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Zusammenfassung

Im Zentrum dieser Arbeit steht die Entwicklung paralleler Algorithmen für relativistis-

che Elektronenstrukturmethoden sowie deren Anwendung auf schwere Atome und kleine

Moleküle mit schweren Elementen. Die Parallelisierungsarbeiten konzentrierten sich ins-

besondere auf das Verfahren der Konfigurationswechselwirkung (CI) und des Multiconfi-

guration-Self-Consistent-Field (MCSCF). Im Falle der erstgenannten Methode wurde im

Zuge dieser Doktorarbeit eine parallele Implementierung des im Programmpaket DIRAC

zur Verfügung stehenden relativistischen spinfreien (LUCITA) Algorithmus, d.h. ohne Ein-

bezug der Spin-Bahn Wechselwirkung, als auch des voll relativistischen (LUCIAREL) Al-

gorithmus realisiert. Für das voll relativistische MCSCF-Verfahren wurde eine Paral-

lelisierung der wesentlichen Bestandteile, die auf Routinen des CI-Verfahrens zurückgehen,

durchgeführt. Die Entwicklung der parallelen Algorithmen orientierte sich an den Maxi-

men der Rechnerarchitektur- und Problemgrößenunabhängigkeit. Die erfolgreiche Umset-

zung dieser Anforderungen konnte durch vergleichende Studien variabler Problemgrößen

auf einem lokalen Rechencluster sowie auf dem Großrechner JUMP gezeigt werden. Mit

den parallelisierten Programmen konnte ein nahezu optimaler Speedup erreicht werden.

Der Zusammenhang zwischen Prozessoranzahl und Speedup verläuft über einen weiten

Bereich linear (siehe Abbildung).

 0

 10

 20

 30

 40

 50

 60

 70

 10  20  30  40  50  60

S
p

e
e

d
u

p

Prozessoranzahl

ideal
JUMP: LUCIAREL

Lokaler Cluster: LUCITA

Abbildung: Exemplarischer Datensatz zur Illustration des mit der Parallelisierung erzielten Speedups.

13



Darüberhinaus wurde ein paralleles Programm auf der Basis der CI-Methode ent-

wickelt, das einen einfachen Zugang zur Berechnung elektrischer und magnetischer Eigen-

schaften von Atomen und Molekülen bietet. Zudem ermöglicht es eine eindeutige Charak-

terisierung elektronischer Zustände im Rahmen spinorbasierter Methoden.

Die in dieser Arbeit vorgestellten Anwendungen befassen sich mit der genauen Er-

mittlung spektroskopischer Eigenschaften kleiner Moleküle mit schweren Elementen und

schwerer Atome in ihren Grund- und elektronisch angeregten Zuständen. Hierbei wurde

durch den Einsatz der parallelen relativistischen CI und MCSCF Methoden im Zusam-

menspiel mit großen, unkontrahierten Basissätzen und unter Anwendung des Konzeptes

der generalisierten Räume (GAS) eine sehr hohe Genauigkeit erreicht. Im Fall des BiH

Moleküls konnte eindrucksvoll demonstriert werden, dass eine simultane Behandlung der

Elektronenkorrelation und Spin-Bahn Wechselwirkung unverzichtbar ist, um eine dem Ex-

periment nahekommende Spin-Bahn Aufspaltung zwischen Grund- und erstem angeregten

Zustand zu berechnen. Ein umfassender Vergleich verschiedener relativistischer Elektro-

nenkorrelationsmethoden am Beispiel des I−3 Anions und des I3 Radikals zeigte, dass mit

der parallelen voll relativistischen GASCI Methode eine Genauigkeit in der Berechnung

der Elektronenstrukur und elektronischer Anregungsspektren der anionischen sowie der

radikalischen Spezies erzielt werden kann, die an diejenige einer Multireferenz-Coupled

Cluster Methode heranreicht. Auf der Basis hochgenauer CI-Potentialkurven und daraus

abgeleiteter vibronischer Spektren konnte für das RbYb Molekül ein verbessertes Laser-

getriebenes Zwei-Schritt Schema zur experimentellen Präparation des Moleküls in seinem

rovibronischen Grundzustand ausgehend von ultrakalten Rb und Yb Atomen aufgestellt

werden. In den Arbeiten am molekularen Kation (RbBa)+ wurde der Einfluss energetisch

niedrigliegender Ba 6s15d1 Zustände auf einen möglichen Ladungstransfermechanismus

unter Beteiligung strahlungsloser Prozesse in Stoßexperimenten ultrakalter Rb Atome

und Ba+ Ionen herausgestrichen. In ausführlichen GASCI-Studien am Th Atom konnten

zwei Faktoren, welche notwendig sind für eine hochgenaue theoretische Beschreibung der

niedrigsten elektronischen Zustände, identifiziert werden. Diese waren die Korrelation der

äußeren “core” Elektronen sowie die Erweiterung des Referenzraumes um Konfigurationen

mit Besetzung der 7p Schale. Das Bindungsbild des Urandimers U2 wurde anhand von

qualitativen relativistischen MCSCF Einzelpunktrechnungen untersucht und potentielle

Grundzustandskonfigurationen wurden vorgestellt.



Summary

The development of parallel algorithms for relativistic electronic-structure theory meth-

ods and their application to heavy atoms and small molecular systems containing heavy

elements is at the center of this work. The focus of the parallelization work has been put

in particular on configuration interaction (CI) and multiconfiguration self-consistent-field

(MCSCF) methods. In the course of this dissertation, parallel implementations have been

completed for the relativistic spin-free CI code (LUCITA), where spin-orbit interaction is

not taken into account, as well as for the fully relativistic CI code (LUCIAREL) which

both are available in the DIRAC program package. In addition, the essential inner parts

of the relativistic MCSCF implementation which are directly connected to CI contribu-

tions, have been parallelized. The development of the parallel algorithms thereby acted

on the maxims of independence from the system architecture and problem sizes. These

conditions have been successfully fulfilled in the current implementations as was shown for

studies of varying complexity on both a local computer cluster and on the supercomputer

JUMP. The speedup was found to be close to optimal as indicated by the almost linear

increase of the speedup with an increasing number of processors (see Figure).
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Moreover, a parallel program has been developed that offers a computationally sim-

ple approach to calculate electric and magnetic properties of atoms and molecules at the
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CI level of theory. In addition, it allows to unambiguously identify electronic states in the

framework of spinor-based methods.

The applications presented in this thesis are concerned with an accurate determi-

nation of ground- and excited-state spectroscopic properties of heavy atoms and small

molecules containing heavy elements. Very high accuracy has been achieved in apply-

ing relativistic CI and MCSCF methods with extensive, uncontracted basis sets and the

concept of generalized active spaces (GAS). In the case of the BiH molecule it has been

demonstrated, that, in order to obtain from theoretical calculations a spin-orbit split-

ting between the ground and first excited state which is on the order of the experimental

value, it is mandatory to treat electron correlation and spin-orbit coupling simultaneously.

A comprehensive comparison of different relativistic electron correlation methods using

the example of the triiodide anion and its neutral radical counterpart revealed that the

parallel GASCI method is capable of treating both systems adequately in their ground

and excited states. The achieved accuracy was comparable to that of a genuine multi-

reference coupled cluster method. On the basis of accurate CI potential energy curves

and the derived vibrational data a revised laser-driven two-step mechanism was proposed

to prepare RbYb molecules in their rovibronic ground state under laboratory conditions

using ultracold Rb and Yb atoms. In the studies of the molecular cation (RbBa)+ it

has been discussed how the energetically low-lying Ba 6s15d1 states could possibly con-

tribute to a non-radiative charge-transfer mechanism in collision experiments of ultracold

Rb atoms and Ba+ ions. Extensive GASCI studies of the Th atom allowed to identify

two contributions that are necessary to obtain a highly accurate description of the lowest

electronic states; namely the correlation of the outer-core electrons as well as the exten-

sion of the reference space by configurations exhibiting a 7p occupation. The bonding

picture of the uranium diatom U2 has been studied in a qualitative manner by means

of relativistic MCSCF single-point calculations. Possible electronic configurations of the

electronic ground state were presented.
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Chapter 1

Introduction

The primary goal in quantum chemistry is the calculation of the electronic structure of

an atomic or molecular system in its ground and electronically excited states. While the

theoretical framework for a description of objects at the macroscopic scale is provided

by classical mechanics , the characterization of systems at the microscopic scale1 such as

atoms or molecules necessitates the theory of quantum mechanics . In the case of light

elements the electronic structure can be determined from a solution of the Schrödinger

equation [2]. For heavy elements, which are in the main focus of this thesis, the premises

are different: electrons moving in the vicinity of a heavy nucleus can reach velocities

close to the speed of light which requires the consideration of special relativity. The

theory of special relativity was developed by A. Einstein [3] in order to correctly describe

the dynamics of macroscopic objects moving at very high velocities. The important

breakthrough to apply special relativity also to microscopic objects was achieved by P.

A. M. Dirac [4–6] who successfully combined quantum mechanics and special relativity

into a new theory – relativistic quantum mechanics – which is at the heart of relativistic

quantum chemistry.

The “contributions”2 of relativity to the atomic structure are twofold: Scalar-

relativistic and magnetic effects. Both effects grow approximately quadratic with the

1Following Messiah [1] “microscopic scale” is to be understood as the one of atomic phenomena. The

“macroscopic scale” is the one of phenomena observable with the naked eye or simple microscopes.
2In principle, there are no such contributions since our world is relativistic and a finite speed of light

exists: c ≈ 137.0359895 au. Relativistic effects can therefore be understood as anything that originates

from the difference between this finite value and c = ∞ [7].

1



2 1 Introduction

atomic number Z. Hence, relativistic effects are much more pronounced in heavier ele-

ments but can nevertheless be important for an accurate description of molecular systems

composed only of light elements. Owing to the observed mass increase of the inner elec-

trons moving at high velocities in heavy elements, the effective radii of the s and p shells

shrink. As a result, the effective nuclear potential for other electrons is more efficiently

screened which self-consistently leads to an energetic destabilization and radial expansion

of the d and f shells [7]. If these so-called scalar-relativistic effects are for example ne-

glected, it is impossible to explain the yellow color of gold in comparison to silver. The

color of both metals originates from electronic transitions from the (n − 1)d shell to the

Fermi-level that mainly possesses ns character. In gold (n = 6, Z = 79), the relativistic

contraction and stabilization of the 6s shell reaches a maximum [8] whereas the 5d shell

is considerably destabilized. Due to these favorable stabilization/destabilization effects

gold absorbs light in the blue region of the visible spectrum of light and reflects yellow.

By contrast, the analogous absorption in silver (n = 5, Z = 47) takes place in the UV as

a result of the weaker relativistic effects for the 4d and 5s shells, respectively [7].

The second important phenomenon described by special relativity are magnetic

couplings – the most important of which is the spin-orbit interaction – occurring in heavy

elements. The spin-orbit interaction arises from a coupling of the electron spin to the

induced magnetic field in the inertial frame of the electron due to its orbital motion in

the field of other charged particles, nuclei and other electrons. Hence, neither the spin

momentum s nor the orbital angular momentum l of an electron are “good” quantum

numbers, but the sum j = s + l still is. Striking examples for the consequences of spin-

orbit interaction are a change of the ground state in the PtH molecule [9] and the lifting

of the selection rules for electronic transitions between singlet and triplet states in a given

system which would be formally spin-forbidden in a non-relativistic framework.

Both my development and application work presented in this thesis are based on

Dirac’s relativistic quantum mechanics which is, as indicated above, the most rigorous

theoretical framework to take into account all these relativistic effects. Owing to the

entanglement of spin and spatial symmetries the Hamiltonian and the wave function

exhibit a four-component form. This is inevitably connected with an increase of the

computational demand and complexity in solving the Dirac equation compared to the

non-relativistic (one-component) Schrödinger equation as Dirac himself already stated in
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1929 [6]:

“The underlying physical laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus completely known, and the

difficulty is only that the exact application of these laws leads to equations much

too complicated to be soluble. It therefore becomes desirable that approximate

practical methods of applying quantum mechanics should be developed, which

can lead to an explanation of the main features of complex atomic systems

without too much complications.”

Since then a variety of different approximate methods to account for relativity at a

pseudo-relativistic one-component (scalar) or two-component (spin-orbit) or in particular

four-component level of theory have been developed and implemented in quantum chem-

ical codes, i.e., DIRAC [10], MOLFDIR [11, 12], REL4D [13–15] as well as several others. To

obtain an accurate and reliable description of the electronic structure of heavy-element

systems it is, however, essential to take into account in such approaches not only relativ-

ity but also electron correlation, preferably on the same footing. The electron correlation

energy of a given system is defined as the difference between the exact energy and the

Hartree-Fock energy where the electron-electron interaction is approximated by a mean

field. Electron correlation can formally be divided into a dynamic and a non-dynamic (or

static) correlation part. While dynamic correlation is in general related to the short-range

interaction of electrons – their mutual repulsion – static correlation becomes dominant

for systems exhibiting, e.g. degeneracy or near-degeneracy of electronic states. The latter

case is frequently encountered for d and f elements and their compounds due to several

unpaired electrons in their valence shells. An adequate description of such electronic states

surpasses the single reference determinant ansatz of the Hartree-Fock model and calls for

a multiconfigurational treatment in its stead. The electronic-structure methods that will

be applied in this thesis allow for an appropriate account of multi-reference problems as

discussed in the respective sections.

Summing up, this thesis focuses on multiconfigurational approaches to the electronic-

structure problem in heavy elements and heavy-element compounds within the four-

component relativistic framework where electron correlation and magnetic couplings are

treated simultaneously and on the same footing. This comes with the price of having to
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deal with in general complex four-component orbitals and a substantial increase of the

computational cost compared to less rigorous approaches where magnetic couplings are

included a posteriori only in the electron correlation step. The main objective of my

present work will therefore be to cope with the high computational demand of the cho-

sen relativistic quantum chemical methodologies by devising efficient and general parallel

algorithms for these. By these means, it will be possible to benefit from the huge com-

putational power of today’s supercomputers and clusters of standard PC’s. The reported

speedup benchmarks will clearly demonstrate the great potential of the novel parallel

implementations on representative computer architectures. In this context, it will also be

argued why the chosen parallelization approach is superior to previous concepts of related

parallel implementations. Finally, it will be highlighted how my parallel approaches can

decisively contribute to gain a deeper insight into selected problems of electronic-structure

theory involving heavy elements which are currently of paramount interest in molecular

physics and chemistry.

Layout of this thesis

The thesis is divided into three parts:

I The first part provides a short introduction to the physical framework of relativistic

quantum chemistry and to the basic concepts of the relativistic quantum chemical

configuration interaction (CI) and multiconfiguration self-consistent-field (MCSCF)

methods.

II In the second part, a parallel algorithm suited for the available relativistic genera-

lized active space CI (GASCI) implementations in the DIRAC software package [10]

is described in full detail. Furthermore, the development of a parallel CI module for

the calculation of atomic and molecular properties is presented.

III The third part is devoted to the application of the parallel multiconfiguration meth-

ods to fundamental physical and chemical questions regarding heavy atoms and

small molecular compounds.
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Theoretical Framework
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Methodology

The basis for the development work and for the applications presented in this thesis are

quantum chemistry methods in a relativistic four-component framework. The purpose

of the following chapter is to acquaint the general reader with the basics of relativistic

electronic structure theory and its implications for correlation methods. This introduc-

tion is certainly not intended to be exhaustive and for a detailed overview of the field of

relativistic quantum chemistry the reader may refer to recent standard textbooks [16,17].

The second chapter provides a short survey of the relativistic configuration interaction

(CI) and multiconfiguration self-consistent-field (MCSCF) methods for which parallel al-

gorithms were developed in this thesis.

7





Chapter 2

Relativistic Theory

This chapter will provide the basic framework for a discussion of important aspects of the

relativistic CI and MCSCF methods and their application to electronic structure studies

of atomic and molecular heavy-element systems. The starting point for a relativistic

quantum mechanical description of an atomic or molecular system is the time-dependent

Dirac equation, given here in its Hamiltonian form1,

ĤΨ(r, t) = i�
∂

∂t
Ψ(r, t). (2.1)

In typical quantum chemical calculations, however, stationary states are most often sought

for, that is the eigenfunctions of a time-independent Hamiltonian. In these cases Ĥ and

the total energy E of the system are constants of the motion and Eq. (2.1) simplifies to,

ĤΨ(r) = EΨ(r), (2.2)

and the wave function Ψ(r, t) = Ψ(r)Φ(t) splits into a spatial part Ψ(r) and a temporal

part Φ(t) that is given by,

Φ(t) = eEt/i�. (2.3)

Moreover, focusing on solutions of the electronic structure of a molecular system it is

convenient to work in the Born-Oppenheimer frame. In the Born-Oppenheimer approxi-

mation [18] it is assumed that the electrons follow the motion of the much heavier nuclei

instantaneously such that the motion of the electrons and the nuclei may be treated sep-

arately. This implies a separation of the wave function Ψ(r) into a nuclear part and an

1The above given form is equivalent to the covariant form of the Dirac equation.

9
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electronic part which depends parametrically on the nuclear coordinates,

Ψ(r) = Θ(R)Ψ(r′;R). (2.4)

The set of solutions Ψ(r′;R)2 obtained for fixed nuclei allows for the construction of

potential energy curves (diatomic molecules) and potential energy surfaces (polyatomic

molecules), respectively.

Up to now the Hamiltonian in Eq. (2.2) has not been further specified. In the follow-

ing section a selection of four-component scalar-relativistic and relativistic Hamiltonians

will be presented which were made use of in this thesis. In Section 2.2 the account for

symmetry in a relativistic framework is briefly discussed. The chapter closes with consid-

erations regarding a proper choice of basis sets in relativistic four-component calculations.

2.1 Hamiltonian Operators

Within the Born-Oppenheimer approximation a (non-)relativistic atomic or molecular

Hamiltonian takes the form

Ĥ =
∑

i

ĥ(i) +
1

2

∑
i/=j

ĝij + VNN (2.5)

where VNN is the classical repulsion of the clamped nuclei, and ĥ and ĝ are one- and two-

electron operators. The decision of working in a relativistic four-component framework

therefore depends on the choice of ĥ and ĝ which will be covered below.

2.1.1 Four-Component Relativistic Hamiltonian

The cornerstone for a four-component relativistic theory is the free-particle Dirac opera-

tor3 [4, 5],

ĥfree
D = c(α · p) + βmc2, (2.6)

2For simplicity, the electronic wave function will hereafter be referred to as Ψ(r).
3Here, the time-independent operator is given.
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where p denotes the canonical momentum operator, c is the speed of light and m refers

to the particle rest mass. Moreover, α = (αx, αy, αz) and β are the 4× 4 Dirac matrices,

αx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎝ 02×2 σx

σx 02×2

⎞
⎠

αy =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎝ 02×2 σy

σy 02×2

⎞
⎠

αz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1
1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎝ 02×2 σz

σz 02×2

⎞
⎠

β =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎝ I2×2 02×2

02×2 −I2×2

⎞
⎠ , (2.7)

σx,σy and σz are the Pauli spin matrices,

σx =

⎛
⎝ 0 1

1 0

⎞
⎠ ; σy =

⎛
⎝ 0 −i

i 0

⎞
⎠ ; σz =

⎛
⎝ 1 0

0 −1

⎞
⎠ , (2.8)

and 02×2 and I2×2 are 2 × 2 zero and unity matrices, respectively. In order to facilitate

comparisons with non-relativistic energies, it is common to subtract the constant rest-

mass energy, i.e., replacing β with β′ = β − I4×4. The 4× 4 matrix form of the operator

suggests that the associated wave function Ψ(r) must be a four-component vector,

Ψ(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

ψ1(r)

ψ2(r)

ψ3(r)

ψ4(r)

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎝ ψL(r)

ψS(r)

⎞
⎠ , (2.9)
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which can also be expressed using bi-spinors for the large (L) and small (S) component,

ψL =

⎛
⎝ ψ1(r)

ψ2(r)

⎞
⎠ and ψS =

⎛
⎝ ψ3(r)

ψ4(r)

⎞
⎠ . (2.10)

The notion large and small component is related to their magnitude for the positive and

negative energy solutions of the free-particle Dirac equation [16].

To be able to describe electrons bound in molecules by electromagnetic forces, it

is essential to introduce external scalar (φ) and vector (A) potentials in the free-particle

Hamiltonian (Eq. (2.6)). To this end, the principle of minimal electromagnetic coupling

[19] is applied,

p → p− qA

E → E + qφ, (2.11)

where q is the charge of the particle which must be specified explicitly [20]. For an electron

this charge is q = −e and the resulting one-electron Dirac Hamiltonian reads as,

ĥ′D = c(α · p) + β′mc2 + ec(α ·A)− eφ. (2.12)

In a static potential, e.g. , the nuclear potential4 V̂ nuc =
M∑

A=1

V̂ nuc
A (rA) arising from the M

clamped nuclei in the Born-Oppenheimer frame, where the vector potential A is zero the

one-electron Dirac Hamiltonian simplifies to,

ĥD = c(α · p) + β′mc2 + V̂ nuc. (2.13)

The Dirac Hamiltonian ĥD in its above given form constitutes the natural choice as one-

electron operator ĥ (see Eq. (2.5)) for four-component relativistic calculations.

The treatment of electron-electron interaction in a many-electron system requires a

two-electron operator. At present, the most elaborate two-particle operator for quantum

chemical calculations is the so-called Coulomb-Breit operator [22]5 which, in the zero-

4A finite radial distribution of the nuclear charge is employed in general to avoid the problem of

singularities at the nuclear center. It is of particular importance for calculations using Gaussian-type

basis set expansions [16,21].
5This operator nevertheless represents an approximation to a (not yet derived) Lorentz invariant two-

electron operator within the framework of quantum electrodynamics (QED). The Coulomb-Breit operator

is correct to O(α2) with α = 1
c being the fine structure constant.



2.1 Hamiltonian Operators 13

frequency limit, reads as,

ĝBreit
ij = ĝCoulomb

ij + ĝGaunt
ij + ĝgauge

ij

=
I4×4 ⊗ I4×4

rij

− (cαi) · (cαj)

c2rij

− (cαi · ∇i)(cαj · ∇j)rij

2c2
. (2.14)

The Coulomb-Breit operator is composed of three terms, the non-relativistic Coulomb

operator, the Gaunt or magnetic term [23, 24] and a gauge term that originates from

the choice of the Coulomb gauge6. Due to the occurrence of integrals other than 1
rij

in the gauge term, it is often neglected. Moreover, it can be shown that the Coulomb

operator ĝCoulomb
ij includes spin-same-orbit interaction [25, 26] but not spin-other-orbit

effects which requires an inclusion of the Gaunt term. In this work electron-electron

interaction will nevertheless be described by the Coulomb operator ĝCoulomb
ij which is in

most cases sufficient to obtain accurate results. The combination with the one-electron

Dirac operator yields the Dirac-Coulomb Hamiltonian ĤDC ,

ĤDC =
∑
i=1

ĥD(i) +
1

2

∑
i/=j

ĝCoulomb
ij

=
∑
i=1

(
cαi · pi + β′

imc
2 + V̂ nuc I4×4

)
+
1

2

∑
i/=j

I4×4 ⊗ I4×4

rij

. (2.15)

The Dirac-Coulomb Hamiltonian ĤDC will predominantly be used in the correlated cal-

culations of atomic and molecular systems presented in Part III. If applicable, the effect

of the Gaunt interaction on the electronic structure of a given system will be examined

at the uncorrelated level7.

Finally, a word of caution may be given with respect to the solutions of the free-

particle Dirac equation,

ĥfree
D Ψ = EΨ. (2.16)

This wave equation exhibits a continuum of negative- and positive-energy solutions which

are separated by 2mc2. The reason for this is that the free-particle Dirac equation provides

a description of both electrons (positive-energy branch) and positrons (negative-energy

branch). Upon invoking the minimal electromagnetic coupling (see Eq. (2.11)) and choos-

ing the charge of an electron all solutions become electronic solutions. Positronic solutions

6This term vanishes in the so-called Lorentz gauge [16].
7The inclusion of the Gaunt interaction in post-Hartree-Fock calculations for the methods used here

requires an integral transformation from the atomic to the molecular basis. This step is, at the time of

writing this thesis, under development in the DIRAC program for the Gaunt integrals.
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are then obtained either using the positronic charge (q = +e) or by charge-conjugation of

the negative-energy solutions of the electronic problem [16,27].

The solution spectrum of a many-electron Dirac Hamiltonian, for example the Dirac-

Coulomb Hamiltonian (see Eq. (2.15)) exhibits the same positive and negative-energy

branches as the corresponding spectrum of the free-particle Dirac Hamiltonian. It is

therefore in principle possible to construct for a given electronic bound state an infi-

nite number of degenerate states in which one particle is excited to the positive-energy

continuum and a second particle is de-excited to the negative-energy continuum. In or-

der to avoid this problem of continuum dissolution [28], also known as Brown-Ravenhall

disease [29], a QED reinterpretation of the negative-energy states is required [16].

The DIRAC program is based on the so-called “empty Dirac” picture [16]. This

corresponds to a treatment of the negative-energy states as virtual states in the Hartree-

Fock optimization [30] and the application of a minimax principle [31]. The energy is

minimized with respect to spinor rotations within the positive branch but maximized

with respect to rotations involving positive- and negative-energy spinors. Hereafter, the

negative-energy states may be discarded since a coupling between the states of the two

energy branches was precluded. This approach can be regarded as a no-pair approximation

a posteriori [32] which does not affect the four-component structure of the solution spinor.

For a detailed discussion of a QED reinterpretation of the negative energy states, the

reader may refer to Reference 16 and references therein.

2.1.2 Spin-Free Hamiltonian

Relativistic effects are typically considered to be twofold: (i) scalar-relativistic effects

which are usually the largest and which are ascribed to the change in the kinematics of

the electrons moving at significant fractions of the finite speed of light (c ≈ 137.035989

au) [8]. (ii) spin-same and spin-other-orbit effects which are related to the coupling of

the spin of an electron to an induced magnetic field caused by the movement in the fields

of the charged nuclei or electrons. In the preceding section four-component Hamiltonians

were presented which are suitable to encompass both types of relativistic effects outlined

above. In this section, a modified Dirac Hamiltonian will be introduced which can be

used to exclusively take account of the full scalar-relativistic effects while retaining a four-
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component framework [26, 33]8. Such an approach can particularly be useful to identify

unambiguously spin-orbit effects on the electronic structure of a given system through

a comparison of the modified to the full Dirac Hamiltonian. This objective requires a

genuine separation of the spin-free and spin-dependent terms in the one-electron Dirac

equation, ⎛
⎝ V̂ nuc c(σ · p)

c(σ · p) V̂ nuc − 2mc2

⎞
⎠
⎛
⎝ ψL

ψS

⎞
⎠ = E

⎛
⎝ ψL

ψS

⎞
⎠ , (2.17)

written here in the bi-spinor form. To begin with, it is shown to be advantageous [16] to

introduce a pseudo-large component φL,

2mc2ψS ≡ (σ · p)φL, (2.18)

which will have the same symmetry properties as the large component9. The major

difficulty concerning a separation of scalar-relativistic and spin-orbit effects arises from

the appearance of the spin in the kinetic energy operator c(σ · p) (see Eq. (2.17)) which
has to be dealt with in the following. An important tool to achieve a separation will

thereby be the Dirac identity [16],

(σ · u)(σ · v) = u · v + iσ · u× v. (2.19)

By means of a non-unitary transformation which was proposed by Kutzelnigg [40]

and Dyall [41], ⎛
⎝ ψL

ψS

⎞
⎠ =

⎛
⎝ I2×2 02×2

02×2
1

2mc2
(σ · p)

⎞
⎠
⎛
⎝ ψL

φL

⎞
⎠ , (2.20)

and subsequent application of the Dirac identity (see Eq.2.19) a modified Dirac equation

can be obtained,⎛
⎝ V̂ nuc T̂

T̂ 1
4m2c2

(σ · p)V̂ nuc(σ · p)− T̂

⎞
⎠
⎛
⎝ ψL

φL

⎞
⎠ = EG̃

⎛
⎝ ψL

φL

⎞
⎠ . (2.21)

Here, the non-relativistic kinetic energy operator T̂ follows from the application of the

Dirac identity on the kinetic energy term,

1

2m
(σ · p)(σ · p) = p · p

2m
= T̂ , (2.22)

8There exist various Hamiltonian schemes to approximately include scalar relativistic effects in a one-

and two-component framework [34–39] which will not be considered here.
9This choice for the pseudo-large component keeps the metric spin-free [16] as shown in the text.



16 2 Relativistic Theory

and a modified metric G̃,

G̃ =

⎛
⎝ I2×2 02×2

02×2
T

2mc2

⎞
⎠ , (2.23)

which differs from unity was introduced.

A separation of spin-dependent and spin-free terms can now be performed on the

basis of Eq. (2.21) by using the Dirac identity for the operator product (σ · p)V̂ nuc(σ · p),

(σ · p)V̂ nuc(σ · p) = pV̂ nuc · p+ iσ · pV̂ nuc × p. (2.24)

The resulting modified one-electron Dirac Hamiltonian consists of a sum of a spin-free

and spin-dependent term,

h̃D = h̃sf
D + h̃sd

D

=

⎛
⎝ V̂ nuc T̂

T̂ 1
4m2c2

(
pV̂ nuc · p

)
− T̂

⎞
⎠+

⎛
⎝ 02×2 02×2

02×2
1

4m2c2

(
iσ · pV̂ nuc × p

)
⎞
⎠ .(2.25)

It should be emphasized that this separation requires no approximation and the separation

is exact. The spin-free one-electron Dirac Hamiltonian h̃sf
D therefore provides an adequate

basis for fully taking into account scalar-relativistic effects.

The modification of two-electron operators, for example the Coulomb operator

ĝCoulomb
ij (see Eq. (2.14)), and isolation of spin-free terms10 can be achieved in a simi-

lar manner as for a one-electron operator. For this purpose, projectors on the large and

pseudo-large components of the wave function are introduced,

P̂+ =

⎛
⎝ I2×2 02×2

02×2 02×2

⎞
⎠ and P̂− =

⎛
⎝ 02×2 02×2

02×2 I2×2

⎞
⎠ . (2.26)

These are used to define the transformation operators for the ith electron,

T̂i = P̂+
i +

1

2mc
(Σ · p)P̂−

i , (2.27)

where Σ is the four-component spin-operator,

Σ =

⎡
⎣
⎛
⎝ σx 02×2

02×2 σx

⎞
⎠ ,

⎛
⎝ σy 02×2

02×2 σy

⎞
⎠ ,

⎛
⎝ σz 02×2

02×2 σz

⎞
⎠
⎤
⎦ . (2.28)

10A detailed account of the procedure can be found for example in references [16,41].
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The ansatz for a spin-free modification of the Coulomb operator (or any other two-electron

operator) is then given by,

g̃Coulomb
ij = T̂iT̂j ĝ

Coulomb
ij T̂jT̂i. (2.29)

Application of the Dirac identity (see Eq. (2.19)) to Eq. (2.29) and elimination of the

resulting spin-dependent terms yields an expression for the spin-free Coulomb operator,

g̃Coulomb,sf
ij =

(
P̂+

i P̂−
i

)⎛⎝ 1
rij

(
1

4m2c2

)
pj ·

(
1

rij

)
pj(

1
4m2c2

)
pi ·

(
1

rij

)
pi

(
1

16m4c4

)
pj ·

[
pi ·

(
1

rij

)
pi

]
pj

⎞
⎠
⎛
⎝ P̂+

j

P̂−
j

⎞
⎠ . (2.30)

It should be noted that the use of quaternion algebra as implemented in DIRAC11 [30]

allows to cast both Eq. (2.25) and the corresponding modified equation for the Coulomb

operator (not shown here) in a very simple form. The elimination of the spin-dependent

parts in this formalism corresponds to zeroing out the quaternion imaginary parts in the

operator matrix [33].

Having a modified one-electron Dirac Hamiltonian and two-electron Coulomb oper-

ator at hand, the total spin-free Dirac-Coulomb operator can be written as,

H̃sf
DC =

∑
i=1

h̃sf
D (i) +

1

2

∑
i/=j

g̃Coulomb,sf
ij . (2.31)

The associated spin-free wave function for this operator,

Ψ̃ =

⎛
⎝ ψL

φL

⎞
⎠ , (2.32)

is purely real and the four-component (molecular) spinors can be classified according to

a specific boson irrep12. From this it follows that after the transformation to a molecular

orbital (MO) basis and invoking the no-pair approximation, any non-relativistic electron

correlation method built on a MO-formalism can be combined with the spin-free Dirac-

Coulomb equation. In the present work the GASCI program LUCITA will be employed

for a discussion of scalar-relativistic effects based on results obtained with the spin-free

Dirac-Coulomb operator H̃DC as given in Eq. (2.31).

11The DIRAC program is based on a quaternion algebra formalism. A quaternion number Q can be

written as Q = r + si + tj + uk, where r, s, t, u are real numbers and the quaternion units i, j and k

anticommute, ij = k, jk = i, ki = j and fulfill the relation i2 = j2 = k2 = −1 [16].
12Relevant aspects with regard to molecular symmetry in a four-component framework are discussed

in Section 2.2.2.
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2.2 Symmetry

2.2.1 Time Reversal

Due to the entanglement of spin and spatial symmetry in the relativistic case which can

easily be seen from Eq. (2.6), spin restrictions are not applicable to relativistic wave

functions. However, as stated by Kramers, in the absence of an external magnetic field

the energy levels of a fermion system are at least doubly generate [42]. This allows for a

construction of a Kramers-restricted basis of fermion functions {ϕ, ϕ̄} where each fermion
function ϕp is related to its energy-degenerate partner (Kramers partner) ϕp̄ through time

reversal,

K̂ϕp = ϕp̄ K̂ϕp̄ = −ϕp K̂(aϕp) = a∗K̂ϕp, (2.33)

with a being a complex number. The time-reversal operator K̂ is an antilinear operator

that reverses the time arrow, flips the spin σ, changes the sign of all velocities v but keeps

positions r invariant [16],

K̂ϕp(t) = ϕp̄(−t); K̂σK̂−1 = −σ; K̂vK̂−1 = −v; K̂rK̂−1 = r. (2.34)

In the four-component relativistic framework the time-reversal operator is given by,

K̂ := −iΣyK̂0 = −i

⎛
⎝ σy 02×2

02×2 σy

⎞
⎠ K̂0, (2.35)

where Σy is the y component of the total spin operator Σ and K̂0 is the complex conju-

gation operator. It should be noted that because of its antilinear property K̂ is not an

observable and therefore does not have a corresponding eigenvalue K.

Working in a Kramers-paired spinor basis allows to take advantage of time-reversal

symmetry to recover to some extent computational savings that were lost compared to a

non-relativistic framework where spin-restriction can be exploited. For example, it can

be shown [16, 43] that the matrix representation of a Hermitian one-particle operator Ω̂

in a Kramers-restricted basis takes the following form of a general 2 × 2 matrix for the

components of a Kramers pair,

Ω =

⎛
⎝
〈
ϕp

∣∣∣Ω̂∣∣∣ϕq

〉 〈
ϕp

∣∣∣Ω̂∣∣∣ϕq̄

〉
〈
ϕp̄

∣∣∣Ω̂∣∣∣ϕq

〉 〈
ϕp̄

∣∣∣Ω̂∣∣∣ϕq̄

〉
⎞
⎠ =

⎛
⎝ Ωpq Ωpq̄

Ωp̄q Ωp̄q

⎞
⎠ =

⎛
⎝ Ωpq Ωpq̄

−tΩ∗
pq̄ tΩ∗

pq

⎞
⎠ , (2.36)
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where t = ±1 indicates the symmetry of the operator under time reversal,

K̂Ω̂K̂−1 = tΩ̂. (2.37)

By defining Ωpq = Apq,Ωpq̄ = Bpq for all Kramers pairs in the basis {ϕ, ϕ̄} and after a

suitable reordering, the matrix Ω can be written as,

Ω =

⎛
⎝ A B

−tB∗ tA∗

⎞
⎠ . (2.38)

For the particular case of Hermitian operators that are symmetric under time reversal

(t = +1) the resulting matrix in Eq. (2.38) can be cast in a block-diagonal form by

introducing quaternion algebra [16]. Applying the quaternion unitary matrix,

U =
1√
2

⎛
⎝ I jI

jI I

⎞
⎠ , (2.39)

the matrix Ω is transformed to,

U†ΩU =

⎛
⎝ G 0

0 −kGk

⎞
⎠ , (2.40)

where G is a quaternion Hermitian matrix. The structure of the resulting matrix also

indicates the double degeneracy of the eigenvalues of Ω. Moreover, the block-diagonal

form of the matrix allows to diagonalize the sub-blocks independently which can lead in

general to considerable computational savings.

2.2.2 Double Group Symmetry

In the preceding chapter it was demonstrated how time-reversal symmetry can be ex-

ploited to reduce the computational demand in a relativistic implementation of many-

body methods. In order to make use of molecular symmetry one needs to resort to double

point groups rather than the well-known single point groups because of the transformation

properties of fermion (spin 1
2
) particles. There are two cases to consider for many-particle

systems which will consist of either an even or odd number of spin 1
2
particles [16]. In

the first case, the total spin is an integer and the many-particle wave function transforms

as one of the well-known single group irreducible representations (boson irreps). In the

case of an odd number of fermion particles the total spin is half integer which requires
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a rotation of 4π around an arbitrary axis to yield the identity operation E. Thus, it

follows that an operation Ē, corresponding to a rotation by 2π, needs to be added to the

single group of order n. The expanded group then has the order 2n (double group). The

additional irreps with a negative sign for the Ē operation are called fermion irreps. A fur-

ther elaboration on the theory of double groups is beyond the scope of this introductory

section and the reader may refer to standard textbooks on group theory, e.g. [44].

It is nevertheless useful to discuss important implications arising from the applica-

tion of molecular symmetry for the matrix elements of a totally symmetric operator Ω̂

(with symmetry under time reversal t = 1, see Eq. (2.36)) in a basis of Kramers-paired

spinors. Although time reversal is not an element of a double group [45], there is a con-

nection between the structure of the fermion irreps and the group theoretical properties

of the Kramers pairs. The following considerations are not restricted to the binary double

group D∗
2h and its subgroups but these are most often implemented [46], for example in

the DIRAC program and have been used in the applications. According to Wigner [47]

three different classes exist13: (i) the Kramers partner ϕp and ϕp̄ belong to different rows

of a doubly degenerate fermion irrep (double groups D∗
2h, D

∗
2, and C

∗
2v). By symmetry, the

matrix elements Ωpq̄ are zero. (ii) ϕp and ϕp̄ are members of two different one-dimensional

fermion irreps (C∗
2h, C

∗
2 , and C

∗
s ). Again, the matrix elements Ωpq̄ are zero by symmetry.

(iii) ϕp and ϕp̄ belong to the same one-dimensional irrep (C∗
i and C∗

1) which implies in

general that Ωpq̄ /= 0 and a block-diagonal form of Ω necessitates a quaternion rotation

of the Kramers pairs (see Section 2.2.1). By contrast, it can be shown [30] that, starting

from a quaternion formalism, the algebra reduces for the first two cases, (i) and (ii), to a

real and complex algebra, respectively. Hence, the above characterized double groups are

often referred to as real , complex and quaternion double groups.

2.3 Basis Sets

In non-relativistic (molecular) calculations using expansions in finite basis sets it is nowa-

days standard to employ contracted basis sets of Gaussian-type orbitals in various different

“flavors”14. In relativistic calculations, on the other hand, in particular in four-component

13A nice discussion on this topic can be found in the textbook of Dyall and Fægri, Chapter 10.1 [16].
14See for example the basis set data base in Reference 48.
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calculations the application of contracted basis sets is rather nontrivial15 and most often

uncontracted basis sets are employed in its stead [16]. For example, all calculations pre-

sented in this thesis have been carried out using Gaussian-type basis sets in uncontracted

form with exponents optimized for the relativistic case [50]. The preference of specifically

optimized exponents over those from “standard” basis sets can be rationalized by consid-

ering, e.g. the splitting of shells with l > 0 into two components which may have their

radial maxima far apart16, and the relativistically contracted inner shells which require

in general higher exponents.

The introduction of uncontracted basis sets in four-component calculations is in

particular motivated by the imperative necessity to fulfill the kinetic balance condition

[51],

χS = (σ · p)χL, (2.41)

where χS and χL denote basis functions for the small ΨS and large component ΨL of

the four-component wave function. Eq. (2.41) imposes an important condition on the

choice of basis sets for the large and small component. The above given relation has to

be satisfied in order to yield the correct non-relativistic limit for the kinetic energy [16].

For instance, it was proven that, if and only if the basis sets χS and χL are related

by Eq. (2.41) the kinetic energy is a maximum [52] and that any other connection will

lead to a lowering of the kinetic energy in the non-relativistic limit and to variationally

unstable results. The kinetic balance condition is taken into account in calculations using

the DIRAC program which assumes uncontracted basis sets for the large component basis.

The corresponding set for the small component is generated by means of a restricted

kinetic balance approach [53].

15A suitable scheme to make use of contracted basis sets in four-component calculations is based on

the application of the atomic kinetic balance [49].
16An illustrative example is given in Figure 6.3 (page 69) for the splitting of the 6p1/2,3/2 components

in the Bi atom.





Chapter 3

Relativistic Correlation Methods

This chapter will discuss important aspects of relativistic large-scale configuration in-

teraction (CI) and multiconfiguration self-consistent-field (MCSCF) methods for which

parallel algorithms were developed in this thesis. Moreover, the implementations of these

methods in the DIRAC program were used to perform a major part of the applications

presented in Part III.

The simplest and basic starting point for describing the electronic structure of atoms

and molecules is the Hartree-Fock model where the motion of each electron is characterized

by a mean-field repulsion of all other electrons. In reality, the movements of the electrons

are, however, correlated and, as electron correlation effects are in most cases significant

for chemical properties, it is essential to cover these accurately. Moreover, electron corre-

lation can be thought of as being divided into a dynamic and a non-dynamic (or static)

correlation part. Dynamic correlation is in general related to the short-range interaction

of electrons while static correlation becomes dominant for systems exhibiting, e.g., de-

generacy or near-degeneracy. For heavy atoms or molecules containing heavy elements

multiple occurrences of near-degenerate configurations are more likely than for systems

with only light elements because of the small energetic separation of s, p, d and f shells

and considerable spin-orbit coupling1.

A CI method is a straightforward approach to include dynamic correlation in the

wave function after the Hartree-Fock step. It is based on the idea of a linear parametriza-

tion of the wave function Ψ through an expansion in a set of M N -particle functions

1Spin-orbit coupling leads to an energetic splitting of shells with l > 0 which may thus increase the

state density, i.e., the number of states per energy window.
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Φi,

Ψ =
M∑
i

CiΦi. (3.1)

This leads to a matrix eigenvalue problem for the operator Ĥ,

HC = EC, (3.2)

where C is the CI coefficient vector and E the corresponding eigenvalue. Since in most

cases only a sub-set ofm solutions is required for the full eigenvalue problem, iterative sub-

space diagonalization schemes were proposed [54–56] to reduce the computational scaling

from roughly M3 to M2. In the following section basic features of the string-driven rel-

ativistic direct CI algorithm of the program module LUCIAREL, which was developed by

Fleig and co-workers [57–60], will be presented. The algorithm takes advantage of an

iterative Davidson diagonalization scheme [54] that was extended to a complex-valued

algebra [61]. For a detailed account of the underlying theory and implementation of

LUCIAREL the reader may refer to the literature given above. A description of the CI pro-

gram LUCITA which was used to carry out spin-free calculations can be found in References

60 and 622.

Returning to the initial problem of taking into account electron correlation, the

MCSCF model is well-known to be capable of describing strong static correlation effects

[64]. A four-component Kramers-restricted MCSCF (KR-MCSCF) method [43, 61, 65] is

therefore an adequate means to simultaneously account for both static electron correlation

and relativistic effects already in the orbital optimization step. In Section 3.2 a brief

introduction to the KR-MCSCF method will be given where the main focus lies on direct

CI contributions to the optimization procedure.

3.1 Kramers-Restricted Configuration Interaction

The relativistic double group program LUCIAREL fully exploits the advantages of a gen-

uine string-based implementation where explicit comparisons of configurations in the de-

termination of coupling coefficients are avoided. This guarantees efficiency even when

2A comprehensive introduction to the non-relativistic pre-cursor CI algorithms is provided in references

[55,63].
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higher-order excitations are taken into account. In non- or scalar-relativistic CI a Slater

determinant is the product of an α-string and a β-string, and has a specificMS value [63].

In a basis of Kramers-paired spinors {ϕp, ϕp̄} in a relativistic implementation, the two

strings are replaced by an S-string of j Kramers spinors {ϕp} and a T̄ -string of N − j

Kramers partners {ϕp},

Ŝ† | vac 〉 = â†S1
â†S2

. . . â†Sj
| vac 〉

ˆ̄T
†
| vac 〉 = â†

T̄1
â†

T̄2
. . . â†

T̄N−j
| vac 〉 , (3.3)

where N is the total number of electrons for a given system. A general Slater determinant

|ST̄ 〉 can then be written in terms of these strings according to,

| ST̄ 〉 = Ŝ† ˆ̄T
†
| vac 〉 . (3.4)

By means of an auxiliary bookkeeping number MK (Kramers projection value),

MK =
nunbarred − nbarred

2
=
j − (N − j)

2
= j −N/2, (3.5)

it is possible to arrange all determinants which may be built from an initial set of Kramers

pairs in individual subsets each with a characteristic MK value.

The decisive step of any iterative sub-space diagonalization method (see also Section

4.1.1) is the computation of the linear transformation of the current trial vector bn in a

given iteration,

σn = Hbn, (3.6)

where H is the Hamiltonian, e.g. the Dirac-Coulomb Hamiltonian ĤDC (see Eq. (2.15)),

in matrix representation3. In second quantization, this operator can be written as [43,57],

ĤDC =
∑
pq

[
hpqX̂

+
pq +

1

2

(
hp̄qX̂

+
p̄q + hpq̄X̂

+
pq̄

)]

+
1

2

∑
pqrs

[
(pq|rs) x̂++

pq,rs + (p̄q|rs) x̂++
p̄q,rs + (pq̄|rs) x̂++

pq̄,rs

]
+
1

4

∑
pqrs

(p̄q|rs̄) x̂++
p̄q,rs̄

+
1

8

∑
pqrs

[
(p̄q|r̄s) x̂++

p̄q,r̄s + (pq̄|rs̄) x̂++
pq̄,rs̄

]
. (3.7)

3Further considerations with regard to the Dirac-Coulomb-Gaunt or Dirac-Coulomb-Breit operator

(Eq. (2.14)) can be found for example in Reference 16.



26 3 Relativistic Correlation Methods

Here, Kramers-restricted single X̂s
pq (with s = ±) and double replacement operators x̂s1,s2

pq,rs

(with s1, s2 = ±) have been employed which were defined by Aucar et al. [66]. Their

explicit form is given in Eq. (3.8) and Eq. (3.9), respectively, in terms of creation and

annihilation operators,

X̂s
pq = a†paq + sa†q̄ap̄ X̂s

pq̄ = a†paq̄ − sa†qap̄ X̂s
pq̄ = a†p̄aq − sa†q̄ap, (3.8)

and,

x̂s1,s2
pq,rs = X̂s1

pq X̂
s2
rs − δrqa

†
pas − s1δrp̄a

†
q̄as − s2δs̄qa

†
par̄ − s1s2δp̄s̄a

†
q̄ar̄ = x̂s2,s1

rs,pq, (3.9)

where the sign indices s and s1, s2 = ±, respectively, indicate the symmetry of the opera-
tors under time reversal and Hermitian conjugation4. The remaining double replacement

operators with bars can be obtained from the operator x̂s1,s2
pq,rs given in Eq. (3.9) through

application of the auxiliary bar-reversal operator K̂p [16],

K̂pap = ap̄ K̂pap̄ = −ap K̂paq = aq. (3.10)

It can now be shown [57] that the Hamiltonian ĤDC in Eq. (3.7) may be reformulated

by rewriting it in terms of ΔMK partitions,

ĤDC =

ΔMK=−2∑
+2

ĤΔMK
(3.11)

with

ĤΔMK=+2 =
∑
pqrs

1

8
(pq̄|rs̄) x̂++

pq̄rs̄ (3.12)

ĤΔMK=+1 =
∑
pq

1

2
hpq̄X̂

+
pq̄ +

∑
pqrs

1

2
(pq̄|rs) x̂++

pq̄rs (3.13)

ĤΔMK=0 =
∑
pq

hpqX̂
+
pq +

∑
pqrs

[
1

2
(pq|rs) x̂++

pqrs +
1

4
(p̄q|rs̄) x̂++

p̄qrs̄

]
(3.14)

ĤΔMK=−1 =
∑
pq

hp̄qX̂
+
p̄q +

∑
pqrs

1

2
(p̄q|rs)x++

p̄qrs (3.15)

ĤΔMK=−2 =
∑
pqrs

1

2
(p̄q|r̄s)x++

p̄qr̄s (3.16)

4Since all components in Eq. (3.7) are symmetric under time reversal it follows that the total operator

ĤDC is also symmetric with respect to reversal of motion which is equivalent to the commutation relation[
ĤDC , K̂

]
= 0.
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Table 3.1: Excitation class ordered operators in second quantization and the corresponding integrals.

The original table was taken from Reference 58.

Operator Integral class Kramers flip type

a†paq hpq ΔMk = 0

a†p̄aq̄ hp̄q̄ ΔMk = 0

a†pa
†
rasaq (pq|rs) ΔMk = 0

a†p̄a
†
r̄as̄aq̄ (p̄q̄|r̄s̄) ΔMk = 0

a†pa
†
r̄asaq̄ (pq̄|r̄s) ΔMk = 0

a†paq̄ hpq̄ ΔMk = +1

a†p̄aq hp̄q ΔMk = −1
a†pa

†
rasaq̄ (pq̄|rs) ΔMk = +1

a†p̄a
†
r̄as̄aq (p̄q|r̄s̄) ΔMk = −1

a†pa
†
ras̄aq̄ (pq̄|rs̄) ΔMk = +2

a†p̄a
†
r̄asaq (p̄q|r̄s) ΔMk = −2

The partitioning scheme is based on a classification of the individual operator elements

X̂s
pq and x̂

s1,s2
pq,rs, respectively, according to their action on a given Slater determinant, i.e.,

the number of induced Kramers flips. These flips have their correspondence in spin-flips

in a non-relativistic formalism and replace a barred spinor by an unbarred spinor and vice

versa. Table 3.1 compiles the operator types derived from the Kramers-restricted single

and double replacement operators and their associated integral classes with respect to the

Kramers flip type.

In order to illustrate the computation of the linear transformation in Eq. (3.6),

the part of the Dirac-Coulomb Hamiltonian that changes the MK-value by a single unit

ΔMK = +1 (see Eq. (3.13)) shall be considered here:

ĤΔMK=+1 =
∑
pq

1

2
hpq̄X̂

+
pq̄ +

∑
pqrs

1

2
(pq̄|rs) x̂++

pq̄rs. (3.17)

Taking only the first term (given in bold face) for the Kramers-restricted double replace-

ment operator into consideration,

x̂++
pq̄rs = â†pâ

†
râsâq̄ − â†qâ

†
râsâp̄ + â†pâ

†
s̄âr̄âq̄ − â†qâ

†
s̄âr̄âp̄, (3.18)
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the real part of this sigma-vector fragment can be written as5,

σr
ΔMK=+1(ST̄ ) =

∑
pqrs

∑
UV̄

{
(pq̄|rs)r AST̄ ,UV̄

pq̄rs brUV̄ + (pq̄|rs)iAST̄ ,UV̄
pq̄rs biUV̄

}
, (3.19)

where AST̄ ,UV̄
pq̄rs = 〈ST̄ |â†pâ†qârâs̄|UV̄〉 is the coupling coefficient for the complex integral

(pq̄|rs) between the Slater determinants |ST̄ 〉 and |UV̄〉. It is contracted with the complex
CI expansion coefficient bUV̄ for this particular determinant and the integral.

The definition of orbital spaces in LUCIAREL takes advantage of the concept of gen-

eralized active spaces (GAS) [57]. The wave function may be specified by an arbitrary

number of active orbital spaces with arbitrary electron occupation constraints thus pro-

viding maximum flexibility for the envisaged electronic-structure problem. The GAS

partitioning can, furthermore, be exploited to create an implicit blocking of the Slater

determinants that are included in the CI expansion. In addition to its MK value, any

determinant |Φν〉 = |Sν T̄ν〉 can also be classified according to the occupation type (T )

in the various active orbital spaces and double point group symmetry (S) of its cre-

ator string for the occupied unbarred Kramers spinors Ŝ† and the corresponding creator

string for the occupied barred Kramers spinors ˆ̄T †. A given block of determinants of the

complete CI vector is thus characterized by the occupation types and symmetries of its

unbarred and barred string components, and the Kramers projection MK . As introduced

for the spin-free analogue in Paper 1 such a group of determinants is labeled in gen-

eral as (occupation)-type-(occupation)-type-symmetry-symmetry (TTSS ) block. Since

the Hamiltonian is totally symmetric the block partitioning will be the same for both

the sigma vector σn and the current trial vector bn. The TTSS blocking is used in the

algorithm to skip all the coupling coefficients which are zero because the type-type of the

σn-block differ by more than two electrons from the type-type of the bn-block or because

the two blocks have different symmetries. As will be discussed in Section 4.1 the TTSS

blocks played a central role in the development of a parallel algorithm.

5The superscript r denotes the real part and i the imaginary part of a generally complex quantity as

for example the integral (pq̄|rs).
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3.2 Kramers-Restricted Multiconfiguration Self-Con-

sistent-Field

The general formalism of a KR-MCSCF method has been developed by Jensen and co-

workers [43] and an implementation in the DIRAC program has been reported by Thyssen

et al. [61, 65]. The emphasis is put in this section on CI-based contributions to the

KR-MCSCF optimization algorithm as parallel algorithms for these were devised in this

thesis.

