization of the gibbsite particles’ size and shape by TEM
and atomic force microscopy (AFM) have been done by Dr. Dzina Kleshchanok from Utrecht
University (The Netherlands), and Dr. Peter Holmqvist from Research Centre Jülich. The data
presented in this thesis have been analyzed in our theoretical-experimental project.

Colloidal platelets are abundant in nature (e.g., as clay minerals or red blood cells) and can

be readily synthesized in the laboratory in form of mixed metal hydroxides, gibbsite, gold

platelets, et cetera. The most prominent examples of colloidal platelets are various types of

natural clays [79], which figure in sediment transport in rivers, and in the oceans and lakes,

and which are responsible for dangerous landslides [80]. Clays are widely used as rheological

modifiers for surface coatings, paints, and drilling fluids [81, 82].

The rheological applications of clays are based on their microstructural properties, origi-

nating from a highly anisotropic shape and a correspondingly anisotropic particle interaction.

As a necessary step towards understanding the more complex behavior of concentrated clay

platelet suspensions regarding rheology, sedimentation, and sediment transport, the fundamen-

tal dynamic properties in dilute isotropic solutions must be addressed.

So far, most studies on the dynamics of clay and colloidal platelet suspensions have been

focused on the non-equilibrium ergodic to non-ergodic transition in dense systems [83–85],
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Fig. 2.4: Transmission electron micrograph picture of gibbsite platelets similar to the ones
used in the present study. Image printed with kind permission of Dr. Dzina Kleshchanok,
Utrecht University (The Netherlands).

and on the properties of the non-ergodic state [86, 87]. Only few theoretical and experimental

investigations have been made so far on less concentrated, fluid-state isotropic suspensions of

clays or colloidal platelets. For instance, both the translational and rotational diffusion coef-

ficients of a single platelet were studied by simulation, and the resulting data for an extended

range of aspect ratios were fitted to general polynomial expressions for cylinders by Ortega and

García de la Torre [88]. The study in Ref. [88] allows to compare the single-platelet diffusion

properties of non interacting platelets with the results of experimental diffusion measurements,

but it includes no hint on how diffusion is affected by particle interactions.

The concentration dependence of sedimentation and diffusion coefficients of uncharged,

sterically interacting platelets and clays has been explored in [89, 90] by dynamic light scat-

tering and ultracentrifugation. For platelets, the earlier investigations in [89] were made in a

rather dilute concentration regime where no effect of particle interactions on diffusion was de-

tected. Moreover, explicit theoretical expressions have been derived for the time-dependent

intensity autocorrelation function of noninteracting cylindrical particles such as platelets

[21, 89, 91–93] which, in principle, can be used to determine the single-platelet rotational

diffusion coefficient from standard dynamic light scattering or X-ray photon correlation spec-

troscopy (XPCS) measurements in non-interacting particle systems.

For rather dilute systems of uncharged polymer-grafted clay suspensions [90], normalized

IACFs have been measured in vertical-vertical (VV) and vertical-horizontal (VH) scattering

geometry [94]. Here, VV and VH indicate the orientations of two polarizers in the light

scattering setup. The first polarizer is used to linearly polarize the incident beam before it

gets scattered from the sample, and the second polarizer (referred to as the analyzer) is placed

in the scattered beam. In VH geometry, also referred to as the depolarized dynamic light

scattering (DDLS) setup, with the two polarizers crossed, only that part of the scattered light is
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Fig. 2.5: Size histograms for the radius R (left) and thickness h (right) of the gibbsite platelets
used in the present study, determined from TEM and AFM pictures of the dried specimen,
respectively. The red shaded areas are best fits by unimodal Schulz-Zimm distributions in
Eq. (2.9), multiplied by constant prefactors. The fitted distributions have mean values 〈R〉 =
44.2 nm and 〈h〉 = 7.66 nm, and relative standard deviations of sR = 17.3% and sh = 55.3%.

detected that got depolarized in the scattering process. In VV geometry, only that part of light

is detected that retains its polarization in the scattering process. If all scattered light conserves

its inbound polarization, a VV scattering setup is equivalent to a vertical-unpolarized (VU)

setup, where no analyzer is used.

In Ref. [90], a strong slowing of diffusive modes was found both in VH and in VV geometry.

In VV geometry, only a single diffusive mode was detected, even though it was argued that a

second, cooperative mode should be present due to the osmotic pressure of polymers grafted

on the clay particles [90].

In the present study, we explore how the dynamics of charged colloidal gibbsite platelets

suspended in DMSO and existing in their isotropic phase, is affected by particle interactions.

Using SLS and (D)DLS, we study the effect of the platelet concentration on the measured

translational and rotational self-diffusion coefficients, and on the collective diffusion coeffi-

cient. Moreover, the concentration- and shear-rate dependence of the static dispersion viscos-

ity is determined experimentally. Our scattering and rheological experiments cover the full

isotropic phase concentration-regime up to the isotropic-liquid crystal (I/LC) transition.

2.4.1 Size- and shape-characterization

The gibbsite radius- and thickness histograms depicted in Fig. 2.5 have been obtained from

TEM and AFM pictures of the dried specimen, respectively. Both histograms have been fitted
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by the unimodal Schulz-Zimm [95, 96] size distribution function

PS(x,〈x〉 , t) =
[

t +1

〈x〉
]t+1 xt

Γ(t +1)
exp

[
−t +1

〈x〉 x
]
, (t > 0), (2.9)

multiplied by constant prefactors, as depicted in Fig. 2.5 by the red shaded areas. Analytic

expressions are known for all moments of the Schulz-Zimm distribution in Eq. (2.9) [22].

In particular, the mean value of the reduced size variable x is 〈x〉, and the relative standard

deviation, sx = 〈x〉−1[
〈
x2
〉−〈x〉2]1/2, is given by [t + 1]−1/2. For large values of 〈x〉 and low

values of sx, Eq. (2.9) is similar to a Gaussian distribution function (c.f., left panel of Fig. 2.5).

When sx becomes large (c.f., right panel of Fig. 2.5), Eq. (2.9), vanishing for negative values of

x, differs clearly from a Gaussian distribution. Our fit of Eq. (2.9) to the experimental radius-

and thickness-histograms gives mean values 〈R〉 = 44.2 nm and 〈h〉 = 7.66 nm, and relative

standard deviations of sR = 17.3% and sh = 55.3%, respectively.

Note here that the histogram of gibbsite platelet radii in the left panel of Fig. 2.5 is well-

described by the fitted PS(R,〈R〉 , t), whereas the thickness histogram scatters considerably,

with the indication of a bimodal distribution with the two centers at h ≈ 4 nm and h ≈ 9 nm.

For the distribution of the gibbsite platelet thickness, PS(h,〈h〉 , t) is therefore only an analytic

first approximation. However, as we have checked, the mean aspect ratio, p = 〈h〉/(2〈R〉) =
0.087, of gibbsite platelets is so small that the ultrathin disk limit (h → 0) can be applied

to reasonable accuracy for all the static and dynamic properties of gibbsite studied in the

present thesis. Therefore, the details of the thickness distribution are of minor importance, and

our usage of a unimodal Schulz-Zimm distribution is justified. Moreover, despite the large

thickness polydispersity of sh = 55.3%, the gibbsite platelets studied here can be regarded as

approximately monodisperse. The reason for this is the rather small polydispersity of sR =
17.3% in the platelet radius.

2.4.2 Static and dynamic light scattering

DMSO is a polar, aprotic, and low-viscous solvent of dielectric constant ε = 47.2 at T = 293K
and viscosity η0 = 2×10−3 Pa·s, in which the platelets are charge-stabilized, forming a sus-

pension that remains transparent up to the isotropic-liquid crystal (I/LC) transition. Different

from aqueous gibbsite suspensions, which are turbid already at low concentrations, gibbsite in

DMSO systems are transparent and show no multiple scattering in the investigated concentra-

tion range. Moreover, there is no residual CO2 contamination such as in water, and no solvent

self-dissociation, so that systems with low ionic strengths can be easily prepared. Thus, we

can use (D)DLS to study the rotational and translational diffusion as a function of the gibbsite

number concentration up to the I/LC transition point. Our standard (D)DLS/SLS apparatus is

equipped with a krypton ion laser of wavelength λ0 = 647 nm as a light source, and a λ/2 plate

used as polarizer and analyzer (Bernhard Halle Nachfl., Berlin, Germany). Each sample was
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measured both in vertical-unpolarized (VU) and vertical-horizontal (VH) scattering geometry,

for values of the wave number, q, smaller than the value, qm, where the primary peak of the

mean scattered intensity, I(q), occurs. DLS data were recorded for a large number of gibbsite

volume fractions φ = M/(ρmV ) up to the I/Lc transition occurring at φI/Lc ≈ 8%. Here, M is

the total mass of added gibbsite of known mass density ρm, and V is the suspension volume.

Using the same apparatus as for the DLS measurements, we have measured the static mean

scattered intensity, I(q), by SLS.

2.4.3 Viscosity measurements

To obtain the low shear-rate static viscosity of gibbsite suspended in DMSO, using an ArG2

rheometer from Ares, the viscosity was measured for various platelet volume fractions, rang-

ing from 1.45 to 7.6 vol%. The results are presented and discussed in Section 6.4.
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CHAPTER

THREE

Theory of pair-structure

In this chapter, various analytical schemes are introduced, each of which allows to compute

approximately the static pair-correlation functions in a fluid of monodisperse spheres inter-

acting by the HSY pair potential in Eq. (2.6). Special emphasis is laid on the description of

our newly developed, analytically solvable and highly accurate MPB-RMSA integral equation

scheme [14, 15], and its predecessors PB-RMSA [97], RMSA [98], and MSA [4] (the four

acronyms are defined in due course) upon which this new scheme is based. For comparison,

two routinely used, non-analytic integral equation schemes are discussed, namely the hyper-

netted chain (HNC) [99] and Rogers-Young (RY) [100] schemes.

Before all these integral equation schemes are discussed in Sections 3.3 and 3.4, two brief

introductions are in place, concerning the definitions of the computed pair-structure functions

given in Section 3.1, and the underlying Ornstein-Zernike equation in Section 3.2.

3.1 Pair-structure functions

In thermodynamic equilibrium, the probability density function for N particles to assume the

center-of-mass positions rN = (r1,r2, . . .rN) in a volume V at temperature T , is given by

PN(rN) =
e−βU(rN)∫

V N

drNe−βU(rN)
. (3.1)

Here, U(rN) is the potential energy of the N particles. For a homogeneous and isotropic sys-

tem, where PN(r1, . . .rN) = PN(r1 + t, . . .rN + t) for an arbitrary displacement vector t, the

23
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radial distribution function (rdf) is [4]defined as

g(r) = lim
∞

N(N −1)
n2

∫
V N−2

dr3 · · ·drNPN(rN), (3.2)

where lim∞ denotes the thermodynamic limit N → ∞ and V → ∞, with n = N/V fixed, charac-

terizing a macroscopic system. In the present thesis, only such model systems are considered

for which the total potential energy can be written as U(rN) = 1/2∑N
l, j=1,l �= j u(|rl −r j|)i.e. as

the pairwise additive sum of an external potential uext and an isotropic pair-interaction poten-

tial u(r).
The positive-valued function g(r) quantifies the conditional probability in an isotropic sys-

tem of finding a particle a distance r from a given one. In a fluid system of particles with hard-

core diameter σ , g(r 
 σ) ≈ 1, and g(r ≤ σ) = 0. Additional generic properties of g(r) can

be derived from its definition [4]. The rdf is intimately related to the scattering wavenumber-

dependent static structure factor,

S(q) = lim
∞

〈
1

N

N

∑
l, j=1

eiq·(rl−r j)
〉

≥ 0, (3.3)

which, in a static scattering experiment on an ergodic system, is proportional to the scattered

intensity I(q) divided by its value at infinite dilution. The bracket < .. . > in Eq. (3.3) denotes

an equilibrium ensemble average. It can be shown [4], that

g(r) = 1+
1

2π2nr

∫ ∞

0
dqq sin(qr) [S(q)−1] , (3.4)

and

S(q) = 1+
4πn

q

∫ ∞

0
dr r sin(qr) [g(r)−1] . (3.5)

In very dilute suspensions [4],

g(r) = g0(r)+O(φ), with g0(r) = e−βu(r). (3.6)

Insertion of Eq. (3.6) into Eq. (3.5) gives the structure factor to first order in the volume

fraction, according to

S(y) = S1(y)+O(φ 2),

S1(y) = 1+24φ
∫ ∞

0
dxx2

[
e−βu(x)−1

] sin(xy)
xy

. (3.7)

Here, y = qσ , and we adhere to the standard physics convention of using the same function



CHAPTER 3. THEORY OF PAIR-STRUCTURE 25

names for g and S when expressed in differing units, with the employed units identified by the

argument variable. This convention is used also for all other functions.

3.2 Ornstein-Zernike equation

The one-component Ornstein-Zernike (OZ) equation,

h(x) = c(x)+
6φ
π

∫
dx′ c(x′)h(|x−x′|), (3.8)

for a homogeneous and isotropic fluid system has been originally introduced by Ornstein and

Zernike around 1914 [101]. In Eq. (3.8), x = r/σ and x′ = r′/σ . The OZ equation relates

the total correlation function, h(r) = g(r)−1, to the direct correlation function c(r). With the

exception of limiting cases like, e.g. c(r) =−βu(r) for r →∞ and c(r)+1 = exp{−βu(r)} for

n → 0, that can be derived using (3.8) [4], the general form of the direct correlation function

is not known in analytical closed form. Eq. (3.8) can be viewed alternatively as the definition

of c(r) in terms of g(r).
However, the OZ equation is commonly employed as a tool to calculate g(r) (or equivalently

S(q)) from a given potential u(r) in combination with an (approximate) closure relations for c
as a functional of h and u. A general closure relation that applies to a good approximation for

arbitrary u(r) is not known. Instead, a variety of closures have been proposed, each of which

is specially adapted to a certain class of pair potentials. Closures that apply decently well to

the HSY pair potential in Eq. (2.6) are discussed in Sections 3.3 and 3.4.

Before embarking on different closures, we first use Eq. (3.8) to infer a general property for

an important class of HSY fluids. For highly charged colloids at low salinity, where contact

configurations are extremely unlikely, the hard-core part of the HSY potential is irrelevant.

These systems have in common a practically zero contact value, g(x = 1+) ≈ 0, of the rdf.

All these systems share the geometrical mean particle distance, d̃ = n−1/3 , as their natural

characteristic length unit. In terms of this length unit,

βu(x̃ > σ/d̃) = γ̃ exp{−k̃x̃} , (3.9)

with x̃ = r/d̃ and reduced potential parameters γ̃ = γσ/d̃ and k̃ = kd̃/σ . Since the hard

core is of no physical relevance for these systems, the Yukawa potential in Eq. (3.9) can be

extrapolated to x̃ = 0 without affecting the microstructure. Thus,

h(x̃) = c(x̃)+
∫

dx̃′ h(x̃′)c(|x̃− x̃′|) , (3.10)

where the volume fraction φ has dropped out. We see here that the class of HSY systems

with practically zero contact value of the rdf are fully characterized by the two dimension-

less parameters γ̃ and k̃. On the other hand, four dimensionless parameter groups which are
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experimentally controllable to some extent, namely {LB/σ ,Z,nsσ3,φ}, enter into the DLVO

potential. Thus, different combinations of these four parameters sharing the same (γ̃, k̃) values

have identical pair functions S(ỹ) and g(x̃), under the proviso that the corresponding systems

fall into the g(x = 1+) ≈ 0 class. The phase diagram of these effectively point-like Yukawa

particles with masked hard-core interactions is quite simple, with a single fluid phase that

can freeze into a fcc or bcc solid. The diagram has a single triple point but no critical point

since the potential is purely repulsive [102–106]. A recent discussion of the critical point in

hard-sphere plus attractive Yukawa-tail fluids is given in Ref. [107].

In Section 5.2, we apply our newly developed MPB-RMSA closure to compute the generic

properties of S(ỹ) and g(x̃) for point-Yukawa-like particles in the full fluid phase. Here, a pe-

culiarity of the MPB-RMSA must be taken into account. The MPB-RMSA is build on two

rescaling expressions for the parameters γ and k, leading to an enhanced accuracy of the

method as compared to its predecessors, the RMSA and the PB-RMSA. In these two rescal-

ing rules, the volume fraction φ enters explicitly. Therefore, even in the point-Yukawa like

phase with g(x = 1+) = 0, the MPB-RMSA-computed functions S(ỹ) and g(x̃) depend on the

three parameters (γ̃, k̃,φ). It is nevertheless possible to explore the boundaries of the point-like

Yukawa phase using the MPB-RMSA, since the method reduces to the PB-RMSA in the dilute

limit, and the rescaling rules used in the latter scheme are not explicitly φ -dependent.

The extended phase diagram including HSY systems with g(x = 1+) > 0, i.e. systems

where the rdf is discontinuous at contact distance, is somewhat more complicated than the

phase diagram of point-Yukawa like particles, showing an additional fluid-fcc-bcc triple point

[108, 109]. Systems where the hard core matters are characterized by three dimensionless pa-

rameters, namely by (γ,k,φ), with σ as the natural length unit. Here, systems of equal (γ,k,φ)
share the same S(y) and g(x).

3.3 From the MSA to the MPB-RMSA closure relation

Only a single analytically solvable closure relation for the OZ equation is known to date, for

the general case of a HSY pair-potential in the form of Eq. (2.6), at arbitrary volume frac-

tion φ . In this so-called Mean Spherical Approximation (MSA) , the direct correlation func-

tion is approximated, for all non-overlap radii x > 1, by its asymptotic form c(x) = −βu(x).
While allowing for an analytic solution, the MSA has some undesired consequences. The main

drawback is the unphysical prediction of negative values of g(r) for pair potentials describing

regions of strong, but finite repulsion such as, e.g., the HSY potential in Eq. (2.6).

Certain rescaled versions of the MSA have been published in the past, all of which essen-

tially conserve the analytic simplicity of the MSA, while increasing its accuracy to an even-

tually quantitative level. These rescaled version are based on the work by Gillan [110] and

Hansen and Hayter [98], who introduced a semi-analytic rescaling rule for the hard-core di-

ameter σ which should be used in the HSY potential in Eq. (2.6) when the MSA is employed.
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In this so-called Rescaled Mean Spherical Approximation (RMSA), the prediction of unphysi-

cal negative values of the rdf is eliminated. The size-rescaling in RMSA is well-justified by the

universality of all HSY-systems sharing the same long-ranged Yukawa tail, and with exceed-

ingly unlikely hard-core contact configurations. Qualitative agreement is observed between

the RMSA-calculated pair-structure functions S(q) and g(r), and highly accurate reference

solutions obtained from Monte Carlo (MC) computer simulations. However, quantitative ac-

curacy is missing in the RMSA, which is known to underestimate the height of the primary

peak, S(qm), in the static structure factor.

This residual inaccuracy of the RMSA has been reduced in the subsequent work of Snook

and Hayter, published in the year 1992 [97], which unfortunately, remained largely unnoticed.

In this so-called Penetrating Background corrected Rescaled Mean Spherical Approximation

(PB-RMSA) , both the coupling parameter γ and the screening parameter k of the HSY poten-

tial are altered using arguments based on an assumed, homogeneous, and hard-core penetrat-

ing microionic background. Although this penetrating background argument is not rigorous,

it leads to a considerable improvement of the predicted pair-structure functions in comparison

to the RMSA. In many cases, an almost quantitative agreement of the PB-RMSA calculated

structure factor is observed in comparisons with MC simulation results. However, a remnant

slight underestimation of S(qm) is still detected in the PB-RMSA result, in particular for highly

structured, concentrated suspensions.

The reduction of this remnant underestimation of the pair-structure in PB-RMSA was

the objective of work by the present author and collaborators, with results published in

Refs. [14, 15]. In our work, we have demonstrated that a slight modification of the rescal-

ing rules for γ and k, in the spirit of the penetrating background assumption, leads to an

enhanced accuracy. We refer to this most recent MSA-based scheme as the Modified Pen-

etrating Background corrected Mean Spherical Approximation (MPB-RMSA) . Section 5.1

contains a detailed comparison of pair-structure functions for the HSY model, obtained us-

ing MC simulations, our MPB-RMSA scheme, and additional, non-analytic integral equation

schemes such as the Rogers-Young scheme [100]. While the peak in the MPB-RMSA rdf is

still slightly underestimated in case of concentrated, low-salt suspensions, the MPB-RMSA

static structure factor is in nearly perfect agreement with the computationally elaborate MC

results, for arbitrary HSY potential parameters and colloid concentrations.

In the following subsections, the details of the MSA, RMSA, PB-RMSA, and MPB-RMSA

schemes are discussed in a way that allows interested readers to easily implement the accurate

MPB-RMSA scheme.
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3.3.1 MSA closure

An important feature of the HSY model is that, in conjunction with the MSA closure relation

[4],

c(x > 1) = −β u(x) , (3.11)

and the exact zero-overlap condition g(x < 1) = 0, an analytic solution of the Ornstein-Zernike

equation is obtained for S(q). This is a desirable feature since S(q) is the key quantity deter-

mined in static scattering experiments. The MSA solution was first derived for general k by

Waisman [111], and in the special limit of no screening (k = 0) also by Palmer and Weeks [61].

The original MSA solution by Waisman includes a rather complex set of algebraic equations

from which the unique, physically allowed structure factor must be deduced. The MSA solu-

tion was further simplified by Blum and Høye [112], and Cummings and Smith [113, 114].

A particularly simple form of the MSA solution was obtained more recently by Ginoza [115]

(see also [63]), invoking a simple quartic algebraic equation from which the physical root

is straightforwardly deduced. Many of the published analytic MSA solutions for HSY-like

systems contain misprints that may be difficult to detect. Therefore, in Appendix A, we pro-

vide the corrected analytic MSA expressions used in our software package described in Ap-

pendix E.

While the MSA solution applies well to dense suspensions of more weakly charged

macroions such as concentrated systems of charged micelles [44, 45], it is known to fail for

the important case of strongly charged colloidal particles under low-volume fraction condi-

tions such as, e.g., suspensions of silica spheres in toluene-ethanol, or polystyrene spheres

in water. Due to the non-exact treatment of shorter-ranged correlations in the MSA closure

relation, which is only asymptotically exact for long distances, non-physical negative values

of g(x) are predicted for low concentrations and strong repulsion near the contact distance

x = 1 of two particles. This follows from the combination of Eq. (3.11) and Eq. (3.8) in the

zero-concentration limit. In dilute systems, gMSA(x > 1) = 1−β u(x)+O(φ), attaining nega-

tive values for distances where u(x) > kBT . Negative values of gMSA(x) are found also when

the MSA is applied to highly concentrated systems in the supercooled fluid regime for large

values of the coupling parameter γ [116].

The undesired feature of negative rdf values is absent for an attractive Yukawa tail, where

u(x > 1) ≤ 0. As shown by Hansen and Hayter [98], the severe deficiency of the MSA of

predicting negative rdf values, can be remedied by increasing the hard-sphere diameter, σ , at

fixed particle concentration, to a larger value σ ′ > σ . In performing this hard-core inflation,

the Yukawa tail of the pair potential at non-overlap distances must be kept unchanged.
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3.3.2 RMSA closure

Hansen and Hayter [98] have provided a simple rescaling prescription which remedies the

shortcoming of the MSA solution for strongly repelling particles where the hard core plays no

role. In the RMSA, one considers in place of the actual system a system of size-inflated spheres

of rescaled hard-core diameter σ ′ = σ/s, and rescaled volume fraction φ ′ = φ/s3, where

the inflation parameter s, with 0 < s ≤ 1, is determined by the Gillan condition gMSA(x′ =
1+;φ ′) = 0 for x′ = xs = r/σ ′ [110].

From the OZ equation (3.8), we note that the function γ(x) = h(x)−c(x) (not to be confused

with the HSY coupling parameter γ) is represented as an integral, and hence it is continuous

for all x ≥ 0. Using the zero overlap condition in

γ(x = 1−) = γ(x = 1+)

⇒ −1− cMSA(x = 1−) = gMSA(x = 1+)−1+βu(x = 1+),

in combination with the analytic result for cMSA(x) in Ref. [113], an analytic expression for

gMSA(x = 1+) = −cMSA(x = 1−)−βu(x = 1+) (3.12)

is obtained (see Appendix A), allowing for a straightforward determination of s using, e.g., the

Newton-Raphson method. In performing the hard-core inflation, the concentration n and the

Yukawa tail are left unchanged. This implies that the parameters in Eq. (2.6) must be rescaled

with respect to the inflated σ ′ according to

γ ′ = γ s (3.13)

k′ = k/s . (3.14)

The RMSA solution is then given by gRMSA(r) = gMSA(r;φ ′,σ ′), which by construction is

a non-negative function going continuously to zero at r = σ ′. It approximates to reasonable

accuracy the rdf of a family of strongly coupled HSY systems of varying particle sizes σ but

equal concentration n and Yukawa tail (i.e., equal γσ and equal k/σ ). Since all members of

this family share the same tail u(r > σ ′), they have in particular the same potential value

Γis = βu(r = dis) , (3.15)

at the ion-sphere diameter distance dis, defined by

dis =
(

6

πn

)1/3

= σ φ−1/3 = σ ′φ ′−1/3
. (3.16)

The ion-sphere diameter is used in plasma physics as the characteristic length scale [4]. For
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k → 0, Γis reduces to the one component plasma (OCP) coupling constant. For strongly repul-

sive particles where the RMSA solution applies, the ordering relation σ < σ ′ < dis is fulfilled.

The RMSA is widely used to this date as an efficient tool for calculating pair correlation

functions, for fitting static scattering data (see, e.g., its implementation in Ref. [117]), and for

delivering the static input to theoretical schemes predicting equilibrium and non-equilibrium

colloidal transport properties and phase boundaries [23, 116, 118–120]. Note here that an

extension of the RMSA to mixtures of hard-sphere Yukawa particles of differing diameters

and Yukawa tails has been discussed by Ruiz-Estrada et al. [53].

Similar to a number of other integral equation schemes including the Percus-Yevick (PY)

[121] and HNC approximations, the RMSA lacks thermodynamic consistency [4, 100]. An-

other artifact of the RMSA of minor importance is the kink in g(r) at r = σ ′ caused by the

inflation of the diameter. Owing to its simplicity, the RMSA solution has been extensively

applied to charged globular colloids and proteins. It tends to underestimate the principal peaks

of the exact g(r) and S(q) as obtained in simulation calculations, with larger differences for

large effective charges Z (see, e.g., [23, 41, 122]). To obtain quantitative agreement with the

simulation-generated peak values S(qm), the employed coupling parameter γ has to be en-

larged above its physical value, for charged colloids usually by increasing the effective charge

number in Eq. (2.5a). The so-adjusted RMSA S(q) is overall in quantitative agreement with its

simulation counterpart, and the RY scheme result. For the repulsive three-dimensional HSY

model, the RY scheme has been shown to be highly accurate.

3.3.3 PB-RMSA closure

The necessity to treat γ as an adjustable parameter in RMSA calculations is rather unsatis-

factory, in particular when accurate values of the effective charge number are searched for.

To improve the RMSA, Snook and Hayter [97] have proposed a reinterpretation of the cou-

pling and screening parameter based on a penetrating microion background (PB) correction

argument. The PB-RMSA scheme by Snook and Hayter is in improved agreement with the

simulation structure functions. In the following, we describe the PB-RMSA scheme and criti-

cally discuss the motivation of the employed PB correction. In Section 3.3.4, we will propose a

straightforward modification of the PB-RMSA leading to a further improvement of its perfor-

mance. In most considered cases, our MPB-RMSA scheme yields very good results, requiring

no residual adjustment of the coupling parameter. Specific systems where the MPB-RMSA is

less accurate are discussed in Section 5.1, including a summary of approximate global error

bounds.

At this point already, we emphasize that the PB correction underlying the PB-RMSA and

the modified PB-RMSA, is neither rigorous nor without alternatives. It is less general and less

justified than the hard-core rescaling argument discussed before. Nevertheless, the PB cor-

rection improves significantly the performance of the RMSA in the full fluid-state parameter

space.
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The PB correction argument by Snook and Hayter relies on the observation that in the

derivation of the effective HSY pair potential in Eq. (2.6), the degrees of freedom of all the

point-like microions have been integrated out, so that their presence is articulated only through

the values for γ and k. Snook and Hayter [1, 97] argue, in the spirit of the one-component

plasma model (see Ref. [61]), that this is consistent with assuming vanishing spatial correla-

tions,

gCi(r) ≡ 1 and gi j(r) ≡ 1 , (3.17)

between colloids and microions, and among all microion species. Here, gCi(r) and gi j(r) are,

respectively, the colloid (C) - microion and microion-microion radial distribution functions,

with indices i and j labeling the various microionic species. According to Eq. (3.17), the mi-

croions are uniformly smeared out in space, penetrating also the colloidal hard cores. While

inserting Eq. (3.17) into the multi-component coupled Ornstein-Zernike equations [4] describ-

ing a primitive model system leads indeed to a description that couples the colloidal macroion

species to itself only, one should notice that a DLVO-type HSY pair potential can be derived

without invoking the crude assumption of a uniformly penetrating microion background. This

has been shown, e.g., in [52, 123–125], where the non-negligible inter-ionic correlations are

described more realistically using combinations of MSA and HNC closure relations, which

respects the hard core of the colloids.

In fact, the PB assumptions in Eqs. (3.17) are not only unnecessary in deriving the HSY

potential. In addition, they are inconsistent with the static structure factor at small wavenumber

values. This follows from the global electroneutrality condition,

∑
μ

nμZμ , (3.18)

in combination with the local electroneutrality conditions,

Zν +∑
μ

∫
nμZμgνμ(r)d3r = 0. (3.19)

Here, ν and μ label the ionic species, and the sum includes the term μ = ν . For species ν , the

number concentration is nν = Nν/V , and Zν is the charge of an ion of species ν in units of e.

Combining Eqs. (3.18) and (3.19) leads to

ZC +nCZCĥCC(q → 0)+ ∑
μ �=C

nμZμ ĥCμ(q → 0) = 0, (3.20)

where the hat denotes a three-dimensional Fourier transform. Together with the PB assump-

tions in Eqs. (3.17), and the definition of the partial static structure factors,

Sμν(q) = δμν +
√

nμnν ĥμν(q), (3.21)
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one obtains S(q → 0) = SCC(q → 0) = 0 for the zero-q colloid-colloid static structure factor,

irrespective of the volume fraction and the potential parameters γ and k. This result based on

Eqs. (3.17) in conflict with the PB-RMSA (and the MC simulation) results for the HSY fluid

with k > 0, fulfilling S(q → 0) > 0.

To allow for analytic progress, let us nevertheless accept the PB assumptions in Eq. (3.17)

as a useful first approximation. Then, the total charge of uniformly smeared out added salt

ions inside the colloidal cores is zero. The monovalent counterions released from the colloid

surfaces, however, lead to a reduction of the total charge inside a colloidal sphere from Z
to Z (1− φ). For small values of φ , encountered in low-salinity charge-stabilized systems,

the charge-reduction effect predicted on the basis of Eq. (3.17) often appears to be negligi-

bly small. However, the systems of masked hard-core interactions must be described by the

rescaled version of the MSA which invokes a much larger rescaled volume fraction φ ′. To

correct for the charge reduction within the RMSA picture, the colloid charge number should

be enlarged from Z to

Z∗ =
Z

1−φ ′ . (3.22)

Incidentally, a relation analogous to Eq. (3.22), but with unrescaled volume fraction, relating

the bare macroion charge to the effective one-component one follows from the primitive model

when all direct correlations are treated in MSA, and when the high-temperature limit is taken

for which k � 1 and γ � 1 [52, 124]. Only in this limit of dominating thermal kinetic energy,

one is allowed to treat the microions as a uniform, non-penetrating background [123].

The corrected Z∗ substituted into Eq. (2.5a) leads to the enlarged background-corrected

coupling parameter

γ∗ =
γ ′

(1−φ ′)2
. (3.23)

If γ∗ is used in the RMSA with unchanged screening parameter k′, a system is modeled with

a pair potential larger than the original one, for all distances r. Thus, the RMSA screening pa-

rameter k′ must be corrected (enlarged) as well. Snook and Hayter argue that the background

correction γ ′ → γ∗ should be accompanied by a screening parameter correction k′ → k∗,

with k∗ > k′, performed such that the background-corrected HSY potential u∗(r) remains un-

changed at the ion-sphere diameter, i.e. they demand that βu∗(dis) = Γis, with Γis according

to Eq. (3.15). This yields the correction

k∗ = k′ −2φ ′1/3
log(1−φ ′) , (3.24)

in units of the rescaled diameter σ ′. The PB correction rules in Eqs. (3.23) and (3.24) are

easily implemented into the standard RMSA algorithm by applying them in each incremental

step of the hard-core inflation from the actual value σ to σ ′ = σ/s, with s determined by the

Gillan condition. The rescaled diameter σ ′ in PB-RMSA is larger than in RMSA, owing to the

stronger repulsive forces derived from the steeper potential u∗(r) (see Fig. 3.1).
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By comparing the PB-RMSA predictions to MC simulations of g(r) for a series of sys-

tems with g(σ+) = 0, Snook and Hayter have demonstrated the improved performance of the

PB-RMSA relative to that of the RMSA. The PB correction is independent of the hard-core

inflation. Therefore, it can be applied also to systems with g(σ+) > 0 and s = 1. In Section 5.1,

we demonstrate that the PB-RMSA for positive contact value systems, which we denote as the

PB-MSA, is also of improved accuracy, here in comparison to the unrescaled MSA.

The potential parameters in Eqs. (3.23) and (3.24), obtained from the simplifying uniform

microion background assumption in Eq. (3.17), describe a severely altered pair potential as

illustrated in Fig. 3.1. The Yukawa tail of the pair potential, u∗(r), used in the PB-RMSA,

decays more steeply than the tail of u(r), intersecting the latter at r = dis, i.e. at x = φ−1/3.

In contrast to the PB-RMSA, the RMSA size-rescaling leaves u(r) unchanged not only at the

ion-sphere diameter, but for all distances except for the inflated hard-core region which is

virtually never probed by the colloids.

There is some ambiguity in selecting dis as the distance where the pair potential value is kept

fixed. With equal right, one could select the potential value at the somewhat smaller simple-

cubic geometric distance d̃ = n−1/3 ≈ 0.8 dis. However, results for g(r) and S(q) which we

have obtained from our PB-RMSA code using d̃ in place of dis, are of similarly good accuracy

in general with no overall improvement. Therefore, following Snook and Hayter, in our PB-

RMSA code we keep the pair potential value fixed at r = dis.

The PB correction in Eq. (3.23) is based on the assumption that γ is independent of k.

Within the primitive model of charged colloids leading to the effective DLVO potential, on

first sight it seems more reasonable to enforce the condition u∗(dis) = u(dis) for k∗ determined

from Eq. (2.5a) in combination with Eq. (3.22). The resulting variant of the PB-RMSA, which

we denote as the implicit PB-RMSA, gives an implicit equation for k∗, the solution of which

can be expressed in terms of Lambert’s W-function. The k∗ and γ∗ values of the implicit

PB-RMSA are larger than the values given by Eqs. (3.23) and (3.24), therefore describing a

steeper pair potential. We have tested the performance of the implicit PB-RMSA, finding that

as a consequence of the steeper u∗(r), the RMSA-typical underestimation of the peak values in

S(q) and g(r) is rendered into a severe overestimation. For this reason, the implicit PB-RMSA

has to be dismissed.

In view of the inadequacy of the uniform background assumption and the discussed ambi-

guities in formulating the PB-correction of u(r), we conclude that the PB-RMSA is justified in

essence only by its success in improving the performance of the RMSA solution of the HSY

model, with the additional benefit of maintaining its analytic simplicity.

3.3.4 MPB-RMSA closure

The PB-RMSA scheme of Snook and Hayter discussed so far improves the accuracy of the

underlying RMSA. Yet, for identical physical values of γ and k used in the PB-RMSA, MC
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Fig. 3.1: (a) Sketch of HSY pair potentials in units of kBT (not to scale) used in the PB-MSA
and MPB-MSA schemes, respectively, for a system requiring no hard-core rescaling. (b) As
in (a), but for a system requiring hard-core rescaling. The solid black curve, labeled as MSA,
represents the physical pair potential u(x). Blue curves: βu∗(x); red curves: βu∗mod(x). In (b),
the indicated 1/s = σ ′/σ values are those of the various rescaled diameters σ ′ in units of the
physical diameter σ . Note here that σ < σ ′

RMSA < σ ′
PB−RMSA < σ ′

MPB−RMSA = σ∗.



CHAPTER 3. THEORY OF PAIR-STRUCTURE 35

simulations, and in the RY scheme discussed further down, the PB-RMSA still noticeably

underestimates the principal peak value of S(q) and g(r).
In order to further improve the accuracy of the PB-RMSA, we propose an additional con-

centration rescaling motivated by the specific form of the screening parameter k in Eq. (2.5b).

As noted before, the factor 1/(1−φ) in Eq. (2.5b) corrects for the free volume accessible to

the pointlike (on the scale of the colloids) microions. On the other hand, within the simpli-

fying uniform microion background picture underlying the PB-RMSA, the free volume has

been already corrected for in using Eq. (3.22). Thus, in order to avoid double correction of the

screening parameter in doing a PB-RMSA calculation, we propose to replace the screening

parameter k and the coupling parameter γ (depending on k via Eq. (2.5a)), in the set of given

physical input parameters (k,γ,φ) by the modified values

kmod = k
√

1−φ , (3.25)

and

γmod = γ exp(kmod − k)
(

1+ k/2

1+ kmod/2

)2

. (3.26)

Note that φ is the unrescaled, physical volume fraction. This straightforward modification of

the input values k and γ constitutes the MPB-RMSA, which we refer to as the MPB-MSA

scheme in the special case of s = 1. Note that our modification of the PB-RMSA simply

consists of replacing the HSY input parameters {γ,k,φ} by {γmod,kmod,φ}.

Fig. 3.1 illustrates that the modified pair potential, u∗mod(r), used in the MPB-RMSA cal-

culation always lies above the PB-RMSA potential u∗(r), so that u∗mod(dis) = Γmod
is > Γis.

Therefore, the rescaled diameter σ∗ in the MPB-RMSA scheme is somewhat larger than the

rescaled one in the PB-RMSA scheme.

