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Summary

The present work is dedicated to the investigation of the resolution property of
quasicompact and quasiseparated schemes, or more generally of algebraic stacks
with pointwise affine stabilizer groups. Such a space X has the resolution property
if every quasicoherent sheaf of finite type admits a surjection from a locally free
sheaf of finite rank.

Locally this is satisfied by definition, but globally this is a non-trivial problem.
There exist counter examples in the category of schemes, but they are non-separated
and even fail to have affine diagonal. This is a mild separateness condition and
Totaro showed that it is in fact necessary [Tot04]. Therefore it is natural to stick
to schemes and algebraic stacks with affine diagonal. In this class the resolution
property holds for all regular, noetherian schemes, all quasiprojective schemes,
or more generally all Deligne-Mumford stacks with quasiprojective coarse moduli
space.

As our first main result we verify the resolution property for a large class of sur-
faces in the first part of the present work. Namely, we show that all two-dimensional
schemes that are proper over a noetherian ring satisfy the resolution property. This
class includes many singular, non-normal, non-reduced and non-quasiprojective sur-
faces. The case of normal separated algebraic surfaces was settled by Schröer and
Vezzosi [SV04] and we generalize their methods of gluing local resolutions to the
non-normal and non-reduced case, using the pinching techniques of Ferrand [Fer03]
in combination with deformation theory of vector bundles.

In the second part of the present work our main result states that for a large class
of algebraic stacks the resolution property is equivalent to a stronger form: There
exists a single locally free sheaf E such that the collection of sheaves, obtained by
taking appropriate locally free subsheaves of direct sums, tensor products and duals
of E , is sufficiently large in order to resolve arbitrary quasicoherent sheaves of finite
type. Next, we interpret this geometrically: A sheaf E has this property if and only
if its associated frame bundle has quasiaffine total space.

This yields a natural generalization of the concept of ample line bundles on sepa-
rated schemes to vector bundles of higher rank on arbitrary quasicompact algebraic
stacks with affine diagonal.

As an immediate consequence of this result we infer a generalization of Totaro’s
Theorem to non-normal stacks which says that X has the resolution property if
and only if X ' [U/GLn] for some quasiaffine scheme U acted on by the general
linear group [Tot04, Thm 1.1].
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Zusammenfassung

Die vorliegende Arbeit ist dem Studium der Auflösungseigenschaft quasikom-
pakter und quasiseparierter Schemata, oder allgemeiner algebraischer Stacks mit
punktweise affinen Stabilisatorgruppen, gewidmet. Ein solcher Raum X hat die
Auflösungseigenschaft, falls jede quasikohärente Garbe von endlichem Typ eine Sur-
jektion von einer lokal freien Garbe von endlichem Rang besitzt.

Dies ist nach Definition stets lokal erfüllt, im globalen Fall allerdings ein
nicht-triviales Problem. Es existieren hierfür Gegenbeispiele in der Kategorie
der Schemata, allerdings sind dies nicht-separierte Schemata, die nicht einmal
affine Diagonale besitzen. Letzteres ist eine schwache Form von Separiertheit
und nach Totaro sogar eine notwendige Bedingung für die Auflösungseigenschaft
[Tot04]. Daher ist es eine natürliche Einschränkung, nur algebraische Stacks mit
affiner Diagonale zu betrachten. In dieser Klasse gilt die Auflösungseigenschaft für
alle Q-faktoriellen und noetherschen Schemata, alle quasiprojektiven Schemata,
oder allgemeiner für alle Deligne-Mumford-Stacks mit quasiprojektivem grobem
Modulraum.

Als unser erstes Hauptresultat verifizieren wir im ersten Teil der vorliegenden
Arbeit die Auflösungseigenschaft für eine große Klasse von Flächen. Wir zeigen
nämlich, dass jedes zweidimensionale Schema, das eigentlich über einem noether-
schen Grundring ist, die Auflösungseigenschaft erfüllt. Diese Klasse beinhaltet viele
singuläre, nicht-normale, nicht-reduzierte und nicht-quasiprojektive Flächen. Der
Fall normaler algebraischer Flächen wurde von Schröer und Vezzosi [SV04] bewiesen
und wir verallgemeinern deren Methode, lokale Auflösungen zusammenzufügen, im
nicht-normalen und nicht-reduzierten Fall mittels Ferrands Verklebetechniken von
Schemata [Fer03] und der Deformationstheorie von Vektorbündeln.

Unser Hauptresultat im zweiten Teil der Arbeit besagt, dass für eine große Klasse
von algebraischen Stacks, welche alle Schemata und alle noetherschen algebraischen
Stacks mit affinen Stabilisatoren einschließt, die Auflösungseigenschaft äquivalent
zu einer viel stärken Form ist: Es existiert eine einzige lokal frei Garbe E mit der
Eigenschaft, dass die assoziierte Familie der Garben, welche als gewisse lokal freie
Untergarben nach iterierter Bildung von direkten Summen, Tensorprodukten und
Dualen von E entstehen, schon hinreichend groß ist, um beliebige quasikohärente
Garben von endlichem Typ aufzulösen. Als nächstes interpretieren wir dies geo-
metrisch: Diese zu einer Garbe E assozierte Familie von lokal freien Garben hat
genau dann jene Eigenschaft, wenn das zugehörige Rahmenbündel einen quasi-
affinen Totalraum besitzt.

Dies führt zu einer natürlichen Verallgemeinerung des Konzepts ampler
Gradenbündel auf Schemata hinzu Vektorbündeln höheren Rangs auf beliebigen
quasikompakten algebraischen Stacks mit affiner Diagonale.

Als unmittelbare Konsequenz dieses Resultats folgern wir eine Verallgemeinerung
von Totaro’s Theorem für nicht-normale Stacks, welches besagt, dass X genau dann
die Auflösungseigenschaft besitzt, wenn X als Quotient X ' [U/GLn] dargestellt
werden kann, wobei U ein quasiaffines Schema ist, auf dem die allgemeine lineare
Gruppe operiert.
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Introduction

A central object in algebraic geometry is the projective space Pn. Classically,
it is the moduli space that parametrizes all lines in the affine space An+1 meeting
the origin. So, one might define it as the quotient (An+1 \ {0})/Gm, where the
multiplicative group Gm acts freely by scalar multiplication on An+1 \ {0}.

In modern language, developed by Grothendieck and his school, the scheme Pn
is characterized by the set of morphisms of schemes T → Pn, where T runs over all
schemes, by Yoneda’s Lemma. This set parametrizes all quotient mapsO⊕n+1

T � L,
where L varies over all invertible sheaves on T . In particular, on Pn itself exists
a universal globally generated invertible sheaf L = OPn(1). Its global sections
correspond to the hyperplanes in Pn.

The tensor powers L⊗m, m ∈ Z, define a family of invertible sheaves with two
distinguished properties; a geometric and an algebraic one:

(i) They induce a quotient presentation of Pn. The corresponding vector
bundles `m : Lm → Pn have rank 1, so that the associated principal
homogeneous spaces pm : Em → Pn are obtained by restriction to the
complement of the zero section. Indeed, one checks that these bundle
projections coincide with the original quotient map An+1 \ {0} → Pn
and the structure group Gm operates on the fibers via x → x−m. In
particular, Em is quasiaffine and one recovers Pn as the quotient Em/Gm.

(ii) Another property of the family L⊗m, m ∈ Z, is directly related to the
category of (quasi-) coherent sheaves on Pn. For every coherent sheaf
F , a sufficiently large twist F ⊗ L⊗m, m � 0, is globally generated.
Equivalently, for every quasicoherent sheaf F there exists a surjective
homomorphism

⊕
i∈I(L∨)⊗ni � F with a set of positive integers ni ∈ N.

This means that the collection (L∨)⊗m, m ∈ N, defines a generating
family for the category of quasicoherent sheaves on QCoh(Pn).

Properties (i) and (ii) descend along every immersion of schemes X ↪→ Pn and
therefore make sense for every very ample line bundle L on X.

However, both properties have natural generalizations of independent interest,
even for non-quasi-projective schemes or algebraic spaces and algebraic stacks. For
that, let us first briefly discuss suitable generalizations of the property (i).

Let X be a quasicompact and quasiseparated scheme (or an algebraic space, or
more generally an algebraic stack). To every locally free sheaf E on X of rank n
(abusively, we shall call this a vector bundle) corresponds a principal homogeneous
space p : E → X with structure group GLn, the frame bundle. One recovers X from
E and the GLn-action as the quotient X ' E/GLn. In particular, the geometry
of X is the GLn-equivariant geometry of E. Therefore, it is a natural problem to
determine those vector bundles E whose associated frame bundle E has “simple”
geometry. This strategy becomes important when studying algebraic stacks, rather
than algebraic spaces or schemes. Loosely speaking, algebraic stacks locally look like
quotients of algebraic spaces by group scheme actions, so it is natural to ask, when
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x INTRODUCTION

there exists a quotient presentation globally, or equivalently, when does there exists
a vector bundle E whose associated frame bundle E is representable by an algebraic
space. In that case, one calls X a quotient stack . However, algebraic spaces are
only étale locally affine schemes and therefore have complicated geometry. Slightly
unconventional, we shall call X a global quotient stack if there exists a vector bundle
E whose frame bundle E is quasiaffine, meaning that the global geometry of X is
largely encoded in the group action of GLn on E.

Let us now discuss the common generalization of the algebraic property (ii) above.
An algebraic stack X has the resolution property or enough locally free sheaves of
finite type if every quasicoherent sheaf is a quotient of a filtered direct limit of
locally free sheaves of finite type. Equivalently, if X is noetherian, every coherent
sheaf is a quotient of a coherent locally free sheaf, and it follows that every coherent
sheaf can be resolved by a complex of vector bundles, which is infinite unless X is
smooth.

The upshot is that many homological properties of vector bundles carry over to
a large class of coherent sheaves, leading to essential simplifications in the theory
of perfect complexes [TT90] in algebraic K-theory. In particular, it ensures that
Grothendieck’s K-group Knaive

0 (X) and Quillen’s extension thereof Knaive
∗ (X) co-

incide with the right K-groups K∗(X), invented by Thomason. This has direct
applications for the interplay between homological and geometrical problems. For
example, it appears in the study of triangulated categories of singularities [Orl06]
and of derived equivalences of schemes and stacks [Kaw04].

When considering the resolution property for the classifying stack BG of an affine
group scheme G, this gives a necessary condition for the equivariant embeddability
of schemes into projective spaces generalizing the work of Sumihiro [Sum75] and to
Hilbert’s 14th problem — the finite generation of invariant rings [Tho87, §3] .

For an introduction to the resolution property of schemes and stacks, we refer
the reader to Totaro’s article [Tot04] and to [Tho87] for the case of quotient stacks.

It turns out that both generalizations of (i) and (ii) are equivalent in a very
natural way. By Thomason’s equivariant resolution theorem [Tho87, 2.18], it is
known that every global quotient stack X has the resolution property. Strikingly,
Totaro showed that the converse also holds if X is normal, noetherian and has
affine stabilizer groups at closed points [Tot04, Thm. 1.1]. The latter restriction
is reasonable since every global quotient stack has affine diagonal [Tot04, 1.3] and
hence affine stabilizer groups over all points. Besides, the resolution property is
not meaningful for the geometry of an algebraic stack having non-affine stabilizers;
e.g. the category of quasicoherent sheaves on the classifying stack BE of an elliptic
curve is trivial.

We shall see in this work that actually the normal hypothesis can be removed and
even that the noetherian assumption is unnecessary (at least if X is an quotient
stack like an algebraic space or a scheme, or if X is of finite presentation over
the base). However, our original motivation was to understand the structure of
the family of locally free sheaves which appear in the resolution property. To our
knowledge the size and the tensor structure thereof has been ignored so far.

In analogy to the family of invertible sheaves L⊗n, n ∈ Z, above, we shall asso-
ciate to a vector bundle E on X a family of vector bundles that are obtained by
taking subsheaves of finite direct sums, tensor powers and duals of E ; we call these
tensorial constructions adopting the notion of Broshi [Bro10].

Our main result states that on an algebraic stack X a vector bundle E has
quasiaffine frame bundle E if and only if the latter family is a generating family for
the category of quasicoherent sheaves on X. If the base is of characteristic 0 or if
E splits as a direct sum of invertible sheaves, then we shall see that E is quasiaffine
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if the subfamily E⊗i ⊗ (E∨)⊗j , where i, j ≥ 0, is a generating family. In case that
E is invertible, one recovers the original properties (i) and (ii).

These results are even new if X is a scheme, whereas our proof depends heavily on
the existence of the classifying stack BGLn and we see no way for providing a purely
scheme theoretic proof. In fact, we show that it suffices to prove the caseX = BGLn
and use the well-known result of the representation theory of GLn, that every
rational GLn-representation can be reconstructed by taking subrepresentations of
suitable tensorial constructions of the standard representation.

The resolution property is satisfied for a vast class of schemes and stacks. It
is known that it holds for schemes that are projective or quasiprojective over a
noetherian base ring due to the existence of an ample line bundle, or more generally
if X has an ample family of line bundles (that is a family of invertible sheaves where
the whole collection behaves like an ample line bundle, cf. [SGA 6, II.2.2] and
[BS03]). Such schemes are called divisorial and the existence of an ample family
characterizes the property that resolutions are made up from direct sums of line
bundles which correspond to anti-effective Cartier divisors. This class includes all
noetherian, regular and separated schemes by Kleiman’s Theorem (see [Bor67], or
independently by Illusie [SGA 6, II.2.2]) or more generally all noetherian Q-factorial
schemes with affine diagonal (as observed by Brenner and Schröer [BS03]).

However, there are many non-singular and non-quasiprojective schemes starting
in dimension 2. It can happen that X has no effective Cartier divisors or, even
worse, that there exist no non-trivial invertible sheaves at all, leaving no hope for
constructing resolutions by line bundles (see [Sch99] for normal surfaces and [Eik92],
[Ful93], [Pay09] for toric threefolds). Nevertheless, Schröer and Vezzosi showed in
[SV04] that every normal separated algebraic surface has the resolution property
by gluing local resolutions.

In the larger category of algebraic spaces the problem of the resolution property
is much more difficult to solve. The étale topology is too fine to be reasonably
connected to the topology generated by Weil- or Cartier divisors. It is not known
whether the resolution property holds for proper algebraic spaces over a field that
are smooth and have dimension ≥ 3, or for those that are normal and have dimen-
sion 2.

In the category of algebraic stacks one gains a further level of complexity due to
the presence of stabilizer groups. Here appears the first example of a non-regular
but normal noetherian algebraic stack that does not satisfy the resolution property,
yet has affine diagonal: Edidin, Hassett, Kresch and Vistoli showed that a Gm-
gerbe that corresponds to a non-torsion element in the cohomological Brauer group
of a scheme does not satisfy the resolution property (see Example 4.3.8). However,
all known counterexamples of algebraic stacks with quasifinite diagonal do not have
affine diagonal (see [SV04, §4] or [Tot04, §8]).

If the algebraic stack has finite diagonal then the coarse moduli space Xcms

exists and its geometry is closely related to the geometry of X. In fact, if Xcms is a
scheme, then the set of Cartier divisors on X is much better behaved. For example,
Totaro verified a suitable generalization of Kleiman’s Theorem for smooth orbifolds
[Tot04, 1.2]. Many moduli stacks that appear in nature even have a quasiprojective
coarse moduli space, so that Xcms has the resolution property, and for these stacks,
being a quotient stack or having the resolution property is equivalent. For a recent
discussion of that matter we refer the reader to [Kre09].

The situation is completely different in the analytic category. Schuster verified
the resolution property for all compact complex surfaces [Sch82]. However, it fails
for generic complex tori of dimension ≥ 3 as all rational higher Chern classes of
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holomorphic vector bundles vanish, so that there exists only few of them [Voi02,
A.5].

Whereas in the algebraic setting, the question is widely open, and more difficult
since the category of (quasi-) coherent sheaves is much more flexible. For example,
the 2-functor X → QCoh(X) that assigns to each algebraic stack with affine diago-
nal its category of quasicoherent sheaves is a faithful embedding into the 2-category
of tame, complete, abelian tensor categories by Lurie [Lur05].

Contrarily, the category of coherent sheaves on generic complex K3 surfaces or
two-dimensional tori is independent of the complex structure by Verbitsky [Ver08].
For that reason, we work in the category of algebraic stacks throughout this work.

Totaro asked, whether the resolution property holds for noetherian schemes, al-
gebraic spaces or more generally, algebraic stacks with quasifinite stabilizer groups
and affine diagonal [Tot04, p. 3, Question 1]. This is not even known for normal
toric varieties. Recently, Payne started the investigation of toric threefolds and
constructed examples of proper schemes where non-trivial vector bundles of rank
≤ 3 do not exist [Pay09, 1.1]. As the resolution property descends along immersions
to every subspace, a necessary condition for the resolution property of any space is
its validity for every subspace. In case of proper threefolds a positive solution to
Totaro’s question would imply that many non-normal and non-reduced separated
algebraic surfaces have the resolution property.

In the first part of the work we shall verify the last implication. Precisely, we show
that the resolution property holds for all separated algebraic surfaces, generalizing
the methods of Schröer and Vezzosi. However, its proof is not a simple reduction
to the normal case by taking the normalization of the reduction.

One can even say, that the central issues in the study of the resolution property
of schemes is the descent problem of vector bundles along proper birational maps
and the behavior of the resolution property under deformations. On the one hand,
the resolution property eventually holds after sufficiently many blow ups (e.g. by
Chow’s Lemma in the separated case). On the other hand, the counterexamples
imply that it is not a birational invariant. It is not clear, whether the resolution
property is stable under deformations. Voisin’s analytic counterexample shows
that this is in general wrong if one takes complex deformations into account, as
a projective 3-torus can be deformed into a general one. However, an affirmative
result for algebraic deformations would have useful applications. For example, in
case that X = BAG is the classifying stack of an affine smooth group scheme G over
an artinian ring A, it is known that the resolution property holds for the reduction
Xred, and by Thomason the resolution property of the deformation X would imply
the embeddability of G into GLn. However, this seems to be unknown1.

Unfortunately, the case of dimension ≥ 3 remains completely open. We believe
that the resolution property always holds in codimension≤ 2 for arbitrary separated
algebraic schemes; this means, every point has an open neighborhood that satisfies
the resolution property and whose complement has codimension ≥ 3.

A verification of this conjecture would simplify the case of general threefolds, yet
our methods of the surface case are insufficient in the absence of properness.

1According to a recent discussion on http://mathoverflow.net/questions/22078/ initiated
by B. Conrad, this is not even clear for the ring of dual numbers A = k[ε].
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Description of the chapters

This work is divided in two parts and split in seven chapters. In the first part
we shall investigate the resolution property of schemes and prove it for algebraic
surfaces (this is essentially contained in [Gro10]).

We start in chapter 1 with a discussion of divisorial schemes, explain the classical
approaches to prove the resolution property and show the limitations thereof. As a
first result we prove that for every scheme which is separated and of finite type over
a noetherian ring every point has a divisorial neighborhood U whose complement
has codimension ≥ 2. We show that U has an ample family of invertible sheaves Li,
i ∈ I, that is obtained by gluing an ample line bundle: There exists a proper, bira-
tional map f : X ′ → X and an ample line bundle L′ on X ′ which is isomorphic to
each Li over f−1(U). This is accomplished by using Ferrand’s pinching techniques
(see appendix A) in combination with deformation theory of vector bundles.

The upshot is that by extending the ample family to the whole scheme, one
obtaines a family of coherent sheaves Fi (which is called an almost ample fam-
ily) that behaves like an ample family of line bundles away from closed subsets
of codimension ≥ 2. It carries a weak form of positivity that can be measured
cohomologically at least if X is proper. This will play an important role in order
to handle cohomological obstructions in the following chapter.

Theorem (1.4.2). Let X be a scheme that is separated and of finite type over a
noetherian ring. Then there exists an almost ample family F1, . . . ,Fn of coherent
sheaves.

In chapter 2 we show as our first main result: Namely, that a large class of
two-dimensional schemes has the resolution property:

Theorem (2.0.1). Let X be a 2-dimensional scheme that is proper over a noether-
ian ring. Then X has the resolution property.

If the base ring is a field, the hypothesis “proper” “might be replaced by separated
and of finite type” by Nagata compactification.

In order to prove the theorem, we generalize Schröer and Vezzosi’s method of
gluing local resolutions to the case of non-normal and non-reduced surfaces and
describe the obstructions to gluing in terms of certain cohomology groups of co-
herent sheaves. The existence of the candidates for the right local resolutions is
derived from an appropriate generalization of the Bourbaki Lemma for arbitrary
noetherian local rings, which is proven using the basic element theory of Evans and
Griffith [EG85].

Finally, we construct a series of vector bundles that descend from a suitably
chosen Chow cover and will serve as the candidates for the first syzygies appearing
in the gluing process. We close the chapter with the proof of the main theorem
using the almost ample family constructed in chapter 1.

In the second part of this work we shall prove as our second main result the
equivalence of the generalizations (i) and (ii) mentioned above in the category
algebraic stacks.

For that, we lay the ground in chapter 3 and study generating families of finitely
presented sheaves for the category of quasicoherent sheaves on algebraic stacks;
we call them generating sheaves. Their existence is equivalent to the completeness
property which was studied by Rydh [Ryd10b] and is always true for (pseudo-)
noetherian stacks.

We also introduce a relative version of generating sheaves for quasicompact mor-
phisms of algebraic stacks and prove that they share the analogous properties
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of relatively ample line bundles. In case that the morphism is the natural map
X → Xcms of an Deligne-Mumford stack to its coarse moduli space, one recovers
the definition of a generating sheaf in the sense of Olsson and Starr [OS03]; in fact,
our approach was greatly inspired by reading their paper.

At the end of the chapter, we study the influence of affine fppf coverings. First,
we prove that generating families are always preserved under finite fppf coverings.
Secondly, we show that every quasicompact and quasiseparated algebraic stack with
affine diagonal has the flat resolution property :

Theorem (3.5.5). Let X be a quasicompact algebraic stack with affine diagonal.
Then every quasicoherent OX-module is a quotient of a flat quasicoherent OX-
module.

In chapter 4 we set up the framework for the study of the resolution property of
algebraic stacks. Restricting the results of the previous chapter to the case of locally
free generating sheaves, we introduce the notion of the relative resolution property.
This view point is essential for comparing the (absolute) resolution property be-
tween different algebraic stacks and was already adopted by Thomason [Tho87,
Remark 2.7] (in non-stacky language).

Generalizing the arguments of Thomason, we prove that a large class of algebraic
stacks, having an affine covering by a regular noetherian scheme of low dimension,
satisfy the resolution property. In case of classifying stacks, one recovers the clas-
sical results for group schemes. However, the arguments also apply to gerbes and
even to more general stacks.

In the main part of this chapter we study the equivariant resolution property;
that is, the resolution property of quotients X = Y/G, or equivalently the resolution
property of morphisms X → BG where G is in arbitrary affine, flat and finitely
presented group scheme. We transfer Thomason’s work in the language of stacks,
discuss separateness properties and lay the ground for actions by the general linear
group which is needed in the following chapter.

In chapter 5 we shall characterize algebraic stacks being strongly representable
by quasiaffine schemes if the structure sheaf is generating:

Theorem (5.3.2). Let X be an algebraic stack over an algebraic space S with affine
stabilizer groups at closed points. Then X → S is representable by a quasiaffine
morphism if and only if OX is generating over S.

This is a central result and explains why quasiaffine schemes appear naturally
when studying the resolution property. Following Totaro’s arguments, our proof es-
sentially reduces to the case that the algebraic stack is representable by an algebraic
space and has a finite and finitely presented (but not necessarily flat) covering by a
quasiaffine scheme. Using Ferrand’s pinching results we show that such an algebraic
spaces is always representable by an AF-scheme.

Actually, our method allows to prove a much more general result by providing a
variant of Chevalley’s theorem for AF-schemes (i.e. schemes where every finite set
of points is contained in an affine open neighborhood):

Theorem (5.1.5). Let f : Z → X be an integral and surjective morphism of alge-
braic spaces with finite topological fibres over a base algebraic space S. Then Z → S
is an AF-morphism if and only if X → S is an AF-morphism.

Chapter 6 is dedicated to the investigation of the tensor structures and the size
of locally free generating families on quasicompact and quasiseparated algebraic
stacks with affine stabilizer groups. After recalling the correspondence between
vector bundles E and frame bundles p : E → X, we associate to every vector bundle
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E a set of vector bundles, obtained by applying all tensorial constructions t on E
and call this the tensor hull |E|. Moreover, we define the larger family 〈E〉 that
additionally contains all subsheaves of the various t(E) which are locally split with
respect to the smooth covering p; this we denote by the local tensor hull 〈E〉.

As a first result here, we show that E is quasiaffine if and only if the local tensor
hull 〈E〉 is a generating family. We shall say that E is a tensor generator for X.

Theorem. (6.2.12) Let X → S be a quasicompact and quasiseparated morphism of
algebraic stacks and let E be a vector bundle on X. Then the following conditions
are equivalent:

(i) E is a tensor generator for X over S.

(ii) The frame bundle of E has quasiaffine total space over S.
Moreover, if these conditions are satisfied, then the diagonal ∆X/S is affine.

The latter holds already for the tensor hull |E| if S is of characteristic zero or if
E is a split direct sum of line bundles.

Coming back to the example from the beginning of this introduction, we see that
if X is a scheme and E invertible, then E is a tensor generator if and only if E⊗n is
ample for some n ∈ Z.

Next, we generalize this result to finite families (E1, . . . , En) =: EI of vec-
tor bundles. By a similar argument follows that the tensor product family
〈EI〉 := |E1| ⊗ · · · ⊗ |En| (calculated objectwise) is a generating family if and only
if the fiber product E1 ×X · · · ×X En of the associated frame bundles Ei → X is
quasiaffine. In this case we call the family a tensor generating family . We will
see that a sheaf is a tensor generator if and only if it is a direct sum of a tensor
generating family.

In order to tackle the a priori possibly large locally free generating families which
appear in the resolution property we dare to take infinite families of vector bundles
EI := (Ei)i∈I into account. Taking unions of the former tensor multiplied families
we associate to EI a big family of vector bundles 〈EI〉. With this definition it is easy
to verify that the resolution property is equivalent to the existence of a possibly
infinite tensor generating family. We shall prove that there exists always a finite
tensor generating subfamily (at least if X is noetherian or finitely presented over the
base). This is achieved by approximating infinite fiber products of the associated
frame bundles Ei → X if X is of finite presentation over the base. If the latter is not
satisfied we avoid this infinite limit argument and show by hand that for sufficiently
large but finite J ⊂ I the fiber product

∏
i∈J(Ei/X) is eventually quasiaffine, i.e.

EJ is a finite tensor generating family. However, the latter argument works only
with additional assumptions on the representability of these finite fiber products.

In the final part of this chapter we show that the preceding results fit together in a
natural way by giving a short proof of Totaro’s Theorem, generalized to non-normal
and non-noetherian algebraic stacks:
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Theorem. (6.3.1) Let X → S be a quasicompact and quasiseparated morphism of
algebraic stacks with S quasicompact which satisfies one of the following hypothesis:

(a) X is noetherian with affine stabilizer groups at closed S-points and S is
affine.

(b) X → S is a quotient stack; for instance, if X → S is representable.

(c) X → S is of finite presentation and has relative affine stabilizer groups
at geometric S-points.

Then the following assertions are equivalent:
(i) X → S has the resolution property.

(ii) X → S is a global quotient stack.

In the last chapter 7 we give a brief discussion of applications of our results and
motivate further developments, including the study of finite flat scheme covers and
the behavior of the resolution property with respect to deformations.

Conventional notations

By an algebraic stack we mean an Artin stack with separated and quasicompact
diagonal in the sense of [LMB00]. In particular, it is quasiseparated. However, we
often explicitly stress that a morphism or an algebraic stack should be quasisepa-
rated when this is a necessary condition. Presumably, the separated condition on
the diagonal can be weakened in many cases and be replaced by quasiseparated.

By a global quotient stack , we mean a quotient stack [X/GLn] for some quasiaffine
scheme acted on by GLn for some n ∈ N0.

A family of sheaves (E)i∈I will be often denoted by EI . If the latter appears in
symbolic manipulations we always mean the objectwise definition. For example,
the pullback f∗EI by a morphism f is defined as the family (f∗Ei)i∈I .
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Part 1

Construction of locally free
resolutions on schemes





CHAPTER 1

Divisoriality in codimension one

1.1. Resolution by ideal sheaves

The problem of constructing a locally free resolution ϕ : E � M for a given
quasicoherent sheaf M comprises the construction of the vector bundle E and the
quotient map ϕ. Trivially, both can be solved locally, but in general there is no
reason why the local resolutions should glue to a global one.

Let us describe the approach of constructing locally free resolutions by invertible
sheaves following [BS03, 1.7] building on the idea of Kleiman [Bor67], or indepen-
dently Illusie [SGA 6]. Apart from the case of normal, separated algebraic surfaces,
which was settled in [SV04, 2.1], this provides a proof of the resolution property
for schemes for all known cases. Furthermore, we will see the limitations of this
construction, but also infer an important reduction step in Proposition 1.1.2.

Let X be a noetherian scheme, M a coherent sheaf and fix an arbitrary germ
of M that is represented by a section s : OU → M|U for some dense affine open
set U ⊂ X. Denote by D = X − U the reduced complement given by a sheaf of
ideals I ⊂ OX ; it has codimension 1 if X has affine diagonal [EGA IV.4, 21.12.7].
By removing the singularities of the local sections of I near D, we can extend s to
a homomorphism ϕs : In → M of coherent sheaves for a sufficiently large power
n ∈ N whose image contains the previously chosen germ [EGA I2nd, I.6.9.17]. Using
that X is quasicompact and that M is locally generated by finitely many sections
si, we can repeat this procedure finitely many times on the affine complements of
suitable Weil divisors Di and get a surjection

⊕
i I

ni
i � M by summing up the

extended sections ϕsi . From this point of view, we may say that every noetherian
scheme with affine diagonal has enough Weil divisors. However, the domain of the
latter homomorphism is only locally free if each ideal Inii is invertible; that is X−U
carries the subscheme structure of an effective Cartier divisor.

This shows that schemes where a base of the Zariski topology is given by com-
plements of effective Cartier divisors satisfy the resolution property and the reso-
lutions can be made up by invertible sheaves; these schemes are called divisorial
(c.f. [Bor63], [Bor67]). From the discussion above, one deduces that a vast class of
schemes satisfies this property:

(1.1.1) Theorem ([EGA II], [Bor67] and [BS03, 1.7]). Let X be a quasicompact
scheme that meets one of the following requirements:

(i) X is separated and has an ample line bundle; for example, if X is quasi-
projective over some noetherian ring.