The aim of a relativistic KR-MCSCF calculation is the optimization of a multicon-

figurational trial function,

|Ψ(δ,κ) 〉 =
∑

ν

cν + δν√
1 + δ2

|Dν(κ) 〉 , (3.20)

which depends on the complex configurational (δ, δ = ||δ||) and orbital rotation param-
eters (κ) gathered in a column vector λ = [δ,κ, δ∗,κ∗]T . Moreover, c is a coefficient

vector in configuration space and |Dν(κ) 〉 refers to, e.g. a Slater determinant composed

of atomic or molecular spinors. The trial function is obtained from an optimization of the

energy functional E(λ) for a given spin-dependent Hamiltonian Ĥ,

E(λ) =
〈
Ψ(δ∗,κ∗)

∣∣∣Ĥ∣∣∣Ψ(δ,κ)
〉
. (3.21)

In order to achieve a good approximation to E(λ) a restricted-step second-order

optimization scheme can be employed. A second-order Taylor expansion of E(λ) around

the current expansion point (CEP) (λ = 0) in the parameter space Γ = [λ κ] yields [43],

E(2)(λ) = E(0) + λ†E[1] +
1

2
λ† E[2] λ, (3.22)

where E[1] and E[2] are the gradient and the Hessian, respectively, at the CEP. They are

given by

E[1] =

⎛
⎝ ∂E

∂Γ∗

∂E
∂Γ

⎞
⎠

λ=0

and E[2] =

⎛
⎝ ∂2E

∂Γ∗∂Γ
∂2E

∂Γ∗∂Γ∗

∂2E
∂Γ∂Γ

∂2E
∂Γ∂Γ∗

⎞
⎠

λ=0

. (3.23)

To ensure convergence towards the electronic ground state wave function in the

no-pair approximation6 by means of a fully relativistic optimization algorithm, applica-

tion of the so-called minimax principle [31, 43] is required. From this, it follows that

6A brief discussion on the interpretations of the negative-energy solutions of the Dirac equation can

be found in Section 2.1.
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the energy has to be minimized with respect to electronic-electronic orbital rotations and

configuration coefficients and maximized with respect to electronic-positronic orbital ro-

tations. Invoking the no-pair approximation, the step that predicts the lowest energy

value E(2)(λ) in Eq. (3.22) represents the optimal step for minimization. This condition

yields a modified Newton-type of equation [67,68] for the optimal step λν ,

λν = −
(
E[2] − νI

)−1
E[1], (3.24)

where a level shift parameter ν has been introduced. The solution of Eq. (3.24) defines

one macro iteration after which all orbital and configuration coefficients are updated to

define the next CEP and to determine a new set of one- and two-electron integrals from

the rotated orbitals.

In order to facilitate a (relativistic) MCSCF for larger systems it is mandatory to

make use of a direct technique which refrains from an explicit evaluation of the Hessian

matrix E[2] [69] in expression (3.24). This can be achieved by expanding the optimal step

vector λν in a set of trial vectors7 {bn}

λj =

Nj
b∑

n

aj
n bn, (3.25)

withN j
b being the dimension of the trial vector in micro iteration j. The optimal expansion

coefficients {aj
n} in Eq. (3.25) are likewise obtained from the solutions of the projected

linear equations,

aj
n = −

(
E[2j] − νjI

)−1
E[1j], (3.26)

where the reduced gradient and Hessian elements read as

E[1j] = b†
nE

[1] (3.27)

E[2j] = b†
m E[2] bn = b†

m σn. (3.28)

Hence, a direct KR-MCSCF algorithm comprises a dual-level structure. The macro itera-

tions represent the outer part aiming at the convergence towards a desired local minimum

on the parameter surface and the micro iterations provide the optimal step for each of

the macro iterations.

7A separate set of trial vectors is used for the electronic-electronic, electronic-positronic, and configu-

rational parameters.
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According to Eq. (3.28) central elements of a micro iteration are successive linear

transformations for each bn

σn = E[2] bn, (3.29)

where the resulting σn vectors contain both orbital and configurational contributions due

to the coupling of all subspaces by the Hessian. This is illustrated by picking out a single

sigma vector and casting Eq. (3.29) in a form that identifies the individual orbital and

configurational parts (denoted by the superscripts o and c),⎛
⎜⎜⎜⎜⎜⎜⎝

σc

σo

σc∗

σo∗

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

E[2]c∗,c E[2]c∗,o E[2]c∗,c∗ E[2]c∗,o∗

E[2]o∗,c E[2]o∗,o E[2]o∗,c∗ E[2]o∗,o∗

E[2]c,c E[2]c,o E[2]c,c∗ E[2]c,o∗

E[2]o,c E[2]o,o E[2]o,c∗ E[2]o,o∗

⎞
⎟⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎝

bc

bo

bc∗

bo∗

⎞
⎟⎟⎟⎟⎟⎟⎠ . (3.30)

Typically, only the upper half of Eq. (3.30) needs to be evaluated since the remaining parts

follow from complex conjugation [61]. For a given determinant |Φμ 〉, configurational trial
vector |B 〉 =∑

μ

bμ |Φμ 〉, and one-index transformed Hamiltonian8 ˜̂
H the configurational

parts of the sigma vector in Eq. (3.30) are composed of two CI sigma-vector contributions

[43,61],

σc
μ =

〈
Φμ

∣∣∣Ĥ∣∣∣B〉 +
〈
Φμ

∣∣∣ ˜̂H∣∣∣ ck
〉
, (3.31)

where | ck 〉 is the CEP vector of the kth macro iteration. The calculation of the orbital

parts requires the evaluation of CI density and transition density matrices between the

CEP vector | ck 〉 and a given configurational trial vector |B 〉 [43, 61],

σo
rs = −

{〈
ck
∣∣∣[X̂−

sr, Ĥ
]∣∣∣B〉 +

〈
B
∣∣∣[X̂−

sr, Ĥ
]∣∣∣ ck

〉}
−
〈
ck
∣∣∣[X̂−

rs,
˜̂
H
]∣∣∣ ck

〉
, (3.32)

where the Kramers single replacement operators X̂−
rs and X̂

−
sr are defined by Eq. (3.8) in

the preceding section.

The MCSCF gradient E[1] in Eq. (3.28) consists similarly of a configurational (Eq.

(3.33)) and orbital part (Eq. (3.34)). The evaluation of the corresponding terms is equiv-

alent to the computation of a CI sigma vector and density matrix [43,61],

E[1]c
μ =

〈
Φμ

∣∣∣Ĥ∣∣∣ ck
〉
− E[0]ckμ (3.33)

E[1]o
rs = −

〈
ck
∣∣∣[X̂−

sr, Ĥ
]∣∣∣ ck

〉
. (3.34)

8For more details about the evaluation of the individual terms, for example the one-index transformed

Hamiltonian, the reader may refer to Reference 43.
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In its present form the KR-MCSCF program in DIRAC takes advantage of the direct

CI techniques implemented in LUCIAREL. The CI program is invoked to compute sigma

vectors and (transition) density matrices which occur in the expressions for the orbital

and configurational parts of the gradient and Hessian. On this account, the second-order

optimization scheme in the KR-MCSCF module greatly benefits from a parallelization of

these tasks which is subject of Section 4.1.2 and Section 4.3, respectively.
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Method Development

33





Parallel Implementations and

Method Development

The development of a parallel algorithm described in this thesis comprises implementa-

tions for large-scale GASCI programs both at the scalar-relativistic and fully relativis-

tic four-component level and in parts for a relativistic large-scale KR-MCSCF program.

Moreover, a new and parallel program module which allows for the computation of atomic

and molecular properties at the two- and four-component CI level has come into imple-

mentation.

My entire development work has been and is carried out within a local version of

the relativistic quantum chemistry program suite DIRAC [10]. This program package has

been developed over the years by a team of main and contributing authors9 and recently

I joined this team with the contribution of my parallel implementation of the CI program

LUCITA to the latest DIRAC08 release making it thus available to a wider public.

At the beginning of my PhD in August 2005, operative implementations of both

CI programs LUCITA and the relativistic counterpart LUCIAREL as well as of the KR-

MCSCF module (see Figure 3.1) have been completed with major contributions [60] of

my supervisor Timo Fleig. Their potential was indicated in several applications [57–59,

71–73]. However, in consideration of the rapid advance of massively parallel computer

architectures as illustrated in Figure 3.2 where the state-of-the-art is depicted for the years

2005 and 2009, a parallel GASCI implementation is an effective means of further extending

the applicability of the CI approach. It allows not only to quicken the calculation process

in itself, ideally scaling with the number of processors, but also to introduce important

savings with regard to hardware requirements per processor.

9For a yet incomplete list of current main and contributing authors follow the link in Reference 70.
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DCHF

KR−MCSCF

spin−free

MRCC

MRCC

CC branch

spin−dependent

incl. spin−orbit coupling

spin−free

LUCITA

LUCIAREL

CI PROPERTY

MODULE

CI branch

incl. spin−orbit coupling

Figure 3.1: An overview of a selection of CI and CC branches in DIRAC and their interrelations. The

dark green boxes denote fully parallelized program parts. The partially parallelized KR-MCSCF module

is marked with a light green box.

Particular emphasis was therefore put on the design of my parallel CI algorithm

which I have developed in collaboration with Prof. H. J. Aa. Jensen during several stays

in his group in Odense at the University of Southern Denmark, such that the improved

programs can be applied effectively on a supercomputer as well as on today’s standard

Linux clusters. Important features of this algorithm are discussed in Section 4.1. Sample

speed-up tests which simulate large-scale applications are provided in Section 4.2. By

means of the current parallel implementations and further code revisions on my part

for the CI programs LUCITA and LUCIAREL, elaborate spin-free and relativistic MRCI

calculations have become possible. Such applications had been entirely out of reach with

the serial implementation whereas they can even be considered as standard now for di-

and triatomic molecules containing heavy elements. Illustrative examples are included in

the application part of this work, e.g. in Section 6.2 or Section 7.2. As the KR-MCSCF

program resorts to LUCIAREL for CI-related steps10 the parallelization of these tasks was

greatly facilitated (see Section 4.3).

To summarize, Figure 3.1 displays the branch of MRCI and MCSCF modules I

have been working on during my PhD. The dark green boxes mark my fully parallelized

GASCI and CI property programs whereas the light green box refers to the KR-MCSCF

module which is parallelized to a large extent. I furthermore show in Figure 3.1 the

connection of the GASCI/MCSCF modules to one of the MRCC branches in DIRAC that

10A second CI program is in use for testing purposes.
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has been and is developed with the collaboration of Timo Fleig and my fellow PhD

student Lasse K. Sørensen [74–76]. Since the key structures of these programs bear a

close resemblance to the corresponding GASCI superstruction, my parallel algorithms

presented in the following provide a promising basis for a future parallelization of the

MRCC codes.
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Chapter 4

Parallel Relativistic CI

Implementation

This chapter summarizes the essentials of my generalized parallel CI algorithm (Section

4.1) and its performance for the resulting parallel MRCI implementations in the spin-

free and spin-dependent case (Section 4.2), where a great deal of details is omitted and

left to the papers 1 and 2. My contributions towards a fully parallelized KR-MCSCF

program are outlined in Section 4.3. In this context, the missing links to complete the

parallelization of the MCSCF module are elucidated.

4.1 Parallelization Scheme

The parallel algorithm that applies to both CI implementations is based on an extended

usage of functionalities of the message-passing interface (MPI)-1 and MPI-2 libraries [78].

This strategy does not only allow for completely retaining the efficiency of the sequential

precursor method (for a given process) but, in addition, facilitates further algorithmic

improvements in the future.

4.1.1 General Considerations

As the most used computer architectures for scientific computing change every few years

(one example: single core → dual core → quad core → etc.), it has been a major design

39
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Figure 4.1: Process partitioning for different communication and resource patterns applied in the parallel

implementations. Each number corresponds to a unique process that is contained in the global group of

all processes MPI COMM WORLD.

goal for me that the algorithm must be flexible and adaptable, such that it will be able

to run efficiently on all the most common computer architectures. This design goal was

achieved by using a dual-level structure consisting of intranode and internode groups as

depicted in Figure 4.1. The typical computer architecture fits into the template n nodes

with m cores, where a node is defined as a (sub)system with shared memory and shared

disks. Usually, the bandwidth for internode communication is much slower than for intra-

node communication. A parallel calculation with, say, 32 tasks on a true shared memory

machine would then correspond to n = 1,m = 32, while the same job on a Linux-based

cluster with quad cores would correspond to n = 8,m = 4. To this end, a node master

was chosen for each set of m cores that exclusively takes care of expensive communication

tasks among the n nodes. The node-master concept proved to be particularly useful in

the σ-vector evaluation (see Section 4.1.2).

The central idea of the algorithm is that in order to minimize time-consuming com-

munication tasks, each core p is statically assigned all coefficients related to a specific

subset of all the Slater determinants, bn(p) for all bn vectors as well as σn(p) for all σn

vectors. In this context, the TTSS blocking of the vectors bn and σn which was intro-

duced in Section 3.1 plays an essential role. By using the TTSS blocks as units to create

a close to optimal static block distribution, it is of the utmost importance to predict

well a priori the computational load arising from each TTSS block. At the outset of a

calculation each TTSS block of nonzero length is assigned to a specific process as indi-

cated by the arrows in Figure 4.2, thereby taking account of a block-“weight” criterion.

This individual block-“weight” criterion is calculated from an estimation of the respective
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Figure 4.2: Static TTSS -block assignment among all available processes as central parallelization pat-

tern. Each number corresponds to a unique process contained in the global group of all processes

MPI COMM WORLD. The process holding the TTSS block with the real part of the coefficients also

treats the corresponding non-zero imaginary part if applicable (only for LUCIAREL and complex matrix

double groups).

computational load in the dominating linear transformation step (60− 80%) of a David-

son iteration and the number of determinants in a given TTSS block. Achieving an even

“weight” distribution of the TTSS blocks among all processes ensures a decent static load

balancing. The performance of this approach is demonstrated in Section 4.2 on the basis

of two representative parallel test simulations in the spin-free and spin-dependent case,

respectively.

Each generalized Davidson iteration, sketched in a flow chart diagram in Figure 4.3,

consists of two distinct parts, each with different requirements. The parallelization of the

important σn-vector step (green box in Figure 4.3), is discussed in detail in Section 4.1.2.

The second main part is comprised by the subspace operations such as the determination

of the current residual (see Figure 4.3). Two of the computationally most expensive

subspace tasks are

H̃kl = σ†
kbl =

Nproc∑
p

σ†
k(p)bl(p) =

Nproc∑
p

H̃kl(p) (4.1)

S̃ ′
kn = b†

kb
′
n =

Nproc∑
p

b†
k(p)b

′
n(p) =

Nproc∑
p

S̃ ′
kn(p) (4.2)

which are needed, respectively, for the subspace eigenvalue problem and for the Gram-

Schmidt orthogonalization of a new trial vector b′
n to previous trial vectors. Since the

computations of H̃kl(p) and S̃ ′
kn(p) can be carried out locally on each process, with this
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Figure 4.3: Flow chart of the iterative generalized Davidson diagonalization method as implemented in

LUCITA and LUCIAREL.

design no long vectors but only scalars as H̃kl(p) and S̃kn(p) need to be communicated

for the subspace tasks by means of fast global reduction operations (MPI allreduce). The

only complication that arose for these tasks in the spin-dependent case were due to the

fact that the vectors and scalars are then generally complex-valued.

The application of a static distribution scheme of TTSS blocks as well as of a dual-

level communication model comes in handy to introduce further computational savings

and cut down hardware requirements. These are summarized in the following1:

1. disk storage. The organization of TTSS blocks in batches, where a batch is defined as

the maximum sum of TTSS blocks that fits into the core memory, originated already

from the sequential precursor algorithm. For the parallel algorithm described here,

the individual number of batches on a given process however decreases significantly

as the total number of processes increases. This reduction was achieved by explicitly

setting the length of all TTSS blocks to zero that are not assigned to a given process.

The total input/output (I/O) cost for each process was thereby greatly reduced, in

particular for the subspace operations as these local steps are typically processed in

terms of batches.

1Further details can be found in Paper 1 and Paper 2.
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In addition, file sharing based on the established intranode group was enabled among

the m cores minimizing the internal I/O load. If, on the other hand, a global file

system is provided it may optionally be utilized for a full file-sharing model among

all processes by use of MPI file-I/O techniques. A shareable file which contains all

bn-TTSS blocks was of particular use in the σn-vector computation since costly

internode communication (see Sec. 4.1.2 for more details) could be avoided.

2. two-electron integrals. As a natural consequence of the static TTSS -block distribu-

tion a significant reduction of one- and two-electron integrals that have to reside in

core memory of a given processor, was accomplished. A processor stores only those

integrals that are required to calculate the respective σn-TTSS blocks in the linear

transformation step.

3. shared memory. Since the m cores of a single node representing an intranode group

share core memory (but often not memory cache) one could take into account

shared-memory like access algorithms based on MPI-2 one-sided communication

routines (MPI get, MPI accumulate) for memory demanding quantities such as the

two-electron integrals and the required blocks of the bn vector. By these means, only

a single copy of, e.g. the essential two-electron integrals (see preceding paragraph),

needs to be kept in core memory of a given intranode group. To ensure in general

high efficiency a passive target communication model (MPI win lock(MPI lock shared))

was implemented as visualized by the one-directional arrows in Figure 4.4. A deeper

understanding of an optimal performance of such a one-sided communication model

is of particular importance since it shall be employed for the final parallelization of

the KR-MCSCF program (see Section 4.3). Elaborate test studies on cache-based

multi-core systems, today’s most common system architecture, are being carried out

at the time of writing this thesis.

In summary, it can be stated that the parallel algorithm which I outlined above is

universally applicable to any (large-scale) eigenvalue problem that can be solved itera-

tively. A prerequisite is, however, that the Hamilton matrix, respectively, the solution

vector can be divided in some way into subunits. In the present case, this requirement

was met through the TTSS -block partitioning of the CI vector and sigma vectors.
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Figure 4.4: Shared-memory access pattern for memory demanding quantities. Each number corresponds

to a unique process that belongs to a given intranode group.

4.1.2 Sigma-Vector Evaluation

In Paper 1 and Paper 2 different approaches to an efficient parallelization scheme for the

σn task [79–82] were discussed at length. In these papers the superiority of a distributed

data model on which I will elaborate in the following was justified in agreement with

Gan et al. [80]. In the conclusion of this section I illustrate the decisive drawback of an

alternative approach, namely the replicated data model.

In Figure 4.5, the calculation of a sigma-vector σn is outlined as it is implemented

for the present GASCI algorithms. Each segment, here a TTSS block, of the complete

sigma vector σn is coupled through the Hamiltonian matrix (cf Eq. (3.19)) to the same

TTSS block of bn, but also to specific other bn-TTSS blocks. To compute a full sigma-

vector TTSS block locally on its statically designated process (see Figure 4.2) using a

distributed data model, therefore necessitates for each process the collection of all those

bn-TTSS blocks that couple to the σn-TTSS blocks assigned to this process, prior to

the actual “matrix × vector” contraction (code line 25 in Fig. 4.5). For this purpose,

a global communication step among all node masters was introduced at the beginning

of each sigma-vector evaluation where lists of required bn-TTSS blocks for each partial

intranode linear transformation are utilized. These INTEGER lists, which are of dimension

[number of TTSS blocks] are constructed at the outset of the diagonalization procedure

and kept in main memory.

The essential gathering step can efficiently be carried out using either a collec-

tive communication (MPI bcast) or one-sided communication (MPI get) approach2. The

current collection algorithm was designed such that the internode communication is min-

2The latter approach is under development.
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1: For each process (which is assigned a specific subset of all TTSS blocks):

2: if distributed data approach then

3: loop {TTSS blocks}
4: if global file system then

5: if my bn-TTSS block then

6: store block into the globally accessible file BBLOCKS

7: end if

8: else

9: if my process is node master then

10: if this bn-TTSS block is on my node then

11: scatter this block to relevant node masters with MPI bcast

(unless one-sided communication is used)

12: else if this block is needed for my node then

13: gather this bn-TTSS block from another node master

using either MPI bcast or MPI get

14: store block into the intranode specific file BBLOCKS

15: end if

16: end if

17: end if

18: end loop[TTSS blocks]

19: end if

20: loop {my σ-batches of σn-TTSS blocks}
21: loop {my b-batches of bn-TTSS blocks}
22: read this b-batch from the BBLOCKS file

23: loop {all my connecting bn-TTSS blocks in current b-batch}
24: loop {my σn-TTSS blocks in current σ-batch}
25: add contribution to current σn-vector TTSS block

26: end loop[my σn-TTSS blocks in current σ-batch]

27: end loop[all my connecting bn-TTSS blocks in current b-batch]

28: end loop[my b-batches of bn-TTSS blocks]

29: if replicated data model then

30: sum up contributions to my σn-TTSS blocks from all processors using either

MPI reduce or MPI allreduce

31: end if

32: end loop[my σ-batches of σn-TTSS blocks]

Figure 4.5: Simplified pseudo-code visualization of the evaluation of the linear transformation step σn

= Hbn, as implemented in LUCITA and LUCIAREL. The two main approaches to a parallelization of this

task, namely a distributed and replicated data model, are indicated in the algorithm.
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imized. For example, the communication group consisting of all node masters is further

split (MPI comm split) whenever a TTSS block is not required for the sigma-vector evalu-

ation of a given intranode group. The actually communicated bn-TTSS blocks are stored

for each intranode group in a shared coefficient file BBLOCKS that is accessible by all

individual processes on this node via MPI file-I/O routines.

A major advantage of the presented strategy is that costly global communication

inside the sigma-vector loop structure (see Figure 4.5) is avoided. Global (blocking)

communication would have led to an intrinsic barrier and therefore in general to idling

times and considerable performance loss. This, on the other hand, applies to the second,

alternative algorithm (“replicated data model” in Figure 4.5) where each process computes

all σn contributions from its bn-TTSS blocks. Unless all active σn-TTSS blocks fit into

memory on all nodes, the σn-TTSS blocks must be added up with an MPI reduce or

MPI allreduce call at the end of each σ-batch (after code line 28 in Figure 4.5) which

would become a barrier and cause idling time.

4.2 Parallel Performance

The overall performance of the parallel algorithm presented in the preceding section was

examined on the basis of extensive large-scale test applications both in the spin-free and

spin-dependent case in Paper 1 and Paper 2, respectively. In what follows, I will thus

restrict myself to a discussion of two representative examples.

The LUCITA performance test was carried out on a Linux-based cluster (Horseshoe)

that is made up of 200 nodes of two Intel Woodcrest (2.66 GHz; dual core version) pro-

cessors each, equipped with either 4GB (160 nodes) or 8GB (40 nodes) of shared main

memory and a dual Gigabit ethernet connection, respectively. The nodes are intercon-

nected by Gigabit switches and provided with local disks. The second system is an IBM

p6 575 cluster (Jump) consisting of symmetric multiprocessor nodes with each node hold-

ing 32 simultaneous multithreaded Power6 processors running at 4.7 GHz. Each node has

a ten Gigabit ethernet access to a general parallel file system (GPFS) and the nodes are

interconnected by an InfiniBand connection for MPI communication.

The speedup S(p,N) which is used to evaluate the performance of the parallel
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Figure 4.6: Parallel performance plots for MRCI calculations on the ground state of H2O (LUCITA; point

group C2v; DZ basis) and BiH (LUCIAREL; double point group C∗
2 ; TZ basis). The LUCITA performance

test comprises roughly 1.5 × 109 determinants whereas the CI expansion spans approximately 428 × 106

determinants in the LUCIAREL test case. Details on the computer architectures of the Linux-based cluster

Horseshoe and the supercomputer Jump are given in the text.

implementations is defined as

S(p, L) = T (1, L)

T (p, L)
, (4.3)

where T (p, L) is the time required to solve a problem of size L on p processors.

Figure 4.6 displays the speedup for the linear transformation step (“H x bn” com-

putation) and for a representative Davidson iteration that were obtained for a spin-free

LUCITA benchmark calculation (roughly 1.5 × 109 determinants) on the ground state of

the water molecule (C2v symmetry) and a LUCIAREL benchmark calculation (≈ 428×106

determinants) on the ground state of the bismuth hydride molecule (double point group

C∗
2). The shown examples are calculated for the respective test cases B in Paper 1 and

Paper 2, and for further computational details the reader is referred to the papers.
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The depicted LUCITA benchmark test was carried out applying an “n nodes using m

= 1 core on each node” allocation scheme which was found to yield in general the best

performances on Linux-based clusters (see Paper 1 and Paper 2)3. As for the present case,

an excellent scalability is obtained with regard to both the σ-vector computation and the

total Davidson iteration. The speedup for n = 16 processors is 13.25 (H x bn step) and

14.18, respectively, which exemplifies the effectiveness of the static load-balancing scheme.

The higher S value for the total Davidson iteration compared to the value for the σ-vector

step originates mostly from an intrinsic I/O parallelization. As a result of the TTSS -block

distribution, the I/O intense Davidson subspace-vector tasks (cf Eq. (4.1)) are spread out

to the local disks of the individual processors.

The remaining two curves in Figure 4.6 demonstrate the speedup for the LUCIAREL

benchmark test performed on the supercomputer Jump for up to 64 processors. The scaling

for the σ-vector step is almost perfect with a speedup of S = 62.38 for 64 processors. A

drop in the speedup is, however, observed with regard to a total iteration, in particular

for a larger number of processors, that is 28.62 (32 processors) and 51.30 (64 processors),

respectively. These findings were partly ascribed to the increasing GPFS load, most

notably in the Davidson subspace-operation parts where large chunks of TTSS blocks are

read in and written almost simultaneously by all processes (see preceding paragraph).

Summarizing, the performance of the parallel implementations of the MRCI pro-

grams LUCITA and LUCIAREL based on the idea of distributed data model combined with

a static load-balancing scheme is excellent. As visualized by the lines nearly parallel to

optimum performance in Figure 4.6 for up to 32 processors, the algorithm works properly

on two of the most wide-spread types of system architectures.

4.3 Outlook for a Parallel KR-MCSCF

The constitutive elements of a restricted-step second-order MCSCF optimization algo-

rithm that is implemented for the KR-MCSCF module in the DIRAC software package,

were outlined in Section 3.2. Table 4.1 summarizes the various CI contributions to the

3Arising difficulties on multi-core machines that are associated with an application of an “n nodes

using m > 1 core on each node” scheme, are explained in full detail in Paper 1 and Paper 2. Moreover,

an in-depth study of this topic was recently published by Kleinschmidt and co-workers [83].
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Table 4.1: Direct CI contributions to the MCSCF gradient and Hessian. The original table is taken

from Reference 84.

Gradient E[1] Config. part E[1]c CI sigma vector Ĥ | c(k) 〉
Gradient E[1] Orbital part E[1]o CI density matrices

〈
c(k)
∣∣∣[X̂−

sr, Ĥ
]∣∣∣ c(k)

〉
Hessian E[2] Config. part E[2]c,c/o CI sigma vector Ĥ | c(k) 〉

CI sigma vector Ĥ |B 〉
Hessian E[2] Orbital part E[2]o,c/o CI density matrices

〈
c(k)
∣∣∣[X̂−

sr,
˜̂
H
]∣∣∣ c(k)

〉
CI transition densities

〈
c(k)
∣∣∣[X̂−

sr, Ĥ
]∣∣∣B〉

calculation of both the MCSCF gradient E[1] and Hessian E[2] (see Eq. (3.28)) where

the superscripts c and o refer to the configurational and orbital parts of the respective

quantities.

As the parallelization of the sigma-vector evaluation was already presented in Section

4.1.2, I proceed with the calculation of CI (transition) density matrices. Replacing the

integrals (pq̄|rs)r,ı in the expression for the computation of a σ-vector fragment in Eq.

(3.19) with the expansion coefficients of the left-hand side determinants br,ıST̄ yields an

expression for the corresponding two-particle density matrix fragment (real part),

ρ++(r) (pq̄rs) =
∑
UV̄

∑
ST̄

{brST̄ AST̄ ,UV̄
pq̄rs brUV̄ + biST̄ AST̄ ,UV̄

pq̄rs biUV̄}. (4.4)

A comparison of Eqs. (3.19) and (4.4) then reveals that in the latter case (density

matrix case) the contraction runs now over coefficients rather than integrals which makes

the evaluation procedure for both tasks almost identical. Transition densities are likewise

obtained by substituting the ket vector in Eq. (4.4) with the appropriate CI expansion of

the reference vectors.

The similarity between the σ-vector and density-matrix construction suggests a

static assignment of bn-TTSS blocks (see Section 4.1.1) for the parallelization of the

latter task. Hence, each process is assigned a corresponding set of TTSS blocks of the bra

(br,ıST̄ ) and ket vector (br,ıUV̄). In contrast to the σ-vector computation only partial density-

matrix elements are calculated and the initial gathering step (code lines 2-19 in Figure 4.5)

is omitted. To subsequently obtain the full density matrix, the individual elements are
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summed up using either MPI reduce (only on the master process) or MPI allreduce (on all

processes) in an extra loop running over the density matrix elements. This scheme avoids

any global communication within the density-matrix evaluation which would otherwise

introduce a barrier and cause idling time. By contrast, the computational overhead of

the additional summation step is comparatively small.

My development of parallel algorithms for the σ-vector and density-matrix evalua-

tion completes the parallelization of the essential inner parts of the MCSCF algorithm,

namely the CI tasks, the integral transformation at the outset of each macro iteration

and the computation of generalized Fock matrices4. It remains then to devise a paral-

lel algorithm for the outer structure of the large-scale second-order MCSCF algorithm.

This includes a suitable handling of memory demanding quantities such as for example

the complete set of one- and two-electron integrals or the current expansion point vector

| c(k) 〉. Since, at present, the master process invokes the slave processes only at each of
the above mentioned entry points to the inner parts, all these quantities have to be kept

in core memory of a single process. In a future parallel scheme, the memory requirements

for the individual processes could be alleviated, e.g. by introducing a shared-memory like

model within an intranode group (see Figure 4.4).

4A parallelized integral-transformation module as well as a parallelized module for the generation of

Fock matrices were already available in DIRAC.
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Parallel CI Property Module

In this chapter I present the implementation of a parallelized module which is part of

the DIRAC program package and can be used to compute first-order time-independent

properties of atomic and molecular compounds at the CI level. In the following section, a

general definition of atomic and molecular properties is given as well as a brief overview

of different approaches to their computational evaluation. The second section comprises

the details of our parallel algorithm. Finally, a first application is presented and technical

issues that were encountered in the course of this work are explained in more detail.

5.1 Theoretical Considerations

Besides the derivation of spectroscopic properties as for example the equilibrium bond

distance Re or the harmonic frequency ωe, the determination of electric, magnetic and

optical properties is an important aspect in theoretical studies of atomic and molecular

compounds. A molecular (atomic) property can be defined as the response of the electronic

structure of a given system to an applied external perturbation V (λ) that is characterized

by its perturbation strength λ. As an example, time-independent first-order properties

may be derived from the experiment in accordance with the so-called empirical definition

[85]:

E(1) := lim
λ→0

lim
λ′−λ→0

E(λ′)− E(λ)

λ′ − λ
. (5.1)

The full Hamiltonian of the perturbed system may be decomposed into a sum of the

51
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zeroth-order (unperturbed) Hamiltonian and the perturbation operator,

Ĥ(λ) = Ĥ0 + V (λ). (5.2)

Furthermore, the total energy E(λ) may be expressed as a Taylor expansion in terms of

the perturbation strength λ:

E(λ) =
∞∑

n=0

1

n!

(
dnE(λ)

dλn

)
λ=0

· λn

= E(0) + E(1)λ+
1

2
λ2E(2) + . . . (5.3)

Molecular properties of order n of a system in a given quantum state are therefore de-

fined as the nth-order expansion coefficients
(

dnE

dλn

)
λ=0

of the power series in Eq. 5.3.

Correspondingly, molecular properties for time-independent perturbations may also be

obtained directly from the energy derivatives at zero perturbation strength [86]:

E(1) =
dE(λ)

dλ

∣∣∣∣
λ=0

E(2) =
d2E(λ)

dλ2

∣∣∣∣
λ=0

...
...

...

E(n) =
dnE(λ)

dλn

∣∣∣∣
λ=0

(5.4)

To evaluate the energy derivatives either a numerical or analytical approach could be

employed.

The numerical method is based on a sufficiently large series of energy calculations

of the perturbed system where the perturbation V (λ) has been added to the zeroth-order

Hamiltonian Ĥ0 for a given set of small and finite perturbation strengths λ (finite-field

technique). The nth-order derivatives may then be found through a polynomial fit of the

λ-dependent function of the total energy E(λ). In so doing, the polynomial pre-factors

straightforwardly deliver the desired nth-order properties. Particular care must thereby

be taken of the energy convergence in the wave function optimization step. The approx-

imation of higher-order (> first-order) derivatives by numerical differentiation typically

calls for an energy convergence to at least 10−10 Eh. A general discussion on the ap-

plicability of the finite-field method for the calculation of molecular properties may be

found for example in [86]. In Ref. 87, T. Saue addresses the numerical approach in
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particular with regard to relativistic four-component calculations. The numerical differ-

entiation technique has been successfully employed in this work. With due attention to

these caveats, ground-state dipole moment functions of RbYb (see Paper 3) and (RbBa)+

(see Paper 5) were calculated using a highly sophisticated coupled cluster approach.

Since the CI property module in its present implementation is restricted to the

calculation of first-order properties for time-independent perturbations the evaluation of

the first-order energy derivation shall in the following be examined in more detail.

The analytical method requires the explicit differentiation of the energy with respect

to the perturbation strength and involves in general considerable, additional programming

effort. The Hellmann-Feynman theorem, on the other hand, may equally well be used to

compute the first-order derivative. It states that the first-order energy derivative E(1) can

be derived from the expectation value of the perturbation operator Ĥ1,

E(1) =
dE(λ)

dλ

∣∣∣∣
λ=0

=

〈
Ψ

∣∣∣∣∣∂Ĥ(λ)∂λ

∣∣∣∣∣Ψ
〉

=
〈
Ψ
∣∣∣Ĥ1

∣∣∣Ψ〉 , (5.5)

given that Ψ is an exact, normalized eigen state of the full Hamiltonian Ĥ(λ). As exact

solutions of the full Hamiltonian Ĥ(λ) are in practice mostly not available, approximate

wave functions which depend on a set of variation parameters α(λ) must be taken into

account instead. The resulting first-order energy derivative then reads:

E(1) =
∂E(λ)

∂λ

∣∣∣∣
λ=0

+
∑

k

∂E(α)

∂αk

∣∣∣∣
λ=0

dαk

dλ

∣∣∣∣
λ=0

. (5.6)

It follows from Eq. 5.6 that the Hellmann-Feynman theorem may likewise be satisfied for

approximate wave functions if the wave function is variational with respect to α(λ),

∂E(α)

∂αk

∣∣∣∣
λ=0

= 0, (5.7)

or if the parameters α(λ) do not depend on the perturbation

dαk

dλ

∣∣∣∣
λ=0

= 0. (5.8)

It can be shown [88] (and references therein) that the second term in Eq. 5.6 indeed

vanishes for wave functions obtained from either HF or MCSCF optimizations. In this

case, there are no objections to the expectation-value approach to first-order properties.
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This situation is, on the other hand, not given upon including dynamic electron

correlation through, e.g. , a restricted CI expansion where neither Eq. 5.7 nor Eq. 5.8

are fulfilled. On this account, corrections of Brillouin-type [88] to the Hellmann-Feynman

theorem were derived and, furthermore, their significance was investigated by reference

to benchmark studies [85]. In this work, Diercksen et al. concluded on the basis of,

admittedly, very limited CI wave functions that the extent of a correction term to the

Hellmann-Feynman theorem strongly depends on the role played by correlation effects

for the calculation of a given property. If correlation effects are only of minor impor-

tance for a given first-order property, similar results from the finite-field technique and

the expectation-value approach could be expected. In a later work, Ernzerhof et al. [89],

however, stated that, although the Hellmann-Feynman theorem does formally not hold

for CI wave functions other than Full CI, there is in itself no argument for an a pri-

ori preference of the derivative approach to the expectation-value approach. The latter

method has indeed been proven to yield reliable predictions of first-order properties in

many different cases [85, 90–92]. As my present relativistic implementation also exploits

the Hellmann-Feynman theorem a similar performance could be expected.

Finally, it is worthwhile to mention that both time-independent and time-dependent

general-order properties can be calculated in the more sophisticated framework of response

theory [93, 94]. This method is currently implemented in the DIRAC program for HF and

DFT response calculations at the one-, two- and four-component level. In future work, this

approach shall be extended to MCSCF response functions at the two- and four-component

level.

5.2 Implementation for One-Particle Operators

After having established the theoretical framework for the evaluation of first-order proper-

ties at the CI level, I consider in this section characteristics of my parallel implementation

of a two- and four-component CI property module based on an expectation-value ap-

proach. The implementation of the module is adapted to the parallelized CI program

LUCIAREL, thus taking advantage of all its features which are described in Chapter 4 and

Paper 2. As pointed out in the preceding section, the underlying Hellmann-Feynman

theorem is a computationally simple means to calculate first-order properties at the cor-
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related level for arbitrary time-independent perturbations of one-particle operators. It

may be used with due care, though, since the expectation-value approach is fully valid

only for wave functions that satisfy Eq. 5.7 or Eq. 5.8.

The operating sequence of a property evaluation essentially consists of three parts

on which I shall elaborate in the following. In a first step the symmetries of the relevant

set of {f̂1, f̂2, . . . , f̂M} one-particle operators are determined in the respective abelian

sub-double group which may have to be applied in the CI algorithm In addition, the

one-electron integrals are sorted for their convenient use in the CI program. The second

part comprises the actual calculation of the elements of the property matrix P where

the results for the kth operator f̂k are stored separately for a subsequent manipulation

of the data. The remaining part encompasses distinct routines which can be used to,

e.g. , further analyze the computed properties or simply write them to file in an ordered,

human-readable format.

The basic idea of my approach is to compute the linear transformation σ
(k)
i =

f̂k|Ci > for the kth perturbation operator and to make use of the resulting σ
(k)
i vec-

tor to calculate the respective property matrix entry by means of a simple dot product〈
σ

(k)
i |Ci

〉
. An alternative procedure could be to use the various one-particle density

matrices D derived from all possible C-vector combinations. In this scheme, the desired

property matrix element would thus be obtained from the trace tr(Fk) of the matrix

Fk = fk × D. This approach has been employed for example in the property module

of the DFT/MRCI program of Grimme and co-workers [95]. The density-matrix based

scheme should be advantageous in particular if a large number of properties needs to

be calculated for a relatively small set of eigenvectors. By contrast, my σ-vector driven

approach comes in handy for a comparatively large number of C-vectors and a limited set

of property operators. For example, if one assumes six one-particle operators and 100 CI

vectors, a total of 100×101
2

= 5050 one-particle densities would have to be calculated. In

the present approach this reduces to 600 σ-vector computations and the computation of

the corresponding dot products.

As briefly mentioned above, additional steps of low computational cost are required

in my present implementation prior to the actual evaluation of the property matrix. In

Figure 5.1 the procedure of the symmetry assignment and the ensuing rearranging step of

the one-electron integrals is outlined in a pseudo-code illustration for a given one-particle
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1. loop {M one-particle operators f̂ }
2. loop {all active spinors ϕp, ϕp}
3. loop {all active spinors ϕp, ϕp}
4. identify the index pair (a,b) pointing to the largest absolute element

abs(fmax
k (a, b)) in the kth operator matrix fk

5. end loop[all active spinors ϕp, ϕp]

6. end loop[all active spinors ϕp, ϕp]

7. use double-group multiplication table to obtain the symmetry Γf̂k
of f̂k:

8. Γf̂k
= Γ−1

ϕa
⊗ Γϕb

9. store Γf̂k
in array fsym[M ] and rearrange one-electron integrals in fk according to

the excitation class formalism

10. end loop[M one-particle operators f̂ ]

Figure 5.1: Pseudo-code visualization of the identification of the operator symmetry in the applied

abelian sub-double group in LUCIAREL.

operator f̂k. For the following a Kramers-paired spinor basis {ϕp, ϕp} is assumed. A

straightforward way of finding the symmetry Γf̂k
of an operator f̂k in the respective

sub-double group arises from its matrix elements. First of all the index pair (a,b) of

Kramers-paired spinors is determined that combines into the largest value abs(fmax
k (a, b))

in the total operator matrix. Since the symmetry representations of the Kramers spinors

are known through the specification of symmetry descriptors in the program input the

required symmetry of the operator is obtained by a direct product (line 8 in Figure 5.1):

Γf̂k
= Γ−1

ϕa
⊗ Γϕb

. (5.9)

The result of Eq. 5.9 is afterwards stored in an integer array fsym[M ] for later use in

the property matrix evaluation. Knowing the symmetry of the kth operator f̂k it is now

possible to sort the one-electron integrals according to the excitation class formalism [58]

(see also Section 3.1) on which the CI program is based. It should be noted that the

above described initial part of the property module is not parallelized since it does not

involve any heavy computational task.

In what follows I shall deal with the essential inner parts of my property module

which are illustrated in Figure 5.2. The key concept of my parallel implementation is

in close accordance with the parallelization approach for the CI programs LUCITA and

LUCIAREL which is introduced in Section 4.1. In the present case, the information about
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the symmetry of the N C-vectors is read by the master process from an input file and

stored in an integer array csym[N ]. Next, both arrays csym[N ] and fsym[M ] are communi-

cated to all processes and, furthermore, all M reordered one-electron integral matrices fk.

The efficient collective communication routine MPI bcast can be used in this case where

for the latter elements a sub-communicator of MPI COMM WORLD composed of all node

masters1 is employed. In order to proceed with the scattering process of all C-vectors to

the node masters the necessary even-distribution lists of active TTSS blocks2 needs to

be set up. Thereby, an individual list is required for each new symmetry that is either

stored in csym[N ] or arises from the direct product of the operator and C-vector symmetry

representations (line 8 in Figure 5.2).

The actual evaluation of the elements of the property matrix P comprises a nested

loop structure of C-vectors and one-particle operators. I designed the algorithm such

that occurrences of global communication inside the loop structure are minimized as

these constitute natural barriers in the computation step. A further exchange of single

C-vector TTSS blocks among the node masters in the linear transformation step (see line

9 in Figure 5.2) is, however, unavoidable because of the coupling of different C-vector

TTSS blocks to a given σ-vector TTSS block through the Hamiltonian f̂k. For a detailed

discussion of the parallelization scheme of the σ-vector computation the reader is referred

to Section 4.1.2.

A property matrix element is derived in parts on each process from the dot product

of the resulting, partial σ vector and a given C-vector (see line 13 in Figure 5.2), if and

only if both parts exhibit identical symmetry. The final step of the property matrix

evaluation involves the summation of the partial matrices on the master process. To this

end, the efficient collective communication routine MPI reduce with MPI sum as reduce

operation is applied. After the completion of the full property matrix P the individual

properties can be extracted and further worked on in suited analysis routines. So far,

I completed analysis tools for the calculation of the ground state dipole moment and

of transition dipole moments between ground and excited states from which possible

oscillator strengths are computed. Furthermore, a routine in which Ω quantum numbers

are assigned to C-vectors is implemented.

1The concept of node masters for the communication of large data sets such as integrals or C-vectors

is explained in more detail in Section 4.1.
2A definition of TTSS blocks into which a C- and σ vector are decomposed is given in Section 4.1.
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1. store symmetry of N C-vectors in array csym[N ]

2. communicate symmetry arrays for C vectors (csym[N ]) and one-particle operators

(fsym[M ]) to all processes viaMPI bcast with the communicatorMPI COMM WORLD;

distribute reordered one-electron integrals f to node masters using MPI bcast with a

purpose-built sub-communicator of MPI COMM WORLD

3. set up even-distribution lists of active TTSS blocks for each distinct symmetry that

results from either csym[N ] or any direct product of fsym[M ] and csym[N ]

4. scatter C vector(s) to node masters with respect to the distribution lists using

MPI bcast with a purpose-built sub-communicator of MPI COMM WORLD

5. loop {N C-vectors}
6. symmetry of ith C-vector: ΓCi

= csym[i]

7. loop {M one-particle operators f̂}
8. calculate ith σ(k) vector of symmetry Γ

σ
(k)
i
= Γf̂k

⊗ ΓCi
:

9. |σ(k)
i 〉 = f̂k|Ci〉

10. loop {N C-vectors}
11. symmetry of jth C-vector: ΓCj

= csym[j]

12. if Γ
σ

(k)
i
= ΓCj

then

13. compute dot product 〈σ(k)
i |Cj〉 and store in property matrix Pprocess

14. end if

15. end loop[N C-vectors]

16. end loop[M one-particle operators f̂ ]

17. end loop[N C-vectors]

18. sum up partial property matrices Pprocess to complete property matrix P to be kept

on the master process using MPI reduce with MPI COMM WORLD

Figure 5.2: Pseudo-code visualization of the parallelized property matrix evaluation as implemented in

the framework of the CI program LUCIAREL. Global communications and those among the node masters

are displayed in red. In the linear transformation step (line 9) additional communication among the node

masters is taking place (see Section 4.1 for further details).
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It is worthwhile to mention that the one-electron integrals for essential perturbation

operators such as the electric dipole operator μ̂el = {x̂, ŷ, ẑ} (length representation) or the
zth-component of the total angular momentum operator ĵz = ŝz + l̂z as well as of many

more operators are readily accessible in the DIRAC program package3. Moreover, the inte-

gral routine takes care of the appropriate form of the one-electron integrals in particular

with respect to time-reversal symmetry and their real or complex valued representation.

5.3 Initial Applications

The CI property module presented in the preceding section is a versatile program that

can be used with any one-particle perturbation operator. An application of the property

module which proved to be extremely useful is the unambiguous assignment of J and Ω

quantum numbers to electronic ground and excited states of atoms and molecules. As

neither atomic nor linear symmetry is available in the current implementation of LUCIAREL

I pursue an expectation-value approach for the determination of the J and Ω quantum

numbers. In this particular case, the expectation value of the ĵz or Ĵz operator needs to

be calculated over a given electronic state. Various examples for practical applications

can be found throughout the present work, in particular in Section 8.1 and 7.2 where

I took advantage of this technique to clearly identify individual electronic states in the

dense electronic spectra of the thorium atom and (RbBa)+ molecule, respectively.

At the time of writing this thesis, a correct symmetry handling of one-electron inte-

grals for operators which are not totally symmetric was not provided by the underlying

CI program. This restriction currently limits the applicability of my parallel property

module. For instance, the calculation of transition dipole moments (TDMs), from which

oscillator strengths of electronic transitions can be computed, is of great interest in theo-

retical studies as these quantities can be used for a direct comparison with experimental

spectra. The calculation of the individual components of the electric dipole operator

μ̂e = {x̂, ŷ, ẑ} (length representation) which are required to determine the TDM (see also

Appendix A.3), however, involves non-totally symmetric operators (x̂, ŷ). This applies

to all abelian double groups which are currently implemented for LUCIAREL. The next

3A complete list of implemented one-electron operators in the DIRAC program is available in the DIRAC

manual which can be downloaded from Reference 10.
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step will therefore be to program a new and general integral routine that allows to treat

any one-electron operator irrespective of its symmetry. Upon completion this will greatly

enhance the direct applicability of my parallel property module to the calculation of, e.g.

electric and magnetic properties of molecular (or atomic) systems.
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Applications
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Applications in Heavy-Element

Electronic-Structure Studies

My parallel MRCI implementations presented in this thesis have been applied to a wide

variety of atomic and molecular di- and triatomic systems containing heavy elements.

The applications comprise calculations of ground and excited states, their precise charac-

terization, and determination of spectroscopic properties.

In the following chapter, two molecular systems that comprise heavy p-block ele-

ments are considered. In Section 6.1, I address the question of an accurate theoretical

description of the ground and first excited state of bismuth monohydride (BiH). Moreover,

my contributions to an elaborate investigation of the electronic structure of the triiodide

anion are presented in Section 6.2. In this latter work, particular emphasis was put on

the assessment of various relativistic correlated ab initio and DFT methods. In Chapter

7 I present the lower electronic spectra and spectroscopic properties of two new molecular

species, namely RbYb (Section 7.1) and (RbBa)+ (Section 7.2), which play an impor-

tant role in ongoing experimental ultracold molecular physics studies. The final chapter

is addressed to atomic and molecular actinide compounds. In Section 8.1 I turn to the

calculation of the lower gerade electronic states of the thorium atom which served the

purpose of a methodological calibration in view of a future study of the thorium diatom.

I conclude this part of my thesis with some comments on my MCSCF calculations on the

uranium diatom (U2) (Section 8.2).
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Chapter 6

p-Block Main Group Molecules

The main group atoms branch out into two blocks in the periodic table as displayed in

Figure 6.1 [96]. The s block is composed of the first two groups and, in addition, the

element He. The p block includes the main-group elements of the groups 13-18. The late

p-block elements (fifth- to seventh-row) are of particular interest for theoreticians working

in the field of relativistic electronic structure theory since their ground state is to a consid-

erable extent determined by spin-orbit coupling1. The energetic splitting and the different

radial extent of the (partially) occupied valence np1/2 and np3/2 spinors (n = 5, 6, 7) are

thus expected to play a key role in the bonding pattern of these elements. Furthermore,

excitation energies to low-lying electronically excited states in such molecular compounds

are significantly affected by spin-orbit coupling.

In the following Section 6.1 I discuss the spectroscopic parameters of the spin-orbit

split ground state and first excited state in BiH derived from my four-component MRCI

calculations. Their accurate determination comprises most of the application part in

Paper 2. The second half of this chapter is dedicated to the triiodide anion (I−3 ). The core

topic of Paper 4 was the assessment of different relativistic methodologies with regard to

an adequate description of the electronic structure as well as spectroscopic properties of

the ground and lower electronically excited states of I−3 and its neutral, radical parent

system I3. In Section 6.2 a representative selection of the results for I
−
3 is presented from

which the pros and cons of each method can be deduced.

1Exceptions are, e.g. , bismuth and in general the noble gas atoms which have a 6p3 and np6 configu-

ration resulting in a 4S and 1S state, respectively. A 4S state as well as 1S states are merely shifted in

energy by, in a perturbative sense, higher-order magnetic couplings.
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6.1 Bismuth Monohydride (BiH)

Molecular compounds of the sixth-row p block elements, in particular the monohydrides,

have been subject to a variety of theoretical studies [39,98–109] where spin-orbit coupling

was taken into account in different approximate ways. There are only few investigations

[110–112] that include spin-orbit coupling in a more rigorous manner. The appealing

nature of the hydrides for theoreticians originates in the simplicity of the hydrogen atom

and its possibility to approach the heavier nucleus much more closely than any other

element, thus acting as a probe. These systems are, therefore, ideal candidates to study

relativistic effects on the (σ-)bonding and electronic structure.

The main objectives of my study in Paper 2 on bismuth monohydride (BiH) were on

the one hand to provide spectroscopic properties from correlated relativistic calculations,

and on the other hand to shed light on the spin-orbit splitting of the molecular electronic

ground state (Ω = 0+) and first excited state Ω = 1. This investigation which was

accomplished by means of our new parallel four-component MRCI program LUCIAREL

described in Chapter 4, represented the first of unprecedented rigor on this topic. In

a scalar-relativistic picture, the molecule has a 3Σ− ground state which dissociates in

the atomic limit to Bi (4Su) and H (2Sg). Figure 6.2 shows the ground-state potential

curve calculated at the spin-free MRCI SD10(6in5)SD/TZ level2. The valence electronic

configuration of this state can be written in terms of scalar-relativistic orbitals as σ2π2.

Upon inclusion of spin-orbit coupling the 3Σ− state, however, splits according to Hund’s

coupling case (c) [113, 114] into two components: X 0+ and A 1. Their potential energy

curves are displayed in Figure 6.2.

The resulting electronic configurations of the split states exhibit in the approximate

λω-projection notation a σ2
1/2π

2
1/2π

0
3/2 and σ

2
1/2π

1
1/2π

1
3/2 occupation pattern, respectively.

The value of their large energetic separation, Te = 4923 cm−1, is well-known from exper-

iment [115]. In earlier theoretical works [98, 100, 109] which were primarily based on the

assumption of separability of spin-orbit coupling and electron correlation, the prediction

of the splitting exhibited significant deviations from the experimental value. Hence, a

computational approach that treats both electron correlation and relativistic effects on

2An introduction to my notation of MRCI excitation schemes used throughout this thesis is provided

in Appendix A.1.
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Figure 6.2: Potential energy curves of the electronic X 0+ ground and A 1 first excited state of BiH

obtained from four-component SD10(6in5)SD/TZ calculations. For comparison, the potential energy

curve of the electronic 3Σ− ground state of BiH is included in the picture. It was derived from spin-free

MRCI SD10(6in5)SD/TZ calculations where scalar-relativistic effects were taken into account. In the

latter case the atomic dissociation limit corresponds to Bi (4Su) and H (2Sg) (not shown) and in the

spin-dependent case to Bi (4S3/2) + H (2S1/2). Details on the computational levels and basis set are

given in the text.
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Figure 6.3: Large component radial density distribution for valence orbitals of Bi. Solid lines indicate

relativistic spinors and dashed lines non-relativistic orbitals.

an equal footing is indicated and was therefore applied in this thesis. To emphasize the

importance of an appropriate consideration of relativistic effects in BiH, I show in Fig-

ure 6.3 the large-component radial densities for the relativistic atomic valence spinors3

of Bi that were obtained from numerical DHF calculations using the atomic DHF pro-

gram GRASP [116]. Relativistic effects that influence the molecular electronic structure

may in general be traced back to characteristics of the atomic electronic structure of its

constituents. To this end, such an analysis is a valuable means.

As can be readily seen from Figure 6.3 spin-orbit coupling leads to a considerable

splitting of the valence Bi 6p1/2 and 6p3/2 spinors. The relative displacement of the radial

density maximum of the 6p3/2 spinors to the 6p1/2 spinor amounts to 0.29 bohr whereas

the positions of the radial density maxima of the relativistic 6p3/2 spinors and the non-

relativistic 6p orbitals coincide. It can thus be concluded from this comparison that

spin-orbit coupling is expected to play a decisive role not only for the molecular electronic

structure but also for the bonding in BiH. The depicted splitting therefore suggests the

use of a molecular one-particle basis that has been optimized taking account of spin-orbit

interactions.

3The additional non-relativistic densities were simulated by increasing the speed of light from 137 a.u.

to 106 a.u..
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This requirement was met in the study described in Paper 2 as it was carried out

in a four-component framework using the Dirac-Coulomb Hamiltonian. Kramers-paired

spinors for the subsequent MRCI correlation calculations were obtained from all-electron

average-of-configuration four-component Hartree-Fock calculations. Close to the molec-

ular equilibrium structure, an open-shell state-averaging over all electronic configura-

tions with two electrons distributed among two Kramers pairs (2in2) ensured a balanced

description of all electronic states arising from the π1/2π3/2 occupation manifold. Fur-

thermore, basis sets in uncontracted form of either triple-ζ (TZ) or quadruple-ζ (QZ)

quality [117,118] were employed for both atoms.

Table 6.1: Spectral constants for 209Bi1H - ground and excited states from the present MRCI study

in comparison with previous theoretical calculations and experimental data. Details on the basis sets

and excitation schemes used in the computations are given in the text. SF: spin-free Dirac-Coulomb

calculation.