As mentioned already in Section 3.2, it is important to note a subtle qualitative difference

in the PB-RMSA and MPB-RMSA rescaling rules. On first sight, the rescaling rules for the

coupling and screening parameter in Eqs. (3.23) and (3.24), used in PB-RMSA in every itera-

tion step of hard-core inflation, appear to be of the same nature as the additional rescaling in

Eqs. (3.25) and (3.26) that constitute the MPB-RMSA. In each of these four expressions, the

parameters of the HSY pair-potential are rescaled as a function of the volume fraction, φ , or

likewise the rescaled volume fraction, φ ′. However, the PB-RMSA rescaling in Eqs. (3.23)

and (3.24) are constructed in such a way that φ∗ is a function of γ̃ and k̃ only, whereas

φ∗ = φ∗(γ̃, k̃,φ) in MPB-RMSA. This means that S(ỹ) and g(x̃) in MPB-RMSA depend on

the three parameters (γ̃, k̃,φ), even if the contact value of the rdf vanishes. This is the price to

pay in using the MPB-RMSA which, on the other hand, is the most accurate of all MSA-based

schemes discussed in this thesis.

With decreasing φ , the MPB-RMSA solution for S(q) approaches the PB-RMSA and

RMSA solutions. In the limit γ → 0 (e.g., Z → 0) or k → ∞, of a vanishing Yukawa tail, the

(M)PB-RMSA and RMSA solutions all reduce to the analytic Percus-Yevick [121] solution
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for neutral hard spheres (HS) . The latter provides accurate pair-structure functions of hard-

sphere systems provided that φ � 0.35. At larger φ , the PY scheme underestimates g(x = 1+)
and slightly overestimates S(qm).

Once again, it should be noted that the simple replacements k → kmod,γ → γmod in the HSY

input parameters are not based on a rigorous argument. They are only heuristically motivated,

and draw their justification from the very good performance of the MPB-RMSA for an arbi-

trary repulsive HSY system. In Section 5.1, we show that the MPB-RMSA is in general in

excellent agreement with pair structure functions obtained from simulations, RY calculations,

and light scattering experiments. To facilitate the implementation of the (M)PB-RMSA by an

interested reader, a comprehensive description of its algorithm is given in Appendix B.

3.4 HNC and RY closure relations

The (M)(PB)-RMSA schemes are based on the analytic MSA solution for the HSY model.

There exist alternative integral equation schemes which have been applied to the HSY model,

but these allow in general for purely numerical solutions only. The most frequently used nu-

merical schemes for charge-stabilized colloids, are the hypernetted chain (HNC) [99] and

Rogers-Young [100] methods which, however, are computationally more expensive. There-

fore, the HNC and RY methods should be preferred over the MPB-RMSA only if a significant

gain in accuracy is achieved. As we will show in Section 5.1, this requirement rules out the

HNC method for most HSY-like systems. The HNC approximation underestimates system-

atically the principal peak values both of S(q) and g(r), while being only mildly superior to

the numerically much faster RMSA. Except for not showing the non-physical kink in g(r) at

r = σ ′ predicted by the MPB-RMSA as well as the PB-RMSA and RMSA solutions, we did

not find system parameters {σ ,γ,k,φ} for which the accuracy of the HNC matches that of the

MPB-RMSA.

The elaborate RY method was found, from comparison with simulation results of S(q) and

g(r), to perform excellently for the repulsive HSY model. We have confirmed this finding for

all considered systems which cover a broad range of system parameters.

In our calculations, we have used the standard RY scheme, which interpolates continuously

between the PY closure at short and the HNC closure at long distances, by a single-parameter

mixing function. The RY hybrid closure is motivated by the observation made for the repulsive

HSY potential, and for purely repulsive inverse power potentials, that the exact S(q) is brack-

eted at small q and, at qm, by the PY and HNC solutions for S(q). The RY mixing parameter

is determined by imposing local thermodynamic self-consistency, i.e., by enforcing equality

between the compressibility equation of state

lim
q→0

S(q) = kBT
(

∂n
∂ p

)
T
, (3.27)
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and the isothermal compressibility obtained from the density (concentration) derivative of the

virial pressure

pv = nkBT − 2π
3

n2
∫ ∞

0
dr r3 g(r)

∂u(r)
∂ r

. (3.28)

In taking the density derivative, the weak density dependence of the mixing parameter is disre-

garded (imposing local consistency only), and for colloids also the concentration dependence

of the effective pair potential. For monodisperse colloids, S(q → 0) relates to the osmotic

isothermal compressibility. How precisely a state-dependent effective pair potential modifies

the pressure, energy and compressibility equations of state is a subtle issue still under some

debate [126–133]. The present work is concerned with the pair structure in HSY fluids only,

not addressing its relation to the thermodynamic properties of systems with state-dependent

interactions.

Different from the RY scheme, the (M)PB-RMSA and HNC methods are thermodynami-

cally inconsistent. Owing to its local thermodynamic consistency, the RY scheme is expected

to give accurate values of S(q) in particular at small q. In Section 5.1.4, we use the RY scheme

to test the predictions of the MPB-RMSA for S(q → 0), and to quantify the improvement in

thermodynamic consistency in going from the RMSA to the MPB-RMSA scheme.

A general conclusion drawn from the comparison of the MPB-RMSA and RY scheme struc-

ture functions with MC data described in Section 5.1, is that the static structure factor is nearly

always predicted with excellent accuracy by both methods for the same system parameters,

while a remnant principal peak underestimation in g(r) is found for the MPB-RMSA. Recall,

however, that the computational load of the RY scheme is much higher. Moreover, the RY

scheme does not give analytic expressions for S(q) and g(r) which could be used, e.g., as

input into dynamic theories.

3.5 Decoupling approximation for aspherical and

polydisperse particles

In addition to the nearly perfectly spherical and monodisperse silica particles described in Sec-

tion 2.2, the present thesis is concerned also with more complex shaped, aspherical particles.

The aspherical particles considered are either monodisperse in size, such as the BSA proteins

discussed in Section 2.3, or size-polydisperse, such as the gibbsite platelets in Section 2.4. A

further complication arises from the distribution of charges on the particles, which, in general,

is unknown and may well be non-spherically symmetric.

Integral equation theories for the pair-distribution functions of interacting aspherical, poly-

disperse particles with non-uniform surfaces have been applied successfully in the past. We

note here the reference interaction site model (RISM), and the polymer reference interac-

tion site model (PRISM) [4, 134–136], in which the correlations between interacting sur-

face groups are treated in a way that is alike to a multi-component OZ equation description.
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PARTICLES

For a variety of non-spherical and polydisperse particles including rodlike viruses [137–140],

platelets and rigid dendrimers [141–143], the arising generalized OZ integral equations have

been solved using site-site closure relations such as the PY, HNC, and the Laria-Wu-Chandler

[144, 145] closures.

When the effects of polydispersity or orientational ordering need to be accounted for, RISM,

PRISM, and elaborate computer simulations are the methods of choice. None of these meth-

ods, however, is (semi-) analytically solvable with a small computational effort comparable to

that of the MPB-RMSA method for monodisperse HSY fluids discussed in Section 3.3. More-

over, the dynamics of aspherical particles is considerably complicated by their complex hydro-

dynamic interactions. The calculation of transport properties for aspherical, hydrodynamically

interacting objects requires therefore the performance of elaborate computer simulations. The

aim of the present thesis is to present a set of semi-analytical schemes for the microstructure

and (short-time) dynamics of colloidal suspensions. Hence, effects of asphericity and poly-

dispersity are accounted for using simplifying approximations only, allowing for an analytic

treatment. In the so-called decoupling approximation, it is assumed that the interactions in all

pairs of particles are identical, independent of size, shape or relative orientation. In this ap-

proximation, polydispersity and asphericity are taken into account in the scattering amplitude

distributions only [22].

Since we are dealing with charged particles, a short discussion on the neglected anisotropy

in the electric double layer around a non-spherically symmetric particle is in order here. The

mean electrostatic potential, Φ(r,μ,ϕ) = ∑∞
l=0 ∑l

m=−l Φm
l (r)Y m

l (μ,ϕ), of a particle with as-

pherical charge distribution immersed in an electrolyte solution, includes in general higher-

order multipoles with (l,m) �= (0,0). Here, r is the distance of the particle center to the field

point, μ = cosϑ is the cosine of the polar angle, ϕ is the azimuthal angle, and the Y m
l ’s are

spherical harmonics.

For large r, all multipoles decay asymptotically equally fast according to [146–151]

Φm
l (r) ∼ f m

l
e−κr

r
, (3.29)

where κ denotes the inverse electrostatic screening length, and the f m
l are determined by the

charge distribution. In principle, this implies that the pair-interaction energy of two aspheri-

cal charge-distributions depends on their relative orientation even for r 
 κ−1. However, the

multipolar strengths, f m
l , for a moderately aspherical particle can be expected to be small for

larger l or m. Moreover, since after orientational averaging,
〈
Y m

l (μ,ϕ)
〉

μ,ϕ = 0 for all l > 0,

the neglect of anisotropic pair interaction contributions can be expected to be reasonable, for

systems where the particles can rotate essentially freely.

Assuming the validity of the Rayleigh-Gans-Debeye approximation and single scattering,

the static scattered intensity, I(q), for polarized scattering from a scattering volume containing
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Ns ≥ 1 particle species of equal, constant dielectric properties reads

I(q)
I0

=
〈E(q)E∗(q)〉

|E0|2
∝

Ns

∑
α,β=1

vαvβ

Nα

∑
j=1

Nβ

∑
k=1

〈
f̃α(q,Ω j) f̃ ∗β (q,Ωk)exp

{
iq ·

(
rα

j − r
β
k

)}〉
.

(3.30)

Here, E(q) is the modulus of the scattered electric field, and I0 = |E0|2 is the intensity of the

incoming monochromatic (laser or X-ray) beam. The star denotes complex conjugation, the

scattering wave vector is denoted as q, vγ is the volume, and Nγ is the number of particles

of species γ . Furthermore, f̃γ(q,Ωl) and r
γ
l are the form amplitude and the center-of-mass

position, respectively, of particle l of species γ , oriented in direction of the solid angle Ωl .

The form amplitudes fulfill f̃γ(q → 0,Ω) = 1. In evaluating Eq. (3.30), we split the outermost

sum into a self-part, α = β , denoted by ∑1, and a distinct part α �= β , denoted by ∑2. Then,

I(q)/I0 = ∑1 +∑2, and, for vanishing or neglected correlations between particle orientations

and center-of-mass positions, one obtains

∑1
∝ N

Ns

∑
α=1

xαPα(q)+
Ns

∑
α=1

v2
αNα(Nα −1)

〈
f̃α(q,Ω)

〉2

Ω 〈exp{iq · (rα
1 − rα

2 )}〉 . (3.31)

Here, N = ∑γ Nγ is the total number of particles, and xγ = Nγ/N is the molar fraction of

species γ . The bracket < .. . >Ω denotes the orientational average, rα
1 and rα

2 are the position

vectors for a representative pair of particles of species α , and

Pγ(q) =
〈∣∣ fγ(q,Ω)

∣∣2〉
Ω
, (3.32)

with scattering amplitude fγ(q,Ω) = vγ f̃γ(q,Ω). On assuming Nγ 
 1 for all γ , and the defi-

nition

Sαβ (q) = δαβ +
√

NαNβ

〈
exp

{
iq ·

(
rα

1 − r
β
2

)}〉
(3.33)

of partial static structure factors in an isotropic multi-component suspension, with δαβ denot-

ing the Kronecker delta, Eq. (3.31) can be written as

∑1

N
∝

Ns

∑
α=1

xαPα(q)+
Ns

∑
α=1

xαv2
α
〈

f̃α(q,Ω)
〉2

Ω [Sαα(q)−1] . (3.34)

Note that our standard definition of Sαβ (q), with Sαβ (q → ∞) = δαβ , agrees with that of

Ashcroft and Langreth [152].

In addition to the translational-orientational decoupling approximation, we assume identical

pair-correlations for all particle species, so that Sαα(q) in Eq. (3.34) can be replaced by the

structure factor

S(q) = 1+N 〈exp{iq · (r1 − r2)}〉 , (3.35)
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of an ideally monodisperse suspension. Using that [Sαα(q)−1] = xα [S(q)−1], this leads to

∑1

N
∝

Ns

∑
α=1

xαPα(q)+
Ns

∑
α=1

x2
αv2

α
〈

f̃α(q,Ω)
〉2

Ω [S(q)−1] . (3.36)

We proceed by considering in decoupling approximation the distinct (α �= β ) part of

Eq. (3.30). On assuming again vanishing correlations between orientations and center-of-mass

positions, we obtain

∑2
∝

Ns

∑
α,β=1
α �=β

vαvβ

√
NαNβ

〈
f̃α(q,Ω)

〉
Ω〈 f̃f ∗β (q,Ω) f〉

Ω
Sαβ (q). (3.37)

On assuming again the particles of all species to be equal in terms of their interactions, we can

use Sαβ (q) = (xαxβ )1/2[S(q)−1] for α �= β . This results in

∑2

N
∝

[
Ns

∑
α=1

xαvα
〈

f̃α(q,Ω)
〉

Ω

]2

× [S(q)−1] for Ns > 1. (3.38)

The sum of Eqs. (3.36) and (3.38) is the static scattered intensity expression used in this

thesis for BSA proteins and gibbsite platelets, based on assuming translational-orientational

decoupling and interaction monodispersity:

I(q) ∝ I0N Pm(q) Sm(q), (3.39a)

Sm(q) =
[
1−X(q)

]
+X(q)S(q). (3.39b)

Here, Pm(q) and Sm(q) are the measurable form factor and the measurable structure factor,

respectively, and

X(q) = A(q)+B(q), (3.40)
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with

A(q) =

Ns

∑
α=1

x2
αv2

α
〈

f̃α(q,Ω)
〉2

Ω

Pm(q)
Ns

∑
α=1

xαv2
α

, (3.41a)

B(q) =

sgn(Ns −1)×
[

Ns

∑
α=1

xαvα
〈

f̃α(q,Ω)
〉

Ω

]2

Pm(q)
Ns

∑
α=1

xαv2
α

, (3.41b)

(3.41c)

and

Pm(q) =

Ns

∑
α=1

xαPα(q)

Ns

∑
α=1

xαPα(q → 0)

=

Ns

∑
α=1

xαv2
α

〈∣∣ f̃α(q,Ω)
∣∣2〉

Ω

Ns

∑
α=1

xαv2
α

. (3.42)

Note that 0 ≤ X(q) ≤ 1 and Pm(q → 0) = 1. In Eq. (3.41b), sgn denotes the signum function.

The function X(q), referred to as the decoupling amplitude, assumes its maximum at low

values of q. It decreases with increasing q, and stays close to zero at large q-values.

In the special case of a system containing only a single scattering species (Ns = 1), such as

the solutions of monodisperse aspherical BSA proteins studied in this thesis, the sum over dis-

tinct species in Eq. (3.37), and hence the function B(q) in Eq. (3.41b) vanish. The decoupling

amplitude simplifies then to

X(q) =

〈
f̃ (q,Ω)

〉2

Ω
Pm(q)

=

〈
f̃ (q,Ω)

〉2

Ω〈∣∣ f̃ (q,Ω)
∣∣2〉

Ω

, (Ns = 1), (3.43)

where now X(q → 0) = 1, independent of the particle size or shape. Hence, in decoupling

approximation applied to monodisperse particles, orientational disorder has no effect on the

scattered intensity in forward direction. Any deviation of X(q → 0) from one must be due to

size-polydispersity.

Curves of X(q) for isotropic systems of monodisperse and polydisperse aspherical particles

are displayed in Figs. 5.14 and 5.16, respectively. In decoupling approximation, the general

effect of polydispersity and orientational disorder is a damping of the oscillations in Pm(q)
and Sm(q), as compared to those in the form and structure factors, P(q) and S(q), of ideally

monodisperse spheres. For all the aspherical and polydisperse particle suspensions treated

in this thesis, the S(q) entering into Eq. (3.39b) is calculated using the MPB-RMSA, for a
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representative system of monodisperse effective spheres interacting via the HSY pair potential

given in Eq. (2.6).



CHAPTER

FOUR

Theory of short- and long-time dynamics

4.1 Short-time dynamics: General expressions

To characterize the colloidal short-time regime, one considers the momentum relaxation time,

τB = m/(3πη0σ), the time scale τH = σ2ρS/(4η0) of hydrodynamic vorticity diffusion across

a diameter σ , and the interaction time τI = σ2/(4dt,0) [21, 22], where m is the mass of a

colloidal sphere, dt,0 = kBT/(3πη0σ) is the translational free diffusion coefficient for stick

hydrodynamic surface boundaries, and ρS and η0 are the mass density and shear viscosity of

the suspending Newtonian solvent, respectively. For a coarse-grained time-resolution where

t 
 τB ∼ τH , the motion of a colloidal particle is erratic and overdamped. An essential part

of the present thesis deals with the colloidal short-time regime τB � t � τI , during which a

particle has moved a tiny fraction of its size only. This allows for calculating (equilibrium)

short-time properties using pure equilibrium averages.

Diffusion properties can be measured by a variety of scattering techniques, which com-

monly determine the intermediate scattering function [4],

S(q, t) = lim
∞

〈
1

N

N

∑
l, j=1

exp
{

iq · [rl(0)− r j(t)
]}〉

, (4.1)

as a function of scattering wavenumber q and correlation time t. Here, N is the number of

colloid particles in the scattering volume, q is the scattering wave vector, and rn(t) is the

position vector pointing to the center of the n-th globular colloidal particle at time t. On the

colloidal short-time scale, S(q, t) decays exponentially according to [153]

S(q, t)
S(q)

= exp
[−q2D(q)t

]
, (4.2)

where D(q) is the wavenumber-dependent short-time diffusion function. A statistical-

43
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mechanical expression for D(q) follows from the generalized Smoluchowski equation in

form of the ratio [21, 22, 153]

D(q) = dt,0
H(q)
S(q)

, (4.3)

of the hydrodynamic function

H(q) = lim
∞

〈
1

μ0N

N

∑
l, j=1

q̂ ·μ tt
l j(r

N) · q̂exp
{

iq · [rl − r j]
}〉

, (4.4)

and the static structure factor S(q) = S(q, t = 0). Here, μ0 = dt,0/kBT = 1/(3πη0σ) is the

translational single-sphere mobility for stick hydrodynamic boundary conditions, q̂ is the unit

vector in the direction of the scattering wave vector q, and μ tt
l j(r

N) is a translational hydrody-

namic mobility tensor linearly relating the hydrodynamic force on a sphere j to the transla-

tional velocity of a sphere l. This mobility depends in general on the instantaneous positions,

rN , of all N particles through the specified hydrodynamic boundary conditions. In this work,

stick hydrodynamic boundary conditions are assumed throughout.

The positive-valued hydrodynamic function H(q) is a measure of the influence of HIs on

short-time diffusion. In the (hypothetical) case of hydrodynamically non-interacting particles,

H(q) ≡ 1, independent of q. The hydrodynamic function can be interpreted as the reduced

short-time generalized mean sedimentation velocity measured in a homogeneous suspension

subject to a weak force field collinear with q and oscillating spatially as cos(q · r). Hence,

lim
q→0

H(q) =
Used

U0
≡ K (4.5)

is equal to the concentration-dependent (short-time) sedimentation velocity, Used, of a

slowly settling suspension of spheres in units of the sedimentation velocity, U0 = σ2g(ρ −
ρS)/(18η0), of a single sphere at infinite dilution. Here, g is the gravitational acceleration, and

ρ is the volume-averaged mass density of a colloidal sphere.

The function H(q) can be expressed as the sum,

H(q) =
ds

dt,0
+Hd(q), (4.6)

of a q-dependent distinct part, Hd(q), accounting for all contributions with l �= j in Eq. (4.4)

and vanishing for q → ∞, and a self-part (l = j in Eq. (4.4)) equal to the reduced short-

time translational self-diffusion coefficient ds/dt,0. As illustrated in Fig. 4.1, the diffu-

sion coefficient ds is equal to the short-time slope of the mean-squared displacement,

W (t) = 1/6 < [r(t)− r(0)]2 >, of a colloidal particle [21]. Here, the factor 1/6 accounts for

the three spatial dimensions.

Two additional diffusion coefficients related to D(q) are the short-time collective diffusion
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Fig. 4.1: Sketch of the mean-squared displacement, W (t), of a spherical Brownian particle in
units of σ2, as a function of correlation time t. The particle motion is diffusive, with W (t) ∝ t,
both in the short-time regime τB ∼ τH � t � τI , and in the long-time regime t 
 τI . During a
time t ∼ τI , diffusive motion has led to an average displacement ∼ σ , of the particle from its
initial position. Our definition of W (t) in three spatial dimensions incorporates a factor of 1/6,
so that ds and dL

s are equal to the slopes of W (t) at short and long times, respectively. Time
regimes not considered in the present work are marked by green arrows: For t � τB ∼ τH, the
particle moves essentially ballistically, with W (t) ∝ t2. At transient times t ∼ τI , the particle
motion is subdiffusive, with W (t) increasing weaker than linear in time.
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coefficient dc = dt,0K/S(q → 0), and the short-time cage diffusion coefficient dcge = D(qm).
These two coefficients characterize the decay rates, respectively, of thermally induced con-

centration fluctuations of macroscopic wavelengths, and of a wavelength related to the size,

2π/qm, of the dynamic nearest-neighbor cage formed around a particle.

So far only diffusion properties have been discussed. A rheological short-time property of

interest is the high-frequency limiting viscosity, η∞, which linearly relates the average devia-

toric suspension shear stress to the applied rate of strain in a low-amplitude, oscillatory shear

experiment with frequency ω 
 1/τI . The statistical-mechanical expression for η∞ is [154]

η∞ = η0 + lim
∞

1

10V

3

∑
α,β=1

〈
N

∑
l, j=1

μdd
l j αββα(rN)

〉
, (4.7)

invoking the Cartesian components, μdd
l j αββα

, of the 3 × 3 × 3 × 3 dipole-dipole mobility

tensor μdd
l j , that relate the symmetric hydrodynamic force dipole moment tensor of sphere l to

the rate of strain tensor related to sphere j. For stick hydrodynamic boundary conditions, η∞ =
η0[1 + 2.5φ +O(φ 2)] [155–157], where η0 is the solvent viscosity. The O(φ 2) contribution

is due to particle interactions. Note here that < ... > describes an equilibrium average with

respect to the unsheared system. Direct interactions affect η∞ only through their influence on

the equilibrium particle distribution.

The great difficulty in evaluating Eqs. (4.4) and (4.7) to obtain H(q) and η∞, respectively,

lies in the calculation of the hydrodynamic tensors μ tt
l j(r

N) and μdd
l j (rN), and in the associated

many-particle average. Except for numerically expensive simulations [23–26], it is practically

impossible to gain precise results for concentrated systems. In searching for methods which

allow to calculate H(q) and η∞ to decent accuracy with moderate numerical effort, one has to

resort to approximate methods. Two of these methods, namely the so-called pairwise additive

(PA) approximation, and the δγ scheme by Beenakker and Mazur supplemented by so-called

self-part corrections, are discussed in the next sections. The methods are presented in a self-

contained way to facilitate their implementation by an interested reader. Both methods have

in common that they require S(q), or equivalently g(r), as the only input. The pros and cons

of both methods are assessed in Chapter 6 in comparison to elaborate computer simulations.
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4.2 Approximation of pairwise additive hydrodynamic

interactions

In the PA approximation, the N-particle translational mobility tensors, μ tt
l j(r

N), are approxi-

mated by the sum of two-body mobilities according to

1

μ0
μ tt

l j(r
N)
∣∣∣∣
PA

= δl j

[
1+

N

∑
n�=l

a11(rl − rn)

]
+(1−δl j)a12(rl − r j). (4.8)

The 3×3 mobility tensor 1+a11 relates, for an isolated pair of particles in a quiescent fluid,

the force on particle 1 to its own velocity. Correspondingly, a12 relates the force on particle 2

to the velocity of particle 1. The axial symmetry of the two-sphere problem allows to split the

reduced mobilities into longitudinal and transverse components,

ai j(r)+δi j1 = xa
i j(r)r̂r̂+ ya

i j(r) [1− r̂r̂] , (4.9)

where we use the notation from Ref. [158], with r̂ = (r1−r2)/|r1−r2|. The mobility compo-

nents xa
i j(r) and ya

i j(r) can be expanded analytically in powers of σ/r = 1/x using recursion

formulas [158–160].

In a homogeneous fluid system, the ensemble average of a function f depending on two

particle coordinates can be expressed in the thermodynamic limit as

〈
f (rl − r j)

〉
= lim

V→∞

1

V

∫
V

dr g(r) f (r). (4.10)

The combination of Eqs. (4.4), (4.8), and (4.10) leads to the following PA results for ds,

ds

dt,0

∣∣∣∣
PA

= 1+8φ
∫ ∞

1
dx x2g(x) [xa

11(x)+2ya
11(x)−3] , (4.11)

and for the distinct part of the hydrodynamic function,

Hd(y)
∣∣∣
PA

= −15φ
j1(y)

y
(4.12)

+ 18φ
∫ ∞

1
dx xh(x)

[
j0(xy)− j1(xy)

xy
+

j2(xy)
6x2

]

+ 24φ
∫ ∞

1
dx x2g(x)ỹa

12(x) j0(xy)

+ 24φ
∫ ∞

1
dx x2g(x) [x̃a

12(x)− ỹa
12(x)]×

[
j1(xy)

xy
− j2(xy)

]
.
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Here, y = qσ is the diameter-scaled wavenumber, jn is the spherical Bessel function of first

kind and order n, and h is the total correlation function defined by h(x) = g(x)−1.

We have introduced here the short-range mobility parts

x̃a
12(x) = xa

12(x)−3/4x−1 +1/8x−3, (4.13)

ỹa
12(x) = ya

12(x)−3/8x−1 −1/16x−3, (4.14)

which include all terms in the series expansion except for the far-field terms up to the dipolar

(Rotne-Prager) level, which are subtracted off.

For pair-distances x > 3, we use analytic O(x−20)-expansions for the two-body mobility

functions xa
i j and ya

i j. The expansion coefficients are given in Tab. C.1 of Appendix C, and

in Ref. [159]. Since the expansions in 1/x converge slowly at small separations, we employ

accurate numerical tables for x ≤ 3, which in particular account for lubrication at near-contact

distances. These tables have been calculated by Jeffrey and Onishi [158] by combining the

near-contact Eqs. (C.2) in Appendix C, with many orders (up to n = 220) of the 1/x expansions

(C.1), resulting in a smooth transition of the near-field expressions to the far-field expressions.

Fig. 4.2 illustrates the behavior of the pair mobilities for four selected, highly symmetric

two-sphere mobility problems, with the associated mobilities plotted as functions of the di-

mensionless separation, χ = x−1, of the sphere surfaces. In each of the four cases considered

in Fig. 4.2, the forces F1 and F2 acting on spheres 1 and 2, respectively are equal in their mag-

nitude F = |F1|= |F2|, acting either orthogonal, parallel or anti-parallel to r̂. Due to symmetry

the velocities V1 and V2 of spheres 1 and 2 are equal in magnitude, with F1 ‖ V1 and F2 ‖ V2.

Panels (a) and (b) of Fig. 4.2 correspond to parallel and in-line sedimentation, respectively,

without Brownian motion. From Eqs. (4.8) and (4.9), it follows that the sedimentation velocity

Vsed ≡ |V1| = |V2| for parallel and in-line sedimentation is given by μ0Vsed/F = [ya
11(x) +

ya
12(x)] and μ0Vsed/F = [xa

11(x)+ xa
12(x)], respectively.

Panels (c) and (d) of Fig. 4.2 illustrate snapshots of sliding and squeezing motion of

two equal spheres. According to Eqs. (4.8) and (4.9), the instantaneous relative velocity,

ΔV ≡ |V1−V2|, in panel (c) and (d) is given by μ0ΔV/F = 2[ya
11(x)−ya

12(x)] and μ0ΔV/F =
2[xa

11(x)− xa
12(x)], respectively.

In Fig. 4.2, blue dotted curves and blue solid lines represent the far-field mobility expan-

sion results in Eqs. (C.1) of Appendix C, truncated at n = 6 and n = 20, respectively. Note

from Tab. C.1 in Appendix C that n = 6 is the lowest order of the expansions in Eqs. (C.1)

that is non-trivial in all coefficients, i.e. containing non-zero values of xa
i j

(n) and ya
i j

(n) for all

i, j ∈ {1,2}. Black solid lines in Fig. 4.2 represent the near-contact mobility Eqs. (C.2) in

Appendix C. Red solid lines represent the mobilities used for x ≤ 3 in our PA scheme imple-

mentation, calculated by Jeffrey and Onishi [158] by combining expansions up to O(x−220)
with the near-contact Eqs. (C.2). Note from Fig. 4.2 the practically perfect agreement of the

numerical tabulated values (red lines) with the O(x−20) and O(x−6) expansions (blue lines and
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Fig. 4.2: Hydrodynamic two-body mobility problems of four specifically selected highly sym-
metric geometries. Top left: parallel sedimentation, top right: in-line sedimentation, bottom
left: sliding motion, bottom right: in-line squeezing motion. The black arrows represent the
forces acting on the particles, and are in line with the instantaneous particle velocities. Blue
dotted curves and blue solid curves represent the 1/x mobility expansions in Eqs. (C.1) of
Appendix C, truncated at powers of n = 6 and n = 20, respectively. Black solid lines represent
the near-contact mobility Eqs. (C.2) in Appendix C. Red solid lines represent the mobilities
calculated by Jeffrey and Onishi [158], which combine many orders (up to n = 220) of the
1/x expansions in Eqs. (C.1) with the near-contact Eqs. (C.2). The insets with double linear
scales magnify the details of the transition region between near-field and far-field HIs. In our
PA scheme implementation, we use the tables by Jeffrey and Onishi (red lines) for x ≤ 3, and
the 1/x expansions truncated at n = 20 (blue lines) for x > 3.
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Fig. 4.3: Two-body shear-mobility function. Blue line: leading-order far-field expansion
J(x) = 15/128x−6. Black line: near-contact shear-mobility function given in Eq. (C.3) of Ap-
pendix C. Red line: values from numerical tables by Jeffrey [161–163]. In our PA scheme
implementation, we use the tables by Jeffrey for x ≤ 3, and the leading-order far-field expres-
sion for x > 3.

blue dotted curves) at x = 3. Hence, our usage of the O(x−20)-expansion for x > 3 in the PA

scheme is well justified.

Analogous to the translational diffusivity tensors, the dipole-dipole mobility tensors are

approximated in the PA scheme by their self- and distinct two-body contributions μdd(2)
11 (r),

and μdd(2)
12 (r), respectively. In hydrodynamically semi-dilute suspensions, the high-frequency

viscosity of colloidal spheres at low shear-rate is obtained from [23, 157, 164]

η∞
η0

= 1+
5

2
φ(1+φ)+60φ 2

∫ ∞

1
dx x2g(x)J(x), (4.15)

with

J(x) =
6

25πσ3

[
μdd(2)

11,αββα(x)+ μdd(2)
12,αββα(x)

]
. (4.16)

Here, the rapidly decaying two-body shear mobility function, J(x), accounts for the two-body

HIs. For stick hydrodynamic boundary conditions, J(x) = 15/128 x−6 +O(x−8).
Similar to our treatment of the mobilities xa

i j and ya
i j, we use the leading-order far-field

expression, J(x)= 15/128 x−6, for the shear mobility function at x > 3, and accurate numerical

tables to account for near-field HIs at x ≤ 3 [161–163]. Fig. 4.3 illustrates J(x) in its near-

contact form, given in Eq. (C.3) of Appendix C (black line), in its leading-order far-field form
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(blue line), and for all distances using the accurate numerical tables as employed in our PA

code, matching both the near-field and far-field expressions (red line).

Using the zeroth-order concentration-expansion in Eq. (3.6), for the rdf of hard spheres

given by gHS
0 (x) = Θ(x−1)+O(φ), with Θ denoting the unit step function, we have checked

that our PA code precisely reproduces the truncated virial expressions

dHS
s

dt,0
= 1−1.8315φ +O(φ 2), (4.17a)

KHS = 1−6.546φ +O(φ 2), (4.17b)

ηHS
∞

η0
= 1+

5

2
φ +5.0023φ 2 +O(φ 3), (4.17c)

which were obtained in Refs. [165–167] using a mobility series expansion including terms up

to O(x−1000), plus a near-field HI correction.

All PA results for H(q) and η∞ discussed in the present work are based on Eqs. (4.11),

(4.12) and (4.15), with g(r) computed in MPB-RMSA. Dynamical properties predicted by the

PA scheme are exact to linear order in φ . Thus, the PA scheme is especially well-suited for

hydrodynamically, but not necessarily structurally, dilute systems. Charge-stabilized suspen-

sions at low salinity and concentration, where near-contact configurations are very unlikely,

are prime examples of hydrodynamically dilute, but structurally ordered systems, showing

pronounced fluid-like oscillations in S(q) and g(r).
Moreover, the PA scheme can be used to check the accuracy of other approximate schemes,

such as the (self-part corrected) δγ scheme, in the low concentration regime. At larger volume

fractions, however, and for diffusion properties like dc and K, where non-pairwise additive

HIs are particularly influential, the PA approximation is bound to fail. Note that, while in

the present work particles with stick hydrodynamic boundary conditions are considered, the

PA scheme can be easily generalized to permeable particles, and to particles with slip-stick

hydrodynamic boundary conditions, simply by using the corresponding two-body mobility

functions given, e.g., in [159].

4.3 δγ scheme

Different from the PA scheme, which cannot be applied to concentrated systems, the renor-

malized concentration fluctuation (termed δγ) expansion method of Beenakker and Mazur

[28, 29] is applicable to fluid disordered systems also at large values of φ , where three-body

and higher-order HI contributions are important. The δγ method is an effective medium ap-

proach based on a partial resummation of many-body HI contributions. While applicable at all

φ , its results for H(q) and η∞ reveal moderate inaccuracies at all concentrations, including the

very dilute regime where the PA approach becomes exact. These inaccuracies can be partially
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traced back to the approximate expressions for μ tt
l j(r

N) and μdd
l j (rN) used in the derivation

of the δγ-scheme where, in particular, lubrication corrections are disregarded. Higher-order

terms in the δγ expansion require as input static correlation functions of increasing order (pair,

triplet, and so on) swiftly increasing the difficulties in their evaluation.

In the present study, we use the easy-to-implement standard version of the δγ method for

which (like for the PA scheme) only S(q) is required as input. The latter is calculated using

the MPB-RMSA scheme. This amounts to the zeroth-order δγ approximation regarding H(q),
and the second-order δγ approximation regarding η∞.

The zeroth-order δγ scheme for H(q) has been applied in the past both to neutral and

charged colloidal particles, but the second-order δγ scheme for η∞ was used so far for neutral

hard spheres only. To our knowledge, the present work provides the first test of the δγ scheme

for charged, Yukawa-type particles.

The zeroth-order δγ-scheme expression for H(q) consists of a microstructure-independent

part,

ds(φ)
dt,0

∣∣∣∣
δγ

=
2

π

∫ ∞

0
dy
[

sin(y)
y

]2

· [1+φSγ0
(y)

]−1
, (4.18)

and a structure factor dependent distinct hydrodynamic function part,

Hd(y)
∣∣∣
δγ

=
3

2π

∞∫
0

dy′
[

sin(y′)
y′

]2

· [1+φSγ0
(y′)

]−1 ×
1∫

−1

dμ(1−μ2)
[
S(|q−q′|)−1

]
,

(4.19)

where μ is the cosine of the angle between q and q′ [168]. The function Sγ0
(y), which should

not be confused with the static structure factor, is given in Refs. [28, 168] as an infinite sum

of wavenumber-dependent contributions with inter-related scalar coefficients γ(n)
0 , n = 0 . . .∞.

Numerical results for γ(n)
0 obtained from a computation truncated at n = 5 have been given in

Tab. 1 of the original paper by Beenakker and Mazur [28]. Taking advantage of the nowadays

available computing power, we have been able to extend these earlier computations to more

terms with truncations at n = 10 and 15. However, our more accurate results for γ(n)
0 differ

from the original results by Beenakker and Mazur by no more than 3%, and the differences in

Hd(y)|δγ , ds(φ)|δγ , and η∞|δγ are in fact negligible for all practical purposes. In Appendix D,

the definition of the function Sγ0
is given, along with our table of the coefficients γ(n)

0 , truncated

at n = 10.
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The high-frequency limiting viscosity in the second-order δγ-scheme is given by [29]

η∞
η0

∣∣∣∣
δγ

=
1

λ0 +λ2
, (4.20)

λ0 =
[

1+
5

2
φ γ̃(2)

0

]−1

= 1− 5

2
φ +

215

168
φ 2 +O(φ 3), (4.21)

λ2 =
30φ
4π

[
λ0γ̃(2)

0

]2
∞∫

0

dy
j2
1(y/2) [S(y/σ)−1]

1+φSγ0
(y/2)

, (4.22)

where γ̃(2)
0 = γ(2)

0 /n = 1+167/84φ +O(φ 2).
Evaluation of the low-concentration expansion in Eq. (3.7) gives SHS

1 (y) = 1−24φ j1(y)/y+
O(φ 2) for the static structure factor of neutral hard spheres. Insertion of SHS

1 (y) into

Eqs. (4.18), (4.19), and (4.20) gives, after a straightforward calculation, the first-order virial

expansion results

dHS
s

dt,0

∣∣∣∣∣
δγ

= 1− 131

56
φ +O(φ 2) ≈ 1−2.339φ +O(φ 2), (4.23a)

KHS
∣∣∣
δγ

= 1− 411

56
φ +O(φ 2) ≈ 1−7.339φ +O(φ 2), (4.23b)

ηHS
∞

η0

∣∣∣∣∣
δγ

= 1+
5

2
φ +

1255

168
φ 2 +O(φ 3) ≈ 1+

5

2
φ +7.47φ 2 +O(φ 3), (4.23c)

as predicted by the δγ scheme. The magnitudes of the linear virial coefficients of dHS
s /dt,0

and KHS, and of the quadratic coefficient of ηHS
∞ /η0, overestimate the precise values given

in Eqs. (4.17a), (4.17b), and (4.17c) by 28%, 12%, and 49% respectively. The effect of HIs

on these quantities on the pair-level is thus overestimated by the δγ scheme. Clearly, the

PA scheme is the method of choice when dilute systems are considered. We note further that

Hd
δγ(q→ 0) =−5φ +O(φ 2) for hard spheres, a result quite close to the exact result of Hd(q→

0) = −4.714φ +O(φ 2). This indicates that the zeroth-order δγ scheme is in general a better

approximation for the distinct part, Hd(q), of the hydrodynamic function than for its self-part

ds.