(ii) X is noetherian, locally Q-factorial and has affine diagonal.
Then X is divisorial.

In general, it is not possible to construct locally free resolutions by invertible
sheaves. Even worse, it can happen that there are no non-trivial line bundles at all
due to the presence of singularities.

3
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Nevertheless, we may hope to find resolutions by vector bundles of sufficiently
large rank. A useful consequence of the previous discussion is the following reduc-
tion principle which enables us to reduce the construction of various locally free
resolutions to a single one, as observed by Schröer and Vezzosi [SV04, Prop. 2.2].

(1.1.2) Proposition. Let X be a quasicompact and quasiseparated scheme. Then
there exists a quasicoherent OX-module of finite presentation F such that every qua-
sicoherent OX-moduleM of finite presentation admits a surjection (F⊗n)⊕m �M
for sufficiently large n,m ∈ N.

Proof. Let us first assume that X is noetherian. Then choose a finite covering
by open affines Ui ⊂ X whose reduced complements are given by coherent ideal
sheaves Ii ⊂ OX and set F =

⊕
i Ii. Since every power Ini is a quotient of tensor

product I⊗n, we see that every finite direct sum
⊕

j I
nj
ij

is a quotient of (F⊗n)⊕m

for sufficiently large n,m ∈ N. However, by the previous discussion we can always
resolve an arbitrary coherent sheaf by the former. This settles the noetherian case.

By noetherian approximation there exists an affine morphism f : X → X0 with
X0 noetherian [TT90, Thm. C.9]. Denote by F0 the coherent OX0-module that
satisfies the claimed property for X0. Since f∗M is the direct limit of coherent
submodules, we find a map ϕ : (F⊗n0 )⊕m → f∗M such that the composition of
f∗ϕ with the surjective evaluation map f∗f∗M→M is surjective. So F = f∗F0

satisfies the claimed property. �

1.2. Ample families

The collection of Cartier divisors on a divisorial schemes behaves like the hyper-
plane sections on quasiprojective schemes. Extending the notion of an ample line
bundle one introduces the concept of ample families of line bundles:

(1.2.1) Definition. A family of invertible OX -modules Li, i ∈ I, on a quasi-
compact and quasiseparated scheme X is called ample if the following equivalent
conditions are satisfied:

(i) The family {(L∨i )⊗n| i ∈ I,m ∈ N} is generating for X: For every qua-
sicoherent OX -module M there exist ij ∈ I, nj ∈ N, where j runs over
some set of indices J , and a surjection⊕

j∈J
(L∨ij )

⊗nj �M.

(ii) Same as in (i) but with M of finite type and I finite.

(iii) Same as in (i) but with M a sheaf of ideals of finite type and I finite.

(iv) The open sets Xs, where s runs over all global sections of L⊗ni , i ∈ I,
n ∈ N, form a base of the topology of X.

(v) Same as in (iv) but the Xs form a covering of X by affine open sets.

(vi) Same as in (v) but the Xs form a covering of X by quasiaffine open sets.
If X has an ample family of line bundles, then it is called divisorial .

The equivalence of (i)-(v) is shown in [SGA 6, II.2.2.3]. However, the proof works
also for quasiaffine subsets Xs since one only needs that every quasicoherent sheaf
is globally generated [EGA II, 5.1.2.c’] which shows that (vi) is also an equivalent
condition.

There is also a relative version of this definition for a morphism of schemes as
for ample line bundles, and this satisfies the permanence properties analogous to
relatively ample line bundles.
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1.3. Divisoriality by blowing up

For a general scheme, there is no reason for the existence of an ample line bundle.
However, the next proposition establishes that every quasicompact and quasisepa-
rated scheme is birational to a divisorial one, by blowing up a suitable set of Weil
divisors. We call a map of schemes f : Y → X birational if there exists a dense
open subset U ⊂ X such that f−1(U) is dense in Y and f |f−1(U) is an isomorphism.

(1.3.1) Proposition. Let X be a quasicompact and quasiseparated scheme. Then
there exists a blow-up f : Y → X of a finitely presented closed subscheme such that
Y has an ample family of OY -modules.

Proof. By noetherian approximation there exists an affine morphism
p : X → X0 with X0 noetherian. If f0 : Y0 → X0 is the blow-up of a finitely
presented closed subscheme Z0 ⊂ X0 then the blow-up f : Y → X of the finitely
presented subscheme Z := p−1(Z0) is the schematic closure of X −Z in Y0 ×X0 X.
Therefore, it suffices to prove that Y0 has an ample family. So we may assume that
X is noetherian.

Choose a finite covering U1, . . . , Un of dense affine open sets of X and provide
each Zi = X−Ui with the reduced subscheme structure. Put Y0 = X, g0 = idY and
let gk : Yk → Yk−1 be the blow-up of the inverse image (gk−1 ◦ · · · ◦ g0)−1(Zk) for
k = 1, . . . , n. Consequently the inverse images of Z1, . . . , Zn under the composition
f : Y = Yk → Yk−1 → · · · → Y0 = X are effective Cartier divisors D1, . . . , Dn,
and f can be written as a single blow-up of a finitely presented closed subscheme
Z ⊂ X by [RG71, 5.1.5].

Let L an f -ample OY -module. We claim that {OY (aDi) ⊗ L⊗m}i,a,m is an
ample family. Let F be a coherent OY -module. Then for m � 0 the adjunction
map f∗f∗(F ⊗ Lm) � F ⊗ Lm is surjective. Since f∗(F ⊗ Lm) is coherent and
Ui affine, we can choose a resolution O⊕aiUi

� f∗(F ⊗ Lm)|Ui for each i which
gives rise to a surjection O⊕aif−1(Ui)

→ f∗f∗(F ⊗ Lm)|f−1(Ui). Each complement
Y − f−1(Uj) = Dj is a Cartier divisor, so that the former map extends to Y
as map OY (−biDi)⊕ai → f∗f∗(F ⊗ Lm) [EGA I2nd, I.6.8.1]. It follows that the
composition OY (−biDi)⊕ai → F⊗Lm is surjective on f−1(Ui). As Y =

⋃
i f
−1(Ui)

this completes the proof. �

Since there exist regular quasicompact and quasiseparated 2-dimensional schemes
which do not have the resolution property [SV04, §4] we infer the following result.
It is not a consequence of Chow’s Lemma because we do not restrict to separated
finite type schemes.

(1.3.2) Corollary. The resolution property of quasicompact and quasiseparated
schemes is not a birational invariant.

1.4. Divisoriality in codimension one

We show that on any separated scheme X that is of finite type over a noetherian
ring, each point has a divisorial neighborhood U that contains all points of codi-
mension ≤ 1. More precisely, we seek to construct an ample family that possesses
enough positivity for later purpose. This will be a crucial part in the proof that all
separated algebraic surfaces satisfy the resolution property.

(1.4.1) Definition. Let X be a noetherian scheme. We call a subset U ⊂ X thick
if it contains all points of codimension ≤ 1. A coherent sheaf L on a noetherian
scheme X is called almost invertible if it is invertible on some thick open subset.
A family of almost invertible sheaves is called an almost invertible family if the
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corresponding thick subsets cover X. An almost invertible family Fi, i ∈ I, with
thick open sets Vi is called an almost ample family if the following conditions are
satisfied:

(i) For every coherent sheaf M there exists a surjection
⊕

j∈J F
⊗nj
ij

� M
for some finite set of indices ij ∈ I and powers nj ∈ N.

(ii) For every i ∈ I there exists a blow-up f : X ′ → X such that X ′ carries
an ample line bundle L′ which is isomorphic to (f∗Fi)∨ over f−1(Vi).

Note, that this notion is slightly abusive, since a family of invertibles is called
ample, if the tensor powers of their duals form a generating family (cf. 1.2.1.(i)).

The whole section is devoted to the proof of the following theorem and will be a
direct consequence of Proposition 1.4.13.

(1.4.2) Theorem. Let X be a scheme that is separated and of finite type over a
noetherian ring. Then there exists an almost ample family F1, . . . ,Fn of coherent
sheaves.

(1.4.3) Remark. In order to show the resolution property of X, we infer that it
suffices to resolve the various sheaves F⊗ni for all sufficiently large n ∈ N.

The proof of 1.4.13 involves an application of Chow’s Lemma, Ferrand’s char-
acterization of vector bundles on glued schemes (see appendix A.1) and a part of
deformation theory for vector bundles [Ill05, §5]. The latter two techniques are
necessary as we are taking non-normal and non-reduced schemes into account. Us-
ing this methods we will establish the following existence result as an intermediate
step.

(1.4.4) Proposition. Let X be a separated scheme of finite type over a noetherian
ring. Then every point x ∈ X has a divisorial thick neighborhood V ⊂ X and an
ample family of OV -modules Li, i ∈ I, can be chosen with the following property:

There exists a projective morphism f : X ′ → X, that is finite over V and an
isomorphism near x such that on its domain exists an ample OX′-module L′ which
restricts to fV ∗Li over f−1(V ) for all i ∈ I.

The proof of 1.4.4 is given at the end of section 1.4 and structured as follows:
First, take a suitable Chow cover X2 → X, then apply Stein factorization to get
a decomposition X2 → X1 → X and finally decompose the finite map X1 → X
over its schematic image X1 � X0 ↪→ X. Then X can be viewed as a deforma-
tion of X0, and X1 as the pinching of X0 along closed subschemes. By removing
sufficiently many closed subsets of codimension ≥ 2 from X, one can arrange that
the obstruction for lifting and gluing of an invertible sheaf vanish, so that a chosen
ample line bundle on X2 descends to X as family of invertible sheaves on a thick
open neighborhood of x.

Gluing ample families along closed subschemes. Consider first a finite
birational morphism f : X ′ → X of noetherian schemes with schematically dense
image. Let Y ⊂ X be the closed subscheme defined by the conductor ideal
Ann coker(OX → f∗OX′) ⊂ OX and put Y ′ = f−1(Y ). We have a cartesian
square

Y ′

g

��

v
// X ′

f

��
Y u

// X

which is also cocartesian. For details we refer to Appendix A.
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Let us denote by LFF(Z) ⊂ QCoh(Z) the subcategory of locally free sheaves of
finite type on a scheme Z. It is shown that there is an adjoint equivalence between
LFF(X) and LFF(Y )×LFF(Y ′) LFF(X ′).

The objects in the latter category are given by triples (E , σ,F ′) with a locally
free OY -module E of finite type, a locally free OX′-module F ′ of finite type and
an isomorphism σ : g∗E → v∗F ′. The morphisms consists of pairs of morphisms
of quasicoherent sheaves satisfying a compatibility condition after pullback on Y ′.
The natural functor T : LFF(X)→ LFF(Y )×LFF(Y ′) LFF(X ′) that maps a vector
bundle F to the triple

(u∗F , g∗u∗F can−−→ v∗f∗F , f∗F)

has a right adjoint S : LFF(Y ) ×LFF(Y ′) LFF(X ′) → LFF(X). Now by Theorem
A.1 the adjoint functors S and T define an equivalence.

We use this description of quasicoherent sheaves on a pinched scheme to glue
invertible sheaves having a section outside a closed subset of the conductor sub-
scheme. We call a subset Z ⊂ X of a topological space X nowhere dense if Z does
not contain any generic point of X.

(1.4.5) Proposition. With the previous notation, suppose that there exists an
invertible OY -module M, an invertible OX′-module L′ and sections t ∈ H0(Y,M)
and s′ ∈ H0(X ′,L′) satisfying g−1(Yt) = X ′s′ ∩ Y ′. Then outside a nowhere dense
closed subset Z ⊂ Y the sheaves M and L′ glue to an invertible OX-module L
having a global section s that restricts to t and s′ respectively. More precisely, there
exists an invertible OX−Z-module L such that

(i) L|Y−Z 'M|Y−Z and fX−Z∗L ' L′|X′−f−1(Z).

(ii) There is a section s ∈ H0(X − Z,L) with s|Y−Z = t|Y−Z and
fX−Z

∗s = s′|X′−f−1(Z).

Proof. Let σ : g∗OY
'−→ v∗OX′ be the natural isomorphism induced by

fv = ug. Then the natural isomorphisms u∗OX
'−→ OY , f∗OX

'−→ OX′ give rise
to a canonical isomorphism ψ : T (OX) '−→ (OY , σ,OX′).

Consider now the given sections as morphism t : OY → M and s′ : OX′ → L′.
We try to find an isomorphism of OY ′ -modules τ : g∗M '−→ v∗L′ that fits in a
commutative diagram

v∗OX′
v∗s′ // v∗L′

g∗OY

σ

OO

g∗t // g∗M

τ

OO (1.4.5.1)

so that the pair ϕ := (t, s′) defines a morphism (OY , σ,OX′) → (M, τ,L′) in
LFF(Y )×LFF(Y ′) LFF(X ′). This would give a morphism of OX -modules

s : OX −→ ST (OX)
S(ψ)−−−→ S(OY , σ,OX′)

S(ϕ)−−−→ L.
with T (s) = ϕ ◦ ψ, i.e. s|Y = t and f∗s = s′ as desired.

The goal is to construct τ on an open subset Y ′ − g−1(Z ′) ⊂ Y ′ where Z ⊂ Y is
a suitable closed subset that is nowhere dense in Y (i.e. contains no generic point
of Y ).

First, observe that there exists a dense open subset U ′ ⊂ Y ′ where both g∗M and
v∗L′ are isomorphic since they are invertible. Then the closed set Z1 = g(Y ′ −U ′)
contains no generic point of Y as g is quasifinite and we obtain an isomorphism by
restriction:

τ1 : g∗M|Y ′−f−1(Z1)
'−→ v∗L′|Y ′−f−1(Z1).
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So outside Z1 we can define an isomorphism τ but it does not necessarily fit in a
commutative diagram (1.4.5.1). If both horizontal maps vanish, the commutativity
is trivial, so it suffices to check the commutativity over Y ′g∗t ∪ Y ′v∗s′ which is equal
to g−1(Yt) = X ′s′ ∩ Y ′ by hypothesis.

For that define Z2 := Yt − Yt where the closure is taken in Y . It is a closed
subset of Y that does not contain any generic points of Y . Then Z := Z1 ∪Z2 is a
nowhere dense closed subset of Y , so that Y −Z decomposes as a disjoint union of
open subsets U ⊂ Yt and V ⊂ Y − Yt.

Consequently Y ′−g−1(Z) is the disjoint union of two open sets g−1(U) ⊂ g−1(Yt)
and g−1(V ) ⊂ Y ′, such that both g∗t and v∗s′ are isomorphism on the former and
both vanish on the latter. Therefore we may define τ with τ = v∗s′ ◦ σ ◦ (u∗t)−1

on g−1(U) and with τ = τ1 on g−1(V ), so that τ is an isomorphism and fits in the
commutative diagram (1.4.5.1) over X − Z. �

We use Proposition 1.4.5 to show that the pair of an sufficiently ample line bundle
and a section descend along a finite birational morphism:

(1.4.6) Lemma. Let f : X ′ → X be a finite birational morphism of quasicompact
schemes with schematically dense image, such that X ′ is separated and carries
an ample OX′-module L′, and let Y ⊂ X be the closed subscheme defined by the
conductor ideal.

Then for every closed point x ∈ X with sufficiently small open neighborhood
W ⊂ X there exists a nowhere dense closed subset Z ⊂ Y −W and on V := X−Z an
invertible OV -module L with a section s ∈ H0(V,L), such that fV ∗L ' L′⊗n|f−1(V )

for some n ∈ N and x ∈ Vs ⊂W .

Proof. Case x ∈ Y : By shrinking W we may assume that W is quasiaffine,
and hence Y ∩W is quasiaffine. Then by removing an appropriate nowhere dense
closed subset Z1 ⊂ Y disjoint to Y ∩W we may assume that Y is quasiaffine, too.

So OY is ample and there is a section t ∈ H0(Y,OY ) such that x ∈ Yt ⊂ Y ∩W .
Replacing W with W ∩ (X − (Y − Yt)) we may assume that Yt = Y ∩W . Then
f−1(x) = g−1(x) ⊂ g−1(Yt) = Y ′ ∩W ′, where W ′ := f−1(W ). Now L′ is ample,
too, so we find a section s ∈ H0(X ′,L′⊗n) for some positive integer n such that
X ′s′ ⊂W ′ and X ′s′ contains f−1(x) and all generic points of Y ′ that are contained
in g−1(Yt) [EGA II, 4.5.4].

It follows that f−1(x) ⊂ X ′s′ ∩ Y ′ ⊂ W ′ ∩ Y ′ = g−1(Yt) and that the difference
g−1(Yt)− (X ′s′ ∩ Y ′) contains no generic point of Y ′. Then its image under g does
not contain any generic points of Y either since g is quasifinite, so that its closure
Z2 ⊂ Y is nowhere dense in Y and satisfies x /∈ Z2. Thus g−1(Yt) = X ′s′ ∩ Y ′ over
X − f−1(Z2) and by replacing X with X − Z2 we may assume that Z2 = ∅.

Consequently, Proposition 1.4.5 applies so that OY and L′⊗n glue together along
g outside a nowhere dense closed subset Z3 ⊂ Y . By replacing X with X − Z3

we may assume that Z3 = ∅. So the proposition says there exists an invertible
OX -module L satisfying L|Y ' OY and f∗L ' L′⊗n which has a global section s
with s|Y = t and f∗s = s′. It follows that x ∈ Xs since Xs ∩ Y = Yt and Xs ⊂ W
since f−1(Xs) = X ′f∗s = X ′s′ ⊂W ′ = f−1(W ).

Case x ∈ X−Y : We may assumeW ⊂ X−Y , a fortioriW ′ := f−1(W ) ⊂ X ′−Y ′.
We apply Proposition 1.4.5 again for M = OY with 0 = t ∈ H0(Y,OY ) and
s′ ∈ H0(X ′,L′⊗n) with x = f−1(x) ∈ X ′s′ ⊂W ′ and proceed as above. �

Consequently, every ample sheaf on X ′ descends to an ample family on X outside
a nowhere dense closed subset of Y :
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(1.4.7) Proposition. Let f : X ′ → X be a finite birational morphism of quasicom-
pact schemes with schematically dense image, such that X ′ is separated and carries
an ample OX′-module L′, and let Y ⊂ X be the closed subscheme defined by the
conductor ideal Ann coker(OX → f∗OX′).

Then there exists an open set V ⊂ X such that the complement X−V is contained
in Y , V ∩Y is affine and dense in Y , and a finite ample family of OV -modules Li,
i ∈ I, such that fV ∗Li ' L′⊗n for all i ∈ I and some n ∈ N.

Proof. Applying Lemma 1.4.6 for open affine neighborhoods we find for each
xi ∈ X a closed set Zi ⊂ Y with codim(Zi, Y ) ≥ 1 and on Vi := X−Zi an invertible
OVi-module Li with fVi

∗Li ' (L′)⊗ni |f−1(Vi) for some positive integer ni, and a
section si ∈ H0(Vi,Li) such that (Vi)si is a quasiaffine neighborhood of x.

Since X is quasicompact, finitely many (Vi)si , i ∈ I, suffice to form an open
covering of X. Then the finite union Z :=

⋃
i∈I Zi is a nowhere dense closed

subset of Y . Since Y − Z is dense in Y it contains a dense affine open subset. By
enlarging Z we may therefore assume that Y − Z is affine open and dense in Y .
We define V := X − Z and replace the sheaves Li and si with their restrictions to
V =

⋂
i∈Z(Vi)si . Moreover, replacing each Li with an appropriate tensor power,

we may assume that all ni are equal. �

The following example of a non-divisorial surface with projective normalization
illustrates that it is in general not true that an ample sheaf descends to an am-
ple sheaf or an ample family along a finite birational morphism without removing
appropriate closed subsets. Nevertheless, the resolution property holds by the forth-
coming Theorem 2.0.1.

(1.4.8) Example (A non-divisorial proper algebraic surface whose normalization
is projective). We work over an algebraically closed field k, say k := C for sim-
plicity. Let E be an elliptic curve and consider the surface X := E × P1. Choose
distinct fibers E0 and E∞ over P1. Let tx : E → E be the translation with re-
spect to a rational point x ∈ E of infinite order. Then define the finite map
g : E0

∐
E∞ ' E

∐
E → E as the identity on E0 and as tx on E∞.

By Ferrand [Fer03, Théorème 5.4], the pushout of the closed immersion
i : E0

∐
E∞ ↪→ X along g exists in the category of schemes.

E0

∐
E∞

i //

g

��

X

f

��
E

j // S

This square is cartesian and cocartesian, j is a closed immersion and f is finite
with schematically dense image. It follows that S is an integral, proper surface
with normalization f .

Assume that S is divisorial. Then for a chosen point y ∈ j(E) ⊂ S there exists an
effective Cartier divisor C ⊂ S with y /∈ C and S−C affine. In particular, C∩j(E)
is non-empty and zero-dimensional. It follows that the line bundle L := j∗OS(C)
has positive degree and hence is ample. Now, the isomorphism g∗L ' i∗f∗OS(C)
induces an isomorphism L ' tx∗L. But then x must have finite order by the theory
of abelian varieties [Mum70, p. 60, Application 1], contradicting the choice of x.

Deformations of ample families. Next we deal with birational nilpotent
immersions f : X ′ ↪→ X of noetherian schemes. Then OX → f∗OX′ is surjective
and its kernel I is nilpotent since X is noetherian. In order to lift a locally free
OX′ -module E ′ to locally free OX -module E it suffices to consider the case I2 = 0,
so that I is an OX′ -module. Then the obstruction to the existence of a lift is
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an element of H2(X ′, I ⊗OX′ End(E ′)) by [Ill05, Theorem 5.3]. Moreover, having a
second locally free OX′ -module F ′ the obstruction of lifting a morphism s : E ′ → F ′
is an element of H1(X ′, I ⊗Ox′ Hom(E ′,F ′)).

(1.4.9) Lemma. Let f : X ′ ↪→ X be a birational nilimmersion of noether-
ian schemes and let Y ⊂ X be the closed subscheme defined by the kernel of
OX → f∗OX′ . Then there exists an open subset V ⊂ X with X − V ⊂ Y and
V ∩ Y dense and affine in Y , such that for every locally free Of−1(V )-module
E ′ there exists a locally free OV -module E with f∗V E ' E ′, and every section
s ∈ H0(f−1(V ), E ′) extends to a section H0(V, E).

Proof. Let Z ⊂ Y be the complement of any affine dense open neighborhood
in U ⊂ Y and set V = X −Z. Then Z is nowhere dense in X, and V ∩Y = U . We
conclude that the restriction V ′ := f−1(V ) ↪→ V of f is a birational nilimmersion
whose ideal of definition J = I|V has affine support. In particular, it has cohomo-
logical dimension 0. By the previous discussion, we see that every vector bundle E ′
on V ′ has a lift E to V , and every map OV ′ → E ′ extends to a map OV → E . �

This settles the descent of ample line bundles along infinitesimal thickenings.

(1.4.10) Lemma. Let f : X ′ ↪→ X be a birational nilimmersion of noether-
ian schemes and let Y ⊂ X be the closed subscheme defined by the kernel of
OX → f∗OX′ . Then there exists an open subset V ⊂ X such that X − V ⊂ Y ,
V ∩ Y is dense and affine in Y , such that for every ample family L′i, i ∈ I,
of Of−1(V )-modules there exists an ample family Li, i ∈ I, of OV -modules with
f∗V Li ' L′i.

Proof. Due to Lemma 1.4.9 an ample family of Of−1(V )-modules lifts to a
family of invertible OV -modules Li and every global section s′ ∈ H0(f−1(V ),L′i

⊗n)
extends to a section s ∈ H0(V,L⊗ni ). If the non-vanishing set f−1(V )s′ = f−1(Vs)
is affine, then this also holds for Vs. Using property 1.2.1.(v)) we infer that Li,
i ∈ I, is an ample family of OV -modules. �

The case of a general proper morphism. Finally, we consider an arbitrary
birational proper morphism f of schemes.

(1.4.11) Proposition. Let f : X ′ → X be a proper birational morphism of noe-
therian schemes such that X ′ is separated and carries an ample OX′-module L′. Let
U ⊂ X be the maximal dense open set where f is an isomorphism. Then there exists
an open neighborhood U ⊂ V ⊂ X and an ample family Li, i ∈ I, of OV -modules
such that

(i) V − U is affine,

(ii) V is thick,

(iii) f is finite over V ,

(iv) there exists an n ∈ N such that fV ∗Li ' L′⊗n|f−1(V ) for all i ∈ I.

Proof. Applying Stein factorization to f = g ◦ f ′ and factoring g over its
scheme theoretic image g = i◦g′, reduces to the case that f is birational morphism
which is in addition either a nilimmersion, a finite morphism with schematically
dense image or a proper Stein morphism. The latter case is trivial since a birational
Stein map of finite type is an isomorphism over an open subset containing all points
of codimension ≤ 1 by Lemma 1.4.12 below. The other cases were treated in Lemma
1.4.10 and Proposition 1.4.7. �
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(1.4.12) Lemma. Let f : Y → X be morphism of locally noetherian schemes that
is birational and of finite type. Then f is quasifinite over all points of codimension
≤ 1.

Proof. Let x ∈ X be a point of codimension 1. By applying base change with
SpecOX,x → X we may assume that X is local of Krull dimension 1 with closed
point x. Moreover, we may assume that X and Y are irreducible by a second base
change. Let y ∈ f−1(x) an arbitrary point. Then dimOY,y ≥ 1 because y cannot
be a generic point of Y , whereas 0 ≤ dimOY,y + deg. trk(x) k(y) ≤ dimOX,x = 1
by [EGA IV.2, 5.6.5.2] . Consequently, holds deg. trk(x) k(y) = 0 which shows that
f−1(x) is finite. �

As an application of Proposition 1.4.11 and Chow’s Lemma we are now able to
prove Proposition 1.4.4.

Proof of Proposition 1.4.4. Let A be the noetherian base ring. By Chow’s
Lemma there is a quasiprojective A-scheme X ′ carrying an ample line bundle L′ and
a proper morphism f : X ′ → X, which is an isomorphism over a dense affine open
neighborhood x ∈ U ⊂ X, such that f−1(U) is schematically dense in X ′ (this
version of Chow’s Lemma is due to Nagata, and stated in this scheme theoretic
version in [Voj07, 2.5], or in [Con07, 2.6]). Hence Proposition 1.4.11 applies. �

Existence of almost ample families and proof of Theorem 1.4.2. As
a consequence of Proposition 1.4.4, we deduce that every coherent sheaf can be
resolved by coherent sheaves of rank one which are invertible on thick open subsets
and satisfy a weak positivity property like ample line bundles. The following is a
detailed version of Theorem 1.4.2:

(1.4.13) Proposition. Let X be a scheme that is separated and of finite type over
a noetherian ring. Then there exists a family of coherent OX-modules Fi, i ∈ I,
having the following properties:

(i) For every i ∈ I there exists an thick open subset Vi ⊂ X such that Fi|Vi
is invertible and X =

⋃
i∈I Vi.

(ii) For every i ∈ I there exists a proper birational map f : X ′ → X such that
X ′ carries an ample line bundle L′ which is isomorphic to (f∗Fi)∨ over
f−1(V ).

(iii) For every coherent OX-module M there exists a surjection⊕
j∈J
F⊗njij

�M

for some finite set of indices ij ∈ I and powers nj ∈ N.

Proof of Proposition 1.4.13 and Theorem 1.4.2. For every x ∈ X take
an open neighborhood V ⊂ X as in Proposition 1.4.4 having an ample family of
OV -modules LV,j , j ∈ J . Pick an ideal I ⊂ OX defining some subscheme structure
on X − V and choose for each j ∈ J a coherent OX -module Lj extending LV,j
to X. In that way we get a family Fi := Im · L∨j , where i runs over all elements
(x,m, j) of I := X ×N× J . By construction holds (i) and (ii), and property (iii) is
satisfied since the surjection of OV -modules of definition 1.2.1.(i) extend to maps
of OX -modules [EGA I2nd, I.6.9.17]. �

(1.4.14) Remark. Each Fi in the family of Proposition 1.4.13 can be chosen to be
an ideal sheaf if X is S1, or to be an anti-effective almost Cartier divisor (in the
sense of [Har07, Def. 2]) if X satisfies S2.
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After studying the cohomological behavior of ample line bundles, we will show
later in Proposition 1.5.9 that almost ample families satisfy a cohomological van-
ishing property for the top cohomology on proper schemes. This will be crucial for
constructing locally free resolutions on arbitrary proper surfaces as the cohomolog-
ical obstructions for gluing local resolutions lie in H2 (for details see the proof of
Theorem 2.0.1).

1.5. Cohomologically ample families of coherent sheaves

We introduce a specific cohomological vanishing condition for families of coherent
sheaves, in order to study the cohomogical behavior of ample line bundles with re-
spect to alterations (i.e. a proper, surjective and generically finite map of schemes).
Our definition of cohomological ampleness is similar to the one given in [Ste98].

(1.5.1) Definition. Let X be a scheme that is proper over a noetherian ring and
d a natural number. A family of coherent OX -modules En, n ∈ N, is called a
cohomologically d-ample family if for all coherent OX -modules F there exists a
positive integer n0 such that for all n ≥ n0 and i ≥ d+ 1 holds Hi(X,F ⊗ En) = 0.

A coherent OX -module F is called cohomologically d-ample if F⊗n, n ∈ N, is a
cohomologically d-ample family of coherent sheaves.

The main advantage of this concept is that the vanishing condition for the top
cohomology is preserved and reflected by alterations:

(1.5.2) Theorem. Let f : Y → X be an alteration of d-dimensional schemes that
are proper over a noetherian ring and let En, n ∈ N, be a family of coherent OX-
modules. Then (En) is (d− 1)-ample if and only if (f∗En) is (d− 1)-ample.

The proof is given at the end of this section and divided in several steps. First,
we show that cohomologically ample families are preserved by finite morphisms.

(1.5.3) Lemma. Let f : Y → X be a finite morphism of schemes that are proper
over a noetherian ring, En, n ∈ N, a family of coherent OX-modules and d ∈ N
some positive integer. If (En) is cohomologically d-ample, so too is (f∗En).

Proof. The projection formula f∗F ⊗ En = f∗(F ⊗ f∗En) holds since f∗ is
exact. Therefore it induces an isomorphism Hi(Y,F ⊗f∗En) ' Hi(X, f∗F ⊗En) for
all i, n ≥ 0, which proves the assertion. �

Using Grothendieck duality we infer that the vanishing property, involving only
the top dimensional cohomology, is also reflected by finite surjections.

(1.5.4) Lemma. Let f : Y → X be a finite surjective map of d-dimensional
schemes that are proper over a noetherian ring and let En, n ∈ N, be a family of
coherent OX-modules. If (f∗En) is cohomologically (d− 1)-ample, so too is (En).