Method/basis set X 0+ A 1 Te [cm
−1]

Re [Å] ωe [cm
−1] De [eV] Re [Å] ωe [cm

−1]

SF-SD10(6in5)MRSD/TZa 1.787 1814 2.56

SD10(6in5)MRSD/TZ 1.801 1700 1.787 1742 4617

SD10(6in5)MRSD/TZb 1.806 1692 2.27 1.792 1732 4529

SD10(6in5)MRSD/QZ 1.790 1702 1.775 1754 4780

CCSD(T)/TZ [119] 1.803 1695

CCSD(T)/MRCIS [109] 1.800 1716 2.38 1.790 1741 4328

MRD-CI [100] 1.867 1632 2.28 1.854 1618 4303

experiment [115,120] 1.809 1699 ≤ 2.9 1.788 1734 4923

a Spectroscopic parameters for the 3Σ− are presented.

b An adequate one-particle basis to dissociate the molecule was generated by (4in4)

average-of-configurations DHF calculations.

Table 6.1 compiles the equilibrium bond lengths (Re), harmonic frequencies (ωe),

dissociation energy (De) and adiabatic excitation (Te) for the ground and first excited

state of BiH from a selection of my MRCI data in comparison with other theoretical

studies and the experiment. For the applied computational level SD10(6in5)MRSD a
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CAS-like active space was chosen that comprises the six valence electrons distributed in

the 6s1/2, σ1/2, π1/2, π3/2, σ
∗
1/2 Kramers pairs (6in5). Core-valence and core-core correlation

is taken into account by allowing at most two holes in the underlying Bi 5d shell (SD10).

Furthermore, single and double as well as combined triple and quadruple excitations from

the combined spaces into the virtual spinor space make it possible to recover essential

parts of dynamic correlation4. A complete table with further results employing different

active space models and correlation levels can be found in Paper 2.

The observed bond elongation in the order of 0.02 Å for the molecular ground

state upon inclusion of spin-orbit coupling is consistent with previous theoretical findings

[105, 109, 112]. The decrease of 0.29 eV in the dissociation energy, on the other hand,

contradicts to the results by Han and co-workers [112]. They report even a slight increase

of De in the order of 0.08 eV comparing their scalar-relativistic CCSD(T) results with

the corresponding two-component CCSD(T) values using averaged relativistic effective

core potentials. It should be considered, however, that for one thing they make use of an

effective one-electron spin-orbit operator to generate a molecular two-component spinor

basis, and for another thing, as the authors write themselves, they apply a too small basis

set for obtaining accurate numbers. By contrast, my approach is more rigorous since

the difference between the spin-free and the four-component calculations merely bases

on an exact separation of spin-dependent terms in the Dirac equation for the former

computational scheme. Although the ground state of the Bi atom (4S3/2) is not spin-orbit

split, spin-orbit coupling will lead to an energy lowering at the atomic limit. In view of

my current results, this lowering does not seem to be fully quenched at the molecular

minimum.

The values for Re and ωe for both the ground and first excited state computed

at the four-component SD10(6in5)MRSD level are close to the available experimental

data. Sørensen et al. [119] calculated ground state properties at the four-component

CCSD(T)/TZ level which agree perfectly with my SD10(6in5)MRSD/TZ data. These

findings thus confirm the good quality of the present MRCI calculations. Moreover,

the computed dissociation energy of 2.27 eV is in agreement with the one-component

CCSD(T)/two-component MRCIS results of Stoll and co-workers [109] and also with the

4An energy cutoff threshold in the virtual spinor space of 18 Eh was used. Details on the notation of

my wave function models can be found in Appendix A.1.
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Table 6.2: Atomic and atomic-like (value taken at R = 20 bohr) excitation energies Te in cm−1 for

the lowest Bi6p3(4S3/2) → Bi6p3(2D3/2,5/2) and Bi6p3(4S3/2) → Bi6p3(2P1/2,3/2) transitions calculated at

the MRCI X2C-G (5in4)MRSD/TZ, (5in4)MRSD/TZ, SD10(5in4)MRSD/TZ and SD10(6in5)MRSD/TZ

levels, respectively. Details on the basis set and computational levels are given in the text.

J = 1.5 J = 1.5 J = 2.5 J = 0.5 J = 1.5

Method / Te [cm
−1] Ωa = 0+ Ωb = 2

X2C-G (5in4)MRSD/TZc 0 11825 16339 21944 33773

(5in4)MRSD/TZ 0 11905 16436 22040 33999

SD10(5in4)MRSD/TZ 0 11763 16205 22677 33710

SD10(6in5)MRSD/TZ 0 11771

experiment [122] 0 11419.04 15437.50 21660.91 33164.81

a Additional molecular states that correlate to the atomic dissociation channel

Bi (4S3/2) + H (2S1/2) are Ω = 0−, 1, 1, 2.

b Additional molecular states that correlate to the atomic dissociation channel

Bi (2D3/2) + H (2S1/2) are Ω = 0+, 0−, 1, 1.

c Exact-Two-Component Hamiltonian including Gaunt corrections.

spin-orbit MRD-CI value of Alekseyev et al. [100]. From the experiment [121] only an

upper limit of 2.9 eV is available.

What about the spin-orbit splitting Te between the X 0+ ground and A 1 first

excited state? Inspecting Table 6.1 it becomes evident that my more sophisticated four-

component MRCI approach clearly outperforms all previous theoretical studies on the

spin-orbit splitting Te. My best estimate for Te = 4780 cm−1 (SD10(6in5)MRSD/QZ)

differs only by ca. 140 cm−1 from the experiment. Possible future improvements to close

the gap to the experimental splitting are outlined in more detail in Paper 2. For example,

a series of MRCI calculations where higher excitations (SDTQ) from the reference space

were taken into account revealed the importance of such correlation contributions for an

adequate description both of the shape and relative position of the respective electronic

potential wells of the ground and first excited state. Furthermore, it is shown that core-

valence correlation from the Bi 5d shell suffices to account for the largest corrections to

all spectroscopic constants (Re, ωe and Te) determined from corresponding valence CI

calculations.



6.1 Bismuth Monohydride (BiH) 73

In addition to the study of spectroscopic properties of BiH I carried out atomic

two- and four-component MRCI calculations on the lower atomic excitation spectrum

of Bi which should give an idea of the performance of my MRCI approach and give an

example of the possible accuracy in heavy-atom calculations. The excitation energies for

the four lowest transitions in Bi are listed in Table 6.2 in comparison with the experi-

mental data. All states are characterized as internal Bi 6p excitations. The atomic-like

SD10(6in5)MRSD/TZ excitation energy for the first electronic transition was derived

from a molecular calculation at a Bi-H distance of R = 20 bohr. It almost matches its

corresponding atomic SD10(5in4)MRSD/TZ value5. A difference of only 8 cm−1 indi-

cates that the atomic dissociation limit is reached at an internuclear distance of R = 20

bohr. The calculated excitation energies obtained with (SD10(5in4)MRSD/TZ) and with-

out ((5in4)MRSD/TZ) inclusion of core-valence and core-core correlation are in very good

agreement with the experiment. The largest deviation amounts up to 1000 cm−1 (≈ 4.5%)

for the J = 0.5 state at the SD10(5in4)MRSD/TZ level. Including spin-other-orbit effects

yields a lowering of the excitation energies on the order of 80-200 cm−1. A similar trend

was also observed for the spin-orbit splitting X 0+ - A 1 in the BiH molecule (see Paper

2). Spin-other-orbit contributions were thereby added in the exact two-component Hamil-

tonian (X2C) scheme of Ilias and Saue [27,123] via atomic mean-field integrals generated

with the AMFI [124–126] code.

5The active space (5in4) consists of the Bi 6s6p shell where the five valence electrons were freely

distributed. Core-valence and core-core correlation was included from the Bi 5d shell. Single and double

excitations from the combined spaces into the virtual space truncated at 18 Eh accounted for dynamic

correlation. A general introduction to my notation of wave function models can be found in Appendix

A.1.
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The photodissociation process of the triiodide anion (I−3 ) in solution provides an efficient

and facile access to the unstable I−2 radical anion for solution chemistry: I
−
3 + hν → I−2 +I.

The absorption spectrum of I−3 exhibits two broad absorption bands in the ultraviolet

(UV) region centered at ≈ 360 and 290 nm which correspond to transitions from the 1Σ+
g

(0+
g ) ground state to the 3Πu (0+

u ) and
1Σ+

u (0+
u ) excited states. The dynamics of the

photoinduced dissociation process in solution have been extensively studied in the past

using time-resolved pump-probe techniques [127] at the femtosecond time scale [128–133].

For the isolated I−3 molecule in the gas phase, the photodissociation process and its

associated dynamics, however, change to a considerable extent. Upon excitation with UV

or visible light a variety of decay channels leading to different fragments are energetically

accessible [134]. The potential two- and three-body dissociation channels and the resulting

fragments are illustrated in Figure 6.4.

Figure 6.4: Energy level diagram for I−3 . The asymptotic energies of the respective decay channels

are drawn relative to the ground state of I−3 . The numbering (1), (2), . . . , of the channels relates to

their ascending energetic order. Two-body dissociation channels are shown on the left of I−3 , three-body

dissociation channels to the right. The figure is based on a graphics in Reference 134.

Given the variety of possible decay channels, an important aspect in experimen-

tal gas-phase measurements of the I−3 photodissociation dynamics is the branching ratio
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between competing two-body and three-body dissociation pathways [134–138]. The si-

multaneous occurrence of such competitive channels is indicative of the involvement of

distinct non-adiabatic dynamics [138, 139] during the photochemical decay of I−3 . In this

context, theoretical wave-packet dynamics simulations are highly desirable to get a deeper

insight in this complex photodissociation process. To avoid artifacts in the dynamics, the

whole of the potential energy surfaces has to be calculated accurately which is, from a

computational point of view, a demanding task.

The main objective of the study in Paper 4 was therefore to provide an assessment

of different methodologies (TDDFT, SO-CASPT2, MRCI and IHFSCC)6 that could be

appropriate to describe the electronic structure of the triiodide species at all points on

the potential energy surfaces. In a later step, the most suitable approach shall thus be

employed to calculate the desired potentials. The relativistic IHFSCC method [144–146],

which served in the presented study as a reference for the calculation of the low-lying

electronic states of I−3 is a true multireference coupled cluster method. It is fully size-

extensive for both ground and excited states and includes electron correlation to infinite

order whereas, e.g. SO-CASPT2 does it only to second order. Further details on this

method can be found in References [144–146] and in Paper 4.

Compared to the wealth of experimental data on the triiodine species, relatively few

theoretical studies have been performed in the past. Kosloff and coworkers [139] presented

an extensive study of the potential energy curves of the I−3 , I2 and I
−
2 species, which are,

as indicated in Figure 6.4, likely to be involved in the photodissociation dynamics of I−3 .

Their results, obtained with a combination of spin-free MRCI calculations and a diatomics-

in-molecule (DIM) treatment where spin-orbit effects were included, may, however, be

somewhat flawed due to the relatively small basis set used in the DIM treatment. More

recently, Nakanishi et al. [138] performed spin-orbit-CI calculations which explored not

only the potential along the symmetric stretch of I−3 but also along the asymmetric stretch

coordinate. This theoretical investigation, however, still leaves room for improvement,

given the modest basis sets and the relatively limited accuracy warranted by the spin-

orbit-CI method used. Although I−3 is a closed-shell molecule, a key prerequisite for a

6TDDFT: time-dependent DFT [140]; SO-CASPT2: spin-orbit complete active space perturbation

theory to 2nd order [141–143]; MRCI: my parallel multireference CI program LUCIAREL (see Chapter 4);

IHFSCC: intermediate Hamiltonian Fock-space coupled cluster [144–146].
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Table 6.3: Ground-state spectroscopic constants of I−3 calculated with the DFT, MRCI, SO-CASPT2

and IHFSCC methods.

Method Re [Å] ωe [cm
−1]

DFT 3.007 102

MRCI 2.982 108

SO-CASPT2 2.888 119

IHFSCC 2.946 114

spin-free MRCI [139] 2.930 114

DIM+SO [139] 2.966 95

experiment [147]a 2.93 112±1
a Crystal structure data of (C2H5)4NI3 salt.

thorough investigation of I−3 and its decay products is to account for spin-orbit coupling.

The reason is that I−3 is composed of the relatively heavy element iodine (Z = 53) for

which spin-orbit effects are intrinsically important and, by being present, will play a

role in selection rules for relaxation processes after photoexcitation. For this purpose

and for reasons of computational efficiency, the exact two-component Hamiltonian (X2C)

scheme of Iliaš and Saue [27, 123] was used in the present investigation for the IHFSCC

and MRCI calculations. Two-electron spin-same-orbit and spin-other-orbit contributions

were included via atomic mean-field integrals obtained with the AMFI [124–126] code.

Table 6.3 compiles the spectroscopic constants of the Ω = 0+
g electronic ground state

of I−3 derived from calculations employing various methods. My MRCI approach7 yields a

fairly good agreement with the solid state data which has to be used since experimental

gas-phase data are available neither for the equilibrium bond length Re nor the harmonic

frequency ωe. The deviations from the experiment for both Re (+0.05 Å) and ωe (-4

cm−1) are comparable to those for SO-CASPT2 and the generally more accurate IHFSCC

method. DFT, on the other hand, shows larger discrepancies.

Benchmark calculations of the vertical electronic spectra of I−3 at both a fixed inter-

7A computational scheme with a CAS space composed of 16 electrons distributed in 9 Kramers-paired

spinors (16in9) from which up to two particles in the external space (cutoff threshold 3 Eh) were allowed,

was employed in combination with a TZ basis set [117, 148]. To list all computational details for the

various methods would go beyond the scope of this discussion and the reader is referred to Paper 4.
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nuclear distance (r = 2.93 Å; experimental Re) and at the respective equilibrium distance

of a given method are discussed at length in Paper 4. In order to be useful in modeling

the dissociation process of I−3 the potential surfaces of the excited states far removed from

the ground state equilibrium region have to be properly described. On this account, bond

length re as well as “adiabatic” (Te) excitation energies were calculated for geometries

limited to displacements along the symmetric stretch coordinate. The calculated spectro-

scopic constants for a given excited state, which are listed in Table 6.4, may thus differ

from their true values since the chosen restriction merely represents a cut through the full

multidimensional surface.

To facilitate the comparison between the methods, statistical measures of the errors

for each method8 with reference to IHFSCC are given at the bottom of Table 6.4. My

MRCI calculations tend to yield slightly longer bonds than their IHFSCC counterparts,

with an average deviation Δ̄ of 0.14 Å. A reverse trend is observed for the SO-CASPT2

results which underestimates the bond length compared to IHFSCC by about 0.036 Å.

TDDFT, on the other hand, gives too long bond lengths, with Δ̄ � 0.2 Å, in line with

the overestimation that was observed for the ground state.

My MRCI approach also performs well for the calculation of the “adiabatic” ex-

citation energies exhibiting a small mean error Δ̄ though the errors are not completely

systematic (|Δ̄| /= Δ̄abs). By contrast, SO-CASPT2 in general yields too high excita-

tion energies. However, the small standard deviation Δstd associated with a one-to-one

correspondence of Δ̄abs and Δ̄ points to a rather systematic behavior. Although TDDFT

seems to capture the essentials of the other methods for the lowest states, it is obviously

less reliable from a quantitative point of view.

In summary it can be said, therefore, that the agreement between the different

methodologies employed is very good in particular for the wave function-based approaches,

as is their agreement with experimental results. The IHFSCC method which is considered

to yield the most accurate results, is, however, not applicable to the complete potential

energy surface due to the presence of intruder states which prohibit a convergence at large

internuclear distances. Thus, either my MRCI or the SO-CASPT2 approach remain as

potential candidates for the computation of complete potential energy surfaces of I−3 (and

8This procedure follows the approach of Helgaker and coworkers [149]. A definition of the statistical

measures can be found in Appendix A.2.
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I3, see also Paper 4). In this context, SO-CASPT2 exhibits two interesting advantages:

for one thing, it is computationally much more efficient than MRCI, and for another its

error seems to be more systematic for all electronic states considered. In view of the large

number of single-point calculations (> 106) that have to be carried out to obtain a dense

and suitable grid of the potential energy surfaces for ensuing dynamics simulations, the

former holds as a strong argument. If, on the other hand, computational power is not a

limiting factor, my parallel MRCI approach could be in particular cases the more suitable

choice.





Chapter 7

Ultracold Molecules

The discovery of methods for cooling, trapping, and manipulating atoms led to a revolu-

tion in atomic physics. It has stimulated researchers to pursue the creation and study of

ultracold molecular gases (exhibiting translational temperatures < 1mK) aiming at for ex-

ample a controlled chemistry at the quantum level [150] and the possibility of testing, e.g.,

fundamental symmetries in nature through measurements of a postulated electric dipole

moment of an electron [151, 152] or the space-time variation of fundamental constants

such as the fine-structure constant α [153, 154]. The production of ultracold molecules

can be achieved in a variety of ways, such as photoassociation [155], buffer gas cooling

(sympathetic cooling) [156], Stark deceleration of polar molecules via time-modulated

electric fields [157] and magnetically tunable Feshbach resonances [158].

Theoretical contributions to the field of (ultra-)cold molecules are of value in many

different respects. Among the most important is the determination of accurate molecular

potential energy curves of ground and relevant electronically excited states. In the long-

range limit atom-atom and atom-ion interactions are well described by 1/r6 and 1/r4 po-

tentials, respectively, using perturbation methods whereas at short range Coulombic forces

dominate where advanced methods of molecular electronic structure theory come into play.

In the following section, I introduce the essentials of our high-level four-component theo-

retical study on the RbYb molecule (Paper 3), a new molecular species composed of an

alkaline atom and a lanthanides atom1 that has been produced for the first time at the

ultracold regime in the group of Axel Görlitz at the University of Düsseldorf [159]. I will

1The Yb atom has the valence electronic configuration [Xe]4f146s2 which bears a close resemblance

to the earth-alkaline atoms.

81
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in particular focus on our results of the spectral constants (equilibrium bond lengths, har-

monic vibrational frequencies, dissociation and excitation energies) as well as vibrational

states and Franck-Condon factors which may help to guide the experimentalists in their

future work on an efficient formation of ultracold RbYb molecules.

Section 7.2 comprises an overview over our recent four-component MRCI and CC

investigations of the molecular ion (RbBa)+. A four-component spin-free pilot survey of

(RbBa)+ is provided in Paper 1 and this study has recently been extended to account for

spin-orbit interactions in Paper 5. (RbBa)+ will be involved for example in experimental

studies of elastic and inelastic collisions between a singly trapped ultracold ion (here

Ba+) and an atomic Bose-Einstein condensate consisting of Rb atoms [160]. In order to

explain a possible charge-transfer mechanism in the collision experiments on the basis of

the molecular ground and excited-state potentials necessitates the inclusion of spin-orbit

interaction in the electronic-structure calculations as will be emphasized in this section.



7.1 Rubidium Ytterbium (RbYb)

To the date a large fraction of investigated systems in the (ultra-)cold molecular sciences

is comprised by alkali metal diatomics, both homonuclear and heteronuclear [150, 161].

The RbYb molecule belongs to a new class of heteronuclear diatomics that due to their

unpaired electron(s) may be trapped and manipulated using magnetic fields [159]. They

are, for example, promising candidates for an experimental search for a permanent electric

dipole moment of the electron or for producing lattice-spin models [162] for quantum com-

puting. Recently, the thermalization of various bosonic and fermionic Yb isotopes through

collisions with ultracold Rb has been shown by Görlitz and his co-workers [163], giving

first insights into the long-range behavior of the RbYb potential. Based on this work,

the controlled production of electronically excited RbYb∗ molecules by single-photon pho-

toassociation techniques has been demonstrated [159], and continued efforts include the

conservative trapping of the Rb-Yb mixture. Ultimately, the investigations aim at a molec-

ular Bose-Einstein condensate with adjustable dipolar interaction and a new approach to

measuring the electron electric dipole moment.

The main objective of the theoretical study on the RbYb molecule (see Paper 3)

was to gain insight into its electronic structure applying accurate and highly sophisticated

relativistic electronic structure methods. To the best of my knowledge, this molecule has

not been investigated theoretically before. On the basis of our achieved results, a laser-

driven two-step mechanism was proposed to prepare RbYb molecules in the rovibronic

ground state under laboratory conditions using ultracold Rb and Yb atoms. The new data

on vibrational levels and overlap between vibrational levels which were derived from my

MRCI ground and excited state potentials thereby gave rise to a revision of the mechanism

initially suggested by Nemitz [164].

Due to the energetic vicinity of the Rb 5s 5p 4d 6s 6p and Yb 6s 6p 4f 5d shells, a

large variety of excited states are expected to constitute the lower part of the electronic

spectrum of RbYb. An overview over the atomic configurations and terms as well as the

associated molecular states in the Λ − S coupling picture is given in Table 7.1. Since

the experimental photoassociation process for preparing RbYb molecules requires only

the lowest four excited states I refrained from calculating the complete lower electronic

spectrum. A qualitative picture of the molecular electronic excited states correlating to
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Table 7.1: A selection of molecular electronic states in the Λ−S coupling picture and associated atomic

dissociation channels in an energy range of ≈ 25000 cm−1. Molecular electronic states correlating to

atomic channels with intra-atomic Yb f − d excitations, e.g. Yb4f135d16s2 are not considered.

Atomic (2S+1)LJ Molecular (2S+1)ΛΩ

Rb5s1(2S1/2) + Yb6s2(1S0)
2Σ+

1/2

Rb5p1(2P3/2,1/2) + Yb6s2(1S0)
2Π3/2,1/2,

2Σ+
1/2

Rb5s1(2S1/2) + Yb6s16p1(3P2,1,0)
4Π5/2,3/2,1/2,−1/2,

2Π3/2,1/2,
4Σ+

3/2,1/2,
2Σ+

1/2

Rb4d1(2D5/2,3/2) + Yb6s2(1S0)
2Δ5/2,3/2,

2Π3/2,1/2,
2Σ+

1/2

Rb6s1(2S1/2) + Yb6s2(1S0)
2Σ+

1/2

Rb5s1(2S1/2) + Yb6s15d1(3D3,2,1)
4Δ7/2,5/2,3/2,1/2,

2Δ5/2,3/2,
4Π5/2,3/2,1/2,−1/2,

2Π3/2,1/2

4Σ+
3/2,1/2,

2Σ+
1/2

Rb6p1(2P3/2,1/2) + Yb6s2(1S0)
2Π3/2,1/2,

2Σ+
1/2

Rb5s1(2S1/2) + Yb6s16p1(1P1)
2Π3/2,1/2,

2Σ+
1/2

the Rb5p1(2P3/2,1/2) + Yb6s2(1S0) and Rb5s1(2S1/2) + Yb6s16p1(3P2,1,0) atomic dissociation

channels can be found in Paper 3.

In order to calibrate and test the accuracy of my four-component MRCI approach

using the Dirac-Coulomb Hamiltonian for the calculation of ground and low-lying ex-

cited state potentials of RbYb, spin-free (not shown here) and spin-dependent CCSD and

CCSD(T) calculations were carried out for the molecular electronic Ω = 0.5 (denoted

in the following by 1 0.5) ground state. The results of these benchmark calculations

are compiled in Table 7.2. Since RbYb is a characteristic, weakly bound van der Waals

complex as indicated by the large equilibrium bond distance Re = 8.88 bohr and the

low dissociation energy (De < 900 cm−1) the spectroscopic constants shown in Table 7.2

were counterpoise (CP) corrected [165] to account for the basis set superposition error.

Uncontracted basis sets of triple-ζ quality (TZ) were used for both atoms consisting of

{30s24p16d13f3g1h} functions for Yb [166] and {28s20p14d1f} functions for Rb [167].

Core-valence correlation was taken into account from the Rb 4p shell. In case of my

MRCI approach this was achieved by including single holes in the Rb 4p shell. The

CAS-like active space comprised the Rb 5s5p and the Yb 6s6p shells where the three

valence electrons were freely distributed (3in8). Single and double excitations from the
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Table 7.2: Spectroscopic values for the 1 0.5 ground state calculated at the CCSD/TZ and CCSD(T)/TZ

and MRCI S6(3in8)MRSD/TZ level with nine explicitly correlated electrons and including spin-orbit

coupling. A spinor basis was derived from average-of-configurations DCHF calculations, distributing

either three electrons in two Kramers pairs (3in2) or three electrons in five Kramers pairs (3in5). A

CP-correction was carried out in the spin-dependent case only for the MRCI data.

Method av. in DCHF Re[bohr] ωe [cm
−1] De [cm

−1]

CCSD(T)/TZ (3in2) 8.98 28.620 795

CCSD/TZ (3in5) 9.15 25.572 654

CCSD(T)/TZ (3in5) 8.89 30.214 828

S6(3in8)MRSD/TZ (3in5) 8.85 29.751 865

S6(3in8)MRSD/TZ (CP) (3in5) 8.88 29.458 844

combined spaces into the virtual Kramers-paired spinor space accounted for dynamical

electron correlation. The threshold for the truncation of the virtual spinors was set at 7.8

Eh. A one-particle spinor basis for the ensuing MRCI S6(3in8)MRSD calculations was

obtained from average-of-configurations HF with an averaging over all states arising from

a distribution of three electrons among five Kramers pairs, namely Rb 5s and Yb 6s6p2.

As can be seen from Table 7.2, my MRCI S6(3in8)MRSD/TZ calculations reproduce

very well the ground state spectroscopic parameters derived from the CCSD(T)/TZ (3in5)

calculations. The CP correction is small which indicates the use of a balanced basis set. In

Paper 3 the effect of correlating the Yb 4f electrons at the CCSD(T)/TZ level was found

to be of minor importance despite the fact that the inclusion of this primarily atomic

shell causes a slight reduction of the harmonic frequency ωe and the dissociation energy

De. A comparison of the CCSD(T)/TZ calculations using different one-particle spinor

bases (see Table 7.2) furthermore reveals that the choice of the averaging has a significant

effect. Although the CCSD(T) calculations based on a (3in5) averaged spinor basis yield

the most attractive potential, the results need to be regarded with caution because of the

use of a single-reference method. This choice of one-particle basis is more appropriate

for a multireference correlation approach. Furthermore, CCSD(T) is typically expected

to yield larger binding energies than CI. A thorough analysis of the MRCI wave function

2A (3in8) averaging, where the Rb 5p spinors are included, was not possible along the entire potential

energy curve due to strong mixing with the Yb 5d spinors.
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Table 7.3: Atomic and atomic-like (value taken at R = 30 bohr) excitation energies T in cm−1 for the

lowest Rb5s1(2S1/2) → Rb5p1(2P3/2,1/2) transitions calculated at the MRCI S1/TZ, S6(1in4)SD/TZ and

S6(3in8)SD/TZ levels, respectively. Details on the computational levels are given in the text.

J = 0.5 J = 0.5 J = 1.5

Method / T [cm−1] Ω = 0.5 Ω = 0.5 Ω = 1.5 Ω = 0.5

S1/TZ 0 10692 10875 10875

S6(1in4)MRSD/TZ 0 12636 12857 12857

S6(3in8)MRSD/TZ 0 12662 12879 12883

experiment [168] 0 12579 12817 12817

reveals, however, substantial multiconfigurational character in the bonding region. The

leading configuration consists of a doubly occupied Yb 6s Kramers pair and a bonding

orbital composed of Rb 5s and Yb 6p1/2. In addition, large coefficients are found for single

excitations from the bonding orbital as well as double excitations from the Yb 6s shell.

The simultaneous occurrence of polarizing and correlating excitations are indicative of

the importance of triples as observed in the CC calculations.

The high quality of my chosen MRCI S6(3in8)MRSD/TZ computational scheme is

also mirrored in the atomic-like (value taken at R = 30 bohr) excitation energies T for the

lowest Rb5s1(2S1/2) → Rb5p1(2P3/2,1/2) transitions. In Table 7.3 I compare these results

to both atomic MRCI and experimental data. If core-valence correlation is neglected

in the atomic S1/TZ (one electron CI) calculation not only the excitation energies are

considerably underestimated by ≈ 2000 cm−1. The fine-structure splitting of the 2P3/2,1/2

term is also too small by almost 23 %. However, taking into account single excitations

from the outer-core Rb 4p shell (S6(1in4)MRSD/TZ) results in a significant improvement

towards the experimental values. Excitation energies and the fine-structure splitting differ

from the experimental data by about 40 - 60 cm−1 and 15 cm−1, respectively. A similar

performance is observed for their atomic-like counterparts derived from the molecular

S6(3in8)MRSD/TZ calculation. The agreement with the experimental excitation energies

becomes slightly worse by about 22-26 cm−1, yet an excellent spin-orbit splitting of 218

cm−1 is obtained. In summary, it can be stated that with my MRCI S6(3in8)MRSD/TZ

scheme high accuracy can be achieved both for ground and low-lying excited states of
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the RbYb molecule. For one thing the computed spectroscopic constants of the ground

state are in good agreement with the corresponding CCSD(T) values, for another thing

a balanced description of the atomic limit is reached3.

Finally, I will briefly discuss a possible two step-mechanism for the production of

ultracold RbYb molecules in the rovibronic ground state. This mechanism is sketched in

Figure 7.1. Each of the steps (first step: (1) and (2); second step: (3) and (4) in Figure 7.1)

could experimentally be realized by the so-called STIRAP (STImulated Raman Adiabatic

Passage) process [169, 170]. The STIRAP process is a sophisticated laser technique that

uses a coupled intermediate state to achieve an almost adiabatic transfer from the initial

to the desired final molecular state.

Since all electronic transitions are dipole allowed, the transition probability is ex-

pected to be primarily dominated by the vibrational overlaps between the electronically

excited- and ground-state potential wells. For this purpose, vibrational wave functions,

eigenvalues and Franck-Condon factors (FCFs)4 (see also Appendix A.3) were computed

with the program LEVEL [171] for the isotopes 87Rb and 176Yb which are mainly used

in the experiment. As could be expected from the small geometric shift between the

minima of the ground state and the uppermost 3 0.5 state (see Figure 7.1), large FCFs5

(≈ 2 × 10−1) are found between the rovibronic ground state (ν1 0.5 = 0) and the low-

est vibrational levels (ν3 0.5 = 0 − 4) of the 3 0.5 state. However, none of these levels

has non-negligible FCFs with the highest vibrational level (ν1 0.5 = 69) from which the

second excitation process ((3) in Figure 7.1) is likely to take place. These findings there-

fore suggest a revision of the scheme proposed by Nemitz [164], who based the original

mechanism on preliminary potential energy curves [172]. In agreement with the computed

FCFs either the first excited state 2 0.5 or the second excited state 1 1.5 should be used

as intermediate states. The FCFs for the absorption ((3)) and emission ((4)) were found

to be on the order of 10−2 and 10−4 − 10−6, respectively, for both excited states which

thus make them more favorable candidates for the final STIRAP process. This picture

can, however, change depending on how well the ground state is determined. For exam-

ple, a shorter equilibrium bond distance for the ground state would favor the first two

3Spectroscopic constants for the excited states are available in Paper 3.
4A detailed introduction to the Franck-Condon principle and the computation of Franck-Condon

factors can be found for example in [115].
5A list of the most important FCFs is reported in Paper 3.
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Figure 7.1: Potential energy curves of the ground and low-lying states of RbYb computed at the MRCI

S6(3in8)MRSD/TZ level. Atomic dissociation channels for the states are shown. The transitions (1)

and (2) are part of the first STIRAP process [170] (initial photoassociation), (3) and (4) refer to the

corresponding second two-photon process.

excited states whereas a longer would favor the third excited state. In view of the results

presented here, an experimental approval of the revised mechanism is highly probable.
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Investigations on the collision kinetics of heavy ionic and neutral main-group atoms at

ultracold temperatures is a field of growing interest in experimental physics. These studies

aim at a profound understanding of the collision processes and products, and ultimately

at a controlled chemistry at the quantum level [150] and the possibility of testing fun-

damental symmetries in nature [151, 152]. Particular aspects of inelastic and elastic cold

collisions are, e.g. a concurrent charge-transfer process resulting in a loss of the initial

ion (for example Ba+) or the formation of a postulated mesoscopic molecular bound state

arising from a single trapped ion in a sea of ultracold atoms [173]. In this context, the

collision kinetics and electronic potential energy curves of the molecular benchmark sys-

tem (RbBa)+ [160], initially starting from a Ba+ ion that interacts with a Bose-Einstein

condensate of neutral Rb atoms, are of great interest. It is valence isoelectronic with

the (MgK)+, (MgCs)+ and (CaNa)+ systems which have been considered in earlier ex-

periments [174–176]6. The associated theoretical investigations were mainly carried out

using large-core pseudopotentials and neglecting spin-orbit coupling. In these systems,

the lowest-lying electronic states are characterized as Σ states, which is also true for the

(RbBa)+ molecular ion (see Paper 1) and most likely also for another heavier species of

interest, (MgCs)+. The neglect of spin-orbit interaction is reasonable in the determina-

tion of such Σ states, since it affects these states only through higher-order couplings to

excited states of different angular momentum projection onto the internuclear axis. For

the (RbBa)+ molecular ion, however, electronic states of projection Λ > 0 play a role

for the lowest dissociation channels to the different atomic fragments as I have shown in

Paper 1. An understanding of experiments involving the lower dissociation channels of

(RbBa)+ which come to lie in an energy window of about 2 eV, therefore necessitates

inclusion of spin-orbit interaction in the electronic-structure calculations.

The main objective of my initial study on (RbBa)+ in Paper 1 was thus to provide

a survey of the molecular potentials for the lowest electronic states at a high level of

accuracy with respect to the treatment of dynamic electron correlation using a spin-free

MRCI approach. Figure 7.2 displays the scalar-relativistic nine lowest-lying molecular

electronic states of the (RbBa)+ ion derived from spin-free MRCI S16(2in7)MRSD/ANO-

6The investigations including the Mg-containing molecular ions have been collision experiments per-

formed at room temperature.
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Figure 7.2: Potential energy curves of the ground and low-lying states (Λ− S designation) of (RbBa)+

computed at the spin-free MRCI SD16(2in7)MRSD/ANO-RCC level (see text for more details). Atomic

dissociation channels for the states are shown in the picture.

RCC calculations7.

The objective of the second study presented in Paper 5 has been to investigate

the electronic excited states lying close to the Rb + Ba+ entrance channel (see Figure

7.2) and expected to have a complicated distance dependence, to form a firm basis for

design of ultracold collision experiments for this system. One aim in the study in Paper

5, which I will discuss here, was the search for possible charge transfer mechanism from

Rb to Ba+ by a characterization of the excited states. To obtain this objective the scalar

relativistic study (Paper 1) was extended to also include the spin-orbit interaction, which

is imperative for an understanding of the charge transfer mechanisms in (RbBa)+ at

ultracold experimental conditions.

7The ANO-RCC basis sets for both atoms Rb and Ba were taken from Reference [177] and applied

in uncontracted form. The spin-free MRCI calculations included the correlation of the Rb 4s4p as well

as the Ba 5s5p outer-core shell. The active space comprised the Ba 6s5d shell where the two valence

electrons were freely distributed. Further details are given in Paper 1. A guideline for my notation of

MRCI wave function models can be found in Appendix A.1.
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Table 7.4: A selection of molecular electronic states in the Λ−S coupling picture and associated atomic

dissociation channels in an energy range of up to ≈ 14000 cm−1.

Atomic (2S+1)LJ Molecular (2S+1)ΛΩ

Rb+
5s0 (

1S0) + Ba6s2 (1S0)
1Σ+

0+

Rb5s1 (2S1/2) + Ba+
6s1 (

2S1/2)
3Σ+

1,0− ,
1Σ+

0+

Rb+
5s0 (

1S0) + Ba6s15d1 (3D1,2,3)
3Δ3,2,1,

3Π2,1,0+,0− ,
3Σ+

1,0−

Rb+
5s0 (

1S0) + Ba6s15d1 (1D2)
1Δ2,

1Π1,
1Σ+

0+

Rb+
5s0 (

1S0) + Ba6s16p1 (3P0,1,2)
3Π2,1,0+,0− ,

3Σ+
1,0−

Table 7.4 compiles the atomic configurations and terms as well as their corresponding

molecular states that form the lower part of the electronic spectrum of the (RbBa)+

molecular ion up to ≈ 14000 cm−1 above the ground state. These molecular states

include also the Σ states correlated with the entrance channel for the envisaged collision

experiments involving an ultracold ionized trapped barium atom and a Bose-Einstein

condensate of neutral rubidium atoms. In the following I shall elaborate on the results

that were obtained for all the molecular states located below the entrance channel plus d

channels associated with the Rb+
5s0(

1S0) + Ba6s15d1(3D1,2,3 ;
1D2) atomic limits listed in

Table 7.4.

In the MRCI study at the spin-free computational level reported in Paper 1 I used

the ANO-RCC basis sets [177] for both atoms. Extensive atomic and molecular test cal-

culations, however, revealed that with Dyall’s latest basis sets of triple-ζ quality for Rb

and Ba [167] (in the following denoted by TZ) higher accuracy can be achieved in the

calculations including spin-orbit coupling. Both basis sets were applied in uncontracted

form. The Ba TZ basis set was further augmented with one diffuse d, f , and g function

with exponents of 0.036645714, 0.3000341, and 0.76354824, respectively. This was done in

order to properly describe excitations to the Ba 5d shell in the molecular ion (RbBa)+. A

molecular one-particle Kramers-paired spinor basis was obtained from closed-shell Dirac-

Coulomb HF calculations at the various internuclear distances. Average-of-configurations

HF calculations with an averaging over the Ba 6s5d and Rb 5s shell were not possible at

all internuclear distances because of strong mixing with the Ba 6p and Rb 5p shell. All

these valence shells were included in the active space in the ensuing MRCI correlation
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Table 7.5: Excitation energies T in cm−1 for the lowest Ba6s2(1S0) → Ba6s15d1(3D1,2,3), Ba6s2(1S0) →
Ba6s15d1(1D2) and Ba6s2(1S0) → Ba6s16p1(3P0,1,2), electronic transitions calculated at the atomic MRCI

S6(2in9)SD/TZ and atomic-like S12(2in13)SD/TZ (molecular calculation; values taken at R = 50 bohr)

levels. The active space in the atomic calculation includes the same Ba shells and the same truncation

threshold for the virtual spinors as in the molecular case. Details on the molecular computational level

are given in the text. The MRCI results are compared to previous theoretical and experimental data. In

the atomic-like “J states” (Ω) the individual Mj components are almost degenerate at R = 50 bohr with

deviations on the order of 4 − 8 cm−1 from the lowest to highest Mj component. Here, the energies of

the lowest Mj values are shown in the table.

1S0
3D1,2,3

1D2
3P0,1,2

Method J = 0 J = 1 J = 2 J = 3 J = 2 J = 0 J = 1 J = 2

Experiment [178] 0 9034 9216 9597 11395 12266 12637 13515

Atomic calculations

S6(2in9)SD/TZ 0 8627 8809 9175 11197 12732 13091 13944

FSCCSD [145] 0 9075 9260 9639 11621 12423 12802 13793

IHFSCCSD [145] 0 9117 9296 9677 11426 12397 12728 13610

Molecular calculation at R = 50 bohr

S12(2in13)SD/TZ 0 8619 8812 9174 11198 12736 13109 13936

step yielding a distribution of two valence electrons in 13 Kramers pairs (2in13). Core-

valence correlation was taken into account from the outer-core Rb 4p and Ba 5p shell

(S12). Single and double excitations from the combined spaces into the virtual spinor

space which was limited to virtual Kramers pairs below a threshold of 18 Eh
8, ensured a

proper accounting of dynamic electron correlation. This computational model is dubbed

as MRCI S12(2in13)MRSD/TZ9.

In order to validate the chosen molecular MRCI setup it is useful to examine its

performance in the atomic limit. Table 7.5 compiles the results of atomic and atomic-like

excitation energies of the lowest Ba atomic transitions as well as previous theoretical work

and experimental data. Comparisons of the atomic MRCI S6(2in9)MRSD/TZ and the

8Virtually no difference in the computed excitation energies was observed for a benchmark test using

a cut-off threshold of 42 Eh.
9A general introduction to my notation of MRCI schemes can be found in Appendix A.1



7.2 The Molecular Ion (RbBa)+ 93

atomic-like molecular MRCI S12(2in13)SD/TZ results show that the dissociation limit is

reached at an internuclear separation of 50 bohr. From previous studies on transition

metals it is known that ns2(n-1)dm → ns1(n-1)dm+1 excitations are difficult to describe

in general within an MRCI approach because of the slow convergence of the dynami-

cal electron correlation contributions [179]. Multireference CC approaches, such as for

example the Fock-space CCSD (FSCCSD) or the intermediate Hamiltonian IHFSCCSD

methods [144–146], are better at describing dynamical electron correlation energies. They

are therefore expected to yield closer agreement with experiments, as the results in Table

7.5 confirm. In view of these difficulties for MRCI the deviations of my computed 3D

and 1D excitation energies from the experimental values on the order of a few 100 cm−1

are satisfactory. The fine-structure splittings of these terms are even reproduced within

a few tens of cm−1(see Table 7.5). Furthermore, the good agreement of the calculated

Ba6s16p1(3P) energies with the experiment shows that the chosen basis set and correlation

treatment are adequate.

In addition to the energetic location of the low-lying neutral Ba channels, the differ-

ential ionization potential of Rb and Ba is of vital importance for an unbiased description

of the (RbBa)+ molecular states. The computed ΔIP (IP(Ba)-IP(Rb)) value of 8454 cm−1

is in excellent agreement with experiment (8344 cm−1) [180]. This ΔIP was calculated

as the excitation energy in the atomic-like limit at 50 bohr of a molecular calculation.

The Ba+ + Rb entrance channel is thus placed only slightly below the Ba6s15d1(3D1) +

Rb+
5s0 atomic channel. This is in contrast to the lighter homologs (NaCa)

+, (MgK)+ and

(MgCs)+ where the corresponding energy gap is much larger.

Contrary to the ground state10, accounting for spin-orbit coupling in the excited

states yields a more complex picture for the potential energy curves of the electronic

excited states of the molecular ion (RbBa)+ compared to the spin-free calculations (Paper

1). The avoided crossings between the 3Σ+
0−-

3Π0− states and the 3Σ+
1 -

3Π1 states are easily

discernible in Figure 7.3 and in the enlargement of the critical region in Figure 7.4. Of

course, in the spin-free calculations all these curves cross as illustrated in Figure 7.2, and it

is thus evident that a proper treatment of spin-orbit coupling is mandatory for explanation

and prediction of outcomes of ultracold reactive collisions of Ba+ on a Rb Bose-Einstein

condensate. An even more pronounced avoided crossing between the 1Σ+ of the entrance

10The reader is referred to Paper 5 for a detailed discussion of the ground state.
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channel and the 1Σ+ of the Ba6s15d1(1D) channel is also visually identifiable in Figure

7.3. Unlike the above mentioned avoided crossings this one would also be present in a

non-relativistic or scalar-relativistic calculation (see Figure 7.2). The spin-orbit splitting

of the calculated scalar-relativistic states is sizeable, in particular for the 3Δ and 3Π states

which are split into their Ω = 1, 2, 3 and Ω = 0+, 0−, 1, 2 components (see Figure 7.3).

The splitting of the 3Δ and 3Π into their Ω components is on the order of of 250 and 80

cm−1, respectively, at the ground state equilibrium bond distance. While some of the Ω

components are degenerate in the atomic limit because they belong to the same atomic

J level, the molecular field gives rise to a spin-orbit splitting also of these components.

Most of the electronically excited states exhibit strong multiconfigurational charac-

ter and are thus more difficult to describe in a molecular orbital picture. Their electronic

structure will therefore be discussed in a more qualitative way. The lowest excited Ω = 0−

and Ω = 1 states correlate to a 3Σ+ state in the Λ-S representation (see Table 7.4). In

the dissociation limit their electronic structure corresponds to Ba+ + Rb. At shorter nu-

clear distances more and more Ba6s15d1
σ
(3D) character is mixed in. In the Franck-Condon

region the wave function has nearly equal contributions from these two configurations. At

about 7.75 bohr the 3Σ+ components undergo an avoided crossing with the Ω = 0− and

Ω = 1 of a 3Π state (see Figure 7.4). The 3Π state has a significantly shorter equilibrium

distance than the other states originating from the Ba6s15d1(3D) + Rb+ channel which

can be traced back to the strong admixture of Ba 6pπ and Rb 5pπ character into the Ba

5dπ spinor.

The non-adiabatic interaction between the 3Σ+ and 3Π states is anticipated to have

significant impact on the charge-transfer process. In the entrance channel the system

is prepared initially in a highly excited vibrational level of the 3Σ+ potential. At short

internuclear separation the non-adiabatic interaction yields a finite probability for a non-

radiative transition to the 3Π potential which in turn can relax to the electronic ground

state by emission of a photon.

At an internuclear distance of 15 to 16 bohr it is furthermore seen that the 1Σ+

entrance channel crosses the Ω = 0+ of a 3Π state (see Figure 7.3). While it would formally

not be allowed for two Ω = 0+ state to cross it appears that for this charge transfer process

the non-adiabatic coupling matrix element or off diagonal element between the two states

is so small that hardly any effect can be seen. A clear avoided crossing in the 12 to 13
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bohr range between the 1Σ+ and the higher lying Ω = 0+ of a 1Σ+ from the Ba6s15d1(1D)

but also Ω = 0+ of a 3Π of the Ba6s16p1(3P) (not shown in Figure 7.3) are observed. These

avoided crossings are responsible for the metastable character of the 1Σ+ entrance channel

state. This is in sharp contrast to what is observed in the lighter homologs where the 1Σ+

state is a purely dissociative state.

Summarizing, the non-adiabatic interaction in the short range of the potential (see

Figure 7.4) between the 3Σ+
1,0− and 3Π1,0− states is expected to lead to a non-radiative

charge transfer from the 3Σ+
1,0− entrance channel to the 3Π1,0− states. While transition

from the 3Π1,0− states to the ground state in (RbBa)+ is also in a scalar-relativistic

approximation electric dipole and spin forbidden, the large mixing of the Ba 5dπ with the

close lying Ba 6pπ and Rb 5pπ spinors induced by spin-orbit coupling will greatly decrease

the radiative lifetime. The expected fast non-radiative charge transfer to the 3Π1,0− states

may experimentally, however, not be desirable since it will irreversibly ’destroy’ the Ba

ion. In order to go from the present qualitative analysis to a more quantitative predictions

of life times requires the knowledge of the transition dipole moments which are currently

not available yet (see Section 5.3 for a discussion). Since Ba is a special case among

the alkaline earth metals with its low lying D shell it presents a unique opportunity to

study non-radiative charge transfer processes in the excited state manifold thereby making

(RbBa)+ experimentally very interesting.

Finally, I show in Figure 7.5 the dipole moment curve of the molecular ground state

of (RbBa)+ calculated at the four-component CCSD(T) level with origin at the center

of mass. The dipole moment was computed for each point by means of the finite-field

technique11 as described in full detail in Paper 5. For a charge distribution corresponding

purely to Rb+ and Ba a dipole moment of around 14 Debye could be expected at an

internuclear separation of 8.75 bohr (see Figure 7.5). Due to a partial electron transfer

from Ba to Rb+ in the ground state (see Paper 5 for more details) the dipole moment of

the electronic ground state is, however, significantly lower at the equilibrium distance. It

should be noted that in perfect agreement with the theory, an asymptotic behavior of the

dipole moment is obtained for large internuclear distances.

11See Section 5.1 for a discussion of the finite-field technique.



98 7 Ultracold Molecules

 0

 5

 10

 15

 20

 25

 30

 35

 0  2  4  6  8  10  12  14  16  18  20

D
ip

ol
e 

m
om

en
t μ

 [D
]

Internuclear distance [bohr radii]

CCSD(T)/TZ+pol
asymptote

Figure 7.5: Four-component CCSD(T) dipole moment curve (in Debye) of the molecular ground state

with calculated with 14 explicitly correlated electrons. The straight line (blue) indicates the asymptotic

limit of the dipole moment μ for a charged system in the center-of-mass coordinates.



Chapter 8

Actinide Compounds

The actinide elements comprise the lower row of the f block in the periodic system of

elements (see Figure 6.1 in Section 6). Owing to the fact that many of the relativistic

effects roughly scale as Z2 for isoelectronic valence shells these effects will be much more

pronounced for the actinide (5f) than the lanthanide (4f) elements [8]. The so-called

”direct“ relativistic effect which has its origin in the relativistic mass increase results

in a significant contraction and energetic stabilization of in particular the s and p1/2

orbitals1 (see Figure 6.3 in Section 6.1 for an illustrative example). In consequence of the

more efficient screening of the effective potential through the s and p shell, the d and f

shells will be energetically destabilized and expand radially (”indirect“ relativistic effect).

Moreover, spin-orbit coupling yields a splitting of all shells with l > 0, e.g. for the 5f in

the actinides: 5f → 5f7/2, 5f5/2.

All these effect lead to a unique situation in the early actinide elements including

thorium and uranium where different empty and (partially) filled shells (7s, 7p, 6d and

5f) are in principle available for chemical activity. Experimental and in particular spec-

troscopic work on actinide compounds is, however, rather scarce owing to the toxicity

and radioactivity of these materials. Theoretical calculations on the other hand can help

to gain insight into the complex electronic structure of actinide systems and on this ba-

sis to explain the chemical behavior of actinide atoms, ions, complexes and molecular

compounds.

1These orbitals have a greater density close to the nucleus and therefore experience a considerable

fraction of the effective nuclear potential.
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In the following Section 8.1 I present my MRCI results on the lower even-parity

electronic spectra of the thorium atom. Besides a thorough investigation of various corre-

lation effects, a comparison is drawn to experimental data and previous theoretical work.

Moreover, I outline a future investigation on the Th diatom Th2. A discussion of the

bonding picture in the uranium diatom U2 that has been observed experimentally for the

first time in the mid 1970’s [181] comprises Section 8.2. As shall be explained there, my

own contributions are limited to a qualitative study.



8.1 Thorium

Thorium is the first of the 5f -block elements (see also Figure 6.1 in Chapter 6) and

exhibits, unlike its lighter 4f -block homologue cerium (1G4: 4f 15d16s2), an electronic

ground state configuration with an empty f shell: 6d27s2 (3F2) [182]. The lowest elec-

tronic states are of even-parity and are derived from the configurations 6d27s2 and 6d37s1

resulting in a wealth of 3F , 3P , 5F , 1D, 1G and 5P states (LS coupling picture). The first

electronically excited state with an f 1 occupation pattern (5f 16d17s2 3H4) is of odd-parity

and is located 7795 cm−1 above the electronic ground state [182].

The validity of the LS coupling picture is, however, in general lifted for a heavy

element such as thorium. The strong spin-orbit coupling significantly mixes terms of

different configurations and LS values leaving only the total angular momentum J as a

good quantum number. For this purpose, I have computed the lower electronic spectrum

of the thorium atom by means of my parallel spin-dependent MRCI program LUCIAREL

in a 4-component framework using the Dirac-Coulomb Hamiltonian. By these means,

a treatment of both electron correlation and relativistic effects on the same footing is

ensured. To correctly describe the spin-orbit coupling of the ground state and excited

states the Dirac-Coulomb Hamiltonian suffices since it contains the leading spin-orbit

terms for heavy elements, namely the one-electron spin-orbit and the two-electron spin-

same-orbit terms [25,26]. Taking into account the spin-other-orbit term which is derived

from the Gaunt operator yields a reduction of 41 cm−1 on the spin-orbit splitting of the

6d Kramers pairs at the (uncorrelated) SCF level. This decrease corresponds to 1.6% of

the total splitting which is still below the accuracy we may typically achieve for relative

energies.

The energetic vicinity of the 7s, 7p, 6d and 5f shell in the actinide elements [183]

leads in general to a great many of configurations that are mostly characterized by a large

number of partially occupied shells. This trend holds true also for the present system

where such a variety of configurations is already found in the lower part of the atomic

spectrum. A summary of configurations2 for excitation energies of up to 25 000 cm−1 is

given in Table 8.1. As a result of the high MJ degeneracy of states with high angular

2The presented list may be incomplete, though. In Reference 182 further configurations provided with

large error bars are reported.



102 8 Actinide Compounds

Table 8.1: Even-parity and odd-parity ground and excited levels of the thorium atom and their respective

electronic configuration. The table is taken from Reference 182 but only states below an energetic

threshold of 25000 cm−1 are shown. Excitation energies are given in cm−1.

even parity levels odd parity levels

configuration level excitation energy configuration level excitation energy

6d27s2 3F2 0 5f6d7s2 3H4 7795

6d37s 5F1 5563 6d7s27p 3F2 10783

5f7s27p 3G3 18432 6d27s7p 5G2 14465

6d4 5D0 21176 5f6d27s 5H3 15619

5f6d7s7p 5I4 22098

momentum the calculation of but a few electronic states necessitates for the present

approach the computation of many eigenvectors. The reason for this is the lack of full

atomic symmetry in the CI program LUCIAREL and the use of binary double groups in

its stead. Every MJ component of an atomic J state is thus determined as an individual

eigenvector in the CI optimization. I therefore confine myself to a discussion of the

ground and lowest electronically excited states originating from the even-parity levels 3F ,

3P , 5F based on my MRCI results. These states are ascribed particular importance to

the bonding in the thorium diatom Th2 [184].

The following section comprises details on the basis sets and computational schemes

that were employed in this study. In Section 8.1.2, I discuss the performance of my MRCI

excitation energies in comparison to previous theoretical work as well as to experiment.

Finally, I outline my ongoing study of the thorium diatom Th2 using the present four-

component MRCI approach.

8.1.1 Computational Details

All calculations in the present investigation were performed using uncontracted basis sets.

I made use of Dyall’s double-ζ (DZ) and triple-ζ (TZ) basis set [185] where valence-

correlating functions for the Th 6d, 7s and 5f shells were added. The smaller DZ

basis comprises {26s23p17d12f1g} functions and the more elaborate TZ basis a set of

{33s29p20d14f4g1h} functions. The TZ basis set is comparable in size with the “large-

size” Th basis set of Noro et al. [186] and with the ANO-type basis set optimized by Roos
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and coworkers [187].

The calculations were carried out in the abelian double point group C∗
2h. An un-

ambiguous assignment of the J quantum number to each individual electronic state was

accomplished by means of my parallel CI property module which is presented in Section 5.

An appropriate one-particle Kramers-paired spinor basis for the ensuing correlation step

was obtained from all-electron average-of-configuration four-component Hartree-Fock cal-

culations [188]. The open-shell state-averaging was defined over all even-parity electronic

configurations with a Th 6dx7sy (x = 2, 3, 4; y = 0, 1, 2; x+ y = 4) occupation manifold

by distributing four electrons among six gerade Kramers pairs. This technique ensures a

balanced description of the ground state and lowest excited even-parity states (cf. Table

8.1) that stem from these configurations.

I considered five different GAS set-ups in the MRCI studies all of which are compiled

in Table 8.2. In the (4in6)SD calculations single and double excitations (SD) into the

virtual spinor space are taken into account from a complete-active-space (CAS) spanned

by the six Th 7s and 6d Kramers pairs where four electrons are freely distributed (4in6).