Interestingly enough, the first-order in φ result for Hd(q → 0) for hard-spheres predicted

by the δγ-scheme, is identical to the one obtained from the Rotne-Prager (RP) approximation

of the HIs, where only the leading order monopole and dipole terms in the 1/x expansion of

μ tt
l j are retained. For hard spheres, the first-order virial expansion result, H(qm) = 1−1.35φ ,

for the principal peak height of H(q) remains valid to high accuracy up to the volume fraction

φ f = 0.494 at freezing [23], whereas in the RP approximation, peak values of H(q) larger
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than one are predicted. The main reason for this failure of the RP approximation lies in its

prediction of ds = dt,0 at all φ , whereas the actual ds of hard spheres is significantly decreasing

with increasing φ , down to the value dHS
s (φ f ) ≈ 0.2×dt,0 at freezing [23, 169].

In low-salinity charge-stabilized systems at low concentrations, where qmσ ≈ 2πσn1/3 � 1,

the δγ-scheme gives predictions for Hd(q) close to those by the RP approximation. Indeed,

these are precisely the systems where the RP approximation can be expected to perform well,

explaining in part the overall success of the δγ scheme in making reliable predictions for the

distinct part of H(q) for charge-stabilized systems.

4.4 Self-part corrected δγ-scheme

The key observation regarding the zeroth-order δγ expression for Hd(q) is that it gives over-

all good results both for neutral and charged Yukawa-type spheres. In contrast, the zeroth-

order δγ expansion for ds in Eq. (4.18) depends on φ only, independent of the employed

pair-potential. Comparisons with accelerated Stokesian Dynamics (ASD) simulation results

[23], and experimental data for ds for charged colloids [16, 170], show that Eq. (4.18) is a

decent approximation of ds for neutral hard spheres only.

The self-diffusion coefficient of charged spheres is in fact larger than the one for neutral

spheres at the same φ [171], since for the latter near contact configurations are more likely.

Using leading-order far-field mobilities applicable to strongly charged colloids characterized

by qm ∝ φ 1/3, one finds the limiting concentration scaling predictions [16, 22, 171–174],

K ≈ 1−as φ 1/3 (4.24a)

ds/dt,0 ≈ 1−at φ 4/3 (4.24b)

H(qm) ≈ 1+ pm φ 1/3 , (4.24c)

differing qualitatively from the regular hard-sphere virial results in Eqs. (4.17). The coeffi-

cients as � 1.4− 1.8 and at � 2.5− 2.9 in the fractional power laws vary to a certain extent

with the particle sizes and charges. The coefficient pm > 0 depends also on Z and κa [23, 120].

All coefficients are typically larger for more structured suspensions, signalled by a higher

value of S(qm). As we will show, the concentration interval φ � 0.1 where Eq. (4.24b) for ds

applies, is broader than the corresponding intervals for the collective properties K and H(qm).
For suspensions of strongly charged spheres where φ � 0.15, it has been shown [16] that

the PA result for ds in Eq. (4.11) is in better agreement with ASD simulation results and

experimental data than the corresponding δγ-scheme result based on Eq. (4.18). For larger

concentrations φ � 0.15, the PA scheme overestimates the slowing hydrodynamic influence

on ds, since it does not account for the shielding of the HIs in pairs of particles by other inter-

vening particles. Hydrodynamic shielding is a many-body effect which lowers the strength but



CHAPTER 4. THEORY OF SHORT- AND LONG-TIME DYNAMICS 55

not the range of the HIs. It should be distinguished from the screening of HIs by spatially fixed

obstacles or boundaries which absorb momentum from the fluid, thereby causing a faster than

1/r decay of the flow perturbation created by a point-like force. The neglect of hydrodynamic

shielding (i.e., of three-body and higher-order HIs) by the PA scheme is more consequential

for the sedimentation coefficient K than for ds. To K, the PA scheme is applicable to decent ac-

curacy only up to φ ≈ 0.1 [16], whereas for larger φ , K becomes increasingly underestimated.

The coefficient ds, on the other hand, is less sensitive to the neglect of higher-order HI contri-

butions, since the leading-order far-field contributions to xa
11(x) and ya

11(x) are of O(x−4), i.e.,

of shorter range than the leading-order O(x−1) contribution to K.

As a simple improvement over the zeroth-order δγ scheme for the H(q) of charged particles,

which preserves its analytic simplicity, we therefore use the self-part corrected expression

H(y)|δγcorr
=

ds

dt,0

∣∣∣∣
PA

+ Hd(y)
∣∣∣
δγ

, (4.25)

with ds according to Eq. (4.11) and Hd(q) according to Eq. (4.19), bearing in mind that

[ds/dt,0]PA is less reliable for φ � 0.15.

For the limiting case of neutral hard spheres at larger φ , it is therefore preferential to use in

place of [ds/dt,0]PA the accurate expression,

ds

dt,0

∣∣∣∣
HS

≈ 1−1.8315φ
(
1+0.1195φ −0.70φ 2

)
(4.26)

which, for φ ≤ 0.5, agrees well with ASD [23] and hydrodynamic force multipole [175] re-

sults, with an accuracy better than 3%. Note that the linear and quadratic order coefficients

in Eq. (4.26) have been selected identical to the numerically precise values −1.8315 and

−0.219 = −1.8315× 0.1195, of the respective virial coefficients derived in Ref. [165]. We

have determined the cubic coefficient in Eq. (4.26) from a best fit to recent simulation re-

sults in [175] and [23]. The coefficient 0.70 differs somewhat from the coefficient 0.65 in

Ref. [175], where simulation results only up to φ ≤ 0.45 were considered.

A self-part corrected version of the δγ scheme for H(q) was used already in earlier appli-

cations, where ds was considered simply as an adjustable parameter [168], or in more recent

work where it was determined using elaborate ASD simulations [23]. For practical purposes,

however, it is far more convenient to use the analytic ds corrections in Eqs. (4.11), (4.25) and

(4.26). In the present work, numerous ASD simulation results for H(q), ds, and η∞ have been

generated to provide precise benchmarks for assessing the accuracy of the proposed self-part

corrected δγ scheme (see Chapter 6).

While the δγ scheme for H(q) has been used already for charge-stabilized colloids, to our

knowledge the application of the δγ scheme for η∞ in Eqs. (4.20)-(4.22) was restricted so far

to colloidal hard spheres, where the predicted values for η∞(φ) are in good agreement, for

φ � 0.4, with experiments and simulation data. In Section 6.1.4, we are going to assess the
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performance of the δγ-scheme expression for the η∞ of charged particles by comparison with

ASD simulation data. Our analysis shows that the second-order δγ contribution, λ2(φ) < 0,

to η∞/η0 is only weakly dependent on the shape of the static structure factor. Moreover, the

zeroth-order contribution, λ0(φ) > 0, which is dependent on φ only, dominates for small φ the

contribution λ2. As a consequence, the δγ-predicted values for η∞ change only slightly when

going from neutral to charged particles, whereas simulations and experiments [176] reveal

significantly smaller viscosity values, in particular at low salinities. Thus, the δγ-scheme result

in Eqs. (4.20)-(4.22) applies to neutral hard spheres only. However, for the interesting case of

low-salinity systems, where the viscosity differences to neutral spheres at equal concentration

are largest, the δγ scheme can be modified (corrected) in an ad-hoc way, according to

η∞
η0

∣∣∣∣
δγcorr

= 1+
5

2
φ(1+φ)− 1

λ0
+

1

λ0 +λ2
. (4.27)

The motivation for this correction follows from the PA expression in Eq. (4.15): For a low-

salinity system of strongly repelling particles, one has the scaling relation rm ∝ φ−1/3 for the

peak position, rm, of the rdf, where g(r � rm) ≈ 0. Since J(x) ∼ O(x−6), for these systems the

integral in Eq. (4.15) is of O(φ 3). Hence, to quadratic order in φ , η∞ is determined basically

by the microstructure-independent contribution, 1+2.5φ(1+φ), to Eq. (4.15).

In Eq. (4.27), we correct approximately for this limiting behavior of η∞ by subtracting

the structure-independent “self part”, 1/λ0, from [η∞/η0]δγ , which renders the remainder of

O(φ 2) small, while adding the term 1 + 2.5φ(1 + φ). As we will show in the following, the

so-corrected δγ scheme is in very good agreement with the ASD viscosity data of low-salinity

systems, even up to the freezing transition concentration. We point out here that Eq. (4.27)

is restricted in its applicability to the low-salinity regime of strongly repelling particles. In

contrast, the ds-corrected δγ-scheme for H(q) in Eq. (4.25) applies to HSY systems for any set

of system parameters {γ,k,φ}, provided φ � 0.15, including the crossover regime from neutral

to deionized, highly charged particle systems. For neutral hard spheres, the (uncorrected) δγ
scheme for η∞ performs quite well.

The design of a simple, corrected δγ scheme which operates well for arbitrary {γ,k,φ},

including systems of intermediate salinity, is obstructed by the limited separability of λ0 and

λ2 which are both of O(φ 2) in general, and by significant many-body HI contributions for more

concentrated systems of nearly hard-sphere-like particles at high salinity. For small values φ �
0.1, the PA method can be used to produce reliable predictions of η∞, for arbitrary salinities.
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4.5 Mode-coupling expressions for long-time dynamic

properties

Various types of dynamic properties can be approximately calculated in the long-time regime

t 
 τI using the mode-coupling theory (MCT) of Brownian systems. For introductory texts

on MCT, the interested reader is referred to Refs. [4, 177, 178]. Note that the emphasis of the

present work lies on the short-time dynamic properties of colloidal particles, with no efforts

invested to further develop the MCT of long-time diffusion and rheology. However, some of

the experiment results discussed further down, namely the rheologic and dynamic scattering

data from BSA protein solutions and gibbsite platelet suspensions, have been recorded in the

long-time regime. Since dynamic properties like the self-diffusion coefficient and the effective

suspension viscosity can be quite different regarding their short-time and long-time values, we

have included MCT results to our theoretical modeling, with a partial account of far-field HIs.

The BSA protein solutions and gibbsite platelet suspensions considered in the present the-

sis are rather dilute, with structure factor maxima S(qm) � 1.7. Therefore, simplified MCT

expressions with approximate account, or even without HIs, can be reasonably applied.

4.5.1 Long-time self-diffusion coefficient

As sketched in Fig. 4.1, the long-time self-diffusion coefficient is defined as dL
s =

limt→∞ dW (t)/dt, i.e. by the long-time slope of the mean-squared displacement. Includ-

ing far-field HIs up to the dipolar Rotne-Prager level, the simplified implicit MCT expression

dL
s

dt,0
=

⎡
⎣1+

1

36πφ

∞∫
0

dq q2S(q)

[
1−HRP(q)/S(q)

]2

dL
s /dt,0 +HRP(q)/S(q)

⎤
⎦
−1

, (4.28)

for dL
s has been derived in [179]. The integral in Eq. (4.28) is convergent only provided that

that ds/dt,0 = H(q → ∞) = 1. On the RP (O(x−3)) level, this requirement is fulfilled since

the leading-order far-field contribution to ds is of O(x−4) (see Eq. (4.11) and Tab. C.1). In

evaluating Eq. (4.28) applicable to rather dilute suspensions, for Hd(q) one can use the δγ-

scheme result which, to first order in φ , is equal to HRP
d (q). Starting from an initial seed

dL
s = dt,0, Eq. (4.28) can be solved iteratively for dL

s , requiring usually less than ten iterations

to converge to a relative residual of 10−4.

4.5.2 Static shear viscosity

In long-time rheological measurements on colloidal suspensions under low-amplitude steady

shear, there is a non-zero shear-stress relaxation part, Δη , contributing to the static viscosity

η = η∞ +Δη . This contribution is influenced both by HIs and direct interaction forces. While

a version of the MCT for Δη with far-field HIs has been discussed already in earlier work
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together with an extension to multicomponent systems [180], for analytical simplicity we use

here the standard one-component expression

ΔηMCT =
kBT
60π2

∞∫
0

dt
∞∫

0

dq q4

[
S(q, t)
S(q)

d
dq

logS(q)
]2

, (4.29)

as derived, e.g., in Ref. [180] under the neglect of HIs. In principle, ΔηMCT should be cal-

culated self-consistently in combination with the corresponding MCT memory equation for

S(q, t) [119]. However, as we have thoroughly checked in comparison to fully self-consistent

MCT calculations, for systems with rather weakly coupled particles, ΔηMCT can be obtained

more simply in a first iteration step where S(q, t) in the integral of Eq. (4.29) is approximated

by its short-time form S(q, t)/S(q) = exp[−q2dt,0 t/S(q)], valid without HI.

For the weakly coupled systems to which the first iteration solution as described by

Eq. (4.29) applies, Δη augments η∞ by a small relative amount. For example, Δη < 0.1×η∞
in case of the BSA solutions studied in this thesis. Therefore, the neglect of HIs in ΔηMCT can

be expected to be rather insignificant for the systems considered, since the dominant effect of

HIs is included already in η∞. Theoretical results for η shown in the present work are all based

on the first iteration solution for ΔηMCT , and on η∞ calculated using the self-part corrected δγ
or PA schemes.
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FIVE

Pair-structure results: Theory, simulation and experiment

5.1 Validation of the MPB-RMSA using simulations and

alternative closures

5.1.1 Monte Carlo computer simulation results

The Monte Carlo simulations for suspensions of colloidal hard-sphere Yukawa particles, with
results presented in this chapter, and related accelerated Stokesian Dynamics simulations
with results presented in Chapter 6, have been performed by Prof. Adolfo J. Banchio at the
National University of Córdoba, Argentina, within our joint theoretical-computer simulation
project.

The MC simulations were performed using in general N = 512 particles interacting via the

pair potential in Eq. 2.6, placed in a periodically repeated cubic simulation box. In strongly

correlated particle systems with long-range Yukawa repulsion, a larger number of N = 800

particles was used, to gain improved statistics and resolution of the principal peak region of

S(q).

5.1.2 Systems with strong Yukawa repulsion

Systems with strong Yukawa repulsion, where βu(σ+) = γ exp{−k} 
 1, are characterized

by a (practically) zero likelihood for contact configurations so that the hard core plays no

role. Strong Yukawa repulsion of colloidal particles is observed for large charge numbers and

sufficiently low salt concentrations.

As a representative class of colloidal systems with strong and long-ranged Yukawa repul-

sion, we consider here spheres of diameter σ = 200 nm and effective charge number Z = 100,

immersed under zero-added salt conditions (ns = 0) in a weakly polarizable solvent (ε = 10,

59
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Fig. 5.1: Static structure factor, S(q), and radial distribution function, g(r), of a zero-salinity
system at volume fractions, φ , as indicated. Open symbols: MC simulation data. Orange and
black solid lines, blue dotted curves, green dashed curves, and red solid lines: HNC, RY,
RMSA, PB-RMSA, and MPB-RMSA scheme results, respectively. For φ = 0.055, g(r) is not
shown to avoid obstructing the figure. The insets magnify the principal peak regions of the
most concentrated system. The corresponding hydrodynamic functions are plotted in Fig. 6.1.
System parameters are: Z = 100,LB = 5.62 nm, σ = 200 nm.
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T = 297K) of Bjerrum length LB = 5.62 nm. For these parameters, the potential at contact

is typically quite large, e.g. βu(x = 1+) = 260 for φ = 10−4, and βu(x = 1+) = 140 for

φ = 0.105. Fig. 5.1 shows integral equation and MC simulation results for S(q) and g(r) at

various volume fractions. The considered volume fractions from φ = 10−4 to 0.105 cover

the concentration range from dilute systems with moderate particle correlations up to more

concentrated systems with strong pair correlations. MC simulation results are represented in

Fig. 5.1 by open symbols. Orange and black solid lines represent the HNC and RY schemes,

respectively. Blue dotted curves are RMSA, green dashed curves unmodified PB-RMSA, and

red solid lines are MPB-RMSA results.

The depicted RMSA curves in Fig. 5.1 are in fair qualitative agreement with the MC gen-

erated results for g(r) and S(q). As expected, the RMSA underestimates the principal peak

heights S(qm) and g(rm). The HNC approximation improves only slightly the accuracy of the

RMSA. The RY-scheme, on the other hand, is in excellent agreement with the MC data at all

considered φ . It slightly underestimates the MC-S(qm) for the largest considered concentration

only.

The MPB-RMSA and PB-RMSA results are in very good overall agreement with the MC

data, except for a kink in g(r) at the rescaled diameter which becomes most noticeable at low

concentrations, and except for a slight underestimation of g(rm) at larger φ . The MPB-RMSA

and the PB-RMSA results coincide at low φ but, as a general rule, the MPB-RMSA performs

better at larger volume fractions. At φ = 0.105, the MPB-RMSA happens to predict a principal

peak height, S(qm), in even better agreement with the simulation data than the RY scheme.

The discussed characteristics of the considered integral equation scheme results persist

when the concentration, ns, of added 1-1 electrolyte is increased. This is demonstrated in

Figs. 5.2 and 5.3, where S(q) and g(r) are plotted for the same system as in Fig. 5.1, but now

using volume fractions φ = 0.055, 0.105, and 0.15, and coion concentrations ns = 10−6, 10−5,

and 10−4 M. To allow for a straightforward comparison, both in Figs. 5.2 and 5.3 identical axis

scales are used in the nine panels. The panels are ordered by φ increasing from top to bottom,

and by ns decreasing from left to right. Thus, interparticle correlations increase from left to

right, and from top to bottom. In Figs. 5.2 and 5.3, the same color code is used for the vari-

ous employed methods as in Fig. 5.1. Results by the unmodified PB-RMSA scheme are not

included in Figs. 5.2 and 5.3 to not obstruct the figures.

The rightmost columns of panels in Figs. 5.2 and 5.3 present results for three systems of

strongly charged particles with a very low residual, but experimentally still accessible, salt

content. In the most concentrated system in panel (i), for which φ = 0.15 and ns = 10−6 M,

a peak value S(qm) ≈ 2.5 is attained according to the MC simulations. The very same peak

value is predicted by the MPB-RMSA and RY integral equation schemes. According to the

empirical Hansen-Verlet freezing rule, the system in panel (i) is rather close to the freezing

transition point [103, 181, 182]. The screening parameter k assumes rather low values of 2.67,

3.24, and 3.68 in panels (c), (f), and (i), and the corresponding ratios k2
c/k2

s are 1.1, 2.1, and
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Fig. 5.2: Static structure factor for systems of various volume fractions, φ , and salt concentra-
tions, ns, as indicated in each panel. The panels are ordered by φ , which increases from top to
bottom, and by ns, decreasing from left to right. Open symbols: MC simulations. Orange and
black solid lines, blue dotted curves, and red solid lines: HNC, RY, RMSA, and MPB-RMSA
scheme results, respectively. Corresponding radial distribution functions and hydrodynamic
functions are displayed in Figs. 5.3 and 6.2. System parameters are: LB = 5.617 nm, σ = 200

nm, and Z = 100.
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3.0, respectively. The rather high values for k2
c/k2

s indicate that salt microions play a minor role

in the electrostatic screening, which is dominated instead by the surface-released counterions.

In the leftmost columns of panels, the salt concentration ns = 10−4 M is chosen so large that

electrostatic repulsion is almost fully screened. This can be noticed from the rdfs in panels (a),

(d), and (g) of Fig. 5.3. Similar to neutral hard spheres, where xm = rm/σ = 1, in each of

theses systems g(xm) is located at xm ≈ 1. Other indicators for the closeness to the HS limit

are the high values k = 18.5,18.6, and 18.7 of the screening parameter, and the low ratios

k2
c/k2

s = 0.01,0.02, and 0.03, corresponding to panels (a), (d), and (g), respectively.

The added-salt systems in Figs. 5.2 and 5.3 exemplify our general observation that the

MPB-RMSA slightly overestimates the pair ordering at intermediate salt concentrations. At

the largest considered salinity ns = 10−4 M, i.e. in the leftmost columns of panels in Fig. 5.3,

both the RY and HNC schemes predict a small but non-zero contact value, whereas g(x =
1+) = 0 according to the MSA-based schemes. Except for a narrow interval at r ≈ σ , the rdfs

of all considered integral equation schemes agree with each other in the high-salinity case.

The rdf in panel (a) of Fig. 5.3, where φ = 0.055 and ns = 10−4 M, has a visible maximum

g(xm) > 1 at the nearest-neighbor shell distance xm ≈ 1.2. This clearly distinguishes it from

the infinite dilution limit, g0(x) = exp{−βu(x)}, which has no maximum at finite x.

5.1.3 Systems with non-zero contact values

Complementary to the strong Yukawa coupling regime where g(x = 1+) ≈ 0, there is the

regime of weak Yukawa repulsion characterized by non-zero contact values. For weak Yukawa

coupling is γe−k � 1, which for the DLVO parameters in Eqs. (2.5) holds true for sufficiently

low Z and sufficiently large coion concentrations ns. Even for a non-zero probability of two

macroions in contact, in many cases there is still a principal maximum g(xm) > g(1+) at xm >

1. caused by the Yukawa tail. This clearly distinguishes these systems from neutral hard-sphere

suspensions where γ = 0 or k → ∞ (see Fig. 5.5 for an example). HSY systems with non-zero

contact values are difficult to realize experimentally, since for colloids, e.g., one needs to

worry about residual van der Waals forces which become strong at contact. Irrespective of any

experimental realizations, it is of interest to test the performance of the (M)PB-MSA under

conditions where no rescaling is required. We do this in the following by a comparison with

MC simulations and RY calculations.

We start by investigating the contact value of the rdf which, in the weak coupling regime,

is an indicator for the accuracy of an integral equation scheme. In Fig. 5.4, we present results

for g(x = 1+) by the various integral equation schemes in comparison to MC data. The sys-

tem parameters are representative of a low-salinity, aqueous solution of nano-sized apoferritin

proteins [41]. Three different effective charge numbers, Z = 36, 20.5 and 1, are considered.

For Z = 1, the limit of neutral hard spheres is practically reached, with tiny differences in

the hard-sphere contact value only. For hard spheres, gHS(x = 1+) = (1−0.5φ)/(1−φ)3 ac-

cording to the Carnahan-Starling equation of state [4, 7]. In the limit of zero Yukawa coupling
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Fig. 5.3: Radial distribution function g(r) for systems of various volume fractions, φ , and salt
concentrations, ns, as indicated in each panel. The panels are ordered by φ , which increases
from top to bottom, and by ns, decreasing from left to right. Open symbols: MC simulations.
Orange and black solid lines, blue dotted curves, and red solid lines: HNC, RY, RMSA, and
MPB-RMSA scheme results, respectively. Corresponding static structure factors and hydrody-
namic functions are displayed in Figs. 5.2 and 6.2. System parameters are: LB = 5.617 nm,
σ = 200 nm, and Z = 100.
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line: Carnahan-Starling contact value for hard spheres. Common parameters are: LB = 0.71

nm, σ = 13.8 nm, and ns = 10−5 M.
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Fig. 5.5: Radial distribution function g(r) for two systems selected from Fig. 5.4. Common
parameters are: LB = 0.71 nm, σ = 13.8 nm, and ns = 10−5 M. Charge numbers and volume
fractions as indicated.

(Z = 0), the (M)PB-MSA and the MSA reduce to the Percus-Yevick solution for hard spheres,

which is known to underestimate the exact gHS(x = 1+) at larger volume fractions (i.e., for

φ � 0.35). On the other hand, the RY predictions for g(r), including the contact value, are in

excellent accord with the MC simulation results, for all considered values of Z (see Fig. 5.5).

The HNC is known to deteriorate in its accuracy when systems with shorter-ranged repulsive

potentials are considered, in predicting a too pronounced nearest neighbor shell and a too large

contact value of the rdf.

The supremacy of the (M)PB-MSA schemes over the MSA in the no-rescaling regime of

positive contact values shows up most clearly when the charge number is increased so that the

electrostatic and excluded volume interactions are of comparable importance. Our analysis of

a large number of systems with finite contact values and various charge numbers, hard-core

diameters, and electrolyte concentrations has revealed that all three MSA-based schemes tend

to overestimate the increase of g(x = 1+) with increasing φ as described by the MC and RY

methods, when γe−k � 3.0. Among all MSA-based schemes, the weakest overestimation is

observed for the MPB-(R)MSA method. See for example the system with Z = 36 in Fig. 5.4.

Consider next the rdf of a dense system at φ = 0.45 and Z = 36, as depicted in Fig. 5.5.

For this system, g(x = 1+) = 2.01, 2.48 and 2.64 in MC, MPB-MSA and PB-MSA, respec-

tively. While the MPB-MSA performs better than the PB-MSA regarding the contact value,
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the primary Yukawa-tail peak of g(x) at xm > 1 is slightly more underestimated by the modi-

fied PB-MSA version. A general observation for systems with weak Yukawa coupling is that,

while contact and Yukawa-tail peak values are not precisely reproduced, the overall shape of

the (M)PB-MSA rdf is still in good accord with the MC and RY results.

5.1.4 Test of thermodynamic consistency

Out of all integral schemes considered in this thesis, the RY scheme is the only one being ther-

modynamically self-consistent regarding the osmotic compressibility. By its construction, the

zero-q limiting value of the RY static structure factor agrees with the concentration derivative,

β (∂ pv/∂n)T , of the virial pressure in Eq. (3.28). In taking the derivative, a possible concen-

tration dependence of u(r) and the RY-mixing parameter has been ignored (see the discussion

in Section 3.4).

We can use the RY results for S(q → 0) as accurate reference values to quantify the degree

of thermodynamic inconsistency for each of the other considered integral equation schemes,

by comparing the results for S(q → 0) with those for kBT (∂n/∂ pv)T , the latter obtained by a

numerical differentiation of the virial pressure pv as done also in the RY case.

In a HSY system with strong and long-range Yukawa repulsion, S(q → 0) attains values

close to zero. Therefore, to clearly reveal the differences, in Fig. 5.6 we plot the predictions

for 1/S(q → 0) (solid lines) by the various integral equation schemes along with the cor-

responding results for β (∂ pv/∂n)T (dashed lines). The system parameters LB = 8.64 nm,

σ = 200 nm, ns = 10−6 M, and Z = 200 are representative of a low-salinity system of strongly

repelling macroions. The volume fraction interval covers the complete fluid-phase regime up

to φ = 0.15, with a peak height S(qm) ≈ 3.1 where, according to the empirical Hansen-Verlet

freezing rule, a system with long-range Yukawa repulsion is close to the freezing transition

point [103, 181, 182].

In Fig. 5.6, it can be noted that all considered integral equation schemes except for the RY

scheme are thermodynamically inconsistent, with the relative difference between compress-

ibility and virial results extending up to 53% for the HNC, 45% for the RMSA, 34% for the

PB-RMSA, and 24% for the MPB-RMSA. The self-consistent RY result for the inverse re-

duced compressibility is bracketed by the HNC, RMSA and PB-RMSA solutions, but not by

the MPB-RMSA results. The predictions for 1/S(q→ 0) by the various schemes grow roughly

linear in concentration for φ > 0.025, where φ ≈ 0.025 is the concentration value for which

ks = kc.

Fig. 5.6 shows that, as a consequence of the improvement of the RMSA-predicted pair

structure by the modified PB correction, also the degree of thermodynamic consistency is

improved. Unlike HNC and RMSA, the MPB-RMSA result for S(q→ 0) is in reasonably good

accord with the RY data even up to the freezing concentration. Thus, the MPB-RMSA can

be used to obtain a quick estimate of the (osmotic) compressibility. However, if quantitative

accuracy is required at q → 0, the RY-method is still the method of choice.
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Fig. 5.6: Test of local thermodynamic consistency. Solid lines with filled symbols: 1/S(q → 0)
as a function of φ , for different integral equation schemes as indicated. Dashed lines with
open symbols: corresponding predictions for β (∂ pv/∂n)T , obtained from the concentration
derivative of the virial pressure in Eq. (3.28). System parameters are: LB = 8.64 nm, σ = 200

nm, ns = 10−6 M, and Z = 200.
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5.2 Concentration scaling and fluid-phase behavior

Having established the good accuracy of the MPB-RMSA in comparison to MC and RY re-

sults, we demonstrate now its capability as a fast tool to explore generic features in the pair

structure and fluid-phase behavior of HSY systems. The explorations discussed below have

required extensive parameter scans. We focus in the following again on systems with strong

Yukawa repulsion, characterized by g(x = 1+) ≈ 0.

As a first application of the MPB-RMSA, in Fig. 5.7 we investigate the generic concen-

tration dependence of the principal peak positions at xm and ym = qmσ of g(x) and S(y),
respectively, for suspensions of strongly charged colloidal macroions. For these systems,

one expects that the particles minimize their configurational free energy by maximizing the

radius of the nearest-neighbor shell. Thus, xm should scale in concentration according to

xm = rm/σ ∼ d̃/σ = n−1/3/σ , and ym according to ym ∼ 2πσ/d̃.

Fig. 5.7 demonstrates that the scaling relations xm = d̃/σ , and ym = 1.1 × 2πσ/d̃, are

obeyed indeed to good accuracy, provided the coion concentration ns is not too large, and

the volume fraction is not too small. In the experimentally not realizable case of zero salinity

(ns = 0), the geometric scaling of the peak positions with the colloid concentration remains

valid down to very low values of n. With increasing salt content, the concentration of coions

eventually surpasses the concentration of surface-released counterions, leading to a significant

reduction in the reduced Debye screening length, 1/k, and the pair potential contact value

γ exp(−k) at x = 1. This softens the Yukawa tail, allowing two particles to come closer than

r = n−1/3, reflected in Fig. 5.7 by deviations of xm and ym from the n±1/3 scaling behavior. As

a crude criterion for the transition to the geometric concentration scaling behavior, we can use

kc > ks, or equivalently, n > 2ns/|Z|, where kc according to Eq. (2.5b) is the contribution to k
due to the monovalent counterions released from the colloid surfaces. This simple criterion is

qualitatively confirmed in Fig. 5.7, where the colloid concentrations n = 2ns/|Z| are marked

by short vertical lines. Note that the geometric scaling of xm and ym necessarily fails at very

high concentrations when d̃ approaches σ .

For systems where xm and ym obey geometric concentration scaling, one might anticipate

that the reduced pair structure functions

gred(R) =
g(r/rm)−1

g(rm)−1
, (5.1a)

Sred(Q) =
S(q/qm)−1

S(qm)−1
, (5.1b)

with R = r/rm = x/xm and Q = q/qm = y/ym, are approximately universal except for small

values of their arguments. By definition, gred(R) and Sred(Q) are equal to one at R = Q =
1, converging to zero for R,Q → ∞. The function Sred(Q) is non-universal at Q ≈ 0, since

even for the subclass of low-compressibility systems where S(q → 0) ≈ 0 and Sred(Q → 0) ≈
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Fig. 5.7: Dimensionless radial position, xm, of the principal maximum in g(x), and dimension-
less wavenumber location, ym, of the principal maximum in S(y), plotted versus the inverse
geometric pair distance 1/d̃ = n1/3 in units of σ . Results for various salt contents (as indi-
cated) were generated using the MPB-RMSA. Abscissa values where ks = kc holds are marked
by vertical lines. The parameters LB = 0.716 nm, σ = 100 nm, and Z = 300 are representative
of an aqueous suspension of strongly charged macroions.
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−1/(S(qm)− 1), different values for Sred(Q → 0) are obtained for different principal peak

heights. By the same token, gred(R) behaves non-universally at R ≈ 0.

In Fig. 5.8, MPB-RMSA results for gred(R) and Sred(Q) are displayed for a large number of

fluid-ordered HSY systems with S(qm) ≤ 3.2, masked hard-core interactions, and geometric

concentration scaling of xm and ym. There are pronounced variations in the width of the princi-

pal peaks, and in the undulations of the following minimum and maximum. The sharpest peaks

are found for the most strongly structured, low-compressibility systems. These systems show

additionally the largest values of gred(Q → 0) and Sred(Q → 0). The figure clearly illustrates

that the reduced structure functions are non-universal even away from the small argument (i.e.,
small Q or small R) regime.

According to Eq. (3.4), a universal gred(R) for systems where xm = d̃/σ would imply a linear

relationship between S(ym)−1 and g(xm)−1. This would allow the rephrasing of the Hansen-

Verlet freezing criterion for S(ym) in terms of g(xm). However, such a simple 1-1 relation

between S(ym) and g(xm) does not exist in general. This will be explicitly demonstrated as a

by-product of the following discussion.

Up to this point, parameters including φ , nsσ3 and LB/σ have been scanned which are to

a certain extent under experimental control. However, as noted in Section 3.2, strong Yukawa

systems for which g(x = 1+) = 0 are fully characterized by two independent parameters,

namely γ̃ and k̃ appearing in Eq. (3.9). In discussions of the phase behavior, it is more conve-

nient to use the pair (T̃ , k̃) in place of (γ̃, k̃), with the reduced temperature

T̃ =
kB T

u(r = d̃)
=

exp(k̃)
γ̃

, (5.2)

measuring the thermal energy relative to the potential energy of a pair of particles at distance

d̃ = n−1/3. Different sets, {σ ,LB/σ ,Z,nsσ3,φ}, of experimentally controllable parameters

can describe the same state point (T̃ , k̃).
At this point, it is necessary to address again a peculiarity of the MPB-RMSA scheme, dis-

cussed already in Sections 3.2 and 3.3.4. In principle, a given state point (T̃ , k̃) corresponds

to unique pair-structure functions g(x̃) and S(ỹ), under the proviso that g(x = 1+) ≈ 0. Here,

ỹ = qd̃, and x̃ = x/d̃ . In MPB-RMSA, however, g(x̃) and S(ỹ) depend on the three param-

eters (T̃ , k̃,φ), or (γ̃, k̃,φ), even when g(x = 1+) = 0. This undesired feature of the MPB-

RMSA scheme is a consequence of the rescaling in Eqs. (3.25) and (3.26), into which the

(unrescaled) volume fraction φ enters irrespective of the value of g(x = 1+), thereby violating

the two-dimensional (T̃ , k̃), or (γ̃, k̃), parametrization of strongly coupled HSY fluids where

g(x = 1+) ≈ 0. Hence, the shift of the strongly coupled HSY-fluid parameter space from two

to three parameters is a side effect of the rescaling rules that render the MPB-RMSA into

a quantitatively accurate method. This artificially enforced φ -dependence of the microstruc-

ture of point-Yukawa like fluids should not be confused with the φ -dependence that naturally

occurs for HSY-fluids with non-negligible contact values g(x = 1+) > 0. The latter class of
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Fig. 5.8: (a) Reduced radial distribution function gred(R), and (b) reduced static structure
factor Sred(Q), for a large number of systems with φ = 0.01, gMPB-RMSA(x = 1+) = 0 and
S(ym) ≤ 3.2. The systems in panel (a) satisfy additionally that 0.99 ≤ xmσ/d̃ ≤ 1.01, and in
panel (b) that 0.99 ≤ ymd̃/σ/(2.2π) ≤ 1.01.
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Fig. 5.9: Fluid-phase diagram, obtained using the MPB-RMSA, for HSY systems with
gMPB-RMSA(x = 1+) = 0. The fluid phase is characterized by the Hansen-Verlet criterion
S(qm) < 3.2. A specifically colored areal facet corresponds to a specific volume fraction,
namely (from top to bottom) green: φ = 1%, violet: φ = 5%, blue: φ = 10%, orange: φ = 15%,
light blue: φ = 25%, black: φ = 35%, and red: φ = 45%. A facet of given φ is bounded
from above by the curve determined from g(σ+,φ) = 0, and from below by the freezing line
S(qm) = 3.2. Inset: lower-k̃ phase diagram part using a linear scale. The dotted curve is
the solid-liquid coexistence line for point-Yukawa particles predicted by Pistoor and Kremer
[104].
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systems requires in general three independent parameters such as, e.g. (T̃ , k̃,φ), to span the

phase space. Arbitrary HSY systems of equal (T̃ , k̃,φ) have the same S(y) and g(x) in com-

mon. Note for φ → 0, that the MPB-RMSA reduces to the PB-RMSA which, in turn, reduces

to the RMSA. The latter two methods do not share the MPB-RMSA-specific volume-fraction

dependence of the point-Yukawa like microstructural functions. Therefore, the MPB-RMSA

can be used to map out the boundaries of the point-Yukawa like phase in (T̃ , k̃)-space, provided

that a very low volume fraction is selected.

Keeping in mind this artifact of the MPB-RMSA, we proceed by discussing the fluid-phase

diagram part of HSY systems with masked hard-core interactions, characterized in principle

by two parameters T̃ and k̃. The diagram is constructed using the MPB-RMSA predictions for

S(qm) in combination with the empirical Hansen-Verlet rule. For a neutral hard-sphere system

with no long-ranged repulsion, S(qm) = 2.85 at freezing. Computer simulations [103, 181,

182] and density functional theory calculations [183] have shown that S(qm) at freezing varies

between 2.85 and 3.3 for HSY systems, in going from short-ranged to long-ranged Yukawa

tails. In the present study, a fixed value of 3.2 was selected for simplicity, in agreement with

the freezing peak value of S(q) found experimentally in our low-salinity charged silica system.

Fig. 5.9 shows our result for the T̃ − k̃ phase diagram, for a very extended range, T̃ =
10−3 − 1010 and k̃ = 10−4 − 50, of state points. Fluid-phase systems are characterized by

peak values S(qm) < 3.2. The inset shows the lower-k̃ part of the diagram on a linear scale.

A uniformly colored areal segment in the diagram includes the state points of fluid sys-

tems of equal volume fraction. Seven different volume fractions φ from 0.01 to 0.45 are

considered. An areal segment of given φ is bounded from above by the line determined

from gMPB-RMSA(σ+;φ) = 0, and from below by the freezing line S(qm) = 3.2. The same

phase diagram, computed in PB-RMSA instead of the MPB-RMSA, is depicted in Fig. 12 of

Ref. [14, 15]. For the reasons explained above, the two diagrams are indistinguishable at low

volume fractions, differing noticeably only when both k̃ and φ are large. In particular, the inset

of Fig. 5.9 remains practically unchanged when, in place of the MPB-RMSA, the PB-RMSA

is used.