Proof. Due to the following commutative square of finite surjective maps
and using Lemma 1.5.3 it suffices to check the case where either f is a surjective
immersion or X is reduced.

Yred
//

fred

��

Y

f

��
Xred

// X

Case 1: f is a surjective immersion. The closed immersion Y ↪→ X is given by a
nilpotent ideal I ⊂ OX since X is noetherian. We may assume that I2 = 0. Then
applying · ⊗OX F ⊗OX En to the short exact sequence

0→ I → OX → OX/I → 0
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induces an exact sequence of OX -modules

I ⊗OX F ⊗OX En
u−→ F ⊗OX En

v−→ F/IF ⊗OX/I En/IEn → 0,

which splits in two exact sequences of OX -modules
0→ keru→ I ⊗OX F ⊗OX En → ker v → 0,

0→ ker v → F ⊗OX En → F|Y ⊗OY En|Y → 0.
(1.5.4.1)

Since I2 = 0 holds I ' I/I2 ' OX/I ⊗OX I as sheaves of abelian groups, so that

I ⊗OX F ⊗OX En ' (I ⊗OX F)|Y ⊗OY En|Y
is an OY -module. Finally the result follows by considering the long exact cohomol-
ogy sequences associated to (1.5.4.1) and using that Hd(Y, (I ⊗OX F)|Y ⊗OY En|Y )
and Hd(Y,F|Y ⊗OY En|Y ) vanish for sufficiently large n.

Case 2: X is reduced. There is a natural short exact sequence

0→ OX → f∗OX′ → C → 0,

where C is generically locally free since f is generically flat and finitely presented.
Applying HomOX (·,F) gives the exact sequence

0→ HomOX (C,F)→ f∗f
!F α−→ F → Ext1OX (C,F).

Now the support of cokerα has dimension ≤ d− 1, so tensoring with E , using the
projection formula and taking cohomology gives a surjection

Hd(Y, f !(F)⊗ f∗E) � Hd(X,F ⊗ E),

which implies the assertion. �

Even arbitrary alterations reflect the vanishing condition for the top dimensional
cohomology. This follows again from Grothendieck duality.

(1.5.5) Proposition. Let f : Y → X be a proper birational map of d-dimensional
schemes that are proper over a noetherian ring, and let (En) be a family of coherent
OX-modules. If (f∗En) is cohomologically (d− 1)-ample, so too is (En).

Proof. We may assume that X and Y are integral, and then suppose that the
base ring A is complete, local and integral. By the Theorem on Formal Functions
and Grothendieck’s Vanishing Theorem it suffices to consider the case that the
dimension of the closed fiber of g : X → SpecA is of dimension d and not less.
Since X is irreducible it follows that g maps X to the closed point of A. Therefore
we may assume that A is a field. It follows that the normalizations of X and Y are
finite maps. In particular, we may suppose that X and Y are normal and that f is
birational. Thus, the assertion follows from the succeeding lemma. �

(1.5.6) Lemma. Let f : Y → X be a proper birational map of d-dimensional,
normal schemes that are proper over a field. Then there exists a surjection for
every coherent OX-module F

Hd(Y,Hom(f∗ωX , ωY )⊗ f∗F) � Hd(X,F).

Proof. By Serre duality holds Hd(X,F)∨ ' Hom(F , ωX). Since X is normal
the dualizing module ωX is torsionfree and generically invertible and the birational-
ity of f implies the injectivity of the natural map

Hom(F , ωX)→ Hom(f∗F , f∗ωX)→ Hom(f∗F ,Hom(Hom(f∗ωX , ωY ), ωY )).

By adjunction the group on the right is isomorphic to

Hom(f∗F ⊗Hom(f∗ωX , ωY ), ωY ),

which is isomorphic to Hd(Y, f∗F ⊗Hom(f∗ωX , ωY ))∨ using Serre duality. �
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We will see that it is convenient to pass to other families of coherent sheaves that
differ on closed subsets of large codimension. The following Lemma 1.5.7 enables
us to control the loss of positivity during that process. Recall that a scheme X
has cohomological dimension ≤ d if Hi(X,F) = 0 for all i ≥ d + 1 and arbitrary
quasicoherent OX -modules F .

(1.5.7) Lemma. Let X be a d-dimensional noetherian scheme and F , F ′ be co-
herent OX-modules which are isomorphic outside a closed subscheme Z ⊂ X of
cohomological dimension k. Then

Hi(X,F) ' Hi(X,F ′) for all i ≥ 2 + k.

Proof. Since X is noetherian any isomorphism ϕ0 : F|X−Z
'−→ F ′|X−Z ex-

tends to a morphism ϕ : InF → F ′ [EGA I2nd, I.6.9.17], where the ideal I ⊂ OX
provides the reduced subscheme structure on Z. Then ϕ as well as InF ↪→ F are
isomorphisms outside Z. So their kernels and cokernels have support of cohomo-
logical dimension ≤ k and we conclude Hi(X,F) '←− Hi(X, InF) '−→ Hi(X,F ′) for
all i ≥ 2 + k by taking the long cohomology sequences. �

(1.5.8) Remark. If Z is affine then the cohomological dimension is 0 by Serre’s
criterion for affines. If Z is of Krull dimension d then its cohomological dimension
is ≤ d by Grothendieck’s Vanishing Theorem.

Proof of Theorem 1.5.2. By Lemma 1.5.3 we may assume that f
is a Stein map, hence it is an isomorphism in codimension ≤ 1. Given
an arbitrary coherent OY -module F , it follows from Lemma 1.5.7 that
the canonical map f∗F ⊗ En → f∗(F ⊗ f∗En) induces an isomorphism
Hd(X, f∗F ⊗ En) ' Hd(X, f∗(F ⊗ f∗En)).

Therefore it suffices to show the existence of an isomorphism of abelian groups
Hd(Y,M) ' Hd(X, f∗M) for an arbitrary coherent OY -module M. To see
this, let x ∈ X with dimOX,x ≥ 1. Then dim f−1(x) ≤ dimOX,x − 1 since
f is birational. Hence (Rqf∗M)x = 0 for all q ≥ dimOX,x. It follows that
codim(SuppRqf∗M, X) ≥ q + 1 and this implies Hp(X,Rqf∗M) = 0 for all p ≥ 0,
q ≥ 1 with p + q ≥ d. Applying the Grothendieck spectral sequence settles the
result. �

Application to almost ample families. As announced after Remark 1.4.14,
we add a vanishing property for the top cohomology to the properties of almost
ample families (see Proposition 1.4.13). It is a direct consequence of the following
Lemma.

(1.5.9) Proposition. Let X be a d-dimensional scheme that is proper over a noe-
therian ring and has an almost ample family of coherent sheaves Fi, i ∈ I. Then
each F∨i is cohomologically (d− 1)-ample.

(1.5.10) Lemma. Let f : Y → X be a proper birational map of d-dimensional
schemes that are proper over a noetherian ring such that Y has an ample invertible
sheaf L. Let V ⊂ X a thick open subset and F a coherent OX-module such that
f∗F is isomorphic to L over f−1(V ). Then F is cohomologically (d− 1)-ample.

Proof. By applying Stein factorization to f we may assume that f is a Stein
map using Lemma 1.5.4. Then the maximal open subset U ⊂ X where f is an
isomorphism is thick by Lemma 1.4.12 and Zariski’s Main Theorem [EGA III.1,
4.4.1].
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It follows that (f∗L)⊗n and F⊗n are isomorphic away from a closed subset of
dimension ≤ d − 2. Hence by Lemma 1.5.7 it is equivalent to show that f∗L is
cohomologically (d−1)-ample. By Serre’s Vanishing Theorem it is even 0-ample. �





CHAPTER 2

Algebraic surfaces have enough locally free sheaves

We shall prove the resolution property for every scheme X that has low dimension
and is proper over a noetherian ring A. If dimX ≤ 1, then X is projective over
A. Therefore, we consider the case that the irreducible components of X have
dimension ≤ 2. Note that X is not necessarily reduced and has many irreducible
components of dimension less or equal than 2. Furthermore we impose no regularity
assumption on X or on the base ring.

(2.0.1) Theorem. Let X be a 2-dimensional scheme that is proper over a noether-
ian ring. Then X has the resolution property.

The proof of 2.0.1 is given at the very end of the chapter on page 26.

Since the resolution property descends along immersions, it holds for all 2-
dimensional schemes X that are embeddable into 2-dimensional schemes which
are proper over a base ring.

(2.0.2) Corollary. Let X be a 2-dimensional scheme that is separated and of finite
type over a field. Then X has the resolution property.

Proof. Since X is separated and of finite type over a noetherian ring, there
exists a compactification X ⊂ X by Nagata’s embedding Theorem. In particular, if
the base ring is a field, then X is also of dimension 2 and Theorem 2.0.1 applies. �

The strategy of the proof is as follows. By Theorem 1.4.2 it suffices to resolve
the members of an almost ample family. Since X is of dimension ≤ 2, these are
invertible up to finitely many points of codimension 2.

Generalizing the methods of [SV04] to non-normal and non-reduced noetherian
schemes, we describe in section 2.1 a technique for constructing locally free reso-
lutions by gluing local extension classes and formulate cohomological obstructions
thereof. The existence of the right choice of the local classes is accomplished by
providing a variant of the Bourbaki Lemma for non-reduced local rings, using the
theory of basic elements of Evans and Griffith [EG85].

In order to constrol the cohomological obstructions, we construct vector bundles
that have enough positivity to be suitable candidates for a first syzygy sheaf in the
gluing process. Their existence is proven in section 2.2 by constructing a 1-ample
family of vector bundles on a suitable Chow cover that are trivial on all exceptional
and ramification components and hence descend on the original surface. As we do
neither restrict to normal or reduced schemes our choice of the Chow cover involves
pinching techniques and deformation theory of vector bundles.

Finally, we collect all preceding result to prove Theorem 2.0.1 in section 2.3.

All constructions we are going to perform do in fact not need that X has dimen-
sion 2. They may be adapted to state conditions for the existence of resolutions by
sheaves whose singular locus has codimension ≥ 3 if X has any dimension. How-
ever, we were not able to control the obstructions in this general case. The presence
of Serre’s Vanishing Theorem for a projective Chow cover is the underlying reason

17
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why we stick to proper surfaces. However, we guess that a careful use of local
cohomology and appropriate duality theorems might solve this problem.

(2.0.3) Conjecture. Let X be a separated scheme of finite type over a noetherian
ring.

(i) Every point has an open neighborhood U ⊂ X that has the resolution
property and contains all points of codimension ≤ 2.

(ii) Every coherent sheafM is a quotient of a coherent sheaf E which is locally
free in codimension ≤ 2.

The verification of this conjecture would be quite useful to tackle the resolution
property for separated threefolds as it would suffice to resolve coherent sheaves
whose singular locus consists of finitely many points of codimension 3.

2.1. Gluing resolutions

In this section we formulate conditions that are sufficient for the existence of
locally free resolutions of coherent sheaves which are locally free away from finitely
many closed points of codimension 2. The crucial ingredient is the gluing of short
exact sequences, which was already successfully applied in [Sch82] for the verifica-
tion of the resolution property for complex compact surfaces and suitably modified
in [SV04] to tackle the case of normal algebraic surfaces.

Gluing extension classes. To motivate the construction, observe that a sur-
jection ϕ : E � M is uniquely determined by its first syzygy S := kerϕ and an
extension class γ ∈ Ext1(M,S). So, if a reasonable candidate S for some (not
necessarily locally free) resolution of M exists, then one can try to glue local ex-
tensions of M by S to a global one (which may differ from ϕ). The cohomological
obstructions appearing here are well known, but described next for the convenience
of the reader.

(2.1.1) Proposition. Let X be a scheme andM, S be quasicoherent OX-modules.
(i) For each local extension γ ∈ H0(X, Ext(M,S)) there exists an obstruction

o(γ) ∈ H2(X,Hom(M,S)) whose vanishing is necessary and sufficient
for the existence of a lift γ′ ∈ Ext1(M,S).

(ii) If the obstruction o(γ) vanishes, then the set of all liftings is a torsor
under H1(X,Hom(M,S)), which identifies the locally trivial extensions.

Proof. This is a consequence of the 5-term sequence associated to the spectral
sequence of Epq2 = Hp(X, Extq(M,S))⇒ Extp+q(M,S). �

(2.1.2) Remark. If M is locally free outside a 0-dimensional subset Z ⊂ X, the
local extensions of M by S appear in a simple form. In fact, there is a canoni-
cal isomorphism

⊕
z∈Z Ext1

OX,z (Mz,Sz) ' H0(X, Ext1OX (M,S)), so that we may
choose elements of Ext1

OX,z (Mz,Sz), z ∈ Z, independently to a get a global section
of Ext1OX (M,S).

(2.1.3) Remark. We will use a more convenient formulation of the obstruction
space H2(X,Hom(M,S)) for gluing local resolutions of M by S. Note that the
natural pairing Hom(M,OX)⊗ S ε−→ Hom(M,S) is an isomorphism, where M is
locally free. But it is in general not an isomorphism, since the tensor product may
have torsion sections. Nevertheless, if M is locally free up to finitely many points
of codimension 2, we deduce from Lemma 1.5.7 the isomorphism

H2(X,Hom(M,S)) ' H2(X,M∨ ⊗ S). (2.1.3.1)
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One difficulty for gluing local resolutions is to guess the choice of the right syzygy
sheaf S and to solve the problem that the obstruction o ∈ H2(Hom(M,S)) depends
on both sheaves M and S. Therefore we divide the construction of a locally free
resolution of M in two steps, where we can specify the first syzygy sheaf and
dissolve this dependency.

Local resolutions. Let (A,m) be a noetherian local ring of Krull dimension 2.
We denote by X = SpecA the associated prime spectrum and by U := X−{m} the
punctured spectrum. By abuse of notation we identify quasicoherent OX -modules
with their A-modules of global sections.

Let M be an A-module of finite type that is locally free of constant rank on U .
Then for every free resolution ϕ : A⊕n � M the first syzygy module S := kerϕ is
locally free on U and satisfies detS|U ' detM∨|U . In particular, if S has generically
rank 1, then S|U ' detS|U is uniquely determined by M .

In general, S has higher rank, but we can choose a free submodule such that
its quotient has rank 1 and is locally free on U . In [SV04, Theorem 2.1] this was
accomplished by invoking the Bourbaki Lemma [Bou65, p. 76]. It says that for a
normal noetherian ring, every torsionfree module of rank r has a free submodule of
rank r − 1 such that its quotient is isomorphic to an ideal, hence has rank 1.

Since we work over arbitrary noetherian rings, we need an appropriate general-
ization for non-reduced rings (see [BV75] for torsionfree modules).

(2.1.4) Lemma (Modified Bourbaki Lemma). Let k ∈ N, A be a noetherian ring
and M be a finitely generated A-module such that M is free of rank r ≥ k at all
primes of height ≤ k. Then there is a free submodule F of M of rank r − k, such
that M/F is free of rank k at all primes of height ≤ k.

Proof. This is an application of basic element theory (c.f. [EG85]). Denote
by µ(M) the minimal number of generators. A submodule N ⊂ M is called w-
fold basic at a prime ideal p ⊂ A if µ(M/N)p ≤ µ(Mp) − w. A set of generators
x1, . . . , xs of N is called basic up to height k if N is min(s, k − ht p + 1)-fold basic
in M at each prime ideal p ⊂ A of height less or equal to k.

Assume r ≥ k+ 1. Let x1, . . . , xs be a choice of generators of M , s ≥ r. If p ⊂ A
is a prime ideal of height less or equal to k, then w := min(s, k− ht p + 1) ≤ k+ 1,
thus µ(Mp)−w ≥ r− (k+ 1) ≥ 0, and we conclude that x1, . . . , xs are basic up to
height k. Hence, by [EG85, Theorem 2.3], there is a one element set {y} which is
basic up to height k and induces a short exact sequence

0 −→ Ay −→M −→M/Ay −→ 0. (2.1.4.1)

Then for prime ideals p ⊂ A with ht p ≤ k the localizations

0 −→ Apy −→Mp −→ (M/Ay)p −→ 0

give rise to exact sequences

Apy ⊗A k(p)→Mp ⊗A k(p)→ (M/Ay)p ⊗A k(p).

By choice of y holds µ(M/Ay)p ≤ µ(M)p − min{1, k − ht p + 1} = r − 1 and we
infer that Apy⊗A k(p) is nonzero. Thus, y may serve as part of a basis for the free
module Mp and we conclude that (M/Ay)p is free of rank r − 1 ≥ k.

By induction there is a free submodule F ′ ⊂ M/Ay of rank r − 1 − k such
that (M/Ay)/F ′ is free of rank k at all primes of height ≤ k. Pulling back the
short exact sequence (2.1.4.1) along the inclusion F ′ ↪→ M/Ay gives a submodule
F ⊂ M that is an extension of F ′ by Ay, thus free of rank r − k, and satisfies
M/F ′ ' (M/Ay)/F ′. �
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Using the modified Bourbaki Lemma, we conclude that for a 2-dimensional noe-
therian local ring, every free resolution of an A-module of finite type breaks up as
follows.

(2.1.5) Proposition. Let (A,m) be a noetherian local ring of dimension 2 and
U = SpecA − {m}. Then for every finitely generated A-module M that is locally
free of rank r ≥ 1 on U there exists an exact diagram of finitely generated A-modules
that are locally free of constant rank on U

0

��

0

��
A⊕n−r−1

��

A⊕n−r−1

ι2
��

0 // S
ι //

��

An
ψ //

ψ2��

M // 0

0 // L
ι1 //

��

N
ψ1 //

��

M // 0

0 0

such that L|U ' detM∨|U and n ∈ N0.

Proof. Every choice of a generating set for M gives rise to a short exact se-
quence 0 −→ S −→ A⊕n −→ M −→ 0, such that S is locally free in codimension
≤ 1 of rank n − r. Therefore Lemma 2.1.4 implies that there exists a short exact
sequence 0 −→ A⊕n−r−1 −→ S

p−→ L −→ 0, such that L is locally free in codimen-
sion ≤ 1 of rank 1. Finally, the pushout of the first exact sequence by p gives the
desired commutative diagram. �

The upshot of the previous proposition is that the surjection ψ decomposes as two
surjections ψ = ψ1 ◦ψ2, such that kerψ2 is free and kerψ1 is a coherent extension of
detM∨|U . Here, the module N is not free in general, but has projective dimension
≤ 1.

(2.1.6) Definition. Let X be a noetherian scheme. We say that a coherent OX -
module N has property Fk, or is free in codimension ≤ k, if Nx is free for all x ∈ X
with dimOX,x ≤ k and if pd(Nx) ≤ 1 otherwise.

(2.1.7) Remark. If X is a Cohen-Macaulay scheme of dimension 2, then the
Auslander-Buchsbaum formula implies, that a coherent sheaf satisfies Fk if and
only if it has locally finite projective dimension and property Sk is fulfilled.

Global resolutions. Building on the ideas of Proposition 2.1.5 we seek to con-
struct a locally free resolution E �M by constructing two surjections ψ1 : N �M,
ψ2 : E � N , where N satisfies F1. These surjections arise as an extension ofM by
a modification of detM∨ respectively by an extension of N by a locally free sheaf.

(2.1.8) Proposition. Let X be a 2-dimensional, noetherian scheme, and M a
coherent OX-module that is locally free (of constant rank) outside a closed set
Z ⊂ X with codim(Z,X) = 2, and denote by F some chosen coherent extension of
detM∨|X−Z .

Then there exists an obstruction o ∈ H2(X,Hom(M,F)), whose vanishing is
necessary and sufficient for the existence of a short exact sequence of OX-modules

0 −→ L −→ N −→M −→ 0,

where
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(i) L is some coherent extension of detM∨|X−Z , possibly different from F ,

(ii) N satisfies F1.

Proof. Denote by r the rank ofM. By Proposition 2.1.5 there exists for each
z ∈ Z an extension

γz : 0 −→ Lz −→ Nz −→Mz −→ 0,

such that Lz|SpecOX,z−{z} ' detM∨|SpecOX,z−{z} and pd(Nz) ≤ 1. Then the
family Lz, z ∈ Z, and detM∨|X−Z glue to a coherent OX -module L, i.e. Lz ' Lz
and L|X−Z ' detM∨|X−Z , and the extension classes glue to a global section γ of
Ext1(M,L).

SinceHom(M,L)|X−Z ' Hom(M,detM∨)|X−Z we deduce from the hypothesis
and Lemma 1.5.7 that H2(X,Hom(M,L)) ' H2(X,Hom(M,F)). Thus we can
identify the obstruction o(γ) ∈ H2(X,Hom(M,L)) for gluing the extensions γ
with an element o ∈ H2(X,Hom(M,F)). If the obstruction vanishes, we obtain a
coherent OX -module N , which satisfies all asserted properties. �

If M has rank 1 then equation (2.1.3.1) implies that the obstruction for gluing
is an element of

H2(X,Hom(M,F)) ' H2(X, (M∨)⊗2). (2.1.8.1)

Hence, it just depends on M and not on the choice of the coherent extension of
detM∨X−Z . The following corollary describes the situation where M∨ has enough
positivity to ensure the vanishing of the whole obstruction space.

(2.1.9) Corollary. Let X be a 2-dimensional scheme that is proper over a noether-
ian ring and letM be a coherent OX-module. IfM is invertible in codimension ≤ 1
and M∨ is 1-ample, then M⊗n is a quotient of a coherent OX-module satisfying
F1 for sufficiently large n ∈ N.

We focus next on locally free resolutions of coherent sheaves that satisfy F1. If
such a resolution exists, then its first syzygy sheaf S is locally free. Conversely we
deduce by a similar argument as in the proof of 2.1.8 the following proposition.

(2.1.10) Proposition. Let X be a 2-dimensional scheme and M a coherent OX-
module satisfying F1. Then for every locally free OX-module S of constant rank
there exists an obstruction o ∈ H2(X,Hom(M,S⊕m)), for some m ∈ N, whose
vanishing is necessary and sufficient for the existence of a locally free resolution

0 −→ S⊕m −→ E −→M −→ 0.

The following corollary describes the situation, where S has enough positivity, so
that the whole obstruction space vanishes. It is an immediate consequence of the
previous proposition and equation (2.1.3.1).

(2.1.11) Corollary. Let X be a 2-dimensional scheme that is proper over a noe-
therian ring. If X has a 1-ample family of locally free OX-modules of constant
rank then every coherent OX-module satisfying F1 is a quotient of a locally free
OX-module.

(2.1.12) Problem. Proposition 2.1.10 also holds for noetherian Deligne-Mumford
stacks. However, it is not clear to the author if this is true for Lemma 2.1.8 since
its proof depends on the fact that local sections are defined on open subsets and
not just on étale neighborhoods.

(2.1.13) Remark. We are already able to prove the resolution property for an
arbitrary 2-dimensional scheme X that is proper over a field as long as there exists
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a dense open subset of regular points (which is always true if X is generically
reduced). To see this, observe that it suffices to resolve a coherent sheaf M which
is invertible up to a closed subset Z ⊂ X of finitely many points. By removing a
regular point x /∈ Z from X we get a scheme U = X − {x} that is separated and
of finite type but has cohomological dimension ≤ 1 by Lichtenbaum’s vanishing
theorem [Kle67]. In particular, all obstruction spaces for gluing local extension
classes vanish, so that we get a locally free resolution EU � M|U by Proposition
2.1.8 and 2.1.10. Since X is para-factorial near x, this map extends as E → M
with E locally free near x. Even if this is not surjective near x we can repeat this
procedure a second time for another point x′ ∈ X and adding the analog map
E ′ →M gives the desired locally free resolution E ′ ⊕ E �M.

2.2. Positive vector bundles on non-projective surfaces

Given a 2-dimensional scheme that is proper over a noetherian ring, we seek to
construct a family of locally free OX -modules, that inherits enough positivity from
ample line bundles on a Chow cover to ensure a cohomological vanishing property.
These sheaves are the candidates for the first syzygy that appeared in Proposition
2.1.10.

(2.2.1) Theorem. Let X be a 2-dimensional scheme that is proper over a noe-
therian ring. Then there exists a cohomologically 1-ample family of rank 2 vector
bundles En, n ∈ N.

The proof is given at the end of this section on page 25.

(2.2.2) Remark. The sheaves En are non-trivial in general. Otherwise the structure
sheaf is 1-ample or equivalently X is of cohomological dimension cd(X) ≤ 1 in
contradiction to cd(X) = 2 by Lichtenbaum’s vanishing theorem if the base ring is
a field [Kle67].

Observe, that 1-ampleness can be checked on proper birational covers by Propo-
sition 1.5.5.

First, we describe birational proper morphisms f : X ′ → X, where we have
sufficiently enough control about the descend of locally free sheaves. Then we
prove that we can choose among those a Chow cover f ; i.e. we can arrange that on
X ′ exists an ample line bundle. Therefore it suffices to prove the theorem under
the assumption that there exists an ample line bundle, but with the additional
condition that the family of locally free sheaves satisfies a descent condition.

Descent of vector bundles along proper birational maps. We present
first some conditions on a birational proper morphism f : X → Y of 2-dimensional
schemes which ensure that locally free OX -modules descend to locally free OY -
modules.

We call the 1-dimensional subscheme consisting of the union of all contracted
subschemes, the exceptional curve E ⊂ X, provided with the reduced subscheme
structure. The ideal sheaf AnnOY coker(OY → f∗OX) ⊂ OY is called the conductor
ideal of f and defines the branching subscheme B ⊂ Y . Its preimage by f is called
the ramification subscheme R ⊂ X.

(2.2.3) Lemma. Let f : X → Y be a proper birational morphism of 2-dimensional
noetherian schemes with exceptional curve E ⊂ X and ramification subscheme
R ⊂ X. Suppose that there exists an effective Cartier divisor D ⊂ X with
SuppD = E and OE(−D) ample.
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Then for each r ≥ 0 there is an n ≥ 1 such that every locally free OX-module of
rank r, whose restriction to nD and R is trivial, belongs to the essential image of
f∗ : LFF(Y )→ LFF(X).

Proof. In case that f is Stein, there is no ramification, hence the statement
reduces to Proposition 1.2 of [SV04]. If f is finite with schematically dense image,
the exceptional curve is empty and the assertion follows from Theorem A.1. If f is a
nilimmersion (a closed surjective immersion), the support of its defining ideal sheaf
has dimension at most 1 as f is birational. Hence every locally free OX -module is
isomorphic to the pullback of a locally free OY -module by [Ill05, 5.3].

For the general case we factor f over its schematic image and apply Stein factor-
ization to get a composition f = uvw : X w−→ X ′

v−→ Y0
u
↪→ Y , where w is a proper

Stein map, v is finite with schematically dense image and u is a nilimmersion. �

A projective auxiliary surface. Next we construct for a given 2-dimensional
scheme an auxiliary projective model that carries an effective Cartier divisor which
is anti-ample on the exceptional curve.

We are going to use the concept of generalized divisors described in [Har94, §2].
Therefore we impose condition S1 on X so that the sheaf KX of total quotient
rings of OX is well behaved (c.f. [Har94, Prop. 2.1]). Note that this property
is stable under blowups as effective Cartier divisors carry no associated points of
the surrounding subscheme and that the inverse image of Cartier divisors is well
defined [EGA IV.4, 21.4.5(ii)].

(2.2.4) Lemma. Let X be an 2-dimensional scheme, that satisfies S1 and is sep-
arated and of finite type over a noetherian ring. Then there is a proper birational
morphism f : X ′ → X with schematically dense image, such that its domain X ′

carries an ample line bundle, satisfies S1 and the exceptional subscheme E ⊂ X ′

supports an effective Cartier divisor D ⊂ X ′ such that the restriction OE(−D) is
ample.

Proof. Denote the base ring by A. Choose a dense affine open subscheme
U ⊂ X. Then U is schematically dense and codim(X − U,X) = 1 because X has
affine diagonal over Z. By Chow’s Lemma (in this form due to Nagata, c.f. [Con07,
2.6]) there exists an ideal sheaf IZ ⊂ OX defining a closed subscheme Z ⊂ X,
whose support is contained in X−U , such that the blow-up f ′ : X ′ → X of X with
center Z gives a scheme X ′ that is projective over A.

By the blow-up construction the inverse image ideal I ′ := IS · OX′ ⊂ OX′ is
invertible and hence defines an effective Cartier divisor C ′ ⊂ X ′ which contains the
exceptional curve E′ ⊂ X ′ and I ′ = OX′(−C ′) is f ′-ample. If C ′ is supported on
E′, then the proof is already complete since OX′(−C ′) is ample on the fibers and
hence on E′.

In general, C ′ is supported on a larger subset. Let C ′v ⊂ C ′ (respectively C ′h ⊂ C ′)
be the closed subsets of curves that are contracted (respectively mapped to curves).
Then C ′ = C ′v ∪ C ′h. A priori C ′v and C ′h are not Cartier divisors. To remedy this
situation we insert a further blow-up. Denote by I ′v ⊂ OX′ respectively I ′h ⊂ OX′
their defining ideals, and let f ′′ : X ′′ → X ′ be the blow-up of X ′ with center I ′v+I ′h.

It follows that the strict transforms C ′′v , C ′′h of C ′v respectively C ′h are separated
by the effective Cartier divisor T ′′ given by the ideal OX′′(−T ′′) := (I ′v +I ′h) ·OX′′
(c.f. [Har77, Exercise II.7.12]). Note that T ′′ is f ′′-exceptional since the center
I ′v + I ′h defines a 0-dimensional subscheme of X ′.

The pullback f ′′
∗OX′(−C ′) = I ′ · OX′′ =: OX′′(−C ′′) defines now an effective

Cartier divisor C ′′ such that the horizontal components of C ′′ − T ′′ are disjoint to
the vertical ones relative to f := f ′ ◦ f ′′. It follows that C ′′ − T ′′ = F ′′h + F ′′v is the
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disjoint sum of two Cartier divisors, a horizontal one F ′′h and a vertical one F ′′v . In
particular, holds OX′′(C ′′ − T ′′) = OX′′(F ′′v )⊗OX′′(F ′′h ).

The upshot of this argumentation is that the f -exceptional components E′′ carry
the structure of an effective Cartier divisor D′′ := F ′′v +2T ′′ and it remains to show
that OE′′(−D′′) is ample.

