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Abstract

Multi-class classification is the task of organizing data samples into multiple predefined
categories. In this thesis, we address two different research problems of multi-class
classification, one specific and the other general.

The first and specific problem is to categorize structured data sources on the Web. While
prior works use all features, once extracted from search interfaces, we further refine the
feature set. In our approach, we use only the text content of the search interfaces.
We choose a subset of features, which is suited to classify web sources, by our feature
selection technique with a new metric and selection scheme. Using the aggressive feature
selection approach, together with a multi-class Support Vector Machine categorizer, we
obtained high classification performance in an evaluation over real web data.

The second and general task is to develop a multi-label classification algorithm. In a
multi-label classification problem, a data sample can be assigned to one or more cat-
egories. Given a multi-label problem of m categories, the commonly used One-Vs-All
(OVA) approach transforms the problem into m independent binary classifications be-
tween each category and the rest (the category’s complement). Based on the OVA
approach, we propose a new method named Multi-Pair (MP). This MP method decom-
poses further each of the OVA binary classifications into multiple smaller and easier
pair comparisons between a category and a subset of the category’s complement. Fur-
thermore, we incorporate the SCutFBR.1 thresholding strategy into the MP method.
In our experiments with three benchmark text collections, the MP method outperforms
the OVA approach in both cases with and without SCutFBR.1.

A common aspect of our works is that we make use of category structure in our feature
selection and multi-label classification methods. This is the aspect that distinguishes
our works from prior researches.
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Zusammenfassung

Multi-Class–Klassifikation bezeichnet die Aufgabe, Datenobjekte mehreren vorgegebe-
nen Kategorien zuzuordnen. In dieser Dissertation werden ein spezielles und ein allge-
meines Klassifikationsproblem aus diesem Bereich behandelt.

Die erste Problemstellung besteht in der Kategorisierung strukturierter Datenquellen
im Web. Während frühere Arbeiten alle Eigenschaften (Features) verwenden, die von
den Anfrageschnittstellen der Datenquellen extrahiert werden können, verfeinern wir
die Menge der Eigenschaften. In unserem Ansatz verwenden wir nur den Textinhalt
der Anfrageschnittstellen. Wir wählen mit Hilfe unserer Feature-Selection–Technik, ein-
er neuen Metrik und einem neuen Selection-Schema eine Teilmenge der Eigenschaften
aus, die geeignet ist die Web-Quellen zu klassifizieren. Unter Einsatz dieses “aggressive
feature selection”–Ansatzes zusammen mit einem Multi-Class Support Vector Machine–
Kategorisierer erhalten wir eine hohe Klassifikationsgenauigkeit in der experimentellen
Evaluation mit realen Daten aus dem Web.

Die zweite Aufgabe ist es einen Multi-Label–Klassifikationsalgorithmus zu entwickeln.
In einem Multi-Label-Klassifikationsproblem kann ein Datensatz zu einer oder mehreren
Kategorien zugeordnet werden. Für ein gegebenes Multi-Label–Problem mit m Kate-
gorien transformiert der allgemein verwendete One-Vs-All–Ansatz (OVA) das Problem
in m unabhängige binäre Klassifiaktionsprobleme zwischen jeder Kategorie und dem
Rest (d.h. dem Komplement dieser Kategorie). Ausgehend vom OVA-Ansatz schlagen
wir eine neue Methode vor, die wir Multi-Pair (MP) nennen. Diese MP-Methode zerlegt
die binären OVA-Klassifikationen weiter in kleinere und leichtere Vergleichspaare zwis-
chen einer Kategorie und einer Teilmenge ihres Komplements. Darüber hinaus nutzen
wir die SCutFBR.1-Thresholding–Strategie in unserer MP-Methode. In unseren Exper-
imenten mit drei Benchmark-Text-Kollektonen ist die MP-Methode sowohl mit als auch
ohne SCutFBR.1 dem OVA-Ansatz überlegen.

Das gemeinsame Merkmal unserer Arbeiten ist, dass wir die Struktur der Kat-
egorien sowohl in unserem Feature-Selection- als auch in unserem Multi-Label-
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Zusammenfassung

Klassifikatonsansatz ausnutzen. Hierin unterscheiden wir uns deutlich von anderen
Forschungsarbeiten auf dem Gebiet.
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Chapter 1

Introduction

1.1 Motivation and Contributions

Multi-class classification is the task of organizing data samples into multiple predefined
categories. A traditional example is that in a library, books are grouped by their sub-
jects. Nowadays, another common example is found in the Internet, where an electronic
news can be assigned simultaneously to several categories on a website. In this thesis,
we address two different research problems of multi-class classification, one specific and
the other general.

Categorizing structured web sources is the first and specific problem. A struc-
tured web source is a website that stores information in form of structured data with
attribute-value pairs; and it usually provides search interfaces so that users can query
its database [Chang et al., 2004]. There are a large number of such web sources, forming
an important part of the huge Deep Web [Bergman, 2001]. On the one hand, integrated
access over multiple sources is needed. For examples, a user may want to compare prices
of a book in different online shops; or s/he may buy air tickets and book a room in a hotel
online while preparing for a trip. On the other hand, there have been researches on data
integration of a relative small number of heterogeneous sources [Chawathe et al., 1994,
Levy et al., 1996]), as well as on large-scale search over multiple text databases [Callan
et al., 1999, Ipeirotis et al., 2001]. Consequently, projects aiming at providing integrated
data access to a large number of structured web sources, such as MetaQuerier [Chang
et al., 2005] and WISE [He et al., 2005], have been born. Building and maintaining
such large-scale accessing services involves a number of tasks: source finding and cat-
egorization, schema mapping and query translation, data extraction and integration,
and so on. The categorization task is an integral part of these projects, as sources that
have been collected must be grouped according to similarity before other tasks, such as

1



Chapter 1 Introduction

schema mapping [He and Chang, 2003] or query interface integration [Wu et al., 2004],
can be performed.

In this task of categorizing structured web sources, our two contributions are as follows.
First, we propose a feature selection (FS) technique with a new metric and selection
scheme. Second, in term of classification approach, we use either our or others’ [Yang
and Pedersen, 1997] FS technique to refine features, once extracted from the search
interfaces of the web sources. Meanwhile, prior works [He et al., 2004, Lu et al., 2006,
Barbosa et al., 2007] use all features without further selection. Using the aggressive
feature selection approach, together with a multi-class Support Vector Machine cate-
gorizer [Crammer and Singer, 2001], we obtained high classification performance in an
evaluation over real web data.

Developing a multi-label classification algorithm is the second and general task.
In a multi-label classification problem, a data sample can be assigned to one or more
categories. This situation usually happens in text categorization. As in the mentioned
Internet example, a news of the U.S. health care reform can be classified into three cat-
egories Politics, Health and Business on Yahoo! News website. Multi-label problems
are also found in medical diagnosis, protein function classification, music categorization
and semantic scene classification [Tsoumakas and Katakis, 2007].

In this task of developing an algorithm, we focus on improving the One-Vs-All (OVA)
approach that is commonly used in researches, for instance, Joachims [1998], Yang
[2001], Bekkerman et al. [2003], Lewis et al. [2004], Fan and Lin [2007]. Given a multi-
label problem of m overlapping categories, the OVA approach transforms the problem
into m independent binary classification tasks between each category and the rest (the
category’s complement). Based on the OVA approach, we develop a new method named
Multi-Pair (MP). This MP method decomposes further each of the OVA binary tasks
into multiple smaller and easier pair comparisons between a category and a subset of
the category’s complement. Via this decomposition, we aim at making use of category
structure existing in the complement. The decomposition also helps to reduce the
problem of imbalanced training data in the OVA approach. The MP method is our first
contribution.

The MP method can be considered complementary to other multi-label approaches that
have an OVA technique in their cores, for instance, Godbole and Sarawagi [2004], Fan
and Lin [2007], Tang et al. [2009]. In this direction, we step further to incorporate
SCutFBR.1, reportedly one of the most effective thresholding strategies [Lewis et al.,
2004], into the MP method. The result is a combined method, our second contribution.

2



1.2 Outline of this Thesis

To evaluate our new approach, we conducted experiments with three benchmark text col-
lections. In all the three text collections, the MP method outperforms the OVA approach
in both cases with and without SCutFBR.1. Besides, source code to reproduce our clas-
sification results is available at http://dbs.cs.uni-duesseldorf.de/research/mp/ .

Making use of category structure is the common thread running through our works;
and it distinguishes our works from prior researches. In a multi-label problem of m
categories, the complement of a category is composed of around (m−1) other categories.
When merging samples together to create binary classification tasks, the OVA approach
ignores this category structure. Meanwhile, the MP method takes it into account by
decomposing OVA binary tasks. A similar difference exists between our and others’ FS
techniques for multi-class single-label classification. In our FS technique, one metric is
defined for each feature by using “top” two categories. Also, features are divided into
their respective categories before being selected. In others’ FS technique [Yang and
Pedersen, 1997], a score is defined by using every category and its complement. Given
m categories, there are m scores for each feature; and the highest or average value is
chosen. Then, all features are sorted and selected together.

1.2 Outline of this Thesis

The remainder of this thesis is organized as follows. Chapter 2 is an introduction to
the classification process. In Section 2.1, we describe different classification types, that
is, the categorization of classification problems themselves. In Section 2.2, we discuss
our choice of the linear Support Vector Machine (SVM) method for the classification
tasks at hand and available SVM implementation for each classification type. In this
section, we also briefly introduce SVM basics. After that, Section 2.3 describes a general
classification process, as well as related concepts such as training and testing data,
data representation and normalization, training and prediction, and parameter tuning.
Section 2.4 gives the definitions of the performance measures used in this thesis. Lastly,
in Section 2.5, we describe the procedures of experimental evaluation with or without
cross-validation, as well as the procedure of parameter tuning with cross-validation.

Chapter 3 is for the task of categorizing structured web sources; and chapter 4 is for the
Multi-Pair method. These two chapters share the similar organizational structure. We
open each chapter with the description of prior researches. This description provides a
context to introduce our work subsequently. Then, in the first section of each chapter,
we review related works with additional information and in wider scope. Next come the

3



Chapter 1 Introduction

chapter’s main contents in the second and third sections that describe and explain our
works at each task in detail. After that, we present our experimental setup, results and
discussion. We close each chapter with a summary.

Chapter 5 is the last chapter of this thesis. In this chapter, we briefly review our study
and highlight the important aspects of our works. Finally, we conclude this thesis with
future work.

4



Chapter 2

Overview of Classification Process

This chapter is an introduction to classification process and related concepts: classifica-
tion types, training and testing data, Support Vector Machine, performance measures,
cross-validation and so on, for they are frequently used in this thesis.

2.1 Classification Types

Classification problems themselves can be divided into different types:

• Binary classification involves two categories; and a data sample is assigned to
only one category. For example, we classify emails into two categories “Spam”
and “Not-spam”.

• Multi-class single-label classification involves two or more categories; and a
sample is also assigned to only one category. An example is found in handwriting
recognition, in which we identify an unique alphanumeric character for each digital
image. Thus, binary classification is the special case of multi-class single-label
classification, where the number of categories is two; and they are both single-

label classification .

• In a multi-label classification problem, there are two or more categories; but a
sample can be assigned to more than one category. And we have already mentioned
the example of Internet news. Though the number of categories can be two,
multi-labeled datasets normally have more than two categories. For example,
all multi-labeled datasets used in this thesis have 20 or more than 100 categories.
Multi-label classification, together with multi-class single-label one, is multi-class

classification which normally involves more than two categories and thus differs
from binary classification.

5



Chapter 2 Overview of Classification Process

2.2 Support Vector Machine Method and Implementation

A classification task usually involves training and testing data. Training data are data
samples with their pre-assigned categories, while testing data are samples without
categories. The goal of a categorizer is to learn a model from the training data in order
to predict the target categories of the testing data.

For each classification task at hand, we have to select a suitable categorizer. In this
thesis, we use the linear Support Vector Machines (SVMs) [Cortes and Vapnik, 1995].
This is because, on the one hand, all classification tasks in this thesis are either them-
selves or transformed into text categorization problems, or the tasks of organizing
text documents into predefined categories [Sebastiani, 2002]. On the other hand, the
linear SVM method has been applied successfully to text categorization [Joachims, 1998,
Dumais et al., 1998].

Figure 2.1: Linear Support Vector Machine [source: Dumais et al., 1998].