Increasing the temperature T̃ in systems of given φ and k̃ increases the likelihood of near-

contact configurations, until the upper boundary of the fixed-φ segment is reached defined by

the largest T̃ where gMPB-RMSA(σ+) = 0. On further increasing the temperature, g(σ+) > 0

and the systems of a given φ no longer belong to the considered class of HSY systems with

masked hard-core interactions. As expected and noted from the phase diagram, the region

of fluid-state points describing systems with masked hard-core interactions narrows with de-

creasing screening length and increasing volume fraction.

According to the inset in Fig. 5.9, the solid-fluid coexistence line bounding the fluid-state

diagram from below, is in good accord with the polynomial fit to the melting line,

T̃m(k̃) = 0.009+0.0303 k̃−0.00997 k̃2 +0.0035 k̃3 −0.000245 k̃4 , (5.3)
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reported by Pistoor and Kremer [104] (see also [184]). The Hansen-Verlet criterion does not

allow to distinguish the fluid-bcc transition appearing at smaller screening parameters from

the fluid-fcc transition at larger k̃. However, the value of the reduced temperature at the iso-

choric fluid-bcc transition point in the OCP limit, is predicted by the MPB-RMSA method as

T̃ (k̃ = 0) ≈ 0.01. This value is in agreement with Eq. (5.3), and with the molecular dynamics

simulation result by Hamaguchi et al. [105]. This points to the internal consistency and accu-

racy of the fluid-phase diagram in Fig. 5.9. Note here that the fluid-solid coexistence region

of the HSY at smaller values of k̃ is very narrow, with vanishing relative density difference

(vanishing miscibility gap) at k̃ = 0 [102, 105, 183].

A short discussion is in order here regarding the number of considered state points on which

Fig. 5.9 is based. For each of the seven considered volume fractions, the MPB-RMSA pair

structure functions have been calculated and stored in a database for 500× 500 state points

(T̃ , k̃), of values representatively distributed over the depicted T̃ and k̃ intervals. Such an ex-

tensive calculation was done in about 5 h of cpu time on a standard desktop PC. It was made

possible owing to the rapidity and stability of the MPB-RMSA code. Out of this large number,

systems with S(qm) < 3.2 and gMPB-RMSA(x = 1+) = 0 were selected constituting the state

points in Fig. 5.9. An additional filtering for systems obeying geometric concentration scaling

has led to Fig. 5.8.

In Fig. 5.10, we have sorted the zero-contact-value systems in Fig. 5.9 according to values

of the principal peak positions and locations, and the location, xdip, of the first minimum in

g(x) to the right of the principal peak (see inset in Fig. 5.10(c)). Each colored dot in the figure

represents a system where the MPB-RMSA structure functions have been calculated. The

subset of systems of lowest φ = 0.01 (green dots), e.g., extends actually over the whole dotted

phase space part. However, like in Fig. 5.9, it is partially overlayed (in Fig. 5.10(a) nearly

completely) by the more concentrated subsets of systems colored as in Fig. 5.9.

Fig. 5.10(a) shows explicitly that for a given value of S(ym), there exist a variety of systems

of different peak values g(xm) and different volume fractions. As we have discussed in rela-

tion to Fig. 5.8 and the Hansen-Verlet criterion for S(ym), there is no unique value of g(xm)
characterizing the onset of freezing. For instance, for S(ym) = 3.2, values for g(xm) occur in

between 2.2 and 3.8.

Fig. 5.10(b) extends the discussion of Fig. 5.7 by showing that, with increasing φ ,

all systems approach geometric scaling behavior where x̃m = xmσ/d̃ = 1 and ỹm/(2π) =
ymd̃/(2πσ) = 1.1. The most concentrated systems at φ = 0.45 (in red) cover only a tiny patch

centered around this geometric scaling point.

In Fig. 5.10(c), all fluid systems are sorted according to the locations, xm and xdip, of the

principal peak and the subsequent minimum of g(x). There is very roughly a linear relationship

between xdip and xm (with some significant spread, however) independent of the considered

volume fraction. Quite interestingly, the systems obeying geometric concentration scaling are

located, for any considered φ , in a small patch centered at x̃dip = rdip/d̃ = 1.4 and x̃m = rm/d̃ =
1, with constant ratio x̃dip/x̃m = xdip/xm ≈ 1.4 (as long as the fluid systems are well structured).
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Fig. 5.10: (a) S(ym) versus g(xm), and (b) ỹm/(2π) = ymd̃/(2πσ) versus x̃m = xmσ/d̃, and (c)
x̃dip = xdipσ/d̃ versus x̃m = xmσ/d̃, for the zero-contact value fluid systems at the seven volume
fractions considered in Fig. 5.9, using the same color code. Each colored dot represents a
considered system. The inset in (c) illustrates the locations of xm and xdip.
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This finding of a constant ratio for systems obeying geometrical density scaling can be

motivated by the following simplifying consideration. The rdf of a strongly correlated HSY

system with well-developed principal peak is crudely described by

g(r) ≈ Θ(r− rm)+
A

4π nr2
m

δ (r− rm) , (5.4)

where Θ(r) is the unit step function. The δ -distribution part is a crude sketch of the peak

region of g(r). On noting that

Nnn = 4πn
∫ rdip

0
dr r2 g(r) (5.5)

defines the number, Nnn, of nearest neighbors, and using rm = d̃, integration of Eq. (5.4) leads

to (
rdip

rm

)3

=
3

4π
(Nnn −A)+1 . (5.6)

Provided A and Nnn are independent of φ , a constant ratio rdip/rm is obtained. In strongly

correlated systems, S(q→ 0)≈ 0, which in conjunction with the Fourier transform of Eq. (5.4)

leads to A = 4π/3−1. Assuming Nnn = 12 consistent with the values 12−13 obtained from

Eq. (5.5) when the MPB-RMSA rdf’s are used, rdip/rm = x̃dip/x̃m ≈ 1.38 is obtained which

somewhat fortuitously is close to the ratio 1.4 noted from Fig. 5.10(c).

5.3 Static structure of charged silica spheres

The high accuracy of the MPB-RMSA for systems of strongly correlated particles shows its

capability as a conveniently fast tool for evaluating scattering data. To illustrate this, we use

the MPB-RMSA in the following to fit experimental S(q) which we have obtained from SLS

experiments on suspensions of negatively charged TPM coated silica spheres suspended in

toluene-ethanol. Details of the silica sphere system, and the conducted experiments, are given

in Section 2.2.

The experimental S(q) has been obtained by division of the static scattered intensity I(q) by

the particle concentration and the light scattering determined form factor, P(q). The latter can

be well fitted by a core-shell form factor model with spherical silica core of diameter 264 nm,

and a surrounding spherical TPM shell of thickness 4 nm, differing in its refractive index from

that of the silica core [185]. Note that the outer diameter, σ = 272 nm, in this core-shell model

is in agreement with the diameter that has been independently determined from fitting SAXS

intensities at large q-values by a (polydisperse) sphere form factor. Since the X-ray scattering

length densities of silica and TPM are both distinctively different from that of the toluene-

ethanol solvent mixture, a form factor of homogeneously scattering spheres applies in fitting

the SAXS intensities. In light scattering, however, the refractive indices of silica, TPM, and
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the toluene-ethanol solvent are quite similar, so that the more complicated core-shell model

for P(q) has been used.

The residual salinity, ns = 0.7×10−6 M, in the system was determined as a global fit-

parameter from a concentration series of SLS measurements of S(q), fitted by the MC, RY

and MPB-RMSA results. The only φ -dependent fitting parameter in our analysis has been the

effective charge number Z, which was adjusted in each of the employed methods to match the

structure factor peak height. The suspension freezes at a volume fraction of φ ≈ 0.16, where

the experimental S(q) attains a principal peak value of about 3.2.

The upper panel of Fig. 5.11 exemplifies our theoretical analysis of the concentration series

experiments by showing the peak-height adjusted S(q) of the MC, RY and (M)PB-RMSA

methods, for the least concentrated system (φ = 0.057) in the series, and for a concentrated

system (φ = 0.15) close to the freezing transition. The fraction of surface-released counterions

is large enough even at φ = 0.057, where kc = 0.93× ks, to guarantee a small value of the

osmotic compressibility. All three methods considered in the top panel of Fig. 5.11 reproduce

the experimental S(q) with excellent accuracy in the whole experimentally accessible q-range.

In the lower panel of Fig. 5.11, the deduced effective charges are plotted for the complete

concentration series. Interestingly enough, the MC, RY and MPB-RMSA methods all give

the same values for the effective charges, with uncertainties comparable to the symbol sizes.

This highlights the capability of the MPB-RMSA to deliver reliable results for the effective

charge with little numerical effort. In contrast, the (unmodified) PB-RMSA version of Snook

and Hayter over-predicts the values of Z systematically, but not to such an extent as the HNC

and RMSA schemes which overestimate the effective charge of the silica spheres roughly by

a factor of two.

The RMSA and HNC peak values of S(q) for φ > 0.06 cannot be tuned large enough to

reach the experimental peak heights, for any reasonable value of Z. For the most concen-

trated system (φ = 0.159) right at the freezing point, even the PB-RMSA calculated S(qm)
remains well below the experimental S(qm), for any value of Z. This inability of the RMSA

and HNC schemes to reach the experimental peak heights in certain low-salinity systems, like

the considered silica samples, can be explained by the competing influence of added salt ions

and surface-released counterions [see Eqs. (2.5)]: When Z is increased from small values at a

given φ , S(qm) increases initially since γ increases with Z for nearly constant k, as long as the

concentration of surface-released counterions is much less than the concentration of salt ions.

When Z becomes large, however, the cross-over point described by k2
c(Z) = k2

s is surpassed,

and the surface-released counterions start to dominate the electrostatic screening. Then, S(qm)
decreases with increasing Z since the effect of the increasing coupling parameter γ on the pair

structure is overcompensated by the likewise increasing screening parameter k. Consequently,

S(qm) goes through a maximum as a function of Z. In a recent experimental study by Wette

et al. [186, 187], it has been shown that a similar mechanism can lead to a reentrant fluid-

crystalline-fluid phase behavior when the 1-1 electrolyte NaOH is added to suspensions of

silica spheres. The strong dependence of the pH-value on the amount of added NaOH leads to
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Fig. 5.11: Top panel: Structure factor of TPM-coated, charged silica spheres dispersed in
a toluene-ethanol mixture. Filled triangles: SLS experiment data. Open circles: MC simu-
lation data. Black solid lines, blue dotted curves, and red solid lines: RY, PB-RMSA, and
MPB-RMSA schemes, respectively. The charge numbers determined from fitting the experi-
mental data, are identical for the MC, RY and MPB-RMSA methods, namely Z = (135,190)
for φ = (0.057,0.15). The non-modified PB-RMSA predicts different values, namely Z =
(145,300). Bottom panel: Effective charge number, |Z|, used in the various schemes for a
best approximation of the SLS-S(qm) in the concentration series of charged silica spheres.
Orange filled circles: MC simulations. Diamonds: RY and MPB-RMSA schemes. Triangles:
PB-RMSA. Squares: HNC and RMSA. Filled symbols are used when the experimental S(qm)
can be reproduced, and open symbols when it is underestimated at any |Z|. In the latter case,
the lowest |Z| is plotted which minimizes the peak-height underestimation. Common parame-
ters (in both panels) are : LB = 8.64 nm, σ = 272 nm, and ns = 0.7×10−6 M.
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a rapid increase in Z when small amounts of NaOH are added to an aqueous silica suspension.

The accompanying increase in the coupling parameter γ can induce a freezing transition. At

higher concentrations of added NaOH, the continued increase in Z is overcompensated by the

increased screening due to Na+ and OH− microions and surface-released counterions. As a

result, the silica suspension can re-melt at a large concentration of added NaOH. When S(qm)
is calculated by a method such as the RMSA which underestimates the structure of strongly

correlated particles, the predicted maximum of S(qm) as a function of Z may be not large

enough to match the experimental peak value.

In summary, we conclude that out of all considered methods only the RY and MPB-RMSA

schemes, and of course the MC simulation method, allow for a fully consistent fit of ex-

perimental structure factors of strongly coupled charged spheres, providing thus trustworthy

values for the effective charge. Out of these three schemes, only the RY and MC methods

have been well-established so far, with the former method routinely used to fit scattering data.

However, the fitting procedure can be quite cumbersome, due to the non-analytic nature of

these two methods, causing thus long execution times. On a standard desktop PC, one MC

run of good statistics typically takes several hours, and about 10 seconds are usually needed

for the RY calculated pair structure functions of a given system. An additional complication

in applying the RY scheme is caused by its internal iterative algorithm which interpolates

between HNC and the Percus-Yevick closure to achieve local thermodynamic consistency.

Convergence of this algorithm depends on an initial seed for the mixing parameter which has

to be provided by the user. To our experience, it is occasionally difficult to find an appropriate

seed that allows the RY-scheme to converge.

The MPB-RMSA code, on the other hand, is rapidly evaluated for any system, with a typ-

ical cpu-time of less than 0.1 seconds. This has allowed us to implement the MPB-RMSA

with a convenient graphical user interface, described in Appendix E, in which an imported

experimental S(q) or g(r) can be readily fitted. Input parameters such as Z and φ can be tuned

with real-time response of the MPB-RMSA structure functions, resulting in a fast and versatile

fitting tool of quantitative accuracy.

5.4 Static structure of bovine serum albumin proteins

In this section, we describe in detail the simplifying spheroid-Yukawa model for the BSA pro-

teins that has been introduced in Section 2.3. Static scattered intensities determined by SAXS

are shown, in comparison to our theoretical fit expressions. The BSA suspension characteris-

tics are determined from this comparison.
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Fig. 5.12: BSA form factor fit. Open circles: SAXS intensities at two protein concentrations
of cp = 1 and 2 g/l, for 0.15 M of added NaCl. The SAXS intensities have been divided by
cp, and by a common, q-independent factor A0. Red solid line: Angular-averaged spheroid
form factor according to Eqs. (5.8), fitted to the SAXS data within 0.3 nm−1 < q < 1.15 nm−1,
as indicated by the blue vertical line segments. The obtained fit values are a = 1.75 nm and
b = 4.74 nm. Inset: Intensity on a double linear scale.

5.4.1 Form factor fitting

At low protein concentration and sufficiently large amount of added salt, inter-protein correla-

tions are negligible. The scattered intensity, I(q), is then solely determined by the form factor

P(q), i.e. I(q) ∝ P(q). Crystallographic measurements [72–74] have revealed a flat and roughly

heart-shaped structure of albumin proteins. The computation of single-particle properties such

as P(q), dt,0, and the intrinsic viscosity [η ], with an account of the complex particle shape of

biomolecules, can be done by elaborate simulations only [74, 188] and is beyond the scope

of this thesis. The aim of the present study is rather to give an essentially analytic description

of the microstructure, and the dynamics, of interacting BSA proteins with low computational

cost. We therefore employ a simple oblate spheroid model of the protein form factor. Note that

a similar spheroidal model of BSA, as illustrated in Fig. 2.3, with isotropic pair-interactions

has been used before by Kotlarchyk and Chen [189]. In this earlier work, however, the protein

dynamics were not described theoretically.

In Fig. 5.12, SAXS intensities for BSA solutions of very small protein weight concentra-

tions, cp = 1 and 2 mg/ml, and 0.15 M of added NaCl, are shown along with the best-fit oblate
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spheroid form factor. To check for a residual effect of interparticle correlations on I(q), S(q)
was calculated for the present two systems to first order in φ using Eq. (3.7) in combination

with the full DLVO pair potential in Eq. (2.1). As an upper bound for the magnitude of the

repulsive and the attractive parts of the DLVO potential, an effective charge |Z| = 34 and a

Hamaker constant AH = 3 were used. As judged from our results of fitting a whole concentra-

tions series of BSA suspensions, with fit parameter results presented in Tab. 5.1, the effective

charge value |Z|= 34 can be safely considered as an upper bound. Likewise, the Hamaker con-

stant is an upper bound to the values reported in literature [190, 191]. The cutoff Δ in Eqs. (2.2)

and (2.3) is selected as 0.1 nm/σ , and the Bjerrum length as LB = 0.711 nm, corresponding to

water at room temperature. The remaining parameter required to uniquely specify the DLVO

potential is the effective diameter σ . As argued in Section 5.4.2, the value of σ = 7.40 nm is

a reasonable choice for BSA proteins.

The DLVO potential for these parameters is displayed in the inset of Fig. 5.13, along with

its attractive part, uvdW , and the HSY potential approximation. With a maximum of about 0.7

kBT attained at x≈ 1.07, the electrostatic barrier height of uDLVO is expectedly low. For shorter

distances, uvdW dominates the pair energy, predicting the binding energy of a BSA dimer to

be stronger than −4 kBT at the reduced cutoff distance 1+Δ.

Note from Fig. 5.13 that for u = uHSY , the first-order in φ structure factor S1(q) and the

MPB-RMSA S(q) agree almost perfectly. Since the latter is quite accurate for any fluid-state

volume fraction, we conclude that O(φ 2) corrections to S1(q) are small for the considered BSA

system. All structure factors in Fig. 5.13 oscillate very mildly, with the largest deviation from

unity occurring at q → 0, where S1 ≈ 0.99 for the full DLVO potential. Therefore, the SAXS

intensities in Fig. 5.12 contain no appreciable particle correlations. However, considering the

rather strong dimer binding energy obtained for the employed DLVO potential parameters, we

expect that a smaller part of the BSA proteins forms oligomers.

To fit the measured intensity in Fig. 5.12, we have used Eq. (3.39a) for I(q) with Sm(q) set

equal to one, so that

I(q) = AcpPell(q). (5.7)

Here, A is a q-independent factor (of dimension velocity3), that should be the same for all

intensity measurements corrected for recording time and source intensity. The form factor is

modeled by that of monodisperse, homogeneously scattering, and isotropically ordered oblate

spheroids with semi-axis of revolution a and radius b . For oblate spheroids, the orientationally

averaged form factor in Eq. (3.32) can be calculated as [185]

Pell(q) =
1∫

0

dμ| f̃ell(q,μ)|2 (5.8)

with

f̃ell(q,μ) = 3
j1(u)

u
(5.9)
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Fig. 5.13: Estimates for the static structure factor for a dilute BSA suspension with 0.15 M of
added NaCl. The red and light blue solid lines are structure factors using the full DLVO pair-
potential in Eq. (2.1), and the HSY pair-potential in Eq. (2.6), respectively, calculated to first
order in φ according to Eq. (3.7). The black solid line is the MPB-RMSA prediction for S(q),
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are AH = 3, Δ = 0.1 nm/σ , LB = 0.711 nm, ns = 0.15 M, σ = 7.40 nm, and φ = 0.015, with
all DLVO potential parts depicted in the inset.
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and

u = q
√

a2μ2 +b2(1−μ2). (5.10)

Here, j1(x) = (sinx−xcosx)/x2 is the spherical Bessel function of the first kind, and μ is the

cosine of the angle between the ellipsoid symmetry axis and the scattering wave vector q.

Using an automatic weighted least-squares minimizer implemented into the software pack-

age described in Appendix E, the spheroid semi-axes a and b entering into Pell(q) were varied

to achieve a best fit intensity in Eq. (5.7) for a given prefactor A. This fitting procedure was iter-

ated for different values for A, until optimal agreement with the SAXS intensities in the range

0.3 nm−1 < q < 1.15 nm−1 was achieved, resulting in a = 1.75 nm and b = 4.74 nm. These

values for the spheroid semi-axes are in good accord with previously reported values, and in

reasonable agreement with the linear dimensions of the reported heart-shape like crystal struc-

ture of albumins [72–74, 192]. In a related recent study [46], similar values a = 1.80±0.05 nm

and b = 4.60±0.15 nm have been determined, in decent agreement with the values obtained

here. The optimized value for A, denoted by A0, has been also used in our SAXS intensity fits

for systems without added salt, discussed in Section 5.4.3.

The best-fit form factor, Pell(q), depicted in Fig. 5.12 deviates from the SAXS intensities

outside the fitted q-range. For q � 1.15 nm−1, corresponding to length scales 2π/q � 6 nm

� σ , the complex internal structure of BSA is probed, which is not accounted for in the simpli-

fying spheroid-Yukawa (SY) model. The deviations visible for q � 0.3 nm−1, corresponding to

distances of roughly 20 nm or larger, are likely due to additional scattering species consisting

of larger particles such as BSA oligomers or impurities. Since the size-, form-, and charge-

distributions of oligomers and impurities are unknown, our choice of the lower q-boundary

in fitting I(q) is somewhat more ambiguous than the upper boundary. Therefore, we have re-

peated the intensity fitting for various low-q boundaries, finding that the weighted least squares

deviation increases dramatically if the boundary is selected below 0.3 nm−1. Moreover, the fit

values for a and b remain essentially constant when the lower q-boundary is selected larger

than 0.3 nm−1.

The parameters of the spheroid form factor fitted to the SAXS data of proteins in general

depend slightly on the measured q range, the prepared protein concentration, solvent and salt

conditions, and the background subtraction. In the context of the present study, the related

changes of the spheroid model parameters are all small compared to the experimental error

bars, and will be further discussed in Section 5.4.3.

5.4.2 Effective sphere diameter

When protein correlations come into play at higher concentrations or lower salinities, the

spheroid model of BSA is still too complex for an analytic treatment. Therefore, as far as

the protein-protein interactions are concerned, in an additional approximation we describe
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the proteins as effective spheres of diameter σ . Depending on the considered single-particle

property, different definitions for σ can be given.

Consider first the geometric effective diameter, σgeo = 8(ab2)1/3 = 6.80 nm, following from

equating the volume of the effective sphere to that of the spheroid. This effective diameter

reflects the volume of the protein and the hydration layer visible to SAXS, but does not include

thermo- and hydrodynamic effects of non-sphericity [193]. Thus, it should be considered as a

lower boundary to the effective sphere diameter.

A thermodynamic effective diameter, σB2
= 7.40 nm, follows from demanding equal second

virial coefficients, B2(T ), of hard spheroid and effective hard sphere [194].

Alternatively, dynamic single-particle properties can be used to define an effective diam-

eter. For hydrodynamic stick-boundary conditions and a < b, the translational free diffusion

coefficient of an isolated spheroid is given by [74, 195, 196]

dell
t,0(a,b) =

kBT S(a,b)
12πη0a

, (5.11)

with S(a,b) = 2 atan ξ (a,b)/ξ (a,b) and ξ (a,b) =
√

|a2 −b2| /a. Equating dell
t,0 to the diffu-

sion coefficient, dt,0 = kBT/(3πη0σdt,0), of an effective sphere leads to σdt,0 = 7.38 nm.

One can derive another effective diameter from considering the intrinsic viscosity

[η ] = lim
φ→0

η(φ)−η0

η0φ
, (5.12)

where φ is the particle volume fraction. For a spheroid with hydrodynamic stick-boundary

conditions [197, 198],

[η ]ell =
5

2
+

32

15π

[
b
a
−1

]
−0.628

[
1−a/b

1−0.075a/b

]
, (5.13)

which, for a = b, reduces to the Einstein result, [η ]sph = 2.5, for a solid sphere. Note here that

[η ]ell > 2.5 for a �= b. We obtain [η ]ell = 3.25 for the best fit values a and b given in Fig. 5.12.

On demanding equality of the interaction-independent linear terms in the virial expansions of

the viscosity,
η
η0

= 1+[η ]φ +O(φ 2), (5.14)

between spheroids and effective spheres, and on using φ ell = (4π/3)ab2n and φ sph =
(π/6)σ[η ]

3n for the same number density n, an effective diameter σ[η ] = 7.42 nm is obtained.

Since the spheroid aspect ratio, p = a/b = 0.37, is rather close to unity, the four discussed

effective diameters are all quite similar in magnitude. We use σ = σB2
= 7.40 nm in all our

calculations of the static and dynamic properties of BSA discussed in this thesis.
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5.4.3 Concentration series results

Concentrated protein solutions exhibit pronounced inter-particle correlations which are re-

flected in the static scattering intensity. Strong correlations are observed also in dilute, low-

salinity solutions where the proteins show long-ranged electrostatic repulsion.

In order to allow for an analytical theoretical treatment, we assume that the static scattering

intensity of interacting BSA proteins can modeled by the orientational-translational decou-

pling approximation Eqs. (3.39), rewritten as

I(q) = AcpPell(q)Sm(q), (5.15a)

Sm(q) =
[
1−X(q)

]
+X(q)S(q), (5.15b)

and

X(q) =
1

Pell(q)

⎡
⎣ 1∫

0

dμ fell(q,μ)

⎤
⎦

2

. (5.16)

Here, S(q) is the structure factor of ideally monodisperse effective spheres of diameter σ = σB2

and screened Coulomb repulsion of HSY type. In Fig. 5.14, the decoupling amplitude X(q)
for the BSA spheroid model is plotted. For wavenumbers q � 0.5 nm−1, X(q) remains close

to unity, decaying for larger q steeply towards its first zero value at q ≈ 1.3 nm−1. For q >

1.3 nm−1, X(q) < 0.04. The orientational disorder assumed in the decoupling approximation

has the effect of damping the oscillations in Sm(q). While Sm(q) is practically equal to one for

q � 1.3 nm−1, irrespective of the still visible oscillations in S(q), the effect of orientational

disorder on Sm(q) is weak in the range q � 0.5 nm−1, where the most distinctive features in

S(q) occur. We further note for monodisperse systems that Sm(q → 0) = S(q → 0), a feature

which plays an important role in the upcoming discussion of collective diffusion.

Fig. 5.15 includes the SAXS intensities for all explored BSA solutions without added salt,

that we could fit using the decoupling approximation in Eq. (5.15), with S(q) calculated in

MPB-RMSA based on Eq. (2.6). To highlight differences in the intensities in Fig. 5.15, the in-

tensity datasets are divided by their respective amplitudes A, and by the protein concentrations

cp. The most concentrated solution shown here is the one for cp = 90 mg/ml. The intensities

for two even more concentrated systems with cp = 180 and 270 mg/ml are not depicted in the

figure, since these could not be fitted reasonably well by the SY model.

In order to fit the experimental intensity data using Eq. (5.15), some deviations of the pref-

actor A from the optimized form factor fit value A0 have to be allowed for (see Tab. 5.1). The fit

of each individual intensity curve in Fig. 5.15 was made as follows: After dividing the SAXS

intensity by A0 and cp, the weighted sum of quadratic deviations between SAXS data points,

and the intensity according to Eqs. (5.15), was minimized by an automatic three-dimensional

weighted least-squares minimizer with respect to the fitting parameters {|Z|,ns,φ}. For each

concentration, the whole experimental dataset was used, for wavenumbers from 0.07 to about
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Fig. 5.14: Static orientational-translational decoupling approximation results for a represen-
tative system at cp = 45 mg/ml, selected from the low-salt BSA concentration series. The
decoupling amplitude X(q) is depicted as the black curve. The oscillations of the measur-
able structure factor, Sm(q) (blue curve), decay faster than for the HSY structure factor S(q)
(dashed red curve), calculated in MPB-RMSA. The inset enlarges the peak region. Values
a = 1.75 nm and b = 4.74 nm for the spheroid semi-axes are used. The parameters entering
into the calculation of S(q) are listed in Tab. 5.1.
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Fig. 5.15: SAXS intensities of BSA solutions at various cp, and without added salt, divided
by Acp. From top to bottom: cp = 0.9,1.8,4.5,7.2,9,13.5,18,45, and 90 mg/ml. The intensity
curves are displaced in steps of 0.1 along the vertical axis for better visibility. SAXS-data
in the extended range q � 4 nm−1 were taken into account in the fits, shown here only up
to q = 1.2 nm−1. Red solid lines: best fits according to Eqs. (5.15), with S(q) calculated in
MPB-RMSA. The fit parameters are listed in Tab. 5.1.
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Tab. 5.1: Fit parameters φ , |Z|, ns, and A/A0, for the BSA concentration series without added
NaCl, with intensities shown in Fig. 5.15. The additional parameters LB = 0.711 nm, σ =
σB2

= 7.40 nm, a = 1.75 nm, b = 4.74 nm are kept fixed, and A0 is taken from the form factor
fit in Fig. 5.12. The fit values at cp = 0.9,1.8,45, and 90 mg/ml should be taken with a pinch
of salt (see related text). The listed values for cp are according to Eq. (2.7).

cp [mg/ml] φ |Z| ns [μM] A/A0

0.9 5.19×10−4 34.5 1216 1.20

1.8 1.34×10−3 18.8 608 1.08

4.5 3.72×10−3 19.1 1278 0.96

7.2 6.97×10−3 16.7 1497 0.97

9 1.04×10−2 14.6 1510 1.05

13.5 1.28×10−2 12.6 1297 0.81

18 2.06×10−2 10.8 1292 0.85

45 8.19×10−2 9.47 2375 1.0

90 1.74×10−1 8.52 3323 1.0

4 nm−1. If the fit was unsatisfactory, the prefactor A was slightly altered, and the optimization

with respect to {|Z|,ns,φ} was repeated. This procedure was iterated until convergence in all

fit parameters was achieved. For all considered concentrations, LB = 0.711 nm, σ = σB2
= 7.40

nm, a = 1.75 nm, and b = 4.74 nm were kept fixed. Tab. 5.1 summarizes the obtained best fit

parameters.

While the overall intensity fits for the two lowest concentrations, cp = 0.9 and 1.8 mg/ml,

look reasonably good, they contain some peculiarities. A shoulder is present in the fit intensity

extending from q ≈ 0.3 to 0.8 nm−1, overshooting the experimental data by several standard

deviations. Moreover, the prefactor A in both cases is substantially larger than A0, and the

fitted |Z| assumes a questionably large value of 34.5 for cp = 0.9 mg/ml. These peculiarities

can be attributed to impurity contributions neglected in Eq. (5.15). Note also that the maximal

intensities in both systems occur at wavenumbers well below 0.3 nm−1, where impurities are

found to obstruct also the form factor fit in Fig. 5.12.

All our attempts to remedy these fitting problems for the two most dilute samples have

failed. Since we lack information on the shape and size distribution, and the interactions of

the impurities, we cannot improve on Eq. (5.15). Restricting the wavenumber interval in the

fitting procedure to q � 0.3 nm−1 gives no improvement, either. While Eq. (5.15) is expected

to be quite accurate in this restricted q-range, the maximum in I(q) is not included. The inten-

sity for q > 0.3 nm−1 is a monotonically decaying curve, almost completely determined by

the form factor. It therefore lacks distinct features coming from particle correlations, render-

ing the fit with respect to {|Z|,ns,φ} into an overdetermined problem. For all these reasons,
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our fit parameters in Tab. 5.1 for cp = 0.9 and 1.8 mg/ml should be considered as being not

quantitatively accurate.

Except for the two most dilute systems, all other systems with concentrations ranging from

cp = 4.5 to 90 mg/ml shown in Fig. 5.15 can be excellently fitted by Eq. (5.15). The obtained

effective charges, salt concentrations, and volume fractions all assume reasonable values,

showing systematic dependencies on the BSA concentration. Note, however, that for cp = 45

and 90 mg/ml, the SY model is pushed to its limit. On assuming a Hamaker constant of 3 kBT
[191], the repulsive barrier height of the DLVO potential becomes very small, with values of

1.3 and 0.5 kBT at cp = 45 and 90 mg/ml, respectively. The contact value of g(x) at x = 1 is

just barely zero for the more dilute system, whereas g(x = 1+)≈ 0.9 in the more concentrated

system. Obviously, the SY model with purely repulsive, spherically symmetric pair interac-

tions is bound to fail when the particles are allowed to come into hard-core contact. Thus, the

system with cp = 45 mg/ml, and fitted volume fraction φ = 8.19%, is clearly on the border-

line of applicability of the SY model. Somewhat unexpectedly, and probably fortuitously, the

system with cp = 90 mg/ml can still be fitted with good accuracy. Summarizing, the fit values

for the most concentrated systems with cp = 45 and 90 mg/ml in Tab. 5.1 should be inter-

preted with caution, since the fit parameters might be significantly distorted by the discussed

deficiencies of the SY model. Another indication for this are the obtained fit values for φ(cp),
which for the two most concentrated samples clearly overshoot the linear dependence on cp

found approximately for the less concentrated systems (see Tab. 5.1).

In closing our discussion of the static scattered intensities, we note that fit parameters

slightly different from the ones in Tab. 5.1 are obtained, when in place of the BSA model

with spheroid axes (a,b) = (1.75 nm,4.74 nm), the values (a,b) = (1.80 nm,4.60 nm) given

in [46] are used. For instance, at cp = 4.5 and 18 mg/ml, the best-fit values for |Z| change

to 18.4 and 10.7, respectively. Note that in comparison to Ref. [192], where the RMSA was

employed in fitting I(q), we use here the improved MPB-RMSA integral equation scheme for

S(q), resulting in more precise fit-values. Moreover, different from the earlier intensity fitting

described in [192], the dephasing influence on I(q) originating from the particle asphericity is

accounted for approximately in the decoupling approximation used in the present study. The

slightly different spheroid semi-axes (a,b) = (1.80 nm,4.60 nm), and the correspondingly

slightly changed fit-parameters, do not cause appreciable changes in the dynamical properties

explored in Section 6.3. For instance, the collective diffusion coefficient changes by no more

than 3%, and the changes in the static- and high-frequency viscosities are less than 0.1%. Note

that using the somewhat smaller spheroid causes changes of the fitted volume fraction of about

5% which does not change absolute values but slightly rescales the protein concentration axis

for the theoretical predictions.
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5.5 Static structure of gibbsite platelets

To fit the static mean scattered intensity of gibbsite in DMSO, and to provide a basis for

explaining the trends in the concentration dependence of the gibbsite platelet diffusion coeffi-

cients discussed in Section 6.4, we introduce here a simplifying model of the pair-interactions

and the shape of the gibbsite platelets. In this circular cylinder-Yukawa (CCY) model, which

is similar in spirit to our SY model for BSA proteins, the gibbsite platelets are described in

terms of their scattering amplitudes as orientationally disordered, flat, circular cylinders with

non-zero polydispersity both in their thickness- and radius distributions. In terms of the pair-

interactions, the gibbsite platelets are treated in the CCY model as uniformly charged effective

hard spheres of effective diameter σ , interacting by the HSY pair potential in Eq. (2.6).

5.5.1 Form factor

Recall from Section 5.4.1 our fitting procedure of the spheroid form factor to the SAXS-

recorded mean scattered intensity of dilute, weakly coupled BSA protein solutions. As a result

of this fit, the linear dimensions of the spheroid model of BSA proteins have been determined,

allowing for further application of this model in calculating static and dynamic properties of

BSA in dilute and concentrated solutions.

The reverse path is taken in the present section, in modeling the form factor in the CCY

model of gibbsite platelets. Different from BSA proteins, the shape and size of gibbsite

platelets is well known from our TEM and AFM pictures, with results shown in Figs. 2.4

and 2.5. However, static scattered intensities from dilute, weakly coupled gibbsite solutions,

to which the form factor could be directly fitted, are not available. As noted from Fig. 5.16,

under the low-salt conditions studied here, the scattered intensity shows pronounced signs of

particle interactions even for the most dilute samples considered. In addition, the q-range ac-

cessible in the SLS experiments is too restricted for a reliable form factor fit, even if the range

of electric repulsion was screened by the addition of salt.

Therefore, we use an ab initio calculation of the form factor in Eq. (3.42), used in the

subsequent analysis of interaction gibbsite platelets in the framework of the translational-

orientational and interspecies decoupling approximation. For continuous distributions of mo-

lar fractions xα and the scatterer volumes vα , the weighted sum in Eq. (3.42) can be expressed

as

Pm(q) =

∞∫
0

dR
∞∫

0

dh
1∫

0

dμPS(R)PS(h)v2(R,h)
∣∣ f̃cyl(q,R,h,μ)

∣∣2
∞∫

0

dR
∞∫

0

dh
1∫

0

dμPS(R)PS(h)v2(R,h)

, (5.17)
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where

f̃cyl(q,R,h,μ) =
4J1(qR

√
1−μ2)

qR
√

1−μ2
· sin(qhμ/2)

qhμ
(5.18)

is the form amplitude of a circular cylinder [93, 185, 199] of radius R, height h and volume

v(R,h) = πR2h, with J1 denoting the cylindrical Bessel function of the first kind. Orientational

averaging is achieved in Eq. (5.17) by integrating over μ = cos(ϑ), where ϑ is the polar an-

gle between the cylinder symmetry axis and the scattering vector q. A single integral suffices

here for the orientational averaging, when approximating of the hexagonal shape of gibbsite

platelets (c.f., Fig. 2.4) by circular cylinders. The average over the distribution of platelet sizes

is expressed by integrating with respect to R and h, on assuming that a normalized joint proba-

bility distribution P(R,h) can be approximated by the product of two unimodal Schulz-Zimm

distributions (2.9) for the marginal distributions PS(R) and PS(h). The best fits of PS(R) and

PS(h) to the size-histograms obtained from our TEM and AFM pictures of the dried specimen,

shown in Fig. 2.5, give mean values 〈R〉 = 44.2 nm and 〈h〉 = 7.66 nm, and relative standard

deviations of sR = 17.3% and sh = 55.3%, respectively.

5.5.2 Effective sphere diameter

The effective sphere diameter, σ , for the gibbsite platelets studied in this thesis is obtained

from equating the second virial coefficient, B2(T ), of neutral hard spheres of radius σB2
to

that of neutral, non-overlapping cylindrical platelets of radius 〈R〉 and height 〈h〉, on assuming

all orientations to be equally probable. According to [194], this results in

σ3
B2

=
3

2
〈R〉2 〈h〉

[
1+

〈h〉
2〈R〉

(
1+

〈R〉
〈h〉

)(
1+

π 〈R〉
〈h〉

)]
, (5.19)

giving σB2
= 65 nm.

As discussed already in Section 5.4.2 in the context of the SY model for BSA proteins,

there are various alternatives to define an effective sphere diameter of aspherical colloids. For

instance, by equating the mean geometric cylinder volume and the volume of the effective

sphere, we would obtain the geometric effective diameter, σgeo = [6
〈
R2h

〉
]1/3 = 45 nm, of a

gibbsite platelet.

Accurate analytic expressions for free diffusion coefficients of Brownian cylinders with

arbitrary aspect ratio are not available. Therefore, the calculation of effective sphere radii

based on these dynamic quantities is less straightforward for circular cylinders than for the

spheroids discussed in Section 5.4.2.

Nevertheless, estimates for the free diffusion coefficient of gibbsite platelets can be given.