The remaining computational schemes are of restricted-active-space type with a maximum

number of holes in GAS I, no restrictions in GAS II, and with a maximum number of

particles in GAS III. A detailed introduction to my notation can be found in Appendix

A.1. To account for core-valence correlation single excitations from the Th 6s6p shells3

are taken into consideration in the MRCI S8(4in6)MRSD calculations. The GAS set-ups

S6(4in6)MRSD and S6(4in9)MRSD, respectively, differ in the size of the CAS (and the

virtual space). The extended (4in9) active space includes the Th 7p shell thus implicitly

accounting for reference configurations with a 7p occupation. As will be discussed in

Section 8.1.2 the resulting correlation effects are indicative of having a significant impact

on an accurate description of the lower electronic spectrum. Finally, in a fifth GAS

scheme, henceforth referred to as S6(4in6)SDT(7p)MRSD, higher excitations are taken

into account from the combined reference configurations (GAS I and GAS II) into the Th

7p shell (GAS III) by allowing single, double and triple excitations into GAS III.

3In this work the 6s6p shells will be referred to as “core” shell, although for the early actinides these

shells are sometimes denoted as “semi-core” or “subvalence” [189,190]. The numerical Dirac-Hartree-Fock

orbital binding energies are −2.066 au (6s1/2), −1.318 au (6p1/2), −1.002 au (6p3/2), −0.230 au (6d3/2),

−0.211 au (6d5/2) and −0.204 au (7s1/2) [183], respectively.
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In the correlation step the virtual spinor space (GAS III or GAS IV) was limited

to an energy threshold of either 11 Eh or 42 Eh, a procedure that is routinely performed

when uncontracted basis sets are used [73]. Nonetheless, an error estimation will be given

on the basis of a comparison of a low-cutoff and corresponding high-cutoff calculation. To

allow for a reliable comparison of the performance of the different computational schemes

using either basis sets, DZ and TZ, a statistical analysis of the deviations of the calculated

spectra from the experiment was carried out. This procedure follows the idea of Helgaker

et al. [149] and is described in Appendix A.2. The calculated quantities were added at

the bottom of Table 8.3.

8.1.2 Lower Even-Parity Atomic Electronic States

The MRCI results for the lowest electronic states of even-parity of the thorium atom

as well as experimental data are compiled in Table 8.3. From an inspection of Table

8.3 some general trends can immediately be deduced: the excitation energies calculated

at the (4in6)MRSD level agree reasonably well with experiment for most of the states

under consideration4. Taking into account core-valence correlation leads for the most

part to a different ordering of the atomic states due to a significant shift in the excitation

energies. In agreement with Hund’s second rule [113] and the jj-coupling rules [191] all

computational models yield the J = 2 state originating from the 3F as the electronic

ground state.

As can be inferred from the mean error Δ̄ excitation energies are in general un-

derestimated within all MRCI models and basis sets. The calculations using a DZ basis

set show a smaller mean error than their corresponding TZ counterparts which should

be considered as a fortunate error compensation. Nonetheless, the relatively small Δstd

(< 700 cm−1) which I find for all models, points to a more systematic origin of the errors in

spite of the rather complicated interactions between various electronic configurations. As

a further indication of this hypothesis, for all but one exception, namely (4in6)SD/TZ, a

mean absolute error is obtained that is identical to Δ̄. A key issue could thus be whether

it is possible to predict a correct ordering of the various J states from the present CI

approaches.

4The good performance of the (4in6)SD approach is likely to be fortuitous though.
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Table 8.2: Generalized Active Spaces (GAS) and occupation constraints for Th ground- and excited-

state calculations in C∗
2h double-group symmetry using uncontracted DZ and TZ basis sets (see text for

more details), respectively. The minimum and maximum number of electrons are accumulated values,

i.e., by adding the number of electrons in this and all preceding GA spaces.

S8(4in6)MRSD

GA Space Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 1 3 6a 8 6s6p

II 6 0 10 12 6d7s

III Xb,c Yb,c 12 12 virtual Kramers pairs

S6(4in6)MRSD

GA Space Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 0 3 5 6 6p

II 6 0 8 10 6d7s

III Xb,c Yb,c 10 10 virtual Kramers pairs

S6(4in9)MRSD

GA Space Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 0 3 5 6 6p

II 6 3 8 10 6d7s7p

III Xb,c Yb,c 10 10 virtual Kramers pairs

S6(4in6)SDT(7p)MRSD

GA Space Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 0 3 5 6 6p

II 6 0 7 10 6d7s

III 0 3 8 10 7p

IV Xb,c Yb,c 10 10 virtual Kramers pairs

a The Th 6s6p Kramers pairs are always doubly occupied in the (4in6)MRSD calculations.

b DZ basis set: X = 27 and Y = 47 (11 Eh threshold).

c TZ basis set: X = 52 and Y = 62 (11 Eh threshold), and

X = 68 and Y = 81 (42 Eh threshold).
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To begin with, I turn towards the (4in6)MRSD calculations where only the four

valence electrons were considered in the correlation treatment. At this computational

level I find an excellent agreement with the experimental data as confirmed by the small

standard deviations of 280 cm−1 and 372 cm−1, respectively, for both basis sets. A striking

feature in both cases is, however, a distinct underestimation of the excitation energies of

the J = 3 and J = 4 states (Δmax = 741 cm−1 resp. 764 cm−1) that originate from the

same 3F term as the electronic ground state (J = 2). This in turn results in a reverse

order of the two lowest electronically excited states J = 0 and J = 3. Taking account of

correlation contributions from the underlying Th 6s6p (S8(4in6)MRSD) and Th 6p shell

(S6(4in6)MRSD), respectively, yields, on the other hand, the correct order of the J = 0

and J = 3 states.

In addition, the inclusion of the outer core shells of thorium has a more significant

impact on the lower electronic spectrum as a whole which manifests itself in both a notable

increase of Δ̄abs of up to 798 cm
−1(S8(4in6)MRSD/TZ) and a maximum absolute error of

1768 cm−1(S8(4in6)MRSD/TZ). Inspecting Table 8.3, it becomes evident that all states

are shifted to a large extent towards the lower end of the spectrum except for the above

mentioned J = 3 and J = 4 states for which I find the opposite effect. By drawing a

comparison between the excitation energies obtained at the S8(4in6)MRSD computational

level which takes into account single excitations from Th 6s and 6p and those derived from

a S6(4in6)MRSD calculation (only Th 6p) I can conclude that the differential correlation

effects arising from the Th 6s shell are relatively small.

Further calculations of the ground and four lowest excited states where Th 6s6p

core-core correlation was included5 yielded a decrease of the excitation energies for the

J = 0, 2, 1 states on the order of 30 - 100 cm−1. The J = 3 state, on the other hand,

exhibited a slight increase by 40 cm−1 towards the experimental value. In summary it can

be said, therefore, that explicitly correlating the outer core electrons of thorium in general

entails a significant reordering of the electronic states in the lower excitation spectrum.

It furthermore results in a modest agreement with the experiment for distinct states

irrespective of the basis set. In what follows, I will only consider core-valence correlation

contributions from the Th 6p shell. As stated above, they account for a major part of the

5The results are not listed in Table 8.3. These were obtained from a SD8(4in6)MRSD/TZ calculation

where at most two holes in GAS I were allowed.
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relaxation effects.

As a next step, the effect of extending GAS II to comprise the Th 7p shell (S6(4in9)MRSD)

was examined. With this particular choice of a CAS-like reference space I allow for ref-

erence configurations with, e.g. a Th 6p7p or Th 7p2 occupation pattern. The result-

ing correlation contributions lead to a significant improvement of the description of the

lower excited states. Both the mean absolute error as well as the standard deviation

decrease by 26% respective 18% comparing the S6(4in9)MRSD/TZ calculation with its

S6(4in6)MRSD/TZ reference. This trend is perfectly consistent with what is observed for

the DZ basis set. It is worth noting that the extension of the reference space results in an

increase of the excitation energies on the order of 150-300 cm−1 for all but the previously

mentioned J = 3 and J = 4 states. These states are hardly affected. The observed

singular increase is therefore indicative of a particular importance of relaxation effects

relevant for the electronic ground state of thorium arising from configurations with a Th

7p occupation. This proposition is in agreement with the findings of Bauschlicher and

co-workers [179] who studied the issue of differential correlation contributions for first-row

transition metals in regard to an accurate description of states with a dns2 dn+1s1 and

dn+2s0 occupation pattern. In this work, they also pointed out the particular importance

of s2 → p2 reference configurations for the description of dns2 states.

To further investigate this interesting aspect I carried out complementary MRCI cal-

culations where the Th 7p shell was placed in an extra GA space (S6(4in6)SDT(7p)MRSD).

At this level up to three particles in GAS III are taken into consideration which should

to a great extent account for the suggested relevant relaxation contributions. In both

cases using either basis set the picture obtained from the large-space (4in9) calculations

is indeed retained, however, at a considerably lower computational cost6. As can be seen

from Table 8.3 Δstd and Δ̄abs only slightly change by 11 cm
−1 and 20 cm−1 in case of

the TZ basis. Moreover, additional test calculations with an extended virtual space to

include all Kramers pairs up to an energy threshold of 42 Ehshow that the error from

a calculation using a lower threshold of 11 Eh is negligible. Raising the cutoff value to

42 Eh results in a minor decrease of both Δstd and Δ̄abs by 11 cm−1 and 6 cm−1 as

6A S6(4in9)MRSD/TZ calculation comprises for example a configuration space of ≈ 32 × 106 deter-

minants whereas in a S6(4in6)SDT(7p)MRSD/TZ calculation the configuration space reduces to 25×106

determinants.
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Table 8.4: A comparison of the lowest excited even-parity states of thorium computed at the MRCI

S6(4in6)SDT(7p)MRSD/TZlevel with CASPT2/RASSI-SO [187], FSCC, IHFSCC [192] results and ex-

perimental data [182]. Excitation energies are given in cm−1.

configuration level MRCI CASPT2/RASSI-SO FSCC IHFSCC experiment

Th atom. Ground state 6d27s2 3F2

6d27s2 3P0 2414 2258 3920 3630 2558

6d27s2 3F3 2622 2742 2783 2976 2869

6d27s2 3P2 3446 3146 4775 4339 3688

6d27s2 3P1 3447 3307 5485 5396 3866

6d27s2 3F4 4765 4759 5025 5033 4962

6d3(4F )7s 5F1 4439 4436 - - 5563

6d3(4F )7s 5F2 5213 5323 - - 6362

indicated in Table 8.3.

What about the question of predicting a correct ordering of the various atomic

states that was raised in the beginning? Both computational schemes S6(4in9)MRSD/TZ

and S6(4in6)SDT(7p)MRSD/TZ yield a similar overall picture of the lower part of the

electronic excitation spectrum. Concerning for example the spin-orbit split lower J = 2

and J = 1 states that stem from the non-relativistic 3P term a correct energetic order is

predicted at both computational levels. The excitation energies for the second J = 1 and

J = 2 excited states, on the other hand, come out too low by approximately 1000 cm−1

which entails the J = 1 state being wrongly placed below the J = 4 state. A related

issue is encountered for the above mentioned lower J = 2 and J = 1 atomic states when

either a S6(4in9)MRSD/DZ or a S6(4in6)SDT(7p)MRSD/DZ MRCI model is applied. To

summarize, neither computational model is able to yield a correct ordering of all lowest

atomic states of even-parity although with regard to the excitation energies the overall

agreement with the experiment is very good.

Moreover, S6(4in6)SDT(5f 7p)MRSD/DZ calculations (results are not shown in

Table 8.3) where the Th 5f shell was included in GAS III, did not reveal any significant

improvements for the excitation energies. The contributions of reference configurations

with 5f occupation are thus only of minor importance for the calculation of the lower

even-parity excitation spectrum of the Th atom.
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Finally, Table 8.4 lists the excitation energies for the lowest six transitions from

my present best approach (S6(4in6)SDT(7p)MRSD/TZ and cutoff threshold at 42 Eh)

in comparison with previous theoretical studies. My excitation energies are in very good

agreement with the corresponding data reported by Roos and coworkers [187]. They

included scalar-relativistic effects through the use of a Douglas-Kroll-Hess (DKH) [35,37]

Hamiltonian in a combined CASPT2/RASSI-SO approach7 using an ANO-type of basis

set to compute the excitation spectrum. My present calculations, however, achieve this in

a rigorous “one-step” manner where electron correlation and relativistic effects are treated

on the same footing. It is therefore worth drawing a comparison with the results of the

generally more accurate Fock-space CC (FSCC) and intermediate Hamiltonian FSCC

calculations (IHFSCC) by Eliav et al. [192] where they made use of a Dirac-Coulomb-

Breit Hamiltonian and an extensive basis set including up to l functions. Obviously,

both FSCC calculations yield a slightly better agreement with the experimental data

for those states which originate from the spin-orbit split ground state term 3F . By

contrast the remaining three atomic states are much worse described as indicated in

Table 8.4. Summing up, among the considered theoretical approaches, the best overall

agreement with the experimental data is obtained within my S6(4in6)SDT(7p)MRSD/TZ

computational scheme. In addition, despite the general trend to underestimate individual

excitation energies of the lowest even-parity states of Th the fine-structure splitting is

very well reproduced in my MRCI calculations. For example, I calculate a splitting of

774 cm−1 between the J = 1 and J = 2 states of the 5F term which is experimentally

determined as 799 cm−1.

8.1.3 Future Prospects

In view of the encouraging results that I obtained for the thorium atom it is worth

considering to extend the investigation to a study of the thorium diatom. This system

was examined in detail in a recent work by Roos et al. [184] using a CASPT2/RASSI-SO

approach as described in the preceding section. They report the formation of a quadruple

bond between the two thorium atoms as well as a rather large dissociation energy of

3.28 eV. Furthermore, they indicate a Ω = 1g state as the electronic ground state of the

7In the restricted-active space state interaction (RASSI) method spin-orbit (SO) coupling is included

in a variation-perturbation approach [143,193].
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molecule. It is, however, natural to ask whether a two-step approach to include spin-orbit

coupling may give reliable predictions for such a molecular system composed of two heavy

centers.

As a starting point, I examined the performance of the four-component Dirac-

Coulomb/MRCI/TZ approach in the molecular case where a S12(8in12)SDT(7p)MRSD

computational model shall finally be employed to mimic the corresponding atomic com-

putational scheme. At the present stage, dynamical electron correlation is not taken into

account, i.e., excitations into the virtual Kramers-paired spinor space are neglected. In

subsequent calculations the energetic cutoff threshold in the virtual space will gradually

be raised to 14 Eh which will finally include 170 virtual Kramers-paired spinors in the cor-

relation step. For the present test purposes the one-particle basis is generated by means

of a (8in12) average-of-configurations DHF calculation. At a later stage, it is envisaged to

perform state-specific MCSCF calculations which should provide a suitable spinor basis

for a study of the molecular ground state.

Table 8.5 compiles a preliminary list of molecular electronic states which are found

to form the lower electronic spectrum of the diatom Th2 at the ”uncorrelated“ CI level.

All states displayed differ in at most 0.5 eV in energy. In the calculations a Th-Th distance

of 2.76 Å was chosen which corresponds to the ground state equilibrium bond distance

computed by Roos et al. [184].

Besides the Ω designation of the various molecular states, the composition of the

individual electronic states is reported in Table 8.5 in terms of natural spinor occupation

numbers of the involved Kramers pairs. For this purpose, the (partially) occupied Kramers

pairs are characterized with respect to their approximate λω-projection notation. At the

given computational level the lowest electronic states of Th2 are of ungerade symmetry,

namely Ω = 0u, 1u and 3u. Interestingly, none of these states were found in the earlier

CASPT2/RASSI-SO study. A striking feature in the electronic configurations of the

shown molecular states is furthermore that all these states exhibit an occupation of the

predominantly antibonding (7sσ1/2u) spinor which would be indicative of a bond order

< 4. A possible explanation for this finding could be that the average-of-configurations

approach used at present to generate a one-particle basis spuriously favors the occupation

of this particular spinor. However, in view of the preliminary status of my calculations,

it would be premature to conclude at this stage. Upon accounting for dynamic electron
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correlation the current picture of the electronic spectra will most likely change to comprise

also states that have occupation numbers close to zero for the (7sσ1/2u) spinor. The quest

for the ground state of the thorium diatom thus remains a challenging task.



8.2 A Word or Two about U2

The fundamental concept of covalent bonding, meaning electron pairing between two

atoms, has been introduced by Lewis in 1916 [194]. Ever since a much discussed question

in chemistry concerned the maximum multiplicity that can be achieved in a chemical

bond [195–197]. In other words, “what is the maximum number of covalent chemical

bonds that two atoms can share?” [196]

In 1964 Cotton and co-workers [198] published the crystal structure of K2 [Re2Cl8] ·
2H2O where they found experimental evidence for a fourfold bond formed between the

two transition-metal centers. Their observation constituted a milestone – until then the

limit of bonds between the same two atoms was considered to be at most three as for

example in N2 – that gave rise to a new field in inorganic transition-metal chemistry

with the [Re2Cl8]
−2 ion as a prototype [199]. It seems appealing and quite intuitive for a

chemist to describe the Re(III)-Re(III) quadruple bond in the simple picture of molecular

orbital (MO) theory as a 5dσ25dπ4 5dδ2 bond assuming that each bonding orbital is always

doubly occupied. This conception is, however, inappropriate since it does not account for

weak bonds with a considerable participation of an antibonding orbital. Following the

idea of Roos et al. [197] a more suitable measure of the bond multiplicity may be based

on the occupation numbers of natural orbitals which can be calculated from correlated

multiconfigurational wave functions. In so doing, a typically non-integer effective bond

order (EBO) may be defined in terms of the occupation number bi of the ith orbital and

the corresponding occupation number abi of the antibonding orbital:

EBO =
∑

i

bi − abi
2

. (8.1)

In order to arrive at a more realistic bond order the next integer larger than the calcu-

lated fractional EBO should be taken. According to the definition in Eq. 8.1, a bond is

weakened, e.g. if the natural occupation number for the antibonding orbital significantly

differs from zero. The advantage of using natural orbital occupation numbers as a means

to measure the bond order between two atoms stems from their stability with respect to

variations in the basis set and the quality of the wave function provided that it comprises

the most important active orbitals [197].

Using the above relation, Roos et al. [200] reported an EBO of 3.20 for the [Re2Cl8]
2−

ion where the deviations from 4 are mainly due to the weak δ bond. The contribution
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from the δ bond to the total EBO was calculated at the CASSCF level as 0.54 rather than

1. To the date, a maximum number of six covalent bonds between two atoms of the same

element was found in similar studies of in particular transition-metal dimers. EBOs of 5.17

and 5.19 were computed for the Mo2 and W2 diatom, respectively [197]. In this context,

it is natural to ask whether even higher multiple bond orders are possible? This would

require the participation of the f -shell which is likely only for the actinide elements. The

4f shell in the lanthanides is considerably more contracted than the remaining valence

6s and 5d shells which excludes the 4f shell from significantly contributing to bonding.

In recent works, Roos and co-workers [184] studied the early actinide dimers including

U2 [201]. The largest EBOs of 4.5 and 4.2 which indicate a quintuple bond were computed

for the Pa2 and U2 dimer, respectively. Furthermore, they concluded from considerations

of atomic promotion energies which are needed to unpair the 7s electrons as well as to

promote electrons from the 5f to the 6d shell in the transuranium elements that it is

unlikely to find higher EBOs for diatoms of these elements. Hence, the upper limit of

covalent bonds between equal atoms is most probably reached with six bonds computed

for the Mo2 and W2 diatoms.

The bonding pattern of the U2 diatom as calculated by Roos et al. [184,201] seems to

be unique and more complex than any other known diatomic bond. It therefore deserves

closer attention. The authors claim on the basis of scalar-relativistic CASSCF calculations

the following bonding situation: Three two-electron-two-center electron pair bonds are

formed by hybrid orbitals of primarily 7s and 6d character (7sσg and two degenerate

6dπu orbitals). In addition, four one-electron-two-center bonds are developed composed

of two singly occupied σ- and δ-type orbitals of predominantly 6d character (6dσg and

6dδg) as well as two singly occupied δ- and π-type orbitals with distinct 5f character

(5fπg/5fδu respectively 5fδg/5fπu). Finally, two electrons with parallel spins occupy

localized 5fφg and 5fφu orbitals which are equally distributed over both atoms to add

up to a single 5f orbital on each atom. The calculated bonding picture may thus be

summarized as σ2π4σ1δ1δ1π1φ1φ1. They furthermore predicted that all unpaired electrons

display parallel spins corresponding to a ferromagnetic coupling which can be attributed to

favorable exchange stabilization resulting from an interaction of the localized 5f electrons

and the 5f one-electron bonds. In subsequent CASPT2/RASSI-SO calculations Roos et
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al. computed the coupling of the total orbital angular momentum (Λ = 11)8 and the

total spin (S = 3) which combined to an Ω = 8 state of gerade symmetry. As the authors

stated, an unambiguous determination of the ground state of U2 was, however, impossible

from their calculations including spin-orbit coupling since a second state with Ω = 9g was

found to be only 0.01 eV energetically above the suggested Ω = 8g state.

Albeit having proven to yield very good theoretical predictions in many different

cases [202] the above outlined studies on the actinide diatoms and particularly on U2 still

leave room for improvement considering the neglect of spin-orbit effects at the essential

orbital optimization step9. This is evident from the fact that the shape of the atomic

orbitals significantly depends on the coupling to the electronic spin in heavy elements as

illustrated for the Bi atom in Section 6.1.

Given the presumable complexity of a multiple bond in a diatom of the heavy element

uranium that includes the participation of the (partially) occupied atomic 7s6d5f shells, it

may be desirable to examine such a particular system in a more rigorous framework where

spin-orbit coupling and electron correlation are treated on an equal footing. The major

objective of my present work was therefore to shed light on the bonding picture in the

U2 diatom applying a KR-MCSCF/MRCI approach where the molecular Kramers-paired

spinors were optimized under full account of spin-orbit interaction.

For this purpose and for reasons of computational efficiency, I used the exact two-

component Hamiltonian (X2C) scheme of Iliaš and Saue [27, 123] in the present inves-

tigation. Two-electron spin-same-orbit and spin-other-orbit contributions were included

via atomic mean-field integrals obtained with the AMFI [124–126] code. Furthermore,

the uncontracted basis set from Ref. [203] with {26s21p17d12f} functions was augmented
with three additional g functions10 which proved to be of importance in a study of the

UO2 molecule [59]. A starting set of Kramers-paired spinors for the subsequent MCSCF

calculations was obtained from an average-of-configurations Hartree-Fock calculation with

twelve electrons distributed among 26 Kramers pairs consisting of the valence 7s 6d 5f

shells of each uranium atom. As a first step towards the calculation of full potential

energy curves I carried out single-point state-specific MCSCF calculations for the four

8This value is obtained by summing up the orbital angular momenta for all singly occupied orbitals.
9The CASSCF calculations only take into account scalar-relativistic effects.

10An additional h function was not included here since the AMFI program as implemented in the

DIRAC program is limited to functions with l ≤ 4 (s, p, d, f, g)
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Table 8.6: Generalized Active Spaces (GAS) and occupation constraints for U2 KR-MCSCF calculations

in C∗
2h double-group symmetry. The minimum and maximum number of electrons are accumulated values,

i.e., by adding the number of electrons in this and all preceding GA spaces.

S6(6in12)MRSD

GAS Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 1 2 5 6 7sσg, 6dπu(2)

II 9 6 10 12 6dσg, 6dδg(2), 5fπg(2),

5fπg(2), 5fδg(2), 5fφg(2),

5fπu(2), 5fδu(2), 5fφu(2)

III 3 5 12 12 6dπg(2), 5fσg, 7sσu, 6dσu,

6dδu(2), 5fσu

bosonic irreps Ag, Bg, Au and Bu of the abelian double group C
∗
2h at an U-U interatomic

distance of 2.43 Å. This value corresponds to the equilibrium bond distance of U2 calcu-

lated by Roos et al. [184]. The active KR-MCSCF space is composed as given in Table

8.6. It is subdivided into three GAS spaces which were constructed taking into account

the CASSCF/CASPT2 results [184] discussed above. GAS I contains the strongly bond-

ing 7sσg and two 6dπu Kramers-paired spinors
11. The second GAS II space comprises all

spinors which will partly contribute to the overall bonding. Finally, all non-bonding and

anti-bonding spinors were placed in GAS III.

An MCSCF calculation with a complete valence CAS space (7s6d5f) distributing

the 12 electrons in 26 Kramers pairs yields a configuration space of more than 1012 deter-

minants which is currently not feasible. My restricted active space MCSCF calculation

dubbed as S6(6in15)MRSD was thus considerably smaller and spanned a configuration

space of roughly 44× 106 determinants. Due to present technical difficulties in the MC-

SCF program which require further development and improvements, my results from

these elaborate MCSCF calculations can only be regarded as being of qualitative nature.

A detailed analysis of the final results12 revealed that “symmetry-broken” solutions were

obtained, namely spinors of different mj quantum numbers were illicitly mixed in the

course of the spinor optimization step. As it turned out, this could happen because the

11An approximate λ notation is used to characterize the individual spinors.
12The calculations were running for more than one year on a single processor.
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routine that performs the orbital rotations in each macro iteration 13 did not explicitly

account for a proper mj-blocking [204] in case of double-group symmetries lower than the

full linear symmetry group of the system in question. Since we have not been able to fix

this issue in due time for my present thesis, new calculations could not be carried out to

date. Although I refrain from further discussing any of my results, it is worthwhile to

mention that my calculations seem to indicate in agreement with Reference 184 low-lying

Ω = 9g and Ω = 8g electronic states in the U2 diatom. This speculative statement may be

justified on the basis that all occupied Kramer-paired spinors predominantly maintained

a pure mj quantum number. Future work thus comprises a programming solution to

overcome the present shortcoming. By means of my parallelization of the essential inner

parts of the MCSCF program which has been a main objective of my thesis, considerable

savings for the time needed to accomplish new results can be expected.

13For an overview of the most important steps in a direct second-order-MCSCF procedure the reader

is referred to Section 3.2.



Chapter 9

Concluding Remarks and

Perspectives

Summarizing, this thesis combines both development and implementation works of parallel

algorithms in a relativistic four-component framework and their application to a large

variety of atomic and molecular heavy-element compounds in their ground and excited

states. Thus, things have come full circle regarding the main topic of my thesis: parallel

relativistic multiconfiguration methods – new powerful tools for heavy-element electronic-

structure studies.

What are the major achievements of this work, what remains to be done, and what

will the future hold?

An efficient parallel algorithm has been presented in Part II. It is in principle

applicable to any large-scale eigenvalue problem in computational science that can be

solved iteratively. In this work, the algorithm has been leveraged to devise a parallel

scheme for the (relativistic) generalized active space configuration interaction (GASCI)

method. The excellent scalability of both the parallel non- and scalar-relativistic and

fully relativistic GASCI implementations LUCITA and LUCIAREL, has been demonstrated

by means of large-scale test simulations for two representatives of today’s most common

parallel computer architectures. It was furthermore expounded how the link between the

essentials of a genuine relativistic Kramers-restricted multiconfiguration self-consistent

field (KR-MCSCF) method and the direct CI implementation of LUCIAREL facilitates a

parallelization of the KR-MCSCF program.

119
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Moreover, I have been elaborating on the implementation of a parallel CI program

which allows the calculation of first-order atomic and molecular properties within the four-

component relativistic framework. A first application of this versatile module, namely

the determination of the total orbital angular momentum of a given electronic state, has

been frequently used in the present work to precisely characterize calculated atomic and

molecular electronic spectra.

The novel parallel GASCI programs have paved the way for the variety of atomic and

molecular applications in Part III. These studies encompass, for example, the at present

most accurate theoretical estimate for the spin-orbit splitting between the ground and first

excited state of BiH and the computation of the lower electronic and vibrational spectrum

of RbYb which led to a reinterpretation of the initially proposed photoassociation process

[164] in the ultracold regime starting from Rb and Yb atoms. Moreover, a rigorous

elucidation of electron correlation effects on the lower even-parity electronic states of the

thorium atom is included.

The comparison of different relativistic methodologies aiming at a precise theoretical

determination of the electronic structure of the triiodide anion (I−3 ) indicated the suitabil-

ity of my parallel CI approach which is, in contrast to the coupled cluster approach that

served as a reference, applicable on the whole potential energy surface of this triatomic

species.

A possible non-radiative charge-transfer mechanism in the collision process of a Ba+

ion and a Rb atom at very low temperatures yielding a Ba atom and a Rb+ ion has been

outlined qualitatively on the basis of the computed electronic excitation spectrum of the

(RbBa)+ molecular ion. In order to give a quantitative estimate of the charge-transfer rate

in the envisaged experiments, the underlying CI implementation of the CI property code

needs to be modified to enable the calculation of electronic transition dipole moments.

Upon completion of a fully parallel KR-MCSCF algorithm and overcoming of present

technical issues in the implementation of the KR-MCSCF module it will be very exciting

to obtain reliable predictions of the bonding picture in the uranium dimer U2 from calcu-

lations that include all important relativistic effects, in particular spin-orbit coupling, in

the orbital optimization. The major steps towards a fully parallel KR-MCSCF algorithm

have been accomplished in the present thesis. What remains is to devise a parallel scheme

for the basic structure of the KR-MCSCF algorithm. Here, I will greatly benefit from
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my experience of the parallelization of the CI algorithms which exhibit a similar pattern.

The implementation of a universal relativistic second-order Møller-Plesset perturbation

theory natural orbital module (MP2-NO) which can serve as a configuration and orbital

generator [205] for the ensuing MCSCF step will further enhance the applicability of the

MCSCF method for molecular systems which are dominated by strong static electron

correlation. An initial version of this MP2-NO method suitable for closed-shell systems

has already been implemented [206].

Finally, a parallel KR-MCSCF program is also desirable particularly with regard

to an extension of the novel multiconfiguration self-consistent field short-range density

functional theory (MCSCF-srDFT) approach [207–210] to the four-component relativistic

framework which strongly suggests an efficient and flexible KR-MCSCF component.





Appendix A

General Definitions

In the discussion of MCSCF/GASCI calculations various computational models are termed

with shortcuts in this thesis. The notation will be clarified in the following appendix. Sta-

tistical measures are used in some places to quantify errors of calculations. A definition of

these means is given in Appendix A.2. In Appendix A.3 I summarize briefly the Franck-

Condon principle and its implication on electronic transitions in molecules.

A.1 Notation of Wave Function Models for MCSCF/

GASCI Calculations

Since the reader might not be familiar with my notation of wave function models for

MCSCF/GASCI calculations employed in this thesis, it shall be introduced here with

an illustrating example. A comprehensive discussion of the concept of generalized active

spaces (GAS) can be found in the literature [60,211]. The majority of the MCSCF/GASCI

computational models are of restricted-active-space type with a maximum number of

holes in GAS I, no restrictions in GAS II, and with a maximum number of particles in

GAS III. The notation follows the scheme “GAS I(GAS II)GAS III”. The GAS set-up

“S8(4in6)MRSD” in Table A.1, taken from Section 8.1 concerning the thorium atom may

serve as a representative example: “S8(4in6)MRSD” means that at most 1 hole among

the 8 electrons in 4 Kramers pairs (in this case: Th 6s6p spinors) is allowed, 4 electrons

are distributed in 6 Kramers pairs in all possible ways ((4in6); plus of course excitations

from GAS I to GAS II), and finally that all possible single and double excitations into

123
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Table A.1: Generalized Active Space (GAS) and occupation constraints using the example of a Th

ground- and excited-state calculation in C∗
2h double-group symmetry which is discussed in Section 8.1.

The minimum and maximum number of electrons are accumulated values, i.e., by adding the number of

electrons in this and all preceding GA spaces.

S8(4in6)MRSD

GA Space Kramers pairs per irrep Min./max. accum. el.

E1g E1u Min. el. Max. el. Shell types

I 1 3 7 8 6s6p

II 6 0 10 12 6d7s

III 52 62 12 12 virtual Kramers pairs

GAS III Kramers pairs are generated from the reference configurations obeying the con-

straints put on GAS I and GAS II (MRSD). To simplify a distinction between calculations

employing different basis sets, the acronym for a given basis set is added to the notation

of the wave function model. Assuming a TZ basis set the final notation would read as:

“S8(4in6)MRSD/TZ”.

A.2 Statistical Measures

In this thesis the following statistical measures were used to quantify the errors of the

calculated spectroscopic parameters if applicable. In principle, the error of a parameter

P calci calculated with a given model and parameter set is given by:

Δi = P calci − P
exp
i , (A.1)

(A.2)

where P
exp
i denotes the measured value of the parameter. More sophisticated measures

are the mean error Δ̄, the standard deviation Δstd, the mean absolute error Δ̄abs and
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the absolute error Δmax. They are defined as follows:

Δ̄ =
1

n

n∑
i=1

Δi (A.3)

Δstd =

√√√√ 1

n− 1

n∑
i=1

(Δi − Δ̄)2 (A.4)

Δ̄abs =
1

n

n∑
i=1

|Δi| (A.5)

Δmax = max
i

|Δi| (A.6)

A.3 Franck-Condon Principle

Due to the large mass difference of the nuclei and the electrons in a molecule the compo-

nents move on different timescales. Hence, the corresponding Schrödinger equation can

be solved independently as a first approximation (Born-Oppenheimer approximation).

The resulting wave function Ψ(r) separates into a nuclear Θ(R) and an electronic part

Ψ(r′;R) which depends parametrically on the nuclear coordinates:

Ψ(r) = Θ(R)Ψ(r′;R). (A.7)

If a photon is absorbed by a molecule and an electron is extremely fast elevated in a

different state the wave function of the nuclei will not change in the meantime. Thus,

transitions are allowed only between those states that exhibit overlap between their nu-

clear wave functions. According to the Franck-Condon principle the probability of a

transition scales with the degree of overlap. The dipole operator μ̂ in the transition ma-

trix element p that describes the transition from the initial state Ψ1(r) to the final state

Ψ2(r) is similarly split into a nuclear μ̂n and an electronic μ̂e part:

p = 〈Ψ1(r) |μ̂n + μ̂e|Ψ2(r)〉 (A.8)

= 〈Θ1(R) |μ̂n|Θ2(R)〉 〈Ψ1(r
′;R) |Ψ2(r

′;R)〉︸ ︷︷ ︸
a

(A.9)

+ 〈Ψ1(r
′;R) |μ̂e|Ψ2(r

′;R)〉︸ ︷︷ ︸
TDM

〈Θ1(R) |Θ2(R)〉︸ ︷︷ ︸
b

. (A.10)

The scalar product a is zero because different electronic eigenstates are always orthogonal.

The square of term b is called Franck-Condon factor FCF = |b|2. The total transition

probability P = |p|2 then comprises the product of the square of the electronic transition
dipole moment (TDM) and the FCF.





List of Figures

3.1 An overview of a selection of CI and CC branches in DIRAC and their in-

terrelations. The dark green boxes denote fully parallelized program parts.

The partially parallelized KR-MCSCF module is marked with a light green

box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Comparison of processor share for all supercomputers compiled in the

Top500 list in June 2005 and June 2009. The charts are taken from Refer-

ence 77. Unit: 1k = 103 processors. . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Process partitioning for different communication and resource patterns

applied in the parallel implementations. Each number corresponds to

a unique process that is contained in the global group of all processes

MPI COMM WORLD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Static TTSS -block assignment among all available processes as central par-

allelization pattern. Each number corresponds to a unique process con-

tained in the global group of all processes MPI COMM WORLD. The pro-

cess holding the TTSS block with the real part of the coefficients also treats

the corresponding non-zero imaginary part if applicable (only for LUCIAREL

and complex matrix double groups). . . . . . . . . . . . . . . . . . . . . . 41

4.3 Flow chart of the iterative generalized Davidson diagonalization method as

implemented in LUCITA and LUCIAREL. . . . . . . . . . . . . . . . . . . . . 42

4.4 Shared-memory access pattern for memory demanding quantities. Each

number corresponds to a unique process that belongs to a given intranode

group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

127



128 List of Figures

4.5 Simplified pseudo-code visualization of the evaluation of the linear trans-

formation step σn = Hbn, as implemented in LUCITA and LUCIAREL. The

two main approaches to a parallelization of this task, namely a distributed

and replicated data model, are indicated in the algorithm. . . . . . . . . . 45

4.6 Parallel performance plots for MRCI calculations on the ground state of

H2O (LUCITA; point group C2v; DZ basis) and BiH (LUCIAREL; double point

group C∗
2 ; TZ basis). The LUCITA performance test comprises roughly

1.5 × 109 determinants whereas the CI expansion spans approximately

428×106 determinants in the LUCIAREL test case. Details on the computer

architectures of the Linux-based cluster Horseshoe and the supercomputer

Jump are given in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Pseudo-code visualization of the identification of the operator symmetry in

the applied abelian sub-double group in LUCIAREL. . . . . . . . . . . . . . 56

5.2 Pseudo-code visualization of the parallelized property matrix evaluation

as implemented in the framework of the CI program LUCIAREL. Global

communications and those among the node masters are displayed in red.

In the linear transformation step (line 9) additional communication among

the node masters is taking place (see Section 4.1 for further details). . . . . 58

6.1 Periodic table of elements and its decomposition into s (white coloring), p

(red coloring), d (green coloring) and f (blue coloring) blocks. The original

figure is taken from Reference 97. . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Potential energy curves of the electronic X 0+ ground and A 1 first excited

state of BiH obtained from four-component SD10(6in5)SD/TZ calculations.

For comparison, the potential energy curve of the electronic 3Σ− ground

state of BiH is included in the picture. It was derived from spin-free MRCI

SD10(6in5)SD/TZ calculations where scalar-relativistic effects were taken

into account. In the latter case the atomic dissociation limit corresponds

to Bi (4Su) and H (2Sg) (not shown) and in the spin-dependent case to Bi

(4S3/2) + H (2S1/2). Details on the computational levels and basis set are

given in the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Figures 129

6.3 Large component radial density distribution for valence orbitals of Bi. Solid

lines indicate relativistic spinors and dashed lines non-relativistic orbitals. . 69

6.4 Energy level diagram for I−3 . The asymptotic energies of the respective

decay channels are drawn relative to the ground state of I−3 . The numbering

(1), (2), . . . , of the channels relates to their ascending energetic order.

Two-body dissociation channels are shown on the left of I−3 , three-body

dissociation channels to the right. The figure is based on a graphics in

Reference 134. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Potential energy curves of the ground and low-lying states of RbYb com-

puted at the MRCI S6(3in8)MRSD/TZ level. Atomic dissociation channels

for the states are shown. The transitions (1) and (2) are part of the first

STIRAP process [170] (initial photoassociation), (3) and (4) refer to the

corresponding second two-photon process. . . . . . . . . . . . . . . . . . . 88

7.2 Potential energy curves of the ground and low-lying states (Λ−S designa-

tion) of (RbBa)+ computed at the spin-free MRCI SD16(2in7)MRSD/ANO-

RCC level (see text for more details). Atomic dissociation channels for the

states are shown in the picture. . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 Potential energy curves of the ground and low-lying states (Ω designation)

of (RbBa)+ computed at the four-component MRCI S12(2in13)SD/TZ level

(see text for more details). Atomic dissociation channels for the states are

indicated in the picture (see Table 7.4 for details). . . . . . . . . . . . . . . 94

7.4 Close up of the avoided crossings between the 3Σ+
1,0− Rb + Ba+ entrance

channels and and low-lying charge transfer 3Π1,0− states of the Rb+ and

Ba6s15d1(3D) atomic channels. . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.5 Four-component CCSD(T) dipole moment curve (in Debye) of the molecu-

lar ground state with calculated with 14 explicitly correlated electrons. The

straight line (blue) indicates the asymptotic limit of the dipole moment μ

for a charged system in the center-of-mass coordinates. . . . . . . . . . . . 98





List of Tables

3.1 Excitation class ordered operators in second quantization and the corre-

sponding integrals. The original table was taken from Reference 58. . . . . 27

4.1 Direct CI contributions to the MCSCF gradient and Hessian. The original

table is taken from Reference 84. . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 Spectral constants for 209Bi1H - ground and excited states from the present

MRCI study in comparison with previous theoretical calculations and ex-

perimental data. Details on the basis sets and excitation schemes used

in the computations are given in the text. SF: spin-free Dirac-Coulomb

calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Atomic and atomic-like (value taken at R = 20 bohr) excitation energies

Te in cm
−1 for the lowest Bi6p3(4S3/2)→ Bi6p3(2D3/2,5/2) and Bi6p3(4S3/2)→

Bi6p3(2P1/2,3/2) transitions calculated at the MRCI X2C-G (5in4)MRSD/TZ,

(5in4)MRSD/TZ, SD10(5in4)MRSD/TZ and SD10(6in5)MRSD/TZ levels,

respectively. Details on the basis set and computational levels are given in

the text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Ground-state spectroscopic constants of I−3 calculated with the DFT, MRCI,

SO-CASPT2 and IHFSCC methods. . . . . . . . . . . . . . . . . . . . . . 76
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[72] M. Iliaš, V. Kellö, T. Fleig, and M. Urban. Electric properties of the hydrogen

iodide: Reexamination of correlation and relativistic effects. Theor. Chim. Acta,

110:176, 2003.

[73] T. Fleig. Spin-orbit resolved static polarizabilities of group 13 atoms. 4-component

relativistic configuration interaction and coupled cluster calculations. Phys. Rev. A,

72:052506, 2005.

[74] T. Fleig, L. K. Sørensen, and J. Olsen. A relativistic 4-component general-order

multi-reference coupled cluster method: Initial implementation and application to

HBr. Theor. Chem. Acc., 118:347, 2007.

[75] L. K. Sørensen, T. Fleig, and J. Olsen. Spectroscopic and electric properties of the

LiCs molecule. A coupled cluster study including higher excitations. J. Phys. B:

At. Mol. Opt. Phys., 42:165102, 2009.



142 Bibliography

[76] L. K. Sørensen, T. Fleig, and J. Olsen. Relativistic 4- and 2-component generalized-

active-space coupled cluster, 2009. submitted for publication.

[77] http://www.top500.org (retrieved August 27th, 2009).

[78] http://www.mpi-forum.org.

[79] M. Klene, M. A. Robb, M. J. Frisch, and P. Celani. Parallel implementation of the

CI-vector evaluation in full CI/CAS-SCF. J. Chem. Phys., 113:5653, 2000.

[80] Z. Gan, Y. Alexeev, M. S. Gordon, and R. A. Kendall. The parallel implementation

of a full configuration interaction program. J. Chem. Phys., 119:47, 2003.

[81] B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, and L. Li. Parallelization of MRCI based

on hole-particle symmetry. J. Comp. Chem., 26:88, 2005.

[82] K. Tanaka, Y. Mochizuki, T. Ishikawa, H. Terashima, and H. Tokiwa. A graphical

symmetric group approach for a spin adapted full configuration interaction: par-

titioning of a configuration graph into sets of closed-shell and open-shell graphs.

Theor. Chem. Acc., 117:397, 2007.

[83] M. Kleinschmidt, C. M. Marian, M. Waletzke, and S. Grimme. Parallel multirefer-

ence configuration interaction calculations on mini-β-carotenes and β-carotene. J.

Chem. Phys., 130:044708, 2009.

[84] T. Fleig. Relativistic string-based electron correlation methods. In M. Barysz and

Y. Ishikawa, editors, Relativistic Methods for Chemists. Springer Verlag, Berlin,

2009.

[85] G. H. F. Diercksen, B. O. Roos, and A. Sadlej. Legitimate calculation of first-order

molecular properties in the case of limited CI functions. Dipole moments. Chem.

Phys., 59:29–39, 1981.
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We present a parallel implementation of a string-driven general active space configuration
interaction program for nonrelativistic and scalar-relativistic electronic-structure calculations. The
code has been modularly incorporated in the DIRAC quantum chemistry program package. The
implementation is based on the message passing interface and a distributed data model in order to
efficiently exploit key features of various modern computer architectures. We exemplify the nearly
linear scalability of our parallel code in large-scale multireference configuration interaction �MRCI�
calculations, and we discuss the parallel speedup with respect to machine-dependent aspects. The
largest sample MRCI calculation includes 1.5�109 Slater determinants. Using the new code we
determine for the first time the full short-range electronic potentials and spectroscopic constants for
the ground state and for eight low-lying excited states of the weakly bound molecular system
�Rb–Ba�+ with the spin-orbit-free Dirac formalism and using extensive uncontracted basis sets. The
time required to compute to full convergence these electronic states for �Rb–Ba�+ in a single-point
MRCI calculation correlating 18 electrons and using 16 cores was reduced from more than 10 days
to less than 1 day. © 2008 American Institute of Physics. �DOI: 10.1063/1.2805369�

I. INTRODUCTION

Configuration interaction �CI� theory remains a wide-
spread method for electronic-structure studies, in particular,
for the investigation of electronically excited states of atoms
and molecules. This is to a large part due to its conceptual
simplicity. The determination of the correlation energy in
such applications usually necessitates the use of multirefer-
ence �MR� CI expansions already in the treatment of mol-
ecules with light elements, but for heavy-element �nuclear
charge Z�30� molecular studies multireference methods are
of paramount importance due to the open-shell character of
many such systems. The MRCI expansions, however,
quickly become extremely long when one-particle basis sets
of high quality are employed and the number of correlated
electrons is large. This situation is generally encountered in
quantum-chemical investigations of high accuracy. Thus,
MRCI calculations beyond 109 Slater determinants are com-
monly needed for an adequate treatment of heavy-element
systems and such applications therefore call for an efficient
and general parallel implementation.

With the rapid advance of massively parallel computer

architectures, a parallel MRCI implementation is an effective
means of extending the applicability of the CI approach. To
this day, several implementations of parallel full �F�CI/
MRCI codes embedded in program packages such as
GAMESS,1 COLUMBUS,2,3

MOLPRO,4 and GAUSSIAN �Ref. 5�
have been reported in the literature. Some recent parallel CI
programs—MRCI �Ref. 6� and FCI �Ref. 7�—use configura-
tion state functions �CSFs� rather than Slater determinants.
However, almost all modern massively parallel8 and sequen-
tial FCI algorithms are determinant based �following the
footsteps of Knowles and Handy,9 Olsen et al.,10,11 Zarrabian
et al.12 and others�, mainly because of the efficiency in com-
puting the dominant linear transformation step of the expan-
sion vectors.

In this paper, we present a linear-transformation driven
parallel implementation of the string-based MRCI and FCI
program LUCITA,10,11,13 capable of performing MRCI expan-
sions in a very flexible way through the general active space
�GAS� approach. The central ideas ensuring efficiency are a
distributed data model and a static load-balancing scheme. In
addition, we have designed our parallel implementation in
such a way that it can be applied effectively on supercom-
puters, e.g., IBM’s pSeries, as well as on today’s standard
personal computer �PC� clusters.

Beside extensive tests of the parallel implementation on
the ground state of the water molecule, we include in this
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paper an initial study of the electronic structure of the
�Rb–Ba�+ molecular ion. This system belongs to a class of
molecules which is investigated in ongoing ultracold mol-
ecule experiments14,15 aimed at a fundamental understanding
of interatomic and intermolecular interactions at extremely
low temperatures. The short-range potential curves of the
system are determined here for the first time and provide
guiding information for further experimental and theoretical
studies. Spin-orbit interaction plays a crucial role in many
electronic states of heavy-element species; nevertheless, par-
allel spin-orbit-free CI calculations allow for a high-level
study of electron correlation effects on the electronic struc-
ture. The results provide a valuable initial assessment of the
systems and a guideline for further calculations including
spin-orbit effects.

The paper is structured as follows: In Sec. II we com-
mence by a review of the string-driven CI implementation on
which our parallel implementation is based and a brief ac-
count of the physical framework for the approach, i.e., the
applicable Hamiltonians, symmetry considerations, etc. We
then describe the parallel algorithm and central features of
the implementation in full detail, and we discuss its perfor-
mance in large-scale test applications to the water molecule.
In the third section our initial application on �Rb–Ba�+ is
reported. In the final section, we summarize the major con-
clusions and discuss prospects for future work, in particular,
the parallelization of fully relativistic MRCI.

II. PARALLEL CONFIGURATION INTERACTION
IMPLEMENTATION

A. Theoretical aspects

1. Hamiltonians and molecular symmetry

Our parallel CI implementation is based on the large-
scale sequential string-driven program LUCITA �Ref. 13�
which originated from the LUCIA code written by Olsen.16,17

It was recently interfaced13 to the DIRAC program package18

which allows us to exploit the methodology implemented
there. In particular, the new parallel CI can thus be used with
all nonrelativistic and “scalar”-relativistic Hamiltonians
implemented in DIRAC. The CI setup is based upon orthonor-
mal molecular spin orbitals that are typically obtained from
either a closed-shell or an open-shell Hartree-Fock calcula-
tion, and in the CI expansion only Slater determinants of a
specified spatial symmetry and MS value are included. The
single point groups D2h and its subgroups and the linear sym-
metries C�v and D�h have been implemented. The symmetry
handling in the DIRAC program package was originally writ-
ten for the use of four-component spinors in double point
group symmetry, but the program does take advantage of
single-point group symmetry for spin-orbit-free model
Hamiltonians, a feature that is implemented in the four-
component spin-orbit-free formalism19 and the nonrelativis-
tic Lévy-Leblond20 scheme. The spin-orbit-free formalism in
DIRAC essentially corresponds to an infinite-order Douglas-
Kroll-Hess scalar-relativistic approximation. As the CI mod-
ule uses integrals over molecular orbitals as input data, the
parallel CI code can be used without any code changes in the
CI module with the new memory-saving two-component

methods under implementation in DIRAC.21–23

2. Orbital space definitions

For the one-particle space we employ the concept of
defining electronic orbital subspaces of inactive, active, and
secondary types, where the inactive orbitals are fully occu-
pied, the active orbitals may be partially occupied, and the
secondary orbitals are empty.24 The GAS formalism is a
complete generalization of the restricted active space �RAS�
model10 and it allows for an arbitrary division of orbital
spaces tailored to the considered chemical or physical
electronic-structure problem. In addition, arbitrary electron
occupation constraints can be chosen for the resulting GA
spaces. As a consequence, both the number of active spaces
and their occupation limits are now redefined in general
terms compared to the commonly used complete and re-
stricted active space models �CAS, RAS�. Implementations
based on the GAS concept have been realized in the context
of both nonrelativistic and relativistic CI methods.16,25,26 Fur-
thermore, multiconfiguration self-consistent-field �MCSCF�
and coupled-cluster implementations based on the GAS
model have also been published recently.17,27,28

As an example, variable occupation in four active spaces
could be used to construct a typical MRCI expansion for
single and double outer-core excitations �core-core and core-
valence type correlations�, a small CAS space, a space where
the excitations are restricted up to quadruples, and a space
with an occupation limitation of at most two electrons �vir-
tual space�.

The GAS concept, in particular, the resulting selection of
Slater determinants that need to be included, plays an essen-
tial role for our parallel implementation. This will be de-
scribed in Sec. II B as well as in Sec. II C 1.

B. Outline of the CI technique

We commence with a brief outline of the underlying CI
algorithm implemented in LUCITA,13 which comprised an ex-
cellent setout for our parallel implementation. In general, the
starting point is the CI eigenvalue problem

HC = CE . �1�

However, in large-scale CI calculations one is typically only
interested in the computation of a few eigenvalues and eigen-
vectors of the large, real-symmetric matrix H such that an
efficient iterative diagonalization method may be employed.
In Fig. 1 an outline of the optimization algorithm which is
implemented in the current sequential version of LUCITA is
given. It is Olsen’s generalized version11 of the original
implementation of Davidson.29 For a thorough discussion of
the complete procedure and of the basic implementation the
reader is referred to References 10, 11, 13, and 26. In what
follows we want to draw your attention to some essential
features of the sequential setout implementation and to de-
velop an efficient parallelization scheme by taking advantage
of these.

The computationally demanding as well as the most
time-consuming step in each generalized Davidson iteration
is the calculation of the linearly transformed vector �n,
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�n = Hbn, �2�

where both the bn and �n vectors may be written in terms of
alpha strings S�I�� and beta strings S�I��.9,30 Considering
only the two-electron alpha-beta part of the �n

I�,I� vector, the
evaluation can be expressed as

�n
I�,I� = �

J�,J�

�
ijkl

Aijkl
I�I�,J�J��ij�kl�bn

J�,J�, �3�

where Aijkl
I�I�,J�J� = �S�I���âi�

† âj��S�J��	�S�I���âk�
† âl��S�J��	 is

the coupling coefficient and �S�J��S�J��	 is the Slater deter-
minant defined by strings of spin-orbital creation operators
S�J�� and S�J��. Furthermore, bn

J�,J� denotes the expansion
coefficient referring to this Slater determinant in the bn vec-
tor and �ij �kl� is the integral for the spin orbitals labeled with
lowercase indices i, j, k, and l.

The string formulation of Slater determinants by means
of ordered products of n� and n� creation operators com-
prises an excellent basis for an efficient parallel implemen-
tation. Each string, be it an � string �S�J��	 or a � string
�S�J��	, has a definite type T and symmetry S. The type of a
string is determined by its GAS definition, i.e., the number of
creation operators in each GA space, while its spatial sym-
metry follows from the symmetry of the spin orbitals occu-
pied in the string. According to the GAS specifications the
specified total spatial symmetry, restrictions on allowed com-
binations of alpha and beta strings that automatically lead to
the picture of a CI vector forming a matrix of �occupation�-
type-�occupation�-type-symmetry-symmetry �TTSS� blocks
are imposed. Each allowed expansion coefficient bn

J�,J� thus
belong to a specific allowed bn

TTSSj block. Moreover, the
resulting block partitioning is implicitly symmetric with re-
spect to both the bn and �n vector, a feature which has been
extensively exploited in our parallelization algorithm. We
have also made use of the previously implemented concept
of batching the number of TTSS blocks in memory,11 making
it possible to handle CI expansions which do not fit in
memory. This batching was a big advantage for the parallel-

lization, as it made it straightforward to assign a given TTSS
batch to a specific processor and as the code for handling the
linear transformation of such a batch was already written,
using lists of which other TTSS blocks a given TTSS block
connects to.

This feature makes it possible for the new code to handle
very long CI expansions �up to the order of 1010–1011 with
typical computer resources in a contemporary PC cluster�.

We discuss the key features of our parallel implementa-
tion in the following section, in particular, the importance of
an efficient parallelization scheme for the Hbn task with re-
spect to both load balancing and communication costs �Sec.
II C 3�. There, we also compare our string-driven implemen-
tation to other common approaches to CI parallelization.