Linear SVM. We now briefly introduce SVM basics. 1 Let us consider a binary clas-
sification task whose training data consists of l data samples ~xi with corresponding
categories yi ∈ {+1,−1} (i = 1, . . . , l); each data sample is represented as a vector in a
multi-dimensional feature space. In the linear form, the SVM method finds a plane that
separates the set of positive samples from the set of negative samples with the maxi-
mum margin – see Figure 2.1. This is done through solving the following optimization

1Users interested in Support Vector Machines in more detail could read Bennett and Campbell [2000],
an excellent SVM tutorial.
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2.2 Support Vector Machine Method and Implementation

problem [Cortes and Vapnik, 1995]:

min
~w,b,~ξ

1
2
||~w||2 + C

l∑
i=1

ξi

subject to yi(~w · ~xi − b) + ξi ≥ 1 ,

ξi ≥ 0, i = 1, . . . , l ;

where C is the trade-off between minimizing training error and maximizing margin. The
result is the vector ~w that determines the orientation of the plane and the scalar b that
determines the offset of the plane from the origin. And the classification function, or
the learned model, is y∗ = sign(~w · ~x∗ − b), where ~x∗ is a testing sample.

SVM Implementation. To apply the linear (or nonlinear) SVM method to a clas-
sification problem, one can use available SVM implementation. For binary classifica-
tion, there are a number of SVM binary categorizers in software packages, for example,
svmlight [Joachims, 1999], libsvm [Chang and Lin, 2001], liblinear [Fan et al., 2008]
or libocas [Franc and Sonnenburg, 2009].

For multi-class single-label classification, one can use in the svmmulticlass [Tsochan-
taridis et al., 2004] or liblinear software package, which has the implementation of
the multi-class SVM by Crammer and Singer [2001]. In liblinear, there is also the
implementation of the single-label One-Vs-All approach [see Rifkin and Klautau, 2004].
The single-label One-Vs-All approach, as well as Decision Directed Acyclic Graph [Platt
et al., 2000] and Error-correcting output codes [Dietterich and Bakiri, 1995], transforms
a multi-class single-label problem into multiple binary classification tasks. One can eas-
ily implement these approaches oneself by using a prebuilt binary categorizer which can
be the SVM or other classification methods.

For multi-label classification, to our knowledge, there is no stable implementation avail-
able. As mentioned in Chapter 1, the multi-label One-Vs-All approach is commonly
used, and can be easily implemented by using a prebuilt binary categorizer which can
be the SVM or other classification methods. In Chapter 4, we implement and compare
this approach with our Multi-Pair method.

In this thesis, we treat the prebuilt SVM categorizers used as black box programs,
providing them with input data and required parameters, and running them to obtain
output result. For an SVM categorizer with a linear kernel (that is, a linear SVM cate-
gorizer), the only relevant parameter is C. However, this parameter is scaled differently
in the SVM categorizers we used. Therefore, we first consulted the software manuals to

7



Chapter 2 Overview of Classification Process

have a reasonable parameter range. Then we experimentally determined (or tuned) a
suitable value for C through a cross-validation procedure – see Section 2.5.

2.3 Classification Process

In this section, we describe classification process by using an example, which is the sim-
plified task of classifying emails into two categories “Spam” and “Not-spam”. Though
it is a binary task, its classification process in general is similar to those of multi-class
single-label and multi-label classification tasks.

Now let us suppose that we have received many emails through our system each day;
and we want to filter out junk emails by using only the text contents of the emails. We
treat this task as a binary text categorization problem with the two predefined categories
“Spam” and “Not-spam”. Hence, we use a linear SVM binary categorizer, for example,
available in liblinear. The classification process, which includes manual assignment,
data representation, training and prediction, is described as follows.

Manual assignment. First of all, we have to create training data by selecting and
manually classifying a part of the emails received into “Spam” or “Not-spam”. The
more manually classified emails, the better.

Data representation. Then we represent each training sample as a vector in the for-
mat required by the categorizer used. For our example, we use the common bag-of-words
representation, and weight words (or terms) by the TF (term frequency) scheme [see
Baeza-Yates and Ribeiro-Neto, 1999]. That is, the categories “Spam” and “Not-spam”
are coded as +1 and −1 respectively. Every word is indexed uniquely, for instance:

..., corpus:15, ..., dataset:50, ..., newsgroup:500, ...

..., offer:12003, ..., reuters:16000, ..., special:20900, ...;
and the number of the word’s appearance in the text contents of each email is counted.

As the result, we may have two (among many) emails represented in the liblinear’s
format as below:

−1 15:1 50:1 500:1 16000:1

+1 12003:3 20900:4

That is, the first email contains words ‘corpus’, ‘dataset’, ‘newsgroups’ and ‘reuters’,
each word one time; and it is assigned to “Not-spam”. The second email contains words
‘offer’ three times and ‘special’ four times; and it is assigned to “Spam”.

8



2.4 Performance Measures

For text categorization, we normally normalize data vectors, making their absolute
values one. So after normalization, these two emails are represented as below:

−1 15:0.5 50:0.5 500:0.5 16000:0.5

+1 12003:0.6 20900:0.8

In the last step, we save all vectorized samples, for example, to a file train file.

We note that in data representation for text categorization, we usually preprocess data,
that is, lowercasing words, removing stop words such ‘a’ and ‘the’, and so on [see also
Baeza-Yates and Ribeiro-Neto, 1999]. Depending on each problem, we may also apply
a feature selection technique so as to have a better subset of features (see Chapter 3).

Training the categorizer. Having vectorized the training data, we use the data to
train the categorizer, or in other words, to learn a new model. For example, with the
above train file, we call the train module of liblinear as below:

> train -s 3 -c 1.0 -B 1 train file model file

The result is a learned model, which is saved to the file model file.

As can be seen in the above command, there are several parameters such as s (the type
of solver) and c (trade-off between training error and margin). These parameters are
normally determined through a cross-validation procedure (see Section 2.5).

Making prediction. After the training process has been completed, we are ready to
predict (or classify) unassigned or new samples, that is, testing data. As for the training
samples, we have to represent the testing samples as vectors. Since the true category of a
testing sample is unknown, we simply use an arbitrary value, for example +1. Then, we
employ the categorizer to classify the testing samples. Suppose that all testing samples
are saved to a file test file. We call the predict module of liblinear, with the above
model file, as below:

> predict test file model file result file

and obtain predicted results, which are saved to the file result file.

2.4 Performance Measures

In this section, we define performance measures for each category individually and all
categories together. For all categories, we first consider multi-label classification then
single-label classification, for the latter case uses notations that are introduced in the
former case.

9



Chapter 2 Overview of Classification Process

Measures for a category. Following Sebastiani [2002], for an individual category, let
TPi denote true positives (the number of the samples that in fact belong to this category
and are correctly assigned to this category); FPi denote false positives (the number of
the samples that in fact do not belong to this category, but are falsely assigned to this
category); FNi denote false negatives (the number of the samples that in fact belong
to this category, but are falsely not assigned to this category); and TNi denote true
negatives (the number of the samples that in fact do not belong to this category and
are correctly not assigned to this category). We define the five performance measures
precision (P), recall (R), accuracy, break even point (BEP) and F-measure (F1) for this
category as below:

Pi =
TPi

TPi + FPi
, Ri =

TPi
TPi + FNi

, accuracyi =
TPi + TNi

TPi + FNi + TNi + FPi
,

BEPi =
Pi +Ri

2
, F1i =

2 · Pi ·Ri
Pi +Ri

=
2 · TPi

2 · TPi + FPi + FNi
.

Thus, BEPi is the unweighted mean of Pi and Ri. Meanwhile, F1i is called the harmonic
mean. With the same BEPi, the more balanced Pi and Ri, the higher F1i.

Measures for multi-label classification. To evaluate performance of all m categories
in a multi-label classification task together, we have two averaging approaches. The
macro-F1 is the average value of category F-measures:

macro-F1 =
1
m
·
m∑
i=1

F1i .

For micro-average measures, all individual predictions are taken into account together:

micro-P =
∑m

i=1 TPi∑m
i=1(TPi + FPi)

, micro-R =
∑m

i=1 TPi∑m
i=1(TPi + FNi)

,

micro-BEP =
micro-P +micro-R

2
, micro-F1 =

2 ·
∑m

i=1 TPi∑m
i=1(2 · TPi + FPi + FNi)

.

As discussed in Lewis et al. [2004], macro-averaging is dominated by small categories,
whereas micro-averaging by large categories.

Measures for single-label classification. To evaluate performance of all m cate-
gories in a single-label classification task together, we use overall accuracy:

accuracy =
TP

TP + FN
=

∑m
i=1 TPi∑m

i=1(TPi + FNi)
.
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This overall accuracy can be proved to be equal to micro-P, micro-R, micro-BEP and
micro-F1 in the case of single-label classification. Hence, it is conventionally used in
researches, for instance, Bekkerman et al. [2003], Gabrilovich and Markovitch [2004].
Besides, we note that in the case of binary classification (m = 2), this overall accuracy
is the same as the accuracy defined for each (positive or negative) category.

2.5 Cross-validation Procedure

In this section, we describe cross-validation procedures [see Tan et al., 2005], which are
used in parameter tuning and experimental evaluation.

Parameter tuning. As mentioned in the training step of the classification process,
we usually have to determine one or more parameters required by the SVM categorizer
used. This procedure is called parameter tuning, a major issue when working with
SVMs as well with most of the other inductive learning algorithms [Bekkerman et al.,
2003].

As the true categories of testing samples are not available, we tune required parameters
through a cross-validation procedure over training data. Let us take the C parameter
(trade-off between training error and margin) for liblinear as an example. First of
all, we fix a small set of feasible values for the C parameter. As suggested in Hsu et al.
[2009], we may use the set of [2−5, 2−3, . . . , 215] or a smaller subset of the set. Afterward,
for each value of the feasible set, we evaluate its classification performance (for example,
measured in accuracy) as follows. We divide the training data into f parts; so we have a
f -fold cross-validation schema. Sequentially, we use (f−1) parts to train the categorizer
with the current parameter value, and employ the trained categorizer to test the other
part. Thus, in the f -fold cross-validation schema, each sample of the whole training set is
predicted once. Using this prediction result, we calculate the classification performance
of the current parameter value. Among all values of the feasible set, we select the
one that gives the best classification performance. Finally, we train the categorizer by
using the whole training set and with the found parameter; and then classify testing
samples.

When there are two parameters, for instance feature selection level (see Section 3.3.2)
and C, we may tune the first while fixing the second (by setting it to a default value);
and then determine the second once the first is found. Or we may search for the both
parameters at the same time in a grid-search over all possible parameter pairs [see also
Hsu et al., 2009].
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Chapter 2 Overview of Classification Process

Experimental evaluation. Let us now suppose that we want to experimentally evalu-
ate performance of a classification method by using a benchmark dataset, which contains
data samples together with their pre-assigned categories. There are two schemes to carry
out experiments.

The first scheme is cross-validation, which is slightly different from that of parameter
tuning. That is, we split the benchmark dataset into f parts, or in other words, we
employ a f -fold cross-validation schema. For each fold, (f − 1) parts are used as the
training set, while the other part is used as the validation set (that is, the fold’s testing
set). We use the training set to tune required parameters and train with the method.
After that, we categorize the validating samples and compute the classification perfor-
mance of the method on the validation set. We then report the average performance of
all f folds as the final result.

The second scheme is that we separate the benchmark dataset into two parts. One part
is used as the training set. The other part is used as the validation set on which we
calculate and report classification performance. Furthermore, instead of one training-
testing pair, we may generate two or more pairs, each consists of a training set and a
corresponding testing set. In this case, we report the average classification performance
of the testing sets.

In this thesis, we will use both the evaluation schemes. This is because we use prepro-
cessed datasets made available by prior researches. And for each dataset, we follow the
research that is the source of the dataset.

12



Chapter 3

Categorizing Structured Web Sources Using

Aggressive Feature Selection

As discussed in Section 1.1, the task of categorizing structured web sources in an integral
part of the projects that provide integrated data access to a large number of these web
sources. In this chapter, we address this categorization task.

The search interfaces of structured web sources, which serve as the “entrances” to un-
derlying databases, are used as the main source for the categorization task. In He
et al. [2004], the authors argued that the form labels of search interfaces (for instance,
‘Title’, ‘ISBN(s)’, . . . in an Amazon’s search form) are the right “representatives” for
structured sources, and used only them. Subsequently, in addition to form labels as
the most important feature, Lu et al. [2006] identified and utilized other features such
as form values (for instance, ‘hardcover’, ‘paperback’) and other regular text terms. In
these two works, features inputed to their clustering algorithms must be extracted from
HTML pages by another technique [see also Lu et al., 2006]. In contrast, Barbosa et al.
[2007] argued that such an extraction task is hard to automate, so they used all the text
(bag-of-words) of a search interface, which is partitioned into text of the form and text
of the page, together with backlinks pointing to the interface.