The mean aspect ratio, p = 〈h〉/(2〈R〉) = 0.087, of the explored platelets is so small that

the ultrathin disk limit (h → 0) can be applied to reasonable accuracy. In this limit, one finds

[160, 200] dt,0 = (d‖
t,0 +2d⊥

t,0)/3 = kBT/(12η0 〈R〉)≈ 3.8×10−12 m2/s for the orientationally
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averaged single-disk translational free diffusion coefficient, and d⊥
r,0 = 3kBT/(32η0〈R〉3) ≈

2.2× 103/s for the (end-over-end tumbling) rotational free diffusion coefficient. Note here

that for p → 0, d⊥
r,0 is equal to the rotational diffusion coefficient d‖

r,0, characterizing rotation

with respect to the platelet rotational symmetry axis at infinite dilution. A small but finite

value of p lowers somewhat the values both of dt,0 and d⊥
r,0, and d‖

r,0 and d⊥
r,0 become different.

Equating the ultrathin disk limit result for dt,0 and dr,0 with the translational and rotational free

diffusion coefficients dt,0 = kBT/(3πη0σdt,0) and dr,0 = kBT/(πη0σdt,0
3) of spheres, results in

the effective sphere diameters σdt,0 = 56 nm and σdr,0 = 66 nm, of the gibbsite platelets.

Tirado and García de la Torre [201, 202] have provided precise polynomial fits to their

simulation data for the single particle diffusion coefficients of cylindrical platelets as a function

of p. The allowed aspect ratio range, p > 0.1, of these fits, however, excludes the small aspect

ratio of the present gibbsite platelets. However, we can estimate the influence of a non-zero p
value using the analytic result in Eq. (5.11) for the translational free diffusion coefficient of

spheroids, and the expression [196]

dell,⊥
r,0 =

kBT
8πη0ab2 frot(a,b)

(5.20a)

frot =
4

3
× (b/a)2 − (a/b)2

2−S(a,b)[2− (b/a)2]
(5.20b)

for the rotational end-over-end tumbling free diffusion coefficient of oblate (b > a) spheroids,

with the function S(a,b) defined already in Section 5.4.2. Choosing a spheroid of equal aspect

ratio p = a/b = 〈h〉/(2〈R〉) and volume v = π/6ab2 = π
〈
R2h

〉
, as in the cylinder model of

gibbsite, gives dell
t,0 = 3.13× 10−12 m2/s and dell,⊥

r,0 = 1.4× 103/s. These values, which are

18% and 36% smaller than their respective ultrathin disk-limit counterparts, suggest that the

non-zero thickness of gibbsite platelets has a rather small, yet non-negligible influence on the

translational and rotational free diffusion coefficients.

Finally, on employing the power-law representation of simulation data in [88] for the in-

trinsic viscosity of thin cylinders, we obtain [η ]cyl ≈ 6.8 at p = 0.087. Note that this value for

[η ] is similar to the one found experimentally for uncharged gibbsite platelets in [198], and

that a spheroid of equal aspect ratio has a distinctly larger intrinsic viscosity of [η ]ell ≈ 9.1.

Demanding equality of the interaction-independent linear terms in the virial expansions in

Eq. (5.14) for the viscosity of cylindrical platelet and effective sphere suspensions, and on us-

ing φ cyl = π
〈
R2h

〉
n and φ sph = (π/6)σ[η ]

3n for equal number density n, an effective diameter

σ[η ] = 63 nm for gibbsite platelets is obtained.

In summary, the small aspect ratio, p = 0.087, of gibbsite platelets implies a rather wide

spread in the various effective sphere diameters discussed here, with the largest relative devi-

ation of 46% between σgeo and σdr,0 . In comparison, the different effective sphere diameters

of BSA proteins at p = 0.37, discussed in Section 5.4.2, show a maximum spread of less than

10%.
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5.5.3 Static mean scattered intensity

To model the static mean scattered intensity of gibbsite solutions recorded by SLS, we employ

again the translational-orientational decoupling approximation Eqs. (3.39) with monodisperse

interactions assumed. Like the form factor in Eq. (5.17), the decoupling amplitude X(q) is

expressed here as a ratio of integrals comprising the radius- and thickness distributions of the

model cylinders, with

X(q)Pm(q)
∞∫

0

dR
∞∫

0

dh
1∫

0

dμPS(R)PS(h)v2(R,h) =

∞∫
0

dR
∞∫

0

dhP2
S (R)P2

S (h)v2(R,h)

⎡
⎣ 1∫

0

dμ f̃cyl(q,R,h,μ)

⎤
⎦

2

+

⎡
⎣ ∞∫

0

dR
∞∫

0

dh
1∫

0

dμPS(R)PS(h)v(R,h) f̃cyl(q,R,h,μ)

⎤
⎦

2

, (5.21)

And Pm(q) evaluated according to Eq. (5.17). Due to the small aspect ratio p, Pm(q) and X(q)
are practically independent of h. The function X(q) is well approximated by a constant value

of 0.72 in the range q � 2/〈R〉, including the full q-range accessible to SLS (c.f., Fig. 5.16).

The structure factor S(q), entering into Eqs. (3.39), has been calculated in MPB-RMSA,

on assuming that the pair interaction of charged gibbsite platelets can be approximated by the

repulsive HSY pair potential in Eq. (2.6), evaluated for monodisperse effective spheres with a

hard-core diameter σ = σB2
= 65 nm. As further input into Eqs. (2.5) for the HSY screening

and coupling parameters, we use LB = 1.18 nm, for DMSO at T = 293K, and a residual 1-1

electrolyte concentration of ns = 7×10−6 M.

The HSY input parameters that remain to be determined are the effective particle charge

Z, and the number concentration, neff = 6φeff/(πσ3), of effective spheres. Recalling our dis-

cussion in Section 5.5.2 regarding the various effective sphere diameter definitions for gibb-

site, we note that the volume fraction, φeff, of effective spheres is typically different from the

physical volume fraction, φ = M/(ρmV ), of gibbsite platelets. Here, M is the total mass of

suspended gibbsite of known mass density ρm, and V is the suspension volume. It can be

expected, however, that φeff scales linearly in φ , and that φeff = 0 for φ = 0.

Fig. 5.16 includes the experimentally determined intensities (open symbols), for platelet

volume fractions φ = 0.16% (black) and 0.88% (red). The experimentally recorded intensi-

ties have been divided by their respective, experimentally determined value for φ , which in

Eq. (3.39a) is proportional to N, and by the q-independent factor I0 that is the same for all

intensity measurements corrected for source intensity, recording time, and scattering volume.

The resulting experiment data have been fitted by Pm(q)× Sm(q), with best fits depicted as

solid lines in Fig. 5.16.
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Fig. 5.16: Normalized experimental mean scattered intensity, I(q)/(I0φ), of gibbsite platelets
in DMSO, for φ = 0.16% (black squares) and φ = 0.88% (red circles), in comparison to the
fit functions Pm(q)× Sm(q) with φeff = 0.43% (black line) and φeff = 1.68% (red line). Black
dotted curve: measurable form factor Pm(q). Blue dashed curve: decoupling amplitude X(q).
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Since an accurate determination of Z relies on fitting the maximum in I(q), which unfor-

tunately is not located inside the SLS-resolved q-range for most of the considered concentra-

tions, we alternatively estimate Z by the observed I/LC transition concentration, which accord-

ing to our experiments occurs at φI/LC = 8%, at low salinity. Simulations predict the isotropic-

nematic transition of neutral hard disks to occur at nI/LCd3 ≈ 4 [203, 204], where nI/LC is the

(isotropic phase) number density at the transition, and d is the disk diameter. Using this re-

lation, we estimate the charge on a gibbsite platelet by assuming that d = 2[〈R〉+ κ−1] and

nI/LC = φI/LC/(π
〈
R2h

〉
), with κ2 = 4πLB(niso|Z|+2ns)/(1−φI/LC). For the considered large

concentration at the I/LC transition point, the residual salt contribution to κ can be neglected.

Solving for the platelet effective charge leads to Z = 71 This effective charge value is used in

all our calculations, independent of φ , since the dependence of Z on φ and ns is unknown to

date. According to Ref. [205], Z = 71 is a quite reasonable value for gibbsite platelets.

As demonstrated in Fig. 5.16, decently good fits of the experimental I(q) are obtained from

adjusting the only remaining fit parameter, φeff, which enters into the MPB-RMSA calculation

of S(q). The global factor I0 in Eq. (3.39a) only sets the overall scale, and is system indepen-

dent. Assuming a linear homogeneous relation φeff(φ), from our fit we obtain φeff = 1.93φ .

While the theoretical fit to the experimental I(q) is satisfying, future SAXS experiments are

desirable to obtain I(q) in a more extended q-range, covering all the structural features in I(q),
and allowing for a more detailed fitting.



CHAPTER

SIX

Diffusion and Rheology results: Theory, simulation and

experiment

6.1 Short-time diffusion and high-frequency viscosity in

simulation and theory

6.1.1 Accelerated Stokesian Dynamics computer simulations

The accelerated Stokesian Dynamics simulations of suspensions of colloidal HSY particles,
with results presented in this chapter, as well as the related Monte Carlo simulations with
results presented in Chapter 5, and the Molecular Dynamics simulations for the equilibrium
structure of uncharged spheres, have been performed by Prof. Adolfo J. Banchio at the Na-
tional University of Córdoba, Argentina, in the framework of our joint theoretical-computer
simulation project.

The simulation data for H(q) and η∞ in the HSY systems explored in this work, have been

generated using an accelerated Stokesian Dynamics (ASD) simulation code. The details of the

simulation method have been explained in Ref. [24]. It allows to simulate short-time properties

of a larger number of spheres, typically up to N = 1000, placed in a periodically replicated

simulation box, allowing for improved statistics. Since short-time properties are obtained from

single-time equilibrium averages, we have used equilibrium configurations generated using a

Monte-Carlo simulation method for charged spheres, and a Molecular Dynamics algorithm

for neutral hard spheres, with the many-sphere HIs accounted for using the ASD scheme. The

computed hydrodynamic function, HN(q), shows a strong system-size dependence, even when

N is not small. We therefore extrapolate HN(q) to the thermodynamic limit using the finite-size

97
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Fig. 6.1: Hydrodynamic function of a zero-salinity system at volume fractions, φ , as indicated.
Open symbols: ASD simulation data. Black dashed lines, blue dotted curves, and red solid
lines: PA scheme, δγ scheme, and self-part corrected δγ-scheme results, respectively. As input
to the analytical short-time schemes, S(q) and g(r) have been computed in MPB-RMSA. These
static functions are displayed in Fig. 5.1. System parameters are: Z = 100,LB = 5.62 nm, and
σ = 200 nm.

scaling correction [206, 207],

H(q) = HN(q)+1.76S(q)
η0

η∞(φ)
(φ/N)1/3 , (6.1)

which, for q → 0 and q → ∞, includes the finite-size corrections for K and ds, respectively.

This finite-size correction formula was initially proposed by Ladd for hard spheres [206, 208,

209], and has been subsequently applied also to charged spheres [23], and solvent-permeable

particles [26]. As pointed out by Ladd [206], and explained by Mo and Sangani [207], η∞ is

not critically dependent on N so that a finite size scaling extrapolation to N → ∞ is not needed

(see also [25]). The simulation results discussed in following are obtained from averaging over

2000 configurations, for systems of typically N = 512 particles.
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Fig. 6.2: Hydrodynamic function H(q) for systems at various volume fractions, φ , and salt
concentrations, ns, as indicated in each panel. The panels are ordered by φ , increasing from
top to bottom, and by ns, decreasing from left to right. Open symbols: ASD simulations. Black
dashed lines, blue dotted curves, and red solid lines: PA scheme, δγ scheme, and self-part
corrected δγ-scheme results, respectively. In the latter scheme, the self-diffusion coefficient
has been calculated using the PA scheme according to Eqs. (4.25) and (4.11). The horizontal
black and orange lines mark the values for ds/dt,0 obtained by ASD simulations and in the PA
scheme, respectively. As input to the analytical short-time schemes, S(q) and g(r) have been
computed in MPB-RMSA. These functions are displayed in Figs. 5.2 and 5.3, respectively.
System parameters: LB = 5.617 nm, σ = 200 nm, and Z = 100.
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6.1.2 Diffusion properties of charged particles

The results for H(q) obtained by the ASD simulations and all analytic short-time schemes

described in Chapter 4, are included in Figs. 6.1 and 6.2. Open symbols represent ASD sim-

ulation data, black dashed curves are our PA results, blue dotted curves the zeroth-order δγ
scheme, and red solid lines the self-part corrected δγ-scheme predictions. In Fig. 6.1, salt-

free suspensions are considered, with the corresponding pair-structure functions S(q) and g(r)
displayed in Fig. 5.1.

The systems considered in Fig. 6.2 are for three different finite salt concentrations, with

the corresponding functions S(q) and g(r) displayed in Figs. 5.2 and 5.3, respectively. The

black and orange horizontal lines in each panel of Fig. 6.2 mark the reduced short-time self-

diffusion coefficient, ds/dt,0 = H(q → ∞), obtained from the ASD simulations and the PA

scheme, respectively.

As discussed already in Section 5.1.2, the rightmost column of panels in Fig. 6.2 presents

results for three systems of strongly charged particles with very low residual, but experimen-

tally still accessible salt content. The most concentrated system in panel (i) is rather close to

the freezing transition point.

Different from neutral hard spheres, where H(qm) decreases linearly with increasing φ ,

the hydrodynamic function peak heights of the three low-salinity systems depends non-

monotonically on φ , with ASD predicted values H(qm) = 1.13, 1.17, and 1.15 for the sys-

tems in panels (c), (f), and (i), respectively. Such a non-monotonic φ -dependence of H(qm)
is typical for low-salinity systems, as discussed in Refs. [23] and [120]. The ASD results for

the reduced self-diffusion coefficient, ds/dt,0, and the corrected δγ-scheme results for the sed-

imentation coefficient K in panels (c), (f), and (i), follow closely the concentration-scaling

Eqs. (4.24b) and (4.24a), with at = 2.63 and as = 1.44.

We proceed in our discussion by considering the systems in the leftmost column of pan-

els. The salt concentration, ns = 10−4 M, of these systems is so large that the neutral hard-

sphere (HS) limit is practically reached. The comparison with the H(q) of genuine neutral

hard spheres at volume fractions equal to those in panels (a), (d), and (g), shows relative

differences of less than 6% in all three cases. The proximity to genuine neutral hard-sphere

systems is manifest also in the large values, k = 18.5,18.6, and 18.7, of the screening parame-

ter, and in the small ratios k2
c/k2

s = 0.01,0.02, and 0.03, for the systems in panels (a), (d), and

(g), respectively.

For the smallest considered concentration φ = 0.055 (top row of panels in Fig. 6.2), the

differences in the respective H(q) predicted by the analytic methods and the ASD simulations

are very small. Since the PA scheme becomes exact at low φ , this illustrates that, despite their

overall inaccuracies, the self-part corrected, and even the uncorrected δγ-scheme, can be used

to obtain good estimates of H(q) also for more dilute suspensions.

With increasing φ , pronounced differences are observed in Fig. 6.2 between the PA-scheme

and ASD results for H(q). This reflects the expected failure of the PA scheme in concentrated
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suspensions, where three-body and higher-order HI contributions become influential. The de-

viations of the PA-scheme results from the precise simulation data are most pronounced for

the peak value H(qm), which is overestimated by the PA scheme, and in the sedimentation

coefficient, K = H(q → 0), which is underestimated. In fact, for the system in panel (i), the

PA prediction for K is just barely larger than zero, turning to unphysical negative values when

the volume fraction surpasses φ = 0.154 at a fixed ns = 10−6 M. However, the PA-scheme

values for ds/dt,0 remain in very good agreement with the ASD results, with a relative devi-

ation of less than 3.5% even at φ = 0.15. The values for ds/dt,0 predicted by the uncorrected

δγ scheme are generally in less good agreement with the simulation data, clearly revealed in

Fig. 6.2 by the parallel offset of the corresponding H(q).
The self-part corrected δγ-scheme results for H(q) in Fig. 6.2 (red solid lines) illustrate that

this hybrid scheme combines the good accuracy of the PA scheme regarding ds, and of the δγ
scheme regarding Hd(q). Indeed, the corrected δγ-scheme results for H(q) are in overall good

agreement with the ASD simulation data for all considered systems, with the largest deviation

of 6% for H(qm) observed in panel (i).

In closing our discussion of Fig. 6.2, a short comment is in order regarding the compu-

tational cost caused by the considered methods of computing H(q). The fast and accurate

evaluation of S(q) and g(r) by the MPB-RMSA method, in combination with the easily evalu-

able integrals in Eqs. (4.11), (4.12), and (4.19), has allowed us to implement a convenient

graphical user interface code, described in Appendix E. Using this code, MPB-RMSA results

for S(q) and g(r), and PA-, δγ-, and self-part corrected δγ-scheme results for H(q), are ob-

tained in less than 1 second of cpu time, for a given set of input parameters {LB,σ ,Z,ns,φ}.

Thus, all curves depicted in Fig. 6.2, except for the ASD simulation data, have been obtained

altogether in less than a minute on a standard desktop PC. In comparison, the computation

of just one of the computer simulation curves in Fig. 6.2 required on a standard desktop PC

typically 5 hours of cpu time for generating 2000 equilibrated configurations (using our MC

method) and approximately 8 hours of cpu time for computing H(q) with the ASD scheme.

The overall accuracy and fast performance of the hybrid δγ scheme in Eqs. (4.25)-(4.27) make

this scheme well-suited for the real-time fitting, even of large sets of experimentally recorded

data for H(q) and D(q) [20].

6.1.3 Hybrid δγ scheme for diffusion of neutral hard spheres

The main virtue of the ds-corrected (zeroth-order) δγ scheme lies in its good applicability to

charge-stabilized systems. However, it is interesting to assess in more detail its performance

in the limiting case of neutral hard spheres, in particular when the values of H(q) at q = 0

and q = qm are considered. Recall for hard spheres that the accurate expression for dHS
s in

Eq. (4.26) should be preferentially used instead of the approximate PA result. For neutral

spheres, higher-order HI contributions to ds begin to matter at somewhat smaller concentra-

tions than for charge-stabilized particles, where near-contact configurations are unlikely.
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Fig. 6.3: Reduced short-time sedimentation coefficient, KHS, of neutral hard spheres. Open
circles: Hydrodynamic force multipole simulation data by Abade et al. [26]. Open Squares:
Lattice-Boltzmann simulation data by Segrè et al. [208]. Black dashed line: PA-scheme re-
sult. Dashed-dotted red line: uncorrected δγ-scheme result. Dashed orange line: self-part
corrected δγ-scheme result, with ds/dt,0 taken from the PA-scheme. Solid black line: self-part
corrected δγ-scheme result, with ds/dt,0 according to Eq. (4.26). Solid blue line: second-
order virial result KHS = 1−6.546φ +21.918φ 2 [166]. The static structure factor input was
obtained using the analytic Percus-Yevick solution.
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In Fig. 6.3, numerically precise Lattice Boltzmann [208] and hydrodynamic force multipole

simulation results [26] for KHS(φ) are compared with the predictions of all considered ana-

lytical schemes. For φ � 0.35, the uncorrected δγ scheme underestimates the simulation data,

showing the opposite trend of a slight overestimation for φ � 0.35. The corrected δγ scheme

with ds-input according to Eq. (4.26), on the other hand, is in excellent agreement with the

simulation data up to φ ≈ 0.4, reflecting the accuracy of the δγ-scheme predictions for Hd(q)
also for neutral spheres.

For large volume fractions φ � 0.4, however, the distinct part, KHS −dHS
s /dt,0, of the sedi-

mentation coefficient is considerably underestimated by the δγ scheme, to such an extent that

the self-part corrected δγ scheme prediction for KHS assumes unphysical negative values for

φ � 0.45. Up to φ ≈ 0.2, the corrected δγ-scheme prediction for KHS, with dHS
s obtained by

the PA scheme, lies closer to the simulation data than the uncorrected δγ-scheme result. This

can be explained by the precise account of (two-body) lubrication effects in the PA-scheme,

which are not included in the uncorrected δγ scheme. At larger concentrations, however, the

corrected δγ scheme, with PA input for ds, increasingly underestimates the sedimentation co-

efficient up to the point that, for φ � 0.31, unphysically negative values for KHS are attained.

This is a consequence of the already noted many-sphere hydrodynamic shielding effect, dis-

regarded in the PA scheme, which lowers the strength of the HIs without reducing their range,

leading to a larger self-diffusion coefficient than predicted on basis of hydrodynamic pair-

interactions alone. The neglect of shielding effects by the PA scheme, both in the self- and

distinct parts of KHS, is the reason for the crossover of the PA curve of KHS to negative values

already at φ ≈ 0.21.

Regarding again Fig. 6.3, we note that the second-order virial result,

KHS = 1−6.546φ +21.918φ 2 +O(φ 3), (6.2)

derived in Ref. [166], ceases to be applicable for φ � 0.15, where the representing curve bends

up to larger values. This is the reason why this second-order virial result cannot be used, dif-

ferent from the corresponding virial results for dHS
s , ηHS

∞ , and HHS(qm), to construct analytic

extrapolation formulas, which are valid for all concentrations up to the freezing transition.

We proceed by discussing the concentration dependence of the peak value, HHS(qm), of

the hydrodynamic function of neutral spheres. As noted in Sec. 4.1, H(qm) is related to the

short-time cage diffusion coefficient, dcge = dt,0H(qm)/S(qm), characterizing the initial decay

rate of density fluctuations of wavelength equal to the nearest-neighbor cage size. Fig. 6.4

displays the decline of the hard-sphere H(qm) with increasing φ . To excellent accuracy up to

the freezing volume fraction, this decline is described by the first-order virial result [23]

HHS(qm) = 1−1.35φ . (6.3)

Indeed, all the depicted ASD [23] and hydrodynamic force multipole [26] values for H(qm)
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Fig. 6.4: Hydrodynamic function peak value, H(qm), of neutral hard spheres. Open circles:
Hydrodynamic force multipole simulation results by Abade et al. [26]. Open diamonds: ASD
simulation data [23]. Black dashed line and dashed-dotted red line: PA-scheme and uncor-
rected δγ-scheme results, respectively. Dashed orange line: self-part corrected δγ-scheme
results, with ds/dt,0 taken from PA-scheme calculations. Solid black line: self-part corrected
δγ-scheme results, with ds/dt,0 according to Eq. (4.26). Dotted curve in magenta: 1−1.35φ .
The static structure factor input was obtained using the analytic Percus-Yevick solution.
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follow this line, indicating that, for a so far unknown reason, all higher order virial contri-

butions cancel out. According to Fig. 6.4, the uncorrected δγ scheme significantly underesti-

mates HHS(qm) for φ � 0.35, overestimating it instead for φ � 0.4. In contrast, the corrected

δγ-scheme result with the precise dHS
s according to Eq. (4.26), is distinctly more accurate in

that it only very slightly underestimates the linear decay in Eq. (6.3) for φ � 0.4. Moreover,

for φ > 0.4, the positive-valued deviations from 1−1.35φ are substantially smaller than those

of the uncorrected δγ scheme.

The corrected δγ-scheme prediction for HHS(qm), with ds calculated using the PA scheme,

is a decent approximation up to φ � 0.15. Its bending over to smaller values occurs for

HHS(qm) at somewhat larger φ than in the sedimentation case, indicating that δγ-scheme

results for Hd(q) are more accurate at q = qm than at q ≈ 0. The curve for HHS(qm) predicted

by the PA scheme bends over to larger values at a concentration φ ≈ 0.37 vastly beyond its

range (φ � 0.1) of applicability. The total neglect of many-body HIs in the PA scheme implies,

at larger φ , an underestimation of ds, but to a larger extent an overestimation of Hd(qm). As a

net result, HHS(qm) at large φ is strongly overestimated by the PA scheme.

In summarizing our discussion of hard-sphere systems, the key message conveyed by

Figs. 6.3 and 6.4 is that the corrected δγ scheme, with ds according to Eq. (4.26), describes

HHS(q) quite precisely for φ � 0.4.

6.1.4 High-frequency viscosity in simulation and theory

In the following, we compare viscosity results obtained by the various methods described in

Sec. 4, for the two limiting cases of deionized (low-salinity) charged-sphere and neutral hard-

sphere suspensions. Results for systems with intermediate added salt are in between these two

limiting cases.

In Fig. 6.5, we display our viscosity results for neutral hard spheres (HS) with those for

two deionized suspensions of highly charged spheres (CS) where ns = 0. Results by all the

methods in Section 4 are shown. We point out that, in addition to the CS system of Fig. 6.2

with parameters LB = 5.617 nm, σ = 200 nm, and Z = 100 (referred to here as system CS-1),

whose ASD results for η∞ in Fig. 6.5 are indicated by filled red circles, we additionally show

viscosity results for another zero-salt system where LB = 0.71 nm, σ = 50 nm, and Z = 70

(labeled CS-2), whose ASD data for η∞ are represented by red diamonds filled in blue. The

reason for including in Fig. 6.5 results for two different deionized systems, is that system CS-1

freezes at φ ≈ 0.15, whereas systems CS-2 stays fluid up to φ ∼ 0.3, allowing us to test the

predictions of our analytical methods in a more extended volume fraction range. The ASD

simulation data for η∞(φ) for systems CS-1 and CS-2 merge continuously, overlapping nearly

perfectly within 0.1 < φ < 0.15. This indicates that the limiting behavior of η∞ for highly

correlated charged spheres is practically reached in both systems. Therefore, the depicted CS-

results for η∞ were calculated in the analytic schemes using the parameters of system CS-2
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Fig. 6.5: Reduced high-frequency viscosity, η∞/η0, as a function of φ , for a suspension of
neutral hard spheres (HS, in black), and two deionized charged-sphere suspensions (CS-1 and
CS-2, in red). The leading-order Einstein contribution, 1 + 2.5φ , is subtracted off to expose
the differences. Symbols: ASD simulation results. Dashed lines: PA-scheme results according
to Eq. (4.15). Dotted lines: δγ-scheme results according to Eqs. (4.20)-(4.22). Solid lines:
self-part corrected δγ-scheme results according to Eqs. (4.27), (4.21), and (4.22). All analytic
schemes use the MPB-RMSA S(q) as input. The CS-1 viscosity results represented by red filled
circles are ASD data for LB = 5.617 nm, σ = 200 nm, and Z = 100. The ASD data for the
more weakly charged, smaller particles of system CS-2, with LB = 0.71 nm, σ = 50 nm, and
Z = 70 are indicated by red diamonds filled in blue. The parameters of system CS-2 have been
used in the analytic calculations. The inset magnifies the details at lower φ .
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only. The deviations in η∞ for the two CS systems are minuscule in all considered analytic

schemes.

Consider first the performance of the PA scheme. By its definition, the PA result for η∞ is

in very good agreement with the ASD simulation data at low φ , but the agreement becomes

poorer with increasing volume fraction. While the deviations between the ASD and PA results

for low-salt systems are very small up to φ � 0.2, for neutral spheres significant differences

are visible already for φ � 0.1. These differences originate from the fact that in charged-

sphere suspensions, near-contact configurations are disfavored by the electric repulsion, i.e.,

charged-sphere systems are hydrodynamically more dilute than neutral sphere suspensions.

Since higher-order HI effects on η∞ in low-salinity charged systems are weaker, for many

such systems (including system CS-1), which freeze already at φ � 0.2, the accuracy of the

PA-scheme for η∞ is sufficiently good in the whole fluid regime. Regarding H(q), however,

the PA-scheme predictions for charged spheres deviate significantly from the ASD data al-

ready at φ � 0.1 (see again Fig. 6.2). At larger φ , and in contrast to the ASD data, the PA

scheme predicts only a slight enlargement of η∞ in going from charged to neutral spheres.

The distinctly larger values of η∞ for concentrated hard-sphere suspensions are thus mostly

due to near-field, many-body HIs which enlarge the viscous dissipation. Overall, however, η∞
is rather insensitive to the range of the pair potential, at least in comparison to the static (zero

frequency) viscosity which for concentrated systems can become very much larger than η∞
[210].

The self-part modified δγ scheme for η∞, defined by Eq. (4.27), agrees overall very well

with the ASD data for charged spheres in the whole fluid-state concentration regime. Small

deviations from the simulation data are noticed at low φ values only. Regarding neutral hard

spheres, a similar observation applies to the unmodified second-order δγ scheme, which de-

scribes the ASD simulation data quite well up to φ ≈ 0.4. The slight overestimation of ηHS
∞ at

lower φ can be attributed to the non-exact treatment of two-body HI contributions by the δγ
scheme.

Overall, the high-frequency viscosity of charged-sphere systems at low salinity is well cap-

tured by the modified δγ-scheme in Eq. (4.27), and for neutral hard spheres by the unmodified

δγ scheme (up to φ ≈ 0.4). Different from the self-part corrected δγ scheme for H(q), which

makes reliable predictions for arbitrary salinities, the modified δγ scheme for η∞ applies to

low-salinity systems only, and the unmodified δγ scheme only to neutral hard spheres. The

reasons for this have been discussed already in Section 4.4.

Before closing our discussion of η∞, it is of interest to compare the numerical efforts re-

quired by the employed methods. The computation of the 45 ASD data points for neutral and

charged spheres included in Fig. 6.5 required about 500 hours of cpu time on a modern desk-

top PC. This large time investment should be compared to the few minutes computation time

on a comparable PC which were required for the results by all considered analytic schemes,

amounting to more than one thousand data points on a dense mesh of φ values.
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6.1.5 Short-time relations between viscosity and diffusion properties

Having quite accurate analytic methods for short-time properties at our disposal, we are in

the position to analyze possible relations between these properties in the whole fluid-state

concentration regime. Specifically, we want to test the validity of two generalized Stokes-

Einstein (GSE) relations,
D∗(φ)

dt,0
× η∞(φ)

η0
≈ 1, (6.4)

for D∗(φ) = ds(φ) and D∗(φ) = dcge(φ). In addition, we probe the validity of the Kholodenko-

Douglas GSE (KD-GSE) relation [30],

dc(φ)
dt,0

× η∞(φ)
η0

×
√

S(q → 0,φ) ≈ 1, (6.5)

between the collective diffusion coefficient, dc = K/S(q → 0), η∞, and the square root of the

isothermal osmotic compressibility given by S(q → 0). In particular the KD-GSE relation has

been used in various biophysical and soft matter studies [31–34].

All three considered GSE relations are exact at φ = 0 only. The approximate validity of a

GSE relation in concentrated systems is an important issue in microrheological studies, since

it allows to infer a rheological property more easily from a diffusion measurement. For testing

the GSE relations in Eqs. (6.4) and (6.5), we consider here again the two limiting HSY cases

of a low-salinity charge-stabilized system and neutral spheres, since the differences in the

respective short-time dynamic properties are here largest.

For a precise test of the GSE relations in the case of hard spheres, we take advantage of

simple analytic expressions available for all short-time properties appearing in Eqs. (6.4) and

Eq. (6.5), with the exception of K, for which we use the quite accurate self-part corrected

δγ-scheme result depicted in Fig. 6.3. The analytic expressions for hard spheres, which apply

to excellent accuracy up to φ = 0.5, are Eq. (6.3) for HHS(qm), Eq. (4.26) for dHS
s , and the

generalized Saitô-type expression for ηHS
∞ [25],

ηHS
∞

η0
= 1+

5

2
φ

1+S
1−φ(1+S)

, (6.6)

where S = 1.001φ +0.95φ 2 −2.15φ 3. Moreover, we use the precise formula for the structure

factor peak height [210]

SHS(qm) ≈ 1+0.644φgHS(x = 1+), (6.7)

where gHS(x = 1+) = (1−0.5φ)/(1−φ)3
is the Carnahan-Starling contact value for the hard-

sphere rdf. For SHS(q → 0) in Eq. (6.5), we employ the Carnahan-Starling equation of state

[4, 7], which gives SHS(q → 0) = (1−φ)4/[(1+2φ)2 +φ 3(φ −4)].
In testing the GSE relations in Eqs. (6.4) and (6.5) for low-salinity systems, for the diffusion
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Fig. 6.6: Test of the two GSE relations in Eq. (6.4), relating η∞ to D∗ = ds and D∗ = dcge,
respectively. Solid lines: (ds/d0)× (η∞/η0) vs. φ . Dashed lines: (dcge/d0)× (η∞/η0) vs. φ .
Black curves are hard-sphere results obtained from Eqs. (4.26), (6.3), (6.6), and (6.7). Red and
blue curves are corrected δγ-scheme results for the low-salinity charged-sphere systems CS-1
and CS-2, respectively, both assuming a residual salt content of ns = 10−6 M. The corrected
δγ-scheme results have been calculated using Eqs. (4.27), (4.21), and (4.22) for η∞, and
Eqs. (4.25) and (4.11) for ds and dcge = d0H(qm)/S(qm). As input to all analytic schemes,
MPB-RMSA results for S(q) have been used.

properties we use the self-part corrected δγ scheme, with ds calculated by the PA scheme. For

η∞ we use the corrected δγ scheme according to Eq. (4.27).

The validity of the two GSE relations in Eq. (6.4) is examined in Fig. 6.6. A valid GSE

relation is reflected by a horizontal line of unit height. For neutral hard spheres (black lines),

the product (dHS
s /dt,0)× (ηHS

∞ /η0) is well approximated, for all displayed φ , by its first-order

in φ expansion given by 1 + 0.67φ , showing a more than 20% violation of this GSE relation

for dHS
s when φ � 0.3.

Different from dHS
s , the GSE scaling for dHS

cge is approximately satisfied with a maximal devi-

ation from one of 8%. Thus, for hard-sphere like colloidal particles available only in amounts

too small for a mechanical rheological experiment, one can determine η∞ approximately from

a dynamic scattering experiment measuring D(qm).
According to Fig. 6.6, in low-salinity systems of charged particles, the GSE-relation for

ds is overall of similar accuracy as that for hard spheres, although the deviations from one

are larger at smaller φ . The curves for (ds/dt,0)× (η∞/η0) obtained for the two low-salinity



110

6.1. SHORT-TIME DIFFUSION AND HIGH-FREQUENCY VISCOSITY IN

SIMULATION AND THEORY

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0φ

0

1

2

3

4

5

6

(d
c

η ∞
)/

(d
t,

0
η 0) ×

 [
S

(q
→

0)
]1/

2
0 0.1 0.2 0.3 0.4 0.5φ

0

0.4

0.8

1.2

Fig. 6.7: Test of Kholodenko-Douglas GSE relation in Eq. (6.5). Black curves: neutral hard-
sphere results based on the precise analytic result in Eq. (6.6) for ηHS

∞ , SHS(q → 0) according
to the Carnahan-Starling equation of state, and KHS calculated by the self-part corrected δγ-
scheme Eq. (4.25), using in place of [ds/d0]PA the, for hard spheres, more accurate expression
[ds/d0]HS given in Eq. (4.26). Red (dashed) and blue (dashed-dotted) curves are self-part
corrected δγ-scheme results for the low-salinity systems CS-1 and CS-2 (with ns = 10−6 M),
respectively, using Eqs. (4.27), (4.21), and (4.22) for η∞, and Eqs. (4.25) and (4.11) for dc =
d0H(q → 0)/S(q → 0). As input to all analytic schemes, MPB-RMSA results for S(q) have
been used.

systems coincide practically for φ � 0.15. The downturn of these two curves at larger φ � 0.18,

indicated by the dotted curve continuations in Fig. 6.6, is not shared by the ASD simulation

data (c.f., Fig. 25 in [23]). This is an artifact of the PA scheme which, as discussed already in

relation to Fig. 6.2, tends to underestimate ds at larger φ .

Different from neutral hard spheres, in low-salinity systems the GSE relation for dcge is

manifestly violated already at very low φ . The strong difference in the (dcge/dt,0)× (η∞/η0)
curves for the two considered low-salinity systems is due to the different φ -dependence of

their respective S(qm). The pronounced decline of both curves at low φ is mainly triggered by

the sharp low-φ rise of S(qm) in low-salinity systems.

Kholodenko and Douglas [30] have proposed the GSE relation in Eq. (6.5) using mode-

coupling theory like arguments. For neutral spheres at low φ , we can check this relation

analytically using the numerically precise second-order virial expansion results for KHS in

Ref. [166], ηHS
∞ in Ref. [167], and SHS(q → 0) given by the Carnahan-Starling equation of



CHAPTER 6. DIFFUSION AND RHEOLOGY RESULTS: THEORY, SIMULATION AND

EXPERIMENT 111

state. This leads to

dHS
c

dt,0
× ηHS

∞
η0

×
√

SHS(q → 0,φ) = 1−0.046φ +1.3713φ 2 +O(φ 3), (6.8)

where the first-order virial coefficient is indeed close to zero. Using the analytic expressions

for ηHS
∞ in Eq. (6.6), and KHS calculated in the self-part corrected δγ-scheme with ds according

to Eq. (4.26), we can test the KD-GSE relation in fact in the full fluid-state regime of neutral

spheres. According to the inset in Fig. 6.7, the KD-GSE for neutral spheres is valid to decent

accuracy up to φ � 0.4, with a maximal positive-valued deviation from one at φ ≈ 0.3 of less

than 18%. Strong negative-valued deviations from one are observed for φ � 0.4, where the

KD-GSE relation ceases to be applicable to neutral hard spheres.

The corrected δγ-scheme results included in Fig. 6.7 demonstrate the striking violation of

the KD-GSE relation, when low-salinity systems of charged particles are considered. A clear

violation of this relation is observed for all concentrations φ � 10−4 in the case of the low-

salinity system CS-1, and for φ � 10−2 in the case of system CS-2, where, for both systems, a

residual salt concentration of ns = 10−6 M has been assumed. The maximal (positive-valued)

violation of the KD-GSE relation occurs roughly at a volume fraction where the dc(φ) of

charged spheres attains its maximum. The maximum in dc(φ), in turn, is the result of a com-

petition, with increasing φ , between decreasing compressibility and decreasing sedimentation

coefficient. The concentration at the peak of dc(φ) is determined roughly from k2
c(φ) = k2

s
[18]. The downturn of the dcη∞

√
S(q → 0)/(dt,0η0) curve at large φ , observable in Fig. 6.7

for neutral and charged spheres alike, is triggered by the large-φ decline both of K and η∞.