First, note that OX′′(−T ′′) is f ′′-ample and OX′(−C ′) is f ′-ample by the con-
struction of blow-ups, thus

OX′′(−T ′′)⊗ f ′′
∗OX′(−C ′) ' OX′′(−T ′′ − C ′′) ' OX′′(−D′′ − F ′′h )

is f -ample. Let be E′′ =
⋃
iE
′′
i the disjoint union of f -exceptional fibers. Then

OE′′i (−D′′ − F ′′h ) is ample for each i and hence OE′′(−D′′ − F ′′h ) is ample. Now
F ′′h has no common components with E′′, so OE′′(F ′′h ) has non-negative degree.
Therefore OE′′(−D′′) = OE′′(−D′′−F ′′h )⊗OE′′(F ′′h ) is an ample OE′′ -module. �

The projective case. We seek to prove Theorem 2.2.1 under the condition
that X possesses an ample line bundle L and satisfies S1.

(2.2.5) Lemma. Let Y be a scheme of dimension 1 and L an ample OY -module.
Then for every r ∈ N and n� 0 there exists a short exact sequence

0 −→ O⊕rY −→ (Ln)⊕r −→ OD −→ 0, (2.2.5.1)

where D ⊂ Y is an effective Cartier divisor with OY (D) ' Lnr.

Proof. This follows by using sufficiently many global sections of L that are
nonzero at the embedded points of Y . �

(2.2.6) Proposition. Let X be an r-dimensional scheme that is proper over a
noetherian ring, satisfies S1 and has an ample OX-module L. Then for every
1-dimensional closed subscheme Y ⊂ X and n � 0 there exists a locally free OX-
module E of rank r, whose restriction E|Y is trivial and that fits in a short exact
sequence

0→ E → (Ln)⊕r → Lm|H → 0, (2.2.6.1)
where m ≥ n and H ⊂ X is an effective Cartier divisor satisfying OX(H) = Lrn.

Proof. By enlarging Y we may assume that Y meets every irreducible com-
ponent of X. Since X is proper over some noetherian base ring, satisfies S1 and L
is ample, it follows that every regular section of Lnr|Y lifts to a regular section of
Lnr for sufficiently large n ∈ N.

By replacing L with an appropriate multiple we may assume that n = 1. Let

0→ O⊕rY → L
⊕r|Y

ϕ−→ OD → 0

be as in Lemma 2.2.5, where D ⊂ Y is an effective Cartier divisor defined by
a regular section s ∈ H0(Y,Lr|Y ). We seek to extend ϕ to a surjective map of
OX -modules.

First, observe that s lifts to a regular section of Lr, so that D extends to
an effective Cartier divisor H ⊂ X with OX(H) ' Lr and OD ' OH ⊗ OY .
Moreover, D is supported on points so that for each a ∈ N we can identify
OD ' La|D ' La ⊗ OH ⊗ OY using that L is invertible. This shows that for
each a ∈ N the sheaf La|H is a coherent extension of the codomain of ϕ.

Next, we seek to construct a surjection Φ: L⊕r � La|H that extends ϕ. For that
consider the decomposition ϕ =

∑r
i=1 ϕi with maps ϕi : L|Y → La|H∩Y . We are

going to lift the ϕi to maps Φi : L → La successively, so that the cokernel of
∑s
i=1 Φi

cuts down to zero for s = r. The subtle point is that we have to find a common
a that works for all i. Therefore we consider for each i a family of extensions
Φi,m : L → Lai·m|H for an appropriate increasing sequence ai ∈ N, m ∈ N.
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Precisely, since L is ample and X is proper over A, every map ψ : L|Y → La|H∩Y
extends to a map Ψ: L → La|H for a � 0. Moreover, we can achieve that Ψ is
non-zero over any given finite subset of points Z ⊂ H and that there is a section
s : OH → La|H that is equal to 1 over D∪Z, by taking larger a. The upshot is that
for all m ≥ 2 the composition s⊗m−1 ◦ Ψ defines a family of maps Ψm : L → Lam
that extend ψ and have stable cokernel support, i.e. we have equality of closed
subsets

Supp coker Ψm = Supp coker Ψm+1 = · · ·

and these are disjoint to D ∪ Z.
Using this we lift each ϕi, i = 1, . . . , s, by induction to a family of maps

Φi,m : L → Laim, where ai = ai−1bi for some bi ≥ 1, a0 := 1, so that S(Φi,m)
is disjoint to the generic points of S(Φ1,m) ∩ · · · ∩ S(Φi−1,m) for all m ≥ 2. It
follows that S(Φ1,m) ∩ · · · ∩ S(Φr,m) = ∅ because dim(H) = r − 1.

Now let mr := 2 and mi := bi+1mi+1, i = r − 1, . . . , 1. Then n := aimi ist
constant for all i = 1, . . . , r. It follows that Φ :=

∑r
i=1 Φi,mi : L⊕r � Ln|H is the

desired surjective extension of ϕ.
In particular E := ker Φ fits in a short exact sequence

0→ E → L⊕r Φ−→ Ln|H → 0 (2.2.6.2)

and we conclude that E is locally free of rank 2 because pd(Ln|H) = 1. If we apply
· ⊗OY , we obtain the previous short exact sequence back since E|Y has no sections
supported on H ∩ Y = D. �

(2.2.7) Corollary. Let X be an r-dimensional scheme that is projective over a
noetherian ring and satisfies S1. Then for every subscheme Y ⊂ X with dim(Y ) ≤ 1
there exists a family of locally free OX-modules En, n ∈ N, of rank r with the
following properties:

(i) For each n ∈ N holds En|Y ' O⊕rY .

(ii) For every coherent OX-module F and n � 0 holds Hi(X,F ⊗ En) = 0
for i ≥ 2; i.e. (En) is 1-ample.

Proof. Take for En, n ≥ n0 � 0, the locally free sheaf constructed in Pro-
position 2.2.6. By renumbering we may assume that n0 = 1. Then property (i) is
clear and (ii) follows from tensoring F with the exact sequence (2.2.6.1), applying
Γ(X, ·) and invoking Serre’s vanishing theorem. �

If X is 2-dimensional and projective, then the corollary above specializes to
Theorem 2.2.1. By the previous reduction arguments we can remove the projectivity
assumption to prove the general case.

Proof of Theorem 2.2.1. If X ′ → X denotes the S1-ization of X, then
every locally free OX′ -module descends to X by Lemma 2.2.3; thus we may assume
that X has no embedded points using Theorem 1.5.2.

Then by Lemma 2.2.4 there exists a proper birational map f : X ′ → X with
X ′ projective and satisfying S1. Let Y ′ ⊂ X ′ be the union of the ramification
subscheme and the exceptional fiber. By Corollary 2.2.7 for each m ∈ N there
exists a cohomologically 1-ample family of vector bundles (E ′n) on X ′ that is trivial
on mY ′. Taking m sufficiently large we can achieve that the family (E ′n) descends
to a family of vector bundles (En) on X by Lemma 2.2.3. Then by Theorem 1.5.2
we conclude that (En) is 1-ample. �
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2.3. Proof of the resolution property

Finally, we collect the results of the preceding sections and deduce our main
theorem.

Proof of Theorem 2.0.1. By Proposition 1.4.13 there exists an almost am-
ple family of coherent sheaves Fi, i ∈ I. It suffices therefore to find for each i ∈ N
and n� 0 a locally free resolution E � F⊗ni .

Since F∨i is 1-ample by Proposition 1.5.9, we deduce from Proposition 2.1.9 the
existence of such a resolution with E not locally free but satisfying F1. However,
we can resolve E by an algebraic vector bundle E ′ using Corollary 2.1.11 because
there exists a 1-ample family of locally free OX -modules of constant rank due to
Theorem 2.2.1. �

We finish now the verification of the resolution property for surfaces and turn to
a more general setting in order to study the geometric significance of the resolution
property.
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CHAPTER 3

Generating subcategories of quasicoherent sheaves

We shall investigate generators in the category of quasicoherent sheaves of mod-
ules on an algebraic stack and their variation with respect to morphisms of algebraic
stacks. In the following chapter we specialize to locally free generators to study the
resolution property of algebraic stacks. However, there is no further complexity if
we take arbitrary finitely presented sheaves into account. In fact, the existence of
a set of finitely presented generators is true in broad generality.

Also, we introduce the notion of a relatively generating family of finitely presented
quasicoherent sheaves. This meets the requirements of all intended applications
with geometric significance. Another natural restriction we make, is the exclusive
consideration of quasicompact and quasiseparated morphisms, as their associated
pushforward functor of sheaves of modules preserves quasicoherence.

This approach was already successively used by M. Olsson and J. Starr [OS03]
and Kresch [Kre09] to study locally free generating sheaves of Deligne-Mumford
stacks relative to their coarse moduli spaces, or in more down-to-earth terms by
Thomason [Tho87] to study the equivariant resolution property. We understand our
treatment of relatively generating families as a natural generalization to arbitrary
algebraic stacks.

It is no surprise that generating families satisfy the analogous permanence prop-
erties of relatively ample line bundles. However, our proofs are formal in nature
and based on adjoint functors. In fact, we will derive all properties from the flat
base change theorem and from the left-cancellation property of injective set maps.
Most of the results of this section are in this generality even new for schemes.

After a brief repetition of quasicoherent sheaves in section 3.1, and the definitions
of generating families and subcategories in section 3.2, we investigate finitely pre-
sented generators of quasicoherent sheaves in section 3.3. The existence thereof is
equivalent to the completeness property whose investigation was initiated by Rydh
[Ryd10b] while studying noetherian approximation for algebraic stacks. We con-
tinue in section 3.4 the discussion by introducing a relative version of finitely pre-
sented generators and take the time to verify the expected permanence properties
with respect to composition of morphisms, base change and flat descent.

In the final section 3.5 we show that generating families are preserved by finite,
flat coverings (3.5.1) and also discuss the usage of arbitrary affine flat coverings.
For example, we verify the flat resolution property for an algebraic stack with affine
diagonal; that is, every quasicoherent sheaf is a quotient of a flat quasicoherent
sheaf on an algebraic stack with affine diagonal (3.5.5). However, there is no reason
to hope that these flat sheaves are finitely presented on algebraic stacks with non-
quasifinite diagonal in general, so that we cannot derive a proof of the resolution
property without any additional assumption (see 4.3.8 for a counterexample).

29
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3.1. The category of quasicoherent sheaves

We briefly recall some definitions and properties of quasicoherent sheaves of mod-
ules on an algebraic stack X.

There are several ringed topoi associated to X: three big topoi XZar, Xfppf, XÉT,
the small lisse-étale topos Xlis-ét (developed in [LMB00] and corrected in [Ols07])
and the small étale topos Xét. However, unless X is a Deligne-Mumford stack
(for example an algebraic space or a scheme), the latter might be empty. In spite
of this diversity, there are natural equivalences of the category of quasicoherent
OX -modules with respect to XZar, Xfppf, XÉT, Xlis-ét, respectively to Xét if X is
Deligne-Mumford [Lie08, A.1]. If X is a scheme, then this equivalence extends to
the small Zariski-Topos Xzar. We will always consider an algebraic stack with its
lisse-étale topos, but by abuse of notation we frequently switch to the small étale
topos (resp. Zariski-topos) if X is a Deligne-Mumford stack (resp. a scheme).

Recall that the category Mod(OX) is an abelian tensor category; i.e. it is endowed
with a tensor product ⊗OX that is symmetric, with an identity element OX , and
with an internal bi-functor HomOX (·, ·), which is pointwise right adjoint to the
tensor product. These data are supposed to satisfy some compatibility conditions.

The left tensor functor E⊗OX : Mod(X) → Mod(X) preserves quasicoherence
for every quasicoherent OX -module E so that the abelian full subcategory
QCoh(X) ⊂ Mod(OX) inherits the tensor structure from Mod(OX).

If E is of finite presentation, then also HomOX (E , ·) : Mod(OX) → Mod(OX)
preserves quasicoherence and hence induces by restriction a right-adjoint of
E ⊗OX · : QCoh(X) → QCoh(X). If E is not finitely presented, then there is
still a way to define such a right adjoint by composing HomOX (E , ·) with the
quasi-coherator QX . The latter is the right adjoint of the natural embedding
QCoh(X) → Mod(X), which exists due to the special adjoint functor theorem as
long as as QCoh(X) has a set of generators (see [TT90, B.12] or [SGA 6, II.3]).
This condition is true for noetherian stacks or more generally for those satisfying
the completeness property (the proof of [SGA 6, II.3.2] translates literally using
the definitions of §3.3.2), but the general case is unclear (for the author). A more
serious drawback is that QX does not commute with localizations. Therefore we
stick to finitely presented sheaves in this context.

Given a morphisms f : X → Y of algebraic stacks, there are two induced func-
tors f∗ : Mod(OX) → Mod(OY ) and f∗ : Mod(OY ) → Mod(OX) which define an
adjoint pair (f∗, f∗). Recall, that the pullback functor f∗ : Mod(OY )→ Mod(OX)
preserves the tensor structures, i.e. there exists isomorphisms f∗OX ' OY and
f∗(· ⊗OY ·) ' f∗(·) ⊗OY f∗(·) that satisfy suitable coherence conditions. If f
is quasicompact and quasiseparated, then f∗ and f∗ restrict to an adjoint pair
(f∗, f∗) of functors between quasicoherent sheaves f∗ : QCoh(X)→ QCoh(Y ) and
f∗ : QCoh(Y )→ QCoh(X) (we refer the reader to [Ols07, 6.5] for more details).

3.2. Generating subcategories

For the readers convenience we briefly recall the classical notion of a generator
in an arbitrary category before we specialize to our situation in section 3.3.

Let C be a category and G a full subcategory. Recall that G is called a generating
subcategory for C if for every pair of morphisms f, g : Y → X in C, such that for all
objects Z of G and maps p : Z → Y in G holds fp = gp, follows f = g already1. We
call a set of objects G of C a generating set of objects, or slightly abusive a generating

1This definition of a generating subcategory slightly differs from the one given in [SGA 4.1,
I.7.1], where it is called a by epimorphisms generating subcategory.
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family of objects, if the full subcategory it spans is a generating subcategory. Let
us give a list of equivalent definitions:

(3.2.1) Lemma. Let C be a category and G a set of objects. Then the following
statements are equivalent:

(i) G is a generating set for C.

(ii) The functor γ∗ : C→ SetG, X → (Hom(Y,X))Y ∈G is faithful.

(iii) Let G be the full subcategory of C, spanned by G. Then the restricted
Yoneda functor C→ PrSh(G), X → Hom(·, X)|Gopp is faithful2.

If C is cocomplete, we can enlarge the list of equivalent conditions as follows:

(iv) For every object X of C the evaluation map

εX :
∐
Y ∈G

∐
f∈Hom(Y,X)

Y → X (3.2.1.1)

is an epimorphism.

(v) For every object X of C, there exists a family of objects Yi, i ∈ I, in G
and an epimorphism ϕ :

∐
i∈I Yi → X.

The proof is formal and left to the reader.

In general, the generating subcategories G, we are interested in, are not closed
under infinite coproducts, as one obviously looses finiteness properties. Therefore
it makes sense to keep the coproduct in (v). However, all coproducts will exist in
C in our applications, so that we are allowed to work with a canonical morphism
as in (iv) instead of the one in (v), whose choice depends on X.

It turns out that the functorial approach in (ii) is the right one to compare gen-
erating sets between different categories. In fact, the cocompleteness of C ensures,
that γ∗ has a left-adjoint given by

γ∗ : SetG → C, (AX)X∈G→
∐
X∈G

∐
a∈AX

X.

The evaluation map ε becomes then the counit of the adjunction (γ∗, γ∗). The delta
functions (δX)X∈G form a generating set for SetG and are mapped by γ to G up
to isomorphism.

The upshot is that we can identify a family G of objects in C by an adjoint pair
(γ∗, γ∗), and G is generating if and only if γ∗ is faithful. The collection of faithful
functors is closed under composition and satisfies the left-cancellation property.
Those that have a left adjoint are characterized as follows:

(3.2.2) Proposition. ([Par70, 2.12.3]) Let f∗ : C → C′, f∗ : C′ → C be functors
such that f∗ is a left adjoint of f∗, and denote by ε : f∗f∗ ⇒ idC the counit. Then
the following statements are equivalent:

(i) f∗ is faithful.

(ii) f∗ reflects epimorphisms.

(iii) If ψ : Y → f∗(X) is an epimorphism, then ψ] : f∗(Y ) → X is also an
epimorphism, where ψ] = εX ◦ f∗(ψ).

(iv) f∗ preserves generating sets.

(v) For each object X of C, the counit εX : f∗f∗(X)→ X is an epimorphism.

2We denote by PrSh(·) the category of presheaves on a given category.
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The codomain of the functor in Lemma 3.2.1.(ii) still depends on the generating
set. However, if we want to compare generating sets of two given categories (e.g.
QCoh(X) and QCoh(Y )), we need a more general definition:

(3.2.3) Definition. A family of functors (fi : C→ D)i∈I is called faithful if for any
objects X,Y of C the map HomC(X,Y ) →

∏
i∈I HomD(fi(X), fi(Y )) is injective,

or equivalently, if the induced functor C→ DI is faithful. Explicitly, for every pair
s1 /= s2 of different arrows : X → Y in C there exists an element i ∈ I such that
fi(s1) /= fi(s2) are different arrows fi(X)→ fi(Y ) in D.

Faithful families will play a crucial role in the forthcoming argumentations. We
adopted this point of view because is is a natural generalization of the geometrical
fact that families of hyperplane sections in the projective space Pn separate arbi-
trary pairs of points or equivalently that OPn(−d), d ∈ N, is a generating family
for QCoh(Pn).

(3.2.4) Remark. The collection of families of functors with fixed source and tar-
get is endowed with a natural composition. Namely, for two families of func-
tors (fi : C → D)i∈I and (gj : D → E)i∈I , we define the composed family as
(gj ◦ fj : C → E)(i,j)∈I×J . A straightforward formal calculation shows that this
composition inherits the left-cancellation property for faithful families of functors
from the one of faithful functors.

Proposition 3.2.2 generalizes to faithful sets of functors as follows:

(3.2.5) Proposition. Let (fi)i∈I be a family of adjoint functors fi∗ : C → C′,
fi
∗ : C′ → C with C cocomplete. Then the following conditions are equivalent:

(i) (fi)i∈I is a faithful family of functors.

(ii) (fi)i∈I reflects epimorphisms. That is, if u : X → Y is a morphisms in
C, such that each fi∗(u) is an epimorphism, then u is an epimorphism.

(iii) If (ψfi : Y ′i � fi∗(X))i∈I is a family of epimorphisms for an abject X in
C′, then

∐
i∈I fi

∗(Y ′i )→ X is an epimorphism in C.

(iv) If G′ is a generating set for C′, then the family (fi∗(Y ′))i∈I, Y ′∈G′ defines
a generating set for C.

(v) For each object X in C, the coproduct of counits
∐
i∈I fi

∗fi∗(X)→ X is
an epimorphism.

3.3. Globally generating families

3.3.1. Finitely presented generators. We apply the previous categorical
definitions of generating families to introduce the definition of a generating family
of finitely presented (and hence quasicoherent) OX -modules for an algebraic stack.

(3.3.1) Convention. A family of quasicoherent OX -modules (Ei)i∈I on an algebraic
stack X is denoted by EI to keep the notation streamlined. Also, every algebraic
operation that applies to an OX -module, translates to families of OX -modules by
pointwise application. For example, if f : Y → X is a morphism of algebraic stacks,
then f∗EI denotes the family (f∗Ei)i∈I .

Before we give a list of equivalent definitions, let us introduce some notation.

(3.3.2) Definition. For a family of OX -modules EI , we call the induced family
E+
I of all finite direct sums

⊕
j∈J E

⊕nj
i , J ⊆ I, nj ∈ N, the additive closure of EI .

Clearly holds Ei ⊆ E+
I as sets and if Ei ⊇ E+

I , then we say that EI is additively
closed .
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(3.3.3) Lemma. Let X be a quasicompact and quasiseparated algebraic stack and
EI a family of finitely presented OX-modules. Then the following assertions are
equivalent:

(i) The family of functors

Hom(Ei, ·) : QCoh(X)→ ModZ, (3.3.3.1)

where i runs over all elements in I, is a faithful family.

(ii) For every quasicoherent OX-module M, the canonical evaluation map is
an epimorphism ⊕

i∈I

⊕
ϕ∈Hom(Ei,M)

Ei � M. (3.3.3.2)

(iii) For every quasicoherent OX-module M, there exists a subset J ⊆ I, a
family of positive integers n : J → N0 and an epimorphism⊕

i∈J
E⊕nii � M. (3.3.3.3)

(iv) For every quasicoherent OX-module M, there exists a filtered direct sys-
tem of sheaves Eα in the additive closure E+

I , and an epimorphism

lim−→
α∈A
Eα � M. (3.3.3.4)

(v) Every quasicoherent OX-module is the direct limit of quasicoherent OX-
submodules of finite type, and for every quasicoherent OX-module M of
finite type there exists an epimorphism

E � M, (3.3.3.5)

where E is the additive closure E+
I .

Proof. The equivalence of (i), (ii) and (iii) is formal. (iii) ⇒ (iv) is trivial
and (iv) ⇒ (iii) holds because an inductive limit is a quotient of the direct sum of
its members. Finally, (v) ⇔ (iii) is straightforward. �

(3.3.4) Definition. Let X be a quasicompact and quasiseparated algebraic stack.
A family EI of quasicoherentOX -modules of finite presentation is called a generating
family (or subcategory) for X, if one of the equivalent assertions (i)-(v) of Lemma
3.3.3 is satisfied. Equivalently, if the full subcategory of QCoh(X), spanned by EI ,
is a generating subcategory for QCoh(X) in the sense of section 3.2.

(3.3.5) Definition. By replacing QCoh(X) in Definition 3.3.4 with a subcategory
C (e.g. all flat, or finitely presented, or finite-type quasicoherent OX -modules), we
say that EI is a generating family for C

Every algebraic stack or scheme is patched together by affine schemes in a suitable
topology. However, the existence of a generating family is a global property of the
whole stack. In case that one faces an affine scheme, the structure of a generating
family is simple, as expected.

(3.3.6) Example. Let X be an affine scheme. Then OX is a generator for X.
Furthermore, it is an projective object in QCoh(X). So any family of quasicoher-
ent OX -modules of finite presentation is generating if and only if OX is a direct
summand of some member Ei by 3.3.3.(v).

The local structure of an algebraic stack is also connected to the linear repre-
sentations of the stabilizer groups. However, we postpone the discussion of the
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generators of those until we have set up the framework of relatively generating
families in 3.4.

As this work specializes later on to the study of finite-type locally free generators
we provide the following definition.

(3.3.7) Definition. A quasicompact and quasiseparated algebraic stack X has the
resolution property (or enough locally free sheaves), if the subcategory of locally free
OX -modules of finite type is a generating subcategory for QCoh(X).

However, before we deal with this question, we remind the reader that even the
existence of an arbitrary generating family (of finitely presented sheaves) lacks a
complete treatment. It is not known for an arbitrary quasicompact and quasisep-
arated algebraic stack X, unless X is noetherian, or more generally, if X satisfies
the completeness property, as seen below 3.3.9.

3.3.2. Completeness property. — D. Rydh introduced in [Ryd10b] the
completeness property for quasicompact and quasiseparated algebraic stacks, in
order to investigate the usual completeness-, presentation- and extension properties
of quasicoherent OX -modules and quasicoherent (integral) OX -algebras, which
are classically know to hold for all quasicompact and quasiseparated schemes
[EGA I2nd] or for noetherian stacks [LMB00].

For that, consider the following properties of QCoh(X) for an algebraic stack X:
Completeness

(C1) Every quasicoherent OX -module is the direct limit of quasicoherent OX -
submodules of finite type.

(C2) Every quasicoherent OX -module is a filtered direct limit of quasicoherent
OX -modules of finite presentation.

(C3) Every quasicoherent OX -module is a quotient of a filtered direct limit of
quasicoherent OX -modules of finite presentation.

Presentation — Let F be a quasicoherent OX -module of finite type.
(P1) There exists a finitely presented quasicoherent OX -module P and an

epimorphism P � F .

(P2) F = lim−→λ
Fλ for a filtered direct system of finitely presented quasicoher-

ent OX -modules with surjective bonding maps.
Extension — Let U ⊆ X be a quasicompact open subset.

(E1) If G is a quasicoherent OU -module of finite type (resp. finite presenta-
tion), then there exists a quasicoherent OX -moduleH of finite type (resp.
finite presentation), such that H|U = G.

(E2) If F is a quasicoherent OX -module and u : G → F|U a homomorphism
of quasicoherent OU -modules with G of finite type (resp. of finite pre-
sentation), then there exists a quasicoherent OX -module H of finite type
(resp. of finite presentation) and a map v : H → F extending G and u.

(3.3.8) Definition (Completeness property). A quasicompact and quasiseparated
algebraic stack X has the completeness property if all properties above are satis-
fied. By [Ryd10b, 4.3] condition (C3) already determines the other ones and the
analogous properties for the categories of quasicoherent OX -algebras respectively
quasicoherent integral OX -algebras are also fulfilled.

Using the equivalence of 3.3.3.(iii) and (C3) we may regard the completeness
property as a natural hypothesis which prevents us to study the empty set.
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(3.3.9) Proposition. A quasicompact and quasiseparated algebraic stack X has
the completeness property if and only if there exists a generating family of finitely
presented OX-modules.

Proof. The subcategory of all finitely presented OX -modules is additively
closed. So (C3) and 3.3.3.(iv) are equivalent. �

(3.3.10) Remark. The completeness property holds for a vast class of algebraic
stacks: Quasicompact and quasiseparated schemes [EGA I, §6.9], noetherian al-
gebraic stacks [LMB00, 15.4], quasicompact and quasiseparated Deligne-Mumford
stacks [Ryd10b, 4.11] or more generally all stacks of approximation type ([Ryd10b,
4.12]).

3.3.3. Embeddings of affine maps. We finish the discussion of global gen-
erators with an application to the embeddability of affine maps.

Recall that every affine scheme Y = SpecA that is of finite type, say over a field
k, can be embedded in an affine space Ank for sufficiently large n ∈ N, by choosing a
finite set of generators for the k-algebra A. Clearly, if one choses for k an arbitrary
ring, the same proof applies.

We show that this situation even translates to the general setting that the base
is an arbitrary algebraic stack X that has a generating family. Even more, this
factorization principle characterizes generating families.

(3.3.11) Theorem. Let X be a quasicompact and quasiseparated algebraic stack,
and let EI be a family of finitely presented OX-modules that is closed under finite
tensor products and finite direct sums. Then the following are equivalent:

(i) EI is a generating family for X.

(ii) For every affine morphism f : Y → X there exists a sheaf E =
⊕

i∈J Ei,
for some subset J ⊂ I, and a factorization

Y
f

��??
??

??
??

� � i // V(E)

p
}}zz

zz
zz

zz

X

such that i is a closed immersion. If f is of finite type, then I can be
chosen to be finite.

Proof. Recall that, Sym is a left adjoint to the forgetful functor F from
the category of quasicoherent OX -algebras in the category of quasicoherent OX -
modules. In particular, Sym preserves epimorphisms and inductive limits.

First, assume that EI is generating. Since f is affine, f∗OY is a quasico-
herent OX -module, so there exists a direct sum E =

⊕
j∈J Ej and surjection

ϕ : E � f∗OY of quasicoherent OX -modules. Then Sym(ϕ) : Sym E � f∗OY is a
surjection of quasicoherent OX -algebras that corresponds to a closed immersion
Y ↪→ SpecX Sym E . If f is of finite type, then f∗OY is a locally finitely generated
OX -algebra. Since X is quasicompact, we can chose a finite subset K ⊂ J such
that the restriction of ϕ to the direct summands indexed by K still induces a
surjection Sym(

⊕
i∈K Ei) � f∗OY of quasicoherent OX -algebras.

Conversely, let F be a quasicoherent OX -module. Applying the factorization on
SpecX(SymF)→ X we obtain a surjective epimorphism Sym(

⊕
i∈I Ei) � Sym(F)

of quasicoherent OX -algebras which is also an epimorphism of quasicoherent
OX -modules. The canonical homomorphism of quasicoherent OX -modules
F → Sym(F) is split injective, thus has a section. Then the composition gives a
surjection Sym(

⊕
i∈I Ei) � F .
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To see that the domain is a direct sum of tensor products, let A be the set of
finite subsets of I. Then

⊕
i∈I Ei is the direct limit lim−→α∈A Eα for Eα =

⊕
i∈α Ei

and we get a chain of surjections.⊕
α

⊕
n≥0

E⊗nα � lim−→
α

⊕
n≥0

E⊗nα � lim−→
α

Sym Eα
∼−→ Sym(lim−→

α

Eα)

This shows that EI is a generating family, as required. �

In particular, this yields an embedding criterion characterizing the resolution
property of the base:

(3.3.12) Corollary. A noetherian algebraic stack S has the resolution property if
and only if every affine morphism X → S of finite type factors over S by a closed
embedding into some vector bundle V(E)→ S.

3.4. Relatively generating families

We introduce the notion of relative generating families of finitely presented qua-
sicoherent sheaves of modules for a quasicompact and quasiseparated morphism of
algebraic stacks. Their permanence properties are discussed subsequently in §3.4.1.

(3.4.1) Lemma. Let f : X → Y be a quasicompact and quasiseparated morphism
of algebraic stacks and EI = (Ei)i∈I a family of quasicoherent OX-modules of finite
presentation. Then the following are equivalent:

(i) For each quasicoherent OX-moduleM, the sum of evaluation maps below
is an epimorphism in QCoh(X):

evalEI ,f (M) :
⊕
i

Ei ⊗OX f∗f∗HomOX (Ei,M) � M. (3.4.1.1)

(ii) Let i run over all elements in I. Then the following family of functors is
faithful:

f∗HomOX (Ei, ·) : QCoh(X)→ QCoh(Y ). (3.4.1.2)

(3.4.2) Definition. Let f : X → Y be a quasicompact and quasiseparated mor-
phism of algebraic stacks. A family EI = (Ei)i∈I of finitely presented OX -modules
is called an weakly f -generating family for X if one of the equivalent conditions in
3.4.1 is satisfied.

We call EI f -generating if for every morphism of algebraic stacks Y ′ → Y the
restricted family EI |Y ′×YX is weakly generating relative to fY ′ : Y ′×Y X → Y ′ (we
will see in 3.4.17, that we can equivalently restrict to affine schemes Y ′). Moreover,
these notions coincide if the target Y has quasiaffine diagonal by Proposition 3.4.16.

(3.4.3) Remark. —

(i) Definition 3.4.2 depends only on the 2-isomorphism class of f because
2-isomorphisms of functors preserve and reflect faithfulness.

(ii) To verify condition 3.4.2.(ii), we are allowed to compose the family of
functors in question with an arbitrary faithful functor QCoh(X)→ C or
even an arbitrary family of faithful functors by 3.2.4.

(iii) For instance, if Y = SpecA is representable by an affine scheme (e.g. f
is the canonical morphism with target Spec Z), then Definition 3.4.2 mu-
tates in the definition of a (global) generating family for X (3.3.4) using
that the forgetful functor QCoh(SpecA) ' ModA → ModZ is faithful.