A common issue in the prior works is that features, once extracted, are all used without
any further selection. However, it is not difficult to see that in a search interface, words
that help in distinguishing categories (for instance, ‘author’, ‘textbooks’) mingle with
many more other words. Indiscriminative or noisy terms (for instance, ‘sort by’, ‘state’)
also occur inside forms, as observed by Lu et al.. For these reasons, we investigate on
how to identify features suitable for categorizing structured web sources, that is, the
feature selection (FS) problem.

13
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Our classification approach employs a filtering FS technique in text categorization [Se-
bastiani, 2002], together with a multi-class Support Vector Machine categorizer [Cram-
mer and Singer, 2001]. In our research, we use only the text content of a search interface.
To choose a suitable subset of terms, we conducted experiments with others’ FS metrics
and techniques [Yang and Pedersen, 1997, Mladenic, 1998, Forman, 2003, Gabrilovich
and Markovitch, 2004], and with ours as well (see Section 3.3.2). The FS technique that
we propose includes a new metric and selection scheme. 1 As pointed out in Barbosa
et al. [2007], it is prone to make clustering mistakes among domains with overlapping
vocabulary such as Movies and Musics, and for domains with a highly heterogeneous
vocabulary. This new FS technique is designed to tackle these issues.

In the mentioned experiments with the existing and new FS techniques, we obtained
high classification performance with the subsets selected, which is significantly higher
than the performance obtained when using the much larger set of all features. This
result does not only show that our aggressive feature selection approach has its own
strength, but is also a convincing evidence that extracted features should be further
selected. In addition, we achieved the best performance with the new FS technique.

The rest of this chapter is organized as follows. In the following section, we review
related work. Then we describe the classification process for structured web sources
in Section 3.2, the existing and new FS techniques in Section 3.3. In section 3.4, we
present our experimental results and discussion. Finally, we conclude with a summary
in Section 3.5.

This chapter is based on the paper Le and Conrad [2010a].

3.1 Related Work

In this section, we relate our work to other categorization problems, to the researches on
the same topic of structured web source (SWS) categorization and on feature selection.

Firstly, SWS categorization is related to text database classification [Callan et al., 1999,
Ipeirotis et al., 2001], for they work with the Deep Web’s sources. A text database
normally stores documents of multiple categories. Its interfaces contain simple search
forms, which often have only one label and field, and little information about stored
documents. Therefore, to have the representative summary of a text database, query

1We use the phrase of “FS metric” to indicate a scoring formula, and “FS technique/method” to
indicate a scoring formula with a selection scheme.
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submission techniques that send queries to sources and analyze returned results are
needed. In contrast, a structured database stores data objects of a single domain. Its
search interfaces provide much information, such as form labels and values (describing
exported schema), advertised products (that is, data items), which can be used to clas-
sify the database. Furthermore, it is necessary that the domain of a structured source,
which contains complex and multi-label search forms, is known before a query submis-
sion technique can be applied. Since utilizing search interfaces, SWS categorization is
also related to web page categorization [Chakrabarti et al., 1998, Zamir and Etzioni,
1998] which uses terms and links, and to text categorization [Joachims, 1998], which
uses only terms. However, the goal of SWS categorization is not to classify a search
page (that is, an HTML page) itself but the database, to which the page’s search form
serves as an “entrance”. As a result, discriminative features extracted from or related
to search forms are most important to the task.

Secondly, the mentioned works of He et al., Lu et al., Barbosa et al., together with
ours, are on the same topic of SWS categorization. While the others’ works show
that it is feasible to determine the domain of a source by using discriminative features
extracted from source’s search interfaces, we take a step further. We refine the set
of features once extracted, and use the refined set in order to increase classification
performance. In addition, the prior studies employed clustering (that is, unsupervised
learning) algorithms, while we use a classifying (that is, supervised learning) method.
One reason is that we group web databases so that other integrating tasks can be
performed. There is no online requirement as, for example, in search engines where
web documents may need to be clustered dynamically within a few seconds in response
to a user’s need [Zamir and Etzioni, 1998]. Thus, the emphasis of SWS categorization
is on accuracy. The other reason is that our goal is to categorize a large number of
sources. It is appropriate that we build an initial domain hierarchy, either by manual
assignment or by clustering together with manually checking, from a small number of
sources. Afterward, we classify the rest so as to make use of the data samples better
through a learning process.

Lastly, the problem of feature selection in text categorization has been intensively stud-
ied, for example, in Yang and Pedersen [1997], Mladenic [1998], Soucy and Mineau
[2001], Forman [2003], Gabrilovich and Markovitch [2004]. These and our studies use
the filtering approach [see Sebastiani, 2002]. As our FS technique are proposed for multi-
class single-label classification, our work is most closely related to the work of Yang and
Pedersen. In Section 3.3, we will present our FS technique, along with its most similar
one – χ2 [Yang and Pedersen, 1997].
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3.2 Classification Process for Structured Web Sources

In our research, each complete search interface is treated simply as a text document,
that is, a bag-of-words extracted from its HTML content. Similar to the prior stud-
ies [He et al., 2004, Lu et al., 2006, Barbosa et al., 2007], we assume that one web
database, together with its search interfaces, belongs to one category. Since a document
representing a web source belongs to one category, and there are multiple categories,
our problem is equivalent to a single-label multi-class text categorization problem [see
Sebastiani, 2002]. 2

The process of categorizing structured web sources in general is similar to the classi-
fication process presented in Section 2.3. In the following paragraphs, we describe its
specific details.

Search interface processing. Following [Barbosa and Freire, 2005], we identify terms
in forms that are between FORM tags, and terms in pages that are within HTML tags.
We further use terms in titles that are between TITLE tags separately. After parsing
HTML search interfaces to extract words in these three types, we do not apply a stem-
ming algorithm [for instance, Porter, 1997] to reduce words with the same stem to a
common form. The reason is that, for example, the word ‘book’ appears frequently in
both Airfares and Books domains, while the word ‘books’ is often found in Books but
not in Airfares. Therefore, these two words should be seen as two different discrim-
inative features instead of being merged by a stemming algorithm. In addition, terms
that appear less than some small K times in every category are to be eliminated. This
technique is to remove noisy words.

Feature selection (FS). After processing search interfaces, we apply a multi-class FS
technique in order to identify terms (that is, processed words) that are suited to cate-
gorize web sources. The multi-class FS techniques we used are presented in Section 3.3.
Basically, these techniques score terms by a metric and then select top N ranked terms
by a selection scheme. Or in other words, they are the filtering approach, as mentioned
in Section 3.1.

We rank and select terms of each form, page and title feature types separately. After
that, we put all selected terms of these feature types into a common feature space. (So
the same term in different feature types will be represented and chosen differently in our

2Our approach can be easily adapted to a multi-label case, in which an interface is to be classified into
several categories, by using the multi-label One-Vs-All or Multi-Pair method (see Chapter 4).
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classification approach.) In our implementation, we use the same top N parameter for all
the three feature types, where N is determined through a cross-validation procedure.

Term weighting and vector normalization. We weight terms by a non-weighted
feature scheme and then normalize each data vector, for we obtain the best performance
with this simple technique. In the non-weighted feature scheme, if a feature appears in
a sample, the feature’s weight in the data vector representing the sample is 1; and if
the feature does not appear, its weight is 0. We observe that the distinctive terms of a
domain (for instance, ‘ISBN’, ‘paperback’ and ‘hardcover’ for Books) often appear only
once in a search interface as its form labels or values. This observation helps to explain
why the non-weighted feature scheme is suitable for the categorization task at hand.

Categorizer and kernel selection. After feature selection and data representation,
we move onto the training and prediction steps. For these steps, we choose the SVM
method with a linear kernel. As mentioned in the Section 2.2, this choice has been used
successfully in text categorization.

3.3 Feature Selection Techniques

In this section, we first describe χ2 – an existing multi-class FS method related to our
new T2CS-CHI technique. After that, we present the T2CS-CHI technique.

3.3.1 χ2 (CHI)

Let {A,B, . . .} be the set ofm (m ≥ 2) categories. The χ2 technique [Yang and Pedersen,
1997] is described as follows.

χ2 metric. For a feature t, its score is calculated in the next two steps:

1. For each category, say C, compute the category-specific score of t with regard to
C by the below formula [Sebastiani, 2002]:

χ2(t, C) = |Tr| · [P (t, C) · P (t, C)− P (t, C) · P (t, C)]2

P (t) · P (t) · P (C) · P (C)
,

where |Tr| denotes the total number of samples in the training set, P (t, C) the
probability that a random document contains a feature t and belongs to a category
C, and C the complement of a category C.
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2. Choose the highest value of the category-specific scores as the final score of t:

χ2
max(t) = max

C∈{A,B,...}
χ2(t, C) .

When calculating the score of a feature t, instead of the highest value of the category-
specific scores, we can choose the weighted average value as the final score of t. As
reported in Rogati and Yang [2002], the highest value performs better than the average
one across categorizers and text collections. Therefore, in this thesis, we do not use the
average value.

Selection scheme. After calculating the scores of all features, the features are sorted
together in descending order and selected top-down.

3.3.2 T2CS-CHI

In this section, we present the T2CS-CHI (Top-two-category separation – χ2) technique
which includes a new metric and selection scheme.

T2CS-CHI metric. We first describe the rational behind the T2CS-CHI metric
through an example with three categories Airfares, Books and Musics. When a
document contains the word ‘music’, together with other words, such as ‘title’, ‘elvis’
and ‘surround’, we can normally determine quickly that its category is either Musics or
Books, but not Airfares. We observe that Musics and Books are the two categories
whose documents most frequently contain the word ‘music’. Moreover, their vocabular-
ies usually have a large overlap. Since the main categorization difficulty is in deciding
between them, we are interested in how much ‘music’ helps to classify documents into
Musics or Books. We thus calculate the score of ‘music’ in two steps. At first, we
select only the “top” two categories Musics and Books by the above observation that
the word ‘music’ most frequently appears in them. Afterward, we compute the score of
’music’ with regard to these “top” two categories by a formula that is derived from the
category-specific χ2 scoring formula.

Formally, let {A,B, . . .} be the set of m (m ≥ 2) categories; P (t|C) be the conditional
probability that a random sample in a category C contains a feature t; P (C|t) be
the conditional probability that a random sample containing a feature t belongs to a
category C; P (C) be the probability that a random sample belongs to a category C.
Let C1 and C2 denote the two categories that have the first and second highest values
of all probabilities P (t|C) for C ∈ {A,B, . . .}. (In the case of two categories with the
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same probability P (t|C), we choose the one with the higher probability P (C).) The
score of a feature t is given in the following formula:

T2CSCHI(t) = [P (t|C1)− P (t|C2)] · [P (C1|t) · P (C2|t)− P (C2|t) · P (C1|t)] . (3.1)

We now compare the χ2 metric with the T2CS-CHI metric. It can be proved that:

T2CSCHI(t) =
[P (t, C1) · P (t, C2)− P (t, C2) · P (t, C1)]2

P (t) · P (t) · P (C1) · P (C2)
.

So in the case of binary classification (m = 2), T2CS-CHI is equivalent to χ2, for they
differ only in |Tr| (the number of training samples) which is the same for all features.
However, in the case of multi-class classification (m > 2), T2CS-CHI and χ2 are different
from each other. That is, the T2CS-CHI metric is defined from the “top” two categories,
whereas the χ2 metric from a category and its complement.

Let us consider the above example with the words ‘music’, ‘elvis’, ‘surround’, ‘title’
again. Statistics on the dataset we used shows that ‘music’ appears very frequently in
Musics, relatively frequently in Books; ‘elvis’ relatively frequently and only in Musics;
‘surround’ rarely and only in Musics; ‘title’ very frequently in Books as well in Musics.
With the T2CS-CHI metric, ‘surround’ and ‘title’ have low ranks and will usually be
discarded. With the χ2 metric, similar situation happens to ‘surround’, but not to
‘title’. The χ2 metric scores ‘title’ high, as it may distinguish Books (and Musics) from
Airfares. Meanwhile, the T2CS-CHI metric scores ‘title’ low as its usage may increase
the mis-classification between Books and Musics.