6.2 Short-time diffusion of silica spheres

6.2.1 Self-diffusion

Fig. 6.8 includes the prediction by the PA scheme for the normalized short-time self-diffusion

coefficient, ds/dt,0, of charged and neutral hard spheres, respectively, in comparison with ASD

simulation results, and our DLS data for the TPM coated charged silica spheres in toluene-

ethanol discussed in Section 2.2. The comparison of the PA scheme result with the ASD data

allows for deducing quantitatively the contribution to ds by the non-pairwise additive part of

the HIs that arises from the solvent-mediated interactions of three and more particles.

The large scattering wavenumber regime related to self-diffusion is usually not accessible

by DLS. Therefore, using an argument by Pusey [211], we identify ds approximately as ds ≈
D(q∗) (crosses in Fig. 6.8), where q∗ is the first wavenumber located to the right of qm where

S(q∗) = 1 (see top part of Fig. 6.10). Simulations of charged and neutral spheres have shown

that ds is determined in this way to within 5 - 10% accuracy [23, 26, 212]. A comment is

in order here on a false proposition by Robert [213], who claims that it has been predicted
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Fig. 6.8: Normalized short-time self-diffusion coefficient, ds/dt,0, of a deionized suspension of
charged spheres (CS, black) and hard spheres (HS, red). Crosses: DLS data for TPM coated
charged silica spheres. Circles and diamonds: accelerated Stokesian Dynamics (ASD) results
for CS and HS, respectively. Solid black and red lines: PA-scheme results for CS and HS, using
MPB-RMSA input for S(q). Dashed black line: 1−2.5φ 4/3. Dashed-dotted red line: 3rd-order
virial Eq. (4.26) for HS. Inset: ds/dt,0 as predicted by the PA scheme (lines), and by ASD
simulation (symbols), with the leading-order far-field HIs part for CS (black) and HS (red),
subtracted off.

theoretically that there is no difference in the concentration dependence of ds for charged

and neutral particles. Quite the contrary, Nägele et al. have shown for charged spheres at low

salinity that ds/dt,0 ≈ 1− at φ 4/3 (cf. Eq. (4.24b)), i.e., ds in these systems has a fractional

φ -dependence qualitatively different from that of hard spheres [22, 172, 173]. Only the self-

diffusion coefficient of neutral hard spheres can be described by a regular virial series, with the

first three coefficients given in (4.26). The correct second-order virial coefficient, −0.219φ 2,

in Eq. (4.26) differs even in its sign from the erroneous result, +0.88φ 2, used in Ref. [213].

The φ 4/3 dependence of ds/dt,0 −1 was confirmed both by the experiments of Overbeck et
al. [171], and by ASD simulations based on the OMF model [23]. The depicted ASD data for

a low salinity system of charged spheres are overall well described by the fractional φ relation

in Eq. (4.24b) for at ≈ 2.5, over an extended range of volume fractions.

Our DLS data for the charged silica spheres depicted in Fig. 6.8 are fully consistent with the

ASD simulation data, the PA-scheme result, and the φ 4/3 scaling prediction for ds in (4.24b),

with at = 2.5. The hydrodynamic self-mobility related to ds is rather short-ranged, decaying



CHAPTER 6. DIFFUSION AND RHEOLOGY RESULTS: THEORY, SIMULATION AND

EXPERIMENT 113

like 1/r4 for a large separation r of two spheres. Consequently, the difference between ds and

its infinite dilution value dt,0 is smaller for charged spheres than for neutral ones, since electric

repulsion disfavors near-contact configurations. As discussed already in Section 6.1.3, the PA

scheme overestimates the strength of the HIs in dense suspensions, for it does not account for

the shielding of the HIs between a pair of particles by intervening ones. This is the reason why,

at higher concentration, the ASD and experimental data for ds are larger than the PA-scheme

prediction. The PA-scheme result for ds/dt,0 is also well described by Eq. (4.24b), but for a

somewhat larger parameter value of at ≈ 2.9.

The inset in Fig. 6.8 shows ds/dt,0, as obtained by the PA scheme and ASD simulations,

with the far-field part originating from the leading-order self-mobility part proportional to 1/r4

subtracted off. According to the inset, ds is rather insensitive to the near-field two-body part

of the HIs, causing a small increase in ds only. Three-body and higher-order HIs contributions

come into play for φ � 0.1, with an enlarging influence on ds originating from hydrodynamic

shielding.

6.2.2 Sedimentation

In principle, one needs to distinguish between the short-time and the long-time sedimentation

coefficients, but the latter is smaller than the first one by at most a few percent. The two

coefficients are practically equal in dilute systems where the two-body HIs part dominates.

Fig. 6.9 includes theoretical, simulation and experimental results for the (short-time) sedi-

mentation coefficient, K =Used/U0, of homogeneous systems for charged and neutral spheres.

The key message conveyed by this figure is the qualitative difference in the φ -dependence of

K for charged and neutral particles. This difference is more pronounced than the one for the

self-diffusion coefficient discussed earlier. Charged spheres sediment more slowly than un-

charged ones since near-contact configurations are disfavored. Thus, stronger laminar friction

takes place between the back-flowing solvent, and the solvent layers dragged along with the

settling spheres because of the stick hydrodynamic boundary condition. The solvent back-

flow is created by a pressure gradient directed towards the container bottom which balances

the non-zero, buoyancy-corrected total gravitational force on the spheres.

At smaller φ and low salinity, K is well described by the non-linear Eq. (4.24a), with a

coefficient as ≈ 1.4− 1.8 depending to some extent on the strength of the electrostatic pair

interactions. The exponent 1/3 arises from the 2-body far-field part of the HIs which domi-

nates the near-field part for φ � 0.08, and the scaling relation, qm ∝ φ 1/3, valid in low-salinity

systems for the wavenumber location of the structure factor peak [23]. As a consequence, the

φ 1/3 concentration dependence of K is observed both for dilute fluid and crystalline systems

of charged particles.

The experimental results of Rojas-Ochoa [214] for the low-salinity sedimentation coeffi-

cient of a suspension of charged polystyrene spheres in an ethanol/water mixture (σ = 117

nm, ns = 10−6M, LB = 1.48 nm), and also our data for the charged silica spheres in toluene-
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Fig. 6.9: Normalized sedimentation velocity, K = Used/U0, of charged spheres at low salin-
ity versus that of neutral hard spheres. Experimental DLS/SLS data are shown for charged
polystyrene spheres in an ethanol-water mixture taken from [214] (squares), and for our TPM
coated silica spheres (crosses). Solid (dotted) black lines: δγ-scheme (PA-scheme) results, re-
spectively, for the low-salinity polystyrene spheres system, obtained using the MPB-RMSA in-
put for S(q) with a fixed charge number Z = 200. Dashed-dotted black line: self-part corrected
δγ scheme result. Dashed black line: scaling form 1−1.71φ 1/3 according to Eq. (4.24a). Cir-
cles: hard-sphere simulation results by Ladd [206]. Dashed red line: 2nd-order virial result for
HS given in Eq. (6.2). Solid (dotted) red lines: δγ-scheme (PA-scheme) results, respectively,
for HS with MPB-RMSA input for S(q). For HS, the MPB-RMSA reduces to the Percus-Yevick
closure.
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ethanol system, are in accord with the OMF-based prediction of a steep (as compared to neu-

tral spheres) φ 1/3-like decay of the sedimentation coefficient. The experimental values of K in

both systems discussed in Fig. 6.9 have been deduced from small-q DLS and SLS measure-

ments of D(q) and S(q), extrapolated to q = 0. Therefore, there is an unavoidable scatter in

the extrapolated data, in particular since the osmotic compressibility coefficient S(q → 0) of

low-salinity systems is very small.

In contrast to charged particles, the small-φ dependence of K is well represented for neutral

spheres by a regular virial expansion. In fact, the second-order virial expression in Eq. (6.2)

coincides, for φ � 0.08, with the simulation data for KHS by Ladd [206]. At larger φ , shielding

arising from the higher-order HIs terms comes into play, contributing to K through the higher-

order virial coefficients. Since shielding is disregarded in the PA scheme, the PA scheme no-

tably overestimates the strength of the HIs for φ � 0.1. When applied to concentrations beyond

its range of applicability, too small and eventually even non-physical negative values for K are

predicted (see the dotted lines in Fig. 6.9).

Fig. 6.9 displays additionally, both for neutral spheres and for the system parameters of the

charged polystyrene spheres system [214], the predictions for K by the δγ scheme and by

the PA scheme. As input to both schemes, S(q) in MPB-RMSA was used, which reduces to

the Percus-Yevick solution for HS. At small φ , the PA-scheme result for K follows precisely

the scaling prediction 1 − as φ 1/3, with as = 1.71. The δγ scheme at very small φ is less

accurate than the PA scheme, owing to its incomplete account of two-body HIs contribution,

notably its neglect of lubrication which plays a role for neutral spheres. Lubrication occurs in

the thin fluid layer between two almost touching spheres in a relative squeezing or shearing

motion. It is more influential to self-diffusion than to sedimentation, since in the latter case the

(monodisperse) spheres move with equal mean velocity in the direction of the applied force

field. In self-diffusion, on the other hand, a tagged particle is thermodynamically driven in a

squeezing motion towards particles in front of it.

The δγ scheme captures the overall φ dependence of K decently well, both regarding the

two considered charge-stabilized systems, and neutral hard spheres. The self-part corrected

δγ scheme result for charged spheres lies at larger φ above the experimental data for K. This

exemplifies a general observation, made also in Figs. 6.1, 6.2, 6.11 and 6.12, that the self-part

corrected δγ scheme overestimates somewhat the ASD-H(q) at small q. For all larger values

of q, however, including the principal peak region of H(q), it is in distinctly better agreement

with the simulation data for H(q) than the uncorrected version.

6.2.3 Diffusion function

We proceed by discussing the short-time diffusion function, D(q), defined in Eq. (4.2), which

is measured in short-time DLS and XPCS experiments. DLS data of its inverse, dt,0/D(q), are

included in the bottom part of Fig. 6.10, for a low-salinity system of charged silica spheres

at a volume fraction φ = 0.15 rather close to the freezing transition value. The experimental
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Fig. 6.10: Top: static structure factor, S(q), obtained by static light scattering (SLS, crosses),
versus MPB-RMSA and RY results (red and black lines, respectively) and MC simulation data
(open circles) for a common Z = 190. Bottom: short-time inverse diffusion function, dt,0/D(q),
for a low-salinity system of charged silica spheres. Crosses: DLS data. Open circles: ASD-
MC simulation data. Solid black line, dashed green line, and dashed-dotted red line: δγ-
scheme, PA-scheme, and self-part corrected δγ-scheme predictions, respectively. The system
parameters are: σ = 272 nm, φ = 0.15, ns = 0.7×10−6 M, and LB = 8.64 nm.
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data are compared with our ASD simulation result for D(q), and the (self-part corrected) δγ-

scheme result where the ds-part is taken from the ASD simulation result. For the two analytic

schemes, the MPB-RMSA input for S(q) was used, shown in the top part of Fig. 6.10.

The shape of dt,0/D(q) is similar to that of S(q), owing to dt,0/D(q) = S(q)/H(q) according

to Eq. (4.3). The analytic MPB-RMSA scheme predicts a structure factor in excellent agree-

ment with our MC simulation data, and with the S(q) obtained from the numerically elaborate

RY scheme. The excellent agreement between all S(q) depicted in the top part of Fig. 6.10, for

all displayed wavenumbers, points to the accuracy of our scattering data. The only adjustable

parameter in calculating S(q) has been the effective charge number, uniquely determined as

Z = 190 by the MPB-RMSA, RY and MC methods, from matching the experimental S(qm).
We recall from Eq. (4.3) that D(q → ∞) = ds and D(q → 0) = dt,0Used/[U0S(q → 0)] = dc.

Here, dc is the short-time collective diffusion coefficient which quantifies the initial decay

rate of long-wavelength thermal concentration fluctuations. The short-time dc is only slightly

larger than its long-time counterpart dL
c , even when a concentrated system is considered. The

relative osmotic compressibility coefficient, S(q → 0), in the considered low-salinity system

is very small, so that dc is exceedingly larger than dt,0, reflected in Fig. 6.10 in the low-q
values of dt,0/D(q) close to zero. The function D(q) attains its minimum at qm, where its

value is equal to the cage diffusion coefficient dcge. With increasing concentration and pair

interactions, the nearest-neighbor cage stiffens, i.e., it becomes more sharply structured, as

reflected by a smaller value of dcge.

According to the bottom part of Fig. 6.10, there is good agreement between the ASD simula-

tion data for dt,0/D(q), and the self-part corrected δγ-scheme prediction with its MPB-RMSA

input. The ASD simulation peak height is somewhat overestimated by the uncorrected δγ
scheme which uses a too small value for the self-diffusion coefficient of charged spheres. For

the charged silica particles system considered here, the experimental peak height of dt,0/D(q)
happens to be somewhat closer to that of the uncorrected δγ scheme. However, the first mini-

mum of dt,0/D(q) to the right of qm is in better accord with the self-part corrected δγ-scheme

prediction.

To illustrate the failure of the PA scheme for concentrations φ � 0.1 where many-body HIs

are strong, we have included its prediction into Fig. 6.10. It deviates from the experimental

and simulation data most strongly at q ≈ 0 and near qm, reflecting its overestimation of the

HIs at the large volume fraction φ = 0.15, by giving a too small value for K, and a too large

value for H(qm).

6.2.4 Hydrodynamic function

In Fig. 6.11, the experimental findings by Philipse and Vrij [65] for the H(q) and S(q) of a

well-structured, charge-stabilized suspension of silica spheres suspended in a 70:30 toluene-

ethanol mixture (ε = 10 at T = 298 K), are compared with our theoretical and simulation

predictions based on the OMF model discussed in Section 2.1. The MPB-RMSA, RY and
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Fig. 6.11: Open Diamonds: DLS and SLS data for H(q) and S(q) (in inset), taken from [65],
for a charge-stabilized system at φ = 0.101, in comparison with corresponding ASD and MC
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RMSA S(q), respectively, for Z = 100, a = 80 nm, ns = 2×10−6 M and LB = 5.62 nm.
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MC S(q) of common charge number Z = 100 shown in the inset, coincide practically in the

depicted q-range.

There is good overall agreement between the experimental H(q), and the ASD and self-part

-corrected δγ-scheme results (with ds taken from the ASD simulation) for H(q) which have

been obtained from multiplying the experimental data for D(q) by those for S(q). The self-part

corrected δγ scheme underestimates to some extent the ASD H(qm), but except for the precise

peak value the overall shape of H(q) is well reproduced. Figs. 6.10 and 6.11 exemplify that

the self-part corrected δγ scheme allows for predicting consistently, and to almost quantitative

accuracy, the short-time generic features of many charge-stabilized systems including small

proteins and large colloidal spheres.

Low-salinity systems are typically characterized by a peak value of H(qm) larger than one.

In a recent study based on the OMF model, the upper limiting freezing line for H(qm) was

derived [120], from which it follows that H(qm) never exceeds the value of 1.3. However,

H(qm) in low-salt systems is not always larger than one. At very low φ , it increases monoton-

ically according to 1 + pm φ 1/3, with a moderately system-dependent coefficient pm > 0 (see

Eq. (4.24c)). At larger φ , where near-field HIs matter, H(qm) can pass through a maximum

typically occurring at φ ∼ 10−2 −10−1, with an ensuing decline when φ is further increased.

Provided the system remains fluid at larger φ , such as in apoferritin protein solutions [41],

H(qm) can reach values smaller than one.

In the OMF model, H(qm) is bound from below by the corresponding peak height of neu-

tral spheres. The latter decreases linearly in φ in the whole fluid phase regime according to

Eq. (6.3). At fixed φ and with increasing salt content, H(qm) and ds decrease monotonically,

with qm shifted to larger q values, towards the limiting hard-sphere values HHS(qm) and dHS
s ,

respectively. Opposite to this, K increases monotonically with increasing salinity, for the rea-

sons discussed earlier, towards its upper hard-sphere limit. In summary, the ordering relations

H(qm) ≥ HHS(qm) , (6.9a)

ds ≥ dHS
s , (6.9b)

K ≤ KHS , (6.9c)

are fulfilled. The equality sign holds for zero particle charge, Z = 0, and in the infinite salinity

limit, k → ∞. The OMF model ordering relations in Eq. (6.9) are obeyed by a large variety

of experimentally studied charge-stabilized systems, including nanosized proteins [41] and

suspensions of compact colloidal particles [43, 65, 214, 216–220].

In a series of articles, Robert, Grübel and coworkers [39, 213, 215, 221] reported on their

observation of very small values for H(q), for certain low-salinity suspensions of intermedi-

ately large volume fractions, which they studied by combining XPCS and SAXS techniques.

At all probed wavenumbers, their H(q) are substantially smaller than those of neutral hard
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Fig. 6.12: XPCS and SAXS data of H(q) and S(q) (in inset), taken from Ref. [215], for a low-
salinity system of charged poly-perfluoropentylmethacrylate spheres (CS) with σ = 125 nm,
ns = 1.6×10−5 M, and φ = 0.18 in a water/glycerol mixture at T = 293 K where ε = 62.95

and LB = 0.91 nm (open diamonds). Inset: RY and MPB-RMSA S(q) for Z = 163. Comparison
with OMF model based ASD data, self-part corrected δγ and PA-scheme results for H(q), all
obtained using Z = 163. The experimental H(q) is substantially smaller than the ASD HHS(q)
(red circles), and the δγ scheme result for hard spheres (red line).
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spheres at the same φ . This findings of so-called ultra-small H(q) is incompatible with the

OMF model since the first two ordering relations in Eqs. (6.9) are violated.

A typical result for an ultra-small H(q) with peak height H(qm)≈ 0.47, taken from [215] for

a system of poly-perfluoropentylmethacrylate spheres in a water/glycerol mixture at φ = 0.18,

is shown in Fig. 6.12, in comparison with our OMF model based simulation and theoretical

results for H(q), which predict a peak value for H(q) larger than one. The inset displays

the experimentally determined S(q), and the peak-height adjusted MC, RY and MPB-RMSA

results obtained for the common charge value Z = 163, and ns = 1.6× 10−5 M (k = 2.92).

The experimental peak height, S(qm) ≈ 2.63, identifies the system as fluid-ordered according

to the Hansen-Verlet freezing rule.

Just like in the silica system considered before, the self-part corrected δγ-scheme result

for H(q), based on the MPB-RMSA S(q) input for its distinct part depicted in the inset, and

the precise ASD simulation result for ds/dt,0, is in overall good agreement with the full ASD

simulation result for H(q). It underestimates the ASD peak height to some extent, but aside

from the precise peak value the agreement with the ASD H(q) is quantitatively good.

For completeness, Fig. 6.12 shows also the PA-scheme prediction for H(q). The con-

centration is clearly too large here for the PA scheme to apply, with the consequence that

nonphysical negative values of H(q) are predicted for qσ � 2.4. This shows that for the

present system, where φ = 0.18, H(q) is strongly influenced by many-body HIs. Quite no-

tably, however, for the same particle system, an ultra-small hydrodynamic function, with

H(qm) ≈ 0.7 < HHS(qm) = 0.95, was reported by Robert et al. [215] even at φ = 0.04, i.e.,
for a concentration where two-body HIs dominate.

The experimental peak height in Fig. 6.12 is considerably smaller than the peak value,

HHS(qm) = 0.76, of hard spheres, the latter calculated according to Eq. (6.3). To allow for

a comparison at all probed q values, Fig. 6.12 includes the ASD and δγ-scheme results for

the H(q) of hard spheres. The hard-sphere structure factor peak value is SHS(qm) = 1.19 at

φ = 0.18.

Grübel, Robert and coworkers originally tried to explain their observation of strikingly low

values for H(q) as the result of HIs screening [39, 222]. To support their assertion, they pre-

sented a Brinkman fluid-type calculation of H(q) [39], wherein only the leading-order far-field

part of the hydrodynamic pair mobility is considered, treating the Brinkman screening length

as a fitting parameter. However, in a later experimental-theoretical study [220], it was pointed

out that hydrodynamic screening does not occur in fluid-ordered, unconfined suspensions of

mobile colloidal particles (see here also Ref. [223]). Furthermore, the assumed screening of

the HIs conflicts with the fact that the short-time diffusion and viscosity properties of many

charge-stabilized systems, at concentrations and interaction parameters similar to the ones

probed by Robert et al., are well explained by OMF model based methods without any ne-

cessity to invoke HIs screening. The low-salinity system in Fig. 6.10, for example, is in the

concentration range where an ultra-slow H(q) should be observable.

More recently, Robert et al. retracted from their interpretation of ultra-small H(q)’s as being
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due to HIs screening. In an alternative attempt to explain their findings [215], they introduced

a correction factor, f = η0/ηeff < 1, multiplying the OMF model based δγ-scheme H(q),
with the value of f determined such that the ultra-small experimental H(q) is overall matched.

Furthermore, they conjecture that f can be identified by the ratio of the solvent viscosity

and some effective suspension viscosity ηeff, leaving it unspecified, however, whether ηeff

should be identified with the high-frequency viscosity, η∞, or with the substantially larger

static suspension viscosity η = η∞ + Δη . This ad-hoc modification of the δγ scheme lacks

a sound physical basis, for the δγ-scheme expression for H(q) describes a genuine diffusion

property. The values for f obtained from fitting the ultra-small H(q) given by [215], are neither

consistent with calculated [23] nor experimental [224] results for η0/η∞.

6.2.5 Influence of additional particle interactions

In this section, we analyze the effect on H(q) caused by particle interaction contributions not

considered in the OMF model. On a qualitative level, we discuss the influence of particle

porosity, residual attractive forces and microion kinetics on the shape of H(q). None of these

effects is likely to be responsible for an ultra-small H(q) like the ones reported by Robert, et
al., discussed in Section 6.2.4.

The effect of particle porosity on the H(q) of dense suspensions of neutral porous spheres

has been explored in a recent simulation study [26, 212]. A non-zero solvent permeability

has the effect to weaken the HIs, reducing thus the deviations of H(q) at all q from its zero-

concentration limiting value of one. For the same reason, a suspension of porous particles is

less viscous than a suspension of impermeable ones [25, 225]. Porosity is less influential when

the particles are charged since near-contact configurations are then unlikely. The particles

studied by Robert et al. are only very weakly porous, if at all. Thus, porosity can not explain

the findings of ultra-small H(q)’s. On the contrary, significant porosity would lead to a H(q)
overall closer to one.

An attractive interaction contribution enlarges both S(q → 0) and the sedimentation coef-

ficient K [226]. The enlargement of the latter is overcompensated by the former, at least at

smaller φ [227]. Thus, in dispersions of moderately charged particles such as bovine serum

albumin or Lysozyme proteins with sufficiently strong short-range attraction, the collective

diffusion coefficient, dc = d0K/S(0), can attain values smaller than d0 [36, 38, 42, 228].

Opposite to sedimentation, attraction tends to slow self-diffusion, resulting in smaller values

of the short-time and long-time self-diffusion coefficients [228, 229]. Attraction-induced slow-

ing of self-diffusion is accompanied by an augmentation of the short-time (high-frequency)

and long-time (static) suspension viscosities [163]. Attraction fosters the formation of short-

lived, transient particle pairs and clusters, which are better shielded from the solvent backflow

so that sedimentation is enhanced. In self-diffusion, however, the mean velocity of a weakly

forced particle driven towards its next-neighbor cage particles becomes smaller with increas-

ing attraction, owing to the larger tendency of nearby particles to form a transient cluster. This
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picture also explains why attraction-induced slowing of long-time self-diffusion is found not

only in colloidal systems, where HIs are present, but also in atomic liquids [230]. Sedimenta-

tion is different in the sense that all particles, not just a single tagged one, are forced to move,

on the average, in the direction of the external force. Summarizing, the overall effect of attrac-

tion is to lower the difference between H(q → ∞)−H(q → 0), and to shift the peak position

qm to larger values.

The data by Robert et al. for S(q) and H(q) give no hint on an appreciable attractive inter-

action part. The short-range van der Waals attraction acting between the particles is masked in

low-salinity systems by the strong and long-ranged electric forces to such an extent that it can

not influence H(q) significantly. Moreover, the experimental S(q) given by Robert et al. can

be described to good accuracy by the OMF model based structure factor. Significant attraction

would enlarge at low q the gap between the OMF model and the ultra-small H(q) in Fig. 6.12,

instead of reducing it.

On first sight, the non-instantaneous electrokinetic relaxation of counter- and coions form-

ing overlapping electric double layers around the charged colloids is a more promising candi-

date for causing ultra-small H(q)’s. Indeed, the relaxation of the microion clouds has a slow-

ing influence on colloid diffusion, referred to as the electrolyte friction effect. This effect can

lower H(q → 0) [41] to a smaller extent, and also the values of the short-time and long-time

self-diffusion coefficients [231]. However, electrolyte friction scales with the ratio, dt,0/dm,

of the free diffusion coefficient, dt,0, of the slowly moving colloids relative to the (mean) free

diffusion coefficient, dm, of the small microions [37, 41, 231]. Because of the huge difference

in these two free diffusion coefficients, it is unlikely that electrokinetics can explain the strik-

ingly low values for H(q) reported on by Robert and collaborators. Whereas the electrokinetic

influence on colloid diffusion is very small for larger colloidal spheres, it can be significantly

strong for small, nanosized macroions such as proteins.

6.3 Long-time collective diffusion and static viscosity of

bovine serum albumin

In the following Sections 6.3.1-6.3.3, we compare the DLS data for the collective diffusion

coefficient of BSA solutions, and the static shear viscosity measured using the suspended

couette-type rheometer described in Ref. [78], to the results of the dynamic schemes dis-

cussed in Chapter 4. Moreover, we test the validity of the generalized Stokes-Einstein relation

proposed by Kholodenko and Douglas, using our experimental and theoretical data for short

and long timescales. We reemphasize here that the employed theoretical schemes use S(q)
and g(r) as the only input. With S(q) and g(r) determined in Section 5.4 from the fits to

the SAXS-intensities, all theoretical results for dc, η∞ and η are thus obtained without any

additional adjustable parameters.
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6.3.1 Collective diffusion

Fig. 6.13 includes our SLS/DLS data for 1/S(q → 0) (upper part) and dL
c (lower part), for

aqueous BSA solutions in comparison with the theoretical predictions. Systems without added

salt, and for concentrations ns = 5× 10−3 and 0.15 M of added NaCl, are considered. Addi-

tional measurements using 0.5 M of added NaCl (data not shown) agree almost perfectly with

the data for ns = 0.15 M, indicating that electrostatic repulsion is fully screened already at

ns = 0.15 M. As the input to the dynamics schemes, S(q) and g(r) were generated by the

MPB-RMSA, using concentration-interpolated input parameters φ(cp) and Z(cp) based on

Tab. 5.1. For no added salt, ns(cp) was interpolated using Tab. 5.1, while ns = 5× 10−3 and

0.15 M were kept fixed (independent of cp) in the corresponding theoretical calculations. The

value dell
t,0 = 5.82 Å

2
/ns of the spheroid translational free diffusion coefficient was used to

obtain dc in experimental units from the dimensionless results for dc/dt,0 as obtained by both

theoretical schemes.

For no added salt, the experimental dL
c (cp) assumes a maximum at cp ≈ 10− 20 mg/ml.

This maximum is qualitatively reproduced by both theoretical schemes (corrected δγ and PA),

but its location is predicted to occur at somewhat larger concentrations cp ≈ 20− 30 mg/ml.

For BSA concentrations larger than the concentration at the maximum value for dc, the PA-

predicted dc(cp) reduces strongly, eventually reaching unphysical negative values for cp �
110 mg/ml. This illustrates the expected failure of the PA scheme at higher concentrations,

indicating that three-body contributions to HIs, totally left out in the PA, but not in the δγ
scheme, come into play for cp � 30 mg/ml. Up to the concentration value at the maximum

of dc, both schemes agree very well, with residual differences not visible for cp � 20 mg/ml

on the scale of Fig. 6.13. Despite its residual small inaccuracies, the self-part corrected δγ
expansion will therefore be used in the following calculations of the dc for BSA proteins.

The physical origin of the non-monotonous concentration dependence dc(cp) at low con-

centrations of salt can be understood on the basis of Eq. (4.3), rewritten using dL
c ≈ dc as

dc

dt,0
= lim

q→0

H(q)
S(q)

. (6.10)

The ratio in Eq. (6.10) consists of two competing factors. The factor 1/S(q → 0), inversely

proportional to the isothermal osmotic compressibility of ideally monodisperse particles, in-

creases monotonically as a function of the BSA concentration. Owing to the larger cou-

pling constant γ in Eq. (2.5a), a much steeper initial increase of 1/S(q → 0) is observed for

weakly screened systems, than for systems with added salt (c.f. the top panel of Fig. 6.13).

As cp is further increased, the amount of surface-released counterions increases correspond-

ingly, leading to an enhanced electrostatic screening. As a consequence, the rate of change

of 1/S(q → 0) with cp reduces significantly at a colloid concentration roughly set by the cri-

terion, k2
c(cp) = k2

s , of equal surface released counterion and salt-co-ion contributions to the

screening parameter in Eq. (2.5b).
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Fig. 6.13: Top panel: Inverse zero-wavenumber limiting static structure factor, S(q → 0),
of BSA solutions, obtained from SLS (connected black circles) and our MPB-RMSA scheme
(red solid lines). Number concentrations, ns, of added NaCl as indicated. Bottom panel: Fast
mode coefficient, D1 = dL

c , obtained from the discussed double-exponential fit to the DLS data
of BSA solutions (connected black circles), and dc calculated by the self-part corrected δγ
scheme (red solid lines), and the PA scheme (blue dotted curves). All theoretical curves are
based on input parameters φ(cp) and Z(cp) interpolated from Tab. 5.1. In the zero added-
salt case, the ns(cp) values were also interpolated using Tab. 5.1. Theoretical results for
added NaCl are obtained using fixed salt concentrations of ns = 5 × 10−3 and 0.15 mM.
The input parameters LB = 0.711 nm, σ = σB2

= 7.40 nm, a = 1.75 nm, b = 4.74 nm, and
dt,0 = dell

t,0(a,b) = 5.82 Å
2
/ns are kept fixed throughout. For the zero added-salt case, the

green vertical line segment at cp ≈ 34 mg/ml marks the protein mass-concentration where the
surface-released counterion contribution to k2 in Eq. (2.5b) is equal to the coion contribution.
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The nominator in Eq. (6.10) is the reduced sedimentation velocity, H(q → 0), which is

known from theory and experiment [16] to decrease monotonically, for not too large concen-

trations and low salinity according to Eq. (4.24a) in the case of highly charged particles, and

according to Eq. (6.2) for neutral hard spheres. For strongly correlated particles, the compe-

tition between decreasing compressibility and decreasing sedimentation coefficient with in-

creasing cp leads thus to a maximum in dc(cp), at a concentration roughly determined from

k2
c(cp) = k2

s .

The DLS-measured values for dc are not quantitatively reproduced by the self-part corrected

δγ scheme. Both in the zero added-salt case, and for ns = 0.15 M, dL
c is underestimated by

the corrected δγ scheme prediction by about 25%. The difference might be simply due to the

complex-shaped BSA proteins having a translational free diffusion coefficient larger than the

value dell
t,0 = 5.82 Å

2
/ns used in the SY model. In fact, an extrapolation of the experimental

data for dL
c to zero concentration leads to a larger value for dt,0 in the range of 6− 7 Å

2
/ns,

which can completely explain the differences in dc between experiment and theory. However,

this low-concentration extrapolation should not be over-interpreted as being conclusive, since

the experimental data are rather noisy for low concentrations.

While the agreement between the theoretical and the experimental dc’s is overall rather

satisfying for very low and very high salt content, strong differences are found for the inter-

mediate added NaCl concentration of 5 mM. This is not surprising, however, since already

the zero added-salt experiments led to fit values for ns of 1 to 3 mM. Therefore, ns is most

probably a function of cp also in the 5 mM added NaCl case, instead of being constant as

assumed in the calculations. Moreover, there is no obvious reason to expect that the relation

Z(cp), interpolated from Tab. 5.1, remains valid at arbitrary added salt concentrations. Addi-

tional future SAXS measurements at 5 mM added NaCl are necessary to determine, for this

case, the precise dependence of ns and Z on cp.

6.3.2 Static viscosity

The rheometric results for the zero-shear rate limiting static viscosity η without added salt, and

with 0.15 M of added NaCl, are plotted in Fig. 6.14 as a function of cp, and compared to the

theoretical predictions. Apart from pronounced differences at lower concentrations, discussed

in detail further down, the experimental data agree overall decently well with the theoretical

predictions. Due to the rather weak microstructural ordering of the BSA proteins, character-

ized by structure factor peak heights less than 1.2 even for the most concentrated samples,

the shear-stress relaxation term Δη contributes only little to η , with a maximum relative con-

tribution of about 10% near cp = 100 mg/ml. The dominant contribution to η is given by

η∞, which is predicted to good accuracy both by the PA scheme and the corrected δγ scheme,

with practically equal results. The PA scheme is applicable to the whole experimentally probed

concentration range of cp � 100 mg/ml, since three-body and higher order HI contributions
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Fig. 6.14: Static relative viscosity η/η0 (top panel) of BSA and reduced (bottom panel) viscos-
ity ηred, for T = 25◦ C, as functions of cp. Theoretical curves are based on input parameters
φ(cp) and Z(cp), concentration-interpolated using Tab. 5.1. Symbols: experimental data with-
out added salt (black circles) and with ns = 0.15 M (red diamonds). Lines: theoretical results
without added salt (black solid line, ns(cp) interpolated using Tab. 5.1) and with a fixed salt
concentration of ns = 0.15 M (red dashed curve). Note the different cp-ranges in the two pan-
els.
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affect η∞ to a lesser extent than dc (c.f. here Fig. 6.13, showing the failure of the PA-scheme

prediction for dc already for cp � 50 g/l).
The addition of larger amounts of salt lowers the values for η , as can be noticed from the two

experimental data sets depicted in Fig. 6.14. The reason for this is the enhanced electrostatic

screening, causing Δη to decrease with increasing salinity in going from strongly structured,

charged spheres to basically neutral hard spheres. In contrast, η∞ is known from theory and ex-

periment [23] to increase upon the addition of salt (c.f., Fig. 6.5), due to the enlarged influence

of near-field HIs when the particles are allowed to get closer to each other in electrostatically

screened systems. Thus, η∞ and Δη have opposite trends in their dependencies on the concen-

tration of added salt. These competing trends are the reason for the weak crossover in the two

theoretical curves for η , noticed in the top panel of Fig. 6.14 at cp ≈ 67 mg/ml. For particle

concentrations larger than this cp value, the increase of η∞ overcompensates the decrease in

Δη when, in place of the zero added-salt system, a system with ns = 0.15 M is considered.

That such a weak crossover is not observed in the experiment data in Fig. 6.14, points to an

underestimation of the crossover concentration by our simplifying theories for η , possibly due

to the neglect of HIs in the Δη calculation.

A remarkable feature is noticed from the bottom panel of Fig. 6.14, where we plot the

so-called reduced viscosity,

ηred(cp) =
η(cp)−η0

η0cp
, (6.11)

as a function of cp. The function cpηred/φ reduces to the intrinsic viscosity, [η ] at very low

volume fractions where η → η0 +[η ]φ . Features of dilute systems are more clearly revealed

in ηred than in η .

Both experimental data sets in the bottom panel of Fig. 6.14 show a local maximum of

ηred at low cp values, which for the zero added-salt system (black open circles) is visible

as a weak non-monotonicity near cp ≈ 3 mg/ml. For the system with 0.15 M added NaCl

(red open diamonds), the experimental maximum is represented essentially by a single data

point at cp = 1 mg/ml, where ηred ≈ 6.5 ml/g, whereas the remaining data points describe a

nearly constant plateau value of 4.5 ml/g. This plateau value is in good overall agreement with

reported values for ηred at low cp, in the range of 3.8 to 4.9 ml/g [232–235].

Regarding the large experiment error bars on the figure at very low cp, we cannot attribute

physical significance to the single-point maximum in the ns = 0.15 M system. A more refined

data resolution in a future experimental study is clearly needed here. Even the maximum in

ηred for the zero added-salt case might be disputable on basis of the experimental data alone.

However, the existence of such a maximum in ηred draws its credibility from the comparison

to the theoretical results, showing a maximum in ηred(cp) at a slightly lower value of cp. A

similar non-monotonic behavior of ηred(cp), with a pronounced peak at low cp, has been mea-

sured also in polyelectrolyte systems [236–238], in low-salinity suspensions of charged silica

spheres [239], and in microgels [240]. The effect has been described theoretically by scaling
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arguments [241], by the Rice-Kirkwood equation [242] for the shear viscosity in combina-

tion with a screened Coulomb potential [243], and for rod-like particles using a MCT scheme

similar to ours [244]. In these earlier treatments, HI has been disregarded altogether. In our

approach, HI is included in the for the present systems dominating η∞ part of η .

To rule out that the non-monotonicity of the theoretical ηred(cp) is caused by BSA-specific

dependencies of |Z| and ns on cp, (c.f. Tab. 5.1), we have investigated additionally a model

system for fixed |Z| = 20 and ns = 1 mM, where we find again a maximum in ηred(cp). Thus,

the maximum in ηred(cp) is a generic effect in weakly screened HSY fluids. It is entirely

due to the shear-stress relaxation term Δη , for (η∞ −η0)/(η0φ) increases monotonically in

cp at arbitrary salt concentration. Since the HIs are neglected in our MCT treatment of the

shear-stress relaxation part Δη , we conclude that the local maximum in ηred is basically a

non-hydrodynamic effect, arising from electrostatic repulsion. We point out that the discussed

physical mechanism underlying the non-monotonic behavior of ηred(cp) is different from the

one causing the maximum in dc as a function of cp. The latter maximum originates from a

competition between electrostatic repulsion and hydrodynamic slowing in crowded systems.

It is therefore not surprising that the maxima in ηred and dc are located at considerably different

protein concentrations. Whereas the maximum of dc occurs at cp ≈ 30 mg/ml (c.f. Fig. 6.13),

the maximum in ηred is observed at cp � 5 mg/ml.