3.4. RELATIVELY GENERATING FAMILIES 37

(iv) If EI consists entirely of locally free sheaves then EI then the evaluation
map (3.4.1.2) can be written as

⊕
i∈I Ei ⊗OX f∗f∗(E∨i ⊗OX M) �M.

Ample line bundles form the prominent example, we seek to generalize:

(3.4.4) Example (Ample line bundles). Let f : X → Y be a quasicompact and
quasiseparated morphism of schemes.

If an invertible sheaf L is f -ample then (L−n)n∈N is an f -generating family and
f is separated, and the converse also holds. More generally, a family of invertible
sheaves (Li)i∈I is f -ample if and only if {L−ni |n ∈ N, i ∈ I} is an f -generating
family. It follows that f has affine diagonal but is not necessarily separated.

An important special case, is that OX is f -ample if and only if it is f -generating,
i.e. f∗ : QCoh(X)→ QCoh(Y ) is faithful. We will study this case more intensively
in section 5.

3.4.1. Permanence properties. This section is devoted to the verification
of the expected permanence properties of (weakly) relatively generating sheaves,
that were defined in 3.4.2.

3.4.1.1. Local on the base. Our first task is to show that for a family of quasi-
coherent sheaves, the property of being (weakly) generating is local on the base for
fpqc coverings.

(3.4.5) Proposition (fpqc-local on the base). Let S be an algebraic stack, let
f : X → Y be an S-morphism of algebraic S-stacks and EI a family of quasicoherent
OX-modules. Given a faithfully flat family (sα : Sα → S), we obtain for each α a
2-cartesian base change square of algebraic stacks

Xα
vα //

fα

��
�

X

f

��
Yα

uα // Y

(3.4.5.1)

Suppose that each vα
∗EI is (weakly) fα-generating, that f is quasicompact and

quasiseparated and that each Ei is finitely presented; the latter two conditions are
automatic if (uα) is a fpqc-covering. Then EI is (weakly) f -generating.

Proof. It suffices to prove the case of weakly generating sheaves. Consider
for each α and i the following diagram:

QCoh(X)
vα
∗

//

HomOX (Ei,·)
��

QCoh(Xα)

HomOXα (vα
∗Ei,·)

��
QCoh(X)

vα
∗

//

f∗

��

QCoh(Xα)

fα∗
��

QCoh(Y )
uα
∗

// QCoh(Yα)

The upper square is 2-commutative since Ei and vα
∗Ei are of finite presentation

and vα
∗ commutes with the internal hom’s by flatness. The lower square is 2-

commutative by flat base change [LMB00, 13.1.9]. Thus, the whole diagram is
2-commutative.

Since (vα) is a faithfully flat family, we infer that (v∗α : QCoh(X)→ QCoh(Xα))
is a faithful family of functors. Therefore the statement is a consequence of the
stability under composition and the left cancellation property for faithful families
of functors (see Remark 3.2.4). �
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As an intermediate consequence we conclude that all quasiaffine morphism
have relatively generating structure sheaf. This includes the collection of all
morphisms that are affine, finite, quasi-finite separated morphisms, finite-type
monomorphisms, quasicompact open immersions and closed immersions.

(3.4.6) Corollary. Let f : X → Y be a quasiaffine morphism of algebraic stacks.
Then OX is f -generating.

Proof. The statement is local on Y , so we may assume that Y is affine. Then
X is a quasiaffine scheme and the result follows from [EGA II, 5.1.2]. �

(3.4.7) Remark. If the relative stabilizer groups are affine, then the reverse impli-
cation is also true as we will see in Theorem 5.3.8 .

(3.4.8) Corollary. Let f : X → Y be a morphism of algebraic stacks with quasi-
affine diagonal; for example, if f has quasifinite and separated diagonal. Then OX
is ∆f -generating.

3.4.1.2. Composition. Next, we define a suitable “composition” of families that
are generating relative to two composable morphisms.

(3.4.9) Proposition (Composition and left-cancellation property). Suppose we
have a 2-commutative triangle of algebraic stacks

X
f //

h   @@
@@

@@
@ Y

g

��
Z

(3.4.9.1)

and let EI and FJ be families of quasicoherent OX-modules respectively OY -
modules.

(i) If EI is (weakly) f -generating and FJ is (weakly) g-generating, then

EI ⊗ f∗FJ := (Ei ⊗OX f∗Fj)(i,j)∈I×J

is a (weakly) h-generating family of OX-modules.

(ii) If EI ⊗ f∗FJ is (weakly) h-generating, FJ is ∆g-generating (resp. g is
quasiseparated) and FJ is locally free of finite type, then EI is (weakly)
f -generating.

Proof. Part (i): Note that the statement follows from the weak case by
restricting (3.4.9.1) along an arbitrary morphism of algebraic stacks Z ′ → Z and
using the isomorphism (EI ⊗OX f∗FJ)|X′ ' EI |X′ ⊗X′ f ′∗FJ |Y ′ .

By assumption f and g are quasicompact and quasiseparated, so the same holds
for h. In particular, the lower right triangle in the diagram below is well-defined
and 2-commutative.

Let i ∈ I and j ∈ J be arbitrary. If Ei and Fj are of finite presentation, then
also Ei ⊗ f∗Fj is of finite presentation. Consider then the following diagram

QCoh(X)
HomOX (Ei,·) //

HomOX (Ei⊗f∗Fj ,·) ++WWWWWWWWWWWWW QCoh(X)
HomOX (f∗Fj ,·)��

f∗ // QCoh(Y )
HomOY (Fj ,·)��

QCoh(X)
f∗ //

h∗ ++WWWWWWWWWWWWW QCoh(Y )
g∗��

QCoh(Z)
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The upper left triangle is 2-commutative by adjunction of Ei⊗ and HomOX (Ei, ·)
in QCoh(X). The square is 2-commutative since it corresponds by adjunction to a
2-commutative square, which encodes the compatibility of f∗ with tensor products.
Thus, the whole diagram is 2-commutative, and the assertion follows from Lemma
3.4.1.(ii) using that faithful families of functors are stable under composition by
Remark 3.2.4.

Part (ii) : First note that EI consists of finitely presented OX -modules. Since
∆g is quasiseparated, the hypotheses on h imply that f is quasicompact and qua-
siseparated. So the lower triangle in the diagram above is well-defined if we extend
the lower right corner by the inclusion QCoh(Z) ⊂ ModOX , which is a faithful (and
full) functor. So by Remark 3.4.3.(ii) we conclude the weak case of the assertion.

The proof of the general statement is a consequence of (i) by a standard ar-
gument, yet stated here for the readers convenience. Use that f factors up to
2-isomorphism as the composition of the upper horizontal morphisms of the follow-
ing two 2-cartesian squares.

X
Γf //

f

��
�

X ×Z Y

f×1

��

X ×Z Y
q //

p

��
�

Y

g

��
Y

∆g // Y ×Z Y X
h // Z

(3.4.9.2)

Since FJ is ∆g-generating, f∗FJ is Γf -generating. So if EI is h-generating, then
p∗EI is q-generating and hence Γf ∗p∗EI ⊗ f∗FJ ' EI ⊗ f∗FJ is f -generating by
part (i). �

With a view towards quasiaffine maps we consider the special case that one of
the families in Proposition 3.4.9 just consists of the structure sheaf.

(3.4.10) Corollary. Suppose we have a 2-commutative square of algebraic stacks

U
u //

g

��

X

f

��
V

v // Y

(3.4.10.1)

and a family EI of quasicoherent OX-modules.
(i) If EI is weakly f -generating and OU is weakly u-generating, then u∗EI is

weakly g-generating.

(ii) If EI is f -generating, OU is u-generating and OV is ∆v-generating, then
u∗EI is g-generating.

Note that the assumptions on u and v always hold if u and v are quasiaffine.

Proof. Split the square in two 2-commutative triangles and use Proposition
3.4.9 twice. �

(3.4.11) Corollary (Reduction). Let f : X → Y be a morphism of algebraic stacks.
If EI is an (weakly) f -generating family of quasicoherent OX-modules, then EI |Xred

is a (weakly) generating family of OXred
-modules relative to fred : Xred → Yred.

(3.4.12) Remark. Conversely, if EI |Xred is fred-generating, then it is not in general
true, that EI is f -generating. For example, let X be the spectrum of the ring
of dual numbers A = k[X]/(X2) for some ring k. Then the A-module A/(X) is
not a generator for the category of A-modules, but the restriction to the reduction
A/(X)⊗AA/(X) ' A/(X) ' k is clearly a generator for the category of k-modules.
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However, if EI is the family, associated with a locally free tensor generator E ,
then the converse holds by (v).

3.4.1.3. Base change. We show next that even weakly relatively generating
families are stable under base change if the base has quasiaffine diagonal using
characterization B.6 in terms of locally quasiaffine maps. By this, we mean a
morphism U → V whose domain has a fpqc-covering (Ui → U) such that each
composition Ui → V is quasiaffine (cf. B.5).

(3.4.13) Proposition (Base change). Let S be an algebraic stack, f : X → Y an
S-morphism of algebraic S-stacks and S′ → S be a morphism of algebraic stacks.
Suppose that Y(S′) → Y is locally quasiaffine (if S or Y have quasiaffine diagonal,
this always holds by B.6).

If EI is a weakly f -generating family of quasicoherent OX-modules, then EI (S′)

is a weakly generating family of quasicoherent OX(S′)-modules relative to the base
change f(S′) : X(S′) → Y(S′).

Proof. We may assume S = Y . By Corollary 3.4.10 the class of weakly
relatively generating sheaves is stable under quasiaffine base change. On the other
hand it is fpqc-local on the target by Proposition 3.4.5. Therefore it is stable under
arbitrary locally quasiaffine morphisms. �

(3.4.14) Remark. The assumption that Y(S′) → Y is locally quasiaffine is necessary.
For example, the left-cancellation property 3.4.9.(ii) implies, that every diagonal
∆X/Y : X → X ×Y X of a morphism of algebraic stacks X → Y has always weakly
relatively generating structure sheaf. However, as the following example illustrates,
the attribute “weakly” cannot be omitted.

(3.4.15) Example. Let A π→ S be an abelian scheme. Then the natural map
p : S → BAS induces a 2-cartesian square

A //

π

��

BAS

∆

��
S

(p,p) // BAS ×S BAS

(3.4.15.1)

Although OBAS is weakly ∆-generating, OX is not weakly π-generating (unless A
is finite).

However, if the target stack has quasiaffine diagonal, then the definitions of
generating and weakly generating families are equivalent.

(3.4.16) Corollary. Let f : X → Y be morphism of algebraic stacks. If EI is a
weakly generating family of OX-modules for f and if Y has quasiaffine diagonal
(over Z or equivalently over some algebraic space S), then EI is also f -generating.

In particular, this holds if the target stack is an affine scheme. This allows us to
set up a local criterion for generating sheaves.

(3.4.17) Proposition. Let f : X → Y be a morphism of algebraic stacks and EI a
family of quasicoherent OX-modules. Then the following are equivalent:

(i) EI is f -generating.

(ii) For every morphism SpecA → Y , the restriction EI |XA is a generating
family on XA = SpecA×Y X.

(iii) There exists a fpqc-covering family SpecAα → Y such that each EI |XA is
a generating family on XAα .



3.5. FLAT AFFINE DESCENT 41

Suppose that f is quasicompact and quasiseparated, and that EI is of finite presen-
tation. Then the list of equivalent conditions enlarges by the following ones:

(iv) As in (ii) but with A being a complete local ring.

(v) As in (iii) but SpecAα → Y being an arbitrary faithfully flat family.

Proof. This is straightforward using 3.4.5 and 3.4.16. �

3.4.1.4. Products. We finish this section with the discussion of products of mor-
phisms and products of generating sheaves thereof.

(3.4.18) Proposition (Products). Let S be an algebraic stack (resp. with quasi-
affine diagonal), fα : Xα → Yα, α = 1, 2, be two S-morphisms of algebraic S-stacks.
If EIα are (weakly) fα-generating families on Xα, then the product family

EI1 �S EI2 := (p1
∗Ei1 ⊗OX×SX′ p2

∗Ei2)(i1,i2)∈I1×I2 ,

is a (weakly) f1 ×S f2-generating family on X1 ×S X2, where pα : X1 ×S X2 → Xα

are the projections.

Proof. Decompose f1 ×S f2 as the composition

X1 ×S X2

(f1,1) //

p1

zzttt
ttt

ttt
t

Y1 ×S X2

(1,f2) //

wwpppppppppppp
q2

&&MMMMMMMMMMM Y1 ×S Y2

$$HHHHHHHHH

X1
f1 // Y1 X2

f2 // Y2

By Proposition 3.4.13 we conclude that p1
∗EI1 is a (weakly) (f1, 1)-generating family

on X1 ×S X2 and q2
∗EI2 is a (weakly) (1, f2)-generating family on Y1 ×X2. Hence

p1
∗EI1 ⊗ (f1, 1)∗q2

∗EI2 is a (weakly) f1×S f2-generating family on X1×SX2. Since
q2 ◦ (f1, 1) ' p2 this shows the result. �

This establishes the full permanence properties of relative (weakly) generating
families of finitely presented quasicoherent sheaves.

3.5. Flat affine descent

3.5.1. Finite locally free descent. From Proposition 3.4.9 and Corollary
3.4.6 follows that relative (weakly) generating families are preserved under pullbacks
by quasiaffine morphisms. Our next concern is to show, that this also holds for
pushforwards f∗ in case that the morphism f in question is finite, faithfully flat
and of finite presentation (or equivalently, finite, surjective and locally free). We
infer this result by a careful study of the right adjoint f !.

(3.5.1) Proposition. Let f : X → Y a finite, faithfully flat and finitely presented
morphism, and g : Y → Z be an arbitrary morphism of algebraic stacks. If EI is a
(weakly) g◦f -generating family of OX-modules, then f∗EI is a (weakly) g-generating
family of OY -modules.

Proof. The assumptions on f are stable under arbitrary base change, so it
suffices to prove the weak case. For that, let us assume that EI is a weakly g ◦ f -
generating family of OX -modules. Since g ◦ f is quasicompact and f is surjective,
g is quasicompact, and since g ◦ f is quasiseparated and f is quasicompact, g is
quasiseparated. Moreover, f∗ preserves finitely presented sheaves because f is finite
and locally free.

We invoke Grothendieck duality for finite morphisms. Recall that f∗ has a right
adjoint f ! defined by f∗f

!(·) = HomOY (f∗OX , ·). Then the adjunction formula
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f∗HomOX (·, f !(·)) ' HomOY (f∗(·), ·) implies that for each i ∈ I we have an iso-
morphism of functors QCoh(X)→ QCoh(Z)

g∗ ◦ HomOY (f∗Ei, ·) ' g∗ ◦ (f∗ ◦ HomOX (Ei, ·) ◦ f !).

It follows that f∗ preserves relative weakly generating families if (and only if) f ! is
faithful. The latter holds if and only if the counit of the adjunction f∗f !(M)→M is
surjective for any quasicoherent OY -moduleM. By applying HomOY (·,M) to the
canonical map ϕf : OY → f∗OX , we see that this happens precisely, if ϕf is a locally
split monomorphism of quasicoherent OX -modules (not necessarily algebras!). The
latter is true by faithfully flatness of f . �

(3.5.2) Remark. Since f is not assumed to be étale, the counit f∗f ! ⇒ 1 is not a
split surjection. However, the proof shows, that we just need that it is locally split
with respect to the fppf covering f .

3.5.2. Affine faithfully flat descent and flat resolutions. Our next task
is to prove a more general descent statement for faithfully flat and affine morphisms.
As these morphisms do not preserve finitely presented sheaves, unless they are finite
and finitely presented, we cannot expect a result as in Proposition 3.5.1. However,
it allows us to perform fruitful reductions later on, as seen below in Theorem 3.5.5.

(3.5.3) Definition. Let f : X → Y be a flat morphism of algebraic stacks. Then
we say that an injective map of quasicoherent OY -modules ϕ : E → F is f -locally
split if f∗ϕ is a split monomorphism of quasicoherent OX -modules.

(3.5.4) Proposition. Let f : X → Y be an affine and faithfully flat morphism of
algebraic stacks and let M be a quasicoherent OY -module that is endowed with an
epimorphism ψ : E � f∗M of quasicoherent OX-modules.

(i) The unit δ : M ↪→ f∗f
∗M of the adjunction (f∗, f∗) is an f -split mono-

morphism.

(ii) The inverse image ofM under f∗(ψ) : f∗E � f∗f
∗M surjects onM and

embeds in f∗E locally split with respect to f .

Proof. The unit is f -locally split injective by fpqc-descent, for f∗ is a left
adjoint of f∗, the restriction f∗δ : f∗M → f∗f∗f

∗M has a left-inverse, given by
the evaluation map ε : f∗f∗f∗M→ f∗M.

Since u∗ is exact, ϕ := f∗(ψ) : f∗E � f∗f
∗M is an epimorphism. Consider now

the fiber square in QCoh(X)

F
q //

p

��

M� _

δ

��
f∗E

ϕ // // f∗f∗M

(3.5.4.1)

Since ϕ is surjective, it follows that q is surjective. The pullback of (3.5.4.1) along
f gives a commutative square:

u∗F
f∗q //

f∗p

��

u∗M� _

f∗δ

��
u∗f∗E

f∗ϕ// // u∗f∗f∗M

(3.5.4.2)

It is also cartesian, using the flatness of f and F = ker(f∗E ⊕M
ϕ−δ−−−→ f∗f

∗M).
Hence, ε ◦ f∗ϕ induces a left-inverse for f∗p. So p is locally split injective by
fpqc-descent, as asserted. �
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As an application of Proposition 3.5.4 we prove the following resolution state-
ment in Theorem 3.5.5 which enables us to restrict to flat sheaves rather than
finding resolutions of arbitrary quasicoherent sheaves. It is possible to deduce it
from [ATJLL97, Lemma 1.2.1] for schemes using the derived category of quasico-
herent sheaves. For the readers (and authors) convenience we give a quick proof
for arbitrary algebraic stacks.

(3.5.5) Theorem (Flat resolutions). Let X be a quasicompact algebraic stack with
affine diagonal. Then every quasicoherent OX-module M is a quotient of a flat
quasicoherent OX-module F .

Proof. Let M be a quasicoherent OX -module. Since X is quasicompact,
there is a smooth presentation u : U → X with U affine. Therefore we can choose a
free resolution O⊕IU � u∗M for some index set I. Since X has affine diagonal, u is
an affine morphism, and it follows that u∗O⊕IU is a flat quasicoherent OX -module.
So by Proposition 3.5.4 it contains an u-locally split quasicoherent OX -submodule
F that surjects on M. Since u∗F is a direct summand of the flat sheaf u∗u∗O⊕IU ,
it is a pure subsheaf and hence flat. So by descent we conclude that F is flat. �

(3.5.6) Remark. The proof can be seen as a generalization of the fact that for
an affine algebraic group scheme G → S, every representation is a quotient of a
subrepresentation that is contained in a direct sum of the regular representation by
applying the previous argument to the covering S → BSG.

(3.5.7) Remark. From here we would immediately deduce the resolution property
for an algebraic stack with affine diagonal if every flat quasicoherent sheaf F is the
direct limit of locally free sheaves of finite rank. This is true for affine schemes by
Lazard’s Theorem [Laz69, 1.2], but also for locally Dedekind schemes since F is the
union of torsion-free submodules of finite-type. Deligne showed in [SGA 4.1, Exp.
V, Appendix 8, 8.2.12] that Lazard’s Theorem remains valid for general ringed sites
if one enlarges the notion of inductive limits by “local inductive limits”. However,
the latter are to general to serve our purpose.

As a trivial application we infer that on reduced stacks with affine diagonal it
suffices to resolve torsion-free sheaves.

(3.5.8) Corollary (Torsionfree resolutions). Let X be a reduced quasicompact
algebraic stack with affine diagonal.

(i) Every quasicoherent sheaf is a quotient of a torsion-free quasicoherent
sheaf.

(ii) Suppose that X has the completeness property. Then every quasicoherent
sheaf of finite type is a quotient of a quasicoherent and torsion-free sheaf
of finite type.

Proof. A flat quasicoherent OX -module is torsion-free, so the first result fol-
lows from 3.5.5. IfX has the completeness property, and F →M is an epimorphism
of quasicoherent OX -modules, whereM is of finite type and F is torsion-free, then
F is the direct limit of quasicoherent OX -submodules Fα ⊂ F of finite type, which
are also torsion-free. It follows that there exists an α such that the composition
Fα → F →M is an epimorphism. �





CHAPTER 4

The resolution property of stacks

We define in section 4.1 the resolution property of morphisms and give a brief
overview of the properties thereof. In section 4.2 we verify the resolution property
for regular stacks that have a low dimensional regular cover. In the last section 4.3
we discuss the presence of group actions and show that the notion of the relative
resolution property appears here in a natural way.

4.1. The relative resolution property

By restricting the previous results about relatively generating families of finitely
presented sheaves to families of locally free sheaves, one obtains the concept of gen-
erating vector bundles for an arbitrary quasicompact and quasiseparated morphism
f : X → Y . These families share the same permanence properties as relatively am-
ple line bundles or ample families of line bundles.

(4.1.1) Definition. We say that a morphism f : X → Y of algebraic stacks has
the resolution property , or that X has the resolution property over Y (relative to
f), if there exists an f -generating family of locally free OX -modules of finite type
(see Def. 3.4.2).

(4.1.2) Remark. Since the rank of locally free sheaves is locally constant, it follows
that the rank of the generating sheaves is constant if X is connected. Even if X
is disconnected, but has finitely many disconnected components, every generating
family of locally free finite-type OX -modules is equivalent to a generating family
of locally free OX -modules of finite and constant rank by adding componentwise
appropriate direct summands of finite free OX -modules. In particular, this holds if
Y or just X is quasicompact.

A technical problem is the size of a generating family, which makes it difficult
to associate geometric properties to the resolution property. We will solve this
problem in section 6.2 by introducing a stronger variant of the resolution property,
where the generating families in question arise in a natural way by a single vector
bundle.

An illuminative example, where one does not encounters such problems, is the
class of morphisms, where the structure sheaf alone defines a relatively generat-
ing singleton. This also serves as a preparation for the solution of the problem
mentioned above, and will be described in chapter 5.

For the sake of completeness, we give a list of permanence properties for mor-
phisms satisfying the relative resolution property. Properties (i)-(v) below follow
immediately from the discussion in section 3.4.1 and (vi) is a consequence of Pro-
position 3.5.1.

45
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(4.1.3) Proposition. — Let S be an algebraic stack.
(i) Every morphism f : X → Y , having a relatively ample family of line

bundles, satisfies the resolution property. This includes (quasi-) projec-
tive, (quasi-) affine, finite, quasi-finite finite-type separated morphisms,
finite-type monomorphisms, closed and quasicompact open immersions.

(ii) If f : X → Y and g : Y → Z are two morphisms having the resolution
property, then g ◦ f has the resolution property.

(iii) If an S-morphism f : X → Y has the resolution property, then for every
base change morphism of algebraic stacks S′ → S, f(S′) has the resolution
property.

(iv) Let f : X → Y and f ′ : X ′ → Y ′ be two S-morphisms having the reso-
lution property. Then f ×S g : X ×S X ′ → Y ×S Y ′ has the resolution
property.

(v) If the composition g ◦ f of two morphisms f : X → Y and g : Y → Z
has the resolution property, and if ∆g has the resolution property (for
example, if ∆g is quasiaffine), then f has the resolution property.

(vi) If the composition g ◦ f of two morphisms f : X → Y and g : Y → Z
has the resolution property, and if f is finite, faithfully flat and finitely
presented, then g has the resolution property.

(4.1.4) Remark. The verification of 4.1.3.(vi) answers a question raised by D. Rydh
[Ryd09] affirmatively whether or not a finite, faithfully flat and finitely presented
morphism preserves the resolution property. It appears to be previously known only
for finite étale coverings and for finite, and faithfully flat morphisms of classifying
stacks BH → BG, given by a closed embedding H → G of group schemes that
are flat, separated and of finite type over a noetherian and separated base scheme
[Tho87, 2.13 and 2.14]. We postpone a discussion of its consequences to section 7.1.

Note that the resolution property of a morphism f : X → Y is not local on
the target Y in general (cf. example 4.3.8). However, if one has a fixed family
of quasicoherent sheaves, the property of being a relatively generating family of
finite-type locally free sheaves is local on Y .

(4.1.5) Proposition (fpqc-descent). Let S be an algebraic stack. Let f : X → Y be
an S-morphism, let EI be a family of quasicoherent OX-modules and let sα : Sα → S
be a faithfully flat family. If each EI |X(Sα) is a generating locally free family for
fSα : X(Sα) → Y(Sα), and either the family (sα) is fpqc, or f is quasicompact and
quasiseparated and EI locally free of finite type, then EI is a f -generating locally
free family.

Proof. Locally free sheaves satisfy fpqc-descent, so the result is a special case
of Proposition 3.4.5. �

4.2. Algebraic stacks with regular covers of low dimension

We discuss existence result for algebraic stacks X of low dimension; by this we
mean the Krull dimension of a given covering U → X whose domain U is a scheme.
If X itself is a scheme, then we know already that X has an ample family if X is
Q-factorial, noetherian and has affine diagonal (1.1.1), or if X has dimension ≤ 2
and is separated, of finite type over a field, or proper over a noetherian ring (see
Corollary 2.0.2 resp. Theorem 2.0.1).

If an algebraic stack X has an affine fpqc-covering U → X with U an affine
scheme, then we can try to transfer the resolution property of U to X by the
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method described in section 3.5.2. A priori, this provides us resolutions by big flat
quasicoherent sheaves. However, if U is regular of dimension ≤ 2, then the latter
are unions of finite-type subsheaves which happen to be locally free if they can be
arranged to be torsion-free, respectively satisfy condition S2.

(4.2.1) Lemma. Let X be an algebraic stack, such that there exists an affine and
faithfully flat morphism U → X whose domain U is a regular, noetherian scheme
of dimension ≤ 1. Then every torsion-free quasicoherent OX-module is the filtered
direct limit of locally free OX-submodules of finite type. In particular, X has the
resolution property and affine diagonal.

Proof. By fpqc-descent follows that X is noetherian. So every quasicoherent
OX -module F is the direct limit of coherent quasicoherent OX -submodules Fα.
If F is locally torsion-free, each Fα is torsion-free and hence locally free by the
hypothesis on U and fpqc-descent.

For the last statements we argue as follows. First, note that U has affine diagonal
since U is of dimension ≤ 1. Then U ×X U is not only affine over U , but also affine
over U ×Z U . Thus X has affine diagonal, so every quasicoherent OX -module of
finite-type is quotient of a locally free OX -module of finite type 3.5.8. �

This gives a first list of algebraic stacks that satisfy the resolution property. The
first example is due to Thomason.

(4.2.2) Example. Suppose that S is a regular, noetherian scheme S of dimension
≤ 1 (e.g. Z or a field). Let G → S be an affine, flat and finitely presented group
scheme. Then BSG has the resolution property.

(4.2.3) Example. Let f : X → S be a gerbe with affine diagonal and suppose
again that S is regular, noetherian of dimension ≤ 1. So, locally over S, f is of the
previous form. In particular, X is a reduced noetherian algebraic stack, and the
family of coherent torsion-free sheaves is a generating family by 3.5.8. However, the
latter are all locally free, as this is true locally over S. So X is has the resolution
property. We warn the reader, that the resolution property is in general not local
over S (see 4.3.8).

Applying this strategy to the case that the covering U has dimension 2, one
obtains a similar result. The following is proved in [Tho87, Lemma 2.5] in case
that X = BSG for some affine, flat and finitely presented group scheme G → S.
But the proof translates literally to this more general setting.

(4.2.4) Lemma. Let X be an algebraic stack, and let u : U → X be an affine fppf
presentation by a noetherian algebraic space U satisfying S2, such that u∗OU is a
projective OX-module (for example if u is smooth with geometrically integral fibers).
If U has the resolution property, then every coherent OX-module is a quotient of a
coherent OX-module satisfying S2. In particular, if U is regular of dimension ≤ 2,
then X has the resolution property.

(4.2.5) Example. Let S be an algebraic space.

(i) Let X = [U/G/S] be a quotient stack, where G → S is a smooth affine
group scheme with connected fibers acting on a noetherian algebraic S-
space U that has the resolution property and satisfies S2. Then every
coherent OX -module is quotient of a coherent OX -module satisfying S2.
If U is regular of dimension ≤ 2, then X has the resolution property.
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(ii) In particular, if S = U is a noetherian algebraic space that has the
resolution property and satisfies S2, then one recovers Thomason’s case
X = BSG [Tho87, Lemma 2.5].

(4.2.6) Remark. So far we considered algebraic stacks that admit a regular covering
of low dimension. The non-regular case is substantially more difficult, even if the
covering is the spectrum of a Gorenstein artinian ring, e.g. k[ε] with k being a field
and X = BG for a smooth affine group scheme G over k[ε]. We will postpone the
discussion to section 7.2.

4.3. The equivariant resolution property

The framework of algebraic stacks allows us to integrate arbitrary actions of
group schemes in the discussion of the resolution property. We will see that the
classifying stack of GLn plays here a prominent role because the frame bundles of
vector bundles are GLn-torsors in a natural way (see section 6.1.1).

Let X → S be a quasicompact and quasiseparated morphism of algebraic stacks,
and let π : G→ S be a separated finitely presented and faithfully flat group space
with a right-action on X over S (if S is not an algebraic space, we refer the reader to
Romagny’s exposition of group actions on stacks [Rom05]). Then the stack quotient
[X/G/S] exists as an algebraic S-stack (see [Rom05, 4.1] for the case that S is a
scheme and [LMB00, 10.13.1] for the case that X and S are algebraic spaces).

Most of the succeeding results are due to Thomason [Tho87] expressed without
the language of algebraic stacks. However, by considering the resolution property
always as a property of morphisms, we hope to give a streamlined exposition of that
matter. Furthermore, we explain why one should consider the resolution property
as a property of morphisms rather than as an absolute one.

4.3.1. The resolution property for quotients. Let us discuss the relation-
ship between the resolution property of X → S and the quotient [X/G/S] → S.
The canonical fppf S-morphism p : X → [X/G/S] and the classifying S-morphism
[X/G/S]→ BSG fit in a 2-cartesian diagram of S-morphisms

X
p //

f

��

[X/G/S]

f ′

��
S

q // BSG

(4.3.0.1)

where q : S → BSG is the fppf presentation that corresponds to the trivial torsor.
In particular, every property of f ′ that is fppf local and stable on the target can be
detected on f . Even if one is interested in the resolution property of schemes, this
square is only defined in the 2-category of stacks since BSG is never representable
(unless G is trivial).