Lastly, we give here an intuitive explanation for the scoring formula (3.1). That is, with
the first term of this formula, the more frequently a feature t appears in the category
C1 (or the higher P (t|C1)), the bigger its score. (Note that C1 is the category with the
highest of all probabilities P (t|C).) Likewise, with the second term of this formula, the
higher the chance that a sample containing t belongs to C1 (or the higher P (C1|t)), the
bigger the score of t; and also the less the chance that a sample not containing t belongs
to C1 (or the smaller P (C1|t)), the bigger the score of t. In addition, we note that the
first term [P (t|C1)− P (t|C2)] is equal to [P (t|C1) · P (t|C2)− P (t|C2) · P (t|C1)], for the
sum of P (t|C) and P (t|C) is 1.

Selection scheme. After calculating one score for each feature, we go on to choose
a subset of features. While the straightforward selection scheme that is used by the
χ2 technique ranks and selects features altogether regardless of categories, we approach
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differently. In the investigation of the straightforward selection scheme with a metric,
T2CS-CHI or χ2, we put each feature t of the top N features selected into the category
C, among samples of which t most frequently appears (that is, P (t|C) is the highest).
Or in other words, we assign the feature t to the category C that t represents best. We
observed that some categories get many more features assigned than other categories
(for instance, Automobiles around 10 times higher than Books). This imbalance may
make classification more error prone, since there may not be enough discriminative
features to accept or reject whether a sample belongs to a category with the small
number of features. The category with the small number, in turn, usually has a highly
heterogeneous vocabulary. Therefore, we propose a new selection scheme, aiming at
balancing the number of features representing each category, as follows:

1. Compute the scores of features by the T2CS-CHI metric; and assign each feature
t to the category C with maximum P (t|C). In the case of two categories with the
same probability P (t|C), we choose the one with the higher probability P (C).

2. Sort features in each category by their scores in descending order; then re-rank
all features together first by their relative ranks in their categories in ascending
order, and second by their scores in descending order.

3. Select top N ranked features from the set of all features, where N is a parameter
determined through a cross-validation procedure (see Section 2.5).

3.4 Experiments

In this section, we describe the dataset and multi-class SVM implementation we used,
as well as other FS metrics and techniques that we experimented with. After that, we
present the experiment results and use them to show the effect of feature selection and
to compare the FS techniques used.

3.4.1 Dataset and Experimental Settings

We use the TEL-8 dataset of the UIUC Web integration repository [UIUC, 2003], which
contains the search interfaces of 447 structured web sources classified into 8 domains.
After converting HTML pages to text documents and manually checking, we kept 431
sources. The other sources were not usable because the offline contents of search pages
required an online update while the pages themselves no longer exist on the Web. Ta-
ble 3.1 describes the dataset that we used. We conducted experiments in a 4-fold
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Domain # of sources Domain # of sources
Airfares 43 Hotels 34
Automobiles 80 Jobs 50
Books 66 Movies 71
CarRentals 21 Musics 66

Table 3.1: Dataset of 431 web sources in 8 domains

cross-validation scheme. In the form processing step, we ignored words that appear less
than three times in every category (that is, K = 3), so as to remove noisy words. For
the problem at hand, web sources are to be discovered automatically by a crawler [see,
for instance, Barbosa and Freire, 2005]. Due to the dynamic nature of the Web, we
assume that there is no prior information in regard to the category of a new web source
to be classified. 3 Therefore, in the implementation of FS metrics, we assigned the value
(1/m) to the probability P (C) that a random document belongs to a category C, where
m is the total number of categories.

For the multi-class SVM implementation, we used the SVMmulticlass [Tsochantaridis
et al., 2004]. Besides top N (FS level), the only parameter for the SVM linear kernel we
use is svm-C (trade-off between training error and margin). We determine these two
parameters through a 10-fold cross-validation procedure on each training set. 4

Besides χ2 and T2CS-CHI, we also conducted experiments with other FS metrics and
techniques. The other FS metrics experimented are the binary version of Information
Gain [Gabrilovich and Markovitch, 2004], Bi-normal separation [Forman, 2003], Odds
Ratio [Mladenic, 1998], for they were reported as the most effective metrics by these
authors. Like the χ2 metric, these FS metrics are defined between a category and its
complement. Therefore, we apply the FS procedure of χ2 to these metrics; that is, we
use one of these metrics to calculate the category-specific score of a feature for every cat-
egory, selecting the maximum value of the category-specific scores as the final feature’s
score, and then sorting and selecting all features together. We also experimented with
the multi-class Information Gain (IG) and Document Frequency (DF) techniques [Yang
and Pedersen, 1997]. In the subsequent sections, we will discuss the T2CS-CHI, χ2, IG

3In the TEL-8 dataset used by us and He et al., Barbosa et al., the ratio between the source number
of the Books domain and that of the Jobs domain is 66 : 50 (1.32), while in another dataset used
by Lu et al. the ratio is 85 : 20 (4.25). This substantial difference in the ratio of sources is additional
support for our assumption.

4Specifically, the FS levels are in every 240 features, and for the svm-C parameter the feasible set is
{20000, 40000, 60000, 80000, 100000}.
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Method Accuracy # of features
All features after
form processing

92.1 % 8030

T2CS-CHI 94.9 % 1320
χ2 94.4 % 1020
IG 93.5 % 4650

Table 3.2: Classification performance.

and DF techniques, while omitting the others for their performance is either similar to
or lower than that of χ2 or IG.

3.4.2 The Effect of Feature Selection

Table 3.2 shows how aggressive feature selection affects classification performance. We
report results at the FS level and svm-C parameters determined by using only training
sets, and the number of features which is the average value of the training sets. Also, we
report overall accuracy, as the problem at hand is multi-class single-label classification
(see Section 2.4). When no FS methods are applied, that is, using all of around 8030
features after form processing, the accuracy obtained is 92.1%. This good result reflects
a common observation that SVM categorizers can cope quite well with many redundant
features [Joachims, 1998]. When applying our T2CS-CHI technique, the accuracy is
94.9%, which is the highest result. Those of existing FS techniques, χ2 and IG, are
94.4% and 93.5% respectively. The FS levels of T2CS-CHI and χ2 are not higher
than 1320 features. Thus, these two FS techniques improve classification performance
significantly while using the subsets that are much smaller than the set of all features.

Table 3.3 presents the detailed classification results of two techniques “All features after
form processing” (column “a”) and T2CS-CHI (column “b”), where Af , Am, Bk, Cr,
Ht, Jb, Mv and Ms are abbreviation for 8 domains Airfares, Automobiles, Books,
CarRentals, Hotels, Jobs, Movies and Musics respectively. In Table 3.3, for example,
value 2 in the cell row Cr column Af -b means that two web sources, which in fact belong
to CarRentals, have been assigned into Airfares when using the T2CS-CHI technique.
(A cell value is the sum of the results given by validation sets.) As can be observed in
Table 3.3, the T2CS-CHI technique gives better or equal performance over all domains.
Specifically, for the group of closely related domains {Airfares, CarRentals,Hotels}, it
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Af Am Bk Cr Ht Jb Mv Ms
a b a b a b a b a b a b a b a b

Af 38 41 0 0 0 0 3 2 2 0 0 0 0 0 0 0
Am 0 0 79 79 0 0 0 0 0 1 0 0 1 0 0 0
Bk 0 0 0 0 64 65 0 0 0 0 1 0 1 1 0 0
Cr 4 2 0 0 0 0 16 18 1 1 0 0 0 0 0 0
Ht 4 1 0 0 0 0 1 0 29 33 0 0 0 0 0 0
Jb 0 0 0 0 0 0 0 0 0 0 50 50 0 0 0 0
Mv 0 1 0 0 2 3 0 0 2 0 0 0 62 62 5 5
Ms 0 0 0 0 0 0 0 0 0 0 0 0 7 5 59 61

(a) All features after form processing, (b) T2CS-CHI.

Table 3.3: Detailed classification results.

is significantly better. And for Books, a domain with a highly heterogeneous vocabulary,
T2CS-CHI shows a further improvement over the good result when using all features.

3.4.3 Comparison of FS Techniques

Figure 3.1 compares the accuracy of our T2CS-CHI technique and those of the existing
χ2, IG and DF techniques at different FS levels. To draw the graph, at each FS level
we choose the best accuracy among the feasible values of the parameter svm-C in each
cross-validation set, then use the average of accuracy across all cross-validation sets. Or
in other words, the result shown in the graph is obtained by tuning svm-C over the
whole dataset. Thus the previous accuracies reported in Table 3.2 can not be exactly
seen from this graph, for they are calculated at the FS level and svm-C determined by
using only training sets.

It can be observed in Figure 3.1 that T2CS-CHI and χ2 perform with high accuracy
around 95% in the optimal range of 500-2000 features. Next comes IG with the accuracy
around 94% at the FS level of 4000 features. DF performs worst. In addition, T2CS-CHI
maintains stable accuracy around its optimal level of 1000. Meanwhile, the accuracy of
the χ2 method decreases sharply after its peak at the level of 500, before increasing again
around the level of 2000. The stability of the T2CS-CHI technique helps to explain why
it gives the better accuracy at the automatically determined FS level than χ2 does (see
Table 3.2), although the highest accuracies of the two techniques shown on the graph
are almost the same.

Consistently with prior studies in text categorization [Yang and Pedersen, 1997, Rogati
and Yang, 2002], we find that rare terms are not important. Let us consider the DF
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Figure 3.1: Comparison of FS techniques.

technique which simply counts, for each feature, the number of documents containing
the feature in the train set and then select features whose number is higher than a given
threshold. (We did not eliminate noisy words when selecting features with DF.) As
shown in Figure 3.1, the DF technique has an accuracy of 92.6% at 3340 features or the
equivalent DF threshold of 10, and it maintains accuracy around this value throughout
higher FS levels. As a result, a large number of “rare” features can be removed without
any loss of performance, as the total number of features is around 39100.

3.5 Chapter Summary

In this chapter, we study the problem of categorizing structured web sources by using
their search interfaces. Our approach employs a filtering feature selection (FS) technique
together with a multi-class Support Vector Machine categorizer. In our research, we use
only the text contents of the search interfaces. We conducted experiments with our
FS technique which includes a new metric and selection scheme, as well with existing
FS methods. The experimental results indicate that: (a) aggressive feature selection
improves classification performance significantly; (b) our classification approach and FS
technique are effective. Our research also points out that rare words are not important
to the categorization task.
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Chapter 4

Multi-Pair: A Muti-label Method Making

Use of Category Structure

In this chapter, we address the task of developing a multi-label classification algorithm.
As mentioned in Section 1.1, we focus on improving the One-Vs-All approach, or the
OVA approach for short, that is commonly used in researches, for instance, Joachims
[1998], Yang [2001], Bekkerman et al. [2003], Lewis et al. [2004], Fan and Lin [2007].
This approach is also known as One-Vs-Rest. Let us consider a multi-label problem
of m overlapping categories like Politics, Health, Business, Science, Entertainment,
Sports and so on. The OVA approach transforms the problem into m independent
binary classifiers, abbreviated as BCs, between each category and the rest (the category’s
complement) labeled as positive and negative respectively. A new article will be labeled
as Politics, Health and Business if it is given positive scores by the BCs of these three
categories, and negative scores by the other (m− 3) classifiers. The OVA approach has
some drawbacks that lead to different research directions.

The first drawback is that the OVA approach does not take into account the correlation
among categories, as its BCs run independently from one another. However if an article
is already labeled as Entertainment, the chance that it in fact belongs additionally to
Sports is higher than the chance that it belongs additionally to Science. Various meth-
ods have been proposed so as to make use of such correlation, for instance, in Godbole
and Sarawagi [2004], Ghamrawi and McCallum [2005], Zhu et al. [2005], Tsoumakas and
Vlahavas [2007], Tang et al. [2009]. Many among these authors, such as Godbole and
Sarawagi, Tang et al., use an OVA technique as their first phase, and have a second
phase that uses the correlation to consolidate the results output by the first phase.

The second OVA weakness is the imbalance of training data. As a kind of Zip’s law
for category size, there are often few large and many more small categories [Dumais
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et al., 1998]. However, the OVA approach makes training data even more skewed as
it increases the ratio between negative and fewer positive samples in its BCs (m − 1)
times on average, where m is the number of categories. Since learning algorithms are
normally optimized for accuracy, the increase of data skewness causes more samples to
be assigned to the majority parts of the negative samples. Among multi-label studies,
thresholding strategies [Yang, 2001] indirectly address this problem. They usually allow
more samples to be labeled as positive by lowering categorizers’ default thresholds [Fan
and Lin, 2007].