The theoretical values for ηred in Fig. 6.14 underestimate the experimental data by a factor

of about 1/2. In the low-concentration regime, the theoretical result for ηredcp/φ approaches

[η ] = 2.5, owing to the underlying effective sphere model. The intrinsic viscosity of BSA

modeled as a spheroid is [η ]ell = 3.25, which is larger than the value for a sphere by a factor

of 1.3 only. Therefore, this can not be the only cause for the observed deviation. However,

the actual intrinsic viscosity of a heart-like shaped BSA protein is neither equal to that of a

spheroid nor to that of an effective sphere. We recall here our discussion of Fig. 6.13, where

we argued that dt,0 for a BSA protein might well be about 25% larger than the free diffusion

coefficient, dell
t,0 , of the model spheroid. We can similarly argue that the observed differences

between the experimental and theoretical ηred may be largely due to a value for the intrinsic

viscosity of BSA of about 4−5, which is 20−50% larger than [η ]ell
, and about twice as large

as the [η ] value of spheres. This could explain the observed difference.

Note here that electrokinetic contributions to η , ds and dc, originating from the non-

instantaneous response of the microion-clouds around each protein, are not included in our

treatment. Microion electrokinetics has the effect of lowering somewhat the values of ds and

dc [37, 41], while enlarging the viscosity η [245, 246]. These effects can be expected to be

stronger when κ−1 is approximately equal to the particle size. Furthermore, electrokinetic

effects are expected to be less significant at higher protein concentrations [47, 231].
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6.3.3 Test of Kholodenko-Douglas relations

Using our theoretical short-time dynamic schemes in Section 6.1.5, we have tested the ac-

curacy of the KD-GSE relation (6.5) on short time scales. Since we have experimental data

sets for η , dL
c , and S(q → 0) for BSA solutions with low and high salt content at our dis-

posal, together with theoretical tools to calculate these properties, we are now in the position

to scrutinize experimentally and theoretically the accuracy of the KD-GSE relation

dc(φ)
dt,0

× η∗(φ)
η0

×
√

S(q → 0,φ) ≈ 1, (6.12)

for short and long time scales, using η∗ = η∞ and η∗ = η , respectively.

In their discussion of the GSE relation in Eq. (6.12), based on mode-coupling theory like ar-

guments, Kholodenko and Douglas have considered explicitly a dilute suspension of colloidal

hard spheres to first order in φ only, where η∞ and η are identical, since Δη = O(φ 2). For high

concentrations, we test now the validity of both the long-time and short-time versions of the

KD-GSE relation, on recalling that different from η∞ and η , dc and dL
c are practically equal

even at high concentrations. In Ref. [30], it was argued that for uncharged hard spheres (HS)

the KD-GSE relation is valid to linear order in φ . On recalling that dc ≈ dL
c , we can check

this statement analytically for long time scales using numerically precise 2nd order virial ex-

pansion results for dHS
c and ηHS [166, 167, 247], and with SHS(q → 0,φ) calculated from the

precise Carnahan-Starling equation of state. In this way, we obtain

dHS
c ηHS

dt,0η0

√
SHS(q → 0) = 1−0.046φ +2.282φ 2 +O(φ 3), (6.13)

which is identical to the short-time version of the KD-GSE relation for hard spheres in

Eq. (6.8) to linear order in φ , with a coefficient, −0.046, which is not precisely vanishing

but close to zero. However, to quadratic order in φ already, where particle correlations come

into play and η∞ needs to be distinguished from η , both the short- and long-time GSE variants

have distinctly non-zero virial coefficients.

In Fig. 6.15, we plot the left-hand-side (lhs) function in Eqs. (6.12) in its short- and long-

time form, as a function of cp. Both BSA solutions without added salt, and solutions with

ns = 0.15 M are considered. Apart from a constant factor, which is related to the actual value

of dt,0 in BSA solutions discussed earlier, the theoretical curves compare reasonably well to

the experimental data. There are only small differences in the short-time and long-time GSE

curves in the case of BSA solutions.

With the hard-sphere-like behavior of the particles practically reached for ns = 0.15 M,

in the added-salt system the two KD-GSE variants apply for concentrations up to cp ≈ 50

mg/ml, corresponding to φ ≈ 0.1. For more concentrated systems, the lhs function in Eq. (6.12)

increases initially, going trough a shallow maximum near cp ≈ 90 mg/ml. For zero added salt,
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Fig. 6.15: Test of the long-time and short-time KD-GSE relations in Eq. (6.12), with η∗ = η
and η∗ = η∞, respectively. Results for BSA solutions without added salt (upper datasets),
and with 0.15 M of added NaCl (lower datasets) are shown. Red symbols: combination of
dL

c from DLS, η/η0 from suspended couette rheometry, and S(q → 0) from SLS. Black lines:
Theoretical results, combining dc ≈ dL

c and η∞ calculated from the self-part corrected δγ
scheme with S(q → 0) from the MPB-RMSA scheme. For the long-time GSE version, η =
η∞ +Δη , where Δη from MCT is used. Lower boundaries of the theoretical curves correspond
to the short-time GSE, upper boundaries to the long-time version. The theoretical curves are
based on S(q)-input with φ(cp) and Z(cp) concentration-interpolated using Tab. 5.1. For zero
added salt, ns(cp) was also interpolated using Tab. 5.1. The parameters LB = 0.711 nm and
σ = σB2

= 7.40 nm are kept constant.
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Fig. 6.16: Test of the short- and long-time versions of the KD-GSE relation in Eq. (6.12)

for volume fractions from very dilute values to φ = 30%, and various salt concentrations
as indicated. The collective diffusion coefficient, dc/dt,0 ≈ dL

c /dt,0, and the high-frequency
limiting viscosity, η∞/η0, are obtained from the self-part corrected δγ scheme. The static
viscosity, η = η∞ + Δη , is calculated using MCT for Δη . Values for S(q → 0) are obtained
from the MPB-RMSA method. The input parameters LB = 0.711 nm, σ = 7.40 nm, and |Z|= 10

are kept constant.

violation of the KD-GSE relations is observed theoretically at all non-zero concentrations, and

can be noticed in the experimental data already for cp � 1 mg/ml.

In our discussion of the KD-GSE relation, we proceed now by characterizing the crossover

behavior in going from the low-salt to the high-salt regime. To this end, in Fig. 6.16, we plot the

lhs of Eqs. (6.12) as a function of φ for various salt contents, using the parameters LB = 0.711

nm, σ = 7.40 nm, and |Z| = 10. These parameters are typical of aqueous solutions of small

globular proteins such as BSA, Lysozyme [248] and Apoferritin [41]. The charge number Z is

kept constant here for simplicity. Theoretical results are plotted as a function of φ instead of

cp. In lowering the salt content in Fig. 6.16 stepwise by factors of 0.1, starting from a maximal

value of ns = 0.1 M, we find that the maximal (positive) deviation from one of the lhs function

in Eq. (6.5) increases roughly logarithmically. For low salt content, ns � 10−3 M, the physical

origin of the maxima in Fig. 6.16 is understood from comparing the theoretical results for dc

and η in Figs. 6.13 and 6.14, respectively: The maximal violation of the KD-GSE relations

occurs roughly at a volume fraction where dc(φ) attains its maximum, i.e. for φ determined
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approximately from k2
c(φ) = k2

s . Recalling that k2
c ∝ φ and k2

s ∝ ns, this explains why the φ -

location of the maxima in Fig. 6.16 shows a power-law dependence on ns for ns � 10−3 M.

For larger ns, a crossover to hard-sphere-like behavior occurs, where the KD-GSE relations

apply for φ � 0.1.

To generate the datasets in Fig. 6.16, we have used the self-part corrected delta-scheme

Eq. (4.27) for η∞. In a strict sense, this expression applies only for highly charged particles

at low salinity, as explained in Section 4.4. However, as noted from Fig. 6.5, in which the

leading-order Einstein contribution to η∞ has already been subtracted off, the difference in

η∞ between charged and uncharged spheres is moderate even at larger concentrations. The

violation of the KD-GSE at low and intermediate values of ns is therefore mostly due to φ -

dependence of dc, which we have calculated using the corrected δγ-scheme Eq. (4.25). Since

the latter expression applies well for arbitrary amounts of added salt, the curves in Fig. 6.16,

including the ones for intermediate salt concentrations, are reliable throughout.

6.4 Long-time diffusion and static viscosity of gibbsite

platelets

Dynamic light scattering functions of gibbsite suspensions have been recorded in VH and VU

geometry, for a large number of scattering wavenumbers and concentrations up to the vol-

ume fraction right at the I/LC transition. Results for the normalized intensity autocorrelation

functions, gVU
2 (q, t), (filled symbols) and gVH

2 (q, t) (open symbols) for two different volume

fractions φ = 0.8% and 4.8% are shown in Fig. 6.17. We point out that gVU
2 ≈ gVV

2 to excellent

accuracy, due to the very small optical anisotropy of the gibbsite platelets. The rather dilute

system at φ = 0.8% has only weak inter-platelet correlations, whereas the system at φ = 4.8%

is not very far from the I/LC transition.

Consider first the low-concentrated system in panel (a) of Fig. 6.17, where gVU
2 (q, t)−1 and

gVH
2 (q, t)− 1 are shown for four different q-values located well below qm, with q〈R〉 = 1.26

at the largest considered q. At this low concentration, both IACF’s are only slightly stretched,

decaying basically single-exponentially. The stretching is due to the rather small polydisper-

sity, sR = 17.3%, in the disk radius R. Due to the small value of p, the more pronounced

polydispersity in h of value sh = 55.3% has very little influence only on the particle diffusion

coefficients, and on the scattering amplitudes in the experimentally accessed q-range where

q〈R〉 � 1 and thus q〈h〉 � 0.1. The time relaxation of gVH
2 (q, t) is faster than that of gVU

2 (q, t).
To globally account for polydispersity and particle correlation effects, which both give

rise to a potentially continuous superposition of correlation times, we have fitted all of the

measured functions g2(q, t)− 1 in panel (a) of Fig. 6.17 by the Kohlrausch-Williams-Watts

(KWW) stretched exponential, {exp[−(t/τi)
βi]}2

, characterized by overall decay times τi and

a stretching exponents βi ≤ 1 [249, 250]. A system decaying nearly single-exponentially has a
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Fig. 6.17: Panels a and c: Reduced intensity autocorrelation function, g2(q, t)−1, versus cor-
relation time t for gibbsite in DMSO. Panels b and d: (mean) relaxation rates Γi as functions
of q2. The gibbsite volume fraction is φ = 0.8% in panels a and b, and φ = 4.8% in panels c
and d. Probed wavenumbers in a and c: q = 7.6×10−3 nm−1 (black circles), q = 1.47×10−2

nm−1 (red squares), q = 2.08×10−2 nm−1 (green triangles), and q = 2.84×10−2 nm−1 (blue
triangles). Open symbols: VH scattering geometry. Filled symbols: VU ≈ VV scattering ge-
ometry.
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value of β close to one. For example, βi ≈ 0.9 for the low-concentration systems with IACFs

depicted in panel (a) of Fig. 6.17. The mean KWW relaxation rates, Γi, were then calculated

from Γi = 1/ [τi ×Γ(1/βi)/βi] [251], with Γ denoting the gamma function. We note here that

the area coherence factor C in the Siegert relation Cg2
1(q, t) = g2(q, t)−1 is practically equal

to one in all our experiments.

The resulting relaxation rates ΓVH and ΓVU at φ = 0.8% are plotted as functions of q2

in panel (b) of Fig. 6.17. At the small q-values with q〈R〉 � 1 considered here, the relax-

ation rates in VH and VU≈VV geometry can be expressed as ΓVH = 6D⊥
r + O(q2) and

ΓVV = Dtq2 +O(q4), respectively [21, 92–94, 252], where Dt and D⊥
r are interpreted as the

concentration- and interaction-potential dependent experimental translational and (end-over-

end tumbling) rotational diffusion coefficients. Note here that we use capital D’s to denote ex-

perimentally determined diffusion coefficients for gibbsite, to distinguish them from the theo-

retically computed diffusion coefficients. The latter are denoted by lower-case d’s throughout.

Polydispersity effects have been accounted for in an average way through the KWW determi-

nation of the relaxation rates. Contributions to ΓVV of O(q4) arising from rotational diffusion,

and rotational-translational coupling, are not accounted for.

Regarding the low-concentration system in panels (a) and (b), there is no distinction re-

quired between short- and long-time diffusion coefficients. The slopes of ΓVU and ΓVH in

panel (b) in the q2 → 0 extrapolation are approximately equal to the zero-concentration diffu-

sion coefficients. A zero-φ extrapolation of all investigated systems, with the relaxation rates

evaluated as described above, gives Dt,0 = 2.1× 10−12 m2/s and D⊥
r,0 = 0.34× 103/s. Both

values are somewhat smaller than the values obtained from the ultrathin platelet approxima-

tion, given in Section 5.5.2.

The data for ΓVH in panel (b) shows an overall linear increase in q2, but are more noisy

than those for ΓVU. This originates from the much lower scattering intensity in VH geometry

which for the gibbsite system is by a factor of 10−4 smaller than in VU geometry.

At larger platelet concentration, where direct and hydrodynamic interactions come into play,

one sees interesting changes in the scattering functions. The VU and VH normalized IACFs,

and the corresponding KWW relaxation rates for the more concentrated system at φ = 4.8%,

are depicted in panels (c) and (d) of Fig. 6.17, respectively. It is apparent from panel (c) that in

VU geometry an additional fast relaxation mode is observed. Moreover, the slow-mode decay

of gVU
2 (q, t)−1 gets slightly more stretched out. In VH geometry, no additional mode is seen at

this concentration but the decay is more stretched than in the φ = 0.8% case. All these features

are indicators of pronounced platelet correlations requiring now the distinction between short-

and long-time diffusion properties. The subdiffusive transition regime is characterized by the

structural relaxation time given by τI = 1/(6D⊥
r,0) ≈ 0.05 ms.

Using again the Siegert relation, we can fit the two-mode decay of gVU
2 observed in panel
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(c) in the probed time window by the two-exponential form,

gVU
2 (q, t)−1 =

[
Ae−ΓVU

t t +(1−A)e−ΓVU
c t

]2

, (6.14)

involving three fit parameters A,ΓVU
t and ΓVU

c with 0 ≤ A ≤ 1 and ΓVU
c > ΓVU

t > 0. Both

the fast-mode and slow-mode relaxation rates, ΓVU
c = q2Dc and ΓVU

t = q2Dt , show the ex-

pected diffusive q2-dependence, allowing for the determination of the associated diffusion co-

efficients Dc and Dt which obey (aside from experimental scatter) the ordering Dc > Dt,0 and

Dt < Dt,0. In panel (d), ΓVU
t ≈ ΓVV = q2Dt +O(φ 4) is plotted vs. q2, with Dt inferred from the

slope at small q. The corresponding fast mode rate, ΓVU
c , is not shown in the figure. Here again,

the associated diffusion coefficient, Dc, has been determined as the slope of ΓVU
c as a function

of q2, extrapolated to q→ 0. Panel (d) also shows the relaxation rate, ΓVH = 6D⊥
r +Dtq2, of the

somewhat stretched out single-mode decay of gVH
2 (q, t), determined using the KWW analysis.

Note here that the slope of the ΓVH vs. q2 curve is equal within experimental noise to that of

ΓVU
t vs. q2. The slope in both cases is identified as the translational self-diffusion coefficient,

Dt , of interacting platelets in the isotropic phase. Likewise, D⊥
r determined from the zero-q

intercept of the ΓVH plotted versus q2 in panel (d), which fulfills D⊥
r < D⊥

r,0 = D⊥
r (φ → 0), can

be interpreted as the rotational self-diffusion coefficient at non-zero concentrations.

The same evaluation procedure as explicated in Fig. 6.17 for two selected concentrations,

was applied to an extended set of concentrations up to the I/LC transition. The resulting re-

duced diffusion coefficients Dt/Dt,0, D⊥
r /D⊥

r,0, and Dc/Dt,0, are depicted in Fig. 6.18 as func-

tions of φ .

According to this figure, Dt and D⊥
r are concentration-independent, within the experimental

scatter, in the low-concentration range φ � 0.3%. This is the expected behavior for practically

uncorrelated particles at low concentration. On the other hand, already around φ = 1%, the

fast-mode coefficient, Dc, has grown largely above its zero-concentration value Dt,0 whereas,

as viewed from the extended vertical scale of Fig. 6.18, Dt and D⊥
r start to strongly decline

below their respective infinite dilution values at φ ∼ 1%.

A concentration dependence similar to that of Dc has been reported for the collective dif-

fusion coefficient in polymers and flexible rod systems [253, 254]. However, the gibbsite

platelets studied here have no flexible parts. Moreover, the onset of the strong increase in

Dc(φ) is found at concentrations far below the platelet overlap concentration φ∗ = (3/2)p of

about 13%. Note here that an alternative definition of the overlap concentration invoking the

random close packing volume fraction, f = 0.64, of spheres according to ρ∗(4π〈R〉3/3) = f
results in φ∗ = (3〈h〉/4〈R〉) f ≈ 8.3%, i.e. a value fortuitously close to the concentration

φI/LC = 8%, where the I/LC transition is observed experimentally.

Since the dynamics of freely rotating charged platelets at concentrations well below the

overlap concentration φ∗ is most strongly influenced by the monopolar terms in the far-field

electrostatic and hydrodynamic interactions, Dc(φ) should behave similar to the collective dif-



CHAPTER 6. DIFFUSION AND RHEOLOGY RESULTS: THEORY, SIMULATION AND

EXPERIMENT 137

10
-3

10
-2

10
-1φ

10
-3

10
-2

10
-1

10
0

10
1

0 0.005 0.01 0.015 0.02 0.025

0.2

0.4

0.6

0.8

1

Fig. 6.18: Volume fraction dependence of various dynamic properties including the experi-
mental normalized fast-mode diffusion coefficient, Dc/Dt,0, (filled squares), and the experi-
mental slow-mode diffusion coefficient, Dt/Dt,0, (filled circles), both obtained in VU geome-
try, and the experimental normalized (mean) rotational diffusion coefficient, D⊥

r /D0,⊥
r (open

squares), obtained from VH measurements. Stars: Inverse low-shear-rate viscosity (η/η0)−1,
obtained from rheometric measurement. Solid black and dashed red lines: theoretical dc/dt,0
and dS

t /dt,0 predictions of the effective charged sphere model, calculated using the corrected
δγ scheme. Solid blue line (inset only): Scaling relation dS

r /d0
r = 1−1.3φ 2

eff for the short-time
rotational diffusion coefficient of effective spheres, using φeff = 1.93φ . Solid red line: dL

t /dt,0
of effective charged spheres, calculated using the simplified MCT scheme with far-field HIs
correction. Note that experimentally determined diffusion coefficient of gibbsite are denoted
by capital D’s, to distinguish them from the theoretically predicted diffusion coefficients, de-
noted by lower-case d’s.
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fusion coefficient dc(φ), measured in low-salinity suspensions of globular charged colloids.

The latter coefficient shows a sharp rise at low φ indeed (c.f., Fig. 6.13, and the related discus-

sion).

Fig. 6.18 includes the long-time value of the experimental translational self-diffusion coef-

ficient Dt , which for interacting systems can become substantially smaller than its short-time

counterpart, whose deviations from dt,0 are comparatively small. That Dt should be inter-

preted as a long-time property follows from Eq. (6.14) in combination with the finding that

Dc > Dt,0 > Dt for φ � 0.5%. Due to the fast decay of the collective mode, ΓVU
t is largely de-

termined by Dt for times t � 1/(q2Dc) which define the long-time regime, t 
 τI ≈ 0.05 ms,

when the zero-q extrapolation is made in determining Dt . Different from self-diffusion, the

long-time form of dc is practically equal to its short-time counterpart, for all concentrations in

the isotropic regime [22, 255].

The effective sphere interaction model in combination with the rotational-translational de-

coupling approximation is easily generalized from the SLS intensity to the normalized time-

dependent electric field autocorrelation function, which for small q in VV (≈VU) geometry is

given by

gVV
1 (q, t) = [1−B]e−q2W (t) +BS(q → 0)e−q2dct , (6.15)

with B = X(q → 0)/[X(q → 0)+ (1−X(q → 0))S(q → 0)]. Here, W (t) is the mean-squared

displacement of a charged effective sphere with initial (short-time) slope ds, and final (long-

time) slope dL
s , where dL

s < ds ≤ dt,0 (c.f., Fig. 4.1). Moreover, on ignoring the small difference

between long- and short-time collective diffusion coefficients, noticeable at very high concen-

trations only, dc = dt,0H(q → 0)/S(q → 0) [21, 22, 153]. Eq. (6.15) is fully consistent with

the two-mode decay observed for gibbsite, fitted using Eq. (6.14), and it supports the inter-

pretation of the experimental Dt as a long-time self-diffusion coefficient. We point out that

in the simplifying model considered here, the diffusion coefficients of platelets are simply

approximated by those of the effective charged spheres.

Using the effective sphere parameters ns = 7μM, σ = 65 nm, Z = 71 determined in Sec-

tion 5.5, and varying the (effective) volume fraction in small steps assuming a linear, homo-

geneous relationship φeff = 1.93φ , we have generated a set of S(q)’s using the MPB-RMSA

scheme, as input to the otherwise parameter-free self-part corrected δγ scheme for H(q).
Considering the approximations invoked in our simplifying model, the agreement of the

theoretically calculated dc with the experimental data in Fig. 6.18 is satisfying. The smooth

increase of dc with increasing φ to values about 20 times larger than dt,0 is well captured.

As explained already in Section 6.3.1, the theoretical dc reaches a shallow maximum at φ ≈
3% originating from the interplay of osmotic compressibility and sedimentation coefficient

H(q → 0) [41].

The self-part corrected δγ scheme result for the short-time self-diffusion coefficient, ds(φ),
is included into Fig. 6.18 (see also inset). In the explored φ -range, the theoretical ds(φ) de-

creases only mildly with increasing φ , and is overall well described by the fractional power-
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law Eq. (4.24b) with at ≈ 2.9. For φ � 2%, however, the decline of the experimental long-time

Dt in Fig. 6.18 is very strong. For values φ � 7% near to φI/LC, Dt assumes values of less than

1% of Dt,0. This is similar to the slowing down of self-diffusion seen for block copolymers in

a neutral solvent when the disordered-ordered transition is approached [256], in polymer solu-

tions with increasing concentration [254], and also for polymer grafted clay particles [90]. The

measured values of DL
t /Dt,0 for gibbsite are much smaller than those reached by the long-time

translational diffusion coefficient of low-salinity charge-stabilized spheres in the fluid phase,

which reaches its minimal value of dL
t /dt,0 ≈ dL

t /dS
t ≈ 0.1 at the freezing transition volume

fraction φ f [169, 176]. For the effective sphere model used here, φ f can be estimated on basis

of the empirical Hansen-Verlet freezing criterion S(qm,φeff = φ f )≈ 3.1 for charged spheres at

low salinity [103, 181, 182]. With S(q) computed in MPB-RMSA, this results in the freezing

transition volume fraction φeff = 42%, corresponding to φ = φeff/1.93 = 22%. We attribute

the strong decay of the experimental Dt at larger φ to the uprising influence of the anisotropic

electro-steric interactions, and to the rotational-translational coupling effects in platelet sys-

tems. These effects, which are obviously not included in the effective sphere model, cause a

further slowing down of the translational and rotational dynamics.

The short-time rotational self-diffusion coefficient, dr, of colloidal charged-sphere systems

at low salinity, follows to good accuracy the concentration scaling dr/dr,0 = 1− arφ 2, with

ar ≈ 1.3, in the whole φ -range of Fig. 6.18 [23, 40]. Note that dr/dr,0 decreases less strongly

with increasing φ than ds/dt,0. This can be explained [40] by the shorter-ranged hydrodynamic

self-coupling of the rotational motion. The experimental (long-time) diffusion coefficients Dt

and D⊥
r depicted in Fig. 6.18, follow overall the same ordering D⊥

r (φ) > Dt(φ) as their short-

time counterparts in the effective sphere model.

The low-q expression for gVH
1 (q, t) in our simplifying model is given by (see, e.g., [252,

257])

gVH
1 (q, t) = e−q2W (t)Gr(t), (6.16)

where Gr(t) =< P2(û(t) · û(0)) > is the rotational self-dynamic correlation function of

spheres, with the optical axis of a sphere characterized by the unit vector û, and with P2 de-

noting the 2nd-order Legendre polynomial. In the derivation of Eq. (6.16), it has been assumed

that the translational-rotational motions of a particle are decoupled [252]. This decoupling is

exactly valid for hydrodynamically interacting spheres at short times only. For non-spherical

particles, it is an approximation even to linear order in t.
At short times, Gr(t) = exp{−6dS

r t} decays exponentially. At long times, however, Gr(t)
decays in principle non-exponentially, with an average decay rate somewhat smaller than dS

r
[252]. While a genuine long-time rotational self-diffusion coefficient does not exist, one can

define instead a mean orientational self-diffusion coefficient, dr, determined by the time de-

pendence of Gr(t) for all times. A corresponding dr of platelets, identified as the measured D⊥
r ,

is shown indeed in Fig. 6.18, as obtained in panel (d) of Fig. 6.17 using the KWW analysis.

The calculation of dr for colloidal hard spheres in Ref. [252] suggests that dr is only slightly
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smaller than dS
r , at least for smaller values of φ . The experimental mean rotational diffusion

coefficient D⊥
r depicted in Fig. 6.18, however, decreases very strongly at larger φ , to an extent

comparable to that of the experimental Dt . Like for Dt , we attribute this strong decline of D⊥
r

at larger φ to the strong anisotropic electro-hydrodynamic coupling of the charged platelets.



CHAPTER

SEVEN

Conclusions and Outlook

A set of analytical theoretical schemes has been introduced, tested and applied in this the-

sis, that allow precise and quick computation of static pair correlations, diffusion properties,

and the viscosity of HSY-like colloidal fluids. The accuracy and validity range of these easy-

to-implement methods was assessed in the complete fluid-phase regime through extensive

comparisons with static and dynamic simulations. Using our analytic methods, we calculated

a variety of short-time dynamic properties, including the hydrodynamic function and the high-

frequency viscosity, as functions of concentration, salt content, effective particle charge, and

particle size. The long-time static viscosity and self-diffusion coefficient were calculated using

a simplified MCT result including far-field HIs. The observed trends in the static and dynamic

properties were explained also in terms of intuitive physical pictures. In addition, the theo-

retical methods were used to analyze experimental results, obtained by our collaborators, for

three different systems: charge-stabilized colloidal silica spheres in toluene-ethanol, gibbsite

platelets in DMSO, and globular BSA proteins in water.

The dynamic methods employed require the static structure factor, or likewise the rdf, as

the only input. An analytic integral equation method was designed which allows for a fast

and quantitatively accurate computation of S(q) and g(r). This so-called MPB-RMSA method

is a simple modification of the PB-RMSA scheme originally devised by Snook and Hayter

[97]. It can be easily implemented into a standard (R)MSA code (cf., Appendix B), making it

appealing for practical applications.

Through extensive comparison with RY and MC calculations, we have established the

MPB-RMSA as a fast and convenient tool for analyzing experimental scattering data on

charge-stabilized suspensions in a wide range of concentrations, ionic strengths, and effec-

tive charge numbers, with a fast delivery of S(q) and g(r). Such a fast delivery is also required

in dynamic methods including MCT and dynamic density functional theory. In these methods,

static structure factors in an extended range of wavenumbers are required as input in calcula-

tions of non-equilibrium glass or gel lines.

141
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As demonstrated in this thesis for silica spheres, BSA proteins, and gibbsite platelets, the

MPB-RMSA is well-suited to the real-time fitting of experimentally obtained pair structure

functions. The central fitting parameter, Z, can be obtained from matching the experimental

structure factor peak heights. In most cases, the MPB-RMSA effective charge number is prac-

tically identical to that obtained from the more elaborate MC simulations and the RY method.

However, the latter two methods are computationally more expensive by orders of magnitude.

We have demonstrated the capability of the MPB-RMSA as a fast tool for exploring generic

features in the pair microstructure and the equilibrium fluid-phase behavior. Using the MPB-

RMSA, the principal peak heights, S(qm) and g(rm), and the corresponding peak positions

have been determined throughout the fluid (T̃ , k̃) phase-space. This has allowed us to unravel

the conditions for which geometric concentration scaling of the peak positions is observed.

The solid-fluid coexistence line determined in conjunction with the Hansen-Verlet freezing

rule was shown to be in good agreement with MD simulation results for point-Yukawa parti-

cles, including the isochoric OCP transition point.

While the MPB-RMSA static structure functions are in good overall agreement with the MC

and RY results, in some specific details there are small discrepancies. For low-salt systems of

strongly correlated particles, S(qm) is overestimated by up to 5%. The peak value, g(rm),
of the rdf is, in general, slightly underestimated, again by up to 5% for highly correlated

particles. Furthermore, the (M)PB-RMSA g(r) has a kink at the inflated (rescaled) hard core

diameter that is not shared by the exact rdf. For HSY systems with weak Yukawa repulsion

where the physical hard core matters, the MPB-MSA pair structure functions remain in good

overall agreement with the MC and RY data, unless γe−k � 3.0. Under the latter condition,

the increase of the rdf contact value g(σ+) as a function of φ is overestimated.

Unlike the RY scheme, the MPB-RMSA is thermodynamically inconsistent, but to a lesser

degree than the RMSA, HNC, and also the PB-RMSA schemes. The zero-q limit of S(q) is

predicted by the MPB-RMSA to a reasonable accuracy, with deviations from the RY result of

less than 10% even at the freezing volume fraction.

The static functions S(q) and g(r), computed by the MPB-RMSA method, have been used

as the only input required in the PA and (self-part corrected) δγ schemes for the short-time

dynamics. For arbitrary salt concentration, the PA scheme, which precisely, but only accounts

for two-body HIs, is in excellent agreement with the simulation data for H(q), provided that

φ � 0.1. With regard to the high-frequency viscosity, the PA-scheme predictions are in good

agreement with the simulation data for volume fractions up to φ ≈ 0.1 in case of neutral hard

spheres, and up to φ ≈ 0.2 for strongly charged spheres in the low salinity regime. At larger

φ , three-body and higher-order HIs are influential, so that the self-part corrected δγ scheme

should be used.

The self-part corrected δγ scheme for H(q) of charged spheres is in good agreement with

our ASD results at all φ and ns values investigated. When it is applied to neutral hard spheres,

using dHS
s according to Eq. (4.26), HHS(q) is predicted to very high degree of accuracy for

concentrations up to φ ≈ 0.4, and including the small-q region.
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We have shown that the (second-order) δγ-scheme expression for η∞, given in Eqs. (4.20)-

(4.22), is only applicable to hard-sphere like systems, that is at large screening or zero charge.

Its predictions for ηHS
∞ , however, agree well with the ASD data up to φ � 0.4. At larger φ ,

it underestimates the high-frequency viscosity. Based on arguments applicable to low-salinity

charge-stabilized systems only, we have introduced in Eq. (4.27) a simple correction to the δγ-

scheme result for η∞. This corrected δγ scheme predicts to a high degree of accuracy the high-

frequency viscosity of low-salinity systems, even up to the freezing transition concentration.

We have shown that a large body of experimental results for D(q) and H(q), for systems of

different particle types and sizes, concentrations, salt contents and solvents, is well described

by the OMF model, with all the ordering relations in Eqs. (6.9) satisfied. Residual attractive

pair interactions or solvent permeability, and most likely also electrolyte friction, can not ex-

plain the ultra-small H(q) findings of Robert and collaborators [215]. Ultra-small values of

H(q) have not been observed in our scattering experiments, nor in those of our collaborators

and various other groups [65, 214, 216, 218].

We have investigated static and dynamic properties of aqueous BSA protein solutions in

an integrated conceptual framework, by combining SLS/DLS, SAXS, and rheometric mea-

surements with our analytical schemes. Protein solutions with physiological concentrations

of NaCl have been studied, as well as low-salt solutions, showing distinct features in the

concentration-dependence of the collective diffusion coefficient and the (reduced) viscosity.

In our analytical theoretical approach to BSA proteins, we have used a simplifying spheroid-

Yukawa model of BSA with isotropic, repulsive pair interactions, to calculate the static scat-

tered intensity using the efficient MPB-RMSA method in combination with the orientational-

translational decoupling approximation. The resulting static structure factors S(q) have been

used, without any further fitting, in calculating dc, η∞, and η on basis of our well-tested short-

time dynamics schemes. Without including additional protein-specific features, we have used

the spheroid-Yukawa model for I(q), and the related effective sphere-Yukawa model for the

dynamic properties, as minimal models to reveal their pros and cons.

The measured static and dynamic properties of BSA are captured reasonably well in our

simplifying SY model, with an at least semi-quantitative accuracy, for mass concentrations up

to cp ≈ 100 mg/ml. In the range of 2 mg/ml � cp � 50 mg/ml, reliable values for the effective

protein charge, and the residual electrolyte concentration, have been obtained from our fits

of the SAXS intensities. The SAXS fits are considerably obstructed for cp � 2 mg/ml by the

presence of scattering impurities, and for cp � 50 mg/ml by the breakdown of the decoupling

approximation.

A well-developed maximum in the concentration dependence of the collective diffusion

coefficient of BSA was found at low salinity. This behavior is also seen in charge-stabilized

colloidal suspensions. It is caused by the competition between electrostatic repulsion and hy-

drodynamic slowing down in crowded systems. Moreover, a non-monotonic concentration

dependence of the reduced viscosity of low-salinity BSA solutions was predicted theoreti-

cally, and to some extent has been seen also experimentally. We have explained the local
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maximum in the reduced viscosity ηred(cp) as a non-hydrodynamic effect caused by the elec-

tric repulsion. A non-monotonic concentration-dependence of ηred, with a pronounced peak at

low concentration, is also observed in polyelectrolyte solutions. Thus, the low-cp peak in ηred

is a generic feature of charge-stabilized dispersions at low salinity.

We have analyzed the validity of the short-time and long-time versions of a GSE relation

by Kholodenko and Douglas [30], which connects the collective diffusion coefficient to the

shear viscosity and to the isothermal osmotic compressibility. Despite their appealing simplic-

ity, the KD-GSE relations fail to capture the essential richness of macromolecular collective

diffusion. To decent accuracy, they apply to electrostatically screened solutions at high salin-

ity, where a maximum positive-valued violation of 18% is found for volume fractions around

0.3. However, the KD-GSE relations are violated for more crowded high-salt solutions, and

for all non-zero volume fractions under low-salt conditions. The key finding from our validity

tests of various GSE relations is the strong dependence of their applicability on the range and

character of the particle interactions.

Using (D)DLS and SLS, we have measured the long-time translational collective- and

self-diffusion coefficients Dc and DL
t , the mean rotational diffusion coefficient D⊥

r , and the

static scattered intensity, I(q), of charged gibbsite platelets suspended in DMSO at low ionic

strength. Our experiments cover the concentration range from very dilute systems up to the

I/LC transition.

The usage of DMSO as a solvent that has a dielectric constant close to that of gibbsite,

has enabled us to determine the translational and rotational diffusion properties without the

necessity of invoking elaborate X-ray photon correlation spectroscopy measurements. Fast

relaxation modes in the dynamic scattering data have frequently been reported in relation to

the liquid-glass transition, the glassy state, and also for polymer-coated clays [84, 86, 258].

In the present study, a fast mode also has been found for the isotropic phase, and we have

identified it as a collective diffusion mode.

With increasing φ , the measured collective diffusion coefficient increases to about twenty

times the single-particle (orientationally averaged) translational diffusion coefficient. Differ-

ent from the translational and rotational self-diffusion coefficients, which strongly decrease

for φ � 2%, the collective diffusion coefficient remains nearly constant for these larger con-

centrations even when the I/LC transition concentration is reached. The strong decay of the

self-diffusion coefficients is accompanied by a comparatively pronounced increase of the zero-

shear-rate limiting static shear viscosity. We have provided arguments, both experimentally

and theoretically, that the coefficients Dt and D⊥
r obtained in the scattering modes analysis

should be identified, respectively, with the translational long-time and the mean rotational

self-diffusion coefficients of gibbsite platelets.

We have used a circular cylinder-Yukawa model for the thin gibbsite platelets in the

isotropic fluid phase, similar to the spheroid-Yukawa model used for the moderately aspheric

BSA proteins. At low concentrations, the mean scattered intensity I(q) of gibbsite is well

reproduced in the simplifying translational-rotational decoupling method, on neglecting cor-
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relations between particle positions, sizes and orientations, and on approximating the direct

platelet interactions by a spherically symmetric electro-steric repulsion of DLVO type.

Except for very low concentrations, the accessible q-range in light scattering experiments

is restricted to wavenumbers smaller than the value where the principal structure peak in I(q)
occurs. The effective particle charge has therefore been estimated from the I/LC transition as

Z = 71, and was kept constant in our model calculations independent of concentration and

salinity. We note here that while the simple effective sphere model clearly fails in terms of

quantitative predictions for the gibbsite platelet system, it allows for a correct assessment of

qualitative features in the isotropic phase, such as the ordering of the values of the rotational

and translational self-diffusion coefficients, and the plateau region of the collective diffusion

coefficient at larger φ .

Upon increasing the concentration, peculiar observations have been made in the measured

diffusion properties of the gibbsite/DMSO system. We find that Dc grows with increasing con-

centration, similar to suspensions of charge-stabilized colloidal spheres at low ionic strength.

Since the value of dc is nearly the same at long and short times, and since the increase in dc(φ)
is mainly due to the reducing osmotic compressibility S(q → 0), the basic features of the

experimental Dc(φ) have been reproduced in our effective sphere model, using the self-part

corrected δγ-scheme.

The effective sphere model of gibbsite is less accurate regarding the measured long-time dy-

namic quantities DL
t and D⊥

r , which are more sensitive to anisotropic direct and hydrodynamic

interactions most influential on shorter length scales. The strong decay of both quantities to

less than 1% of their respective infinite dilution values near φI/LC = 8%, is not reproducible in

an effective sphere model, where DL
t � 0.1×Dt,0 is predicted for all fluid-state concentrations.

Various extensions of the presented work can be thought of, that could be the starting point

for future projects.

The MPB-RMSA scheme for the equilibrium pair-structure of HSY-like fluids can be used

to implement a quicker version of the self-consistent renormalized jellium approach by Colla

et al. [57], for calculating the colloidal renormalized charge. Here, the MPB-RMSA can re-

place the numerically more expensive RY scheme with practically no loss in accuracy.

Our comprehensive two-dimensional parameter scans of the point-Yukawa-like phase, pre-

sented in Section 5.2, could be extended to cover the full three-dimensional parameter space

of HSY-like particles including non-zero contact values of the rdf. Using our fast and accurate

schemes describing short-time dynamics, parameter scans of the scaling behavior of dynamic

properties could be determined with high resolution in the full fluid phase regime. The results

of such dynamic parameter scans could be used in systematic searches for possible GSE rela-

tions, combining various diffusion properties with the suspension viscosity and properties of

the pair-structure functions.