Having the permanence properties of the relative resolution property in mind
(cf. 4.1.3), we proceed as follows. If f ′ has the resolution property, so too has f .
Conversely, if f has the resolution property given by a family of locally free OX -
modules EI of finite type, then f ′ has the resolution property if each Ei descends to
the quotient [X/G/S]. The descend datum of quasicoherent OX -module E consists
of an isomorphism σ : m∗E ∼−→ pr2

∗E , where m : G ×S X → X denotes the action
and pr2 : G ×S X → X the projection, that satisfies the usual cocycle condition
on G ×S G ×S X. It is also called a G-linearization of E (cf. [MF82, Def. 1.6] or
[HL97, 4.2.3]).
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As a second observation, we remark that the structure morphism [X/G/S]→ S
factors over the classifying map f ′:

[X/G/S]
f ′ //

##HHHHHHHHH
BSG

}}{{
{{

{{
{{

S

(4.3.0.2)

Therefore [X/G/S] → S has the resolution property if both BSG → S and f ′

have the resolution property since the resolution property of morphisms is stable
under composition. Conversely, according to the left cancellation property, f ′ has
the resolution property if both [X/G/S] → S and the diagonal ∆BSG/S have the
resolution property. The latter is true in all cases, we are interested in, since
∆BSG/S or equivalently G→ S is (quasi-) affine.

Summarizing, we verified the following assertions.

(4.3.1) Proposition. With the preceding notations, the following are equivalent:
(i) The classifying map f ′ : [X/G/S]→ BSG has the resolution property.

(ii) f : X → S has the resolution property, given by a family of f -generating
and G-linearized locally free OX-modules (Ei)i∈I of finite type.

Moreover, if BSG→ S has the resolution property, then these conditions imply:
(iii) The structure map [X/G/S]→ S has the resolution property.

The reverse implication also holds if the diagonal ∆BSG/S of BSG → S has the
resolution property (e.g. if G→ S is quasiaffine).

If f : X → S has the (ordinary) resolution property, we see that the problem of
the resolution property of [X/G/S]→ S divides in two parts:

(A) Firstly, the construction of a f -generating family of vector bundles on
X that admit a G-linearization; that is, the resolution property of the
classifying morphism [X/G/S]→ BSG.

(B) Secondly, the verification of the resolution property of the classifying
stack BSG→ S.

We will address ourselves to this problems in section 4.3.3, respectively 4.3.4. Let
us state our main example of quotient stacks that satisfy the resolution property:

(4.3.2) Example. Let f : X → S be a quasiaffine morphism of algebraic stacks
such that X has a right action of GLn,S = GLn,Z×ZS over S. Then [X/GLn,S ]→ S
has the resolution property because OX has a canonical GLn,S-linearization and
BGLn,S has the resolution property by Example 4.2.2. Slighlty unconventional, we
say that X is a global quotient stack (over S) or f is a relative global quotient stack ,
adopting the recent notation of D. Rydh [Ryd10b].

(4.3.3) Remark. There exist various definitions of weaker types of quotient stacks
X over an algebraic space S. They have in common that a separated, flat and
finitely presented group space G → S acts on an algebraic space U → S such
that X ' [U/G/S]. If G → S admits a group homomorphism G → GLn,S that
is a closed immersion, then [U/G/S] ' [U ′/GLn,S ] by Morita equivalence, where
U ′ = U ×G GLn,S is the balanced product (U ×S GLn,S)/G which is again an
algebraic space over S. Such an immersion exists if BSG has the resolution property
over Z by Thomason (see Theorem 4.3.14).
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The discussion of the equivariant resolution property has also useful consequences
for the non-equivariant resolution property.

(4.3.4) Corollary. If [X/G/S] → S has the resolution property and G → S is
quasiaffine, then X → S has the resolution property. In particular, if BSG has the
resolution property over Z, then this holds for S too.

For example, this might be helpful to reduce the resolution property of toric
varieties to the equivariant one.

(4.3.5) Example. Let X be a toric scheme (over Z) and denote by T the torus
acting on X. If [X/T ] has the resolution property, then X has the resolution
property.

However, it is not even clear if [X/T ] has sufficiently many vector bundles at all.
We refer the reader to the extensive discussion of the case of non-quasiprojective
toric threefolds by S. Payne [Pay09].

4.3.2. Separateness properties of quotients. Having the previous nota-
tions at hand, we describe shortly the relation between separateness properties of
X → S and [X/G/S]→ S, or more general conditions on the diagonal.

For that, let P be a property of morphisms of algebraic stacks which is closed
under 2-isomorphism, stable under base change and fppf local on the base. By
standard arguments follows that P contains all 1-isomorphisms and is closed under
composition. For example, the collection of closed immersions, immersions and
quasicompact, separated, affine, quasiaffine, finite and quasifinite morphisms, etc.

Then by imposing P on the diagonal of a morphism of algebraic stacks, we get
a derived collection that inherits the permanence properties of P; for instance,
with the preceding list, one obtains the collection of separated, locally separated,
quasiseparated morphisms and those with separated, affine, quasiaffine, finite or
quasifinite diagonal.

(4.3.6) Proposition. With the preceding notations, the following are equivalent:

(i) The diagonal of the classifying map [X/G/S]→ BSG has P.

(ii) The diagonal of X → S has P.

Moreover, if G→ S has property P, these conditions imply the following one:

(iii) The diagonal of [X/G/S]→ S has P.

The reverse implication also holds, if ∆∆BSG/S
has P.

Proof. The equivalence (ii) ⇔ (i) follows from (4.3.0.1) by fppf descent. If
G → S has P, then the diagonal of BSG → S has P by fppf descent. So (i)
⇒ (iii) follows from (4.3.0.2), for P is closed under composition. The remaining
implication (iii) ⇒ (i) is again a consequence of (4.3.0.2) according to the left
cancellation property of P. �

(4.3.7) Example. —

(i) Every (relative) quotient stack [U/G/S] → S has quasiaffine diagonal,
where U → S is representable and G→ S a quasiaffine group scheme. It
follows from B.3 that the relative stabilizer groups of [U/G/S] → S are
affine.

(ii) If U → S has affine diagonal (e.g. if U → S is separated), then the
quotient [U/G/S] → S has affine diagonal if G → S is an affine group
scheme. In particular, a global quotient stack [U/GLn,S ] → S has affine
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diagonal (this was proven by Totaro [Tot04, Prop. 1.3] for the absolute
case with X noetherian).

By Totaro’s Theorem the resolution property of a morphism X → S is equivalent
to X → S being a global quotient stack under very natural hypothesis (Theorem
6.3.1). Hence, the affiness of the diagonal ∆X/S is a necessary condition for the
resolution property to hold. In fact all schematic counter examples to the resolution
property known so far do not have affine diagonal (see [SV04] or the proof of [Tot04,
8.1]).

However, this condition is not sufficient if one takes non-quasifinite stabilizers
into account.

(4.3.8) Example. Given an algebraic space S, Edidin, Hassett, Kresch and Vistoli
[EHKV01, Example 3.12] observed that every non-torsion element in H2

ét(S,Gm)
gives rise to a Gm-gerbe X → S which is not a quotient stack, in particular not a
global quotient stack and hence does not satisfy the resolution property by Totaro’s
Theorem. However, by Grothendieck there exists a normal, affine algebraic surface
S that admits such an element. Therefore X → S and thus X do not satisfy the
resolution property. Moreover, we see that the resolution property for morphisms is
in general not local on the target because X → S is, locally over S, the classifying
stack of Gm which satisfies the resolution property.

4.3.3. Existence of linearizations. Let us give a brief overview of the exis-
tence of G-linearizations on vector bundles. Given a family of vector bundles that
is generating for a morphism f : X → S, we seek to construct a modified family of
locally free OX -modules of finite type, that is still generating, carries in addition a
G-linearization and hence descends along the quotient map X → [X/G/S].

If G → S is finite, surjective and locally free (equivalently finite and faithfully
flat of finite presentation, or just finite and faithfully flat if S is locally noetherian)
this is well-known. For instance, this is accomplished by averaging the generating
family:

(4.3.9) Lemma. Suppose that G → S is finite and locally free and let
q : X → [X/G/S] be the quotient map. Then for every locally free OX-module E
the quasicoherent OX-module q∗q∗E is locally free of finite type, has a canonical
G-linearization and the evaluation map q∗q∗E � E is surjective.

Even though this construction is canonical and works for more general group
schemes G → S, it is only useful to us as long as G → S is proper, because we
restrict to finitely presented generating sheaves. However, the resolution property
loses geometric significance if we do not restrict to algebraic stacks with affine sta-
bilizer groups (see Theorem 5.3.2), so that it seems reasonable to consider only
(quasi-) affine group schemes as far as we make no further assumption of the regu-
larity of the group action.

The construction of G-linearizations for affine but non-finite group schemes is
significantly more difficult. To the author’s knowledge there is no known general
method, to derive G-linearized locally free OX -module of finite rank from a given
one. However, in case that G → S is smooth and affine with connected fibers and
X a normal noetherian scheme, there is a strong result of Raynaud and Sumihiro
[Sum75, 1.6] for the existence of a G-linearization on tensor powers of line bundles:

(4.3.10) Theorem. ([Sum75, 1.6]) Let S be a quasicompact and quasiseparated
scheme and let G → S be a smooth affine group scheme with connected fibers that
acts on a normal noetherian S-scheme X. Then for every invertible OX-module L
and n ∈ N sufficiently large, L⊗n admits a G-linearization.
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In the proof the isomorphism m∗L⊗n ∼−→ pr2
∗L⊗n is constructed by first taking

an arbitrary choice, which is possible since Pic(G ×S X)/Pic(X) is torsion, and
adding a suitable correction factor later on to meet the cocycle condition. The
normality assumption is essential (see [Tot04, 9.1] for a counterexample). However,
it remains unclear if there exists a suitable generalization to locally free sheaves of
higher rank.

(4.3.11) Problem. With the hypothesis in Theorem 4.3.10, does there exist for
every locally free OX -module E of rank ≥ 2 a tensorial construction t such that
t(E) admits a G-linearization?

Returning to our original motivation this leads to the following result:

(4.3.12) Corollary ([Tho87, 2.10]). Let S be a quasicompact and quasiseparated
scheme and X a normal noetherian scheme over S with an action of a smooth affine
group scheme G → S with connected fibers. Suppose that X → S has an ample
family of invertible sheaves L1, . . . ,Lr (for instance, if X is locally Q-factorial and
has affine diagonal over Z). Then for a sufficiently large integer m the tensor
powers Lmi descend on [X/G/S] to an ample family for [X/G/S]→ BSG.

(4.3.13) Example. Hironaka constructed a smooth three-dimensional algebraic
space X which is not a scheme, by taking a suitable glued smooth scheme U that
carries a free action of Z/2Z and defining X = U/(Z/2Z) [Knu71, p. 15-17]. It
follows from the corollary that X → B(Z/2Z) and hence X has the resolution
property.

4.3.4. The resolution property of classifying stacks. For later applica-
tion, let us give an overview about the techniques for proving the resolution property
of BSG→ S for an affine, flat and finitely presented group scheme G→ S, where S
is an arbitrary algebraic space (or algebraic stack with quasiaffine diagonal, if you
like) following Thomason [Tho87, §2]. We also call this the equivariant resolution
property of S.

As the base S has quasiaffine diagonal (over Z), we can equivalently study the
resolution property of the BSG → Spec Z assuming that S → Spec Z has the
resolution property (4.1.3.(ii),(v)).

The case that G → S is flat, finite and finitely presented is well-known [Tho87,
2.14]. Note that this follows also from 4.1.3.(vi) because the trivial torsor S → BSG
is a finite fppf covering.

If S is regular noetherian of dimension ≤ 1, then BSG and hence BSG → S
has the resolution property by Example 4.2.2. As the resolution property is stable
under base change, we conclude that BSG → S has the resolution property for
every split group scheme G→ S.

In particular, if G = GLn is the general linear algebraic group, then BGLn,S → S
has the resolution property. So we can ask, when this holds for BSG→ S assuming
that G ⊂ GLn,S is a closed subgroup space. In fact, this is a necessary condition
by work of Thomason (if S is affine).

(4.3.14) Theorem ([Tho87, 3.1]). Let S be an algebraic space and G → S an
affine, flat and finitely presented group space. If BSG has the resolution property
(over Z), then there exists a vector bundle V on S and a group homomorphism
which is a closed immersion G ↪→ GLS(V). If S is affine, then one may take V to
be a free module.

In order to study the relation between the equivariant resolution property
of two group schemes H → S and G → S we shall look at all morphisms
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B(ϕ) : BSH → BSG that are induced by group homomorphisms ϕ : H → G and
ask when these have the resolution property. If ϕ is a closed immersion, then this
is related to the quotient G/H → S using fppf descent and the following Lemma.

(4.3.15) Lemma. Let ϕ : H → G be a homomorphism of S-group spaces that is a
closed immersion. Then there exists a 2-cartesian diagram over S

G/H //

��

BSH

B(ϕ)

��
S // BSG

(4.3.15.1)

where the lower fppf covering map corresponds to the trivial G-torsor.

Proof. This is a special case of the square (4.3.0.1). �

So, in order to study the resolution property of BSH we can apply the same
strategy as described in Proposition 4.3.1. Again, we meet the problem to determine
which generating families of vector bundles for G/H → S descend on BSH, i.e.
admit a G-linearization. Since the structure sheaf admits a canonical one, we
obtain as a special case the following result.

(4.3.16) Corollary. With the notations of 4.3.15 follows that G/H → S is (quasi-)
affine if and only if B(ϕ) is (quasi-) affine.

(4.3.17) Example. Let GLn×GLm ↪→ GLn+m be the diagonal embedding. Then
B(GLn×GLm)→ BGLn+m is affine since GLn+m/GLn×GLm is an affine Stiefel
scheme.

In contrast to the general situation of Proposition 4.3.1, the study of G-
linearizations of non-quasiaffine quotients G/H → S is simplified by the existence
of the fppf quotient map G→ G/H. We know that G/H → S is representable, has
affine diagonal (4.3.6), and is of finite presentation by fppf descent since G→ S is.
As we originally have the case G = GLn in mind, it is worth to study the smooth
connected case.

(4.3.18) Lemma ([Tho87, 2.11]). Let G → S be a smooth, affine group space
with connected fibers over a regular, noetherian scheme S with affine diagonal and
H ⊂ G a closed subgroup space that is flat and finitely presented over S. Suppose
that G/H → S is schematic. Then BSH → BSG is schematic and has an ample
family.

Proof. By fppf descent G/H is regular, noetherian, has affine diagonal and
hence an ample family which is also ample for G/H → S. �

(4.3.19) Problem. When is G/H a scheme? Or, does the regular algebraic space
G/H have an ample family?

(4.3.20) Remark. Among others, Thomason used these techniques in [Tho87, 2.18,
2.1] to prove that the equivariant resolution property even holds for a larger class
of group schemes G→ S.

He also relates the equivariant resolution property to equivariant embeddings of
schemes and to Hilbert’s 14th problem. For that we refer the reader to [Tho87, §3].





CHAPTER 5

Morphisms with generating structure sheaf

This section is devoted to the study of those algebraic stacks that have generating
structure sheaf, or equivalently, where every quasicoherent sheaf is globally gener-
ated. In fact, we show, under reasonable conditions on the stabilizer groups, that
this characterizes an algebraic stack as being strongly representable by a quasiaffine
scheme (see Theorem 5.3.2 below and Theorem 5.3.8 for the relative case).

This is well-known for schemes [EGA II], but even for algebraic spaces not obvious
because the Grothendieck topology thereof is not determined by open subspaces,
so that the non-vanishing sets of sections are in general to large. For normal
noetherian algebraic spaces, and even algebraic stacks, our result can be read off
the proof of Totaro’s Theorem [Tot04, 1.1]. It uses the fact that every normal
noetherian algebraic space can be written as a quotient of a normal noetherian
scheme by a finite group action.

However, for removing the hypothesis “normal”, one encounters pinching prob-
lems. Using a pinching result for AF-schemes (where every finite set of points is
contained in an affine open neighborhood, c.f. 5.1.1) of D. Ferrand [Fer03] and the
methods of noetherian approximation [Ryd10b], we managed to remove the nor-
mal and noetherian hypothesis. In fact, we provide by Theorem 5.1.5 a suitable
generalization of Chevalley’s Theorem to AF-schemes and AF-morphisms (c.f. Def.
5.1.1).

In Theorem 5.3.2 we show then that a quasicompact and quasiseparated algebraic
stackX with affine stabilizer groups at closed points is representable by a quasiaffine
scheme if and only if OX is a generator, using the method of [EHKV01, 2.12] to
show the triviality of the stabilizer groups. This generalizes the well-known fact
that the structure sheaf of quasicompact and separated scheme is ample if and only
if the scheme is quasiaffine [EGA II, 5.1.2].

Even if we are just interested in noetherian algebraic stacks, we will see in section
6.2.5 that there exists natural construction involving infinite inverse limits of stacks
which are not noetherian in general, yet give a clarifying picture when studying large
generating families of vector bundles.

We also provide a relative version of this result for morphisms with relatively
affine stabilizers at geometric points (cf. Theorem 5.3.8). This includes all mor-
phisms with quasiaffine diagonal; for instance, those that are representable, a rel-
ative Deligne-Mumford stack, or more generally have quasifinite diagonal (see Ex-
ample 5.3.7).

5.1. A variant of Chevalley’s theorem for AF-schemes

Chevalley’s Theorem for algebraic spaces asserts that the target X of an integral
and surjective morphism f : Z → X of algebraic spaces is affine if (and only if) the
source Z is affine (see [Knu71, III.4.1] for f finite and X noetherian and separated,
and see [Ryd10b, 8.1] for the non-noetherian case). In particular, it follows that X
is representable by a scheme.

This theorem is false in general if one replaces the property affine by quasiaffine.
For example, there exists non-normal algebraic surfaces (over C if desired) with

55
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quasi-affine normalization (as announced in [EGA II, 6.6.13], but postponed to the
unpublished EGA V; take A2 − {0} and glue the coordinate axes along the inverse
map x→ x−1, see [Aut, Lemma 0272] for details).

To the authors knowledge there exist no result which establishes the representabil-
ity of the target X if the source Z is quasiaffine. If f is flat and finite, this was
recently settled in [Ryd10a, Lemma B.1], and it follows that the target is also quasi-
affine. Later we will be confronted with finite normalizations which are not flat, so
we need a more general criterion.

(5.1.1) Definition. A scheme X is an AF-scheme (affine finie) if every finite set
of points is contained in an affine open neighborhood. A morphism of algebraic
spaces X → Y is an AF-morphism if for every SpecA → Y the restriction XA is
an AF -scheme. In particular, an AF-morphism is schematic.

Examples of AF-morphisms are quasiaffine or quasi-projective morphisms (see
[EGA II]). AF-morphisms are closed under composition and stable under base
change.

(5.1.2) Problem. Does the resolution property hold for every quasicompact and
quasiseparated AF-scheme? Does there exists a descent result for AF-morphisms?

The following Proposition serves as a preparation for Theorem 5.1.5.

(5.1.3) Proposition. Let S be an algebraic space and f : Z → X be an integral
and surjective morphism of algebraic spaces. If Z → S is quasiaffine, then X → S
is an AF -morphism and hence schematic and separated. If X is locally noetherian
and normal, or if f is flat, then X → S is quasiaffine.

Proof. Applying a base change for a given SpecA→ S, we may assume that
S is affine. It follows that Z is quasiaffine and we can replace S by Spec Z. Then
X is quasicompact since f : Z → X is surjective and Z is quasicompact. Also, X
is separated because f is surjective and universally closed and Z is separated. By
[Ryd10b, Thm. D] f factors over a finite and finitely presented morphism Z0 → X,
where Z0 is a quasiaffine scheme.

Hence we may assume that f is finitely presented, replacing Z by Z0. We say
that X has a finite and finitely presented quasiaffine covering (given by f). This
property is stable under quasiaffine base change, so it ascends along finite coverings
and closed immersions. If there exists a an AF -scheme X0 and an affine morphism
X → X0, then X is representable by an AF -scheme.

So we may suppose that X is of finite type over Z and that f is finite by usual
noetherian approximation arguments (the proof of [Ryd10b, 8.1] applies literally).

If the reduction Xred is an AF -scheme (resp. a quasiaffine scheme), then X is
an AF -scheme (resp. a quasiaffine scheme) by Chevalley’s Theorem and using that
|Xred| → |X| is a homeomorphism.

Hence, we assume that X is reduced and Nagata. By noetherian induction
we may assume that every proper closed subspace is representable by an AF -
scheme. The normalization g : X ′ → X is finite since X is Nagata. The source
X ′ is normal and has a finite cover by a quasiaffine scheme. Suppose for a mo-
ment that X ′ is representable by a quasiaffine scheme. In particular, it is an
AF -scheme [EGA II, 4.5.4]. Since X ′ → X is finite and has schematically dense
image, we may consider X as the pinching of X ′ along the conductor subspace
Y = Supp Ann coker(OX → g∗OX′) ⊂ X (see Lemma 5.1.7 below). However, by
a theorem of D. Ferrand [Fer03, 5.4], the pushout X0 := X ′

∐
g−1(Y ) Y exists al-

ready in the category of ringed spaces and is an AF -scheme since X ′ and Y are
AF -schemes. Since X is the pushout X ′

∐
g−1(Y ) Y in the category of algebraic
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spaces, the universal property implies the existence of a morphism of algebraic
spaces p : X → X0 that satisfies p◦g = q, where q : X ′ → X0 is the quotient map of
schemes. Invoking Chevalley’s Theorem, we infer that this is in fact an affine mor-
phism. Thus, X is representable by an AF -scheme and a posteriori holds X0 ' X.

This reduces to the case that X is a normal noetherian algebraic space. By
[LMB00, 16.6.2] we know that X is a quotient of a normal noetherian scheme X ′

by finite group G. Since X ′ → X is finite, we infer that X ′ has finite quasiaffine
covering. If X ′ is a quasiaffine scheme, then it is well-known that the quotient
X = X ′/G is also quasiaffine (see [Ryd07, 4.8] for the non-noetherian case).

Therefore we reduced the proof of the first statement in the proposition to the
proof of the second one. So let us finally assume that X is a noetherian normal
and separated scheme. Then the result follows from the norm trick: OX is ample
by [EGA II, 6.6.2]. So X is quasiaffine [EGA II, 5.1.2], as required. �

As an application of Proposition 5.1.3, we show a new characterization of
schematic points on algebraic spaces with respect to integral surjective coverings:

(5.1.4) Corollary. Let f : Y → X be an integral surjective morphism of algebraic
spaces. A point x ∈ X is schematic if and only if the fiber f−1(x) is contained
in an open subspace U ⊆ Y , which is representable by a quasiaffine (equivalently
affine) scheme.

Proof. Integral morphisms are affine, so the condition is clearly necessary.
Conversely, assume that a quasiaffine neighborhood f−1(x) ⊆ U ⊆ X exists. Re-
placing f by the restriction to the open subspace X − f(Y − U) ⊆ X, and hence
Y by U − f−1(f(Y −U)), we may assume that Y is quasiaffine. Thus, Proposition
5.1.3 implies that X is a scheme. �

(5.1.5) Theorem. Let f : Z → X be an integral and surjective morphism of alge-
braic spaces with finite topological fibres over a base algebraic space S. Then Z → S
is an AF-morphism if and only if X → S is an AF-morphism.

Proof. We may assume that the base S is affine. Since finite morphisms are
representable and affine, the condition is clearly sufficient. So let us assume that Z
is an AF -scheme. From Corollary 5.1.4 follows that X is representable by a scheme.
Let xi ∈ X be a finite set of points. By applying the argument in the proof of 5.1.4
for the finite set {xi} we may assume that Z is quasiaffine. Then the result is a
consequence of Proposition 5.1.3. �

(5.1.6) Remark. In particular, if Z → S is quasiaffine, then X → S is schematic
and separated.

The following lemma is folklore but stated for lack of reference.

(5.1.7) Lemma. Every cartesian square of algebraic spaces below with g birational,
finite and schematically dominant and u the closed immersion defined by the con-
ductor ideal, is also cocartesian.

Y ′
v //

g

��

X ′

f

��
Y

u //v // X

(5.1.7.1)

Proof. Note first that if X is an affine scheme, then also X ′, Y and Y ′ are
affine schemes, as all maps above are affine. In this case, the assumptions on u
and f guarantee that the square is cocartesian, as one checks by a ring-theoretic
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calculation. As we see next, the general case follows from this, since all hypothesis
above are stable under flat base change.

So, let us suppose we have two morphism of algebraic spaces α : X ′ → Z and
β : Y → Z satisfying αv = βg. We have to show that both factor over a unique
map γ : X → Z.

The uniqueness of γ is local over Z and over X. Therefore, by taking suitable
étale coverings of Z, respectively of X, this reduces to the affine case, which was
settled above.

To show the existence, we use the uniqueness, and may therefore assume that Z
is an affine scheme by using again an étale covering of Z. Then, by taking an affine
étale covering U → X, we deduces the existence of a map U → Z. By taking the
affine étale covering U ×X U → X, we infer that U → Z is compatible over U ×X U
and therefore get our desired morphism X → Z. �

5.2. Properties of morphisms with generating structure sheaf

Let us first collect the permanence properties of morphisms f : X → Y , whereOX
is weakly f -generating, respectively f -generating (see Def. 3.4.2), before we show
in the next section that they coincide with quasiaffine morphisms if the relative
stabilizer groups are affine. As a special case of Lemma 3.4.1 we have a list of
equivalent definitions.

(5.2.1) Proposition. Let f : X → Y be a quasicompact and quasiseparated mor-
phism of algebraic stacks. Then the following are equivalent:

(i) OX is weakly f -generating.

(ii) The pushforward f∗ : QCoh(X)→ QCoh(Y ) is faithful.

(iii) For every quasicoherent OX-moduleM the evaluation map f∗f∗M→M
is surjective.

One may drop the attribute “weakly” in (i) if the analogous conditions in (ii) and
(iii) are satisfied for arbitrary base changes f .

The collection of morphisms of algebraic stacks whose domain has relatively
weakly generating structure sheaf satisfies the following permanence properties:

It is local on the base for fpqc-coverings (3.4.5) and hence contains all quasi-
affine morphisms (3.4.6). It is closed under 2-isomorphism and composition, and
satisfies the left-cancellation property with respect to quasiseparated morphisms
(3.4.9). Moreover, it is stable under arbitrary base change and finite products if
the base has quasiaffine diagonal (3.4.13 and 3.4.18); recall, that the latter holds
for all quasiseparated schemes, algebraic spaces, Deligne-Mumford stacks, or more
generally all algebraic stacks with quasifinite diagonal (we refer to appendix B).

In particular, for every morphism whose target has quasiaffine diagonal the struc-
ture sheaf of the domain is weakly relatively generating if and only if it is relatively
generating (3.4.16).

The permanence properties of the collection of morphisms with relatively gen-
erating structure sheaf is much better behaved: It is also fpqc-local on the base
(3.4.5), contains all quasiaffine morphisms (3.4.6) and is closed under composition
(3.4.9), but by definition stable under arbitrary base change. It follows that it is
also closed under arbitrary finite products (3.4.18) and satisfies the left-cancellation
property with respect to morphisms whose diagonal has generating structure sheaf
(3.4.9). Moreover, this property can be checked over affines (3.4.17).
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5.3. Relation to quasiaffine schemes

We shall prove the characterization of quasiaffine algebraic stacks (Theorem 5.3.2)
and provide a proof for the relative case of quasiaffine morphisms later on with a
suitable definition of relative pointwise affine stabilizer groups (Theorem 5.3.8).

Let us first tackle the case of a classifying stack. This will be important to prove
the triviality of the stabilizer groups in the general case.

(5.3.1) Proposition. Let S be an algebraic space with affine diagonal over Z, and
let G→ S be a separated, flat and finitely presented group S-space with classifying
stack q : BSG → S. Then OBSG is weakly q-generating if and only if q∗ and q∗
induce an equivalence of categories:

QCoh(BSG)
q∗
�
q∗

QCoh(S). (5.3.1.1)

In particular, if G→ S is affine, then this can only happen if q is an isomorphism,
or representable, or equivalently if G is the trivial S-group space.

Proof. We freely use the identification of quasicoherent OBSG-modules with
quasicoherent G-equivariant OS-modules (as explained in [AOV08, 2.1]). Denote
by p : S → BSG the fppf presentation associated with the trivial G-torsor. All
O-modules and sheaves are assumed to be quasicoherent O-modules by abuse of
notation. First of all, we recall some properties of p and q. We have q ◦ p ' 1S ,
hence q∗ ◦ p∗ ' 1QCoh(S). Now p∗ is the functor that forgets the G-structure and
p∗ endows an OS-module with the trivial G-action. q∗ is the functor that takes
G-invariants and one checks that q∗ ' p∗. It follows that q∗q∗ ' q∗p∗ ' 1QCoh(S),
hence q∗ is a quasi-right-inverse of q∗. For a G-sheaf F follows that subsheaf of
G-invariants q∗q∗F embeds in F via the canonical evaluation map q∗q∗F → F .

Now OBSG is q-generating if and only if for every F , the evaluation map
q∗q∗F � F is an epimorphism. So by the previous discussion this holds if and
only if this is an isomorphism of quasicoherent sheaves. Equivalently, if q∗ is a
quasi-left-inverse of q∗. This verifies the first assertion.

The last assertion can be deduced from Tannaka theory for algebraic stacks as
presented in [Lur05]. Since G→ S is affine, BSG→ S has affine diagonal, so BSG
has affine diagonal over Z. Moreover, the algebraic space S is local for the étale
topology in the sense of [Lur05, Def. 4.2] by Remark 4.4 loc. cit. So, if the tensor
functor q∗ : QCoh(S) → QCoh(BSG) is a 2-isomorphism, then q : BSG → S must
be already a 2-isomorphism by Theorem 5.11 loc. cit.. Then ∆q is an isomorphism,
but the restriction of ∆q along p×S p : S → BSG×SBSG is 2-isomorphic to G→ S
and we conclude the assertion. �

In order to transfer the previous model case to an arbitrary quasicompact alge-
braic stack X over an algebraic space S, we recall how the the stabilizer groups
determine the local structure of algebraic stacks.

For an S-morphism f : T → X, the stabilizer of f , denoted by Gf or AutX(T )(x),
is the algebraic group S-space defined by the fiber products

Gf //

��

IX //

��

X

∆X/S

��
T

f // X
∆X/S// X ×S X

(5.3.1.2)

Here IX = I(X/S) is called the inertia stack ; it is a group stack over X. The
structure morphisms Gf → T and IX → X are representable, separated and of
finite type since ∆X/S is [LMB00, 4.2].
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(5.3.2) Theorem. Let X be an algebraic stack over an algebraic space S with affine
stabilizer groups at closed points. Then X → S is representable by a quasiaffine
morphism if and only if OX is generating over S.