The main focus of this chapter is the third issue, which to our knowledge has not been
studied elsewhere in prior works. That is, when merging samples to create the BC
of a category, the OVA approach ignores the fact that the category’s complement is
composed of around (m − 1) other categories. To make use of this existing category
structure, intuitively, we reformulate a question, for example, “Does an article belong to
the Entertainment category or not?”. We ask more specific questions, like “Does the
article more likely belong to Entertainment than to Science?”, “Does the article more
likely belong to Entertainment than to Sports?” and so on. Technically, we decompose
each of OVA binary classification tasks further into multiple smaller and easier pair
comparisons between a category and a subset of its complement. This decomposition
also reduces the imbalance of training data created by the OVA approach directly. We
name the new method Multi-Pair, or MP for short.

In this chapter, we also combine SCutFBR.1, which was reported one of the most
effective thresholding strategies [Lewis et al., 2004], with the MP method. This is
because, on the one hand, we observed that for very small categories (for instance,
around five samples), the OVA and MP approach performed similarly. On the other
hand, it was reported that thresholding strategies helped the OVA approach to increase
macro-F1 (defined in Section 2.4) for various datasets [Fan and Lin, 2007]. Via this
combination, our goal thus is to improve the macro-F1 performance of the MP method.
This combination also indicates that the MP method can be considered complementary
to other multi-label approaches that have an OVA technique in their cores.

As mentioned in Section 1.1, we experimentally evaluate our new approach by using
three benchmark text collections RCV1-V2, 20 Newsgroups and Reuters-21578. For
each collection, we use the preprocessed dataset made available by prior works and
their results as baseline. In our experiments, the MP method outperforms the OVA
approach in both cases with and without SCutFBR.1.
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The organization of this chapter is similar to that of the previous chapter. In the next
section we review related work. Then we present the MP method in Section 4.2, and
combine it with ScutFBR.1 in Section 4.3. Experimental setup and classification results
of the OVA and MP methods are shown in Section 4.4 and 4.5 respectively. Finally, in
Section 4.6, we conclude with a summary.

This chapter is based on the paper Le and Conrad [2010b].

4.1 Related Work

In this section, we relate our work to other studies on multi-label, as well as multi-class
single-label, classification.

Firstly, there are many multi-label approaches, which can be classified into two groups:
(a) problem transformation (PT), and (b) algorithm adaptation (AA) [Tsoumakas and
Katakis, 2007]. AA techniques, for example Adaboost.MH [Schapire and Singer, 2000]
or CML [Ghamrawi and McCallum, 2005], are the extensions of single-label algorithms.
They also normally involve some kinds of data transformation. PT methods, for in-
stance OVA [Joachims, 1998, Yang, 2001, Bekkerman et al., 2003, Lewis et al., 2004,
Fan and Lin, 2007] or RAKEL [Tsoumakas and Vlahavas, 2007], transform a multi-label
problem into one or more single-label tasks, then solve them by a single-label classifica-
tion method such as Support Vector Machines [Cortes and Vapnik, 1995] or Gaussian
processes [Rasmussen and Williams, 2006]. OVA is the most commonly used PT ap-
proach. Our MP method is an extension of the OVA approach (see Section 4.2.2), and
hence a new PT method.

As discussed in the begining of this chapter, on the one hand, the major part of ex-
isting approaches, AA or PT, aim at exploiting correlation among categories [Godbole
and Sarawagi, 2004, Ghamrawi and McCallum, 2005, Zhu et al., 2005, Tsoumakas and
Vlahavas, 2007, Tang et al., 2009]. On the other hand, our goal is to make use of
the boundaries among categories to improve the OVA approach. In this regard, our
approach complements the existing ones.

Secondly, multi-label classification is closely related to multi-class single-label catego-
rization. The multi-label OVA approach has its single-label counterpart with the same
name [see Rifkin and Klautau, 2004]. Likewise, the MP method has its sibling the Deci-
sion Directed Acyclic Graph method [Platt et al., 2000], as discussed in Section 4.2.3.
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4.2 Multi-Pair Method

This section studies the Multi-Pair (MP) method: its (a) main algorithm, (b) partition
schema, (c) multi-class single-label counterpart and (d) a feature selection technique for
it. But first of all, we describe the One-Vs-All (OVA) approach in the next paragraph,
for it is the starting point of our work.

Let us consider a multi-label classification problem of m categories A, B, C, . . . in which
data samples can be assigned to one or more categories, or in other words, the categories
can overlap. Let A denote the set of samples not belonging to A; and B\A denote the set
of samples that belong to a category B but not A. Given a base binary categorizer, the
OVA approach classifies a new data sample x∗ of the multi-label problem as follows:

1. For each category, say A, construct a binary classifier (BC), which decides if x∗
belongs to A or not, in the following steps: create a classification task A-vs-A
between A labeled as positive and the complement A labeled as negative; train
the base categorizer for the binary task; and then classify x∗.

2. The labels of x∗ are the labels of categories into which x∗ is classified by the BCs
of these categories.

4.2.1 Main Algorithm

A naive observation is that for a category A, its complement A is composed of multiple
categories; but the OVA approach ignores this category structure. Meanwhile, the MP
method takes it into account by decomposing A. A straightforward partition schema is
that categories are taken out one by one in some order: BA = B\A, CA = (C\A)\BA
and so on. After that we do multiple pair comparisons A-vs-BA, A-vs-CA, . . . so as to
decide whether a sample x∗ belongs to A. Comparing to the OVA approach, the MP
method has two advantages as follows.

First, a MP pair comparison, say A-vs-BA, is usually smaller and easier than its respec-
tive OVA binary classification A-vs-A. This is because BA is a subset of A. The gap
between A and BA thus is larger than or at least equal to the gap between A and A; or
it is easier to separate A and BA than A and A. So we pursuit a “divide and conquer”
strategy in the MP method in order to improve the OVA approach.

Second, the training data of a MP pair A-vs-BA is more balanced than the training
data of a respective OVA task A-vs-A; and this is a good property of the MP method,
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for the imbalance of data poses problems to categorizers [Chawla et al., 2002]. In the
OVA approach, the ratio of positive and negative samples in A-vs-A is around 1/(m−1)
on average, where m is the number of categories. The situation in fact is worse since
there are often few large and many more small categories in a dataset [Dumais et al.,
1998]. Via the decomposition, the MP method increases the ratio in A-vs-BA k times
(that is, to k/(m− 1)) on average, where k is the number of the partitions formed by a
MP partition schema. When all categories have the same size and k = (m − 1) (that
is, each category has a corresponding partition formed), the ratio is about 1, or the
training data of each MP pair is balanced.

Algorithm. Given the base binary categorizer, the MP method classifies a new
data sample x∗ of the multi-label classification problem as follows:

1. For each category, say A, construct a multi-pair classifier (MPC), which decides
if x∗ belongs to A or not, in the following steps:

a) Partition the complement A into k subsets BA, CA, . . . (see Section 4.2.2 for
a partition schema).

b) For each subset, say BA, create a paired (or binary) classification task
A-vs-BA between A labeled as positive and BA labeled as negative; train
the base categorizer for the pair; and then classify x∗.

c) x∗ is assigned to A if it is labeled as positive by all the k pair categorizers.

2. The labels of x∗ are the labels of categories to which x∗ is assigned by the MPCs
of these categories.

So there are m MPCs in a MP instance; and they perform the same function as the
m BCs of an OVA instance do. In Algorithm 1, there is the pseudo-code of the MP
method, with a smallest-first partition schema described in the next section.

4.2.2 Partition Schema

A partition schema for A, the complement of a category A, is an integral and important
component of the MP method. When designing our schema, there are two considerations
as follows.

First, a partition should be within the boundary of a category or the category itself. It
is a simple constraint to make use of the existing category structure.
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Input:
X = {A,B,C, . . .}: set of overlapping categories
s̃: minimum partition size
Train, Predict: two imported functions of a base binary categorizer
x∗: a new data sample

Output:
L∗: category labels of x∗

// Main algorithm

begin
L∗ ← ∅
for each U in X do

assigned← True
P ← Partition(U , X , s̃)
for each V in P do

model← Train(U as positive, V as negative)
score← Predict(model, x∗)
if score < 0 then

assigned← False
exit for

if assigned = True then
L∗ ← Append LabelOf(U) into L∗

end

// Smallest-first partition schema

function Partition(U , X , s̃):
P ← ∅ // set of partitions returned
V ← U // category taken out at each time
Y ← X // set of remaining categories
repeat
Y ← Remove V from Y
for each W in Y do W ←W \ V
V ← ∅
for each W in Y do

if SizeOf(W ) > s̃ then
if (V = ∅) or (SizeOf(W ) < SizeOf(V )) then

V ←W

if V 6= ∅ then P ← Append V into P
until V = ∅
for each W in Y do V ← V ∪W // last partition of samples left
if V 6= ∅ then P ← Append V into P

return P
Algorithm 1: Multi-Pair method.
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Second, a partition should be large enough, or in other words, its size should be bigger
than a given value s̃. Experimentally, without this key point, the MP will not perform
well in a dataset with many small categories. Intuitively, it is hard, for either a person or
a computer algorithm, to draw out a pattern from a few samples. Therefore, a pair cate-
gorizer A-vs-BA, whose part BA is small, often makes noisy prediction and should not be
created. Likewise, in the case of a very small A, neither its A should be divided further.

Schema. When constructing the MPC of a category A, the partition schema
for A given a minimum size s̃ is as follows:

1. Take out categories, together with their samples, one by one from A to form
respective partitions: BA = B \A, CA = (C \A)\BA and so on; at each time,
consider only the categories with the numbers of samples left bigger than s̃, and
choose the smallest one among them.

2. When there are no categories bigger than s̃, use all the samples left to form the
last partition.

In the above partition schema, instead of the smallest category we can choose the biggest
one at each time. However, with the same s̃, comparing to the biggest-first schema,
the smallest-first schema forms more partitions. Its largest partitions are smaller and
normally have fewer samples that belong additionally to other categories. Therefore,
the smallest-first schema is more in line with the MP’s “divide and conquer” strategy.

Now we consider the computational requirement of an OVA instance and a MP instance
with a given s̃. As there are m BCs like A-vs-A, the total number of samples trained by
the OVA instance is (m×N), where N is the number of all samples. Suppose for each
category A, its MPC of the MP instance divides A into k partitions; so the number of
training samples is ((k− 1)×NA +N), where NA is the size of A. For all m categories,
the total number is around ((k−1)×N+m×N) . (It is approximated for the categories
overlap.) Since k ≤ (m − 1), the total number of training samples of the MP instance
is fewer than twice that of the OVA instance.

Lastly, with the introduction of the minimum size s̃, we have to determine it, commonly
through a cross-validation procedure. On the other hand, when setting s̃ to a value
bigger than the number of all samples, only one partition is formed by the MP schema,
or we end up with an OVA instance. So an OVA instance is a special MP instance and
can be used as an option during tuning s̃. In practice, we should include this option so
that it could be selected for very small categories. The reason is that the complement
of a very small category should normally be kept undivided, as discussed above.
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4.2.3 Multi-class Single-label Counterpart

There is not only the OVA approach for multi-label classification but also for multi-class
single-label categorization [see Rifkin and Klautau, 2004]. Similarly, the single-label
sibling of the MP method is the Decision Directed Acyclic Graph (DAG) method [Platt
et al., 2000]. That connection is shown as below.

Suppose for a category A, its MPC of a MP instance divides the category’s complement
into k partitions. At this point we have a multi-class single-label problem of (k + 1)
categories, which is special for we are only interested in one question: if a sample
belongs to A or not. This problem can be solved by a normal multi-class single-label
method such as OVA, DAG, Error-correcting output codes [Dietterich and Bakiri, 1995]
or multi-class SVM by Crammer and Singer [2001].

By using the DAG approach and placing A along the right edges of its decision graph [see
Platt et al., 2000], we arrive at the MP method. That is, the classifying procedure used
in a MPC is a stripped-down DAG algorithm. This stripped-down algorithm helps
to reduce runtime. At most k pair comparisons between A and another category (or
partition) are needed before we are able to decide if a sample belongs to A. Meanwhile,
by employing the multi-class single-label OVA method, we always have to run (k + 1)
binary categorizers between a category and the rest composed of k categories.

4.2.4 Feature Selection for MP

As discussed in Section 4.2.3, in a MPC, there is a multi-class single-label classification
problem of (k+1) categories, where k is the number of partitions formed by the MP parti-
tion schema. So we can apply a multi-class FS technique to it. We select T2CS-CHI (see
Section 3.3.2) instead of other multi-class FS techniques (see Sections 3.3.1 and 3.4.1)
and a straightforward method in which a binary FS technique [see Sebastiani, 2002] is
applied to each pair comparison of a MPC. This is because the T2CS-CHI technique
gave the best overall performance (that is, the multi-label classification performance
calculated from all categories) in several preliminary experiments we conducted.