A straightforward extension of the PA scheme of short-time colloid dynamics is obtained
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using expressions for the pair-mobility functions xa
i j(x) and ya

i j(x), and the shear-mobility

function J(x), that apply to spheres with different non-stick hydrodynamic boundary con-

ditions. The investigations presented in this thesis have been restricted to spheres with hy-

drodynamic stick boundaries. However, expressions for xa
i j(x), ya

i j(x) and J(x) can also be

computed for spheres with slip or mixed stick-slip boundaries, for spherical fluid droplets,

and for permeable spheres, where solvent-permeability is accounted for using the Debye-

Bueche-Brinkmann equation [259, 260]. Series expansions for xa
i j(x) and ya

i j(x) to O(x−20)
for some selected types of hydrodynamic boundary conditions are tabulated in Ref. [159], and

to O(x−7) for solvent-permeable spheres of arbitrary permeability in Ref. [261]. In a future

project, these truncated two-body series expansions could be extended to a very high order in

1/x by methods discussed in Refs. [21, 158, 159, 162], with resulting mobility tables for pairs

of spheres with varying solvent permeabilities or hydrodynamic slip lengths, and for fluid

droplets. In combination with the MPB-RMSA method, a computationally highly efficient

solver for short-time dynamic properties of charged and uncharged spheres, with various sorts

of hydrodynamic boundary conditions could be implemented. A promising field of application

for such a solver is the investigation of suspensions of charged and uncharged microgels that

show a temperature-dependent swelling behavior with associated varying solvent permeability

[262–264].

We recall from Chapter 6 that the PA-scheme results with stick hydrodynamic boundary

conditions are accurate up to φ ≈ 0.1 regarding the H(q) of both the CS and HS systems,

and the η∞ of HS, whereas the PA-scheme expression for the η∞ of CS is applicable even

up to φ ≈ 0.2. A non-zero hydrodynamic slip-length or a non-zero solvent permeability re-

duce the hydrodynamic drag on a single sphere. A weakening effect of slip and permeability

should apply also to two-body HIs. Thus, the PA scheme is likely to be reasonably accurate for

larger volume fractions when, in place of stick-boundary spheres, slip or permeable spheres

are considered.

In contrast to the PA scheme, a straightforward generalization of the (self-part corrected) δγ
scheme to systems other than stick-boundary spheres is not in sight. However, short-time dy-

namic properties in concentrated suspensions of spheres with arbitrary hydrodynamic bound-

ary conditions and interaction potentials, can be computed using a precise hydrodynamic force

multipole method [265, 266]. This simulation method, which is computationally far more ex-

pensive than the analytical schemes discussed in the present thesis, takes accurate account of

many-body HIs in systems consisting of a few hundred particles with periodic boundary condi-

tions. This requires, in general, an extrapolation (finite size scaling) to a macroscopically large

system. In combination with MC simulations for their microstructure, the multipole method

has been used to calculate various short-time diffusion coefficients and the high-frequency

viscosity of uncharged, uniformly permeable spheres, as functions of permeability and con-

centration [25, 26, 165–167, 175, 212, 225].

Different from the self-part corrected δγ scheme for H(q) in Eq. (4.25), which applies to

any salt concentration under the condition that φ � 0.15, the corrected δγ scheme for η∞
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in Eq. (4.27) is valid at low salinities only. An appropriately corrected δγ scheme for η∞,

applicable for arbitrary salinities, is still missing. Its development could be the topic of a

future study.

Possible extensions of the SY model for globular protein solutions used in this thesis, which

allow the theory to maintain analytical simplicity to some extent, are the inclusion of short-

range attractive interactions for suspensions at larger salt content using, for instance, a two-

Yukawa pair potential [267, 268], and the average inclusion of surface patchiness [248]. For

the static viscosity of more strongly concentrated protein solutions than those considered in

the present work, the shear stress relaxation contribution, Δη , can become large in comparison

to η∞. In calculating Δη , one then needs to account for HIs which tend to further enlarge the

viscosity. An inclusion of HIs into Δη can be accomplished starting from an extended MCT

scheme discussed in Refs. [119, 180].

Future SAXS and XPCS measurements of gibbsite platelets are needed for an unambiguous

determination of the gibbsite effective charge and its dependence on φ and ns. Our simplifying

CCY model of gibbsite could be improved by a more elaborate approach. In a more refined

calculation of I(q), one can account for shape-dependent direct interactions via the PRISM

method [4, 134–136]. However, regarding dynamic quantities, it will be very difficult to in-

clude shape-dependent hydrodynamic interactions, on avoiding numerically expensive multi-

particle collision, fluctuating Lattice-Boltzmann or Stokesian dynamics simulations. Finally,

the similar measured concentration-dependencies of DL
t , D⊥

r , and of the inverse low shear-rate

limiting viscosity, (η/η0)
−1

, of the gibbsite system discussed in this thesis, can be the starting

point of a future examination of generalized Stokes-Einstein relations in concentrated platelet

fluids.
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APPENDIX

A

MSA solution

Except for the HSY pair-potential parameters {γ,k,φ}, the static structure factor S(q) and
the rdf g(r), the variable names used in this appendix are locally defined only. The index of
abbreviations and symbols in this thesis, starting on page 165, does not apply to the local
variable names used here.

A large body of literature [63, 113–115, 269–271], deals with analytic MSA solutions for

S(q) and g(r) for particles interacting by the HSY pair potential in the form of Eq. (2.6). Unfor-

tunately, there are various misprints scattered in the lengthy lists of coefficients in which S(q)
and g(r) are expressed. To facilitate the implementation of the MSA solution by an interested

user, we summarize here the analytic MSA solutions used in our software package described

in Appendix E. The MSA expressions given here are the corrected ones by Cummings and

Smith [113, 114], which have been obtained using a Wiener-Hopf factorization method [272].

For conciseness, we give only those results required for the implementation of the MPB-

RMSA algorithm (see Appendix B), namely those for gMSA(r = σ+) and S(q). There exist

also analytic MSA expressions for the Laplace transform of g(r), and for c(r), which can be

found in the literature on the MSA given cited this thesis.

According to Eq. (3.12), the MSA rdf contact value gMSA(x = 1+) is obtained from

cMSA(x = 1−) and the pair potential at contact. Using the analytic MSA result for c(r), one

obtains

gMSA(x = 1+) = a+b+K −βk f e−k −6φ

{
β

f +dek

k2
×
[
−β f k2e−k +ak2e−k

−2kbe−k −2ae−k +2bk2e−k −2βdk2e−k +2ae−2k +2ake−2k

+2βdk2e−2k +β f k2e−3k +2bke−2k
]
−β 2( f +dek)

2
e−3k

}
. (A.1)
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The MSA static structure factor is given in the zero-q limit by SMSA(q → 0) = a−2, and for

arbitrary q by SMSA(q) =
[
X2

A +X2
B
]−1

, with coefficients

XA = 1−12φ
[

a
qcos(q)− sin(q)

q3
+b

cos(q)−1

q2

+βd
sin(q)

q
+

βb f
b2 +q2

+βd
bcos(q)−qsin(q)

b2 +q2

]
, (A.2)

XB = −12φ

[
a

qsin(q)+ cos(q)−1− 1
2
q2

q3
+b

sin(q)−q
q2

+βd
1− cos(q)

q
+

βq f
b2 +q2

+βd
bsin(q)+qcos(q)

b2 +q2

]
, (A.3)

a =
1+2φ + 12φβ

k ×
{[

1+2φ − 6φ
k

]
× [− f −d(1+ k)]+3dφk

}
(1−φ)2

, (A.4)

−b =
3
2
φ + 12φβ

k ×
{[

3
2
φ + 1−4φ

k

]
× [− f −d(1+ k)]− kd

2
× (1−4φ)

}
(1−φ)2

, (A.5)

d =
(βD−K)e−k +β 2E

β 2F
, (A.6)

f =
6φ
F

[
2− e−k

]
− Sδ

F
[τ(1+ k)−3φk]

+
T δ
F

[
ρ(1+ k)+ k(

1

2
−2φ)

]
+

K −βD
β 2F

, (A.7)

δ =
12φ

k(1−φ)2
, τ = 1+2φ − 6φ

k
, ρ =

3

2
φ +

1−4φ
k

, (A.8)

K = −γe−k, T =
12φ

k
×
[
1− k− e−k

]
, (A.9)

S =
12φ
k2

×
[

1− k2

2
− (1+ k)e−k

]
, (A.10)

F = δ ×
{

S×
[(

1+2φ − 6φ
k

)
×
(

1− (1+ k)e−k
)

+3φke−k
]

−T ×
[(

3φ
2

+
1−4φ

k

)
×
(

1− (1+ k)e−k
)
− 1

2
(1−4φ)ke−k

]}

−6φ(1− e−k)
2
, (A.11)
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E = −6φ +Sδ ×
[

1+2φ − 6φ
k

]
−T δ ×

[
3φ
2

+
1−4φ

k

]
, (A.12)

D = k− S(1+2φ)

(1−φ)2
+

3T φ
2(1−φ)2

, (A.13)

X = 6φ
{

ke−k − 6φ
(1−φ)k2

×
[
2−2k− (2− k2)e−k

]

− 18φ 2

k2(1−φ)2
×
[
2− k− (2+ k)e−k

]}
, (A.14)

Y = k− 6φ
k2(1−φ)

×
[
2− k2 −2(1+ k)e−k

]

− 18φ 2

k2(1−φ)2
×
[
2− k− (2+ k)e−k

]
. (A.15)

In Eqs. (A.1)-(A.15), φ , γ and k are the volume fraction and HSY coupling- and screening

parameters, as defined in Eqs. (2.5).

Finally, β is the only root of the quartic equation,

36φ 2β 4 −Xβ 3 +12φKβ 2 −KY β +K2 = 0, (A.16)

that vanishes when the double limit K → 0 and φ → 0 is taken. The closed analytic form of

this root, used in the combined microstructure and dynamics solver described in Appendix E,

can be easily obtained using a computer algebra software such as MAPLE®, but is too lengthy

to be displayed here. To identify the physical root, it is helpful to employ the low-φ expansions

of the four roots of Eq. (A.16), given in Ref. [113]. Note that in the notation of Ref. [113], ξ
equals the HSY screening parameter k, and η denotes the volume fraction φ .

An alternative, but computationally less efficient way to determine the physical root β of

Eq. (A.16), was suggested in Ref. [269]. This method consists of calculating the MSA solu-

tions for S(q) using all four roots of (A.16), Fourier-transforming into the respective g(r)’s,

and selecting the unique physical solution as the only one for which g(r) vanishes inside the

hard-core overlap region r < σ .



152



APPENDIX

B

MPB-RMSA algorithm

Here, we describe the algorithm of our MPB-RMSA code based on the analytic MSA solution

for S(q), and the contact value g(σ+) of the HSY model given in Appendix A.

� ���� ��

�����	
 ����� �������� �σ�γ�k�φ� �	 ��� ���������� ��������� ���

�
����� ��� ������ �������� ��� �
 ��� ���� (2.5a) �� (2.5b) 	�� γ
�� k� ������ �������� 1 
 !"> 0 �� #���� ��������� |g(x′ = 1+)| < !"�

� ���� $�

%�������

kmod = k
√

1−φ ,

γmod = γ exp(kmod − k)
(

1+ k/2

1+ kmod/2

)2

�

� ���� &�

'������

k∗ = kmod −2φ 1/3 log(1−φ)�
γ∗ = γmod(1−φ)−2�

(�������� gMSA(x = 1+)� )��� x = r/σ� ����� �������� �σ�γ∗�k∗�φ��
*	 gMSA(x = 1+) < 0� ������ s 	��� (0,1) �� �������� )��� ���� +�

!����)��� ����� σ∗ = σ �� φ∗ = φ� ���� �� �� ���� ,

� ���� +�

'������

x′ = xs�
σ∗ = σ ′ = σs−1�

φ∗ = φ ′ = φs−3�

γ∗ = γ ′(1−φ ′)−2 = γmods(1−φ ′)−2
�
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k′ = kmods−1�

k∗ = k′ −2φ ′1/3
log(1−φ ′)�

� ���� ��

	���
��� gMSA(x′ = 1+) ��
 ���� ��
�����
� �σ∗�γ∗�k∗�φ∗��
�� |gMSA(x′ = 1+)| <���� �� �� ���� ��

����
���� ������ s �
�� (0,1) �� �� �� ����  �

��� �� �������� ��
 s �� ���� !" � #����$%����� �"�� ����
�����

� �������� ��
 �
�&�����" �!����� '�( ������ &������

� ���� ��

)�������� SMSA(q) � ��&� 
��� 0 ≤ q ≤ qmax ���� ���� ��
�����
�

�σ∗�γ∗�k∗�φ∗�� ���� SMPB-RMSA(q)= SMSA(q;σ∗,γ∗,k∗,φ∗)� ��� 
�� �������

���
�����" !" � ���� *��
��
 �
����
��

If step 2 is replaced by kmod = k and γmod = γ , the original PB-RMSA scheme by Snook

and Hayter [97] is recovered. In summary, the modification of the PB-RMSA simply consists

of replacing the HSY input parameters (γ,k,φ) by (γmod,kmod,φ).
If the first two instructions in step 3 are replaced by k∗ = kmod = k and γ∗ = γmod = γ , the

RMSA scheme by Hansen and Hayter [98] is recovered, which, in turn, reduces to the MSA

if a very large value, ���→ ∞, for the tolerance in the Gillan criterion is chosen.

To obtain the rdf in MPB-RMSA, do not use Eq. (3.4) since the integrand decays slowly

in q, making the integral quite sensitive to the selected cutoff wavenumber qmax. Instead, we

suggest to use

g(r) = 1+ c(r)+
1

2π2 r

∫ ∞

0
dqq sin(qr)

(S(q)−1)2

S(q)
, (B.1)

which has a faster decaying integrand. On the right-hand-side of Eq. (B.1), S(q) =
SMPB-RMSA(q) and c(r > σ∗) = −βu∗(r), where u∗(r) = u(r;σ∗,γ∗,k∗,φ∗) and σ∗ is the

MPB-RMSA rescaled diameter. The MPB-RMSA code with ���= 10−4 requires in general

less than 10 iterations to determine the rescaling parameter s. The execution time on a standard

PC is less than 0.1 seconds, for both S(q) and g(r) determined on a grid with 104 points.
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C

PA-scheme mobility coefficients

For completeness, and to allow for a convenient implementation of the PA-scheme by an in-

terested user, we list here the PA-scheme mobility coefficients used in our work. The tables

given here provide only an excerpt of available two-sphere mobilities in Stokes flow. A com-

prehensive textbook with tables and recursion formulas for two-body mobility and friction

coefficients is Ref. [160].

Far-field mobility expressions

The two-body mobility components xa
i j(x) and ya

i j(x) in Eq. (4.9) can be analytically expanded

as

xa
i j(x) = δi j +

∞

∑
n=1

xa
i j

(n)x−n, ya
i j(x) = δi j +

∞

∑
n=1

ya
i j

(n)x−n, i, j ∈ {1,2}, (C.1)

where x = r/σ is the separation centers of two isolated particles in units of the sphere diameter

σ . The expansion coefficients xa
i j

(n) and ya
i j

(n) can be calculated using recursion formulas and

are tabulated in Ref. [159]. Note that in Ref. [159], the expansion was carried out in powers of

2/x = 2r/σ instead of 1/x, and a normalization factor different from the present one was used.

In Tab. C.1, we give the coefficients xa
i j

(n) and ya
i j

(n), in the normalization used throughout the

present work. The coefficients in columns 1, 2, 3, and 4 of Tab. C.1 are equal to the respective

coefficients, c(n), listed in the first column (denoted Model a) of Tabs. I, XII, II, and XIII in

Ref. [159], multiplied by 3/2× (1/2)n.

A corresponding 1/x expansion is available also for the two-body shear-mobility function

J(x). The corresponding expansion coefficients xm
1 ,ym

1 , and zm
1 , with J(x) = 1/5(xm

1 + 2ym
1 +

2zm
1 )−1, can be extracted, e.g., from Refs. [161–163]. The function J(x) decays more quickly

with increasing x than xa
i j(x) and ya

i j(x), so that the leading-order far-field form for J(x) be-

comes a good approximation already for x � 1.2 (c.f., Fig. 4.3). In our implementation of the
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Tab. C.1: Translational mobility coefficients xa
i j(x) and ya

i j(x) in Eq. (C.1), up to O(x−20).
Values are taken from Ref. [159], but the expansion is carried out in powers of 1/x = r/σ ,
and a normalization different from the one in [159] is used.

n xa
11

(n) ×102 xa
12

(n) ×102 ya
11

(n) ×102 ya
12

(n) ×102

1 0 75 0 37.50

2 0 0 0 0

3 0 -12.51 0 6.249

4 -23.44 0 0 0

5 0 0 0 0

6 8.595 0 -1.660 0

7 0 14.65 0 0

8 4.102 0 -0.4883 0

9 0 -1.465 0 0

10 -8.155 0 -0.4211 0

11 0 -4.797 0 0.2163

12 -2.695 0 -0.3783 0

13 0 2.082 0 0.2745

14 1.758 0 -0.2628 0

15 0 2.094 0 0.2404

16 -0.2275 0 -0.1706 0

17 0 0.01674 0 0.1579

18 -0.6529 0 -0.1277 0

19 0 0.6128 0 0.09072

20 0.3340 0 -0.1150 0

PA scheme, we therefore use J(x) ≈ 15/128x−6 for x > 3, together with accurate numerical

tables by Jeffrey for x ≤ 3. The values from these numerical tables cross over continuously

from the far-field expression to the near-field expression.

Near-contact mobility expressions

At near-contact distances χ = x− 1 � 0, where lubrication effects become influential in sys-

tems with hydrodynamic stick boundary conditions, the expansions in Eq. (C.1) are slowly

convergent. Jeffrey [158, 273] has provided the analytic expressions

xa
i j(χ) = ka

i j
(1) + ka

i j
(2)χ + ka

i j
(3)χ2 ln(2χ)+ ka

i j
(4)χ2 +O(χ3(ln χ)2), (C.2a)

ya
i j(χ) =

la
i j

(1){ln[1/(2χ)]}2 + la
i j

(2) ln [1/(2χ)]+ la
i j

(3)

{ln [1/(2χ)]}2 +m(1) ln [1/(2χ)]+m(2)
+O(χ(ln χ)3), (C.2b)
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Tab. C.2: Coefficients of the near-contact two-body mobility components in Eqs. (C.2), taken
from Ref. [158], and of the near-contact two-body shear-mobility function components in
Eqs. (C.3), taken from Ref. [160]. Note that, different from Eqs. (C.2) and (C.3), in Refs. [158]
and [160], the near-contact mobilities are given as functions of ξ = 2r/σ −1 = 2χ

n ka
11

(n) ka
12

(n) la11
(n) la12

(n) lm1
(n) nm

1
(n) km

1
(n) m(n)

1 0.7750 0.7750 0.891 0.489 1.1456 0.9527 1.910 6.0425

2 1.86 -2.140 5.77 2.81 6.1694 0.1828 -7.7 6.3255

3 3.60 -3.60 7.07 1.98 3.7112 -0.324

4 -8.0 8.0

for the mobility coefficients, which are accurate for small values of χ . The coefficients k(n)
i j ,

l(n)
i j , and m(n) are given in Ref. [158] for various diameter ratios in the two-sphere problem.

Note that in Ref. [158] the near-contact mobilities are given as functions of ξ = 2r/σ −2 = 2χ .

In Tab. C.2, we list the k(n)
i j , l(n)

i j , and m(n), for spheres of equal diameters, in the normalization

used throughout the present work.

Similar near-field expressions exist for the two-body shear-mobility function J(χ) =
1/5[xm

1 (χ)+2ym
1 (χ)+2zm

1 (χ)]−1, with

xm
1 (χ) = km

1
(1) + km

1
(2)χ (C.3a)

ym
1 (χ) =

lm
1

(1){ln[1/(2χ)]}2 + lm
1

(2) ln [1/(2χ)]+ lm
1

(3)

{ln [1/(2χ)]}2 +m(1) ln [1/(2χ)]+m(2)
+O(χ(ln χ)3), (C.3b)

zm
1 (χ) = nm

1
(1) +nm

1
(2)χ +nm

1
(3)χ3, (C.3c)

and coefficients according to [160] listed in Tab. C.2.
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APPENDIX

D

δγ-scheme coefficients

We give here the explicit expression for the function Sγ0
needed in calculating the self-diffusion

coefficient, the hydrodynamic function, and the high-frequency limiting viscosity in the δγ
scheme. The function Sγ0

, introduced by Beenakker and Mazur in their original papers on the

δγ scheme [28, 168], is given by the infinite series,

Sγ0
(q) = C(q)+

∞

∑
p=2

9

4
πεp(γ

(p)
0 −n)n−1(2p−1)2q−3J2

p−1/2(q), (D.1)

where Jn denotes the Bessel function of the first kind and order n, εp = 5/9 for p = 2, and

εp = 1 for p > 2. The function C(q) is given by

C(q) =
9

2

(
Si(2q)

q
+

cos(2q)
2q2

+
sin(2q)

4q3
− sin2(q)

q4
− 4[sin(q)−qcos(q)]2

q6

)
, (D.2)

with Si(x) =
x∫

0

sin(y)/y dy. The coefficients γ(p)
0 = n+O(φ 2) are determined from the infinite

set of recursive relations

γ(p)
0 − γ(p)

0 φ(2p−1)
∞∫

0

dq
q

J2
p−1/2(q)

Sγ0
(q)

1+φSγ0
(q)

= n, p = 2,3, . . . . (D.3)

When truncated at an upper index pmax, Eqs. (D.1) and (D.3) can be iterated numerically until

convergence is achieved for γ(p)
0 , and p = 2 . . . pmax. As a zeroth iteration seed, all coefficients

γ(p)
0 are set equal to the colloid number concentration n. Note that the volume fraction φ

enters explicitly into Eq. (D.3). To achieve convergence of the truncated series iteration for

larger values of φ , it helps to increase φ in small steps starting from a value close to zero,

and to use the converged values of the coefficients γ(p)
0 as zeroth iteration seeds for each next-
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Tab. D.1: Coefficients γ(p)
0 /n, obtained from Eqs. (D.1) and (D.3), truncated at pmax = 10,

and numerically solved by iteration. In Tab. 1 of Ref. [28], slightly different results are listed,
obtained for pmax = 5.

γ(p)
0 /n

φ p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

0.05 1.1059 1.0842 1.0653 1.0514 1.0420 1.0354 1.0306 1.0269 1.0239

0.10 1.2279 1.1781 1.1364 1.1066 1.0864 1.0725 1.0623 1.0545 1.0484

0.15 1.3670 1.2818 1.2133 1.1653 1.1333 1.1111 1.0952 1.0830 1.0733

0.20 1.5242 1.3957 1.2961 1.2276 1.1825 1.1516 1.1292 1.1122 1.0987

0.25 1.7003 1.5195 1.3845 1.2936 1.2342 1.1937 1.1644 1.1422 1.1246

0.30 1.8952 1.6530 1.4785 1.3629 1.2881 1.2373 1.2007 1.1730 1.1510

0.35 2.1083 1.7956 1.5776 1.4356 1.3443 1.2825 1.2381 1.2045 1.1778

0.40 2.3383 1.9464 1.6813 1.5113 1.4026 1.3292 1.2766 1.2368 1.2052

0.45 2.5835 2.1043 1.7892 1.5897 1.4629 1.3773 1.3161 1.2698 1.2330

higher volume fraction. In this way, we have calculated the coefficients γ(p)
0 with truncations

at pmax = 5, 10, and 15. The results for pmax = 10, listed in Tab. D.1 differ from the results for

pmax = 5 and pmax = 15 by no more than 3% and 0.3%, respectively. In our implementation

of the (self-part corrected) δγ scheme, the software described in Appendix E interpolates the

values of the coefficients γ(p)
0 at arbitrary φ using Tab. D.1. We have checked that the values

for each of the short-time properties ds/dt,0, H(q), and η∞, expressed in the δγ scheme as

integrals comprising the coefficients γ(p)
0 and the static structure factor S(q), show only very

slight dependencies on the truncation index pmax, provided that pmax > 5. For all practical

purposes, it is therefore sufficient to use Tab. D.1, or even Tab. 1 of Ref. [28], for pmax = 5.



APPENDIX

E

An integrated software for structure and dynamics of colloidal

suspensions

A very useful ingredient in the present thesis has been the development of a new software

for computing the structure and dynamics of hard-sphere Yukawa-like colloids. Using the

programming language C in combination with the GNU scientific library (GSL) and the Gimp

Toolkit (GTK+), the software has been implemented with a graphical user interface (GUI), that

allows quick and convenient operation. Two snapshots of the GUI are displayed in Fig. E.1.

The GSL and the GTK+ are available for free download under the GNU Public License at the

websites in Refs. [274, 275]. The source code of our software is kept in a modular structure,

allowing for a rather straightforward extension. At the current stage of on-going development,

the software includes modules for the computation of:

• PY, MSA, RMSA, PB-RMSA and MPB-RMSA structure factors S(q) and rdf’s g(r) for

colloidal spheres interacting by the HSY pair-potential in Eq. (2.6),

• Static scattered intensities I(q), obtained from combining any of the above solutions

for S(q) with the form factor, P(q), of monodisperse spheres, spheres with size-

polydispersity, monodisperse or polydisperse ellipsoids of revolution, or core-shell par-

ticles. For non-spherical or polydisperse particles, I(q) is calculated in the decoupling

approximation described in Section 3.5,

• High-frequency viscosities η∞, the short-time diffusion coefficients ds and dc, and the

functions H(q) and D(q), in an adjustable q-range. These short-time properties can be

calculated using the PA-, δγ-, or self-part corrected δγ-schemes. In the PA-solution for

H(q) and D(q), one can select between the pair-mobility coefficients for impermeable

spheres with hydrodynamic stick boundaries listed in Appendix C, and far-field pair

mobilities, so far up to O(x−7) [261], for uniformly solvent-permeable spheres,
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Fig. E.1: Snapshots of the combined microstructure and dynamics solver. Top: Imported static
light scattering data for S(q) of charged silica spheres (Symbols) and fitted MPB-RMSA re-
sult (blue line). For comparison, S(q) computed in RMSA for the same input parameters is
displayed (red line). Bottom: Hydrodynamic function, H(q), for the same system. Symbols:
imported dynamic light scattering data. Blue line: H(q) calculated by the self-part corrected
δγ scheme.
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• Long-time self-diffusion coefficients dL
s , and the static viscosity η , using the simplified

MCT expressions given in Section 4.5.

The functions g(r), S(q), I(q), H(q) and D(q) are computed on user-defined meshes of r-

and q-values. After entering the parameters of the HSY potential into the GUI, the computation

times needed to generate g(r), S(q) and I(q) is in the order of 0.1 sec. If H(q) and D(q) are

additionally required, the computation time increases to about 1 sec. User-provided ASCII

tables for each of the above functions can be imported and displayed in comparison with the

computed functions, allowing for convenient real-time fitting of static and dynamic scattering

data.

The software contains a weighted-least squares minimizer based on the Nelder-Mead down-

hill simplex method [276], which allows for an automatic fitting of g(r), S(q), and I(q). An

extension of the automatic fit to H(q) and D(q) could be easily implemented.

The static input g(r) and S(q) for the PA-, δγ-, and corrected δγ-schemes can be either

computed in (M)(PB)-(R)MSA, or taken from user-provided tables. In this way, it is possible

to compute short-time dynamic properties based on static microstructure input from different

integral equation schemes like, e.g, the RY or HNC schemes, or from computer simulations.

Since the imported microstructure functions need not necessarily correspond to systems of

repulsive HSY-particles, the software can be applied to compute the short-time dynamics for

particles with various types of pair-potentials, including, e.g., attractive pair-interactions parts.



164



INDEX

Abbreviations . . . . . .

AFM . . . . . . . . . . . . . . Atomic force microscopy, page 17

ASD . . . . . . . . . . . . . . . Accelerated Stokesian Dynamics simulations, Ref. [24], page 54

BSA . . . . . . . . . . . . . . . Bovine serum albumin (a globular protein), page 14

CCY . . . . . . . . . . . . . . . Circular cylinder-Yukawa model used for gibbsite platelets, page 90

CS-1 . . . . . . . . . . . . . . . A charged-sphere system with parameters LB = 5.617 nm, σ = 200 nm, and Z = 100,

page 105

CS-2 . . . . . . . . . . . . . . . A charged-sphere system with parameters LB = 0.71 nm, σ = 50 nm, and Z = 70,

page 105

DDLS . . . . . . . . . . . . . Depolarized dynamic light scattering, page 18

DLVO . . . . . . . . . . . . . Derjaguin-Landau-Verwey-Overbeek pair potential, Ref. [3], page 7

DMSO . . . . . . . . . . . . . Dimethyl sulfoxide, page 17

HIs . . . . . . . . . . . . . . . . Hydrodynamic interactions, page 12

HNC . . . . . . . . . . . . . . . Hypernetted chain closure for the OZ equation, Ref. [99], page 23

HS . . . . . . . . . . . . . . . . Neutral, non overlapping hard spheres with hydrodynamic stick boundaries, page 36

HSY . . . . . . . . . . . . . . . Hard-sphere Yukawa, page 10

I/LC . . . . . . . . . . . . . . . Isotropic-liquid crystal transition of gibbsite platelets, page 19

IACF . . . . . . . . . . . . . . Intensity autocorrelation function, page 16

KWW . . . . . . . . . . . . . Kohlrausch-Williams-Watt stretched exponential, Refs. [249–251], page 133

lhs . . . . . . . . . . . . . . . . . Left hand side, page 130

MC . . . . . . . . . . . . . . . . Monte Carlo, page 27

MCT . . . . . . . . . . . . . . Mode-coupling theory of Brownian systems, Refs. [4, 177, 178], page 57

165



166

MPB-MSA . . . . . . . . . Special case of the MPB-RMSA when no hard-core rescaling is required, i.e. when s = 1,

page 35

MPB-RMSA . . . . . . . Modified Penetrating Background corrected Rescaled Mean Spherical Approximation,

Refs. [14, 15], page 27

MSA . . . . . . . . . . . . . . Mean Spherical Approximation, Ref. [4], page 26

OCP . . . . . . . . . . . . . . . One component plasma, page 30

OMF . . . . . . . . . . . . . . One-component macroion fluid, page 7

OZ . . . . . . . . . . . . . . . . Ornstein-Zernike equation, Ref. [4], page 25

PB . . . . . . . . . . . . . . . . . Penetrating background of microions, assumed in the construction of the (M)PB-RMSA,

page 30

PB-MSA . . . . . . . . . . . Special case of the PB-RMSA where no hard-core rescaling is required, i.e. when s = 1,

page 33

PB-RMSA . . . . . . . . . Penetrating Background corrected Rescaled Mean Spherical Approximation, Ref. [97],

page 27

PY . . . . . . . . . . . . . . . . Percus-Yevick closure for the OZ equation, Ref. [121], page 30

rdf . . . . . . . . . . . . . . . . . Radial distribution function g(r), Ref. [4], page 24

RMSA . . . . . . . . . . . . . Rescaled Mean Spherical Approximation, Ref. [98], page 27

RP . . . . . . . . . . . . . . . . . Rotne-Prager dipolar O(x−3) approximation of two-body HIs., page 53

RY . . . . . . . . . . . . . . . . Rogers-Young closure for the OZ equation, Ref. [100], page 23

SAXS . . . . . . . . . . . . . Small angle X-ray scattering, page 12

SLS . . . . . . . . . . . . . . . Static light scattering, page 12

SY . . . . . . . . . . . . . . . . Spheroid-Yukawa model used for BSA proteins, page 84

TEM . . . . . . . . . . . . . . . Transmission electron micrograph, page 11

TPM . . . . . . . . . . . . . . . Trimethoxysilylpropyl methacrylate, page 11

VH . . . . . . . . . . . . . . . . Light scattering geometry with vertically aligned polarizer and horizontally aligned ana-

lyzer, page 18

VU . . . . . . . . . . . . . . . . Light scattering geometry with vertically aligned polarizer, without analyzer, page 19

VV . . . . . . . . . . . . . . . . Light scattering geometry with vertically aligned polarizer and vertically aligned ana-

lyzer, page 18

Greek Symbols . . . . .

β . . . . . . . . . . . . . . . . . . β = 1/kBT with absolute temperature T and Boltzmann constant kB, page 8

χ . . . . . . . . . . . . . . . . . . χ = x−1: dimensionless separation of sphere surfaces, page 48



APPENDIX E. AN INTEGRATED SOFTWARE FOR STRUCTURE AND DYNAMICS

OF COLLOIDAL SUSPENSIONS 167

Δ . . . . . . . . . . . . . . . . . . Lower cutoff distance (in units of σ ) for uvdW, modeling Born repulsion, page 8

δγ scheme . . . . . . . . . Renormalized concentration fluctuation expansion method of Beenakker and Mazur,

Refs. [28, 29], page 51

ε . . . . . . . . . . . . . . . . . . Solvent dielectric constant, page 8

η0 . . . . . . . . . . . . . . . . . Shear viscosity of the suspending Newtonian solvent, page 43

γ . . . . . . . . . . . . . . . . . . Coupling parameter of uHSY and uel, page 8

Ω . . . . . . . . . . . . . . . . . . Solid angle, page 39

φ . . . . . . . . . . . . . . . . . . Fraction of the suspension volume occupied by colloidal particles, page 8

ρ . . . . . . . . . . . . . . . . . . Volume-averaged mass density of a colloidal sphere, page 44

ρS . . . . . . . . . . . . . . . . . Mass density of the suspending solvent, page 43

σ . . . . . . . . . . . . . . . . . . Colloidal hard-core diameter, page 8

τB . . . . . . . . . . . . . . . . . τB = m/(3πη0σ): momentum relaxation time of a Brownian particle, Refs. [21, 22],

page 43

τH . . . . . . . . . . . . . . . . . τH = σ2ρS/(4η0): time scale of hydrodynamic vorticity diffusion across a diameter σ
Refs. [21, 22], page 43

τI . . . . . . . . . . . . . . . . . . τI = σ2/(4dt,0): interaction time, during which a Brownian particle diffuses a distance

comparable to its own diameter, Refs. [21, 22], page 43

γ̃ . . . . . . . . . . . . . . . . . . γ̃ = γσ/d̃: reduced coupling parameter of uHSY and uel, used for systems with no direct

hard-core contact, page 25

μ0 . . . . . . . . . . . . . . . . . μ0 = 1/(3πη0σ): mobility of a single sphere with stick hydrodynamic boundary condi-

tions, page 44

μdd
l j (rN) . . . . . . . . . . . . Dipole-dipole mobility tensor, linearly relating the symmetric hydrodynamic force dipole

moment tensor of sphere l to the rate of strain tensor related to sphere j, page 46

μ tt
l j(r

N) . . . . . . . . . . . . Translational mobility tensor, linearly relating the hydrodynamic force on a sphere j to

the translational velocity of a sphere l, page 44

Roman Symbols . . .

lim∞ . . . . . . . . . . . . . . . Thermodynamic limit N → ∞ and V → ∞, with n = N/V fixed, page 24

rN . . . . . . . . . . . . . . . . . 3×N center-of-mass coordinates of all colloidal particles in the system, page 23

r
γ
l . . . . . . . . . . . . . . . . . Center-of-mass position of the l-th particle of species γ , page 39

rn(t) . . . . . . . . . . . . . . . The position vector pointing to the center of the n-th colloidal particle at time t, page 43

d̃ . . . . . . . . . . . . . . . . . . d̃ = n−1/3: mean geometric distance of the colloid particle centers, page 25

f̃γ(q,Ω) . . . . . . . . . . . . f̃γ(q,Ω) = v−1
γ fγ(q,Ω): form amplitude for particles of species γ , page 39



168

k̃ . . . . . . . . . . . . . . . . . . k̃ = kd̃/σ : reduced screening parameter of uHSY and uel, used for systems with no direct

hard-core contact, page 25

T̃ . . . . . . . . . . . . . . . . . . T̃ = kBT/u(r = d̃): a reduced temperature, in units of the pair-energy at mean geometric

distance, page 71

x̃ . . . . . . . . . . . . . . . . . . x̃ = r/d̃: dimensionless separation of colloid centers in units of the mean geometric dis-

tance, page 25
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U0 . . . . . . . . . . . . . . . . . U0 = σ2g(ρ −ρS)/(18η0): sedimentation velocity of a slowly settling sphere at infinite

dilution, page 44

uel . . . . . . . . . . . . . . . . . Screened electrostatic pair potential, page 8

uHC . . . . . . . . . . . . . . . . Infinite potential step, inhibiting hard-core overlap, page 8

uHSY . . . . . . . . . . . . . . . Hard-sphere Yukawa pair potential, page 10

uvdW . . . . . . . . . . . . . . . Van der Waals attractive pair energy, page 8

Used . . . . . . . . . . . . . . . φ -dependent short time sedimentation velocity of a slowly settling, homogeneous sus-

pension of spheres, page 44

V . . . . . . . . . . . . . . . . . . Total system volume, page 24

vγ . . . . . . . . . . . . . . . . . Volume of one particle of species γ , page 39

W (t) . . . . . . . . . . . . . . . W (t) = 1/6 < [r(t)− r(0)]2 >: 3-dimensional mean-squared displacement function of a

colloidal particle, page 44

x . . . . . . . . . . . . . . . . . . x = r/σ : dimensionless separation of colloid centers in units of the hard-core diameter,

page 8

X(q) . . . . . . . . . . . . . . . Decoupling amplitude, fulfilling 0 ≤ X(q) ≤ 1, page 40

xγ . . . . . . . . . . . . . . . . . xγ = Nγ/N: Molar fraction of particle species γ , page 39

xm . . . . . . . . . . . . . . . . . xm = rm/σ : dimensionless particle separation at which the principal peak in g(r) occurs,

page 63

y . . . . . . . . . . . . . . . . . . y = qσ : dimensionless wavenumber in units of the inverse hard-core diameter, page 24

ym . . . . . . . . . . . . . . . . . ym = qmσ : dimensionless wavenumber at which the principal peak in S(q) occurs,

page 69

Z . . . . . . . . . . . . . . . . . . Colloidal effective charge in units of e, page 8

M . . . . . . . . . . . . . . . . . One mole (6.022×1023) per liter, page 9
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