C. Parallel implementation

1. General aspects

We first consider the general question of how to ensure
the portability for a parallel implementation of a program
that is embedded in a program suite, in casu DIRAC.18 For
this purpose, we designed the parallel algorithm by means of
the standard message passing interface �MPI� since it is
freely available31,32 and generally available on most parallel
computers and since it also provides library functions both
for the efficient use of shared memory �one-sided communi-
cation� as well as distributed memory �point-to-point and
collective communication� machines. By doing so, the mi-
gration for the end user from a sequential to a parallel ex-
ecutable becomes rather straightforward for many different
architectures, including the modern multinode clusters of
symmetric multiprocessor �SMP� machines.

A sophisticated parallel handling of extremely long CI
expansions, up to 109 determinants, requires a careful con-
sideration of communication, memory management, and disk
storage, even in single-root computations.

Communication. In order to keep communication costs
low whenever large bn-vector segments have to be ex-

FIG. 1. Flow chart of the iterative
Davidson diagonalization method
implemented in LUCITA.
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changed we introduced two different communication patterns
in addition to the general global MPI�COMM�WORLD
model: “slow” internode communication and “fast” intran-
ode communication on each node.

This is achieved by dividing �MPI�comm�split� the glo-
bal communication group MPI�COMM�WORLD that con-
sists of all processes into the corresponding subgroups ac-
cording to the underlying MPI process topology. The
creation of internode and intranode communication groups is
visualized in Fig. 2. Thus, we assign out of each node-
specific process group a master �node master� that will ex-
clusively participate in all intense internode communication,
in particular, the exchange of parts of the bn vectors, which
are the only CI vector segments to be communicated be-
tween nodes in our final algorithm. The overhead for the
remaining low-cost communication is negligible and can
therefore be carried out via global collective routines.

Memory. The maximized use of available memory on
each process plays an important role for an optimal scalabil-
ity of the parallel implementation. Although it may not be
possible to keep two large CI vectors in memory on a single
process, it often can be realized in parallel computation as
the total memory normally grows linearly with the number of
nodes with local memory. The key issue is the division of the
CI vector into proper subelements, where all instances of this
subelement are assigned to and saved on disk by one and
only one process. As mentioned above, the present sequential
version of LUCITA operates with a vector partitioning scheme
in terms of TTSS blocks. This blocking can readily be
adopted to obtain a balanced task distribution. Figure 3 illus-
trates our central idea of a fixed assignment of each nonva-
nishing TTSS block to a specific process out of
MPI�COMM�WORLD. We will address and discuss the dif-
ficulty of load balancing, in particular, for the Hbn step in
Sec. II C 3. As a remark on ongoing work, the block distri-
bution among the processors will also reduce the number of
integrals that must reside in the core at any given time. This
is, however, not exploited at the moment.

The TTSS blocks are organized in batches individually
on each processor for both the �n vector and the bn vector
where the length of a batch corresponds to the maximum
amount of memory �on a given processor� that can be allo-
cated. We therefore generally minimize disk access, which is
known to be a serious bottleneck in parallel efficiency.

Disk storage. The MPI-2 standard with its input/output
�I/O� facilities provides a variety of library routines which
permit an efficient individual as well as collective file han-
dling. Our key concept for minimized I/O effort is closely
related to minimized communication costs by taking into ac-
count special features of various system architectures, e.g.,
IBM’s general parallel file system �GPFS� that provides glo-
bal data access for each processor. Furthermore, to reduce
intranode communication among cores on SMP machines we
implemented the use of parallel access of each core to group
files according to the established communication groups as
depicted in Fig. 2. Because of the application of either global
or local group files we accomplish a complete avoidance and
a significant reduction of rather expensive communication
tasks. Since all trial CI vectors bn as well as �n vectors
partition into TTSS blocks each processor only needs to store
its assigned nonzero vector segments into the group file
which are needed to process, e.g., all local subspace opera-
tions. This distributed storage thus entails a significant reduc-
tion of disk requirements on each node �processor group�.

2. Subspace operations

Each generalized Davidson iteration mainly consists of
two different parts, the subspace operations and the evalua-
tion of the linearly transformed vector �n, as shown in Fig.
1. Before turning to the parallel algorithm for the �n-vector
evaluation we want to discuss the parallel implementation
and performance of the subspace operations. They are com-
prised by several vector operations such as the generation of
the start vectors, determination of the residual, evaluation,
orthogonalization, and renormalization of the new trial vec-
tor, and so forth. Because of the distribution scheme of the
TTSS blocks resulting from each bn and �n vector all the
intense vector processing steps can be handled locally on
each process since either only dot products or vector scaling
or other simple vector operations are involved. Note that this
applies in particular to the iterative update of the elements of

the reduced Hamiltonian matrix H̃ which is also done inde-
pendently on each processor in terms of the batches of TTSS
blocks assigned to that processor. This therefore does not
require any explicit global vector-exchange communication

FIG. 2. Splitting scheme of processes for different communication patterns
applied in the parallel implementation. Each number corresponds to a
unique processor that is contained in the global group of all processors
MPI�COMM�WORLD. FIG. 3. TTSS-block distribution among all available processes used as cen-

tral parallelization pattern. Each number corresponds to a unique processor
that is contained in the global group of all processors MPI�COMM�WORLD.
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but global data transfer of partially updated scalar values or
rather small arrays where efficient collective communication
routines �MPI�bcast, MPI�allreduce� are employed.

3. Sigma-vector generation

We commence with a comparison of the different paral-
lelization models for the computationally most demanding
step Hbn. A more detailed description of how the �n-vector
calculation is organized in the innermost loops in LUCITA is
described elsewhere.10,11,26 Following Gan et al.1 there are
two obvious schemes for the implementation of the Hbn

step, using either a replicated or a distributed data model.
A FCI parallelization scheme based on the extensive use

of the Linda model33 has been presented by Klene et al.5

Since they follow a somewhat different parallelization strat-
egy already from the outset their work will not be subject to
the following discussion. Both Tanaka et al.7 and Suo et al.6

realized a pure replicated data model in their parallel CI
implementations where one of the main differences between
their parallel approaches stems from a usage of different par-
allel library tools. It should be noted that such an approach
lacks efficiency as soon as the partially updated �n vector
cannot be kept in memory on each processor and has to be
written to disk instead. In such a case, which may easily
occur in large-scale CI calculations, the vector partitions
need to be collected from disk subsequent to the evaluation
loops. To illustrate a possible drawback of the replicated data
approach, consider the lower part of the �n-vector evaluation
algorithm which is sketched in Fig. 4 in a pseudocode visu-
alization. The replicated data model which, of course, de-
pends on the chosen load-balancing algorithm, is very effi-
cient as long as the evaluation of the �n vector requires only
a single batch �maxbat�s=1� of �TTSS� blocks on each pro-
cessor. It will, however, require costly communication
�MPI�(all)reduce� inside the first loop of the Hbn step for
values of maxbat�s greater than 1 since a complete compu-
tation of a single sigma block �n

TTSSi that has been explicitly

assigned to a specific processor according to the scheme in
Fig. 4, is made up of contributions from different bn

TTSSj

blocks. As a general rule, communication taking place in
each step of a loop is obviously equivalent to synchroniza-
tion which may hamper a reasonable load balancing. Further-
more, simultaneous communication and summation of large
batch chunks—in the test computations we typically deal
with lengths up to 5�107 determinants—could easily cause
program failures related to memory excess by the MPI li-
brary functions because of the tremendous communication
demands. We observed this in the course of our work. Thus,
full portability of our parallel code could not have been as-
sured, but we retained an implementation of the replicated
data approach for test purposes. Also, Gan et al. clearly dem-
onstrated in their implementations of replicated and distrib-
uted data models1 the superiority of the distributed model
due to reduced data communication.

We shall now describe the essential features of our par-
allel �n-vector evaluation implementation based on the idea
of a distributed data model as depicted in Fig. 4. The basic
concept of the distributed data model, as it is also used in the
present work, is the local computation of each sigma block
�i on a designated processor, which thus requires the collec-
tion of all connecting CI coefficient TTSS blocks beforehand,
as shown in the upper part of Fig. 4. We note that this task
could be performed by exploiting the facility of one-sided
communication which the MPI library provides. This option
has, however, not been implemented in our parallel code at
the moment. Concerning further work on improving our par-
allel implementation such shared-memory-like communica-
tion techniques may be of particular interest, taking into ac-
count the increasing number of multicore machines that are
available today and that are usually equipped with shared
memory.

Based on our present distributed data approach we have
chosen to emphasize the following three important features
in the design of the CI coefficient gathering algorithm: file

FIG. 4. Comparison of the replicated
data model with the distributed data
model for the �-vector evaluation
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sharing within a group, communication only among node
masters, and adapted splitting of the group of node masters
into communication subgroups.

The first option will accomplish input/output minimiza-
tion on a node with a group of processors since it avoids
multiple storing, maybe on the same disk, of the TTSS blocks
needed by more than one processor on this node. Since all
processes with an entry of zero in their block list for a given
TTSS block drop out of the network of node masters �shaded
ellipse in Fig. 2; internode group�, the communication effort
in each collection task �MPI�bcast� is greatly reduced. The
associated communication overhead for the subdivision and
reunification of the node-master network is thereby negli-
gible. The increased input/output activity of all connected
TTSS blocks within a group of processors is overcompen-
sated by the low memory requirements for the handling of
large-scale CI expansions. Details about the parallel perfor-
mance with respect to memory requirements and I/O activity
are discussed in Sec. II D. It is worthwhile to note that the
adapted batching corresponds to maximized use of memory
which has a favorable effect on the scaling of the new par-
allel code. Thus, e.g., for the determination of the required
TTSS batches of the bn vector on a given processor we can
simply disregard all those TTSS blocks that are neither as-
signed to this processor nor connected by the Hamiltonian
�see Eq. �3��.

A crucial aspect of any successful parallelization is, in
general, a good load balancing. We already mentioned the
idea of a static TTSS block assignment model in Sec. II C 1
which is used throughout the generalized Davidson algo-
rithm. The key question of how to achieve a global, good
load balancing for the essential step Hbn remains. For this,
we proceed as follows: Once at the outset of the iterative
generalized Davidson algorithm all allowed connections
from bn

TTSSj blocks to a given �n
TTSSi block are determined.

In doing so, we obtain a bn→�n connection matrix which is
used to compute the total “weight” of a TTSS block. This
weight is a measure of the computational effort arising from
a given TTSS block. The total weight of each TTSS block is
generated from its count of connections multiplied by its
length �number of coefficients�. The block distribution is
now carried out such that an even total weight is achieved for
every processor. The number of TTSS blocks and their
lengths can of course be varied by imposing extra redundant
GAS constraints for a specific CI expansion, which facili-
tates a balanced block distribution, for example, by dividing
a singles and doubles GA space into two GA spaces with half
the orbitals, allowing 0, 1, or 2 electrons in both GA spaces.
This partitioning freedom is in a sense similar to an intro-
duction of task-list parameters as mentioned in the following.
Furthermore, we store all individually required entries of the
connection matrix which entails only an additional allocation
of an INTEGER array of a length equal to the number of non-
vanishing TTSS blocks. This array is then of particular use
for the block collection task as illustrated in Fig. 4.

A number of previous parallel CI implementations em-
ploy a dynamic load balancing scheme, in particular, for the
most time-consuming step, the evaluation of Hbn. As a basic
principle they apply a task list which is designed according

to their different implementation patterns, see e.g., Refs. 1, 2,
4, 6, and 7 and others. An advantage of such a procedure is
that one may make use of several parameters to gain more
granularity on the task division. This can be useful to achieve
an optimal load balancing as well as to guarantee program
portability.1,4 However, our static approach to load balancing
works very well, and we have therefore not pursued dynamic
algorithms.

D. Parallel performance

We first focus on the sequential performance of our new
parallelized code. The following large-scale test applications
have been performed for the ground state of the water mol-
ecule �C2v symmetry� at equilibrium geometry using Dun-
ning’s cc-pVDZ basis34 in uncontracted form in the four-
component spin-free Dirac-Coulomb approximation. In
Table I the GAS schemes for the two test cases A and B are
listed; they yield CI expansions of roughly 450�106 �A� and
1158�106 determinants �B�, composed of 4708 and 5844
nonvanishing TTSS blocks, respectively. The timings pre-
sented in this subsection have been taken using two different
system architectures. The first system is an IBM pSeries
p690 cluster of 41 frames with each frame consisting of 32
Power4+ processors running at 1.7 GHz. The frames are
connected with high-performance switches �bandwidth
�1400 MB /s, latency 	6.5 
s�,35 and each frame has ac-
cess to a GPFS. Our second test system is a Linux-based
cluster which is made up of 200 nodes of two Intel Wood-
crest �2.66 GHz; dual core version� processors each,
equipped with either 4 Gbytes �160 nodes� or 8 Gbytes �40
nodes� of shared main memory and a dual gigabit ethernet
connection, respectively.36 The nodes are interconnected by
gigabit switches and provided with local disks.

Table II shows our timing data for a representative gen-
eralized Davidson iteration for both the original serial code
and the new revised parallel code running on one processor
and on both system architectures. The sequential efficiency is
only slightly improved on the Linux cluster whereas a sig-
nificant performance enhancement for test case A is found on
the IBM cluster.49 We attribute this observation to the opti-
mized and reduced I/O costs of our parallel code compared
to the original code on a GPFS which is known to be very
sensitive to the current load caused by other users. In gen-
eral, our large-scale CI implementation exhibits some I/O
dependency, which is nevertheless much less pronounced
than in the parallel FCI implementation reported by Ansaloni
et al.8

The parallel performance and scalability of our new code
was tested on up to 128 processors using both CI setups A
and B �see Table I� and 1 Gbytes of core memory for each
processor �required minimum: 0.5 Gbytes�. We first consider
the timing results for a single generalized Davidson iteration
in combination with the �-vector generation step obtained
for test case A on the IBM machine which are collected in
Table III. The speedup S�p ,N� in parallel calculations is gen-
erally defined as
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S�p,N� =
T�1,N�
T�p,N�

, �4�

where T�p ,N� is the required time to solve a problem of size
N on p processors.

The performance test on the IBM cluster yielded a rea-
sonable speedup for the Hbn step, in particular, for 4 and 16
processors, that is 3.70 and 12.88, respectively. Nevertheless,
the speedup for the total iteration drops significantly for a
larger number of processors. We ascribe these performance
characteristics to the increase in the GPFS disk accesses
most notably in the subspace operations part of the general-
ized Davidson iteration. In this test calculation with almost
450�106 determinants, about 450�106 REAL*8 numbers
per trial vector, corresponding to 3.4 Gbytes of disk space
for each, have to be read from and written to hard disk in a
subspace operation. Although we have optimized our parallel
implementation with respect to the number of READ and
WRITE statements by processing vector operations likewise in
terms of batches of TTSS blocks, we may suffer from the
current total disk usage on the general parallel file system
during data transfer, as already indicated above. The satisfac-
tory speedup for the Hbn step, however, illustrates the effec-
tiveness of our static load-balancing scheme.

On the Linux cluster we obtained almost perfect scal-
ability of the Hbn step and with respect to the total execution

time for a generalized Davidson iteration even a superlinear
speedup in test calculation A when running with one CPU
per node, as is explicitly shown in Table V for computations
using two �speedup of 2.15�, four �4.32�, and eight �8.47�
processors. Since each node is built up of two dual core
processors �in total four cores� there are obviously several
ways of processing, e.g., a four-CPU parallel calculation.
Therefore, we want to analyze in more detail a single-node
calculation using all four cores as well as a four-node single-
core computation. The excellent speedup obtained with the
latter setup is mainly a direct consequence of two basic facts.
On the one hand, in memory- and CPU-intense computations
as, e.g., the “matrix�vector” Hbn step, we may have to take
possible memory access conflicts between different CPUs
into account as soon as multicore processors are involved.
This particular effect on the parallel efficiency has also been
discussed by Tanaka et al. in Ref. 7. Another relevant aspect
is that each multicore node in our present system has a
shared hard disk, which in our algorithm is exploited to both
completely avoid intranode communication with regard to a
bn-vector coefficient gathering needed for the Hbn step and
to reduce disk space usage, but which may at the large scale
give rise to non-negligible disk-access interference among
the cores.

Since we make use of exactly the same load-balancing
scheme in both varieties of allocating processors we are able

TABLE I. General active spaces �GASs� and occupation constraints for H2O ground state calculations A and B
in C2v symmetry using an uncontracted cc-pVDZ type of basis set �see text�. The minimum and maximum
number of electrons are accumulated values, i.e., by adding the number of electrons in this and all preceeding
GA spaces. The spaces have not been constructed according to physical arguments but to mimic typical realistic
calculations.

GA space

Orbitals per irrepresentation Minimum/maximum accumulated electrons

Shell typesA1 B1 B2 A2 Minimum electrons Maximum electrons

Test case A
445 250 936 determinants

I 1 0 0 0 0 2 1s �O�
II 1 1 0 0 0 6 2s, 2px �O�
III 0 0 1 0 0 8 2py �O�
IV 4 2 0 0 6 10 2pz �O�; 1s �H�; virtuals
V 9 7 4 2 10 10 virtuals

Test case B
1 579 484 992 determinants

I 1 0 0 0 0 2 1s �O�
II 1 1 0 0 0 6 2s, 2px �O�
III 0 0 1 0 0 8 2py �O�
IV 4 2 0 0 5 10 2pz �O�; 1s �H�; virtuals
V 9 7 4 2 10 10 virtuals

TABLE II. Timing tests �wall time� of single CPU calculations on two different system architectures �see text
for more details� for test case A �445 250 936 determinants� and test case B �1 579 484 992 determinants�.

Test case

Time per iteration �s�—Linux cluster Time per iteration �s�—IBM cluster

Original code New code Efficiency Original code New code Efficiency

A 15 508 14 280 1.09 31 740 18 711 1.70
B 65 224 58 177 1.12 ¯ ¯
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to draw a direct comparison for the evaluation of a represen-
tative batch of �-TTSS blocks on a given CPU. The timing
data for test cases A and B is compiled in Table IV. It should
be noted that we have to introduce additional communication
with the four nodes with one core each scheme in order to
gather the required bn coefficients on each core. However,
this little extra work only takes about 150 s for test case A
out of 2608 s to complete the entire Hbn step. Comparing the
columns labeled one node with four cores and four nodes
with one core each clearly reveals differences in the time
taken to read the required bn coefficients into core memory
and considerable discrepancies in the �-TTSS block comput-
ing time which mainly consists of all matrix-vector opera-
tions. There are basically two sources for the deviations: in
the four nodes with one core each computing scheme no
memory-access conflicts can hamper the matrix-vector op-
erations and, in addition, the heavy disk I/O is implicitly
“parallelized.” This intrinsic “coarse-grain” disk I/O parallel-
ization becomes even more pronounced for all subspace op-
erations as illustrated by the overall speedup in Table V for
test case A and, in particular, in Table VI for test case B. As
an example, one may find an excellent total speedup for eight
processors following an eight nodes with one core on each
scheme �test case B� that even slightly increases from 7.36
for the Hbn step to 7.73 for the complete iteration. In con-
trast, the overall speedup obtained with eight cores running
on two nodes is reduced considerably from 4.31 �Hbn step�
to 2.74.

Finally, we should comment more explicitly on the
speedups going from 4 to 128 processors for test cases A as
well as for B within the one node with four cores scheme
which are also listed in Tables V and VI. Starting from a
speedup value of 1.43 for A and 1.09 for B, which may serve
as a “reference,” the speedup is nearly doubled by increasing
the number of nodes by a factor of 2. Considering the per-
formance enhancement for a large number of processors, for
example, 128 processors in test case B, a full doubling is not
accomplished anymore. In this case this is due to the fact that
the time spent in the algorithm to gather the bn coefficients
among the node masters �see also Fig. 4� is in the same order
of magnitude �725 s� as the time needed to compute the par-
tial � vector on each CPU �about 690 s�. We thus reason that
even though we optimized this step with respect to the use of
two-sided communication MPI library functions, we may get

TABLE III. Parallel performance calculations on the ground state of H2O
for test case A �445 250 936 determinants� running on the IBM cluster. The
measured timings are wall times exclusively.

NProc Hbn Computation �s� Speedup Time per iteration �s� Speedup

1 10 550 1.00 18 711 1.00
4 2 851 3.70 5 036 3.72
8 1 843 5.72 3 639 5.14

16 819 12.88 2 358 7.94
32 525 20.10 1 881 9.95

TABLE IV. Timing data for computing a typical batch of �-TTSS blocks for
test cases A �445 250 936 determinants� and B �1 579 484 992 determi-
nants� on a given CPU comparing different setups either using four cores on
a single node or one core each on four nodes.

One node
with four cores
Time spent �s�

Four nodes
with one core each

Time spent �s�

Test case A
READING bn coefficient 45 3
Computing � blocks 1399 953
Total batch time 1445 957

Test case B
one node

with four cores
four nodes

with one core each

READING bn coefficient 602 101
Computing � blocks 2487 1572
Total batch time 3092 1674

TABLE V. Parallel performance calculations on the ground state of H2O for
test case A �445 250 936 determinants� running on the Linux cluster with
four cores on each node, e.g., 32 processors=8�nodes��4�cores�. The mea-
sured timings are wall times exclusively.

NProc Hbn Computation �s� Speedup Time per iteration �s� Speedup

1 10 114 1.00 14 250 1.00
2 5 273 1.92 10 303 1.38
2a 5 034 2.01 6 637 2.15
4 4 343 2.32 9 949 1.43
4b 2 608 3.88 3 299 4.32
8 2 293 4.41 4 602 3.10
8c 1 352 7.48 1 682 8.47
16 1 202 8.41 2 051 6.95
16d 713 14.19 941 15.14
32 740 13.67 1 025 13.90
64 524 19.30 633 22.51

128 292 34.64 345 41.30

aCalculation on two nodes using one core each.
bCalculation on four nodes using one core each.
cCalculation on eight nodes using one core each.
dCalculation on 16 nodes using one core each.

TABLE VI. Parallel performance on the ground state of H2O for test case B
�1 579 484 992 determinants� running on the Linux cluster with four cores
on each node, e.g., 32 processors=8�nodes��4�cores�. The measured tim-
ings are wall times exclusively.

NProc Hbn computation �s� Speedup Time per iteration �s� Speedup

1 42 888 1.00 58 177 1.00
2 24 295 1.77 45 660 1.27
2a 22 047 1.95 29 305 1.99
4 21 575 1.99 53 629 1.09
4b 11 264 3.81 15 041 3.88
8 9 950 4.31 21 220 2.74
8c 5 830 7.36 7 531 7.73
16 5 259 8.16 10 847 5.36
16d 3 238 13.25 4 104 14.18
32 2 809 15.26 5 110 11.39
64 1 745 24.58 2 586 22.50

128 1 368 31.35 1 691 34.40

aCalculation on two nodes using one core each.
bCalculation on four nodes using one core each.
cCalculation on eight nodes using one core each.
dCalculation on 16 nodes using one core each.
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close to the gigabit network performance limit of our cluster.
At present, we are also investigating the implementation of
one-sided communication routines which may help improve
the parallel efficiency in the future. As a further remark on
ongoing work, TTSS blocks of bn may contain substantial
amounts of coefficients which are of little importance �e.g.,
coefficients 	10−10� as discussed by others and thus allow
for an effective vector screening as well as vector compress-
ing. By keeping only bn coefficients that are above a given
threshold and using compression techniques for both bn and
�n based on the required numerical accuracy �e.g., 	10−14�,
we should benefit from a reduced I/O activity, in particular,
in the I/O intense subspace operation parts of a generalized
Davidson iteration. In doing so, we can expect a significant
improvement for the parallel efficiency in case of both mul-
ticore systems and system architectures using a general par-
allel file system.

Taking all aspects of our extensive timing results into
account, the good performance of the new parallel imple-
mentation presented here is underlined. We demonstrate the
parallel efficiency on the Linux cluster for calculation types
A �445 250 936 determinants� and B �1 579 484 992 deter-
minants� in Figs. 5 and 6, respectively. For both test calcu-
lations an excellent parallel scaling is obtained. The speedup
for each of the test cases on 16 nodes using a single core on
each node is 15.1 and 14.2, respectively, for the large bench-
mark calculation. The lower speedup of the Hbn step as com-
pared to the entire generalized Davidson iteration �see Figs.
5 and 6� is explained by the inevitable increase in commu-
nication in the Hbn step, since every core now collects its
required bn coefficients. In addition, the overall speedup no-
tably benefits from the simultaneously “parallelized” I/O
load in all subspace operations because each core has access
to its own hard disk. The latter issue may, in particular, be
the reason why a slightly superlinear speedup was observed
when running test case A on up to eight processors.

III. APPLICATION TO THE „Rb–Ba…+ MOLECULAR ION

Investigations on the collision kinetics of heavy ionic
and neutral main-group atoms at ultracold temperatures

��1 mK� is a field of growing interest in experimental phys-
ics. These studies aim at a profound understanding of the
collision processes and products and ultimately at a con-
trolled chemistry at the quantum level37 and the possibility of
testing fundamental symmetries in nature.38,39 Current ex-
periments involve translational sympathetic cooling of
atomic ions by laser-cooled neutrals �Rb� for arbitrary atomic
ions, e.g., Rb+, Cs+, Sr+, or Na+.40 In particular, the collision
kinetics and the short-range electronic potential energy
curves �PEC� of the benchmark system �Rb–Ba�+ are of
great interest. This system has not been investigated theoreti-
cally before, as far as we know. It is valence isoelectronic
with the �Ca–Na�+ system which has been studied earlier.41

Here, the lowest-lying electronic states are � states which
are quite accurately described without spin-orbit interaction.
The goal of our present study is to provide a survey of the
short-range potentials for the lowest electronic states at a
high level of accuracy with respect to the treatment of dy-
namic electron correlation.

A. Qualitative molecular electronic spectrum

In Table VII the atomic configurations and terms as well
as their corresponding molecular states that are expected to
form the lower part of the electronic spectrum are reported.
These also include the � states correlated with the charge-
exchange channel leading to ionized barium and neutral ru-
bidium atoms. The presence of a Ba 4d shell close in energy
to the valence-electronic 5s and 5p shells suggests an in-
creased manifold of low-lying excited states with angular
momentum projection greater than zero compared to the

FIG. 5. Parallel performance of the parallel LUCITA code in a calculation on
the ground state of H2O running on a Linux cluster. The CI expansion spans
445 250 936 determinants.

FIG. 6. Parallel performance of the parallel LUCITA code in a calculation on
the ground state of H2O running on a Linux cluster. The CI expansion spans
1 579 484 992 determinants.

TABLE VII. Molecular electronic states of �Rb–Ba�+ in the −S coupling
picture �Hund’s case �a�� and associated atomic fragments.

Atomic configurations and states �2S+1�LJ Molecular �2S+1�� states

Rb5s0
+ �1S0�+Ba6s2�1S0� 1�0

+

Rb5s1�2S1/2�+Ba6s1
+ �2S1/2� 3�1,0

+ , 1�0
+

Rb5s0
+ �1S0�+Ba6s15d1�3D3,2,1� 3�3,2,1, 3�2,1,0, +�1,0

+

Rb5s0
+ �1S0�+Ba6s15d1�1D2� 1�2, 1�1, 1�0

+
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lighter valence-isoelectronic species �Ca–Na�+. As these
states are affected by spin-orbit interaction to first order in a
perturbation theory sense and as barium is a heavy atom, the
corresponding splittings and mixings are expected to be size-
able. Hence, we will restrict our study of the short-range
electronic potentials to the ground state and a selected set of
lowest-lying excited states.

B. Physical framework and basis sets

We have computed electronic adiabatic potential curves
for a set of low-lying electronic states of �Rb–Ba�+ using the
spin-orbit free Dirac-Coulomb Hamiltonian. In this ap-
proach, the so-called “scalar-relativistic” effects are taken
into account fully and spin-orbit interaction is neglected. The
calculations have been performed in C2v symmetry using the
extensive uncontracted ANO-RCC basis set �from the MOL-

CAS6 package42� for both atoms Rb and Ba. These basis sets
which are near quadruple zeta quality include 
23s19p11d4f�
primitive Gaussian functions for Rb and 
26s22p15d4f�
functions for Ba. Thus, all-electron calculations are per-
formed which provide a higher accuracy for the short-range
potentials than studies based on effective core potentials. In
the correlated calculations the virtual space is truncated such
that the energetically higher-lying virtual orbitals are dis-
carded which is a standard procedure in relativistic calcula-
tions with uncontracted basis sets.43 The truncation thresh-
olds are chosen to lie in large energy gaps �3–10 a.u.� in the
virtual space and at high values depending on the number of
correlated electrons �details are given in the subsections be-
low�. It is therefore ensured that the truncation errors are
negligibly small and that the potential energy curves are
smooth, i.e., they do not suffer from discontinuities.

The initial set of starting orbitals for the correlated cal-
culations was obtained from a spin-free all-electron Dirac-
Coulomb Hartree-Fock �HF� calculation with an open-shell
state averaging over all electronic configurations with two
electrons distributed among seven orbitals �2in7�. The result-
ing space is composed of the �6s5s �A1 symmetry�, �6s5s

* �A1�,

�5dyz
�B2�, �5dxz

�B1�, �5dx2−y2�A1�, �5dxy
�A2�, and �5dz2�A1� or-

bitals, which ensures a balanced description of ground and
excited states with variable s and d occupations. All Hartree-
Fock calculations converge very smoothly at the various in-
ternuclear distances.

C. Active space considerations

A proper description of bond formation and dissociation
of the molecular system considering also charge-exchange
processes necessitates a correlation treatment with a multi-
reference space. The choices of generalized active spaces for
the ensuing MR treatments are shown in Table VIII. Our first
set of MRCI calculations includes 18 active electrons where
the remaining electrons form a frozen core. The first active
space �GAS I� is composed of the essentially atomic 5s and
5p orbitals of Ba and 4s and 4p orbitals of Rb �subvalence
orbitals�. The valence active space �GAS II� comprises the
seven orbitals given above representing the state-averaging
space at the uncorrelated HF level. All following active
spaces contain the virtual orbitals. Because of the use of
uncontracted basis sets we find a large number of core-
localized orbitals with high energies. Since in this case we
consider only valence and subvalence correlation we truncate
the virtual space at 5 a.u. leaving 119 orbitals active. Accord-
ingly, this level of calculation is dubbed MR�2in7�CISD18.

In a further step we enlarge the first active space �GAS I�
by adding outer-core electrons from the 4d shell of Ba as
well as the 3d shell of Rb. GAS I now contains 36 electrons.
We consistently adapt the cutoff threshold for the virtual
space to 10 a.u. �GAS III, GAS IV, and GAS V, respectively�
leading to a secondary space comprised by 145 virtual orbit-
als. For computational reasons we use a slightly reduced va-
lence active space �GAS II� for this investigation where the
�5dz2 orbital is not included. This level of calculation is

dubbed MR�2in6�CISD38.

TABLE VIII. General active spaces �GASs� and occupation constraints for �Rb–Ba�+ ground and excited states for both calculations MR�2in7�CISD18 and
MR�2in6�CISD38 in C2v symmetry. The minimum and maximum numbers of electrons are accumulated values, i.e., by adding the number of electrons in this
and all preceeding GA spaces.

GA space

Orbitals per irrepresentation Minimum/maximum accumulated electrons

Shell typesA1 B1 B2 A2 Minimum electrons Maximum electrons

MR�2in7�CISD18
I 4 2 2 0 14 16 5s, 5p �Ba�; 4 s, 4p �Rb�
II 4 1 1 1 16 18 6s, 5d �Ba�; 5s �Rb�
III 20 20 20 6 16 18 virtuals
IV 26 10 10 7 18 18 virtuals

MR�2in6�CISD38

I 8 4 4 2 34 36 4d, 5 s, 5p �Ba�; 3d, 4s, 4p �Rb�
II 3 1 1 1 36 38 6s, 5da �Ba�; 5s �Rb�
III 19 12 12 5 36 38 virtuals
IV 19 12 12 5 36 38 virtuals
V 19 12 12 6 38 38 virtuals

a�5dz2 was not included in the active space for technical reasons.
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D. PECs of the lowest-lying molecular electronic
states

1. Calculation of PECs including subvalence
correlation

The following results have been obtained by multirefer-
ence calculations using the CI space MR�2in7�CISD18.
Table VIII displays how to benefit from the general active
space concept in constructing suitable configuration spaces.
The minimum electron occupation number stands for a maxi-
mum of two holes in the first active space �GAS I�. Our
valence space �GAS II� adds two electrons which are al-
lowed to occupy all seven orbitals in accordance with the
symmetry constraint. From the combined spaces I and II at
most single and double excitations into the virtual space
�GAS III and GAS IV, respectively� are allowed. We split the
purely virtual space into two GA spaces in order to save
computational resources �memory� since more and smaller
TTSS blocks are obtained in this fashion. In addition to all
single and double excitations, this excitation scheme also
takes important quadruple excitations into account, i.e., we
also allow for combined double excitations within orbitals in

the valence space and from inner valence shells into virtual
orbitals. This ensures a balanced correlation treatment of all
considered electronic states and proper dissociation. We ob-
tain a maximum expansion length of about 26.4�106 deter-
minants in the A1 symmetry representation.

In Fig. 7 we show the computed short-range potentials
for the nine lowest electronic states of the ionic molecular
system. We also show the correlation of the molecular states
with corresponding atomic configurations at the dissociation
limit. All curves have been obtained from single-point en-
ergy calculations in the range of internuclear distances from
5.0 to 20.0 Bohr. A polynomial fitting procedure is used to
fit our potentials for all electronic states save for the highest
1�+ state which yielded poor fits. Based on the fitted poten-
tials spectral constants have been determined by solving a
one-dimensional Schrödinger equation of nuclear motion.
The spectroscopic constants for all nine states are compiled
in Table IX. For a better comparison with our more extensive
MR�2in6�CISD38 study we also report in Table IX state-
specific spectroscopic data at the MR�2in6�CISD18 compu-
tational level. There is neither experimental nor other theo-
retical molecular data available at present.

The �Rb–Ba�+ ion is found to form a weakly bound
molecular system at an equilibrium bond length of 4.631 Å
exhibiting a X 1�+ ground state configuration. The first
bounded excited state a 3�+ resembles the state ordering ob-
tained in the study of the valence-isoelectronic �Ca–Na�+

system. This a 3�+ state, however, crosses another weakly
bound state b 3� at short internuclear distances. Two addi-
tional excited states of � symmetry �triplet and singlet� as
well as a singlet B 1�, two 1�+, and another d 3�+ state
complete the picture of the lowest-lying molecular states of
�Rb–Ba�+. Our findings within the spin-free approach sup-
port the expectations arising from the qualitative molecular
spectrum given in Table VII.

The results from the molecular calculations at the disso-
ciation limit as indicated in Fig. 8 are in good agreement
with available experimental atomic spectra of both atoms.44

The computed quasimolecular atomic excitation energies are
listed in Table X in comparison with the corresponding ex-
perimental values for the atomic excitation energies. Our cal-

FIG. 7. Potential curves of the seven lowest-lying electronic molecular
states of the �Rb–Ba�+ molecular ion. Atomic dissociation channels for all
states of various axial symmetry are shown. The computational level is
MR�2in7�CISD18 �see text�.

TABLE IX. Spectroscopic constants for the ground and low-lying excited states of �Rb–Ba�+.

Method X 1�+ a 3�+ b 3� d 3� A 1� d 3�+ B 1� C 1�+ D 1�+

Re �Å� MR�2in7�CISD18 4.631 4.970 4.315 4.904 4.858 5.077 4.362 ¯ ¯
MR�2in6�CISD18 4.662 4.943 4.323 4.861 4.861 4.467 ¯
MR�2in6�CISD38 4.684 4.964 ¯

�e �cm−1� MR�2in7�CISD18 54.3 46.2 55.7 44.6 46.2 39.6 39.4 ¯ ¯
MR�2in6�CISD18 55.1 47.9 55.4 44.4 46.5 36.1 ¯
MR�2in6�CISD38 55.2 48.0 ¯

Te �eV� MR�2in7�CISD18 0.843 1.102 1.347 1.410 1.671 1.975 ¯ ¯
MR�2in6�CISD18 0.844 1.095 1.336 1.398 1.972 ¯
MR�2in6�CISD38 0.844 ¯

Tv �eV� MR�2in7�CISD18 0.871 1.127 1.363 1.421 1.709 1.985 1.839 2.486
MR�2in6�CISD18 0.864 1.123 1.349 1.407 1.977 2.054
MR�2in6�CISD38 0.864 2.133
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culated value of 9109 cm−1 for the Ba6s5d configuration �3D�
is in very good agreement with the experimental value of
9216 cm−1 �deduced from the 3D �J=2� term at the center of
the Landé intervals�.45 The computed excitation energy for
the Ba 1D term is about 1200 cm−1 too high in energy. Be-
cause of the neglect of spin-orbit coupling we do not allow
an obviously important coupling between the 1D term and
the 3P terms arising from a 6s6p configuration in the Ba
atom. At the full four-component MRCI computational level
we expect the 1D term to shift towards lower energy due to
the mixing with the J=2 component of the close-lying 3P
state. Furthermore, the explicit treatment of spin-orbit inter-
action will give rise to a first-order splitting of all electronic
states with �0 and, in particular, states with equal � com-
ponents, e.g., 3�2 and 3�2, will mix considerably due to their
energetic vicinity. This could result in a breakdown of the
−S coupling picture. Thus, it is mandatory to further ex-
tend the investigation of the lowest-lying electronic states of
�Rb–Ba�+ to a rigorous treatment of spin-orbit interaction
and electron correlation which is the focus of an ongoing
study.46

2. Investigation of the lowest � states including core-
core and core-valence correlation

In addition to our comprehensive survey of the short-
range potentials for the nine lowest-lying electronic states of
�Rb–Ba�+ in the spin-free approach we carried out more ex-
tensive calculations to determine the short-range potentials
of the three lowest molecular electronic states of axial �

symmetry. The goal of these high-level computations was to
study, in particular, the influence of explicit core-core and
core-valence correlation on the shape of the potentials and
the resulting spectroscopic constants. Within the
MR�2in6�CISD38 excitation scheme �lower part of Table
VIII� we generate an expansion length of about 145�106

determinants with 38 electrons correlated.
The fitted potential energy curves are depicted in Fig. 8,

and the available spectroscopic constants are listed in Table
IX. The curves closely resemble those obtained at the
MR�2in7�CISD18 level but with a slightly increased ground-
state equilibrium bond length of 4.684 Å. Beside a small
decrease of Re for the a 3�+ state amounting to only 0.006 Å,
the inclusion of core-core and core-valence correlation also
yields slightly higher values of the harmonic frequency �e

for both states X 1�+ and a 3�+. Particularly important for
ultracold molecular experiments are the vertical and adia-
batic excitation energies �see Table X�. The inclusion of
outer-core correlation is seen to lead only to very small cor-
rections here. A full configuration averaging in the valence
space plays a greater role in the calculation of excitation
energies here than an extension of the correlated shells into
the atomic cores. We therefore consider this initial assess-
ment of the electronic structure of �Rb–Ba�+ as a valuable
guideline for further theoretical and experimental studies.

IV. SUMMARY AND PROSPECTS

We have reported the parallel implementation of a large-
scale configuration interaction electronic-structure program
applicable with any nonrelativistic or “scalar”-relativistic
Hamiltonian operator. The implementation is based on the
flexible general active space �GAS� concept, allowing calcu-
lations spanning from configuration interaction singles �CIS�
to FCI. The parallel implementation is based on a string-
driven GAS algorithm, and the use of an efficient static load-
balancing strategy has been discussed and implemented. We
have put particular emphasis on central features of any par-
allel large-scale CI implementation, which are input/output
activity, memory demand, and communication costs. Key as-
pects of the employed message passing model are discussed
with respect to various modern computer architectures.

Extensive parallel performance studies of the new code
were carried out on a massively parallel architecture �IBM
pSeries machine� as well as on a Linux cluster equipped with
multicore nodes. A satisfactory scaling performance is
achieved on the IBM machine while high computational per-
formance can be reached on the Linux cluster. We thus sig-
nificantly improve the applicability of parallel large-scale CI

FIG. 8. Potential curves for selected � states of the �Rb–Ba�+ molecular
ion. Atomic dissociation channels for the molecular states are indicated. The
computational level is MR�2in6�CISD38 �see text�.

TABLE X. Comparison of computed quasimolecular with experimental atomic excitation energies at the dis-
sociation limit of �Rb–Ba�+. Values are given in cm−1.

Dissociation channel MR�2in7�CISD18 MR�2in6�CISD18 MR�2in6�CISD38 Experiment

Ba6s1
+ �2S�+Rb5s1�2S� 8 006 8 116 8065 8 824a

Ba6s15d1�3D�+Rb5s0
+ �1S� 9 109 9 222 9223 9 216b

Ba6s15d1�1D�+Rb5s0
+ �1S� 12 604 12 724 11 395

aValue obtained from �IP�Ba,Rb� �Ref. 45�.
b3D �J=2� �Ref. 44�.
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calculations in the nonrelativistic regime as well as the spin-
free Dirac formalism, exploiting the full power of modern
computer architectures.

As an initial application of our new parallel code we
present for the first time a comprehensive study of the nine
lowest-lying electronic short-range potentials of the
�Rb–Ba�+ molecule ion, which hardly would have been fea-
sible in an acceptable time frame with a serial code. We find
a 1�+ molecular ground state with a Rb–Ba bond length of
Re=4.631 Å at the MR�2in7�CISD18 computational level.
Moreover, we obtain an excellent agreement between our
calculated atomic configurations and the available corre-
sponding experimental atomic spectra of each atom at the
dissociation limit. In a benchmark study of the lower � states
where 38 electrons are correlated we find only minute
changes of spectral constants as compared to the calculations
where only 18 electrons are correlated �valence and subva-
lence correlation�.

We are proceeding with work on improving the parallel
efficiency. The implementation of one-sided communication
routines to possibly reduce the communication costs as well
as a suited vector compressing scheme are expected to be
advantageous. Furthermore, we are extending the paralleliza-
tion work to a four-component relativistic direct
Kramers-restricted �KR�-MCSCF/GASCI/FCI program
system26,27,47,48 where spin-orbit interaction is included. In
our forthcoming publication46 the fully relativistic potential
energy curves of �Rb–Ba�+ will be presented including a
rigorous and simultaneous treatment of electron correlation
and spin-orbit coupling, shedding further light on the lower
part of the electronic spectrum in this weakly bound molecu-
lar system. The first-order splittings and second-order mix-
ings of the � and � electronic states will be of particular
importance here. Moreover, the knowledge gained in the
course of the present studies will be exploited in investiga-
tions of other “ultracold” molecular species with similar
electronic structures such as �Rb–Cs�+ and RbYb which are
studied in ongoing collision experiments in the ultracold re-
gime.

ACKNOWLEDGMENTS

This work has received support from the Sixth Frame-
work Programme Marie Curie Research Training Network
“NANOQUANT” under Contract No. MRTN-CT-2003-
506842 and the Danish Natural Science Resarch Council
Grant No. 272-05-0469. S.K. and T.F. also thank the Col-
laborative Research Center SFB663 in Düsseldorf for finan-
cial support and the University of Southern Denmark
�Odense� for hospitality. A generous allotment of computing
time from the Danish Center for Scientific Computing and a
grant for computing time at the John von Neumann Institute
for Scientific Computing �NIC�, Forschungszentrum Jülich
�Germany�, are gratefully acknowledged.

1 Z. Gan, Y. Alexeev, M. S. Gordon, and R. A. Kendall, J. Chem. Phys.
119, 47 �2003�.

2 H. Dachsel, H. Lischka, R. Shepard, J. Nieplocha, and R. J. Harrison, J.
Comput. Chem. 18, 430 �1997�.

3 H. Dachsel, R. J. Harrison, and D. A. Dixon, J. Phys. Chem. A 103, 152
�1999�.

4 A. J. Dobbyn, P. J. Knowles, and R. J. Harrison, J. Comput. Chem. 19,
1215 �1998�.

5 M. Klene, M. A. Robb, M. J. Frisch, and P. Celani, J. Chem. Phys. 113,
5653 �2000�.

6 B. Suo, G. Zhai, Y. Wang, Z. Wen, X. Hu, and L. Li, J. Comput. Chem.
26, 88 �2005�.

7 K. Tanaka, Y. Mochizuki, T. Ishikawa, H. Terashima, and H. Tokiwa,
Theor. Chim. Acta 117, 397 �2007�.

8 R. Ansaloni, G. L. Bendazzoli, S. Evangelisti, and E. Rossi, Comput.
Phys. Commun. 128, 496 �2000�.

9 P. J. Knowles and N. C. Handy, Chem. Phys. Lett. 111, 315 �1984�.
10 J. Olsen, B. O. Roos, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys.

89, 2185 �1988�.
11 J. Olsen, P. Jørgensen, and J. Simons, Chem. Phys. Lett. 169, 463 �1990�.
12 S. Zarrabian, C. R. Sarma, and J. Paldus, Chem. Phys. Lett. 155, 183

�1989�.
13 T. Fleig and L. Visscher, Chem. Phys. 311, 113 �2005�.
14 A. Ostendorf, C. B. Zhang, M. A. Wilson, D. Offenberg, B. Roth, and S.

Schiller, Phys. Rev. Lett. 97, 243005 �2006�.
15 B. Roth, A. Ostendorf, H. Wenz, and S. Schiller, J. Phys. B 38, 3673

�2005�.
16

LUCIA, a general CI and CC code written by J. Olsen, University of
Aarhus.

17 J. Olsen, J. Chem. Phys. 113, 7140 �2000�.
18 “DIRAC, a relativistic ab initio electronic structure program, developer

version,” written by H. J. Aa. Jensen, T. Saue, and L. Visscher with
contributions from V. Bakken, E. Eliav, T. Enevoldsen, T. Fleig, O. Fos-
sgaard, T. Helgaker, J. Laerdahl, C. V. Larsen, P. Norman, J. Olsen, M.
Pernpointner, J. K. Pedersen, K. Ruud, P. Salek, J. N. P. van Stralen, J.
Thyssen, O. Visser, and T. Winther �http://dirac.chem.sdu.dk�.

19 K. G. Dyall, J. Chem. Phys. 100, 2118 �1994�.
20 J. M. Lévy-Leblond, Commun. Math. Phys. 6, 286 �1967�.
21 M. Iliaš, H. J. Aa. Jensen, V. Kellö, B. O. Roos, and M. Urban, Chem.

Phys. Lett. 408, 210 �2005�.
22 M. Iliaš and T. Saue, J. Chem. Phys. 126, 064102 �2007�.
23 H. J. Aa. Jensen and M. Iliaš �unpublished�.
24 B. Roos, Ab initio Methods in Quantum Chemistry-II, edited by K. P.

Lawley �Wiley, New York, 1987�, p. 399.
25 T. Fleig, J. Olsen, and L. Visscher, J. Chem. Phys. 119, 2963 �2003�.
26 T. Fleig, J. Olsen, and C. M. Marian, J. Chem. Phys. 114, 4775 �2001�.
27 T. Fleig, H. J. Aa. Jensen, J. Olsen, and L. Visscher, J. Chem. Phys. 124,

104106 �2006�.
28 T. Fleig, L. K. Sørensen, and J. Olsen, Theor. Chem. Acc. 118, 347

�2007�.
29 E. R. Davidson, J. Comput. Phys. 17, 87 �1975�.
30 N. C. Handy, Chem. Phys. Lett. 74, 280 �1980�.
31 E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, Proceedings of
the 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary,
September 2004, pp. 97–104.

32 W. Gropp, Proceedings of the Ninth European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine and Message
Passing Interface, London, UK, 2002 �Springer-Verlag, Berlin, 2002�, p.
7.

33 Linda, User’s guide & Reference Manual, Version 3.0, Scientific Com-
puting Associates 1995.

34 T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 �1989�.
35 Juelich Multiprocessor �JUMP�, Jülich Supercomputing Centre, Fors-

chungszentrum Jülich GmbH.
36 Horseshoe, Super Computer of the Danish Center for Scientific Comput-

ing at the University of Southern Denmark.
37 J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Eur. Phys. J.

D 31, 149 �2004�.
38 J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Phys. Rev.

Lett. 89, 023003 �2002�.
39 B. C. Regan, E. D. Commins, C. J. Schmidt, and D. DeMille, Phys. Rev.

Lett. 88, 071805 �2002�.
40 S. Schiller �Düsseldorf� �private communication�.
41 O. P. Makarov, R. Côté, H. Michels, and W. W. Smith, Phys. Rev. A 67,

042705 �2003�.
42 G. Karlström, R. Lindh, P.-Å. Malmqvist, B. O. Roos, U. Ryde, V. Verya-

zov, P.-O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrády and L.
Seijo, Comput. Mater. Sci. 28, 222 �2003�.

014108-13 Large-scale parallel configuration interaction J. Chem. Phys. 128, 014108 �2008�

Downloaded 21 Sep 2009 to 134.99.82.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



43 L. Visscher, in Relativistic Electronic Structure Theory, edited by P.
Schwerdtfeger, �Elsevier, Amsterdam, 2002�, Vol. 1, Chap. 6, p. 291.

44 Yu. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J.
Reader, W. L. Wiese, and K. Olsen, NIST Atomic Spectra Database �ver-
sion 3.1.1� National Institute of Standards and Technology, Gaithersburg,
MD, 2007.

45 NIST Chemistry WebBook �version 69, 2005� National Institute of Stan-
dards and Technology, Gaithersburg, MD.

46 S. Knecht, H. J. Aa. Jensen, and T. Fleig �unpublished�.
47 J. Thyssen, H. J. Aa. Jensen, and T. Fleig, “A direct relativistic four-

component multi-configuration self-consistent-field method for mol-
ecules,” J. Chem. Phys. �submitted�.

48 H. J. Aa. Jensen, K. G. Dyall, T. Saue, and K. Fægri, J. Chem. Phys. 104,
4083 �1996�.

49 Required time for a representative generalized Davidson iteration for test
case B is beyond the 24 h queue limit on this supercomputer.

014108-14 Knecht, Jensen, and Fleig J. Chem. Phys. 128, 014108 �2008�

Downloaded 21 Sep 2009 to 134.99.82.26. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp





Paper 2

Stefan Knecht, Hans Jørgen Aagaard Jensen, and Timo Fleig

Large-scale parallel configuration interaction. II. Two- and four-component double-group

general active space implementation with application to BiH.

submitted to J. Chem. Phys..



JChemPhys/LUCIPAR II

Large-Scale Parallel Configuration Interaction. II.

Two- and Four-Component Double-Group

General Active Space Implementation

with Application to BiH

Stefan Knecht∗

Department of Theoretical Chemistry,

Heinrich Heine University Düsseldorf,
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Abstract

We present a parallel implementation of a large-scale relativistic double-group configuration in-

teraction (CI) program. It is applicable with a large variety of two- and four-component Hamiltoni-

ans. The parallel algorithm is based on a distributed data model in combination with a static load

balancing scheme. The excellent scalability of our parallelization scheme is demonstrated in large-

scale four-component multi-reference CI (MRCI) benchmark tests on various modern computer

architectures, and we also discuss hardware-dependent aspects with respect to possible speedup

limitations. As an illustration of the potential of our new parallel code, we have calculated spec-

troscopic properties for the BiH molecule at various excitation levels using extensive basis sets.

We focus in particular on an accurate description of the splitting of the ground state and the first

excited state which is caused by spin-orbit coupling. Our largest parallel MRCI calculation thereby

comprised an expansion length of 2.7 × 109 Slater determinants.
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I. INTRODUCTION

An accurate description of the electronic structure and properties of atoms or molecules

containing heavy elements generally requires an adequate description of both electron corre-

lation and relativistic effects [1]. Due to the reduction of non-relativistic (spin and spatial)

symmetries caused by magnetic couplings - the most important of which is the spin-orbit

interaction - it becomes significantly more difficult to devise electron correlation methods

accounting for these effects in an efficient manner. Moreover, accurate electronic-structure

methods for heavy-element systems face two major problems: Many electrons per atom have

to be correlated, and often a large number of valence electrons are unpaired. Efficient multi-

reference approaches of general applicability are therefore required. The relativistic config-

uration interaction (CI) method meets the requirement of general applicability, since wave

function expansions representing any open-shell or multi-reference problem are straightfor-

wardly accessible [2]. The question of efficiency plays a key role for the advance of CI-based

methods in the heavy-element regime and comprises the central motivation for the work

presented here.

Many wave-function based approaches to heavy-element electronic structure do not treat

spin-orbit coupling a priori but include it at a later stage of the calculation, see e.g. [3–

7]. These approaches are based on assumptions of additivity of electron correlation and

spin-orbit effects to a larger or smaller degree, or a weak polarization of orbitals due to spin-

orbit interaction, or both. Whereas this is often reasonable, many cases are known where

the application of more rigorous methods becomes imperative, e.g. [8, 9]. Our strategy is

to approach the electronic-structure problem in heavy elements by commencing in a more

rigorous fashion, i.e. not to separate spin-orbit coupling at all from orbital optimization or
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electron correlation treatments. This comes with the price of having to deal with complex

two-component (2c) or 4c orbitals and with rather large matrix eigenvalue problems in

general [10] - very often hundreds of millions or several billions of Slater determinants -

and a complex-valued formalism when molecular symmetry is low [11]. For such rigorous

approaches, we must strive for a large-scale implementation which necessitates an efficient

parallelization for modern computer architectures.

In this paper we report a new parallel implementation of the relativistic string-driven

double group multi-reference configuration interaction (MRCI) and full configuration inter-

action (FCI) method LUCIAREL [10, 12, 13] that is available in a local version of the DIRAC08

program package [14]. It represents the continuation of our parallelization work on non-

relativistic large-scale electron correlation methods. In Ref. 15 we discussed in detail the

linear-transformation driven parallel implementation of a string-based non-relativistic and

scalar-relativistic MRCI and FCI method [16–18] which is available in the release version of

the DIRAC08 program package [14]. Some of the key features of this parallel implementation,

including the static load balancing model which we found to yield very good performance

on various system architectures, are also exploited in the present work. One would expect

that this performance is even surpassed in the present (fully) relativistic case: Since the

Hamiltonian matrix is less sparse when spin-orbit coupling is included, the parallelism of

the linear-transformation step becomes more dominant than in the non-relativistic case.

In addition to comprehensive performance tests on the electronic ground state of the

bismuth monohydride molecule, we will consider a systematic theoretical determination of

the ground state spin-orbit splitting which is experimentally well-known. Since our MRCI

study represents to the best of our knowledge the first work on the ground-state splitting of

BiH where spin-orbit coupling and electron correlation are treated on the same footing, we
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will compare our results to previous theoretical studies where spin-orbit effects are introduced

a posteriori in various approaches.