4.3 Thresholding Strategy for Multi-Pair

In this section, we first describe the SCutFBR.1 thresholding strategy for the OVA
approach, and refer to it as the SCutFBR.1 for OVA. Then, we extend the SCutFBR.1
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strategy for the MP method, that is, the SCutFBR.1 for MP. In our description, we
will use the performance measures F1 and accuracy for a category, and macro-F1 and
micro-F1 for all categories, which are defined in Section 2.4.

4.3.1 SCutFBR.1 for OVA

A binary classifying algorithm basically works in two steps. At first it computes a score
for each data sample. Afterward it labels a sample as positive if the sample’s score is
higher than a predefined threshold, or negative otherwise. Changing the threshold thus
affects the final outcome. For the OVA approach, a thresholding strategy such as PCut
or SCut adjusts the default threshold of the base categorizer used in order to obtain
better classification performance [Yang, 2001]. ScutFBR.1 is a SCut variant and was
reported as one of the most effective strategies [Lewis et al., 2004]. Following Fan and
Lin [2007], we now describe the ScutFBR.1 for OVA.

SCutFBR.1 works locally within the BC of each category of an OVA instance. As the
true labels of testing samples are not available, SCutFBR.1 finds the new threshold of a
BC through a cross-validation procedure. That is, available data are split into f parts;
so we have a f -fold cross-validation schema. To optimize threshold for a fold:

1. (f − 1) parts are used to train the base categorizer used by the OVA instance.

2. The other part is used as a validation set, which supposedly contains l samples.
After sorting the predicted scores of these l samples in descending order, (l + 1)
thresholding levels are defined as follows: (a) the highest level is slightly higher
than the biggest score; (b) (l − 1) levels are the average values of two adjacent
scores; (c) the lowest level is slightly lower than the smallest scores. SCutFBR.1
selects the level that gives the best evaluation measure (such as F1) on the vali-
dation set as the new threshold.

3. When the F1 of the validation set does not achieve a given value called fbr,
SCutFBR.1 sets the threshold of the fold to the highest level. This FBR heuristic
is to address the data overfitting problem [see Yang, 2001].

Finally, the new threshold of the BC is the average value of the thresholds of all f
folds.

To optimize for the global macro-F1 measure, we select the thresholding level that gives
the best F1 for an individual category; and for the global micro-F1 measure, the level
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with the highest accuracy. 1 In the case of two levels with the same F1 (or accuracy),
we choose the lower one as its macro-F1 (or micro-F1) was usually a little better in our
experiments. In addition, as pointed out by Fan and Lin, the FBR heuristic often lowers
the thresholds of the BCs of very small categories; hence it increases the recalls of the
categories and the macro-F1 of all categories. Therefore, the new thresholds adjusted
by re-optimizing for accuracy with SCutFBR.1 give a higher macro-F1 than the default
threshold of the base categorizer does.

4.3.2 SCutFBR.1 for MP

We apply ScutFBR.1 to each MPC of a MP instance, and use a cross-validation proce-
dure to find a new threshold; that is, a technique similar to the SCutFBR.1 for OVA
described in Section 4.3.1.

Suppose for a category A, its MPC consists of k pairs: A-vs-BA, A-vs-CA, . . . So a
MPC threshold is indeed an array of k thresholds, one for each pair. In this regard, an
evaluation measure is a function of multiple variables needed to be optimized:

max
T1,T2, ...,Tk

measure(T1, T2, . . . , Tk) ,

where k is the number of pairs, and Ti (1 ≤ i ≤ k) is the threshold of the i-th pair.

We now present an optimizing algorithm through the following steps: (a) removing
irrelevant samples, (b) defining thresholding levels and (c) searching in cycles.

First, when finding a threshold within a pair, we use only samples relevant to the pair.
During training, the first pair A-vs-BA uses only the samples of the category A and
partition BA. However, in validation, it shares the same validation set with the other
pairs. Therefore, we discard samples that do not belong A or BA from the validation set.
This is because we consider the scores of these samples predicted by the pair A-vs-BA are
not reliable; and if we make use of them, there is likely a data overfitting problem. Let
l1 denote the size of the new smaller validation set of the first pair. Similarly for another
i-th pair, the size of its new validation set is li, where 2 ≤ i ≤ k. The decision procedure
for the category A has to be changed accordingly. After the removal step, a sample is
assigned to A if it is labeled as positive by all pairs whose validation sets contain the
sample. That is, for a sample in fact belongs to A, the procedure is unchanged: the

1There is a more complicated threshold selection procedure for the micro-F1 measure used by Fan and
Lin; but their reported results are not higher than ours (see Section 4.5.1).
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sample is placed (correctly) into A if it is predicted as positive by all pairs; but for
a sample of A, it is labeled (falsely) A if it is assigned to A by only the pair whose
validation set contains the sample. (Note that we are in a cross-validation procedure
using a training set; hence the true labels of all validating samples are known.)

Second, for a i-th pair (1 ≤ i ≤ k) whose validation set contains li samples, we define
(li + 1) thresholding levels in the same manner with the SCutFBR.1 for OVA. That
is, after sorting the scores of the li samples, (li − 1) levels are the average values of
two adjacent scores; the highest and lowest levels are slightly higher and lower than the
biggest and smallest scores respectively.

Third, in the optimization of the function measure(T1, T2, . . . , Tk), a method that
scans all possible combinations of the thresholding levels of the k pairs is not feasible.
A reasonable solution is that we sequentially adjust one Ti (1 ≤ i ≤ k) while fixing the
others. A search round begins with T1 and ends with Tk. We cycle over rounds until no
improvement is made or the number of rounds is bigger than a predefined limit. The
FBR heuristic is also used at the end: we reset the thresholds of pairs found to their
highest levels if the F1, which is calculated on the validation set of the category A, is
smaller than a given fbr value.

We initialize searching by setting the thresholds of all pairs to their lowest thresholding
levels. During adjusting a threshold Ti, if there are two levels with the same performance,
we select the smaller one. The reason is that lower thresholds leave more options for
subsequent adjustments. (Note that a sample is labeled A if it is predicted as positive
by all pairs whose validation sets contain the sample.) In contrast, if we start searching
with the highest levels of all pairs and select the bigger value in the case of two levels
performing the same, we always end up with the result: all validating samples are
categorized as not belonging to A.

As with the SCutFBR.1 for OVA, we optimize for macro-F1 or micro-F1 by tuning a
MPC threshold for F1 or accuracy respectively in each category. In addition, in the case
of k = 1, the SCutFBR.1 for MP is similar to the SCutFBR.1 for OVA.

Algorithm 2 shows the pseudo-code of the SCutFBR.1 for MP. We note that in our
experiments, the final numbers of search rounds were not bigger than two. We also
observed that the order of pairs did not affect the result of the algorithm. 2

2We conducted experiments in three options: pairs sorted by their size in ascending order, in descending
order, and not ordered by size; and we obtained the same result.
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Input:
X = {A,B,C, . . .}: set of overlapping categories;
fbr: lower bound of F-measure

Output:
One MPC threshold for each category

// Main program

for each category X in X do
Construct a MPC of k pairs X-vs-Pi (1 ≤ i ≤ k);

Split each of X and Pi (1 ≤ i ≤ k) into f folds;
for fold j = 1 to f do

Train a MP categorizer on other (f − 1) folds of data;
[Sj1, . . . , S

j
k]← Predict samples’ scores of the j-th fold by the MP

categorizer;

[T j1 , . . . , T
j
k ]← FindMPCThreshold(fbr, k, [Sj1, . . . , S

j
k]);

Train the MPC by the MP categorizer; Set the threshold of the MPC to the
average of f folds:

[T1, . . . , Tk] = [ 1
f

∑f
j=1 T

j
1 , . . . ,

1
f

∑f
j=1 T

j
k ];

// SCutFBR.1 within a fold

function FindMPCThreshold(fbr, k, [Sj1, . . . , S
j
k]):

for pair i = 1 to k do
Select samples belonging to X or Pi from Sji ;
Li ← Compute thresholding levels from the scores of the selected samples;
T ji ← Lowest level of Li; // initialize pair threshold

mM ← −1;
for round r = 1 to R̃ do // R̃ : predefined limit of rounds

for pair i = 1 to k do
mp ← −1;
for level T = lowest to highest level of Li do

m ← Measure(T j1 ,. . . ,T ji−1, T ,T ji+1,. . . ,T jk);
if mp < m then

mp ← m;
T ji ← T ;

if mM < mp then mM ← mp;
else exit for;

if Fmeasure(T j1 ,. . . ,T jk) < fbr then // FBR heuristic

for pair i = 1 to k do T ji ← Highest level of Li;

return [T j1 , . . . , T
j
k ]

Algorithm 2: SCutFBR.1 for Multi-Pair.
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4.4 Experimental Setup

In this section, we describe the experimental setup used, including: datasets and their
results reported by other authors, base categorizers and parameter tuning.

4.4.1 Multi-label Datasets and Previous Results

The three benchmark datasets that we use are RCV1-V2 subsets, 20 Newsgroups and
Reuters-21578. For each of them, we briefly describe their data contents, previous
OVA results obtained by other authors that we use as baseline, data representation and
feature selection possibly used, as well as the highest results from prior works for these
datasets that we collected.

RCV1-V2 Subsets

The RCV1-V2 corpus contains newswire stories from Reuters Ltd; and it was produced
from the original Reuters Corpus Volume I after necessary corrections [Lewis et al.,
2004]. We use the five preprocessed subsets of RCV1-V2 publicly available at LIBSVM
website. 3 We will refer to these five subsets as RCV1. In each RCV1 subset, there are
3000 samples for training and 3000 samples for testing in 101 categories. This dataset is
highly imbalanced. In each training set, the largest category has around 1400 samples
while each of the 15 smallest categories contains no more than five samples.

RCV1 was used in Fan and Lin [2007] and Tang et al. [2009]. The former research
studies on thresholding strategies with the OVA approach. The latter work proposes
a multi-label method named MetaLabeler. We use the higher results of the former
research as baseline; that is, 74.1% micro-F1 and 34.1% macro-F1 obtained with the
OVA approach, 77.3% micro-F1 and 49.0% macro-F1 with the SCutFBR.1 for OVA
optimized for micro-F1, and 76.2% micro-F1 and 50.6% macro-F1 with the SCutFBR.1
for OVA optimized for macro-F1. The 77.3% micro-F1 and 50.6% macro-F1 are also the
highest results achieved by one method on this dataset.

All samples of RCV1 were already vectorized and normalized. Therefore, we do not
apply feature selection to this dataset. We only remove unused features that appear in
a testing set but not in a corresponding training set, and then re-normalize the testing
vectors. Since there are five subsets, we will report the average performance on them.

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multilabel.html
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20 Newsgroups

This corpus, collected by Ken Lang, contains around 20, 000 articles of 20 Usenet discus-
sion groups [Joachims, 1997]. Only about 4.5% of the articles were cross-posted among
the groups. This corpus is balanced as each category has approximately 1, 000 samples.
We use the preprocessed data of the corpus in Bekkerman et al. [2003], provided freely
online. 4 This corpus will be referred to as 20NG.

The results for 20NG as a multi-labeled dataset were reported in Bekkerman et al.
[2003] and Gabrilovich and Markovitch [2004]. 5 Both researches are studies on feature
selection using the OVA approach. Our baseline result is 85.6% micro-BEP reported
in the former work because the result is for the same preprocessed dataset and with
the bag-of-words representation we used. It is also a little better than the result of the
latter research. The best result for 20NG is 88.6% micro-BEP, which was also obtained
by Bekkerman et al. when using the Information Bottleneck word-cluster representation.
There were no macro-average results reported for this dataset.

For 20NG, we use the common bag-of-words representation, weight terms by term fre-
quency (TF), and normalize all document vectors. We do not apply feature selection to
this dataset because it was the best strategy reported in the two prior works. As this
dataset is already divided into four parts, we will report the average performance of a
4-fold cross-validation schema.

Reuters-21578

This is another corpus of documents gathered from Reuters newswire. 6 We use the
preprocessed data of the corpus also in Bekkerman et al. [2003], provided freely online. 7

The preprocessed dataset is in the “ModApte” split with 7063 articles for training and
2742 articles for testing in 114 categories. This dataset is not only highly imbalanced
but also considerably noisy. The first and second largest categories of the training set
have 2709 and 1488 samples respectively. Meanwhile, there are 49 categories having
no more than five articles, and the 19 smallest ones with only one articles. The two
categories “Castor-oil” and “Castorseed” contain only one and the same sample.