Proof. Clearly, the condition is necessary, for a quasiaffine map of schemes
has relatively ample structure sheaf [EGA II, 5.1.2(e’)], so it requires to verify the
sufficiency.

We first show that X is representable by an algebraic space using Lemma 5.3.3
below. The arguments generalize parts of [EHKV01, 2.12] in the non-noetherian
case. By assumption X is quasicompact and has separated diagonal of finite type.

We use that every point of X is algebraic in order to attach the classifying stack
of the stabilizer groups (this holds by [Ryd10a, B.1], correcting the definition of
[LMB00, 11.2]). For that, let ξ ∈ |X| be a closed S-point. Then there exists
a representative x : Spec k → X which factors over a quasiaffine monomorphism
Gξ ↪→ X, where Gξ is the residual gerbe of ξ which is of finite presentation over the
residue field k(ξ). It follows that there exists a finite field extension k(ξ) ⊂ L such
that Gξ ⊗ L ' BGx′ , where x′ : SpecL → Spec k(ξ) → X is the induced represen-
tative of ξ. Since OX is generating over X and the composition BGx′ → Gξ → X
is quasiaffine, we conclude that OBGx′ is generating. So by our model case 5.3.1,
we know that Gx′ must be trivial.

Thus, the inertia group morphism θ : IX → X has 0-dimensional closed
fibers. But it is also of finite type since ∆X/S is, so that the fiber dimension
x → dimk(x) θ

−1(x) is upper semi-continuous (the proof is local over X, but the
proof for group schemes [SGA 3.1, IVB 4.1] literally translates to algebraic group
spaces). Then IX → X must be quasifinite, and hence is quasiaffine [OS03, 3.1].
It follows that for the non-closed S-points x : Spec k → X, the stabilizer group
spaces Gx are quasiaffine algebraic group schemes, and hence also affine because
the base is a field [FSR05, 7.5.3]. By repeating the previous argument they are a
posteriori trivial. From Lemma 5.3.3 follows that X is representable.

This shows that f : X → S is a morphism of algebraic spaces. In order to verify
that f is quasiaffine, we may suppose that S is affine by étale descent, and even
set S = Spec Z. By [Ryd10b, Thm. B] there exists a scheme Z and a finite,
finitely presented and surjective morphism f : Z → X. It follows that f∗OX is
generating for Z. So if Z is a quasiaffine scheme, then Theorem 5.1.5 implies that
X is representable by a scheme.

This reduces to the final case that X is a scheme. Since OX is generating,
every quasicoherent ideal sheaf is quotient of a free OX -module. It follows that
the open subsets Xf , where f runs over the global sections of OX , define a base of
the Zariski-topology. Since X is covered by affine open subschemes, there exists a
subbase consisting of affines Xf . For these f holds that Γ(X,OX)f → Γ(Xf ,OXf )
is bijective [EGA I2nd, 6.8.3]. Thus, the affine hull p : X → Spec Γ(X,OX) induces
an isomorphism p−1(D(f)) → Xf , and is hence a quasicompact open immersion.
This settles that X is quasiaffine, as required. �

The following representability criterion is probably well-known [EHKV01, 2.12],
yet stated here for lack of reference for the non-noetherian case.

(5.3.3) Lemma. An algebraic S-stack X is representable by an algebraic S-space
if and only if the stabilizer groups vanish at every geometric S-point.

Proof. Trivially, the condition is necessary. Now X is representable by an
algebraic S-space if and only if ∆X/S is a monomorphism, equivalently if and only
if for each S-point T → X the stabilizer group space Gf → T is the trivial group
space [LMB00, 8.1.1]. Clearly, this is also equivalent to the fact that the inertia
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stack θ : IX → X is trivial, i.e. that f is an isomorphism, or that the unit section
ε : X → IX is an isomorphism.

The hypothesis on the stabilizers implies that θ is an isomorphism over every
geometric point and hence is quasifinite. Since θ is representable, separated and
of finite type, we conclude that θ is quasiaffine, and hence schematic. So by base
change, we may assume that θ is a quasiaffine morphism of schemes and an isomor-
phism over all geometric points. Even now the latter holds over every point, using
descent and a standard approximation argument since every fiber is of finite type
and thus of finite presentation. Since θ is (locally) of finite type, we conclude that
θ is a monomorphism [EGA IV.4, 17.2.6]. It follows that ε is an isomorphism, as
required. �

(5.3.4) Remark. We infer that the second assertion in Proposition 5.3.1 is also valid
if G → S is a separated, flat and finitely presented group space with affine fibers
at closed points. Note that affine or quasiaffine morphisms cannot be detected
fiber-wise; thus, this hypothesis is far more general.

5.3.1. The relative case. In order to provide Theorem 5.3.2 in the relative
setting, we have to define a suitable hypothesis on the relative stabilizer groups of
a morphism X → Y which is local on the target. In contrast to the absolute case,
we formulate these restrictions on the relative stabilizer groups over all geometric
points, rather than just the closed ones, in order to obtain a well behaved property
of morphisms.

(5.3.5) Definition. A morphism f : X → Y of algebraic stacks has (rela-
tively) affine stabilizers at all geometric points if the relative inertia stack
I(X/Y ) = X ×X×YX X → X has affine geometric fibers.

(5.3.6) Remark. One checks, that this property is fppf local on the target and
stable under arbitrary base change. Moreover, it is closed under composition, using
that for two morphisms of algebraic stacks f : X → Y , g : Y → Z holds the formula
I(X/Y ) = ker(I(X/Z) → f∗I(Y/Z)) and that the extension of two affine group
schemes is affine.

(5.3.7) Example. Every morphism f with quasiaffine diagonal, or just with quasi-
affine relative inertia, has relatively affine stabilizers at all points (5.3.1.2). This in-
cludes all morphisms that have quasifinite diagonal, like a relative Deligne-Mumford
stack, or a relative algebraic space (i.e. a representable morphism).

As a formal consequence we obtain a relative version of Theorem 5.3.2.

(5.3.8) Theorem. Let f : X → Y be a morphism of algebraic stacks with relatively
affine stabilizers at geometric points. Then f is quasiaffine if and only if OX is
f -generating.

Proof. All properties under consideration are fppf local on the target and
stable. So, we may assume that Y is an algebraic space and Theorem 5.3.2 applies.

�

Using that the diagonal of a morphism of algebraic stacks is always representable,
we infer the following corollaries.

(5.3.9) Corollary. A morphism of algebraic stacks f : X → Y has quasiaffine
diagonal ∆f if and only if OX is ∆f -generating.
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A morphism with quasiaffine diagonal has quasiaffine relative inertia and hence
affine relative stabilizer groups at geometric points. This allows us to give a char-
acterization of quasiaffine morphisms in purely sheaf theoretic terms.

(5.3.10) Corollary. A morphism of algebraic stacks f : X → Y is quasiaffine if
and only if OX is generating for f and ∆f .



CHAPTER 6

Tensor generators and Totaro’s Theorem

For an arbitrary quasicompact and quasiseparated algebraic stack with affine
stabilizer groups at geometric points, we show that a vector bundle has quasiaffine
frame bundle if and only if an associated family of vector bundles, the local tensor
hull 〈E〉, is a generating family for QCoh(X) (cf. Theorem 6.2.12). This unifies the
following well-known facts from projective geometry and representation theory of
algebraic groups.

(i) An invertible sheaf L on a quasicompact and separated scheme X is
ample if and only if for every finite-type sheaf F and n ∈ N sufficiently
large, the twist F ⊗ L⊗n is globally generated.

(ii) Let G a closed algebraic subgroup scheme of GLn,k over a field k. Then
every finite-dimensional, rational representation of G can be constructed
from its original representation on kn by the process of forming tensor
products, direct sums, subrepresentations, quotients and duals [Wat79,
3.5].

First, we recall in section 6.1 the correspondence between GLn-torsors and vector
bundles of rank n. In section 6.2 we begin with the definition of tensorial construc-
tions and introduce the concept of the (local) tensor hull. Then we study vector
bundles, whose local tensor hull is a generating family, and call them tensor gener-
ators. After proving Theorem 6.2.12, we generalize this to finite and infinite tensor
generaring families.

6.1. Correspondence between frame bundles and vector bundles

As a preparation for the following section we recall the correspondence between
vector bundles and GLn-torsors.

6.1.1. Frame bundles. Let X → S be a morphism of algebraic stacks. Re-
call that there is a one-to-one correspondence between locally free OX -modules of
rank n and GLn,S-torsors over X (in the fppf or equivalently étale topology, since
GLn,S = GLn,Z×ZS → S is smooth and connected, or even in the Zariski topology
[Ser95] if X is a scheme).

For a vector bundle E of rank n, the frame bundle p : E = Isom(E ,O⊕nX ) → X

is the open substack of HomS(E ,O⊕nX ) = SpecX Sym(Hom(E ,O⊕nX )∨) → X, that
parametrizes isomorphisms E '−→ O⊕nX . It has a natural structure over S and the
projection p is an affine and finitely presented morphism. Furthermore, it carries
a right-action of GLn,S which turns it into a torsor (see [HL97, 4.2.3] for more
details). In particular, E → X is smooth, affine and has connected fibers by fppf
descent.

Conversely, given a GLn,S-torsor E → X, then GLn,S acts naturally on AnS from
the left, and V = E ×GLn,S AnS = E ×S AnS/GLn,S → X becomes a vector bundle,
whose associated sheaf of sections E is locally free.

63
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6.1.2. Universal vector bundle. BGLn,S = BGLn,Z ×Z S carries a canon-
ical locally free sheaf V of rank n whose associated frame bundle is the trivial
GLn,S-torsor. Using the correspondence between quasicoherent OBGLn,S -modules
and quasicoherent OS-modules endowed with a OGLn,S -coaction, one checks that V
is the standard representation of GLn,S . In turn, one recovers the originally locally
free sheaf via the classifying morphism c : X → BGLn,S by E ' c∗V.

This gives a natural connection between properties of V and those of E as long as
they are preserved under c. For example, one may define the cohomological Chern
classes of E as the pullback of those of V (see [Hei05] for a recent discussion).

6.1.3. Algebraic G-bundles. Let us consider vector bundles whose associ-
ated frame bundle is induced by torsor for some affine group scheme G→ S.

(6.1.1) Definition. Let S be an affine scheme and ϕ : G→ GL a closed subgroup
S-scheme that is faithfully flat and finitely presented over S.

A vector bundle E on an algebraic S-stack X is called an algebraic G-bundle
(with respect to ϕ) if the classifying morphism X → BGLn,S factors over
B(ϕ) : BSG→ BGLn. We say that G is a structure group of E (w.r.t. ϕ). If B(ϕ)
(or equivalently GLn/G→ S) is quasiaffine, then we shall say that G is admissible.

If not stated otherwise, we will consider every vector bundle of rank n as an
algebraic GLn-bundle.

We will see that locally free sheaves of linearly reductive representation type ap-
pear naturally in the context of tensor generating sheaves (see Proposition 6.2.11).

(6.1.2) Example. If S is of characteristic 0, then every vector bundle has linearly
reductive structure group GLn,S ' GLn,Q ×Q S.

(6.1.3) Example. A vector bundle E decomposes as the direct sum of n invertible
sheaves if and only if E is an algebraic Gn

m-bundle with respect to the diagonal
embedding ϕ : Gn

m ↪→ GLn. In particular, E has linearly reductive structure group
in this case.

6.1.4. Properties of the classifying morphism. Properties of the classi-
fying map are related to those of the total space q : E → S of the frame bundle,
due to the canonical fiber square

E
p //

q

��

X

c

��
S // BGLn,S

where the lower horizontal arrow is the smooth presentation corresponding to the
trivial GLn,S-torsor. Let now P be a property of morphisms of algebraic S-stacks
(e.g. representable or quasiaffine). If P is stable, then it would descend from c to
q, and the converse holds if P is fppf local. This proves the following Lemma:

(6.1.4) Lemma. Let P be a property of morphisms of algebraic stacks that is stable
and fppf local on the target.

Let X → S be a morphism of algebraic stacks and E a vector bundle on X of
constant rank. Then the following are equivalent:

(i) For the frame bundle E → X of E, the total space E → S has P.

(ii) The classifying morphism X → BGLn,S has P.
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For example, these conditions are satisfied for representable, quasiaffine mor-
phisms or morphisms with relatively generating structure sheaf. However, strongly
representable (i.e. schematic) morphisms, or morphisms with the resolution prop-
erty, do not satisfy fppf descent in general (see 4.3.8 for a counterexample of the
latter).

6.1.5. Relation between frame bundles and the resolution property.
Using the frame bundle correspondence, the study of the resolution property of a
morphism of algebraic stacks f : X → S is equivalent to the study of the resolu-
tion property of a collection of morphisms fi : X → Si whose targets Si are more
stacky, but whose fibers are simpler in important cases. Consider the following first
demonstration to illustrate this issue:

(6.1.5) Proposition. Let f : X → S be morphism of algebraic stacks and E a
locally free OX-module of rank n with associated frame bundle p : E → X. Then
the following are equivalent:

(i) f : X → S has the resolution property.

(ii) The classifying S-morphism c : X → BGLn,S has the resolution property.

(iii) f ◦ p : E → S has the resolution property given by a generating family of
GLn,S-linearized locally free OX-modules.

Proof. We know that BGLn,S → S satisfies the resolution property by Ex-
ample 4.3.2 and that it has affine diagonal. So everything follows from Proposition
4.3.1. �

We will investigate in section 6.2.2 those locally free sheaves more closely whose
classifying morphisms X → BGLn,S have the resolution property in its most sim-
plest form; namely, where OX is relatively generating.

6.2. Tensor generators and quasiaffine frame bundles

So far, we have ignored the tensor structure and the size of the generating families
of locally free sheaves. They belong to an additive tensor subcategory and satisfy
fpqc-descent. Instead of carrying an explicit family, we may restrict to study those
members, which generate the remaining ones by tensorial constructions. Unless
stated otherwise explicitly, we restrict to locally free generating sheaves.

6.2.1. Tensorial constructions and local tensor hulls. For a vector bun-
dle E on an algebraic stackX we associate a family of vector bundles 〈E〉 by tensorial
constructions, which has the property that every member becomes globally gener-
ated after restricting to the frame bundle E → X. We will see in section 6.2.2 that
such a family is generating if and only if E is quasiaffine.

(6.2.1) Definition. By a tensorial construction we mean a finite composition t of
the canonical (bi-) functors ⊕, ⊗, (·)∨ that has one input and one output datum.

(6.2.2) Example. Examples are the constant functor F → O, the n-th direct sum
F → F⊕n, the n-th tensor power F → F⊗n or F →

⊕n
i=0

⊕n
j=0 F⊗i ⊗ (F∨)⊗j .

(6.2.3) Remark. Tensorial constructions preserve isomorphisms and respect globally
free sheaves. Moreover, they commute with pullbacks f∗ for arbitrary morphisms
f : X → Y of algebraic stacks.
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(6.2.4) Definition. The tensor hull |E| of a vector bundle E on an algebraic stack
X is the full subcategory of QCoh(X) whose objects are direct summands of ten-
sorial constructed t(E), for some tensorial construction t.

The local tensor hull 〈E〉 of E is the full subcategory of QCoh(X) of all quasico-
herent OX -modules F endowed with an injection F ↪→ t(E) that is locally split (cf.
Def. 3.5.3) relative to the frame bundle E → X for some tensorial construction t.

Clearly, holds |E| ⊂ 〈E〉 and the inclusion is proper because injections of vec-
tor bundles do not split in general. Before we discuss examples we give a list of
properties whose verification is straightforward and hence omitted.

(6.2.5) Remark. Let 〈·〉 be either 〈·〉 or |·|.
(i) 〈E〉 consists entirely of locally free OX -modules of finite type by fppf

descent along the frame bundle.

(ii) For every morphism of algebraic stacks f : Y → X exists a natural inclu-
sion f∗ 〈E〉 ⊆ 〈f∗E〉 according to the universality of frame bundles. If f
is an isomorphism, then this is an equivalence.

(iii) Every isomorphism E ∼−→ E ′ induces an equivalence 〈E〉 ∼−→ 〈E ′〉.
(iv) For every n ∈ N holds that every sheaf in 〈O⊕n〉 is quotient of a free

sheaf of finite type.

(v) For every F ∈ 〈E〉 the pullback along the frame bundle E → X is globally
generated by (ii)-(iv)

As the following example illustrates, the tensor hull of a line bundle is a familiar
object when studying resolutions that are made up by line bundles.

(6.2.6) Example. Let X be a connected algebraic stack.
(i) Let L be an invertible sheaf on X. Then the elements in |L| are finite

direct sums of Ln for some n ∈ Z. For that let F ⊂ t(L) be a direct sum-
mand for some tensorial construction t. Clearly holds t(L) =

⊕
i∈I Lni

for a finite family of integers ni ∈ Z. By intersecting this decomposi-
tion with F , we get a decomposition F =

⊕
i∈I Fi, where Fi is a direct

summand of Lni , and hence zero or isomorphic to the latter.

(ii) The previous example generalizes to families L1, . . . ,Lr of invertible
sheaves. One checks that every element in |

⊕r
i=1 Li| can be written

as a direct sum of tensor products Ln̄ with n̄ ∈ Zr.
The use of the local tensor hull will be important in the following section.

(6.2.7) Lemma. Let G be an affine, flat, finitely presented and linearly reductive
group scheme over an affine base S. Then for every vector bundle E on BG holds
|E| = 〈E〉.

Proof. It suffices to show that |E| ⊃ 〈E〉. For that, let F be locally free sheaf
of finite type appearing in 〈E〉. Then there exists a tensorial construction t and an
injective map ϕ : F ⊂ t(E) which is locally split with respect to the frame bundle
E → X of E . We have to show that ϕ is split. First, note that G := cokerϕ is also
locally free of finite type by smooth descent. The obstruction for the splitting of ϕ
is an element of Ext1(G,F) ' H1(BSG,G∨ ⊗F). However, the latter group is zero
since BSG → S is cohomologically affine, by definition of the linear reductivity of
G→ S [Alp09, 11.1]. �
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6.2.2. Tensor generators and quasiaffine frame bundles. We show next
that the local tensor hull of a vector bundle is a generating family if and only if the
frame bundle of the latter has a quasiaffine total space.

(6.2.8) Definition. Let f : X → Y be a quasicompact and quasiseparated mor-
phism of algebraic stacks with relatively affine stabilizers at geometric points. We
shall call a vector bundle E a tensor generator for X over S (with respect to f), if
〈E〉 is an f -generating family. If the subfamily |E| is f -generating, then we call E a
strict tensor generator for X over S.

The need for local tensor hulls, rather than tensor hulls is due to the existence of
non-semisimple representations if one takes non-linearly reductive group schemes
into account.

(6.2.9) Lemma. Let S be a quasicompact and quasiseparated algebraic stack. The
universal vector bundle E on BGLn,S is a tensor generator over S.

Proof. We may assume that S = Spec Z. Set G = GLn,S for simplicity. In
order to show that 〈E〉 is a tensor generating family, we have to resolve an arbitrary
quasicoherent sheaf M on BG. Denoting by f : S → BGLn,S the trivial GLn,S-
torsor, we may assume that M is a flat f -locally split subsheaf of (f∗OS)⊕I for
some set I by Proposition 3.5.4. By intersecting the decomposition of the latter
down toM we may even assume that I is a singleton. We exploit now the explicit
description of the regular representation f∗OS .

For that, let us identify the category of quasicoherent sheaves on BG as the
category of OG-comodules. Here OG = Z[xij ][det−1] is the corresponding Hopf
algebra, where det ∈ Z[xij ] is the monic determinant polynomial of degree n.
Its comultiplication µ : OG → OG ⊗ OG is given by xij →

⊕n
k=1 xik ⊗ xkj so

that µ : OG → (OG)0 ⊗ OG becomes a homomorphism of comodules, where the
subscript 0 denotes the trivial coaction. The coinverse ι : OG → OG is given by
xij → det−1cji, where cij ∈ Z[xij ] are the cofactors.

Let us give a coordinate free presentation of OG. We identify the stan-
dard representation E as the free module E0 := Z⊕n = 〈ei〉 that is endowed
with the natural comodule structure % : ej →

⊕n
k=1 ek ⊗ xkj . This coaction

extends naturally to a coaction on Sym E and on
∧n E . The determinant

realizes the homomorphism of comodules (OS)0 →
∧n E . Then the quo-

tient map Z[xij ][T ] = (Z[x1,j ] ⊗ · · · ⊗ Z[xn,j ])[T ] → Z[xij ][det−1], sending
T to det−1, can be written as a surjective homomorphism of comodules⊕

i≥0 Sym(E)⊗n ⊗ (
∧n E)⊗−i � OG.

It follows that the preimage of the non-equivariant split subcomodule M ⊂ OG
is a non-equivariant split subsheaf M′ ⊂:=

⊕
i,j≥0 Symj(E⊕n) ⊗ (

∧n E)⊗−i. Us-
ing that Symj and

∧n are quotients of tensor products, we infer that M′ is a
quotient of a non-equivariant split subsheaf M′′ ⊂

⊕
i,j≥0(E⊕n)⊗j ⊗ (E∨)⊗ni. In

particular, M′′ is an element of 〈E〉. If S is of characteristic 0 or if n = 1, then
GLn,S = GLn,Q ×Q S is linearly reductive over S [Alp09, Ex. 11.4], so that the
inclusion M′′ ↪→

⊕
i,j≥0(E⊕n)⊗j ⊗ (E∨)⊗ni is split. Therefore, M′′ is already an

element of |E|. �

(6.2.10) Lemma. Let ϕ : G ⊂ GLn,S be a closed subgroup scheme that is flat,
finitely presented over an affine base S such that GLn,S/G is quasiaffine. If G→ S
is linearly reductive, then for the induced map Φ: BSG→ BGLn,S and the universal
bundle Euniv on BGLn,S follows that Φ∗Euniv is a strict tensor generator on BSG.

Proof. Since |E| is a generating family on BGLn,S by 6.2.9, it follows that
Φ∗ |E| is a generating family on BSG because Φ is quasiaffine by Lemma 4.3.16.
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Therefore Φ∗E is a tensor generator on BSG using 6.2.5.(ii). Since G is linearly
reductive, we conclude that E is already a strict tensor generator by 6.2.7. �

Finally, we have set up the framework to give a characterization of generating
locally free sheaves in terms of the associated frame bundle.

(6.2.11) Proposition. Let f : X → Y be a morphism of algebraic S-stacks and
let E be a vector bundle on X of rank n, with associated frame bundle p : E → X
and classifying morphism c : X → BGLn,S. Then the following assertions are
equivalent:

(i) The local tensor hull 〈E〉 is a generating family for X over Y .

(ii) OE is generating for fp : E → X → Y .

(iii) OX is generating for (f, c) : X → BGLn,Y = Y ×S BGLn,S .
Moreover, condition (i) is always satisfied if

(iv) the tensor hull |E| is a generating family for X over Y ,
and the converse holds if E has a admissible linearly reductive structure group (cf.
6.1.1); for instance, if E is a direct sum of invertible sheaves, or if S is of charac-
teristic 0.

Proof. First note, that (ii) ⇔ (iii) follows from fppf descent, and (iv) ⇒ (i)
is trivial as |E| ⊂ 〈E〉.

The implication (i) ⇒ (ii) is easy. Suppose that 〈E〉 is a f -generating family. In
particular, f is quasicompact and quasiseparated. Then p∗ 〈E〉 is pf -generating
because f is affine. It follows that the larger family 〈f∗E〉 '

〈
O⊕E
〉

is also a
fp-generating family consisting of globally generated sheaves. Thus, OE is fp-
generating.

So let us prove now (iii) ⇒ (i): Let ϕ : G ↪→ GLn be the embedding of the
structure group of E . The Y -morphism (c, f) : X → BGLn,Y factors as the top row
of the following 2-commutative diagram

X
(f,c) //

f

((QQQQQQQQQQQQQQQQQ Y ×S BSG
pr2 //

pr1

��
�

BSG

��

Φ // BGLn,S

yytttttttttt

Y // S

(6.2.11.1)

By Lemma 6.2.9 we know that
〈
Euniv

〉
is a generating family for BGLn,S → S.

Since G is admissible, Φ is quasiaffine by 4.3.16. So Φ∗
〈
Euniv

〉
is a generating

family for BSG→ S. Thus, the base change pr2
∗ 〈Euniv

〉
is a generating family for

pr1. Hence, the composition {OX}⊗OX (f, c)∗pr2
∗Φ∗

〈
Euniv

〉
is a tensor generating

family for pr1 ◦ (f, c) ' f . However, for the latter family holds by 6.2.5

(f, c)∗pr2
∗Φ∗

〈
Euniv

〉
' c∗

〈
Euniv

〉
⊆
〈
c∗Euniv

〉
' 〈E〉 .

We conclude that 〈E〉 is an f -generating family, as required.
For the final implication (iii)⇒ (iv) we may replace 〈·〉 by |·| in the argumentation

above by Lemma 6.2.10. �

(6.2.12) Theorem. Let X → S be a quasicompact and quasiseparated morphism
of algebraic stacks and let E be a vector bundle on X. Then the following conditions
are equivalent:

(i) E is a tensor generator for X over S.

(ii) The frame bundle of E has quasiaffine total space over S.
Moreover, if these conditions are satisfied, then the diagonal ∆X/S is affine.
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Proof. The equivalence is a consequence of 6.2.11 and Theorem 5.3.8. If these
conditions hold, then X ' [E/GLn,S ] where E is the total space of the frame bundle
associated to E . Therefore X is a global quotient stack over S and hence has affine
diagonal ∆X/S by 4.3.7. �

(6.2.13) Corollary. A morphism X → S of algebraic stacks is a global quotient
stack if and only if there exists a tensor generator for X → S.

6.2.3. Properties of tensor generators. Due to the universality of the
frame bundle construction, we infer from Theorem 6.2.12 immediately that ten-
sor generators are stable under pullbacks by quasiaffine maps, stable under base
change and fpqc-local on the target, as this holds for quasiaffine maps.

(6.2.14) Proposition. Let X → S be a morphism of algebraic stacks and E ,F be
vector bundles on X of constant rank. Then the following properties hold for tensor
generators relative to X → S:

(i) If t(E) is a tensor generator for some tensorial construction t, then E is
a tensor generator.

(ii) E is a tensor generator if and only if E∨ is a tensor generator.

(iii) If E is a tensor generator, then E ⊕ F is a tensor generator.

(iv) If E ⊗ F is a tensor generator, then E ⊕ F is a tensor generator.

(v) E is a tensor generator for X → S if and only if E|Xred
is a tensor

generator for Xred → S.

Proof. For a vector bundle V let us denote by F (V) → X the associated
frame bundle.

(i): From the modular description of frame bundles one deduces a map
F (E) → F (tE) over X, using that tensorial constructions preserve isomorphisms
and globally free sheaves (6.2.5). By the left cancellation property for affine maps
this must be affine. Therefore, if F (tE) is quasi-affine over S it follows that F (E)
is quasiaffine over S.

(ii): There is a canonical isomorphism F (E) '−→ F (E∨).
(iii): This follows from the following Lemma 6.2.15.
(iv): Using the modular description of frame bundles, we infer the existence of

an affine map F (E)×X F (F)→ F (E ⊗ F) as above (i).
(v). F (E) → S is quasiaffine if and only if F (Ered) ' F (E)red → Sred is quasi-

affine, and the closed immersion is always (quasi-) affine. �

The following Lemma is due to Rydh [Ryd09].

(6.2.15) Lemma. Let X → S be a morphism of algebraic stacks and E0 := E1⊕E2 a
decomposition of vector bundles on X of rank ni ∈ N with associated frame bundles
Ei → X, i = 0, 1, 2. Then E1 ×X E2 → S is quasiaffine if and only if E0 → S is
quasiaffine.

In particular, this holds if E1 or E2 is quasiaffine over S.

Proof. If E1 is quasiaffine over S, the same holds for E1 ×X E2 since the
bundle projection E2 → X is affine. So let us assume that the latter holds. Note
that the fiber product is a GLn1 ×S GLn2 -torsor. Using fppf descent, we conclude
that the classifying map X → B(GLn1×SGLn2) is quasiaffine (4.3.0.1). Composing
it with the affine morphism B(GLn1 ×S GLn2)→ BGLn0 that corresponds to the
diagonal embedding (4.3.17), it follows that the composition X → BGLn0 , which
classifies E0, is quasiaffine.
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Conversely, if X → BGLn0 is quasiaffine, then X → B(GLn1 ×S GLn2) is
quasiaffine by the left-cancellation property for quasiaffine morphisms of algebraic
stacks. �

6.2.4. Finite tensor generating families. Being a tensor generator is stable
under adding finitely many vector bundles by 6.2.14.(iii). Clearly, this property
does not descend to direct summands, in general. However, we shall see that if E
decomposes as a direct sum of E = E1⊕· · ·⊕En, then the whole collection E1, . . . , En
behaves like a tensor generator.

(6.2.16) Proposition. Let X → S be a morphism of algebraic stacks with affine
stabilizers at geometric points and E1, . . . , En a finite family of vector bundles of
constant rank on X. Then the following are equivalent:

(i)
⊕n

i=1 Ei is a tensor generator for X over S.

(ii)
⊗n

i=1 〈Ei〉 is a generating family for X over S.

(iii) The fiber product
∏n
i=1(Ei/X) of the frame bundles Ei → X of the Ei’s

is quasiaffine over S.

Moreover, condition (ii) is always satisfied if

(iv)
⊗n

i=1 |Ei| is a generating family for X over S,

and the converse holds, if each Ei has an admissible linearly reductive structure
group.

Proof. The proof is an extension of the proof of Theorem 6.2.12. The equiv-
alence (i) ⇔ (iii) from Lemma 6.2.15 and Theorem 6.2.12 by induction. For (ii) ⇒
(iii) check that

⊗
i 〈Ei〉 pulls back on

∏
i(Ei/X) to a family of globally generated

sheaves.
The final implication (iii) ⇒ (ii) goes as follows. Let ϕi : Gi ↪→ GLni,S be the

embedding of structure groups of the Ei’s with induced map Φi : BGi → BGLni,S .
By assumption the classifying morphism X → B(

∏
iGLni,S) is quasiaffine,

where ni ∈ N denotes the rank of Ei. It factors over c : X → B(
∏
iGi)

which is also quasiaffine because the diagonal of the representable morphism
B(
∏
ϕi) : B(

∏
iGi)→ B(

∏
iGLni,S) is quasiaffine.