The paper is organized as follows: In Section II we give a short review of the string-driven

CI algorithm on which our parallel implementation is based. In this context, we discuss es-

sential consequences for our parallel algorithm resulting from a fully relativistic double group

framework which had not to be taken into consideration in our previous non-relativistic and

scalar-relativistic implementation. We then describe the details of our parallelization scheme

with regard to the sigma-vector generation, followed by performance studies of the new paral-

lel code for large-scale test applications to the BiH molecule where strengths and weaknesses

of the parallel algorithms are examined in more detail. The third section comprises the re-

sults of our study of the ground state and lowest excited state (in the relativistic picture)

of bismuth monohydride. We finally give a summary of our work and draw conclusions for

future work.

II. PARALLEL RELATIVISTIC CONFIGURATION INTERACTION IMPLE-

MENTATION

The parallel CI implementation presented in this paper is based on the relativistic double

group CI program LUCIAREL [10, 12, 13] that is available in a local version of the DIRAC08

program package [14]. In the following subsections we give a brief overview of the relativistic

CI technique as implemented in LUCIAREL and focus in more detail on key aspects of our

parallel algorithm with respect to essential parts of the CI optimization scheme. The section

concludes with a discussion of the parallel performance in large-scale benchmark studies for

two of the most common computer architectures.
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A. Relativistic Configuration Interaction Theory

The relativistic double group program LUCIAREL fully exploits the advantages of a genuine

string-based implementation where explicit comparisons of configurations in the determina-

tion of coupling coefficients are avoided. This guarantees efficiency even when higher-order

excitations are taken into account. In non- or scalar-relativistic CI a determinant is the

product of an α-string and a β-string, and has a specific MS value [16]. In our relativistic

implementation, the two strings are replaced by a P-string of j Kramers spinors {ϕI} and

a Q̄-string of N − j Kramers (time-reversal) partners {ϕI} :

P̂†|vac > = â†P1
â†P2

. . . â†Pj
|vac >

ˆ̄Q
†
|vac > = â†

Q̄1
â†

Q̄2
. . . â†

Q̄N−j
|vac >, (1)

where N is the total number of electrons. A general Slater determinant |PQ̄〉 can then be

written in terms of these strings according to

|PQ̄〉 = P̂† ˆ̄Q
†
|vac > . (2)

Next, we may introduce an auxiliary bookkeeping number MK (Kramers projection value),

MK =
nunbarred − nbarred

2
=
j − (N − j)

2
= j −N/2. (3)

This implies that all possible determinants which may be built from an initial set of Kramers

pairs can be arranged in individual subsets each with a characteristic MK value. It should

be noted that MK is not a quantum number, not even when used with a scalar-relativistic

Hamiltonian (for example, in the double group C∗
2 the unbarred (fermion symmetry E1)

spinorbitals of a symmetry would have α-spin while the unbarred (fermion symmetry E1)

spinorbitals of b symmetry would have β-spin) [19]. One can of course choose to decouple the

spatial and spin symmetries as done in non-relativistic codes, and then choose MK =MS.
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The central part of any direct CI algorithm is the computation of the linear transformation

of the current trial vector bn

σn = Hbn, (4)

where in this case H is the CI Hamiltonian matrix calculated with the relativistic Hamilto-

nian [12, 20]

Ĥ =
∑
IJ

[
hIJX̂

+
IJ +

1

2

(
hĪJX̂

+
ĪJ
+ hIJ̄X̂

+
IJ̄

)]

+
1

2

∑
KLMN

[
(KL|MN) x̂++

KLMN +
(
K̄L|MN

)
x̂++

K̄LMN
+
(
KL̄|MN

)
x̂++

KL̄MN

]
+
1

4

∑
KLMN

(
K̄L|MN̄

)
x̂++

K̄LMN̄

+
1

8

∑
KLMN

[(
K̄L|M̄N

)
x̂++

K̄LM̄N
+
(
KL̄|MN̄

)
x̂++

KL̄MN̄

]
, (5)

expressed in terms of Kramers-paired spinors. Note that each term in the Hamiltonian only

contributes for a specific ΔMK value, either -2, -1, 0, +1, or +2.

To illustrate the computation of the linear transformation in Eq. (4), consider the part

of the relativistic Hamiltonian given in Eq. (5) that changes the MK-value by a single unit

ΔMK = +1:

ĤΔMK=+1 =
∑
IJ

1

2
hIJ̄X̂

+
IJ̄
+
∑

KLMN

1

2

(
KL̄|MN

)
x̂++

KL̄MN
. (6)

Taking only the first term (given in bold face) for the Kramers replacement operator

x̂++
KL̄MN

= â†Kâ
†
MâNâL̄

− â†Lâ
†
M âN âK̄

+ â†K â
†
N̄
â

M̄
â

L̄
− â†Lâ

†
N̄
âM̄ âK̄ , (7)

into consideration, the real part of this sigma-vector fragment (real r; imaginary ı) reads as

σΔMK=+1r(PQ̄) =
∑

KLMN

∑
RS̄

{(
KL̄|MN

)r
APQ̄,RS̄

KL̄MN
brRS̄ +

(
KL̄|MN

)ı
APQ̄,RS̄

KL̄MN
bıRS̄

}
(8)

where APQ̄,RS̄
KL̄MN

= 〈PQ̄|â†K â†M âN âL̄|RS̄〉 is the coupling coefficient for the complex integral(
KL̄|MN

)
between the Slater determinants |PQ̄〉 and |RS̄〉. It is contracted with the com-

plex CI expansion coefficient bRS̄ for this particular determinant and the integral.
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The definition of orbital spaces in LUCIAREL takes advantage of the concept of general

active spaces (GAS) [12]. The wave function may be specified by an arbitrary number of

active orbital spaces with arbitrary electron occupation constraints thus providing maximum

flexibility for the envisaged electronic-structure problem. The GAS partitioning is, further-

more, exploited to create an implicit blocking of the Slater determinants that are included in

the CI expansion. In addition to its MK value, any determinant |Φν〉 = |PνQ̄ν〉 can also be

classified according to the occupation type (T ) in the various active orbital spaces and point

group symmetry (S) of its creator string for the occupied unbarred Kramers spinors P̂† and

the corresponding creator string for the occupied barred Kramers spinors ˆ̄Q†. A given block

of determinants of the complete CI vector is thus characterized by the occupation types and

symmetries of its unbarred and barred string components, and the Kramers projection MK .

In analogy to our preceding scalar-relativistic parallel CI implementation [15] we refer to

such a group of determinants as (occupation)-type-(occupation)-type-symmetry-symmetry

(TTSS ) block. This block partitioning is the same for both the sigma vector σn and the

current trial vector bn, as the Hamiltonian and thus the CI-matrix H in Eq. (4) are totally

symmetric. The TTSS blocking is used in the algorithm to skip all the coupling coefficients

which are zero because the type-type of the σn-block differ by more than two electrons

from the type-type of the bn-block or because the two blocks have different symmetries.

Because of this feature, these TTSS -blocks also form efficient building blocks for the static

load balancing scheme, to be discussed in the next subsection.

Furthermore, the Dirac program package provides a large variety of two- [21] and four-

component Hamiltonians which may be used with the new parallel LUCIARELMRCI module.

In the application section we use both the four-component Dirac-Coulomb Hamiltonian

and the exact two-component Hamiltonian (X2C) scheme of Ilias and Saue [22, 23] where
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two-electron spin same-orbit (SSO) and spin-other orbit (SOO) contributions are included

via atomic mean-field integrals generated with the AMFI [24–26] code. An orthonormal

molecular Kramers-paired spinor basis upon which the CI is set up can then typically be

obtained from either a closed-shell or open-shell Hartree-Fock, KR-MCSCF [27] or MP2

natural spinor calculation [28].

As noted above, our relativistic MRCI implementation operates within the framework of

double point group symmetry. This is essential for a consistent treatment of spin-dependent

many-electron problems as neither MS nor S2 are good quantum numbers when spin-orbit

coupling is included. For this purpose, the real-valued matrix double groups D∗
2h, C

∗
2v and

D∗
2, and the complex-valued matrix double groups C

∗
2h, C

∗
2 and C

∗
s are available for molecular

calculations with the present parallel LUCIAREL program version. Since full linear symmetry

is not implemented, we have written a parallel general-purpose CI module [29] which allows

us to compute the expectation value for any one-electron operator. By using this module for

the ĵz operator defined as

ĵz = ŝz + l̂z, (9)

it is easily possible to determine the Ω quantum number for any given electronic state at

the cost of an additional sigma vector calculation where, however, only one-electron terms

need to be taken into account.

B. Parallel implementation

In this section we consider characteristic features of our new parallel implementation of

the relativistic MRCI code LUCIAREL that uses Olsen’s generalized version [17] of Davidson’s

original iterative optimization algorithm [30]. For a detailed description of our fundamental
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parallelization idea, which is also applied in the present work, the reader is referred to Ref.

[15].

As the most used computer architectures for scientific computing change every few years

(one example: single core → dual core → quad core → etc.), it has been a major design

goal for us that the algorithm must be flexible and adaptable, such that it will be able to

run efficiently on all the most used computer architectures. We have achieved this design

goal by using a dual-level structure. The typical computer architecture fits into the template

n nodes with m cores, where a node is defined as a (sub)system with shared memory and

shared disks. Typically the bandwidth for “internode” communication is much slower than

for “intranode” communication. A parallel calculation with, say, 32 tasks on a true shared

memory machine would then correspond to n = 1,m = 32, while the same job on a Linux

cluster with quad cores would correspond to n = 8,m = 4.

For the communication tasks we use MPI, because it is general, generally available, and

under active development. In contrast to the parallel implementation described in Ref. [15]

the parallelization algorithm sketched in the following also takes advantage of some of the

new functionalities for one-sided communication in the MPI 2.1 message passing interface

[31]. This strategy does not only allow for completely retaining the efficiency of the sequen-

tial precursor method (for a given process) but, in addition, facilitates further algorithmic

improvements in the future.

1. General Considerations

The central idea of the algorithm is that in order to minimize time-consuming communi-

cation tasks, each core p is statically assigned all coefficients related to a specific subset of

all the Slater determinants, bn(p) for all bn vectors as well as σn(p) for all σn vectors.
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Each generalized Davidson iteration, sketched in a flow chart diagram in Fig. 2, consists

of two distinct parts each with different requirements. The parallelization of the computa-

tionally most demanding step, the σn-vector step (black box in Fig. 2), will be discussed in

more detail in Sec. II B 2. The second main part is comprised by the subspace operations

such as the determination of the current residual (see Fig. 2). Two of the computationally

most expensive subspace tasks are

H̃kl = σ†
kbl =

Nproc∑
p

σ†
k(p)bl(p) =

Nproc∑
p

H̃kl(p) (10)

S̃ ′
kn = b†

kb
′
n =

Nproc∑
p

b†
k(p)b

′
n(p) =

Nproc∑
p

S̃ ′
kn(p) (11)

which are needed, respectively, for the subspace eigenvalue problem and for the Gram-

Schmidt orthogonalization of a new trial vector b′
n to previous trial vectors. Since the

computations of H̃kl(p) and S̃ ′
kn(p) can be carried out locally on each process, with this

design no long vectors but only scalars as H̃kl(p) and S̃kn(p) need to be communicated for

the subspace tasks by means of fast global reduction operations (MPI allreduce). This is

described in more detail in Ref. 15. The only real difference to the non- or scalar-relativistic

case described there is that the vectors and scalars now generally are complex-valued.

Overall good load balancing is a major concern for any parallel implementation. Hence,

particular care must be taken when choosing the parameters to control load balancing. For

our parallel LUCIAREL implementation, the TTSS blocking of the vectors bn and σn as

introduced in Sec. IIA plays an essential role for this. From the discussion above in this

subsection it is clear that our design implies that we cannot use a dynamic load balancing;

changing the assignments to each processor would require expensive shuffling of long vectors

between processors. It is therefore essential for good performance to be able to predict well

a priori the computational load for each TTSS block, in order to create a close to optimal
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static block distribution as depicted in Fig. 1 by using the TTSS blocks as units. At the

outset of a calculation each TTSS block of nonzero length is assigned to a specific process

taking account of a block-“weight” criterion. This individual block-“weight” criterion is

calculated from an estimation of the respective computational load in the dominating linear

transformation step (60− 80%) of a Davidson iteration and the number of determinants in

a given TTSS block. Achieving an even “weight” distribution of the TTSS blocks among

all processes is thus expected to ensure a decent static load balancing. We demonstrate

the performance of this approach in Sec. II C on the basis of comprehensive parallel test

simulations.

Moreover, we took advantage of the batching concept of TTSS blocks that was already

introduced in the sequential algorithm. In this context, a batch is defined as the maximum

sum of TTSS blocks that fits into memory. By means of batches of TTSS blocks large-

scale computations become feasible even on a contemporary single-core CPU where limited

hardware may otherwise prohibit a complete storage of two CI vector segments in core mem-

ory. For the parallel algorithm described here, the individual number of batches on a given

process decreases significantly as the total number of processes increases. This reduction is

achieved by explicitly setting the length of all TTSS blocks to zero that are not assigned

to a given process. The total input/output (I/O) cost for each process is thereby greatly

lowered, in particular for the subspace operations as these local steps are typically processed

in terms of batches.

It is worthwhile to mention that as a natural consequence of our static TTSS block

distribution the number of integrals that have to reside in core memory of a given process

can also be minimized. We have exploited this feature in our new parallel algorithm since

the total number of trivially nonzero integrals rapidly increases in a spinor-based approach
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compared to a spinorbital-based implementation. In contrast to the latter approach two-

electron integrals of the type (KL̄|MN) which are, e.g. present in the expression for the

ΔMK = +1 contribution (see Eq. (6)), do not vanish for all point groups.

In order to make full use of individual particularities of various system architectures,

e.g., (true) shared memory systems, communication, memory usage and I/O are organized

in complete accordance with both the present process topology and the system resources.

As today’s standard compute clusters generally are equipped with n interconnected nodes

consisting each of m CPU cores we have implemented a basic division of the global group

of all processes (MPI COMM WORLD) into distinct communication subgroups, namely

intranode and internode, as introduced in Ref. 15. A node master is then chosen for each

set of m cores that will exclusively take care of the expensive communication in each linear

transformation step of bn blocks to all of the n nodes needing this TTSS block (see also

Sec. II B 2). In addition, file sharing based on the established intranode group can be enabled

among the m cores minimizing the internal I/O load. If, on the other hand, a global file

system is provided it may be utilized for a full file-sharing model among all processes by

use of MPI file-I/O techniques. A shareable file which contains all bn-TTSS blocks is of

particular use in the σn vector computation since costly internode communication (see Sec.

II B 2 for more details) can be avoided.

Since the m cores of a single node share core memory (but often not memory cache) one

could also take into account shared-memory like access algorithms based on MPI-2 one-sided

communication routines (MPI get, MPI accumulate) for memory demanding quantities such

as the two-electron integrals and the required blocks of the bn vector. To ensure in general

high efficiency a passive target communication model (MPI win lock(MPI lock shared)) has

been implemented as visualized by the one-directional arrows in Fig. 3. The usefulness of this
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functionality will obviously depend strongly on a high memory bandwidth as well as cache

performance per process. Preliminary benchmark tests where the two-electron integrals and

bn coefficients were kept in shared main memory basically did not reveal significant commu-

nication overhead on true shared-memory systems. On cache-based multi-core systems the

additional costs have, however, been noticeable. More thorough test studies on the latter,

today’s most common system architecture, are required and are currently being carried out.

They will be part of our forthcoming publication on a parallel KR-MCSCF implementation

where we will employ a one-sided communication model.

2. Sigma-vector evaluation

We shall now elaborate on our basic idea for the parallel evaluation of a sigma vector σn.

In our preceding publication [15], we discussed at length various recent approaches [32–35]

to an efficient parallelization scheme for the σn task and concluded on the superiority of a

distributed data model in agreement with Gan et al. [33]. We will thus briefly outline the

central aspects of our distributed data approach.

In Fig. 4, we sketch the calculation of a sigma-vector σn in the present LUCIAREL al-

gorithm. Each segment, here a TTSS block, of the complete sigma vector σn is coupled

through the Hamiltonian matrix (cf Eq. 8) to the same TTSS block of bn, but also to

specific other bn-TTSS blocks. To compute a full sigma-vector TTSS block locally on its

statically designated process (see Fig. 1) therefore necessitates for each process the collection

of all those bn-TTSS blocks that couple to the σn-TTSS blocks assigned to this process,

prior to the actual “matrix × vector” contraction (code line 33 in Fig. 4). For this purpose,

we introduce a global communication step among all node masters at the beginning of each

sigma-vector evaluation (in red in on-line version of Fig. 4) where we make use of lists of
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required bn-TTSS blocks for each partial intranode linear transformation. These INTEGER

lists, which are of dimension [number of TTSS blocks] are constructed at the outset of the

diagonalization procedure and kept in main memory.

The essential gathering step can efficiently be carried out using either a collective commu-

nication (MPI bcast) or one-sided communication (MPI get) approach, the latter of which

is currently under development by us. The present collection algorithm is designed such

that the internode communication is minimized. For example, the communication group

consisting of all node masters is further split (MPI comm split) whenever a TTSS block is

not required for the sigma-vector evaluation of a given intranode group. The actually com-

municated bn-TTSS blocks are stored for each intranode group in a shared coefficient file

BBLOCKS that is accessible by all the individual processes on this node via MPI file-I/O

routines.

A major advantage of this strategy is that we avoid costly global communication inside the

sigma-vector loop structure (see Fig. 4). Global (blocking) communication would lead to an

intrinsic barrier and therefore in general to idling times and considerable performance loss.

Fig. 4 also displays our shared-memory like intranode-access strategy for the two-electron

integrals. This approach aims at a further reduction of the total memory requirements for a

given calculation type by avoiding redundant subsets of integrals within a node. We thereby

exploit the splitting of the integral set into subsets with respect to TH excitation types (see

Fig. 4) which enables a block-wise access to the intranode-shared integral set.

Finally, note that the alternative algorithm where each process computes all σn contri-

butions from its bn-TTSS blocks is inferior on at least two accounts. First, unless all active

σn-TTSS blocks fit into memory on all nodes, the σn-TTSS blocks must be added up with

an MPI reduce at the end of each σ-batch (after code line 39 in Fig. 4) which would become
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a barrier and cause idling time. Second, because of the required addition, it cannot be done

with the new efficient one-sided communication calls.

C. Parallel performance

In this section we discuss the performance of our new parallel LUCIAREL implementation

on the basis of two representative large-scale test applications. The two performance test

applications consist of one CI iteration from MRCI calculations on the ground state of

the bismuth monohydride molecule (using C∗
2v double group symmetry) at the equilibrium

distance of 1.805 Å [36], based on the four-component Dirac-Coulomb Hamiltonian, and

using basis sets of triple-ζ quality for both atoms (see Sec. III for further details). The

simplified GAS schemes for the test cases A and B are compiled in Table I; the CI expansion

in case A spans approximately 238× 106 determinants and in case B approximately 428×

106 determinants. The number of non-vanishing TTSS blocks, which are the fundamental

components of our even “weight” distribution scheme in the static load balancing model,

adds up to 848 (A) and 1788 (B). The performance tests were run on two computer systems

representing different system architectures. The first system is a Linux-based cluster made

up of 200 nodes of two Intel Woodcrest (2.66 GHz; dual core version) processors each,

equipped with either 4GB (160 nodes) or 8 Gbytes (40 nodes) of shared main memory and

a dual Gigabit ethernet connection. Each node is provided with a local scratch disk and

a connection to Gigabit switches for internode communication. The second system is an

IBM p6 575 cluster of 14 symmetric multiprocessor (SMP) nodes with each node holding

32 simultaneous multithreaded (SMT) Power6 processors running at 4.7 GHz. Each node

has a ten Gigabit ethernet access to a general parallel file system (GPFS) and is equipped

with 128 Gbytes main memory. Moreover, the nodes are interconnected by an InfiniBand
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connection for MPI communication.

The speedup S(p,N) of a representative generalized Davidson iteration is defined as

S(p,N) = T (1, N)

T (p,N)
, (12)

where T (p,N) is the time required to perform one CI iteration (Eq. (4)) of size N on p

processes. On the basis of S(p,N) we compare in the following the performance of our

parallel algorithm on the two system architectures. Tests were run on up to 128 processors

and 1.75 Gbytes of core memory per processor.

In Tables II and III we present the timing and scaling results on the IBM Power6 cluster

for test cases A and B. In these timing tables the wall times (measured in seconds) are

compiled for the σ-vector evaluation as well as for the corresponding complete generalized

Davidson iteration. We obtain in both cases a very good speedup for up to 64 processors

(on 2 nodes) for the σ-vector step, namely 56.17 (A) and 62.38 (B) for 64 CPUs. As it

is also illustrated for test case B in Fig. 5 we observe, however, a drop in the speedup

with regard to a total iteration, in particular for a larger number of processors, that is

46.24 (case A, 64 CPUs) and 51.30 (case B, 64 CPUs), respectively. Following the line of

argument of our preceding publication [15] on a parallel implementation of a non- and scalar-

relativistic FCI/MRCI program, these findings may partly be ascribed to the increasing

GPFS load, most notably in the Davidson subspace operation parts where large chunks of

TTSS blocks are read in and written almost simultaneously by all processes. In this context,

it is worthwhile to mention that compared to our earlier work, a new GPFS has been installed

in the meantime which exhibits an improved performance. In Reference [15] we reported for

the scalar-relativistic FCI/MRCI code a speedup of 9.95 on 32 CPUs whereas with the new

GPFS we obtain for the same benchmark a considerably better speedup of 18.22.

Summarizing, the overall performance of our new LUCIAREL implementation using a static
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load balancing scheme is very satisfactory on this system architecture, i.e., we find a final

speedup of 28.62 for the more demanding test case B running on 32 processors (on a single

node).

We now focus on the performance and scalability of our parallel algorithm on a standard

Linux cluster. The complete results of our test calculations are compiled in Table IV (test

case A) and Table V (test case B). We report on two different strategies (on up to 16

processors) to perform the benchmark calculations on n nodes with m cores:

• n nodes using m = 1 core on each node

• n nodes using m = 4 cores on each node

These two distinct allocation schemes turned out to be useful to detect and further analyze

possible bottlenecks in a parallel large-scale FCI/MRCI implementation [15]. For m = 1 and

both test sets A or B we find an excellent scalability (depicted in Fig. 6) with regard to a

total Davidson iteration running on two (speedup of 1.99 resp. 2.00), four (4.05 resp. 3.96),

eight (7.95 resp. 7.85) and 16 processors (15.43 resp. 15.56). Contrary to n nodes using m = 1

core on each node, the overall picture changes for the n nodes using m = 4 cores on each

node scheme as can be seen for example for benchmark case B in Table V. We still obtain a

speedup of almost a factor of two each time the number of nodes is doubled when going from

four (speedup of 2.58) to 32 CPUs (19.52 = 7.57× 2.58) which supports that our static load

balancing scheme operates properly. However, for the largest number of CPUs tested, 128

CPUs, a full doubling is no longer obtained. Besides arising load balancing issues with idling

times on the order of 10% of the σ-vector computation time, we partly assign this behavior

to an unfavorable σ-vector computation to bn-blocks communication ratio of 303 s to 288 s

in accordance with our previous findings [15]. A considerable performance enhancement is
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therefore expected with an internode communication beyond a Gigabit Ethernet, e.g. an

InfiniBand network, which will be fully available in the next generation of the cluster.

What about the unsatisfactory intranode speedup that we observe in going from two

(speedup for test case B: 1.90) to four (2.58) processor cores on the same node but not in

the corresponding internode case (n nodes using m = 1 core on each node; speedup of 2.00

and 3.96)? These findings can essentially be explained by two facts as we also concluded in

our preceding work [15]. Although the parallel algorithm has been optimized for avoiding

redundant I/O activity in the intranode case, the disk-access overhead introduced by the

additional two processors leads, in particular at the large-scale, to non-negligible disk-access

conflicts and, subsequently, to a performance loss. On the contrary, the n nodes using m = 1

core on each node scheme greatly benefits from the intrinsic coarse-grain disk I/O paral-

lelization. Moreover, memory bandwidth saturation obviously gains influence on the scaling

of parallel applications on multi-core systems. E.g., in the σ-vector step, a large number

of matrix-matrix multiplications (H× bn) is carried out by each process where the corre-

sponding components, namely integrals and vector coefficients, are kept in core memory as

their number by far exceeds the individual process cache size (in our case 2 Mbytes Level 2

cache). Memory access interferences then arise due to the shared physical access to the core

memory among all processes.

It should be noted that this characteristic observation has recently been discussed for the

parallel MRCI implementations by Tanaka et al. [35] and by Kleinschmidt and coworkers

[37], and also for a parallel density matrix renormalization group program by Kurashige et al.

[38]. In Ref. 37 the authors report interestingly an intranode study where the cores, that were

not used in the MRCI benchmark, performed unrelated direct SCF calculations. In this case

no significant deterioration of the parallel performance was observed. Furthermore, in recent
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benchmark calculations running their parallel spin-orbit MRCI program [37] on a Linux

cluster composed of AMD Opteron nodes (“Barcelona”, 2× quadcore CPUs), Kleinschmidt

et al. find a remarkably improved intranode performance yielding a speedup of up to 7.0 for

eight processors [39] in comparison to a speedup of 2.86 on an Intel Xeon node (“Clovertown”,

2× quadcore CPUs, value taken from Reference 37). A possible explanation for the observed

discrepancy could be related to the different memory access models: on an Opteron node

each processor is equipped with an individual, integrated memory controller to access the

main memory. By contrast, on the mentioned type of Xeon node the memory access of

all processors is organized externally on the chipset (“northbridge”). In ongoing work, we

currently further investigate this issue with regard to the performance of intranode one-sided

MPI communication.

By means of comprehensive timing results we have here demonstrated the excellent per-

formance of our new parallel implementation of a relativistic FCI/MRCI program for two

of the most wide-spread types of system architectures, based on the idea of a distributed

data model combined with a static load balancing scheme. An almost perfect parallel scaling

is found on the Linux cluster both for benchmark test set A (239 472 310 determinants)

and B (428 014 958 determinants) as illustrated in Fig. 6 for the latter case. In addition, a

reasonable speedup of 51.30 for 64 processors running test case B on the IBM p6 575 cluster

(see also Fig. 5) underlines the proper functionality of our parallel algorithm on such high-

performance computing architectures. Our timing results indicate that future optimization

work should in particular focus on further improvements of the intranode performance on

multi-core machines.
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III. APPLICATION TO BISMUTH MONOHYDRIDE

The electronic and vibrational spectra of the bismuth monohydride (BiH) molecule have

been studied extensively both by experiment [40–46] and theory [47–52] in the past. Here we

turn our attention to a characteristic feature of the lower electronic spectrum of BiH, namely

the spin-orbit splitting between the ground state and the first excited state. These two states

are characterized by different occupations of the valence π1/2 and π3/2 Kramers pairs. An

accurate description of the electronic structure of this molecule consequently necessitates

a consistent treatment of both electron correlation and relativistic effects. The deviations

of the previous calculations from the experimental splitting also suggest that spin-orbit

interaction should be included in the Hartree-Fock step, which has not been the case in

most of the earlier studies [47–50, 52] (the last study [51] was a 2c relativistic effective core

potential study, but as the authors write themselves, with a too small basis set for accurate

numbers).

The valence electronic configuration of the scalar-relativistic approximate 3Σ− ground

state of BiH can be written in terms of scalar-relativistic orbitals as σ2π2. Because of the

strong spin-orbit coupling the Λ-S coupling picture is less appropriate, and following Hund’s

coupling case (c) the 3Σ− state splits into two components: X 0+ and A 1. The remark-

ably large separation of these two states amounts to Te = 4923 cm−1[53]. In the approxi-

mate λω-projection notation the configurations of these states are given by σ2
1/2π

2
1/2π

0
3/2 and

σ2
1/2π

1
1/2π

1
3/2 occupation patterns, respectively.

We have performed four-component MRCI calculations based on the Dirac-Coulomb

Hamiltonian at various CI excitation levels where we aim at a precise theoretical deter-

mination of Te as well as other spectroscopic data for X 0+ and A 1. The results are
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compared to previous theoretical work as well as to experimental measurements. The ef-

fect of the spin-other-orbit interaction has in addition been estimated by comparing with a

two-component Hamiltonian (X2C) (see Sec. IIA) which includes these terms in the atomic

mean-field approximation [24–26].

A. Computational Details

All calculations were performed in C∗
2v double group symmetry. For Bi we used Dyall’s

triple-ζ and quadruple-ζ basis sets [54–56] in uncontracted form. We also included the listed

valence- and core-correlating functions for the Bi 5d, 6s and 6p shells. For hydrogen we

employed Dunning’s cc-pVTZ and cc-pVQZ basis sets [57] in uncontracted form.

Kramers-paired spinors for the subsequent MRCI correlation calculations were obtained

from all-electron average-of-configuration (four- or two-component) Hartree-Fock (HF) cal-

culations. An open-shell state-averaging over all electronic configurations with two electrons

distributed among two Kramers pairs (2in2) ensures a balanced description of all electronic

states arising from the π1/2π3/2 occupation manifold that includes the states of interest X

0+ and A 1.

The GAS setups for the MRCI studies are discussed in the following section III B and

compiled in Table VI. Two active space schemes were taken into consideration, both of

restricted-active-space type with a maximum number of holes in GAS I, no restrictions in

GAS II, and with a maximum number of holes in GAS III. Our notation follows the scheme

“GAS I(GAS II)GAS III” and is most easily explained with an example: “SD10(6in5)MRSD”

would mean max 2 holes in 5 Kramers pairs, a reference complete-active-space of 6 electrons

in 5 Kramers pairs (plus of course excitations from GAS I and excitations to GAS III), and

finally all possible singles and doubles excitations into the GAS III Kramers pairs from all the
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reference configurations formed by the restrictions on GAS I and GAS II. In the first scheme

the Bi 6s1/2, σ1/2, π1/2 and π3/2 as well as the antibonding σ
∗
1/2 were placed in a Complete-

Active-Space (GAS II) yielding a distribution of six electrons in five Kramers pairs (6in5).

Core-valence and core-core correlation were included by allowing up to two holes in the Bi

5d Kramers pairs (GAS I). Furthermore, singles and doubles as well as combined triples and

quadruples excitations from the combined spaces GAS I and GAS II into the virtual spinor

space make it possible to recover essential parts of dynamic correlation. In the correlation

step we limited the active virtual spinor space (GAS III) to an energy threshold of 5 Eh and

18 Eh, respectively, which is a routinely performed procedure when uncontracted basis sets

are used [9]. We have nevertheless tested the ensuing errors that may be introduced in the

present case (see Sec. III B for more details).

The second active space scheme listed in Table VI was primarily chosen for benchmark

and calibration purposes. It gives a reasonable description of the molecule only close to the

equilibrium bond distance. The minimal second CAS-like GA space (GAS II) comprised

the two Kramers pairs π1/2 and π3/2. Core-valence correlation was taken into account by

allowing up to two holes in the Bi 6s1/2, σ1/2 (SD4(2in2)MRSD) and, in addition, Bi 5d

Kramers pairs (SD14(2in2)MRSD).

We have performed single-point energy calculations at various internuclear distances close

to the experimentally known equilibrium both of the ground and the first excited state,

as the main objective is a theoretical estimate of the X 0+-A 1 spin-orbit splitting. A

polynomial fitting procedure was used to fit the electronic potentials. Spectral constants

were determined by solving a one-dimensional Schrödinger equation of nuclear motion based

on the fitted potentials. The resulting spectroscopic constants for both states, X 0+ and A

1, are compiled in Table VII.
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B. Spectroscopic constants for the X 0+ and A 1 states

We begin our discussion with the large-core SD4(2in2)MRSD calculations where the Bi

5d Kramers pairs were kept in the frozen core, i.e., always remaining doubly occupied. At

this computational level the determined equilibrium distance (Re) and harmonic frequency

(ωe) using a triple-ζ basis set (TZ) are in good agreement with the respective quadruple-ζ

(QZ) values. In comparison with experiment these calculations tend to slightly overestimate

Re by up to 0.09 Å and ωe by 20-80 cm
−1. Using the smaller TZ basis set, the adiabatic

excitation energy Te for the spin-orbit split X 0+ and A 1 states is, on the other hand,

underestimated by more than 300 cm−1 with regard to the experimental data. In the fol-

lowing we investigate in more detail various contributions that may improve our theoretical

predictions, in particular for Te.

As a first step we added the ten 5d outer-core electrons to the correlation treatment

(SD14(2in2)MRSD computational scheme). In both cases, TZ and QZ, the explicit correla-

tion of the 5d Kramers pairs leads to a significant bond contraction of about 0.03-0.04 Å.

The effect on Te is inconsistent. The spin-orbit splitting decreases with the TZ basis set

while it increases with the QZ set. This reverse effect may partially be explained with a too

low energy threshold for the deletion of virtual spinors: Raising the cutoff limit to energies

higher than 18 Eh effectively yields a considerable correction for Te of ≈ 100 cm−1. The

effects on bond length and harmonic frequency are, however, comparatively small. With the

QZ set, on the other hand, vertical (T1.805
v ) and adiabatic excitation energies increase at the

higher cutoff threshold in general only slightly by 34-60 cm−1 and 29-47 cm−1, respectively.

Summarizing, the differences in particular for the excitation energies reveal that with the

triple-ζ basis sets and the lower truncation threshold one does not yet come close enough to
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basis set saturation for the Bi 5d shell. We have confirmed this by analyzing the functions

and their correlating character included in the respective virtual spaces.

We also examined the effect of higher excitations (SD14(2in2)MRSDTQ). At this level

up to four particles in GAS III are taken into consideration which in particular allows for

important quadruple excitations with respect to the reference space. These higher-order

contributions have a great effect on Te, yielding an increase of 166 cm
−1 for the TZ basis.

Since we have not been able to compute Te for the QZ set at this level due to limited

computational resources, we instead compare the vertical excitation energy T1.805
v = 4923

cm−1 with its corresponding value of T1.805
v = 4723 cm−1 at the SD14(2in2)MRSD level. The

substantial increase of T1.805
v points to the importance of higher excitations for an adequate

description both of the shape and relative position of the respective electronic potentials

wells.

Let us now consider the larger (6in5) active-space calculations that by definition in-

clude some of the higher excitations mentioned above. In these large-space calculations

(S10(6in5)MRSD and SD10(6in5)MRSD; high cutoff threshold of 18 Eh) deviations from

the experimental data are significantly reduced to 0.008 - 0.015 Å and ≈ 20 cm−1 for the

bond length and harmonic frequency, respectively. We thereby find a considerably large

bond elongation of up to 0.02 Å (TZ basis) compared to the previously discussed (2in2)

model. Likewise, the computed spin-orbit splitting X 0+ - A 1 increases by about 50-80

cm−1 for both basis sets. Taking the SD10(6in5)MRSD/QZ calculation as a reference we

get as close as ≈ 143 cm−1 to the experimental value of 4923.2 cm−1 [53] for the spin-orbit

splitting. A direct comparison of our S10(6in5)MRSD/QZ with the SD10(6in5)MRSD/QZ

results furthermore indicates that core-valence correlation (S10(6in5)MRSD) accounts for

the largest corrections to all spectroscopic constants (Re, ωe and Te) determined from the
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corresponding valence CI (SD4(2in2)MRSD/QZ) calculation.

Finally, we comment in more detail on how our present results compare to earlier theo-

retical studies on BiH. At the SD10(6in5)MRSD/TZ and SD10(6in5)MRSD/QZ levels (high

cutoff threshold of 18 Eh each), our computed bond lengths and harmonic frequencies for

the ground- X 0+ and first excited state A 1 are in good agreement with the corresponding

data reported by Stoll et al. [52]. They used relativistic energy-consistent pseudopotentials

in a combined two-component MRCIS/one-component CCSD(T) approach to compute the

spectroscopic constants. Our present calculations achieve this in a rigorous “one-step” man-

ner where electron correlation and relativistic effects are treated on the same footing. Our

new MRCI data clearly outperform those from other previous theoretical works [48–50] as

can be seen from Table VII.

In these studies in particular the theoretical prediction of the spin-orbit splitting suffered

from a distinct underestimation. Alekseyev et al. [49] calculated a splitting of 4303 cm−1

using a spin-orbit MRCISD method based on spin orbitals. In their approach spin-orbit

effects are introduced a posteriori in a perturbative fashion. In the relativistic two-component

MRCIS calculations of Stoll et al. [52] spin-free state shifts obtained from one-component

CCSD(T) calculations are added to the reference space. They report values for the splitting

with deviations in the range of 300-600 cm−1 from the experimental value of 4923 cm−1 [53]

where the respective magnitude of the splitting varies substantially with the number of state

shifts added.

Comparing with these earlier studies our computed spin-orbit splitting of 4780 cm−1

represents the best theoretical estimate. As shown by our benchmark SD14(2in2)MRSDTQ

calculations, we may expect the splitting to increase through the inclusion of higher exci-

tations. On the other hand, taking into account spin-other orbit effects will give a negative
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contribution on the order of ca. 60 cm−1 to the X 0+ - A 1 splitting as can be estimated

from our X2C-Gaunt SD14(2in2)MRSD calculations. To summarize, a consistent theoretical

prediction of the experimentally known splitting between the X 0+ and A 1 states of BiH

necessitates an extensive and simultaneous treatment of electron correlation and relativistic

effects.

In this context, it is worthwhile to mention that Sørensen and co-workers [58] calculated

in a very recent work ground-state spectroscopic constants for BiH using a four-component

multi-reference coupled cluster (CC) ansatz. As they use the identical TZ basis with a

slightly higher energy cutoff for the virtual spinor space of 27 Eh we can compare to our

computed data. They obtain a bond length of Re = 1.8030 Å and a harmonic frequency

of ωe = 1694.599 cm−1 at the CCSD(T) level correlating 16 electrons. Their findings agree

very well with our (high cutoff threshold) SD10(6in5)MRSD/TZ and SD10(6in5)MRSD/QZ

results, confirming the good quality of our present MRCI calculations.

IV. SUMMARY AND PROSPECTS

In this paper we present the parallel implementation of the relativistic large-scale configu-

ration interaction program LUCIAREL. It is general in the sense that it is applicable with any

one-, two-, or four-component Hamiltonian available in the DIRAC08 program package [14]

and also any Hamiltonian added to the program in the future. The implementation takes

advantage of the general active space (GAS) concept for the definition of excitation schemes,

thereby allowing calculations from configuration interaction singles up to Full CI. We have

outlined central aspects of our parallel implementation based on a static load balancing

scheme integrated in a distributed data model.

The performance of the new parallel code has been evaluated in extensive benchmark
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studies on two different system architectures: a massively parallel IBM p6 system and a

standard Linux-based cluster. An excellent parallel performance is achieved on both systems

with up to 16 processors. A good scaling is also found on the IBM system for a larger number

of CPUs. With the present work we have therefore substantially extended the applicability of

parallel relativistic four- and two-component large-scale CI calculations on modern computer

architectures.

The new parallel multireference CI (MRCI) program has been employed in a study of

the ground and first excited states of the bismuth monohydride molecule, X 0+ and A 1.

The investigation includes an assessment of basis set dependencies as well as correlation

and relativistic effects on the spectroscopic constants of the two states. We demonstrate

the applicability of our new parallel code by means of employing reasonably large basis

sets in connection with specially tailored active spaces. The computed bond lengths and

harmonic frequencies are in good agreement with available experimental and theoretical

data. The spin-orbit splitting between the ground- and excited state is underestimated by

≈ 140 cm−1. Nevertheless, our value is at present, to the best of our knowledge, the most

accurate theoretical estimate.

As the completion of our parallelization work for configuration interaction we currently

work on a complete parallel implementation of the recently presented four-component

Kramers-restricted multiconfiguration self-consistent-field (KR-MCSCF) module [20, 27].

In this ongoing work, we exploit in particular the close resemblance of σ-vector and one-

and two-particle density computations within the excitation class formalism implemented in

LUCIAREL. In addition, a thorough investigation of the performance of, properly leveraged,

one-sided communication routines will be included with regard to the parallel efficiency

of our completed parallel MRCI/KR-MCSCF program package. Furthermore, we work at
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present on an appropriate vector compressing scheme following the idea of Ansaloni et al.

[59]. A suitable packing procedure is expected to yield an effective reduction of the disk load

in large-scale applications.
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TABLE I: General Active Spaces (GAS) and occupation constraints for BiH ground state calcu-

lations in C∗
2v double-group symmetry (applied subgroup: C∗

2) using uncontracted triple-ζ type of

basis sets (see text). The minimum and maximum number of electrons are accumulated values,

i.e., by adding the number of electrons in this and all preceding GA spaces. The active spaces for

these benchmark studies have not been constructed according to physical arguments but to mimic

typical realistic large-scale calculations.

Parallel Performance Calculations A

GA Space Kramers pairs per irrep Min./max. accum. el.

E1/2 Min. el. Max. el. Shell types

I 5 8 10 5d

II 6 14 16 6s1/2, σ1/2, σ
∗
1/2; π1/2, π3/2 + 1 virt.

III 69 16 16 virtual Kramers pairs

Parallel Performance Calculations B

GA Space Kramers pairs per irrep Min./max. accum. el.

E1/2 Min. el. Max. el. Shell types

I 6 10 12 5d, 6s1/2

II 4 13 16 σ1/2, σ
∗
1/2; π1/2, π3/2

III 54 16 16 virtual Kramers pairs



TABLE II: Parallel performance calculations (test case A) on the ground state of BiH

(239 472 310 determinants) running on the IBM AIX-Power6 cluster with 32 SMT on each SMP

node. The measured timings are wall times exclusively.

NProc Hbn computation [s] speedup Time per iteration [s] speedup

1 17636 1.00 17940 1.00

2 8496 2.08 8773 2.05

4 4320 4.08 4608 3.89

8 2186 8.06 2354 7.62

16 1128 15.63 1217 14.74

32 554 31.83 659 27.22

64 314 56.17 388 46.24



TABLE III: Parallel performance calculations (test case B) on the ground state of BiH

(428 014 958 determinants) running on the IBM AIX-Power6 cluster with 32 SMT on each SMP

node. The measured timings are wall times exclusively.

NProc Hbn computation [s] speedup Time per iteration [s] speedup

1 42105 1.00 43099 1.00

2 21087 2.00 21940 1.96

4 10924 3.85 11264 3.83

8 5309 7.93 5566 7.74

16 2713 15.52 2848 15.13

32 1385 30.40 1506 28.62

64 675 62.38 840 51.30



TABLE IV: Parallel performance calculations (test case A) on the ground state of BiH

(239 472 310 determinants) running on the Linux cluster with 4 cores on each node, e.g. 32

processors = 8 (nodes) × 4 (cores). The measured timings are wall times exclusively.

NProc Hbn computation [s] speedup Time per iteration [s] speedup

1 19050 1.00 19914 1.00

2 9683 1.97 11011 1.81

2a 9578 1.99 9997 1.99

4 6595 2.89 8069 2.47

4b 4850 3.93 4922 4.05

8 3529 5.40 4057 4.91

8c 2486 7.66 2504 7.95

16 1836 10.38 2040 9.77

16d 1283 14.85 1291 15.43

32 934 20.40 1038 19.19

64 549 34.70 609 32.70

128 323 58.98 378 52.68

a calculation on 2 nodes using one core on each node.

b calculation on 4 nodes using one core on each node.

c calculation on 8 nodes using one core on each node.

d calculation on 16 nodes using one core on each node.



TABLE V: Parallel performance calculations (test case B) on the ground state of BiH

(428 014 958 determinants) running on the Linux cluster with 4 cores on each node, e.g. 32

processors = 8 (nodes) × 4 (cores). The measured timings are wall times exclusively.

NProc Hbn computation [s] speedup Time per iteration [s] speedup

1 39683 1.00 40820 1.00

2 19864 2.00 21541 1.90

2a 19821 2.00 20366 2.00

4 14010 2.83 15834 2.58

4b 10143 3.91 10322 3.96

8 7126 5.67 7970 5.12

8c 5084 7.81 5198 7.85

16 3723 10.66 4013 10.17

16d 2595 15.29 2623 15.56

32 1940 20.46 2091 19.52

64 1266 31.35 1299 31.42

128 748 53.05 843 48.42

a calculation on 2 nodes using one core on each node.

b calculation on 4 nodes using one core on each node.

c calculation on 8 nodes using one core on each node.

d calculation on 16 nodes using one core on each node.



TABLE VI: General Active Spaces (GAS) and occupation constraints for BiH ground- and excited-

state calculations in C∗
2v double-group symmetry (applied subgroup: C∗

2) using uncontracted triple-ζ

and quadruple-ζ type of basis sets (see text), respectively. The minimum and maximum number of

electrons are accumulated values, i.e., by adding the number of electrons in this and all preceding

GA spaces.

(6in5)MRCI Calculations

GA Space Kramers pairs per irrep Min./max. accum. el.

E1/2 Min. el. Max. el. Shell types

I 5 8a 10 5d

II 5 14 16 6s1/2, σ1/2, π1/2, π3/2, σ
∗
1/2

III Xb,c 16 16 virtual Kramers pairs

(2in2)MRCI Calculations

GA Space Kramers pairs per irrep Min./max. accum. el.

E1/2 Min. el. Max. el. Shell types

I 7 12 14 5dd, 6s1/2, σ1/2

II 2 14e 16 π1/2, π3/2

III Xb,c 16 16 σ∗
1/2, virtual Kramers pairs

a in all S10(6in5)MRSD calculations the minimum accumulated number of electrons in this

GA space is nine.

b triple-ζ basis set combination: X = 55 (5 Eh threshold) and 81 (18 Eh threshold).

c quadruple-ζ basis set combination: X = 96 (5 Eh threshold) and 154 (18 Eh threshold).

d the 5d Kramers pairs are always doubly occupied in the (2in2)MRSD computations.

e in all SD14(2in2)MRSDTQ calculations the minimum accumulated number of electrons in this

GA space is 12.



TABLE VII: Spectral constants for 209Bi1H - ground and excited states from the present MRCI

study in comparison with previous theoretical calculations and experimental data. For details on

the basis sets and excitation schemes used in the computations the reader is referred to the text.

Active Method/basis set X 0+ A 1 T1.805
v [cm−1] Te [cm

−1]

electrons Re [Å] ωe [cm
−1] Re [Å] ωe [cm

−1]

This work:

6 SD4(2in2)MRSD/TZ 1.8172 1713.104 1.8038 1752.954 4585 4591

6 SD4(2in2)MRSD/QZ 1.8199 1707.807 1.8061 1748.966 4646 4655

16 SD14(2in2)MRSD/TZ 1.7763 1803.138 1.7628 1853.459 4514 4467

16 SD14(2in2)MRSD/QZ 1.7893 1782.391 1.7744 1835.804 4723 4689

16 X2C-G SD14(2in2)MRSD/TZa 1.7763 1804.416 1.7631 1854.025 4454 4407

16 SD14(2in2)MRSD/aTZb 1.7770 1797.993 1.7633 1849.860 4519 4472

16 SD14(2in2)MRSD/TZc 1.7815 1805.579 1.7672 1858.660 4611 4568

16 SD14(2in2)MRSD/QZc 1.7800 1817.967 1.7653 1873.410 4750 4702

16 SD14(2in2)MRSDTQ/TZ 1.7773 1795.835 1.7629 1850.283 4683 4633

16 SD14(2in2)MRSDTQ/QZ 4923

16 SD10(6in5)MRSD/TZ 1.7942 1706.301 1.7810 1746.107 4530 4509

16 SD10(6in5)MRSD/TZc 1.8011 1700.410 1.7871 1741.892 4631 4617

16 S10(6in5)MRSD/QZ 1.7980 1662.823 1.7832 1706.307 4791 4773

16 SD10(6in5)MRSD/QZ 1.8013 1665.429 1.7855 1713.253 4777 4761

16 S10(6in5)MRSD/QZc 1.7877 1688.046 1.7730 1733.506 4851 4820

16 SD10(6in5)MRSD/QZc 1.7903 1701.469 1.7747 1753.848 4811 4780

Previous work:

16 CCSD(T) (TZ) [58] 1.8030 1694.599

24/6 CCSD(T)/MRCIS [52] 1.800 1716 1.790 1741 4328

6 CISD [48] 1.90 1619

6 MRD-CI [49] 1.867 1632 1.854 1618 4303

6 SICCI [50] 1.868 1584

experiment [53] 1.809 1698.9 1.788 1734.4 4923.2

experiment [36] 1.805 1636 1.791 1669 4917

a Exact-Two-Component Hamiltonian including Gaunt corrections.

b augmented basis sets for Bi and H have been applied in these calculations.

c a higher cutoff in the virtual space of 18 Eh has been used.
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Figure captions

Figure 1: Static TTSS -block assignment among all available processes as the cen-

tral parallelization pattern. Each number corresponds to a unique pro-

cess contained in the global group of all processesMPI COMM WORLD .

The process holding the real TTSS block also treats the corresponding

non-zero imaginary part if applicable (complex matrix double groups).

Figure 2: Iterative generalized Davidson diagonalization method flow chart as im-

plemented in LUCIAREL.

Figure 3: Shared-memory access pattern for memory demanding quantities. Each

number corresponds to a unique process that is contained in each intra-

node group.

Figure 4: Pseudo-code visualization of the evaluation of the linear transformation

σn =Hbn, as implemented in LUCIAREL. All global communications are

in red in the on-line version.

Figure 5: Parallel performance of the parallel LUCIAREL code in a calculation on

the ground state of BiH running on an IBM p6 575 cluster. The CI

expansion spans 428 014 958 determinants.

Figure 6: Parallel performance of the parallel LUCIAREL code in a calculation on

the ground state of BiH running on a Linux cluster. The CI expansion

spans 428 014 958 determinants.
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1: For each process (which is assigned a specific subset of all TTSS blocks):

2: loop {TTSS blocks}
3: if global file system then

4: if my bn-TTSS block then

5: store block into the globally accessible file BBLOCKS

6: end if

7: else

8: if my process is node master then

9: if this bn-TTSS block is on my node then

10: scatter this block to relevant node masters with MPI bcast

(unless one-sided communication is used)

11: else if this block is needed for my node then

12: gather this bn-TTSS block from another node master

using either MPI bcast or MPI get

13: store block into the intranode specific file BBLOCKS

14: end if

15: end if

16: end if

17: end loop[TTSS blocks]

18: loop {my MK values in σn vector}
19: loop {my σ-batches of σn-TTSS blocks}
20: loop {my ΔMK = −2,−1, ...,+2 values in bn vector}
21: loop {my b-batches of bn-TTSS blocks}
22: read this b-batch from the BBLOCKS file

23: loop {all my connecting bn-TTSS blocks in current b-batch}
24: loop {my σn-TTSS blocks in current σ-batch}
25: loop {excitation types TH for a given Hamiltonian}
26: if σn-TTSS block connects to bn-TTSS block for this TH type then

27: fetch TH-type specific integral block

28: if shared-memory mode then

29: fetch integral block from shared intranode memory using MPI get

30: else

31: fetch integral block from local main memory

32: end if

33: add contribution to current σn-vector TTSS block

34: end if

35: end loop[excitation types TH for a given Hamiltonian]

36: end loop[my σn-TTSS blocks in current σ-batch]

37: end loop[all my connecting bn-TTSS blocks in current b-batch]

38: end loop[my b-batches of bn-TTSS blocks]

39: end loop[my ΔMK values in bn vector]

40: end loop[my σ-batches of σn-TTSS blocks]

41: end loop[my MK values in σn vector]

Figure 4, Knecht et al., Journal of Chemical Physics
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We present high-level four-component coupled cluster and multireference configuration interaction calculations
of potential energy curves, dipole moment, Franck-Condon factors and spectroscopic constants of the newly
formed RbYb molecule. From finite-field calculations we obtain an electric dipole moment for RbYb of
almost 1 D. In combination with its magnetic dipole moment this makes RbYb an excellent candidate for
trapping and for studying dipolar interaction in the ultracold regime. Significant Franck-Condon factors are
found between the rovibronic ground state and the lowest rovibrational levels of the first excited 2Σ1/2

+ state
but also between a broad range of rovibrational levels of the 2Π1/2 and 2Π3/2 states. This allows for several
two-step approaches to reach the rovibronic ground state after initial photoassociation.

1. Introduction

A number of groundbreaking achievements has been reported
from the field of cold and ultracold molecules, and ongoing
investigations bear the potential for yet further findings of
fundamental importance.1 These range from the production of
Bose-Einstein condensates (BECs)2 to the striving for a
controlled chemistry at the quantum level3 and the possibility
of testing, e.g., fundamental symmetries in nature through
measurements of a postulated electric dipole moment (EDM)
of an electron4,5 or the space-time variation of fundamental
constants such as the fine-structure constant R.6,7 The experi-
mental work for producing (ultra)cold molecules has to the date
been conducted in a variety of ways, such as photoassociation
(PA),8 buffer gas cooling (sympathetic cooling),9 Stark decelera-
tion of polar molecules via time-modulated electric fields,10 and
magnetically tunable Feshbach resonances.11

Theoretical contributions to the field of (ultra)cold molecules
are of value in many different respects. Among the most
important is the determination of accurate molecular potential
energy curves (PECs) of ground and relevant electronically
excited states. These potentials are often required to be known
at both short and long range.8 At long-range, atom-atom
interactions are typically evaluated by perturbation theory,
whereas at short range advanced methods of molecular electronic
structure theory come into play. In addition to the spectral
constants which may be extracted directly from the short-range
potentials (equilibrium bond lengths, harmonic vibrational
frequencies, dissociation, and excitation energies),12-14 vibra-
tional states and Franck-Condon factors (FCFs),15 molecule
formation rates,16 and electric properties such as permanent
EDM,17,18 transition dipole moments,19 and static polarizabilities
are of interest and have been determined by theoretical methods.

A large fraction of investigated systems in the (ultra)cold
molecular sciences is composed of alkali metal diatomics. The

RbYb molecule belongs to a new class of heteronuclear
diatomics that due to their unpaired electron(s) may be trapped
and manipulated using magnetic fields.20 They are, for example,
promising candidates for an experimental search for a permanent
electric dipole moment of the electron or for producing lattice-
spin models21 for quantum computing. Recently, the thermal-
ization of various bosonic and fermionic Yb isotopes through
collisions with ultracold Rb has been shown, giving first insights
into the long-range behavior of the RbYb potential.22 On the
basis of this work, the controlled production of electronically
excited RbYb* molecules by single-photon photoassociation
techniques has been demonstrated,20 and continued efforts
include the conservative trapping of the Rb-Yb mixture.
Ultimately, the investigations aim at a molecular BEC with
adjustable dipolar interaction and a new approach to measuring
the electron EDM. The prospects have motivated us to explore
the electronic structure of the RbYb molecule with reliable and
accurate relativistic electronic structure methods.