4http://www.cs.technion.ac.il/∼ronb/datasets/20NG.zip
5There are authors treating 20NG as a single-labeled dataset, for example Joachims [1997].
6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://www.cs.technion.ac.il/∼ronb/datasets/Reuters.zip
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A number of authors used the Reuters-21578 corpus in two forms: the 10 largest cat-
egories or the entire (or almost) dataset. We will indicate the 10 largest categories
as Reuters–10–largest, and all categories as Reuters–all. Our baseline results with the
OVA approach were reported in Bekkerman et al. [2003] – the source of the prepro-
cessed dataset we use. For Reuters–10–largest, it is 92.3% micro-BEP obtained by the
authors while replicating Dumais et al.’s experiment; and for Reuters–all, it is 87.0%
micro-BEP achieved by Dumais et al. [1998] themselves. The 92.3% micro-BEP is also
the best among previous Reuters–10–largest results [Gabrilovich and Markovitch, 2004,
Zhu et al., 2005]. For Reuters–all, the highest results are 87.99% micro-F1 and 87.99%
micro-BEP with BandSVM and 87.96% micro-F1 and 87.96% micro-BEP with SVM-HF
– two two-phase multi-label methods which use an OVA technique as their first phase
and were proposed in Godbole and Sarawagi [2004]. 8 Also, the OVA results reported in
this paper are 87.15 micro-F1 and 87.43 micro-BEP, or better than our baseline. There
is another result significantly higher than the baseline; that is, 87.8% micro-BEP on
the 95 largest categories, achieved by Weiss et al. [1999] by boosting (using 100 deci-
sion trees and an adaptive resampling scheme). There were no macro-average results
reported for Reuters–10–largest or Reuters–all.

For Reuters–all (thus including Reuters–10–largest), we represent articles by the bag-
of-words and term frequency schema, and normalize document vectors; that is, in the
same manner for the 20NG dataset. Like the authors of the baseline results, we apply
feature selection to Reuters–all. We use the T2CS-CHI technique after removing features
appearing fewer than twice in every category. Since there is one subset in the “ModApte”
split, we will simply report performance on the testing set.

4.4.2 Base Categorizer and Parameter Tuning

We implemented both the OVA and MP methods. For the prebuilt base binary cate-
gorizer, we use either liblinear [Fan et al., 2008] or libocas [Franc and Sonnenburg,
2009] – two of the current fastest linear Support Vector Machine (SVM) libraries. We
employed the former during researching; and ran the latter additionally at last with all
the same settings. 9 So unless stated explicitly otherwise, our results are obtained with
liblinear.

8The micro-BEP values were computed by us from the micro-precisions and micro-recalls in this paper.
9We implemented the OVA and MP methods, as well as other processing modules, in Python pro-

gramming language (www.python.org). They call either the liblinear or libocas linear binary
categorizer, which is wrapped as a Python module by Cython language (www.cython.org).
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Similarly to the task of categorizing structured web sources (see Section 3.2), we use a
linear kernel with a bias of 1 (the software default value). In a dataset, we determine
parameters for each category separately through a 10-fold cross-validation procedure on
training sets.

For RCV1, there are two parameters: svm-C (trade-off between training error and
margin) and s̃ (minimum partition size). Following the studies of the baseline results,
we determine these parameters by using accuracy. Within a category, we first tune s̃
while setting svm-C to 1 (the software default value); and then determine svm-C with
the found s̃. At this point, we are able to obtain results with the MP (or OVA) method
without a thresholding strategy. Finally, we go on to find a new threshold by using the
SCutFBR.1 for MP (or OVA) with a predefined fbr value, optimized for either micro-F1

or macro-F1.

For 20NG, the tuning procedure is similar to the above procedure for RCV1. The only
difference is the specified feasible set of s̃, for all categories of 20NG are large (around
1, 000 samples).

For Reuters–all, there is one more parameter: fs-K (feature selection level). The other
settings (svm-C, s̃, fbr) are the same as those of RCV1. Since the T2CS-CHI technique
makes use of category structure, its result is affected by the MP partition schema used.
For now, we tune s̃ and fs-K together in an exhaustive grid-search of pairs (s̃, fs-K)
while setting svm-C to 1. We then use the same procedure as for RCV1 to find svm-C
and thresholds.

Lastly, in our MP implementation, we always included the option of an OVA instance
(by setting s̃ to a very big number) as suggested in Section 4.2.2. During tuning, in case
of two parameters s̃ with the same performance, we chose the bigger one. In this way,
for very small categories, the option of an OVA instance could be selected since default
choices were returned by the MP (and also OVA) cross-validation procedure most of
the time (see Section 4.5.1). Specifically, the feasible set of s̃ for RCV1, Reuters–all
(including Reuters–10–largest) is [25, 50, 100, 150, 200, 250, 300, 1000000]; and for 20NG
[1, 1000000], where the biggest option 1000000 is equivalent to an OVA instance and the
option 1 a partition schema of all categories (that is, each 20NG category has a corre-
sponding partition formed).10 They are the default parameters used in our experiments,
unless stated explicitly otherwise.

10For other parameters, the feasible set of fs-K is [1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] (percents);
the feasible set of svm-C is [2−2, 2−1, 20, 21, 22, 23]; and fbr = 10%. The set of svm-C and the fbr
value were used by Fan and Lin.
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4.5 Classification Results

In this section, we present the performance and comparison of the OVA and MP methods
with or without SCutFBR.1, together with liblinear or libocas, in different experi-
ments. We report the actual runtime in the experiments as well. Similarly to the studies
of the baseline results [Fan and Lin, 2007, Bekkerman et al., 2003], we use macro-F1,
micro-F1 and micro-BEP. We also use micro-P, micro-R in order to analyze the re-
sults in more detail. These performance measures are defined in Section 2.4. Briefly,
micro-F1, micro-BEP, micro-P and micro-R indicate micro-average F-measure, break
even point, precision and recall respectively; and macro-F1 indicates macro-average
F-measure. In addition, source code to reproduce our classification results is available
at http://dbs.cs.uni-duesseldorf.de/research/mp/ .

4.5.1 Main OVA and MP Results

Tables 4.1, 4.2 and 4.3 show the results for the three corpora RCV1-V2 (RCV1), 20
Newsgroups (20NG) and Reuters-21578 (Reuters–all and Reuters–10–largest) respec-
tively, where “baseline” indicates the baseline OVA results reported in the prior works,
whose preprocessed datasets we use (see Section 4.4.1); OVA and MP without a pre-
fix “baseline” indicate our implementation of these two methods; OVA–SCutmic the
SCutFBR.1 for OVA optimized for micro-F1; and MP–SCutMAC the SCutFBR.1 for
MP optimized for macro-F1. All results in these tables are obtained with liblinear,
and with the default smallest-first partition schema in the case of the MP method. Be-
fore any further discussion, it is observed that comparing to the baseline results, those
of our OVA implementation are (a) similar over RCV1 (except for micro-F1 without
SCutFBR.1, ours is better), (b) much higher over 20NG, and (c) similar over Reuters–
all and better over Reuters–10–largest. Therefore, from now on, we will only discuss
the results within our own implementation.

As can be seen in the Tables 4.1, 4.2 and 4.3, without a thresholding strategy, the MP
method outperforms the OVA approach on all the three corpora in micro-F1, micro-BEP,
micro-R and macro-F1. In contrast, in micro-P, the OVA approach is better; and this
reflects the tendency of placing more samples into the more populous (and negative)
category, which is observed in the case of imbalanced data for (base) SVM categoriz-
ers [see Joachims, 2000]. In addition, for very small categories (for example, 20 smallest
categories with no more than six samples in the first RCV1 subset), both the OVA and
MP methods performed the same. This result can be explained as follows. The prebuilt
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Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

Baseline OVA 74.1 34.1
OVA 75.0 77.3 90.5 64.0 34.7
MP 78.5 79.2 86.4 71.9 40.3
Baseline OVA–SCutmic 77.3 49.0
OVA–SCutmic 77.2 77.4 81.4 73.5 49.7
MP–SCutmic 78.9 78.9 81.4 76.5 52.8
Baseline OVA–SCutMAC 76.2 50.6
OVA–SCutMAC 76.2 76.2 75.5 76.9 51.2
MP–SCutMAC 78.2 78.2 78.6 77.8 53.3

Table 4.1: Results for RCV1-V2 subsets (RCV1).

Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

Baseline OVA 85.6
OVA 88.7 89.1 94.8 83.4 88.6
MP 90.3 90.4 91.4 89.3 90.3
OVA–SCutmic 89.8 89.8 91.7 87.9 89.7
MP–SCutmic 90.4 90.4 92.6 88.3 90.3
OVA–SCutMAC 89.8 89.8 91.0 88.6 89.8
MP–SCutMAC 90.4 90.4 92.5 88.4 90.3

Table 4.2: Results for 20 Newsgroups (20NG).

Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

All categories (Reuters–all)
Baseline OVA 87.0
OVA 86.9 87.1 91.9 82.3 38.1
MP 88.2 88.3 90.8 85.9 40.1
OVA–SCutmic 85.8 85.8 86.7 84.9 46.6
MP–SCutmic 86.9 86.9 86.1 87.6 48.5
OVA–SCutMAC 85.4 85.4 85.2 85.6 47.5
MP–SCutMAC 86.8 86.8 85.9 87.7 48.6

10 largest categories (Reuters–10–largest)
Baseline OVA 92.3
OVA 92.7 92.7 93.9 91.5 85.2
MP 93.3 93.3 92.8 93.7 87.2
OVA–SCutmic 92.6 92.6 92.9 92.3 85.7
MP–SCutmic 93.2 93.2 92.0 94.4 87.5
OVA–SCutMAC 92.6 92.6 92.7 92.6 85.9
MP–SCutMAC 93.2 93.2 92.0 94.4 87.5

Table 4.3: Results for Reuters-21578.
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base SVM categorizer we used, as well as most of the others, is designed to maximize
accuracy. When there are, for example, five positive and more than one thousand neg-
ative samples, the naive strategy that labels all samples as negative yields very high
accuracy; but an effort to have only one true positive would likely result in several more
false positives. Thus, in most of time, both the OVA and MP methods simply labeled
all testing samples as negative, or in other words, as not belonging to the categories. So
during parameter tuning, the s̃ option of an OVA instance (that is, the biggest s̃ value)
was selected, and MP instances became OVA instances.

With the SCutFBR.1 thresholding strategy, the MP method also performs significantly
better than the OVA approach on all the three corpora in micro-F1, micro-BEP, micro-R
and macro-F1; but not as much as without SCutFBR.1. However this time, in micro-P,
the MP’s results are only poorer over Reuters–all when optimized for micro-F1 and over
the Reuters–10–largest; while in the other cases, they are similar or higher.

Adjusting threshold often increases the macro- and micro-average results of the OVA
approach, and the macro-average results of the MP method. For RCV1 and Reuters–all –
two datasets with small categories, SCutFBR.1 increases significantly macro-F1 for both
the OVA and MP methods. It also increases micro-F1 over RCV1, but hurts micro-F1

over Reuters–all for both the methods. For the other two datasets with large categories,
SCutFBR.1 improves performance for the OVA approach on 20NG, but not on Reuters–
10–largest. Meanwhile, the thresholding strategy does not help the MP method on both
the datasets. This indicates that via the decomposition, the MP method makes training
data more balanced; and thus adjusting threshold further becomes unnecessary for large
categories.