There is a natural isomorphism b : B(
∏
iGi) '

∏
iBGi which induces the

classifying morphism cj : X → BGj of Ej , by composing b ◦ c with the projection
prj :

∏
iBGi → BGj . Since each Φi∗

〈
Euniv
i

〉
is a tensor generating family

for BGi → S, the tensor product
⊗

i pri∗Φi
∗ 〈Euniv

i

〉
is a tensor generating

family for
∏
iBGi → S by Proposition 3.4.18. Thus,

⊗
i c
∗b∗pri∗Φi

∗ 〈Euniv
i

〉
is a tensor generating family for X → S. Using the natural embedding
c∗b∗pri∗Φi

∗ 〈Euniv
i

〉
⊂
〈
ci
∗Φi∗Euniv

i

〉
= 〈Ei〉 one finishes this part.

Now (ii) ⇔ (iv) is trivial and (iv) ⇔ (iii) follows by replacing 〈·〉 above with |·|
and using that the structure groups Gi → S are linearly reductive. �

(6.2.17) Definition. We shall say that a finite family of vector bundles E1, . . . , En
on an algebraic stack X over S is a tensor generating family for X over S, if it
satisfies one of the equivalent conditions of 6.2.16 above.

On the one hand 6.2.16 characterizes a tensor generating family as the direct
summands of a tensor generator as claimed in the beginning.

(6.2.18) Corollary. A finite family E1, . . . , En is a tensor generating family if and
only if E1 ⊕ · · · ⊕ En is a tensor generator.
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On the other hand Proposition 6.2.16 gives a geometric interpretation of a finite
generating family.

(6.2.19) Corollary. Let X → S be a morphism of algebraic stacks. Then there
exists a finite tensor generating family of vector bundles Ei of rank ni for X → S
if and only if X ' [U/

∏
iGLni,S ] for some quasiaffine morphism U → S.

Even the case of invertible sheaves was not proven before in this generality, yet
presumed by Totaro [Tot04, p. 5]. In case that X → S is a morphism of schemes,
we obtain a characterization of ample families. The global case of a reduced and
separated scheme that is of finite type over an algebraically closed field was settled
by Hausen [Hau02, 1.1].

(6.2.20) Corollary. A map of schemes X → S has a relatively ample family of
n invertible sheaves if and only if X ' U/Gn

m,S (over S) for some quasiaffine S
scheme U .

6.2.5. Infinite tensor generating subfamilies. Having discussed the prop-
erties of finite tensor generating families for X → S, we shall show the existence
thereof. Clearly, the resolution property for X → S is a necessary condition, so we
will assume it here. However, it just implies the existence of some generating family
of vector bundles and this is usually infinite. Therefore, we decided to incorporate
infinite families in the definition of a tensor generating family.

(6.2.21) Definition. Let X → S be a quasicompact and quasiseparated morphism
with affine stabilizers at geometric points. A family of vector bundles EI on X is
called a tensor generating family for X over S, if the union of the families

⊗
j∈J 〈Ej〉

is a generating family, where J runs over all (or equivalently all sufficiently large)
finite subsets of I. Let us denote the latter by 〈EI〉

(6.2.22) Lemma. A morphism of algebraic stacks X → S with affine stabilizer
groups at geometric points has the resolution property if and only if X → S has a
tensor generating family.

Proof. Clearly, the condition is sufficient. However, it is also necessary since
every family of sheaves EI is contained in 〈EI〉. �

Under reasonable conditions on X → S, it requires to prove that for a tensor
generating family EI there always exists a finite subfamily EJ , J ⊂ I, which is still
tensor generating or equivalently, that every finite but sufficiently large subfamily
EJ is tensor generating.

At first, we show that this always holds if X is of finite presentation by forming
the infinite fiber product of the associated frame bundles over X. This stack has
the property that the given family becomes simultaneously trivial.

We restrict to a quasicompact base stack S. Then the question is local over S, so
that we may assume that S is affine. Unless stated otherwise, all global statements
are relative over the base S.

Throughout this section denote by Ei → X the associated frame bundle of Ei
and set EJ :=

∏
j∈J(Ej/X) for all J ⊂ I with projection pJ : EJ → X. Clearly,

this is a correct definition if J is finite. For J infinite, EJ is can be defined as the
filtered inverse limit of all EK with K ⊂ J finite. A filtered inverse system of affine
X-morphisms is given by the projections πKL : EK → EL, where L ⊂ K runs over
all finite subsets of J . These maps are affine, so the limit exists and is an algebraic
stack [Ryd10b, Thm. C]. Moreover, the projections pJ : EJ → X are affine because
all pK and pKL are affine.
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(6.2.23) Proposition. Let X → S be a quasicompact and quasiseparated mor-
phism with affine stabilizer groups at geometric points and EI a family of vector
bundles. Then for the following conditions the implications (i) ⇒ · · · ⇒ (iv) hold
and (i) ⇐ (iv) is also true if X → S is of finite presentation:

(i) EJ is quasiaffine over S for sufficiently large but finite J ⊂ I.

(ii) EJ is a finite tensor generating family over S for sufficiently large but
finite J ⊂ I.

(iii) EI is a tensor generating family over S.

(iv) The infinite fiber product EI =
∏
i∈I(Ei/X) is quasiaffine over S.

Proof. Suppose that the family is infinite. We claim that the infinite fiber
product EI =

∏
i∈I(Ei/X) is representable by a quasiaffine scheme.

We know that the projection pI : EI → X is affine, a fortiori quasiaffine. There-
fore p∗EI is a tensor generating family for EI . This is clear if I is the singleton by
Remark 6.2.5 but the general case reduces to this.

Now, each p∗Ei is trivial on EI because p factors over Ei → X. So OEI is
a generator for EI . The latter might be a huge non-noetherian and non-finitely
presented stack. However, it has (relative) affine stabilizers groups at geometric
points and is quasicompact and quasiseparated over S since pJ : EI → X is affine.
So by Theorem 5.3.8 we conclude that EJ is representable by a quasiaffine scheme.

Using that X is of finite presentation, it follows that EJ is already quasiaffine
for sufficiently large J ⊂ I because each EJ is of finite presentation using [Ryd10b,
Thm. C]. In other words EJ is a finite tensor generating family for X by Proposition
6.2.16. �

Unfortunately, the author does not know if the finite presentation hypothesis on
X is really necessary in the proof. We use this assumption to guarantee that each
EJ is of finite presentation, so that it becomes eventually quasiaffine for sufficiently
large J while descending from the limit EI along the bonding maps.

We will show next, that one may replace “finite presentation” by the much weaker
hypothesis “quasicompact and quasiseparated” as long as EJ is eventually repre-
sentable. For example, the latter condition is satisfied if X is noetherian using
[Tot04, Lemma 4.1] or trivially, if X is representable. Even the general noetherian
case will suffice for most of the applications. However, we have to make an effort
to ascend along the bonding maps by hand and are not allowed to apply the limit
trick again.

(6.2.24) Proposition. Let X be an algebraic S-stack with S quasicompact and EI
a tensor generating family. Suppose that EJ is representable for some finite subset
J ⊂ I. Then for sufficiently large but finite J ′ ⊂ I follows that EJ′ is quasiaffine;
that is, EJ′ is a finite tensor generating subfamily by 6.2.16.

We give a sequence of preparatory lemmata and give a proof at the end of this
section on page 73. The strategy, which was also successfully applied by Totaro
in the normal case, is to find a distinguished finitely presented sheaf satisfying the
property that whenever it is generated by a finite family, the latter is already a
tensor generating family. The non-normal case essentially reduces to the normal
case by a pinching process which is encoded in our variant of Chevalley’s Theorem
5.1.5.

In order to keep the proof short we feel free to introduce new terminology for
temporarily use. Again we may assume that S is affine.
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(6.2.25) Lemma. Suppose that 〈EI〉 generates a finitely presented sheaf M. Then
the pullback of M along EJ → X is globally generated for sufficiently large J ⊂ I.

Proof. By hypothesis there exists a resolution ϕ :
⊕n

α=1 Fα � M, where
each Fα is an element of 〈EI〉. This means that Fα is a finite tensor product of
sheaves Fj,α lying in 〈Ej〉 for some j ∈ I. In particular, the various indices j belong
to a finite subset J ⊂ I. By 6.2.5 the pullback of each Fj,α along the projection
Ej → X is globally generated on Ej . Thus, pJ∗F is globally generated, so too is
M. �

In this case, we shall say that EJ tensor generates M by abuse of language.

(6.2.26) Lemma. Let X be a quasicompact and quasiseparated algebraic space and
EI a tensor generating family. Then there exists a finitely presented sheaf G that
satisfies the following property:

(i) If EJ tensor generates G for some finite J ⊂ I, then EJ has a finite,
finitely presented and surjective covering by a quasiaffine scheme.

(ii) If X is a scheme, then EJ is quasiaffine.
We call G a EI-initial if condition 6.2.26.(i) is satisfied. By Theorem 5.1.5 we

know that EJ is always representable by an AF-scheme, and if X (and hence EJ)
is normal and noetherian, then EJ is already quasiaffine. Before we give a proof,
let us first describe the behavior under pushforwards along finite maps.

(6.2.27) Lemma. Let f : X ′ → X be a finite, finitely presented and surjective
morphism of algebraic spaces, and let EI be a tensor generating family on X. If G
is a f∗EI initial sheaf on X ′, then f∗G is EI-initial.

Proof. Let ϕ : E � f∗G be a surjection with E ∈ 〈EI〉 and J as above. Form
the cartesian square

EJ ×X Y //

g

��

X ′

f

��
EJ

pJ // X

whose vertical arrows are finite, finitely presented and surjective morphisms. This
induces a surjection f∗E � f∗f∗G � G since f is quasiaffine.

Now EJ ×X Y is canonically isomorphic to the fiber product E′J =
∏
j∈J(E′j/X

′)
of the frame bundles E′j → X ′ associated with E ′j := f∗Ej . So by assumption
on G, E′J has a finite, finitely presented and surjective covering h : U → E′J by a
quasiaffine scheme U . Clearly the composition f ′ ◦h is also finite, finitely presented
and surjective. �

Proof of Lemma 6.2.26. There exists a scheme Y and a finite, finitely pre-
sented and surjective morphism f : Y → X [Ryd10b, Thm. B]. So by Lemma 6.2.27
it suffices to prove (ii). Since X is quasicompact and quasiseparated scheme, by
Proposition 1.1.2 there exists a finitely presented sheaf G such that every finitely
presented sheaf M has a resolution

⊕
i G⊗ni �M for finitely many ni ∈ N. So if

EJ tensor generates G for some finite J , then every sheaf on EJ is globally generated.
It follows that EJ is quasiaffine. �

Proof of Proposition 6.2.24. Let us suppose that EJ is an algebraic space.
By Lemma 6.2.26 there exists a pJ

∗EI -initial sheaf G on EJ . Since X has the
resolution property, it satisfies the completeness property by Proposition 3.3.9.
Thus, pJ∗G is the direct limit of finitely presented OX -modules. Therefore we can
choose a morphism E ′ → pJ∗G for some E ′ ∈ 〈EK〉, such that the adjoint map



74 6. TENSOR GENERATORS AND TOTARO’S THEOREM

pJ
∗E ′ → pJ

∗pJ∗G � G is surjective. Then EJ ×X EK is canonically isomorphic to
the total space of the frame bundles associated with pJ∗EK and hence representable
by an AF-scheme by the assumptions on G and Theorem 5.1.5. In particular, it is
a scheme. So there exists an (pJK)∗EI -initial sheaf G′ on EJ ×X EK that satisfies
6.2.26.(ii).

By repeating the previous argument for G′, resp. pJ , replaced by G, resp.
pJK : EJ ×X EK → X, there exists a finite subset L ⊂ I such EJ ×X EK ×X EL
is quasiaffine. We conclude that EJ∪K∪L is a closed substack of the latter since
each Ei ×X Ei → Ei has a section (by the diagonal). Thus, EJ∪K∪L is also quasi-
affine. �

(6.2.28) Remark. The existence of the finitely presented sheaf G on given qua-
sicompact and quasiseparated algebraic space X of Lemma 6.2.26 simplifies the
investigation of the resolution property of X because it suffices to construct a sin-
gle locally free resolution for the verification thereof.

6.3. Totaro’s Theorem

With the preceding results, we can easily derive a proof of Totaro’s theorem which
characterizes global quotient stacks in terms of the resolution property. Totaro
proved this for normal noetherian algebraic stacks [Tot04, 1.1]. However, our results
imply that the normal hypothesis is unnecessary. Besides, the preceding methods
even allow to prove a relative version for arbitrary finitely presented morphisms
X → S of algebraic stacks without any noetherian hypothesis.

(6.3.1) Theorem. Let X → S be a quasicompact and quasiseparated morphism of
algebraic stacks with S quasicompact which satisfies one of the following hypothesis:

(a) X is noetherian with affine stabilizer groups at closed S-points and S is
affine.

(b) X → S is a quotient stack; for instance, if X → S is representable.

(c) X → S is of finite presentation and has relative affine stabilizer groups
at geometric S-points.

Then the following assertions are equivalent:
(i) X → S has the resolution property.

(ii) X → S is a global quotient stack.

Proof. The implication (ii)⇒ (i) is essentially due to Thomason (see Example
4.3.2) and holds for arbitrary quasicompact and quasiseparated morphisms X → S.
So the new part is (i)⇒ (ii). By Lemma 6.2.22 we know that the family of all vector
bundles EI is a tensor generating family. If we can show that EI has a finite tensor
generating subfamily EJ , then

⊕
j∈J Ej is a tensor generator by Proposition 6.2.16

and the associated frame bundle gives the desired global quotient stack structure
by Proposition 6.2.12.

Let us prove that each hypothesis (a)-(c) on X → S is sufficient to verify the
existence of such a finite subfamily EJ . In case (a) we may invoke Proposition
6.2.23. In the other cases X → S is not of finite presentation, but it suffices
to show that the fiber product

∏
n(Eni/X) of the frame bundles Ei → X of Ei is

eventually representable for sufficiently large but finite J ⊂ I by Proposition 6.2.24.
This condition is true in case (b) because the vector bundle inducing the quotient
stack structure belongs to EI . However, the final case (c) was already settled by
Totaro. He showed in [Tot04, Lemma 4.1] that X is a quotient stack, even if X is
not normal. �



CHAPTER 7

Future prospects and applications

Originally, the resolution property of a scheme or an algebraic stack with affine
diagonal X has been formulated by means of the category of quasicoherent sheaves
QCoh(X) relative to their full subcategory of vector bundles VB(X). The equiva-
lence of the resolution property with the existence of locally free tensor generators
suggests to consider it rather as a property of a single vector bundle. On the one
hand, it manifests as an algebraic property — the associated tensor hull is a gener-
ating family for QCoh(X). On the other hand, it is expressed in geometrical terms
– the associated frame bundle has quasiaffine total space.

The next step would be an extensive investigation of tensor generators and the
search for further analogies with ample line bundles. An open question is the
existence of cohomological criteria or of appropriate embedding theorems.

A positive solution might be useful to extend the known existence results to a
larger class of schemes and stacks. So far the resolution property remains difficult to
verify, even for concrete objects like toric varieties. The latter are not just a testing
ground by W lodarczyk’s embedding theorem: Every normal variety, satisfying the
condition that every pair of points admits an affine open neighborhood, can be
embedded into a toric varietey [W lo93].

One remarkable advantage of the concept of tensor generators is the reduction of
the resolution property to a single locally free sheaf. This insight will be applied in
Theorem 7.2.2 below to give a sufficient condition for the stability of the resolution
property under deformation.

Before, we prove that every quasicompact algebraic stack with quasifinite diago-
nal satisfies the resolution property étale locally (7.1.2).

7.1. Finite flat scheme covers

In 4.1.3.(vi) we showed that every finite, faithfully flat and finitely presented
morphism of algebraic stacks f : Z → X preserves the resolution property. In
particular, X has the resolution property if there exists such a covering f with Z
being a scheme that is quasiaffine, or has an ample line bundle or an ample family
of line bundles.

The existence of finite and flat scheme covers for an algebraic stack X is difficult
to verify, in general. However, if X a separated Deligne-Mumford stack of finite type
over a field k whose coarse moduli space is a quasiprojective scheme, then this holds
by [KV04, Thm. 1] using a Bertini-type argument; the cover Z is quasiprojective,
so that X has the resolution property. Many well-known moduli stacks allow a
locally closed embedding in such stacks, e.g. the moduli stacks Kg,n(X, d) of n-
pointed genus g stable maps of degree d into a tame Deligne-Mumford stack X
with projective moduli space [AGOT07], [AV02]. For a recent discussion of that
matter we refer the reader to [Kre09].

Conversely, a quasicompact algebraic stack with quasifinite diagonal admits a
finite, finitely presented scheme covering that is flat over a dense quasicompact
open subset ([EHKV01, 2.7] and [Ryd10b, Thm. B]).
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Generic flatness and Theorem 6.3.1 imply the following result:

(7.1.1) Proposition. Let X be a quasicompact algebraic stack with quasifinite
diagonal. Then there exists a dense open subset U ⊂ X which is a global quotient
stack.

A consequence of 4.1.3.(vi) is that every algebraic stack with quasifinite diagonal
has the resolution property étale locally.

(7.1.2) Theorem. Every quasicompact algebraic stack X with quasifinite diagonal
has étale locally the resolution property, and hence is étale locally a global quotient
stack.

Proof. In [Ryd10a, Thm. 7.4] is was shown that X has étale locally a finite,
flat and finitely presented covering by a quasiaffine scheme using the Keel-Mori
trick [KM97]. So by 4.1.3.(vi) X has étale locally the resolution property. From
Theorem 6.3.1 follows then that X is étale locally a global quotient stack. �

7.2. The resolution property and deformations

Given an algebraic stack X, it is often significantly simpler to verify the resolution
property of the reduction Xred (see Remark 2.1.13 for the case of algebraic surfaces,
or section 4.2 for classifying stacks of group schemes).

We shall see that the obstruction for lifting the resolution property along the
nilpotent immersion Xred ↪→ X lies in a second cohomology group of a sheaf on
Xred.

(7.2.1) Lemma. Let X0 ↪→ X be an first order deformation of quasicompact and
quasiseparated algebraic stacks given by a quasicoherent ideal I ⊂ OX .

If E0 is a tensor generator on X0, then there exists an obstruction lying in
H2(X0, I ⊗ End(E0)) whose vanishing is necessary and sufficient for the existence
of a tensor generator E satisfying E|X0 = E0.

Proof. The obstruction controls the lifting of the vector bundle [Ill05, §5].
Since E0|Xred = E|Xred is a tensor generator, also E is a tensor generator by
6.2.14.(v). �

As an immediate consequence of Theorem 6.3.1 this yields a criterion for lifting
the resolution property along nilpotent immersions.

(7.2.2) Theorem. Let X0 be a quasicompact and quasiseparated algebraic stack
satisfying the hypothesis of Theorem 6.3.1, and let i : X0 ↪→ X be a first order
deformation given by a quasicoherent ideal sheaf I ⊂ OX .

If X0 has the resolution property, then there exists a vector bundle E0 on X0 and
an obstruction o ∈ H2(X0, I ⊗ E0) whose vanishing is sufficient for the resolution
property of X to hold.

Clearly, this is just a first step for the understanding of the resolution prop-
erty with respect to deformations. As an application, we infer that the resolution
property is stable under infinitesimal thickenings of points and curves.

(7.2.3) Corollary. Let X be a quasicompact and quasiseparated algebraic space.
If Xred has the resolution property and the support of the nilradical N il(X) is of
dimension ≤ 1, then X has the resolution property.

Obviously, the obstruction vanishes if all higher cohomology groups are already
zero.
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(7.2.4) Corollary. Let X be a quasicompact and quasiseparated algebraic stack
satisfying the hypothesis of Theorem 6.3.1.

Suppose that X is cohomologically affine (i.e. there exists a cohomologically affine
morphism X → S to some affine scheme S). Then X has the resolution property
if and only if Xred has the resolution property.





APPENDIX A

Pinching flat quasicoherent sheaves

For the convenience of the reader we recall the results of Ferrand [Fer03] on
pinched schemes.

Let f : X ′ → X be a finite morphism of schemes which is an isomorphism over a
dense open set U ⊂ X and has schematically dense image (i.e. f ] : OX → f∗OX′ is
injective). Define the conductor ideal C := AnnOX (f∗OX′/OX), the inverse image
ideal C′ := C · OX′ and denote by Y resp. X ′ the closed subschemes, they define.
This gives a cartesian diagram

X ′

f

��

Y ′
voo

g

��
X Y

uoo

(A.0.1)

which is also cocartesian by [Fer03], 4.3. and 1.2. Therefore, we may interpret X
to be the gluing of X ′ along the finite morphism g : Y ′ → Y .

Let C(Z) be the category of quasicoherent OZ-modules on a scheme Z, that are
flat, or flat and of finite type, or locally free of finite type. There is a complete
description of C(X) as the fiber product of C(Y ) with C(X ′) over C(Y ′). We follow
closely the notation of Ferrand, work out in detail [Fer03, Complément 7.4] and
start with the definition of the functors, that induce the announced equivalence.

From the equality ug = fv we infer an isomorphism of functors σ : g∗u∗ '−→ v∗f∗.
Thus, by the universal property of the fibered product of categories, we obtain a
covariant functor

T : QCoh(X)→ QCoh(Y )×QCoh(Y ′) QCoh(X ′)

F → (u∗F , σF , f∗F).

Next, define a right adjoint functor:

S : QCoh(Y )×QCoh(Y ′) QCoh(X ′)→ QCoh(X).

For that consider the adjunction maps

ψv(M′) : M′ → v∗v
∗M′

ψg(N ) : N → g∗g
∗N

and the identity h := fv = ug. Then we define S to map a triple (N , τ,M′),
where N ∈ QCoh(Y ), M′ ∈ QCoh(X ′) and τ : g∗N '−→ v∗M′, to the fiber product
u∗N ×h∗v∗M′ f∗M′, so that it fits in the cartesian square

S(N , τ,M′) //

��

f∗M′

f∗(ψv(M′))
��

u∗N
u∗(ψg(N ))// u∗g∗g∗N

h∗(τ) // h∗v∗M′

(A.0.2)

That is, S(N , τ,M′) is defined to be the kernel of

u∗N ⊕ f∗M′ → u∗g∗g
∗N ⊕ f∗v∗v∗M′

h∗(τ)−id−−−−−−→ h∗v
∗M′.
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Then a straightforward calculation shows that S is right adjoint to T . Having
the adjoint functors at hand, we are able to state the following result:

(A.1) Theorem. Let X,X ′, Y, Y ′ be schemes and f : X ′ → X, g : Y ′ → Y affine
morphisms and v : Y ′ → X ′ a closed immersion, defining a cocartesian square

X ′

f

��

Y ′
voo

g

��
X Y

uoo

and consider the adjoint functors defined above

T : QCoh(X) � QCoh(Y )×QCoh(Y ′) QCoh(X ′) : S.

Then the square is also cartesian and the following holds:
(i) The counit of the adjunction TS → id is an isomorphism.

(ii) A quasicoherent OX-module M is zero if and only if T (M) = 0

(iii) For every quasicoherent OX-module M, the unit of adjunction
M→ ST (M) is surjective, its kernel is annihilated by I and contained
in IM, where I ⊂ OX is the quasicoherent sheaf of ideals defining
Y ⊂ X.

(iv) Given a scheme Z, denote by C(Z) the category of quasicoherent OZ-
modules, that are of finite type (respectively flat, flat and of finite type,
locally free of finite type). Then the functor S induces by restriction a
functor

SC : C(X ′)×C(Y ′) C(Y )→ C(X),
which is an equivalence of categories in the respected cases.

Proof. All properties are local with respect to X, so if we cover X by open
affines, we get a family of squares like (A.1) of affine schemes as all involved mor-
phisms are affine. Thus, we may assume that all involved schemes are affine and
may refer to [Fer03, Theorem 2.2]. �



APPENDIX B

Algebraic stacks with quasiaffine diagonal

Let us briefly recall the collection of morphisms f : X → Y of algebraic stacks
that have quasiaffine diagonal ∆: X → X ×Y X. An algebraic stack X has quasi-
affine diagonal if the structure morphism X → Spec Z has quasiaffine diagonal.
This condition can be considered as a weak separatedness condition for algebraic
stacks. For example, every (locally) separated morphism has quasiaffine diagonal.
More generally, if the diagonal is quasicompact and quasi-finite, then it is already
quasiaffine by [LMB00, A.2] because the diagonal is always locally of finite type and
assumed to be separated. In particular, every (quasiseparated) scheme, algebraic
space or Deligne-Mumford stack has quasiaffine diagonal.

By standard arguments [LMB00] one deduces the usual permanence properties,
which follow from those of quasiaffine morphisms:

(B.1) Proposition. Let S be an algebraic stack.
(i) If f : X → Y and g : Y → Z have quasiaffine diagonal, then g ◦ f has

quasiaffine diagonal.

(ii) If f : X → Y is an S-morphism with quasiaffine diagonal, then for every
base change morphism of algebraic stacks S′ → S, f(S′) : X(S′) → Y(S′)

has quasiaffine diagonal.

(iii) Let f : X → Y and f ′ : X ′ → Y ′ be S-morphisms with quasiaffine diago-
nal. Then f ×S g : X ×S X ′ → Y ×S Y ′ has quasiaffine diagonal.

(iv) If the composition g ◦ f of two morphisms f : X → Y and g : Y → Z has
quasiaffine diagonal then f has quasiaffine diagonal.

(v) If f : X → Y is an S-morphism and Sα → S a fpqc-covering family,
so that each f(Sα) : X(Sα) → Y(Sα) has quasiaffine diagonal, then f has
quasiaffine diagonal.

(B.2) Corollary. Let f : X → S be a morphism of algebraic stacks. If X has quasi-
affine diagonal over Z, then f has quasiaffine digonal. Conversely, if S → Spec Z
and f have quasiaffine diagonal, then X → Spec Z has quasiaffine diagonal.

Algebraic stacks with quasiaffine diagonal have always affine stabilizer groups:

(B.3) Proposition. Let X be an algebraic stack (over Z). If X has quasiaffine
diagonal, then for every point x : Spec → X the stabilizer group scheme Gx is an
affine algebraic group over k.

Proof. The diagonal ∆: X → X×ZX is quasiaffine and of finite type and the
same holds for the group scheme Gx → Spec k since it is the pullback of ∆ along
(x, x) : Spec k → X×ZX. This proves the assertion using the well-known fact that
every quasiaffine algebraic group scheme is already affine (see [FSR05, 7.5.3]). �
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(B.4) Remark. The converse statement does not hold in general. By [Ray70, X.
13] there exists a smooth group scheme G → S, that is not quasiaffine (even not
quasiprojective), but has affine closed fibres. So X = BGS gives a counterexample.

The next proposition gives a characterization of algebraic stacks with quasiaffine
diagonal in terms of morphisms.

(B.5) Definition. A morphism X → Y of algebraic stacks is called locally quasi-
affine if there exists a fpqc-covering family (Ui → X) such that each Ui → X → Y
is a quasiaffine morphism of algebraic stacks.

(B.6) Proposition. An algebraic stack X has quasiaffine diagonal if and only if
every morphism of algebraic stacks Y → X is locally quasiaffine.

Before we prove this as a special case of B.9, we briefly discuss the permanence
properties of locally quasiaffine morphisms. They are local on the domain and
inherit all functorial properties of quasiaffine morphisms, except for localness on
the codomain Y . In fact they are only local on Y for quasiaffine covering maps
Vj → Y .

(B.7) Proposition. Let S be an algebraic stack.
(i) Every 1-isomorphism is locally quasiaffine.

(ii) A morphism of algebraic stacks is locally quasiaffine if and only if one
(equivalently every) 2-isomorphic morphism is locally quasiaffine.

(iii) If f : X → Y is a morphism and ui : Ui → X a fpqc-covering family, so
that each f ◦ ui is locally quasiaffine, then f is locally quasiaffine.

(iv) Every fpqc-covering family Ui → X of locally quasiaffine morphisms can
be refined to become a fpqc-covering family of quasiaffine morphisms.

(v) If f : X → Y is a locally quasiaffine S-morphism, then for every base
change morphism of algebraic stacks S′ → S, f(S′) : X(S′) → Y(S′) is
locally quasiaffine.

(vi) Let f : X → Y and g : Y → Z be locally quasiaffine morphisms. Then
g ◦ f is also locally quasiaffine.

(vii) Let f : X → Y and f ′ : X ′ → Y ′ be locally quasiaffine S-morphisms.
Then f ×S g : X ×S X ′ → Y ×S Y ′ is locally quasiaffine.

(viii) If the composition g ◦ f of two morphisms f : X → Y and g : Y → Z
is locally quasiaffine, and if g has locally quasiaffine diagonal, then f is
locally quasiaffine.

(ix) If f : X → Y is an S-morphism and Sα → S a fpqc-covering family
of quasiaffine morphisms, so that each f(Sα) : X(Sα) → Y(Sα) is locally
quasiaffine, then f is locally quasiaffine.

Proof. The proof is formal and hence left to the reader. �

(B.8) Lemma. For every algebraic stack X the structure morphism X → Z is
locally quasiaffine. Hence, for every Y with quasiaffine diagonal, every morphism
X → Y is locally quasiaffine.

Proof. Every algebraic stack X has a fpqc-covering family Ui → X of mor-
phisms with Ui affine. Then the structure maps Ui → Spec Z are affine and hence
quasiaffine, so X → Z is always locally quasiaffine. The second claim follows from
B.7.(vi). �
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(B.9) Proposition. Let X be an algebraic stack. Then the following conditions
are equivalent:

(i) X has quasiaffine diagonal over Z.

(ii) X has locally quasiaffine diagonal over Z.

(iii) Every morphism Y → X of algebraic stacks is locally quasiaffine.

(iv) There exists a fpqc-covering family Ui → X of affine schemes Ui, where
each ui : Ui → X is a quasiaffine morphism.

Proof. (i) ⇒ (ii) is trivial and (ii) ⇒ (iii) follows from B.8 and B.7.(vi). But
(iii) ⇒ (iv) is also clear by refining an arbitrary fpqc-covering Vj → X of affine
schemes Vj . It suffices therefore to show (iv) ⇒ (i). So let ui : Ui → X be the
given covering. Then each Ui ×X Uj is a (quasi-)affine scheme. Now the products
ui × uj : Ui ×Z Uj → X ×Z X form an fpqc-covering of X ×Z X. The pullback of
∆X/Z along ui × uj is Ui ×X Uj → Ui ×Z Uj . This is a quasiaffine morphisms since
the domain is quasiaffine, so by fpqc descent follows that ∆X/Z is quasiaffine. �
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