In this paper we present, to the best of our knowledge, the
first theoretical investigation of the RbYb molecule. The focus
of this investigation has been on a simultaneously accurate
description of the ground and lowest electronically excited states
and to propose possible ways for a photoassociation process
leading to the rovibronic ground state. Since two heavy atoms
are involved, we apply quantum-chemical methods that treat
electron correlation and relativistic effects on the same footing.
Relativistic coupled cluster and configuration interaction ap-
proaches are used in a complementary fashion, the details of
which are described in the following section. In the main body
of the paper (section 3) we outline a way of achieving high
accuracy by first a systematic study of the ground and excited
states of the atoms and, in addition, of the electronic ground
state of the molecule. Based on these results, a final multiref-
erence (MR) CI model expansion is chosen that can deliver
accurate spectroscopic values for the states in question. We
present and discuss electronic molecular potentials obtained with
this MRCI model and point to possible pathways to the
rovibronic ground state based on the derived FCFs. We
furthermore present the computed dipole moment function of
the ground state showing that RbYb also possesses a substantial
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electric dipole moment along with a magnetic dipole moment
due to the unpaired electron. In the final section we summarize
and draw conclusions.

2. Theory and Computational Details

2.1. Hamiltonian Operators. The spectroscopic properties
of RbYb are expected to be significantly influenced by
relativistic effects and electron correlation. For the ground state
2Σ1/2

+ scalar-relativistic effects cause a large contraction and
stabilization of the 6s spinors on Yb and a smaller one of the
5s spinors on Rb. For the lowest excited states we expect a
significant spin-orbit splitting for Rb5p1(2P3/2,1/2) and a large
spin-orbit coupling (SOC) for Yb6s16p1(3P2,1,0) and Yb6s16p1(1P1).
We have therefore decided to carry out this theoretical inves-
tigation in the more rigorous 4-component framework using the
Dirac-Coulomb (DC) Hamiltonian for calculations including
excited states and Dyall’s spinfree Hamiltonian23 for ground-
state-only calculations. To correctly describe the SOC of the
excited states, the DC Hamiltonian suffices since it contains
the leading spin-orbit terms for heavy elements, namely the
one-electron spin-orbit and the two-electron spin-same-orbit
terms. The effect of the spin-other-orbit term, which is derived
from the Gaunt operator and is therefore not included in the
DC Hamiltonian, has been examined at the SCF level. It was
found that the change in the splitting of the Rb5p(P3/2,1/2) and
Yb6p(P3/2,1/2) levels decreased by 0.72 and 19.8 cm-1, respec-
tively. This reduction amounts to a change for Rb5p(P3/2,1/2) of
1.7% and for Yb6p(P3/2,1/2) of 1%, which is still below the
accuracy we can typically achieve for relative energies. Includ-
ing the full Breit interaction has been shown to have only little
influence on the excitation energies of Yb24 and on the alkali
metal atoms in general.25

2.2. Correlation Methods and Setup. For the study of
ground-state spectroscopic and electric properties we employed
the RELCCSD module26,27 in the DIRAC quantum chemistry
program package,28 which can perform CCSD and CCSD(T)
calculations. The dominant relativistic contributions to the
ground state are scalar relativistic. We therefore applied Dyall’s
spinfree Hamiltonian23 in the coupled cluster calculations.
Dirac-Coulomb Hartree-Fock (DCHF) calculations were
performed with an averaging of three electrons in two Kramers
pairs (3in2) consisting of the Rb 5s and Yb 6s spinors.
Additional test calculations were carried out in a spin-dependent
framework employing either a (3in2) or (3in5) averaging. In
the latter DCHF setup three electrons were distributed among
five Kramers pairs consisting of the Rb 5s and Yb 6s6p spinors.
These ground-state coupled cluster calculations served as a
benchmark for the corresponding MRCI calculations.

The calculation of excited-state wave functions and vertical
as well as adiabatic excitation energies has been performed with
the relativistic large-scale MRCI program LUCIAREL.29-31 Like
in the CIDBG32 and SOCI33 in the COLUMBUS code, double
group symmetry is used. The recent parallel implementation34

of LUCIAREL has opened for the possibility to treat larger CI
expansions (>108 determinants) within a reasonable time frame
on standard Linux-based clusters which has also been demon-
strated for the SOCI program.35

The CI program LUCIAREL operates on the basis of a fully
variational treatment of any spin-dependent two- or four-
component Hamiltonian that is available in the present developer
version of the DIRAC package.28 It furthermore takes advantage
of the concept of generalized active spaces (GAS)29 to define
suitable orbital spaces thereby allowing for arbitrary occupation
constraints. Molecular spinors based on a true two- or four-

component framework can be obtained from all-electron self-
consistent field (SCF), Kramers-restricted multiconfigurational
self-consistent field (KR-MCSCF),36 or natural MP2 spinor37

calculations. The string-driven MRCI29-31,38 as well as the
MRCC17,39-42 methods are an alternative to the Tensor Contrac-
tion Engine43 in generation of higher-order methods or code
for more complex calculations.

To obtain accurate excitation energies, the initial DCHF step
was performed with a (3in5) averaging of states. A (3in8)
averaging, where the Rb 5p spinors are included, was not
possible along the entire potential energy curve due to strong
mixing with the Yb 5d spinors. The Rb 5p spinors were,
however, included in the correlation step in a (3in8) MRCI
excitationschemethat is in the followingdubbedasS6_(3in8)_SD.
Our notation follows the scheme “GAS I_(GAS II)_GAS III”
and is most easily explained by an example: “S6_(3in8)_SD”
means that at most 1 hole among the 6 electrons in 3 Kramers
pairs (in this case: Rb 4p spinors) is allowed, 3 electrons are
distributed in 8 Kramers pairs in all possible ways (plus of
course excitations from GAS I to GAS II), and finally that all
possible single and double excitations into GAS III Kramers
pairs are generated from the reference configurations obeying
the constraints put on GAS I and GAS II. As discussed in more
detail in section 3.1, the inclusion of the Rb 4p spinors is
required in the correlation step to obtain a good description of
the lowest three atomic channels.

In addition to our thorough investigation of the four lowest
molecular electronic states of RbYb, we show in Figure 1 a
qualitative picture of the low-lying molecular electronic spec-
trum including respective atomic dissociation channels. In these
calculations, denoted as SDT3 which corresponds to a Full CI
calculation with three electrons, we truncated the space of virtual
spinors at 2.0 Eh. It should be noted that the Rb4d1(2D5/2,3/2) states
should be below the Yb6s16p1(3P2) states in the atomic limit which
is not the case here due to the choice of DCHF averaging.

As full linear symmetry is not available yet in the present
LUCIAREL implementation the calculations, have been carried
out in the Abelian sub double group C2*. The assignment of the
Ω quantum number for each individual electronic state has been
accomplished by means of calculating the expectation value for
the one-electron operator ĵz ) l̂z + ŝz. This option has become
available with the very recent implementation of a general CI
property module44 capable of treating basically any one-electron
operator that is implemented in the program package.28

2.3. Basis Sets and Number of Correlated Electrons. All
calculations were performed using uncontracted basis sets. For
the ground-state coupled cluster calculations the aug-cc-pVTZ
basis set for Yb (30s24p16d13f4g2h)45 from Gomes and Dyall
was chosen. It includes correlating functions for outer- and inner-
valence shells down to the Yb 4f and polarizing functions for
these. For Rb (29s21p15d2f)46 Dyall’s aug-cc-pVTZ basis set,
which includes correlating and polarizing functions down to Rb
4s4p, was used. For a description of the general procedure of
how to derive these functions see for example ref 47. In the
following this basis set will be referred to as (ext_bas).

The effect of changing the number of correlated electrons
has been examined at the CCSD and CCSD(T) levels. Either
nine electrons from the Rb 4p5s and Yb 6s spinors were treated
explicitly in the correlation step or 23 electrons were used, where
the Yb 4f spinors were then included in addition. As shown in
sections 3.1 and 3.2, the differential effects of correlating the
Yb 4f electrons were found to be minor. In contrast, the
correlation of the Rb 4p electrons had significant impact on the
energy separation of the atomic levels and on the equilibrium

B J. Phys. Chem. A, Vol. xxx, No. xx, XXXX Sørensen et al.
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distance of the molecular ground state. We therefore decided
to correlate nine electrons (Rb 4p5s and Yb 6s) in the MRCI
calculations.

For the MRCI calculations the core-polarizing functions for
both atoms were omitted since no electric properties were
calculated. This reduced the size of the basis set (min_bas) to
(30s24p16d13f3g1h) for Yb and (28s20p14d1f) for Rb. The
truncation value for the virtual spinors in all correlated calcula-
tions was kept at 7.8 Eh since this threshold includes all
polarizing functions and, in addition, was still tractable for the
MRCI calculations. Spinors above this threshold are primarily
core-correlating and will therefore only give minor contributions
to valence spectroscopic values and electric properties.

2.4. Finite-Field Dipole Moment. The response of a mo-
lecular system to a weak external electric field ε can be treated
as a perturbation to the field-free case. If the energy is expanded
in a Taylor series around the field-free case

the first derivative of the energy E with respect to the external
electric field ε taken at ε ) 0 is the static dipole moment of the
molecule. Likewise the second derivative can be related to the
static polarizabilty and higher derivatives to higher-order
(hyper)polarizabilities.

With the finite-field technique these analytical derivatives are
approximated by a numerical derivative. To this end a small
external electric field of varying field strength is applied and
then a series of energy calculations is performed with these
fields. By applying fields in various directions, we can also
determine higher-order numerical derivatives, though these are
not as accurate as the analytical ones.

The ground-state dipole moment was calculated by applying
a finite electric field of varying strength along the bond axis
(chosen as z). The field strengths considered here were (0.0001,
(0.0002, and (0.0004 Eh e-1 bohr-1. From these seven points
a polynomial fit to the total field-dependent energy was made
to find the numerical derivative and thereby also the dipole

moment at a given internuclear distance. This was done at the
CCSD and CCSD(T) levels of theory with 23 explicitly
correlated electrons.

The advantage of the derivative technique is that it holds also
for approximate wave functions, which are typically dealt with
in quantum chemistry, unlike the evaluation of properties by
calculating expectation values in the Hellmann-Feynman
theorem, which differ from the correct value by the waVe
function force.48

2.5. Spectroscopic Values and Franck-Condon Factors.
A polynomial fitting procedure with exponents ranging from
-1 to +4 was used to fit the electronic ground- and excited-
state potentials around their respective minima. Spectroscopic
constants have then been determined by solving a one-
dimensional Schrödinger equation of nuclear motion using a
reduced mass calculated from isotopic abundance.49 The har-
monic frequency has been calculated from the second derivative
at the minimum. Vibrational wave function, eigenvalues, and
FCFs have been computed with the program LEVEL 8.0 by
LeRoy.15

2.6. Counterpoise Correction. As RbYb is a van der Waals
complex and therefore the ground state is very weakly bound
by dispersion forces, the basis set superposition error (BSSE)
may play a significant role in determining spectroscopic values
even in large and balanced basis sets50,51 due to the slow
convergence toward basis set saturation. This artifact has been
examined by a counterpoise (CP) correction, as suggested by
Boys and Bernardi52 for both ground and excited states, which
is the correct way of evaluating differential quantities.51,53,54 The
BSSE is defined in the usual manner

where EA(AB)(R) and EB(AB)(R) are the monomer energies
obtained in the full dimer basis (AB) at a given distance (R)
and EA and EB are the monomer energies in their respective
basis. Every point on the potential energy curve is thereby CP
corrected. The CP correction has been shown to be a very good
estimate for the BSSE in medium to large basis sets and to

Figure 1. Qualitative picture of the potential energy curves of the molecular electronic states constituting the lower electronic spectrum of RbYb.
Correlating atomic dissociation channels for the states are labeled. The computational level is CI SDT3 (see text for more details).

E(ε) ) E(ε ) 0) + dE
dε |ε)0

ε + 1
2

d2E

dε2 |ε)0
ε2 + ... (1)

BSSE(R) ) EA(AB)(R) + EB(AB)(R) - EA - EB (2)
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provide a smooth convergence of properties to the complete
basis set limit.55,56 Despite the apparent ease to eliminate a basis
set incompleteness artifact one should, however, be careful in
relying on this form of error compensation since a CP correction
will not improve the overall basis.

3. Results and Discussion

3.1. Qualitative Molecular Electronic Spectrum and Atomic
Calculations. Table 1 gives an overview over the atomic
configurations and terms as well as the associated molecular
states in the Λ-S coupling picture that are expected to form
the lower part of the electronic spectrum of RbYb. The
energetically close-lying valence-electronic Yb 6s and 6p shells
as well as the valence-electronic Rb 5s and low-lying Rb 5p,
4d, 6s, and 6p shells suggest a large variety of excited states
with angular momentum projection greater than zero within an
energetic range of ≈25 000 cm-1. As these states are affected
by spin-orbit interaction to first order in a perturbation theory
sense and as ytterbium is a heavy atom, the corresponding
splittings and mixings are expected to be sizable. We provide
in Figure 1 a qualitative survey of all molecular states correlating
to the three lowest atomic channels listed in Table 1. Comparing
the atomic-like excitation energies, computed at the CI SDT3
level of theory, with the experimentally available data, we find
a large deviation of ≈2000-3000 cm-1 for the lowest P
channels of both Rb and Yb. In contrast, the splitting among
the various J-states is reproduced rather well. These results
indicate that spin-dependent effects are taken into account
properly whereas significant parts of the differential electron
correlation are missing at this level of calculation. As we in
the present study turn our main attention to the ground and three
lowest excited states of RbYb, which are of particular impor-
tance for the experimental PA process,20 we further investigated
the effect of correlating the outer-core Rb 4p shell on the
excitation energies. Since alkali atoms are known to have easily
polarizable cores, we expect a considerable influence here.

Our calculated atomic and atomic-like excitation energies Te

for the lowest Rb 5s-5p transitions are compiled in Table 2
and atomic Yb 6s-6p transitions in Table 3. If core-valence
polarization from the Rb 4p shell is neglected in the calculation
of the lowest Rb 5s-5p transition, not only a considerable
underestimation of the excitation energies of almost 2000 cm-1

is found, as indicated in Table 2 for the atomic S1 (one electron
CI) and quasi-molecular SDT3 calculations, but also a too small
fine-structure splitting of the (2P3/2,1/2) state of 183(2) cm-1 in
comparison with the measured splitting of 237.6 cm-1. However,
taking into account single excitations from the outer-core Rb
4p shell (S6_(1in4)_SD) results in a significant improvement

toward the experimental values. Excitation energies and the fine-
structure splitting differ from the experimental data by about
40-60 cm-1 and 15 cm-1, respectively.

What about Te for the Rb 5p excitation computed at the quasi-
atomic limit (R ) 30 bohr) applying our MRCI S6_(3in8)_SD
model? It can be seen from Table 2 that in the atomic limit the
excitation energies are slightly shifted to higher energies by
about 22-26 cm-1 yet yielding an excellent spin-orbit splitting
of 218 cm-1. The excitation energies are in very good agreement
with the experimental data, exhibiting a maximum deviation of
83 cm-1 for the lower 2 0.5 state, and compare well to the two-
component MRCI results of Lim et al.57 using energy-consistent
pseudopotentials. Furthermore, the energetic difference of only
4 cm-1 between the sublevels of the J ) 1.5 atomic channel
indicates that we are almost in the atomic limit at an internuclear
distance of 30 bohr.

As a prospect for future studies on this system, we show our
atomic MRCI calculations on the Yb atom where we studied
the relevance of taking into account core-valence polarization
from the Yb 4f and 5p shells. If only the two Yb 6s valence
electrons are correlated (denoted as S2), transition energies for
the respective Yb 6s-6p excitation are consistently too low by
around 18%. The inclusion of the Yb 4f electrons in the
correlation step (S14_(2in4)_SD) yields some improvement.
However, only upon explicitly treating core-valence polariza-
tion from the Yb 5p shell (S20_(2in4)_SD) do we obtain
excitation energies that are in good agreement with the
experimental data. A further improvement is achieved by
extending the active space to comprise the Yb 6s, 6p, and 5d
shells (S20_(2in9)_SD). In this case, the deviations from the
experimental values are less than 60 cm-1, and the fine-structure
splitting is very well reproduced.

Summarizing, the SDT3 level is insufficient for an accurate
description even of the four lowest-lying dissociation channels
(Rb 5s1 + Yb 6s2 and Rb 5p1 + Yb 6s2). It may thus be used
only for obtaining a qualitative overview. In contrast, the
S6_(3in8)_SD scheme reproduces the energetic splitting of these
levels very well. Yb excitations do not play a major role in the

TABLE 1: Selection of Molecular Electronic States in the
Λ-S Coupling Picture and Associated Atomic Dissociation
Channels in an Energy Range of ≈25 000 cm-1 a

atomic (2S+1)LJ molecular (2S+1)ΛΩ

Rb5s1(2S1/2) + Yb6s2(1S0) 2Σ1/2
+

Rb5p1(2P3/2,1/2) + Yb6s2(1S0) 2Π3/2,1/2, 2Σ1/2
+

Rb5s1(2S1/2) + Yb6s16p1(3P2,1,0) 4Π5/2,3/2,1/2,-1/2, 2Π3/2,1/2, 4Σ3/2,1/2
+ , 2Σ1/2

+

Rb4d1(2D5/2,3/2) + Yb6s2(1S0) 2Δ5/2,3/2, 2Π3/2,1/2, 2Σ1/2
+

Rb6s1(2S1/2) + Yb6s2(1S0) 2Σ1/2
+

Rb5s1(2S1/2) + Yb6s15d1(3D3,2,1) 4Δ7/2,5/2,3/2,1/2, 2Δ5/2,3/2, 4Π5/2,3/2,1/2,-1/2,
2Π3/2,1/2, 4Σ3/2,1/2

+ , 2Σ1/2
+

Rb6p1(2P3/2,1/2) + Yb6s2(1S0) 2Π3/2,1/2, 2Σ1/2
+

Rb5s1(2S1/2) + Yb6s16p1(1P1) 2Π3/2,1/2, 2Σ1/2
+

a Molecular electronic states correlating to atomic channels with
intra-atomic Yb f-d excitations, e.g., Yb4f135d16s2 are not considered.

TABLE 2: Atomic and Atomic-Like (Values Taken at R )
30 bohr) Excitation Energies Te in cm-1 for the Lowest
Rb5s1(2S1/2) f Rb5p1(2P3/2,1/2) Transitions Calculated at the
MRCI S1, S6_(1in4)_SD, SDT3, and S6_(3in8)_SD Levels,
Respectivelya

method/Te

(cm-1)

J ) 0.5 J ) 0.5 J ) 1.5

Ω ) 0.5 Ω ) 0.5 Ω ) 1.5 Ω ) 0.5

S1 0 10692 10875 10875
S6_(1in4)_SD 0 12636 12857 12857
SDT3 0 10708 10890 10892
S6_(3in8)_SD 0 12662 12879 12883
experiment59 0 12578.95 12816.55 12816.55

a Details on the computational levels are given in the text.

TABLE 3: Atomic Excitation Energies Te in cm-1 for the
Lowest Yb6s2(0S0) f Yb6s16p1(3P2,1,0) Transitions Calculated at
the MRCI S2, S14_(2in4)_SD, S20_(2in4)_SD and
S20_(2in9)_SD Levels, Respectivelya

method/Te (cm-1) J ) 0 J ) 0 J ) 1 J ) 2

S2 0 14209 14865 16362
S14_(2in4)_SD 0 15497 16164 17734
S20_(2in4)_SD 0 17233 17931 19611
S20_(2in9)_SD 0 17346 18034 19722
experiment59 0 17288.44 17992.01 19710.39

a Details on the computational levels are given in the text.
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atomic channels that correlate with the four lowest-lying
molecular states relevant for the PA process. We thus conclude
that our chosen MRCI S6_(3in8)_SD model should provide a
reliable description of the long-range behavior of these states
in the RbYb molecule.

3.2. Ground-State Potential. The electronic ground state of
RbYb exhibits a shallow potential shape (see Figure 2) that is
a characteristic feature of a van der Waals molecule. Since the
ground state is very sensitive to the DCHF averaging of the
spinors and to the level of electron correlation, the simulta-
neously correct description of both ground and excited states
becomes a complicated matter. Changes in the DCHF averaging
or the correlation treatment can lead to large variations of the
spectroscopic constants, here, in particular, the equilibrium bond
distance. These differences may result in a substantial change
of FCFs between ground and excited states.

We therefore first examined the ground state of RbYb with
the coupled cluster method to provide a benchmark for the
MRCI calculations. The aim here was to find the effect of outer-
core polarization/correlation of the Yb 4f and Rb 4p. This has
been done by varying the number of explicitly correlated
electrons from 3 to 9 and to 23. Results of these calibration
calculations are compiled in Table 4. Comparing those results,
one sees that after a CP correction the effect of including the
Rb 4p electrons on the bond length is more than 1 magnitude
larger than including Yb 4f as the bond contracts from 9.18
bohr (CP-CCSD(T), 3 electrons correlated) to 8.94 bohr (CP-
CCSD(T), 9 electrons correlated) and 8.93 bohr (CP-CCSD(T),
23 electrons correlated). The correlation of the Yb 4f electrons
does, nevertheless, have an effect comparable to the inclusion
of the Rb 4p electrons on the harmonic frequency and the
dissociation energy in reducing both. These changes are,
however, of little importance for the present investigation and,
furthermore, the polarization of Yb 4f plays a minor role in the
lowest-lying excited states for the molecule (see section 3.1).
Therefore, we decided not to include the Yb 4f in the MRCI
calculations. Another reason to omit the Yb 4f is the large CP
correction, which shows that with this particular basis set and
truncation of virtuals we did not yet come close enough to basis
set saturation for the Yb 4f shell. The otherwise minor CP

correction for the 3 and 9 electron CCSD and CCSD(T)
calculations indicates that we have a balanced basis set.

The perturbative triples, on the other hand, have a substantial
impact on the spectroscopic parameters. We therefore restrict
the following discussion to results obtained at the CCSD(T)
level. A comparison of the spin-free CCSD(T) correlating nine
electrons with corresponding calculations including SOC (Table
5) shows that spin-dependent terms are of minor importance
for the ground-state spectroscopic parameters. In contrast, both
the choice of the basis set and one-particle spinor basis have a
significant effect on the equilibrium distance and dissociation
energy. Augmentation of the basis set by polarization functions
on both atoms (ext_bas) leads to a bond contraction as well as
to a bond strengthening. Similar trends are found when the Yb
6p shell is included in the spinor optimization step. Although
the CCSD(T) calculations based on a (3in5) averaged spinor
basis yield the most attractive potential, the results need to be
regarded with caution because of the use of a single-reference
method. This choice of one-particle basis is more appropiate
for a multireference correlation approach.

The MRCI results for the ground state (Table 6) reproduce
very well the spectroscopic values derived from the CCSD(T)
calculations. We find a slightly shorter bond and a higher

Figure 2. Potential energy curves of the four lowest-lying molecular electronic states of RbYb. Atomic dissociation channels for the states are
shown. The computational level is S6_(3in8)_SD (see text for more details).

TABLE 4: Spectroscopic Values for the 1 0.5 Ground State
Calculated at the CCSD and CCSD(T) Level with 3, 9, and
23 Explicitly Correlated Electrons and with CP Corrected
Values

method corr el Re (bohr) ωe (cm-1) De (cm-1)

CCSD-SF 3 9.30 26.278 606
CP-CCSD-SF 3 9.30 26.257 605
CCSD(T)-SF 3 9.18 28.941 818
CP-CCSD(T)-SF 3 9.18 28.923 816
CCSD-SF 9 9.20 24.814 600
CP-CCSD-SF 9 9.22 24.554 588
CCSD(T)-SF 9 8.93 29.724 820
CP-CCSD(T)-SF 9 8.94 29.462 804
CCSD-SF 23 9.15 24.186 742
CP-CCSD-SF 23 9.23 22.882 674
CCSD(T)-SF 23 8.86 28.990 870
CP-CCSD(T)-SF 23 8.93 28.196 749

High-Level Calculations on RbYb J. Phys. Chem. A, Vol. xxx, No. xx, XXXX E
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dissociation energy of 844 cm-1 in relation to the CP-CCSD(T)-
SF value of 804 cm-1 (Table 4). Typically, CCSD(T) is expected
to result in larger binding energies than CI. A thorough analysis
of the MRCI wave function reveals, however, substantial
multiconfigurational character. The leading configuration con-
sists of a doubly occupied Yb 6s Kramers pair and a bonding
orbital composed of Rb 5s and Yb 6p1/2. In addition, large
coefficients are found for single excitations from the bonding
orbital as well as double excitations from the Yb 6s shell. The
simultaneous occurrence of polarizing and correlating excitations
are indicative of the importance of triples as observed in the
CC calculations.

From the benchmark calculations on the molecular ground
state in connection with a balanced description of the atomic
limit (see Table 2) we conclude that with the chosen MRCI
setup high accuracy can be achieved for both ground and low-
lying excited states.

3.3. Excited-State Potentials. We now discuss in more detail
the lower part of the electronic excitation spectrum of the RbYb
molecule. Figure 2 displays the calculated potential energy
curves for the three lowest excited states corresponding to the
atomic Rb 5p3/2,1/2 and Yb 6s1/2

2 dissociation channels. The results
for the spectroscopic constants of these states are compiled in
Table 6 where data are listed with and without a CP correction,
respectively.

The three electronically excited states can be divided into
two classes, as illustrated in Figure 2. The second state with Ω
quantum number 0.5 (denoted in the following by 2 0.5) and
the lowest state with Ω ) 1.5 (1 1.5) display similar shapes
with pronounced potential wells centered around 7.40 bohr (2

0.5) and 7.44 bohr (1 1.5), respectively, and a harmonic
frequency ωe of ca. 69 cm-1 derived from the CP-corrected data.
Both states are deeply bound with a De of 7688 and 7131 cm-1,
respectively, whereas the 3 0.5 excited state has a considerably
lower binding energy of 4388 cm-1. We find for the latter
excited state an equilibrium bond length Re of 8.44 bohr that is
significantly longer compared to the excited states mentioned
before but much closer to the minimum internuclear distance
of the ground state. This geometric shift is furthermore in
agreement with a small difference of ≈112 cm-1 between the
vertical Tv and adiabatic Te excitation energies compared to the
much larger difference for the other two states.

Comparison of the CP-corrected excited-state spectroscopic
constants with their uncorrected counterparts in Table 6 reveals
that the excited-state bond distances are less sensitive to basis
set superposition errors than the ground-state bond distance. The
RbYb bond in the ground state, e.g., decontracts by ≈0.03 bohr
upon CP correction whereas the largest shift for an excited state
is found to be around 0.01 bohr. Moreover, the adiabatic
transition energies Te are hardly affected by the CP correction
with changes of the order of 10-20 cm-1.

3.4. Vibrational Overlaps. Nemitz proposed a two-step
mechanism for the production of ultracold RbYb molecules in
the rovibronic ground state.58 Initially, the molecule is prepared
in a highly excited rovibrational level close to the dissociation
limit of the electronic ground state. Interaction of the molecule
with laser light of two different wavelengths promotes RbYb
in a first step to some vibrational level of an electronically
excited state correlating with the Rb(2P) + Yb(1S) atomic levels
from which the population is pumped down in a second step to
the rovibronic ground state of the molecule. For experimental
realization of this scheme, knowledge of the vibrational overlaps
between the electronically excited- and ground-state potential
wells is of utmost importance. We expect that the dominating
difference for a transition probability will be the FCF since all
transitions are dipole allowed. We have therefore computed
FCFs between vibrational wave functions of the electronic
ground state and those of the three lowest electronically excited
states. These calculations were perfomed for the 87Rb and 176Yb
isotopes since these are favorably employed in experiment.20

In Table 7 selected FCFs between the rovibronic ground state
(1 0.5, V ) 0) and vibrational levels of the electronically excited
states are listed. (Complete tables of the FCFs are available upon
request.) As may be expected from the small geometrical shift
between the 1 0.5 and 3 0.5 potential energy wells (see section
3.3), large Franck-Condon overlaps for the lowest vibrational
levels of the 3 0.5 state are obtained. For the first excited 2 0.5
as well as the 1 1.5 state significant FCFs are observed for a
wide range of vibrational states due to the large spatial extent
of the electronic ground state as the maximum amplitude of
the V ) 0 wave function coincides approximately with the outer
turning points of these excited-state vibrational wave functions.

FCFs between the calculated highest vibrational state (V )
69) of the electronic ground state were found to be on the order
of 10-4 to 10-6 for the 2 0.5, 1 1.5, and 3 0.5 electronic states,
as shown in Table 8. Contrary to the situation for the 2 0.5 and
1 1.5 states, none of the vibrational levels of the 3 0.5 state has
non-negligible FCFs with the V ) 0 and V ) 69 levels of the
electronic ground state at the same time. This is, however, a
requirement for an effective experimental excitation/deexcitation
process.

Our findings thus support a postulated two-step scheme
mentioned before aiming at reaching the lowest rovibrational

TABLE 5: Spectroscopic Values for the 1 0.5 Ground State
Calculated at the CCSD and CCSD(T) Level with Nine
Explicitly Correlated Electrons and Including SOCa

method
basis set

(av. in DCHF) corr el
Re

(bohr)
ωe

(cm-1)
De

(cm-1)

CCSD-SOC min_bas (3in 2) 9 9.25 24.073 591
CCSD(T)-SOC min_bas (3in2) 9 8.98 28.620 795
CCSD-SOC min_bas (3in5) 9 9.15 25.572 654
CCSD(T)-SOC min_bas (3in5) 9 8.89 30.214 828
CCSD-SOC ext_bas (3in2) 9 9.17 24.969 603
CCSD(T)-SOC ext_bas (3in2) 9 8.90 29.888 826
CCSD-SOC ext_bas (3in5) 9 9.08 26.443 670
CCSD(T)-SOC ext_bas (3in5) 9 8.82 31.321 868

a The spinor basis was derived from average-of-configurations
DCHF calculations, distributing either three electrons in two
Kramers pairs (3in2) or three electrons in five Kramers pairs (3in5).
A CP correction was not applied.

TABLE 6: Spectroscopic Constants for the Ground and
Three Lowest Excited States (Ω Designation) of RbYb
Calculated at the MRCI S6_(3in8)_SD Level with Nine
Explicitly Correlated Electronsa

state Λ-Σb
Re

(bohr)
ωe

(cm-1)
De

(cm-1)
Tv

(cm-1)
Te

(cm-1)

1 0.5 2Σ+ 8.85 29.751 865 0 0
2 0.5 2Π 7.40 69.294 7735 7387 5794
1 1.5 2Π 7.43 69.322 7164 8104 6581
3 0.5 2Σ+ 8.43 52.789 4423 9431 9326
1 0.5(CP) 2Σ+ 8.88 29.458 844 0 0
2 0.5(CP) 2Π 7.40 69.441 7688 7441 5819
1 1.5(CP) 2Π 7.44 69.181 7131 8153 6592
3 0.5(CP) 2Σ+ 8.44 52.284 4388 9451 9339

a CP-corrected values are given in the lower part of the table.
b leading Λ-Σ configuration
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level of the electronic ground state.58 However, we propose to
use either the 2 0.5 or 1 1.5 state as intermediate for this process.

3.5. Dipole Moment. Besides having a magnetic dipole
moment from an unpaired electron, RbYb also exhibits an
electric dipole moment of around 1 D, as illustrated in Figure
3. A fit of the CCSD and CCSD(T) dipole moment curves results
in an electric dipole moment of 0.763 and 0.987 D, respectively,
at the equilibrium bond distance. A slight decrease of around
0.01 D is observed if the CP correction is added to the ground
state, as reported in Table 9. It should be noted that in these
cases the dipole moment has not been CP corrected but has
been evaluated at the CP-corrected equilibrium bond distance.
In Table 9 we have also listed the vibrationally averaged dipole
moment, which is only sligthly lower despite the large variation
shown by the dipole moment across the rovibrational ground
state.

4. Summary and Conclusions

In this study we demonstrate the capability of our relativistic
all-electron quantum-chemical methodology to yield accurate
ground and excited states on this new and challenging system
by approaching the problem in a systematic way. We show that
with our chosen MRCI model we are not only able to obtain
excellent atomic data but also able to get close to the accurate
CCSD(T) data around the equilibrium bond distance of the
ground state. We furthermore report spectroscopic constants and
Franck-Condon factors for ground and excited states.

Our coupled cluster calculations indicate that RbYb possesses
a substantial dipole moment of almost 1 D, thus making it an
excellent candidate for the study of dipole-dipole interactions
and considering its magnetic dipole moment, making it acces-
sible to magneto-optical trapping. The strongest candidates for
reaching the rovibronic ground state via a two-step procedure
(after the initial photoassociation), judging from the determined
Franck-Condon factors, appear to be the two lowest excited
electronic states. For these two states we find reasonable
Franck-Condon factors both for the absorption and for the

TABLE 7: Selected Franck-Condon Factors between the
Rovibronic Ground State and Vibrationally Excited States
(W) of the Electronically Excited States of 87Rb176Yb

state V ΔE (cm-1) FC factor

1 0.5-2 0.5 0 5839 3.4D-11
1 0.5-2 0.5 1 5908 7.8D-10
1 0.5-2 0.5 2 5976 8.9D-09
1 0.5-2 0.5 14 6777 7.1D-03
1 0.5-2 0.5 15 6842 1.1D-02
1 0.5-2 0.5 16 6907 1.7D-02
1 0.5-2 0.5 23 7357 7.5D-02
1 0.5-2 0.5 24 7421 7.8D-02
1 0.5-2 0.5 25 7484 7.7D-02
1 0.5-2 0.5 35 8105 1.2D-02
1 0.5-2 0.5 36 8165 8.1D-03
1 0.5-2 0.5 37 8226 5.6D-03
1 0.5-1 1.5 0 6612 1.0D-10
1 0.5-1 1.5 1 6681 2.2D-09
1 0.5-1 1.5 2 6749 2.4D-08
1 0.5-1 1.5 13 7483 6.4D-03
1 0.5-1 1.5 14 7549 1.1D-02
1 0.5-1 1.5 15 7614 1.6D-02
1 0.5-1 1.5 22 8063 7.6D-02
1 0.5-1 1.5 23 8127 7.9D-02
1 0.5-1 1.5 24 8190 7.8D-02
1 0.5-1 1.5 34 8810 1.2D-02
1 0.5-1 1.5 35 8870 8.1D-03
1 0.5-1 1.5 36 8931 5.5D-03
1 0.5-3 0.5 0 9350 1.5D-01
1 0.5-3 0.5 1 9403 2.3D-01
1 0.5-3 0.5 2 9454 2.3D-01
1 0.5-3 0.5 3 9506 1.7D-01
1 0.5-3 0.5 4 9557 1.0D-01
1 0.5-3 0.5 12 9964 1.2D-04
1 0.5-3 0.5 13 10014 3.9D-05
1 0.5-3 0.5 14 10064 1.3D-05
1 0.5-3 0.5 20 10359 8.0D-09
1 0.5-3 0.5 21 10407 2.2D-09
1 0.5-3 0.5 22 10456 5.7D-10

TABLE 8: Selected Franck-Condon Factors between the
Highest Excited Vibrational State (W ) 69) of the Electronic
Ground State and Vibrationally Excited States (W) of the
Electronically Excited States of 87Rb176Yb

state V ΔE (cm-1) FC factor

1 0.5-2 0.5 0 5007 1.7D-04
1 0.5-2 0.5 1 5076 4.9D-05
1 0.5-2 0.5 2 5144 3.1D-05
1 0.5-2 0.5 14 5945 1.2D-05
1 0.5-2 0.5 15 6010 1.5D-05
1 0.5-2 0.5 16 6075 4.3D-05
1 0.5-2 0.5 37 7394 3.4D-05
1 0.5-2 0.5 38 7454 3.5D-06
1 0.5-2 0.5 39 7515 1.4D-05
1 0.5-1 1.5 0 5780 1.9D-04
1 0.5-1 1.5 1 5848 1.5D-05
1 0.5-1 1.5 2 5917 7.1D-05
1 0.5-1 1.5 13 6651 2.8D-05
1 0.5-1 1.5 14 6716 4.1D-06
1 0.5-1 1.5 15 6782 4.5D-05
1 0.5-1 1.5 37 8159 3.4D-06
1 0.5-1 1.5 38 8219 1.4D-05
1 0.5-1 1.5 39 8279 3.7D-05
1 0.5-3 0.5 0 8518 9.6D-15
1 0.5-3 0.5 1 8570 5.8D-14
1 0.5-3 0.5 2 8622 5.1D-16
1 0.5-3 0.5 12 9132 2.7D-05
1 0.5-3 0.5 13 9182 3.3D-05
1 0.5-3 0.5 14 9231 7.9D-06
1 0.5-3 0.5 20 9527 1.4D-04
1 0.5-3 0.5 21 9575 2.0D-05
1 0.5-3 0.5 22 9623 6.3D-05

Figure 3. CCSD(T) and CCSD dipole moment curve in Debye with
23 explicitly correlated electrons. The vibrationally averaged dipole
moment for CCSD and CCSD(T) is found to be 0.761 and 0.985
Debeye, respectively.

TABLE 9: Dipole Moments at Re (μe) and the Vibrationally
Averaged Dipole Moment μv for the CCSD and CCSD(T)
Levels of Theory with 23 Explicitly Correlated Electrons and
with CP Corrected Values

Method μe (D) μv (D)

CCSD-SF 0.763 0.761
CP-CCSD-SF 0.751 0.747
CCSD(T)-SF 0.987 0.985
CP-CCSD(T)-SF 0.977 0.974

High-Level Calculations on RbYb J. Phys. Chem. A, Vol. xxx, No. xx, XXXX G
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emission simultaneously. We therefore propose the following
two-color process. The longer wavelength laser should excite
the molecule to levels with vibrational quantum numbers in the
range of V ) 15-35 in either the 2 0.5 or 1 1.5 potential wells
followed by stimulated emission to the rovibronic ground state.
This mechanism will give the largest combined Franck-Condon
overlap. This picture can, however, change depending on how
well the ground state is determined. For example, a shorter
equilibrium bond distance for the ground state would favor the
first two excited states, whereas a longer one would favor the
third excited state. We have therefore performed high-level
coupled cluster benchmark studies using a varying number of
correlated electrons to calibrate our results.

The inclusion of higher excited states in this molecule
necessitates core polarization from Yb 4f5p as these correlate
to the atomic Yb6s16p1(3P2,1,0) channels, thereby dramatically
increasing the computational demand of the problem. Moreover,
an accurate description of the Rb4d1(2D5/2,3/2) atomic limit, which
will lie between the Yb6s16p1(3P1,0) and Yb6s16p1(3P2) channels,
would require additional higher angular momentum functions
to be included in the basis set on Rb. Furthermore, Yb 4f-5d
excitations need to be taken into account that are extremely
difficult to compute properly. From the methodological aspect
one would here also come to the limit of CI because with 31
explicitly correlated electrons size-extensivity errors would likely
become sizable. A change to a size-extensive method would
then be desirable. Such an approach is currently being inves-
tigated by extending the newly implemented general-order four-
component multireference coupled cluster39 to allow for the
treatment of excited states.
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arXiv:0709.0827v1 [physics.atom-ph], 2007.
(23) Dyall, K. G. J. Chem. Phys. 1994, 100, 2118.
(24) Eliav, E.; Kaldor, U.; Ishikawa, Y. Phys. ReV. A 1995, 52, 291.
(25) Eliav, E.; Kaldor, U.; Ishikawa, Y. Phys. ReV. A 1994, 50, 1121.
(26) Visscher, L.; Dyall, K. G.; Lee, T. J. Int. J. Quantum Chem.:

Quantum Chem. Symp. 1995, 29, 411.
(27) Visscher, L.; Lee, T. J.; Dyall, K. G. J. Chem. Phys. 1996, 105,

8769.
(28) DIRAC, a relativistic ab initio electronic structure program, Release

DIRAC08(2008), written by L. Visscher, H. J. Aa. Jensen, and T. Saue,
with new contributions from R. Bast, S. Dubillard, K. G. Dyall, U. Ekström,
E. Eliav, T. Fleig, A. S. P. Gomes, T. U. Helgaker, J. Henriksson, M. Iliaš,
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The triiodide ion I−3 exhibits a complex photodissociation behavior, the dynamics

of which are not yet fully understood. This complexity is due to the fact that var-

ious dissociation channels are accessible under experimental conditions. As a first

step towards determining the full potential energy surfaces of this species for sub-

sequent simulations of its dissociation processes, we investigate the performance of

different electronic structure methods (Time-Dependent Density Functional Theory,

Complete Active Space Perturbation Theory to 2nd order (CASPT2) , Fock space

Coupled cluster and Multi-Reference Configuration Interaction) in describing the

ground and excited states of the triiodide ion along the symmetrical dissociation



2

path. This is a first step towards the determination of the full potential energy sur-

face of this species for subsequent simulations of its dissociation process. Most of our

methods include scalar relativity and spin-orbit coupling in the orbital optimization,

providing useful benchmark data for the more common two-step approaches in which

spin-obit coupling is introduced in the configuration interaction. Indeed our calcu-

lations indicate that the Spin-Orbit-CASPT2 method gives good agreement with

Fock-space coupled cluster at significantly lower cost. It can thereby be applied in

regions where the Fock space calculations are difficult to converge.

I. INTRODUCTION

Recent years have seen extraordinary advances in experimental techniques to probe chem-

ical processes such as reaction dynamics in very short timeframes. A wide range of tech-

niques based upon pump-probe schemes[1], where the species under consideration are put in

a nonstationary state by one light source (pump) and monitored by another (probe), allow

researchers to gain information regarding the dynamical behavior of the system as com-

plementary to whatever information can be obtained by more conventional spectroscopic

techniques. A particularly interesting field, where such fast techniques are very helpful, is

the study of the dynamics of stable negative ions[2]. One is often not interested in the anions

themselves but rather on using them, in combination with spectroscopic techniques based

upon photodetachment or photodissociation processes, to access species that isolated would

not be stable enough for measurements.

Some ionic species, however, are important in their own right, apart from being used as

precursors to other systems. A very well-known example is the triiodide ion (I−3 ). From

a chemist’s point of view[3], this relatively simple system is very interesting as it is (a) a

structural analogue of a transition state in SN2 reactions; and (b) an example of hyper-

conjugation, due to its three-center four-electron bond and associated violation of the octet

rule. The widely accepted bonding picture of I−3 is that of a (σ, π) system arising from the

combinations of 5p orbitals on the three iodine atoms. In ΛS-coupling the ground state con-

∗Corresponding author: Lucas Visscher E-mail:visscher@chem.vu.nl
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figuration is accordingly σ2
uπ

4
uπ

4
gπ

∗4
u σ

2
g where the gerade orbitals are essentially non-bonding

and the LUMO the anti-bonding σ∗
u. Some DFT functionals place the anti-bonding π∗

u

rather than σ2
g as the HOMO, while Spin-Orbit Coupling (SOC) effects induce some mixing

between the σ and π orbitals.

While early experimental information on the electronic structure of I−3 was obtained

from UV spectroscopy[4], more detailed information has been gained from photodissociation

studies in more recent works. These studies have originally been performed in solution[5–

9]. Questions arose as to whether it would be possible for the system to display a bent

configuration at equilibrium, instead of the linear one proposed initially (the latter being

the most accepted configuration). By contrast, experiments on the system in the gas-phase

by Neumark and coworkers[10–12], and by Nakanishi and coworkers[13], strongly suggest

that the ground state for this species is linear and centrosymmetric.

Compared to the wealth of experimental data on the triiodine species, relatively few the-

oretical studies have been performed. Kosloff and coworkers[14] have, at about the time

of the gas-phase experiments by Neumark[10, 11], presented an extensive study of the po-

tential energy curves of the I−3 , I2 and I
−
2 species, which are thought to be involved in the

photodissociation dynamics of I−3 . Their results, obtained with a combination of MultiRef-

erence Configuration Interaction (MRCI) calculations and a diatomics-in-molecule (DIM)

treatment where SOC effects were included, were the most accurate published at the time.

However, the authors themselves considered the basis set used in the DIM treatment rel-

atively small easily allowing for quantitative improvements on this early study. More re-

cently, as a complement to their experimental work, Nakanishi and coworkers[13] have also

performed Spin-Orbit Configuration Interaction (SO-CI) calculations which explored not

only the potential along the symmetric stretch of I−3 but also along the asymmetric stretch.

Given the limited accuracy of the SO-CI method and the still rather modest basis set size,

also this theoretical investigation still leaves room for improvement.

Accordingly, the theoretical studies performed so far, albeit very helpful in understand-

ing some aspects of the experimental data (such as the kind of states involved in the two

experimentally observed absorption bands), are not sufficiently accurate for a direct com-

parison with experiment in terms of quantities associated with the dynamical behavior of

the system, such as branching ratios. To enable this kind of analysis, it should be possi-

ble to calculate the whole of the potential energy accurately in order to avoid artifacts in
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the dynamics. This has motivated us to investigate the use of different methodologies for

describing the electronic structure of the triiodide species, with the goal of arriving at a

faithful representation of the potential energy surface for the system that can later be used

in dynamical studies, e.g. by wave-packet dynamics.

Even though I−3 can be considered a closed shell species and experimental evidence indi-

cates two-body dissociation into closed-shell species as well, it is important to account for

SOC to achieve an accurate description of the full potential energy surfaces. The reason

is that I−3 consists of heavy elements for which spin-orbit effects are intrinsically important

and have a significant impact on transition probabilities and intersystem crossings in the

excitation/deexcitation processes. Apart from including SOC, theoretical methods should

be able to describe the full PES and account for dynamical electron correlation at a reason-

able cost, given the amount of calculations involved in determining a full potential energy

surface.

As not all methods will fit this description we have chosen to compare expensive but ac-

curate multireference Coupled Cluster (CC) and Configuration Interactions (CI) at selected

points along the symmetric stretch of the molecule to methods that will allow full coverage

of the ground and excited state potential energy surfaces. The wave function based meth-

ods employed were: (a) the Intermediate Hamiltonian Fock-space coupled cluster method of

Eliav, Kaldor and coworkers[15–17]; (b) the relativistic multireference CI method of Fleig

and coworkers[18, 19];and (c) the Spin-Orbit Complete Active Space (CAS) Perturbation

Theory to 2nd order (PT2) method (SO-CASPT2) of Roos and coworkers[20, 21]. Apart

from these, we decided to also explore the more economial time-dependent DFT (TDDFT)

method[22] as this method provides a simple orbital picture for the excitation spectra. These

TDDFT calculations are of course not expected to yield better results than any of the meth-

ods above due to the well-known shortcomings (as, for instance, in describing charge-transfer

(CT) excitations [23, 24] or that, within the adiabatic approximation, TDDFT can only de-

scribe single excitations[25–27]), of the current-day functionals.

The paper is organized as follows: in section II we present the details of the calculations

performed with the different methodologies; in section III we compare the performance of the

different methods in calculating excitation energies of I−3 , both at selected bond lengths and

at the equilibrium geometries for the symmetric configuration. We also take the opportunity

to discuss results for the triiodide radical (I3), a species that was experimentally observed
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in photoionization studies involving I−3 in the gas phase[28, 29], and that has also been

investigated theoretically by Kosloff and coworkers. Finally, in section IV we assess the

relative strengths and weaknesses of each method and provide concluding remarks.

II. COMPUTATIONAL DETAILS

All calculations described here have been performed along the symmetric stretch coor-

dinate, with I–I bond lengths rI-I in the range of [2.60 : 6.00] Å. In order to compare the

different methodologies we have chosen two geometries in which to calculate the vertical

excitation energies, apart from those obtained at the equilibrium structures for the different

methods. These geometries are r = 2.84 and 2.93 Å, corresponding to bond lengths in the

vicinity of the equilibrium geometries for I3 (from the MRCI calculations of Kosloff and

coworkers[14] and I−3 (equilibrium geometry reported from solid-state studies [30]), respec-

tively.

A. IHFSCC

Intermediate Hamiltonian Fock-space coupled cluster[15–17] (IHFSCC) calculations were

performed with a development version of the Dirac[31] program. For describing the spec-

trum of I−3 with the IHFSCC method we have taken the anion as a starting point, and

proceed from the ground-state through the (1h, 0p) and (0h, 1p) sectors in order to arrive

at the (1h, 1p) sector and, therefore, at the excitation energies:

I−3 (0h, 0p)→ {I.3(1h, 0p), I2−3 (0h, 1p)} → I
−(∗)
3 (1h, 1p) (2.1)

For reasons of computational efficiency, the eXact 2-Component Hamiltonian (X2C)

scheme of Iliaš and Saue[32] was used. Two-electron spin same-orbit (SSO) and spin-other

orbit (SOO) contributions were included via atomic mean-field integrals obtained with the

AMFI[33, 34] code.

The triple zeta basis sets of Dyall[35, 36] were employed in all calculations. These were

kept uncontracted and augmented with diffuse functions. Given the flexibility of such basis

sets with respect to adding correlating functions, two different sets were defined: a valence

correlation set (“aVTZ”), where one correlating f -type function was added to the augmented
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SCF set, yielding a (29s22p16d2f) basis set; and a core-valence correlating set (“aCVTZ”),

which is a superset of aVTZ with additional 2f1g set of functions added.

In combination with these two sets different correlation spaces were employed: the first

(“Q1”) is used together with basis set aVTZ and includes the orbitals with orbital energies

(ε) between -1 and 4 hartree. This means that in the occupied orbital space the σ, π bonding

system and three other σ-type orbitals arising from the 5s5p orbitals of iodine are present.

The second correlation space (“Q2”) is used together with basis set aCVTZ and includes

the orbitals with orbital energies between -3 and 12 hartree. This corresponds to enlarging

Q1 by including the occupied 4d electrons of iodine apart from more virtual orbitals. The

combinations aVTZ/Q1 and aCVTZ/Q2 will be referred to as IHFSCC(a) and IHFSCC(b),

respectively.

A crucial ingredient of IHFSCC calculations to prevent convergence problems due to

intruder states is the definition of the model (Pm) and intermediate (PI) spaces that comprise

the active space P = Pm +PI [16, 17]. After testing different spaces at the fixed geometries

mentioned above, we found that convergence problems were generally avoided for r < 4 Å,

when the Pm space contained 8 occupied (one σg, one πg, two πu and one σu orbitals) and 11

virtual orbitals (two σg, one πg, three σu and two πu orbitals) with a full P space containing

11 occupied (5 of g and 6 of u parity) and 22 virtual (12 of g and 10 of u parity) orbitals.

For bond lengths larger than 3.58 Å, however, it was not possible to obtain convergence for

the (1h, 1p) sector for this partition.

B. MRCI

Multireference Configuration Interaction (MRCI) calculations have been carried out with

the relativistic double group CI program LUCIAREL [18, 19] which recently has been extended

[37, 38] for parallel computer applications. In all of the calculations reported here the

“aCVTZ” basis set and the eXact 2-Component (X2C) Hamiltonian including 2-electron

SSO and SOO corrections provided by the AMFI[33, 34] code have been employed.

The molecular spinors for the CI calculations have been obtained by an average-of-

configuration Hartree-Fock calculation, where the open shells were defined as the 8 occupied

Kramers pairs as in the CC application above, and in addition the antibonding σu orbital,

corresponding to an active subspace with 16 electrons in 9 Kramers pairs. This type of
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Hartree-Fock wave function comprises a good starting point for relativistic MRCI studies

when ground and electronically excited states are under investigation, since it provides a

balanced description of these states. The concept of General Active Spaces (GAS) has been

employed for constructing the CI expansion. In the present case, all Slater determinants with

zero, one, and two particles in the external space (truncated at 3 hartrees) were included

and all possible active-space distributions were allowed for the remaining electrons. These

active-space distributions were defined by a CAS space corresponding to the above space

used in the average-of-configuration Hartree-Fock calculation (16 electrons in 9 Kramers

pairs, or 15 electrons in 9 Kramers pairs in the case of neutral I3, “MRCI(a)”), and an

additional space including the iodine 5s orbitals where a restriction of up to two holes was

imposed (“MRCI(b)”). The resulting relativistic CI wave function describes the correlation

of 16 (15 in the case of neutral I3) or 22 electrons and consists of roughly 77 million Slater

determinants in the latter case.

C. CASPT2

Calculations with the CASPT2 method were carried out with the Molcas code [39]

(version 7.0), within the CASSCF/CASPT2/SO-RASSI approach. In this approach, scalar

relativistic effects are included in the CASSCF[20] and CASPT2[21] calculations via the

Douglas-Kroll-Hess[40] Hamiltonian, and in a subsequent calculation the CASPT2 spin-free

states are used by the RASSI program to set up a spin-orbit coupling Hamiltonian[41]. In

this Hamiltonian the one- and two-electron spin-orbit integrals are calculated in a mean-

field fashion via the AMFI[33, 34] code. The basis set used in these calculations was the

ANO-RCC[42] set.

The CASSCF active space used consisted of 16 electrons in the 9 orbitals arising from

the 5p orbitals of the three iodine atoms. We have kept the core orbitals (i.e. up to and

including the 3d orbitals) frozen in the CASSCF (and subsequent CASPT2) calculations.

The CASSCF states that entered the multi-state CASPT2 calculations have been obtained

from state-averaged calculations over nine (9) roots for 1Σ, six (6) roots for 1Π, eight (8)

roots for 3Σ and six (6) roots for 3Π, respectively. In the CASPT2 calculations an IPEA

shift of 0.25 a.u. was used [43].
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D. TDDFT

Time-dependent DFT (TDDFT) calculations[22] were carried out with the ADF[44] code.

We used the statistical averaging of model orbital potentials (SAOP) [45], in combination

with the TZ2P basis set[46]. Scalar relativistic and spin-orbit effects were included via

the zeroth-order regular approximation (ZORA) [47, 48]. In the TDDFT calculations non-

collinear spin magnetization was used.

III. RESULTS AND DISCUSSION

In this section we discuss the results for the triiodide ion species obtained with the

different methods. We begin by investigating the performance of the different methods in

determining ground-state spectroscopic constants, before addressing the electronic spectrum.

Given the exploratory nature of this paper, we will only compare methods for selected

structures along the symmetric stretch coordinate, thereby restricting ourselves to a part of

the full potential energy surface.

We will focus mainly on vertical excitations calculated at selected geometries, but will

also address “adiabatic” excitations for this particular cut of the surface, as a way to gain

insight on how the different methods represent the overall shape of the surfaces. Finally, we

will take a more detailed look the 0u states, in particular the absorbing 0
+
u states, comparing

the energetics and the excitation picture, in terms of the respective molecular orbitals for

the different methods, before discussing the triiodine radical.

A. Ground-state Spectroscopic constants for I−3

The ground-state spectroscopic constants of I−3 obtained here are shown in table I. We

take the experimental value[30] in the solid state (re = 2.93 Å) as a measure, since to the best

of our knowledge, there are no experimental bond lengths for the triiodide ion in gas-phase.