Let us now compare the SCutFBR.1 for OVA with the MP method (without a thresh-
olding strategy) through examining the micro-BEP measure. For the OVA approach,
SCutFBR.1 increases micro-BEP over 20NG, keeps it similar over RCV1 when opti-
mized for micro-F1 and over Reuters–10–largest, and decreases it over RCV1 when
optimized for macro-F1 and over Reuters–all. Thus, the increase of micro-F1 made by
the SCutFBR.1 for OVA over RCV1 is only the result of balancing micro-P and micro-R.
(Note that the BEP measure is the unweighted mean of precision and recall whereas
the F-measure is the harmonic mean.) Meanwhile, the micro-BEP results of the MP
method are significantly higher than those of the OVA approach on all datasets. The
MP method also makes micro-P and micro-R more balanced. That is why between the
MP method and the OVA approach, the difference in micro-F1 is larger than the differ-
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Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

RCV1-V2 subsets (RCV1)
MP 76.7 78.3 89.6 67.0 36.2
MP–SCutmic 78.4 78.5 81.3 75.7 51.3
MP–SCutMAC 77.6 77.6 77.4 77.8 52.3

20 Newsgroups (20NG)
MP 90.3 90.3 91.5 89.1 90.3
MP–SCutmic 90.3 90.4 92.5 88.2 90.3
MP–SCutMAC 90.3 90.4 92.4 88.3 90.3

All categories of Reuters-21578 (Reuters–all)
MP 88.0 88.1 91.4 84.8 40.8
MP–SCutmic 87.0 87.0 86.8 87.2 47.7
MP–SCutMAC 86.9 86.9 86.4 87.4 48.4

10 largest categories of Reuters-21578 (Reuters–10–largest)
MP 93.3 93.3 93.5 93.1 87.0
MP–SCutmic 93.3 93.3 92.3 94.3 87.8
MP–SCutMAC 93.3 93.3 92.2 94.4 87.8

Table 4.4: Results of Multi-Pair with the biggest-first partition schema.

ence in micro-BEP. In addition, adjusting threshold for the MP method only decreases
or keeps micro-BEP unchanged on all datasets.

Finally, the micro-BEP and micro-F1 results obtained by the MP method alone and
the macro-F1 results with the SCutFBR.1 for MP (optimized for either micro-F1

or macro-F1) are higher than the previous results collected in Section 4.4.1 on all
datasets.

4.5.2 MP Results with the Biggest-first Partition Schema

Table 4.4 shows the results of the MP method with the biggest-first partition schema
(see Section 4.2.2), for RCV1, 20NG, Reuters–all and Reuters–10–largest, and with
liblinear. Other notions used in this table are the same as those used in the previous
Table 4.1. In the following paragraphs, we will consider the Table 4.4 together with the
Tables 4.1, 4.2 and 4.3.

It can be observed that for 20NG, Reuters–all and Reuters–10–largest, the biggest-first
schema performs similarly to the smallest-first schema in micro-F1, micro-BEP and
macro-F1. For RCV1, before adjusting threshold, the performance of the biggest-first
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Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

RCV1-V2 subsets (RCV1)
MP 77.7 78.7 87.9 69.6 37.8
MP–SCutmic 78.7 78.7 80.9 76.6 52.1
MP–SCutMAC 77.9 77.9 77.9 77.9 52.6

All categories of Reuters-21578 (Reuters–all)
MP 87.8 87.9 90.8 85.0 41.0
MP–SCutmic 86.4 86.4 86.4 86.4 48.3
MP–SCutMAC 86.2 86.2 85.5 86.9 48.7

10 largest categories of Reuters-21578 (Reuters–10–largest)
MP 92.8 92.8 92.9 92.7 86.4
MP–SCutmic 92.8 92.8 92.3 93.2 86.4
MP–SCutMAC 92.8 92.8 92.2 93.3 86.5

Table 4.5: Results of Multi-Pair with the two-option feasible set of [150, 1000000] for s̃,
where the option 1000000 is equivalent to an OVA instance.

schema is considerably lower than that of the smallest-first one; and after adjusting, the
former is still poorer but the gap is narrower.

As with the smallest-first schema, the MP method with the biggest-first schema outper-
forms the OVA approach on all datasets in both cases with and without SCutFBR.1.

4.5.3 MP Results with a Two-option Feasible Set for s̃

We conducted an additional experiment whose two-option feasible set for s̃ is
[s, 1000000], where s is a value in the range of [25, 50, 100, 150, 200, 250, 300] and the
1000000 option is equivalent to an OVA instance. Table 4.5 shows the results of the MP
method where s = 150, for RCV1, Reuters–all and Reuters–10–largest, with the default
smallest-first partition schema and liblinear. Other notions used in this table are the
same as those used in the previous Table 4.1. We do not report the results for 20NG
in this table since they are the same as those of the Table 4.2 presented before. Also,
comparing to the results of s = 150, those of s = 25 or s = 50 are lower; but for the
others s ≥ 100, the results are only a little higher or lower. So it is unnecessary to show
them here. 11

Comparing to the previous MP results of full s̃ options shown in the Tables 4.1 and 4.3,
the results of two-option s = 150 are lower. For micro-F1 and micro-BEP, the differences
11The results of others s 6= 150 are available online together with the experiments’ source code.
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are from 0.2% to 0.8% and mostly around 0.5% over RCV1, Reuters–all and Reuters–
10–largest. For macro-F1, the two-option results are around 1.0% poorer over RCV1
and Reuters–10–largest, but similar over Reuters–all.

Comparing to the OVA results already presented in the Tables 4.1 and 4.3, the MP
results of two-option s = 150 are significantly higher in micro-F1, micro-BEP and
macro-F1 on all datasets most of the times; except for micro-F1 and micro-BEP over
Reuters–10–largest, the MP results are slightly better.

4.5.4 OVA and MP Results with LIBOCAS

Tables 4.6, 4.7 and 4.8 show the results of the OVA and MP methods obtained with
libocas, together with the default smallest-first partition schema, for RCV1, 20NG,
Reuters–all and Reuters–10–largest. Other notions used in the tables are the same as
those used in the previous Table 4.1. In the following paragraphs, we will consider the
Tables 4.6, 4.7 and 4.8 together with the Tables 4.1, 4.2 and 4.3.

As can be seen in these tables, the results obtained with libocas are very similar to
those obtained with liblinear. Thus all the discussions on the OVA and MP methods
with liblinear are also applied to libocas.

Meticulously, with the MP method, for RCV1 and Reuters–all – two datasets with small
categories, libocas usually gives slightly better results (0.1% or so) than liblinear

does, except for macro-F1 over Reuters–all libocas around 0.8% better. For 20NG,
both the SVM libraries perform almost the same with both the OVA and MP methods.
For Reuters–10–largest, sometimes libocas is insignificantly higher while other times
insignificantly poorer.

4.5.5 Computational Efforts

In this section, we report the actual runtime, training and testing altogether, in our
experiments so as to give the coarse speed comparison between the OVA and MP meth-
ods. All experiments were conducted on a 2.4GHz 1.5GB RAM Pentium 4 operated
by Debian GNU/Linux 5.0. Let MPfull indicate the MP instance of full s̃ options,
MPs150 the MP instance of two-option s = 150, and OV Ains the OVA instance in our
experimental settings.

We first consider the RCV1 dataset. When using liblinear, it took OV Ains about 58
minutes, MPs150 1 hour 44 minutes, and MPfull 4 hours 19 minutes; or OV Ains was 1.8
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Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

OVA 75.0 77.3 90.6 64.0 34.7
MP 78.5 79.2 86.6 71.9 40.4
OVA–SCutmic 77.4 77.6 81.6 73.6 50.0
MP–SCutmic 79.0 79.0 81.4 76.7 53.0
OVA–SCutMAC 76.3 76.3 75.7 77.0 51.3
MP–SCutMAC 78.2 78.2 78.6 77.9 53.4

Table 4.6: Results for RCV1-V2 subsets (RCV1), with libocas.

Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

OVA 88.7 89.1 94.7 83.5 88.7
MP 90.3 90.4 91.5 89.2 90.3
OVA–SCutmic 89.8 89.9 91.7 88.0 89.7
MP–SCutmic 90.4 90.4 92.5 88.3 90.3
OVA–SCutMAC 89.8 89.8 90.9 88.6 89.8
MP–SCutMAC 90.4 90.4 92.4 88.5 90.3

Table 4.7: Results for 20 Newsgroups (20NG), with libocas.

Method Micro-F1 Micro-BEP Micro-P Micro-R Macro-F1

All categories (Reuters–all)
OVA 86.9 87.1 92.0 82.3 38.2
MP 88.3 88.4 91.3 85.5 41.0
OVA–SCutmic 86.2 86.2 87.3 85.2 46.8
MP–SCutmic 87.2 87.2 86.9 87.4 49.3
OVA–SCutMAC 85.8 85.8 85.9 85.7 47.6
MP–SCutMAC 86.9 86.9 86.3 87.6 49.3

10 largest categories (Reuters–10–largest)
OVA 92.5 92.5 93.8 91.3 85.0
MP 93.3 93.3 93.1 93.5 87.1
OVA–SCutmic 92.8 92.8 92.8 92.7 86.1
MP–SCutmic 93.2 93.2 92.3 94.1 87.3
OVA–SCutMAC 92.7 92.7 92.6 92.8 86.1
MP–SCutMAC 93.2 93.2 92.2 94.2 87.3

Table 4.8: Results for Reuters-21578, with libocas.
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times faster than MPs150, and 4.5 times than MPfull. With libocas, it took OV Ains
around 5 hours 19 minutes, and MPfull 45 hours 19 minutes; or OV Ains was 8.5 times
faster than MPfull. Likewise, experiments with libocas ran 5.5 or 10.5 times longer
than those with liblinear did. In Franc and Sonnenburg [2009], there was another
report that libocas was slower than liblinear when using a svm-C > 1 (trade-off
between training error and margin).

Let us now take the Reuters–all dataset as another example. When using liblinear, it
took OV Ains approximately 1 hours 40 minutes, MPs150 3 hour 24 minutes, and MPfull

14 hours 20 minutes; or OV Ains was 2.0 times quicker than MPs150, and 8.6 times than
MPfull. With libocas, it took OV Ains about 2 hours 14 minutes, and MPfull 25
hours 50 minutes; or OV Ains was 11.6 times quicker than MPfull. Experiments with
libocas ran 1.3 or 1.8 times slower than those with liblinear did as well. Hence, in
this dataset, libocas was also slower than liblinear, but not as much as in RCV1.

In brief, the OVA instances were at least 1.8 times faster than the MP instances; and the
actual runtime depended on various factors, including datasets, the mode of parameter
tuning, feature selection and base categorizers. Indeed, the fact that the MP method is
slower than the OVA approach is unavoidable, as we switch from the view of binary (or
two-class) classification to the view of multi-class classification (see Section 4.2.3).

4.6 Chapter Summary

In this chapter, we propose a multi-label classification method named Multi-Pair (MP).
This new method is developed from the commonly used One-Vs-All (OVA) approach by
making use of category structure. The MP method can be described in a common-sense
language as follows. Instead of a general question (like A-vs-A in the OVA approach),
we should ask more specific questions (like A-vs-BA, A-vs-CA,. . . ) whenever possible.
Also, an alternative question (say A-vs-BA) should be meaningful (BA is within the
boundary of a category B) and not too specific (BA is big enough). Furthermore,
we incorporate the SCutFBR.1 thresholding strategy into the MP method. In our
experimental evaluation, the MP method outperforms the OVA approach in both cases
with and without SCutFBR.1.
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Conclusion

This thesis is a study on multi-class classification through two different research prob-
lems. The first problem is to organize structured sources on the Web. In this task,
along with the classification approach using aggressive feature selection (FS), we pro-
pose T2CS-CHI – a new multi-class FS technique. The second task is to develop a
multi-label classification algorithm. In this second task, based on the commonly used
One-Vs-All (OVA) approach, we introduce a new method named Multi-Pair (MP). Then
we go further to combine it with the SCutFBR.1 thresholding strategy. All our proposed
methods are accompanied by experimental evaluation, whose results indicate that these
methods are effective.

The aspect that makes our works different from prior researches is that we make use
of category structure. In the existing FS techniques and OVA approach, a multi-class
classification problem is transformed into binary classification problems between a cat-
egory and its complement, that is, a two-class view. Meanwhile, we take into account
the fact that the complement of a category is composed of multiple categories, that is,
a multi-class view. We either do not merge the samples of the complement together (as
with T2CS-CHI), or divide the complement into smaller partitions which is within a
categories or a category itself (as with MP). Then we transform a multi-class problem
into binary problems between a category and a partition of its complement. In this way,
we aim at making use the existing boundary among categories. Our key observation
is that to make use of this category structure effectively, a partition should be large
enough, for it is difficult to draw out a pattern from a few data samples.

Like multi-class single-label classification is the extension of binary classification, our
multi-class view can be considered as an extension of the two-class view. The OVA
approach is the special case of the MP method, where the complement of each category
is kept undivided by a MP partition schema. Likewise, the category-specific χ2 metric
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is defined for binary classification. The T2CS-CHI metric is for multi-class single-label
classification; and in the case of binary classification, the T2CS-CHI metric is equivalent
to the category-specific χ2 metric.

For future work, we are interested in:

(a) evaluating the effectiveness of the T2CS-CHI technique in other multi-class clas-
sification problems,

(b) making the MP method faster,

(c) extending the MP method in order to use the correlation information among cat-
egories,

(d) making use of category structure in developing an algorithm, but this time, for
multi-class single-label classification.
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