In this case, CASPT2 shows a slight (about 0.02 Å) underestimation, whereas IHFSCC(a)

and MRCI(a) show a similar overestimation (about 0.04-0.05 Å). DFT, in turn, overesti-

mates re by about 0.07 Å. We should thereby note, however, that the SAOP functional was

not derived with the aim of providing accurate structures. If a larger degree of electron

correlation is taken into account in the coupled cluster case, as done for IHFSCC (b) –
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where the 4d shell is included in the occupied space and the virtual space is truncated at

a higher energy – the obtained bond length is in good agreement with experiment, with

a deviation of less than 0.02 Å. The MRCI results of Kosloff including spin-orbit coupling

are roughly in between the two IHFSCC results, whereas the spin-free MRCI values match

the experimental number. The rather good agreement of wavefunction-based methods and

the experimental structure thus suggests that environmental effects on the bond length are

small.

A similar picture is seen for the harmonic frequencies. Discrepancies between MRCI,

CASPT2, IHFSCC and both experiment[49] and the spin-free MRCI calculations of Kosloff

are of the order of a few cm−1, whereas DFT underestimates the frequency by 10 cm−1. The

spin-orbit numbers of Kosloff, on the other hand, show rather large discrepancies (17 cm−1),

which may be due to artifacts arising from their diatomics-in-molecules treatment.

B. Benchmark Calculations of the Electronic Spectra of I−3

In the comparison of calculated spectra, we have chosen to use two sets of geometries as

reference: the first uses the experimental bond length (r = 2.93 Å) for all methods, whereas

in the second the equilibrium geometries for the individual methods (taken from table I) are

used. The corresponding spectra can be found in tables II and III, respectively.

In order to make the discussion easier, we will take IHFSCC(b) as the reference and

discuss the performance of the other methods relative to it. Moreover, we restrict ourselves

to the first 18 excited states, which go up to about 4.5 – 5.0 eV. This is due to the increasing

importance of double excitations for higher energies, which are readily captured by MRCI

and CASPT2 but neither by TDDFT nor by the IHFSCC calculations on the (1h, 1p) sector

of Fock-space. This renders the comparison of the different methods less useful than that

for these lower states, which are dominated by single excitations.

1. Vertical excitations

Inspecting first table II, we immediately see some general trends: CASPT2 and MRCI

tend to overestimate the IHFSCC excitation energies, whereas TDDFT shows the lowest

excitation energies among all methods considered. One can also see that the degree of elec-
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tron correlation introduced by the different methods affects distinct regions of the spectrum

differently. For the lowest 10 excited states, the ordering of states is consistent with most

methods whereas for higher states, which are energetically much closer to each other, small

variations in the correlation treatment result in significant reorderings.

It is, however, rather difficult to obtain a clear picture of the performance of the methods

by such an inspection alone. We have therefore followed the approach of Helgaker and

coworkers[50] and performed a statistical analysis of the errors for each method; in particular,

we calculated the mean error Δ̄ and its standard deviation Δstd, as well as the mean absolute

error Δ̄abs and the maximum absolute error Δmax for the corresponding excited states taking

IHFSCC(b) as a reference. These quantities can be found at the bottom of table I.

From this analysis, it becomes clear that IHFSCC(a) setup yields only small deviations

relative to the larger IHFSCC(b) calculation. This is quantified by the small mean errors

(signed and absolute) and a small standard deviation (0.02 eV), suggesting that core-valence

correlation does not play a prominent role in describing the transitions to low-lying excited

states. TDDFT underestimates (Δ̄ = 0.24 eV) the excitation energies, but perhaps more

worrisome is that Δstd is rather large (0.24 eV), indicating large non-systematic errors.

At this geometry CASPT2 reproduces better the IHFSCC(b) reference than the MRCI

approaches. The mean error of MRCI(b) is much larger than that of CASPT2, although

Δstd is in both cases essentially the same and about half of the value for TDDFT. Not

correlating the 5s electrons, as done in the smaller MRCI(a) setup, increases the mean error

of MRCI to about the same size as found in TDDFT, but the modest value of Δstd indicates

still a rather systematic deviation, similar to CASPT2 and MRCI(b). The systematic nature

of the errors for MRCI is also seen by inspecting Δ̄abs, the magnitude of which is about the

same as the corresponding Δ̄.

While it is beyond the scope of this paper to present a detailed analysis of the difference

between IHFSCC and other methods, it is nevertheless instructive to consider comparisons

of excitation energies calculated by IHFSCC and the linear response coupled cluster (LRCC)

method done by various authors[50–54]. From those studies it becomes clear that LRCC

and IHFSCC may yield significantly different excitation energies. Some evidence from recent

studies for different molecular systems performed by some of us[55] as well as by other

authors[56–59] seems to point to a systematic upwards shift in LRCC excitation energies

compared to IHFSCC ones, similar to what is observed here when comparing MRCI and
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IHFSCC. This could be consistent with the different parametrization used in describing the

excitations from the ground to the excited states (linear in MRCI and LRCC, exponential for

IHFSCC). It is less straightforward to rationalize the discrepancies between CASPT2 and

IHFSCC as these methods describe the ground state with a rather different wave function.

Based upon previous experience[55, 60–62] we expect CASPT2 results for low-lying excited

states to deviate up to a few tenths of an eV from IHFSCC, but is more difficult to predict

either an increase or a decrease of the excitation energies.

Since the comparison given above was done at the fixed experimental distance that is

not optimal for any of the methods, we consider in table III also the results obtained at the

equilibrium geometries obtained for the different methods (given previously in table I). The

statistical analysis here reveals a very similar picture as in table II with respect to the stan-

dard deviation for all methods. The mean and maximum errors change considerably relative

to the previous table, however. For TDDFT the underestimation of the excitation energies

increases by going to the longer equilibrium distance of that method. For CASPT2, that

has an optimal bondlength shorter than the experimental distance, the agreement with IHF-

SCC(b) (that has a longer bondlength) becomes less good. Shifting to its longer bondlength,

MRCI(a) now approaches IHFSCC(a) although the maximum error is still quite large. The

IHFSCC(a) results, finally, again indicate that core-valence correlation (correlating deeper

than the 5s) could be disregarded when constructing the full potential energy surfaces.

The statistical analysis at these selected geometries indicates that both MRCI and

CASPT2 are able to provide a balanced treatment of the ground and excited state sur-

faces. A problem with MRCI(a), the only feasible CI approach to cover the whole surface,

is the fact that the optically active states (indicated in boldface in both tables II and III)

that are well described with IHFSCC(b) exhibit relatively large errors when treated with

MRCI(a). While the IHFSCC(b) reference calculations reproduces both experimentally ob-

served transitions quite well (3.38-3.41 eV and 4.22-4.28 eV for the first and second 0+
u states,

respectively[4]), MRCI(a) describes the first 0+
u (3.47 eV) rather well but places the second

at too high energy (4.67 eV). CASPT2, due to the general upward shift discussed above,

overestimates both excitation energies but shows a systematic error that leaves the splitting

between these states in good agreement with IHFSCC(b).
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2. Explorations of the dissociative region

The discussion so far has dealt with geometries at and close to the ground-state equi-

librium structures. However, in order to be useful in modeling the dissociation process of

I−3 the potential surfaces of the excited states far from the equilibrium region have to be

properly described as well. In order to probe the relative accuracy of the methods, we have

chosen to investigate displacements along the symmetric stretch coordinate. This repre-

sents a one-dimensional cut through the full three-dimensional surface enabling us to define

local minima (and harmonic frequencies) for the different excited states in this restricted

geometry. One should thereby keep in mind, however, that such extrema do not necessarily

correspond to the true spectroscopic constants for the corresponding states as we did not

investigate the curvature of the surface in directions orthogonal to the symmetric stretch

coordinate.

A further restriction in the current study is the presence of intruder states that made it

impossible to convergence the IHFSCC calculations at internuclear distances larger than 3.6

Å . This means that we can only compare with the IHFSCC(b) reference at relatively short

distances. Similarly we could not obtain TDDFT results beyond about 3.9 Å due to triplet

instabilities. Both problems do not appear in the CASPT2 and MRCI(a) calculations for

which we obtained information also for large I-I internuclear distances. This part of the

surface is relevant due to conical intersections involving the 0+
u states that are of importance

in the photodissociation process. Our CASPT2 results indicate that for the optically active

0+
u states a slice of a conical intersection between the second and third 0+

u occurs near r = 3.8

Å, as can be seen in figure 1. This is in line with the findings of Nakanishi and coworkers[13],

who have observed a number of conical intersections and avoided crossings in this region

check this ! in their SO-CI calculations.

As the MRCI(b) calculations are computationally too expensive to cover the whole surface

we will in the following focus on CASPT2 but present MRCI(a) calculations to allow for

some comparison with the MRCI approach.

With respect to bond lengths given in table IV, we observe that CASPT2 tends to con-

sistently underestimate the bond lenghts compared to IHFSCC(b) by about 0.036 Å (in line

with the difference of 0.034 Å for the ground state), whereas MRCI(a) overestimates them

by about 0.06 Å, in both cases with rather small standard errors. The differences between
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IHFSCC(a) and IHFSCC(b) are again not very significant, and will not be shownsorry,

can we put them back in (LV). TDDFT gives too long bond lengths (Δ̄ � 0.2 Å) in line with

the overestimation seen in the ground state.

For harmonic frequencies, both CASPT2 and MRCI(a) overall reproduce rather well the

IHFSCC(b) frequencies, with relatively small mean errors (Δ̄ = 2 and -12 cm−1, respec-

tively). What is striking is that, in spite of the small Δ̄ for frequencies, the corresponding

values of Δstd are relatively high (and about the same as Δ̄abs). The calculated harmonic

frequencies for the wavefunction-based methods agree rather well, and generally lie between

60 and 80 cm−1in the table we have very different values, going down to 28 cm and vary-

ing wildly between methods, these fits really need checking, or we should omit frequencies

entirely as they are not guaranteed to correspond to minima anyhow, giving us confidence

that the three methods are able to provide a fairly consistent description of the shape of the

potentials at the vicinity of the corresponding minima.we should discuss symmetry breaking

here as it may affect frequencies

The rather systematic behavior of MRCI(a) and CASPT2 carries over to the Δ̄ and

Δstd values for the excitation energies that may be compared with the analysis given for

the vertical excitations (table III). This is particularly the case for CASPT2, which shows

essentially the same Δ̄, Δstd and Δ̄abs values as before. And, while the CASPT2 excitation

energies show good agreement with IHFSCC(b) and can very well be used as they are, this

systematic nature of the errors can be perhaps exploited to further bring the results close

to IHFSCC(b) by applying global shifts to the CASPT2 potential energy surfaces. here I

really need the final fitted data to say something meaningful

Such an approximation is demonstrated in figure 1, where we show, for the optically

active 0+
u states the IHFSCC(b) cuts of the potential energy surface along corresponding

cuts of the CASPT2 potential, after a shift of 0.15 eV was applied to the excited states.

In the latter case we have also shifted the bond lengths by 0.035 Å to compensate for the

underestimation of the bond lenghts in CASPT2. After these corrections, we observe a very

good agreement for the ground and excited states, with rather small discrepancies for the

second 0+
u state. Agreement for the first 0+

u state, however, seems to be somewhat poorer

than for the second.the figure captions are not consistent, check whether this is

the new picture
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3. A closer look on 0+
u states

The two strong, allowed transitions for I−3 occur from the Ω = 0+
g ground state to two

states with Ω = 0+
u . Table V displays the dominant contributions to these transitions.

If available we also show oscillator strengths for the corresponding transitions. Since the

CASPT2 calculations were done in a two-step fashion we can also analyze the composition

of these excited states in terms of spinfree states. To a first approximation one can view

these states as 3Πu and 1Σ+
u , the former borrowing intensity from the latter through the

spin-orbit coupling. This picture correlates very well with the DIM-SO results of Kosloff

and coworkers[14]. In an orbital picture all methods give the same description, with different

mixing of the two transitions from the occupied σg and πg orbitals to the σu LUMO.

In the IHFSCC(b) calculations two additional excitations appear that can be interpreted

as providing orbital relaxation of the LUMO. Since the DFT calculations also include spin-

orbit coupling at the SCF stage we see a similar picture as for IHFSCC and MRCI, except

that relaxation effects do not play an important role (since the virtual orbitals see the same

potential as the occupied ones).

The peak separation energies for I−3 are experimentally found to be in the 0.78–0.90 eV

range, depending on the environment in which the triiodide species is embedded [4, 6].

Their relatively narrow range of variation in very different media justifies the assumption

that gas-phase values should fall into a similar range.

Inspecting the lowest two 0+
u states, we observe that the TDDFT (SAOP) energy differ-

ence for the vertical excitation is much too high (1.47 eV) compared to the experimental

values. The vertical peak separations for CASPT2 and IHFSCC(b), on the other hand, are

in very good agreement with experiment (0.94 and 0.91 eV respectively). This is signifi-

cantly better than the results of Kosloff and coworkers[14], for which the peak separation

is 0.99 eV, and rather similar to the results of Nakanishi and coworkers[13], who obtained

a value of 0.91 eV based on vertical excitation energies. The peak separation of 1.14 eV

from the MRCI(a) results, on the other hand, does not match the experiment very well, as

already discussed above.
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C. Benchmark Calculations on I3: Electronic Spectra and Electron affinities

Given that the IHFSCC results for the (1h, 0p) sector are generated as by-products of the

excitation energies determination for I−3 , we can also present spectroscopic constants and

vertical and adiabatic excitation energies for this species, calculated with IHFSCC(b). We

furthermore provide a comparison of this radical IHFSCC, CASPT2, and MRCI at r = 2.84

Å, which is the geometry employed by Kosloff and co-workers[14] for the same system. These

results are also shown in table VI.

The excitation energies calculated at r = 2.84 Å are in good agreement with those

of Kosloff et al., and, for the first two excited states, also with the experimental data.

The Ω = 3/2g third excited state has a much longer bondlength than the ground state

which may explain the 0.1 to 0.2 eV overestimation found relative to the experimental value

when calculated as vertical excitation. The adiabatic results for IHFSCC(b) indeed show a

decrease of 0.10 eV from the vertical to the adiabatic excitation energy.

In line with the discussion above, we see that the results obtained with the differ-

ent methods are fairly consistent. We find a ground state with Ω = 3/2u, followed by

states of Ω = 1/2g, 1/2u, 3/2g and 1/2g, respectively, in agreement with the experimental

assignment[28, 29].

The CASPT2 excitation energies are lower than those of IHFSCC(b) by about 0.1–0.2

eV with the exception of the first excited state, which is higher for CASPT2. In this

case, however, MRCI and IHFSCC are much more alike than for I−3 , with discrepancies

generally smaller than 0.1 eV. This strong similarity could be due to the fact that, for the

(1h, 0p) sector used here the exponential parametrization of IHFSCC for the excited states

is truncated at the linear term and therefore essentially the same as in MRCI [51–54].

From the IHFSCC(b) calculations we furthermore obtain an adiabatic (vertical) electron

affinity (AE) of 4.29 eV (4.20 eV) which compares well with the adiabatic AE of 4.15 ±0.12
eV, including zero-point vibrational corrections, obtained experimentally from a thermody-

namic cycle [63], as well as the vertical detachment energy of I−3 of 4.25 eV reported by Choi

et al. [29].
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IV. CONCLUSIONS

We have performed correlated electronic structure calculations including spin-orbit effects

at high levels of theory on the triiodide ion (I−3 ) and the radical (I3). The agreement between

the different wavefunction-based methodologies employed is reasonable, as is their agreement

with experimental results. An exploratory TDDFT calculation with the SAOP functional

provides a qualitatively correct picture not too far from equilibrium distance but shows

unsystematic errors that prohibit use in quantitative description.

With respect to I−3 , of the different methodologies evaluated, it can be said that the

Intermediate Hamiltonian Fock-space coupled cluster is the method that most accurately

and consistently provides a picture which is both qualitative and quantitatively correct

for the excitation processes taking place in the initial steps in the photodissociation of

the triiodide ion and the triiodine radical. This method is not applicable to the complete

potential energy surface, but we have been able to show that other wavefunction-based

methods can reproduce the benchmark IHFSCC results rather well.

While it can be argued that for the triiodide species MRCI is slightly more accurate

than CASPT2 with perturbative inclusion of spin-orbit effects, the latter has two interest-

ing advantages: for one thing, it is computationally much more efficient than MRCI, and

for another its errors seems to be very systematic for all electronic states considered. This

systematic nature of errors is observed, in particular for energies, allowing for global cor-

rection to be applied to the potential energy surfaces in order to bring them in agreement

with IHFSCC. The situation is somewhat different for the triiodine radical, where MRCI

performs clearly better than CASPT2.
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TABLE I: Ground-state spectroscopic constants (re in Å and ωe in cm−1) of I−3 calculated with

the DFT, MRCI (a), CASPT2 and IHFSCC(a,b) methods

Method re ωe

DFT 3.007 102

MRCI (a) 2.982 108

CASPT2 2.888 119

IHFSCC (a) 2.971 112

IHFSCC (b) 2.946 114

MRCI (ref. [14], Spin-Free) 2.930 114

DIM+SO (ref. [14]) 2.966 95

Experimental (ref. [30]) 2.93 112±1
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TABLE II: Comparison of vertical excitation energies Tv (in eV) obtained with the different meth-

ods (TDDFT, MRCI(a and b), CASPT2, IHFSCC(a and b)) for I−3 at r1 = r2 = 2.93 Å. States of

the same symmetry as those for the optically active excited states are shown in boldface. Statistical

measures of the error compared to IHFSCC(b) are also shown (see text for discussion).

TDDFT MRCI(a) MRCI(b) CASPT2 IHFSCC(a) IHFSCC(b)

State Ω Tv Ω Tv Ω Tv Ω Tv Ω Tv Ω Tv

1 2g 1.92 2g 2.32 2g 2.30 2g 2.27 2g 2.10 2g 2.05

2 1g 2.04 1g 2.44 0−u 2.40 1g 2.35 1g 2.23 1g 2.18

3 0−u 2.42 0−u 2.47 1u 2.41 0−u 2.49 0−u 2.26 0−u 2.20

4 1u 2.43 1u 2.48 1g 2.41 1u 2.49 1u 2.27 1u 2.20

5 0−g 2.50 0−g 2.94 0−g 2.91 0−g 2.79 0−g 2.68 0−g 2.64

6 0+
g 2.56 0+

g 2.98 0+
g 2.95 0+

g 2.85 0+
g 2.73 0+

g 2.69

7 1g 2.70 1g 3.13 1g 3.08 1g 2.88 1g 2.90 1g 2.86

8 2u 2.61 2u 3.25 2u 3.21 2u 3.13 2u 3.22 2u 3.17

9 1u 2.72 1u 3.30 1u 3.25 1u 3.13 1u 3.30 1u 3.24

10 0+
u 3.14 0+

u 3.71 0+
u 3.66 0+

u 3.54 0+
u 3.52 0+

u 3.51

11 2g 3.50 0−u 4.04 0−u 3.98 0−u 3.82 0−u 3.95 2g 3.88

12 0−u 3.42 1u 4.09 1u 4.02 1u 3.83 2g 3.96 0−u 3.91

13 1g 3.63 2g 4.19 2g 4.16 2g 4.01 1u 4.03 1g 4.00

14 1u 3.56 1g 4.29 1g 4.25 1g 4.08 1g 4.07 1u 4.00

15 0+
u 4.46 0−g 4.81 0+

u 4.75 0+
u 4.52 0+

u 4.33 0+
u 4.33

16 0−g 4.10 0+
g 4.82 0−g 4.77 0−g 4.55 0−g 4.54 0−g 4.48

17 0+
g 4.11 0+

u 4.83 0+
g 4.78 0+

g 4.57 0+
g 4.54 0+

g 4.48

18 1g 4.34 1g 4.96 1g 4.91 1g 4.63 2u 4.72 1g 4.68

Δ̄ -0.24 0.25 0.20 0.08 0.05

Δstd 0.24 0.11 0.11 0.16 0.02

Δ̄abs 0.31 0.25 0.21 0.13 0.05

Δmax 0.56 0.50 0.41 0.29 0.08
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TABLE III: Vertical (Tv) excitation energies (in eV) calculated with the TDDFT, MRCI (a),

CASPT2 and IHFSCC(a and b) methods for I−3 calculated at the optimum bond length for each

method. States of the same symmetry as those for the optically active excited states are shown in

boldface. Statistical measures of the error compared to IHFSCC(b) are also shown (see text for

discussion).

TDDFT MRCI(a) CASPT2 IHFSCC(a) IHFSCC(b)

State Ω Tv Ω Tv Ω Tv Ω Tv Ω Tv

1 2g 1.67 2g 2.15 2g 2.41 2g 1.98 2g 2.00

2 1g 1.78 1g 2.27 1g 2.48 1g 2.10 1g 2.13

3 0−u 2.13 0−u 2.28 0−u 2.65 0−u 2.11 0−u 2.13

4 1u 2.14 1u 2.28 1u 2.65 1u 2.12 1u 2.14

5 0−g 2.24 0−g 2.77 0−g 2.93 0−g 2.55 0−g 2.58

6 2u 2.26 0+
g 2.81 0+

g 2.99 0+
g 2.60 0+

g 2.64

7 0+
g 2.31 1g 2.94 1g 3.03 1g 2.77 1g 2.81

8 1u 2.38 2u 3.00 2u 3.33 2u 3.04 2u 3.10

9 1g 2.44 1u 3.05 1u 3.34 1u 3.11 1u 3.17

10 0+
u 2.82 0+

u 3.47 0+
u 3.74 0+

u 3.44 0+
u 3.36

11 2g 3.07 0−u 3.79 0−u 4.01 2g 3.73 2g 3.79

12 0−u 3.09 1u 3.84 1u 4.03 0−u 3.77 0−u 3.84

13 1g 3.20 2g 3.89 2g 4.26 1g 3.84 1g 3.90

14 1u 3.22 1g 3.98 1g 4.33 1u 3.85 1u 3.93

15 0−g 3.66 0−g 4.52 0+
u 4.68 0+

u 4.17 0+
u 4.27

16 0+
g 3.68 0+

g 4.52 0−g 4.79 0−g 4.31 0−g 4.38

17 1g 3.91 0+
u 4.61 0+

g 4.81 0+
g 4.32 0+

g 4.39

18 0+
u 4.29 1g 4.65 1g 4.88 1g 4.50 1g 4.59

Δ̄ -0.49 0.09 0.34 -0.05

Δstd 0.29 0.12 0.38 0.04

Δ̄abs 0.49 0.13 0.34 0.06

Δmax 0.84 0.34 0.52 0.10
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FIG. 1: Potential energy curves along the symmetric stretch coordinate for the ground-state (GS,

0+
g ) and lower 0+

u states (the first two corresponding to the optically active states) from CASPT2

and IHFSCC(b) calculations. All potentials were scaled so that the ground state minimum cor-

responds to the origin; the CASPT2 excited states were further shifted (a) downwards by 0.5 eV

and (b) towards larger internuclear distances by 0.14 Å(the ground-state geometry for CASPT2

was shifted by 0.08 Å), to compensate the systematic errors compared to IHFSCC(b).
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Abstract. Collisions of ultracold Ba+ ions on a Rb Bose-Einstein condensate have
been suggested as a possible benchmark system for ultracold ion-neutral collision
experiments, however, a priori knowledge of the possible processes is desirable. For this
purpose we here present high-level four-component coupled cluster and multi-reference
configuration interaction calculations of potential energy curves, dipole moment, and
spectroscopic constants of the experimentally interesting low-lying electronic states
of the (RbBa)+ molecule. Our results show significant avoided crossings between the
3Σ+

1,0− Rb + Ba+ entrance channels and low-lying charge transfer 3Π1,0− states of
the Rb+ and Ba6s15d1(3D) atomic channels, indicating that a fast non-radiative charge
transfer could be possible. For the ground state population analysis shows that the
ground state deviates significantly from a pure Rb+ + Ba interaction but instead a
partially covalent polar bond is formed. This finding is corroborated by the electric
dipole moment which is found only to be 4.5 D at the equlibrium bond distance,
compared with the 14 D for a pure Rb+ + Ba interaction, thereby supporting the view
of a partial charge transfer between the two atoms.
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1. Introduction

The study of reactive collisions at very low temperatures is a promising new direction

in the field of cold and ultracold quantum matter. This temperature regime comprises

a unique environment to investigate, i.a., the quantum mechanical details of chemical

reactions, ultimately aiming at a controlled chemistry at the quantum level [1]. Other

interesting prospects concern the possibility of testing fundamental symmetries in nature

[2, 3] or the spacetime independence of electron and nuclear masses [4].

Ion-neutral interactions are distinguished from neutral-neutral collisions in that the

interaction of the former is long-range, in general leading to large collision cross sections

[5] and entailing the possibility of charge transfer between the collision partners [6].

Quite a number of experimental and theoretical studies of ion-neutral reactions exist,

but the low-energy regime has only been addressed recently, e.g. in references [7, 8, 5].

Due to the complexity of the level of ab-initio electronic-structure calculations needed

for determining the accurate short-range potentials, most of these studies considered

few-electron systems. The limited number of investigations on many-electron systems

involving a cationic reaction partner, such as the studies on (NaNa)+ and (NaCa)+ [6, 9],

employ rather approximate potentials involving parameters taken from experiment.

Also other aspects of ion-neutral collisions beside the charge-transfer processes have

received attention. The formation of a postulated mesoscopic molecular bound state

arising from a single trapped ion in a sea of ultracold atoms [10] comprises an intriguing

finding. In this context, the collision kinetics and electronic potential energy curves

of the molecular benchmark system (RbBa)+, starting from a Ba+ ion that interacts

with a Bose-Einstein condensate of neutral Rb atoms, are of great interest [11]. The

(RbBa)+ system is valence isoelectronic with the (MgK)+, (MgCs)+, and (NaCa)+

systems which have been considered in earlier experiments [12, 13, 9]. The associated

theoretical investigations were mainly carried out using large-core pseudopotentials and

neglecting spin-orbit coupling. In these systems, the lowest-lying electronic states are

characterized as Σ states, which is also true for the (RbBa)+ molecular ion [14] and

most likely also for another heavier species of interest, (MgCs)+. The neglect of spin-orbit

interaction is reasonable in the determination of such Σ states, since it affects these states

only through higher-order couplings to excited states of different angular momentum

projection onto the internuclear axis. For the (RbBa)+ molecular ion, however, electronic

states of projection Λ > 0 play a role for the lowest dissociation channels to the different

atomic fragments [14]. An understanding of experiments involving the lower dissociation

channels of (RbBa)+ which come to lie in an energy window of about 2 eV, therefore

necessitates inclusion of spin-orbit interaction in the electronic-structure calculations.

The objective of this study has been to investigate the electronic excited states

lying close to the Rb + Ba+ entrance channel and expected to have a complicated

distance dependence, to form a firm basis for design of ultracold collision experiments

for this system. One aim here was the search for possible charge transfer mechanism

from Rb to Ba+ by a characterization of the excited states. Another closely related
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aim was the search for metastable excited states which could be used for creating a

mesoscopic molecular bound state with the Rb Bose-Einstein condensate. To obtain

this objective we extend an earlier scalar relativistic study [14] to also include the spin-

orbit interaction, which we will show to be imperative for an understanding of the charge

transfer mechanisms in (RbBa)+ at ultracold experimental conditions.

Since two heavy atoms are involved we apply quantum-chemical methods which

treat electron correlation and relativistic effects on the same footing. Relativistic coupled

cluster and configuration interaction approaches are used in a complementary fashion,

the details of which are described in the following section. In the main body of the paper

(section 3) we achieve high accuracy by first a systematic study of the ground and excited

states of the atoms and, in addition, of the electronic ground state of the molecule.

Based on these results, a final multi-reference configuration interaction (MRCI) model

expansion is chosen which can deliver accurate spectroscopic values for the states in

question and describe well the relevant avoided crossings of the potential curves. We

present and discuss electronic molecular potentials obtained with the MRCI model and

point to possible radiative as well as non-radiative charge transfer processes which can

occur. We also investigate the ground state dipole moment as a function of distance to

visualize effects of any covalent character in the ground state. In the final section we

summarize and draw conclusions.

2. Theory and Computational Details

2.1. Hamiltonian operator

Atomic excitation energies along with ionization potentials suggest a rich manifold

of low-lying excited states with angular momentum projection greater than zero in

the region around the Rb5s1 + Ba+
6s1 entrance channel. This was confirmed by the

calculations in a previous study [14] where the nine lowest-lying molecular electronic

states of the (RbBa)+ ion were calculated employing a spinfree Hamiltonian. These

spinfree states will split into their Ω components upon taking into consideration spin-

orbit coupling. Since these high angular momentum states are possible candidates for

a charge transfer from Ba+ to Rb, which could be lead to a transition to the electronic

ground state, it is therefore essential to account properly for the various Ω components of

these higher angular momentum states to aid the interpretation of ongoing experiments

[11]. We therefore here extend the spinfree investigation to account for spin-orbit

interactions in the rigorous four-component Dirac-Coulomb framework. All classes of

two-electron integrals were included, also the integrals involving four small-component

indices and spin-orbit, except where otherwise noted.

2.2. Correlation Methods and Setup

In the study of the ground state properties we used the RELCCSD module [15, 16] which

can perform coupled cluster single doubles (CCSD) and perturbative triples (CCSD(T))
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calculations and is available in the DIRAC08 quantum chemistry program package

[17]. Since the dominant relativistic contribution for the ground state of (RbBa)+ is

scalar relativistic we employed the computationally cheaper spinfree Dirac-Coulomb

Hamiltonian by Dyall [18] in the ground-state calculations. This was checked against

the Dirac-Coulomb (DC) Hamiltonian as shown in Table 1, and the spin-orbit effect on

the ground state potential was found to be well within the expected error bounds for

the spectroscopic properties. We therefore consistently used the spinfree Hamiltonian for

the ground-state calculations since the time consuming part in the CCSD and CCSD(T)

with the DC Hamiltonian is the flipping of the Kramers projection to describe the in

this case negligible spin-orbit contribution to the electronic potential. Along the entire

potential energy curve we used closed-shell spinfree Dirac-Coulomb Hartree Fock (SF-

DCHF) for the generation of molecular spinors. This was employed since the ground state

is dominated by a single determinant. The CCSD(T) furthermore served to validate the

quality of the MRCI calculations.

In the coupled cluster and MRCI treatments we decided to correlate the valence

and outer core electrons, i.e. the 4p shell on Rb+ and the 5p and 6s shells on Ba. Recent

studies on LiCs [19] showed that the correlation of the core 4d shell on Cs had very little

impact on the spectroscopic values, and this would then be expected also to be the case

for the 3d shell on Rb and the 4d shell on Ba. The LiCs study also showed that the

energetically lower lying 5s outer core on Cs contracted the bond by about 0.02 bohr

which is expected to carry over for the outer core 4s Rb and 5s Ba.

Ground- and excited-state wavefunctions along with vertical and adiabatic

excitation energies have been calculated with the recently parallelized [20] relativistic

double group large-scale MRCI program LUCIAREL[21, 22, 23]. This code is able to

routinely handle large CI expansions (> 109 determinants) on standard Linux-based

clusters. This CI program will be made available in the forthcoming release of the

DIRAC program package. By exploiting the generalized active space (GAS) concept in

the CI, a flexible correlation treatment is possible. The orbital space can be divided

into any number of sub-orbital spaces and any restrictions can be imposed on the

allowed excitations between these sub-orbital spaces. The molecular spinors can in the

developers version of DIRAC be obtained from either DCHF, Kramers-restricted multi-

configurational self-consistent-field (KR-MCSCF), [24] or natural MP2 spinors [25]. We

found that the best way to obtain accurate excitation energies in this case was to start

from a closed shell DCHF. The Ω quantum number for a given electronic state has been

assigned by calculating the expectation value for the ĵz operator [26].

In the MRCI calculations we included the Rb 5s5p and the Ba 5d6s6p spinors (of

which only Ba 6s is formally occupied in the ground state) in the active space, yielding a

distribution of two valence electrons in 13 Kramers pairs. Single holes in the Rb 4p and

Ba 5p shells were included to describe outer-core polarization, and single and doubles

into the energy selected virtual spinors (see section 2.3) were included to account for

dynamic correlation. In our notation we dub this computational scheme S12 (2in13) SD

which follows the notation of GAS1 (GAS2) GAS3 laid out in earlier publications [27].
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2.3. Basis sets and basis set superposition error

All calculations were performed using uncontracted scalar Gaussian type orbitals (GTO)

large component basis sets. The small component basis functions were generated

by restricted kinetic balance condition [28]. For all the ground-state coupled cluster

calculations we used extended TZ basis sets by Dyall [29]. For Rb the (29s21p15d2f)

basis set is his TZ basis set extended with his correlating and polarizing functions for

the valence and the 4s4p shells, since this choice of basis set has been shown to perform

well in a recently published paper on RbYb [27]. For Ba we added Dyall’s correlating

and polarizing functions for the valence and the 5s5p shells to form an (31s25p18d3f)

extended TZ basis set. The polarizing functions were added to ensure accurate dipole

moments for the electronic ground state.

For the MRCI calculations, where the focus was on proper treatment of all low-

lying excited states, we followed the scheme in Ref. [30], and the Ba basis set was

further augmented with one diffuse d, f , and g function with exponents of 0.036645714,

0.3000341, and 0.76354824, respectively, in the MRCI treatment. This was done in order

to properly describe excitations to the Ba 5d shell which plays a crucial role in the charge

transfer from Rb to Ba+ and could enable a transition to electronic ground state. The

polarizing functions were, on the other hand, not included since no electric properties

were calculated with the MRCI. This setup results in a total of (28s20p14d1f) for Rb

and (30s24p18d3f1g) for Ba. This basis set has been used in all MRCI calculations.

The threshold for the truncation of the virtual spinors in all the correlated

calculations was set at 18 Hartree. The validity of this choice was checked for the ground

state at the CCSD and CCSD(T) levels using the approximation to the small-component

density by Visscher [31]. To this end, complete potential energy curves with a truncation

of the virtuals at 42 Hartree were also constructed. As seen from the results in Table

2 the truncation errors in the spectroscopic parameters derived from these calculations

are more than a factor of 100 smaller than the difference between CCSD and CCSD(T).

The basis set superposition error (BSSE) in the electronic ground state was

accounted for by applying the counterpoise (CP) correction as suggested by Boys and

Bernardi [32].

2.4. Dipole moments

Dipole moments along the ground state potential energy curve were calculated using the

finite-field technique where we varied the electric field along the bond axis (chosen as z).

For the dipole moment a seven-point numerical derivative has in previous publications

[27, 19] been shown not to be the limiting factor for the accuracy of the dipole moment

and will therefore also be used here. The field strengths used were ±0.0001, ±0.0002, and
±0.0004 Eh e

−1 bohr−1 to form the numerical derivative of the energy with respect to

electric field taken at zero field strength. The origin of the molecular coordinate system

was chosen to lie in the center of mass. In this way we could calculate the dipole moment

at different internuclear distances with the WFFIT program from Sadlej [33], and this
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has been done at the CCSD and CCSD(T) levels of theory for the ground state.

3. Results

Table 3 compiles the atomic configurations and terms as well as their corresponding

molecular states that form the lower part of the electronic spectrum of the (RbBa)+

molecular ion up to ≈ 14000 cm−1 above the ground state. These molecular states

include also the Σ states correlated with the entrance channel for the envisaged collision

experiments involving an ultracold ionized trapped barium atom and a Bose-Einstein

condensate of neutral rubidium atoms. In the following we shall elaborate on our results

for all the molecular states located below the entrance channel plus d channels associated

with the Rb+
5s0(

1S0) + Ba6s15d1(3D1,2,3 ; 1D2) atomic limits listed in Table 3. As our

results discussed in Section 3.3 show, notable interactions between electronic states of

the same Ω quantum number are observed for the molecular states correlating with these

channels. It is therefore anticipated that radiative as well as non-radiative transitions

will play a crucial role in the charge transfer process from Rb + Ba+ to Rb+ + Ba and

of the life time of the different states in the excited state manifold.

3.1. Atomic calculations and ionization potentials

Table 4 compiles our results of atomic and atomic-like excitation energies of the lowest

Ba atomic transitions as well as previous theoretical work and experimental data.

Comparisons of our atomic MRCI S6 (2in9) SD and the atomic-like molecular MRCI

S12 (2in13) SD results show that the dissociation limit is reached at an internuclear

separation of 50 bohr. From previous studies on transition metals it is known that

ns2(n-1)dm → ns1(n-1)dm+1 excitations are difficult to describe in general within an

MRCI approach because of the slow convergence of the dynamical electron correlation

contributions [34]. Multireference CC approaches, such as for example the Fock-space

CCSD (FSCCSD) or the intermediate Hamiltonian IHFSCCSD methods [35, 36, 37], are

better at describing dynamical electron correlation energies. They are therefore expected

to yield closer agreement with experiments, as the results in Table 4 confirm. In view of

these difficulties for MRCI the deviations of our computed 3D and 1D excitation energies

from the experimental values on the order of a few 100 cm−1 are satisfactory. The fine-

structure splittings of these terms are even reproduced within a few tens of cm−1(see

Table 4). Furthermore, the good agreement of our calculated Ba6s16p1(3P) energies to

experiments shows that the chosen basis set and correlation treatment are adequate.

In addition to the energetic location of the low-lying neutral Ba channels, the

differential ionization potential of Rb and Ba is of vital importance for an unbiased

description of the (RbBa)+ molecular states. Our computed ΔIP (IP(Ba)-IP(Rb)) value

of 8454 cm−1 is in excellent agreement with experiment (8344 cm−1) [38]. This ΔIP was

calculated as the excitation energy in the atomic-like limit at 50 bohr of a molecular

calculation. The Ba+ + Rb entrance channel is thus placed only slightly below the
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Ba6s15p1(3D1) + Rb+
5s0 atomic channel. This is in contrast to the lighter homologs

(NaCa)+, (MgK)+ and (MgCs)+ where the corresponding energy gap is much larger.

3.2. Ground state potential

In Table 1 we report our calculated MRCI spectroscopic constants for the 1Σ+
0+ ground

state of (RbBa)+ and compare with values derived from our four-component CCSD

and CCSD(T) calculations. In agreement with the findings of an earlier study on RbYb

[27], counterpoise correction has only a minor effect on the spectroscopic constants of

the ground state. Inspecting Table 1, it is comforting that the present spin-dependent

MRCI S12 (2in13) SD approach compares favorably to the more sophisticated CCSD(T)

method. The deviation of 0.03 bohr in the equilibrium bond distance Re is small for such

a weakly-bound molecular ion with Re = 8.75 bohr. Moreover, the harmonic frequency

ωe as well as the dissociation energy De agree perfectly with the CCSD(T) values.

The differences between the spin-free and spin-dependent MRCI results are mainly

attributed to AO basis set effects since in the spin-free case an ANO-RCC basis set

with a truncation of the virtual space at 5 Eh was used. As could be expected for a

”Σ“ state, spin-orbit coupling hardly affects the calculated spectroscopic parameters as

seen for the coupled cluster calculations. In contrast we see a substantial contraction of

the equlibrium distance and an increase of the dissociation energy by about 150 cm−1

when triple excitations are included perturbatively in the coupled cluster treatment.

This finding is in line with what has also been observed for other weakly bound systems

like LiCs [19] and RbYb [27] where a CCSD treatment was also found to be insufficient.

In the MRCI expansion the ground state is dominated by the reference determinant

which has a CI coefficient of 0.94 around equlibrium. A Mulliken population analysis of

the underlying DCHF wave function reveals that the highest occupied molecular orbital

(HOMO) is not a purely atomic Ba 6s Kramers pair, the Ba 6s spinors are populated

by 1.5 electrons. Roughly 0.4 electrons have been transferred to a Rb σ-type orbital.

The remaining 0.1 electrons reside in the Ba 5dσ that is also involved in the binding.

The second largest CI coefficient of about -0.1 is found for the double exication to the

lowest unoccupied molecular orbital (LUMO), which the Mulliken population analysis

again reveals to be significantly mixed. The LUMO is composed of Rb 5s(0.613), Ba

6pz(0.209), 6s(0.150), and 5dxx, 5dyy(0.011). We furthermore see many single and double

excitations to molecular spinors which are made up of Rb 5s and 5p and Ba 6s, 6p, and

5d atomic spinors. This large mixing of the atomic spinors is what lead to the choice

of including all these spinors in the active space of the MRCI calculations and why

we are confident that the MRCI with this active space performs well for the low-lying

states. Upon dissociation we observe that the HOMO becomes more and more atomic

and locates on Ba.

The mixing with the Rb 5s and 5p in HOMO also means that the ground state

cannot be considered to be just a charge – induced dipole 1/R4 interaction between Rb+

and Ba but that there is a significant amount of the valence electron density residing
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on the Rb atom. The charge transfer is perhaps not so large that one would talk about

a bond in a chemical sense but we find that the bond is significantly stronger than

what would be expected from a charge induced dipole interaction. With a dissociation

energy of around 5000 cm−1 (see Table 1) this is in fact directly comparable to the

dissociation energy of the LiCs alkali dimer where De is measured to 5875.455 cm−1

[39]. The picture of a partially covalent polar bond is also confirmed by the dipole

moment which is significantly influenced by the charge distribution in the molecule (see

Section 3.4).

3.3. Excited state potentials

In contrast to the ground state, accounting for spin-orbit coupling in the excited states

clearly yields a more complex picture for the potential energy curves of the electronic

excited states of the molecular ion (RbBa)+ compared to the spinfree calculations[14].

The avoided crossings between the 3Σ+
0−-

3Π0− states and the 3Σ+
1 -

3Π1 states are easily

discernible in Figure 1 and in the enlargement of the critical region in Figure 2. Of

course, in the spinfree calculations all these curves cross, and it is thus evident that

proper treatment of spin-orbit coupling is mandatory for explanation and prediction of

outcomes of ultracold reactive collisions of Ba+ on a Rb Bose-Einstein condensate. An

even more pronounced avoided crossing between the 1Σ+ of the entrance channel and the
1Σ+ of the Ba6s15d1(1D) channel is also visually identifiable in Figure 1. Unlike the above

mentioned avoided crossings this one would also be present in a non-relativistic or scalar

relativistic calculation. The spin-orbit splitting of the calculated scalar-relativistic states

is sizeable, in particular for the 3Δ and 3Π states which are split into their Ω = 1, 2, 3

and Ω = 0+, 0−, 1, 2 components (see Figure 1 and Table 5). This splitting of the 3Δ

and 3Π into their Ω components is of 250 and 80 cm−1 respectively at the ground

state equilibrium bond distance. While some of the Ω components are degenerate in

the atomic limit because they belong to the same atomic J level, the molecular field

gives a spin-orbit splitting also of these components. The 3Σ+ state originating from the

Ba6s15d1(3D) channel exhibits very irregular behaviour due to avoided crossings, and it

is therefore not meaningful to give an estimate of the molecular spin orbit splitting of

this state.

Most of the electronically excited states exhibit strong multiconfigurational

character and are thus more difficult to describe in a molecular orbital picture. We

will therefore discuss their electronic structure in a more qualitative way. The lowest

excited Ω = 0− and Ω = 1 states all correlate to a 3Σ+ state in the Λ-S representation

(see Table 3). In the dissociation limit their electronic structure corresponds to Ba+ +

Rb. At shorter nuclear distances more and more Ba6s15d1
σ
(3D) character is mixed in. In

the Franck-Condon region the wave function has nearly equal contributions from these

two configurations. At about 7.75 bohr the 3Σ+ components undergo an avoided crossing

with the Ω = 0− and Ω = 1 of a 3Π state (see Figure 2). The 3Π state has a significantly

shorter equilibrium distance than the other states originating from the Ba6s15d1(3D) +
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Rb+ channel (see Table 5). This can be traced back to the strong admixture of Ba 6pπ

and Rb 5pπ character into the Ba 5dπ spinor.

The non-adiabatic interaction between the 3Σ+ and 3Π states is anticipated to have

significant impact on the charge-transfer process. In the entrance channel the system

is prepared initially in a highly excited vibrational level of the 3Σ+ potential. At short

internuclear separation the non-adiabatic interaction yields a finite probability for a

non-radiative transition to the 3Π potential which in turn can relax to the electronic

ground state by emission of a photon.

At an internuclear distance of 15 to 16 bohr we see the 1Σ+ of the entrance channel

crossing the Ω = 0+ of a 3Π state (see Figure 1). While formally it would not be allowed

for two Ω = 0+ state to cross it appears that for this charge transfer process the non-

adiabatic coupling matrix element or off diagonal element between the two states is so

small we cannot visibly see any effect of it. A clear avoided crossing in the 12 to 13 bohr

range between the 1Σ+ and the higher lying Ω = 0+ of a 1Σ+ from the Ba6s15d1(1D)

but also Ω = 0+ of a 3Π of the Ba6s16p1(3P) is observed. These avoided crossing helps

making the 1Σ+ of the entrance channel a metastable state which is in contrast to what

is observed in the lighter homologs where this is a dissociative state.

The remaning states correlating with the 3D channel are dominated by

configurations in which the Ba 6dσ spinor is singly occupied. As seen from Table 5

the Ω components of the 3Δ state are markedly split by spin-orbit, but exhibit equal

equilibrium distances, indicating no differential spin-orbit coupling to other sΛ states.

3.4. Dipole moment

Finally, we show in Figure 3 the dipole moment curve of the molecular ground

state of (RbBa)+ calculated at the four-component CCSD(T) level with origin at the

center of mass. The corresponding curve at the CCSD level (not shown) is almost

identical, supporting that the CCSD(T) curve is converged. For a charge distribution

corresponding purely to Rb+ and and Ba a dipole moment of around 14 Debye could

be expected at an internuclear separation of 8.75 bohr (see Fig. 3). Due to a partial

electron transfer from Ba to Rb+ (cf. dicussion in section 3.2), the dipole moment of the

electronic ground state is significantly lower at the equlibrium distance. As seen in Table

6 we find a vibrationally averaged dipole moment of 4.53 Debey at the counterpoise

corrected CCSD(T) level. Since the dipole moment function is almost linear around

the rovibrational ground state we only see a minor difference between the vibrationally

averaged dipole moment and the dipole moment taken at the electronic equilibrium

distance as shown in Table 6. It should be noted that in perfect agreement with the

theory, an asymptotic behavior of the dipole moment is obtained for large internuclear

distances.
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4. Summary and Prospects

In an earlier study on the valence isoelectronic system (NaCa)+ of (RbBa)+, a radiative

lifetime of charge transfer in the order of 104 s to 106 s for the A 1Σ+ to the X 1Σ+ is

found by Makarov et. al [9]. The A 1Σ+ (and most likely also the a 3Σ+) electronic states

of (NaCa)+ are thus very long-lived metastable species. This occurs since there is no

close lying P states mixing into the excited Σ states, making both radiative transitions

electric dipole forbidden and for the a 3Σ+ also spin forbidden. This is in great contrast

to what is observed in (RbBa)+. The non-adiabatic interaction in the short range of

the potential (see Figure 2) between the 3Σ+
1,0− and 3Π1,0− states is expected to lead to

a non-radiative charge transfer from the 3Σ+
1,0− entrance channel to the 3Π1,0− states.

While transition from the 3Π1,0− states to the ground state in (RbBa)+ is also in a

scalar-relativistic approximation electric dipole and spin forbidden, the large mixing

of the Ba 5dπ with the close lying Ba 6pπ and Rb 5pπ spinors induced by spin-orbit

coupling will greatly decrease the radiative lifetime.

The expected fast non-radiative charge transfer to the 3Π1,0− states may not be

experimentally desirable since it will irreversibly ’destroy’ the Ba ion. Furthermore the

shorter lifetime of the 3Π1,0− states may not be long enough to consider the states

metastable for all experiments in question [11]. With the transition dipole moments

it would be possible to go from the present qualitative analysis to more quantitative

predictions of life times. This is clearly of interest, and this has prompted us to start

the development of a MRCI transition dipole moment module [40]. Since Ba is a

special case among the alkaline earth metals with its low lying D shell it presents a

unique opportunity to study non-radiative charge transfer processes in the excited state

manifold thereby making (RbBa)+ experimentally very interesting.

The (RbBa)+ ground state is found to form a partially covalent polar bond stronger

than expected. While the dissociation energy is comprable to the LiCs alkali dimer the

harmonic frequency is only one third of the LiCs value, showing that the two bonds are

significantly different. The broader (RbBa)+ potential shows the longer ranging charge

induced dipole interaction against the neutral dissociation of LiCs. We furthermore show

that the electronic ground state possesses a dipole moment significantly smaller than

what a charge-dipole interaction would lead one to expect. We attribute this finding to

a partial charge transfer from Ba to Rb+.

In this study we demonstrate the capability of our relativistic all-electron quantum-

chemical methodology to yield accurate ground and excited states. We show that these

methods are capable of handling both neutral and complex ionized systems from the

atomic limit all the way in the short range potential. This is seen from the accurate

differential ionization potential ΔIP, atomic excitation energies and fine structure

splitting but it is primarily the ability to handle the complicated excited state potentials

of highly multiconfigurational character. We show that with our chosen MRCI model

we can handle the above along with reproducing the accurate CCSD(T) data for the

spectroscopic properties of the ground state.
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Table 1. Spectroscopic values for the Ω = 0+ ground state calculated at the spin-
dependent MRCI S12 (2in13) SD level in comparison to CC results, both at the
spin-free (SF) and spin-dependent levels, and results from earlier spin-free MRCI SF-
SD16 (2in7) SD where an ANO-RCC basis was used and with a truncation of the
virtual space at 5 Eh. Counterpoise corrections (“cp-” prefix) have also been tested.

Method Re[bohr] ωe [cm
−1] De [cm

−1]

SF-SD16 (2in7) SD [14] 8.75 54.327 5509

S12 (2in13) SD 8.72 51.773 5055

SF-CCSD 8.80 52.171 4887

CCSD 8.80 52.187 4886

SF-CCSD(T) 8.75 52.785 5035

CCSD(T) 8.75 52.799 5034

cp-SF-CCSD 8.81 52.145 4877

cp-CCSD 8.80 52.161 4876

cp-SF-CCSD(T) 8.76 52.755 5023

cp-CCSD(T) 8.76 52.768 5022

Table 2. Spectroscopic values for the Ω = 0+ ground state calculated with the spin-
free (SF) CCSD and CCSD(T) methods, with an energy truncation threshold for
active virtual spinors at 18 and 42 Hartree, and using the Visscher small component
approximation[31].

Method Virtuals truncation Re[bohr] ωe [cm
−1]

SF-CCSD 18 8.8027 52.179

SF-CCSD 42 8.8025 52.179

SF-CCSD(T) 18 8.7528 52.794

SF-CCSD(T) 42 8.7526 52.795

Table 3. A selection of molecular electronic states in the Λ − S coupling picture and
associated atomic dissociation channels in an energy range of up to ≈ 14000 cm−1.

Atomic (2S+1)LJ Molecular (2S+1)ΛΩ

Rb+
5s0 (

1S0) + Ba6s2 (1S0)
1Σ+

0+

Rb5s1 (2S1/2) + Ba+
6s1 (

2S1/2)
3Σ+

1,0− ,
1Σ+

0+

Rb+
5s0 (

1S0) + Ba6s15d1 (3D1,2,3)
3Δ3,2,1,

3Π2,1,0+,0− ,
3Σ+

1,0−

Rb+
5s0 (

1S0) + Ba6s15d1 (1D2)
1Δ2,

1Π1,
1Σ+

0+

Rb+
5s0 (

1S0) + Ba6s16p1 (3P0,1,2)
3Π2,1,0+,0− ,

3Σ+
1,0−

12



Table 4. Excitation energies T in cm−1 for the lowest Ba6s2(1S0) → Ba6s15d1(3D1,2,3),
Ba6s2(1S0) → Ba6s15d1(1D2) and Ba6s2(1S0) → Ba6s16p1(3P0,1,2), electronic transitions
calculated at the atomic MRCI S6 (2in9) SD and atomic-like S12 (2in13) SD
(molecular calculation; values taken at R = 50 bohr) levels. The active space in the
atomic calculation includes the same Ba shells and the same truncation threshold for
the virtual spinors as in the molecular case. Details on the molecular computational
level are given in the text. The MRCI results are compared to previous theoretical and
experimental data. In the atomic-like “J states” (Ω) the individual Mj components are
almost degenerate at R = 50 bohr with deviations on the order of 4−8 cm−1 from the
lowest to highest Mj component. We here show the energies of the lowest Mj values
in the table.

1S0
3D1,2,3

1D2
3P0,1,2

Method J = 0 J = 1 J = 2 J = 3 J = 2 J = 0 J = 1 J = 2

Experiment [41] 0 9034 9216 9597 11395 12266 12637 13515

Atomic calculations
S6 (2in9) SD 0 8627 8809 9175 11197 12732 13091 13944

FSCCSD [36] 0 9075 9260 9639 11621 12423 12802 13793

IHFSCCSD [36] 0 9117 9296 9677 11426 12397 12728 13610

Molecular calculation at R = 50 bohr
S12 (2in13) SD 0 8619 8812 9174 11198 12736 13109 13936
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Table 5. Spectroscopic constants for the ground and lowest excited states (Ω
designation) of (RbBa)+ calculated at the MRCI S12 (2in13) SD level with 14
explicitly correlated electrons.

State Ω Λ− Sa Re [bohr] ωe [cm
−1] De [cm

−1] Tv [cm
−1] Te [cm

−1]

1 0+ 1Σ+ 8.72 52 5055 0 0

2 0− 3Σ+ 9.22 45 6889 6711 6621

3 1 3Σ+ 9.22 45 6871 6737 6638

4 0+ 3Π 8.28 52 5899 7865 7775

5 0− 3Π 8.40 53 5980 7939 7878

6 1 3Π 8.28 56 5742 8022 7932

7 2 3Π 8.28 52 6702 8109 7156

8 1 3Δ 9.22 43 4302 9653 9556

9 2 3Δ 9.22 43 4500 9809 9721

10 3 3Δ 9.22 43 4157 10165 10064

11 2 1Δ 9.22 43 5887 10440 10365

12 1 3Σ+ 9.22 37 2258 12047 11963

13 0− 3Σ+ 9.03 44 2216 12053 12005

14 0+ 1Σ+ 9.77 39 - 13030 12601

15 1 1Π 9.72 40 3566 13112 12687
a leading Λ − S projection

Table 6. Dipole moments at Re (μe) and the vibrationally averaged dipole moment
μv for the CCSD and CCSD(T) levels of theory and with counterpoise (cp) corrected
values.

Method μe [D] μv [D]

SF-CCSD 4.528 4.550

cp-SF-CCSD 4.533 4.556

SF-CCSD(T) 4.507 4.528

cp-SF-CCSD(T) 4.514 4.534
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Figure 3. Four-component CCSD(T) dipole moment curve (in Debye) of the molecular
ground state with calculated with 14 explicitly correlated electrons. The straight line
(blue) indicates the asymptotic limit of the dipole moment μ for a charged system in
the center-of-mass coordinates.
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