
On the Presence Information of Nodes
in Mobile Ad-hoc Networks

Inaugural-Dissertation

zur
Erlangung des Doktorgrades der

Mathematisch-Naturwissenschaftlichen Fakultät
der Heinrich-Heine-Universität Düsseldorf

vorgelegt von

Tran Thi Minh Chau

aus Vietnam

June 2009

Aus dem Institut für Informatik
der Heinrich-Heine-Universität Düsseldorf

Gedruckt mit der Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Heinrich-Heine-Universität Düsseldorf

Referent: Prof. Dr. Martin Mauve
Heinrich-Heine-Universität Düsseldorf

Koreferent: Prof. Dr. Stefan Conrad
Heinrich-Heine-Universität Düsseldorf

Tag der mündlichen Prüfung: 17.07.2009

Abstract

While mobility in the sense of node movement has been an intensively studied aspect
of mobile ad-hoc networks (MANETs), another aspect of mobility has not yet been
subjected to systematic research: nodes may not only move around but also enter and
leave the network. In fact, many proposed protocols for MANETs exhibit worst-case
behavior when an intended communication partner is currently not present. This thesis
addresses the problem of detecting the presence of nodes in MANETs and provides
lightweight solutions to the problem.

As our major contribution, we introduce soft-state presence detection. It uses a Bloom
filter-based beaconing mechanism to aggregate and distribute information about the
presence of network nodes. This soft-state approach decays information over time,
enabling the removal of no-longer-present nodes from aggregates, which is not possible
with standard Bloom filter operations. Privacy issues and design alternatives of this
approach are also discussed.

While being a lightweight presence detection, the soft-state approach provides an ad-
ditional feature of estimating hop-distance to nodes at the cost of extra bandwidth
usage. We introduce phase-based presence detection that improves upon the soft-state
approach by significantly reducing the overhead required to decide whether a node is
present. This approach makes use of standard Bloom filters in combination with a loose
synchronization mechanism that solves the problem of information removal.

Finally, we take one step further to investigate the presence detection problem in the
stricter sense of a node being present, i.e. whether communication with the node is
possible, and adapt our presence detection approaches to solve it. We also developed
xWhoisthere, an instant messenger that monitors presence status, including reacha-
bility, of friend nodes. The software can be deployed as an independent group-aware
application supporting collaboration among members or simply as an instant messenger
that requires no Internet connection.

iii

Abstract

iv

Zusammenfassung

Während die Mobilität im Sinne von Knotenbewegung einen intensiv studierten Aspekt
mobiler Ad-hoc-Netze (MANET) darstellt, ist eine andere Art der Mobilität bisher
vernachlässigt worden: Knoten können sich nicht nur innerhalb des Netzes bewegen,
sondern auch neu in das Netz kommen oder das Netz verlassen. In der Tat zeigen die
vorgeschlagenen Protokolle für MANETs meist Worst-Case-Verhalten, wenn ein Kom-
munikationspartner zurzeit nicht anwesend ist. Aus diesem Grund beschäftigt sich diese
Arbeit mit der Frage, wie auf leichtgewichtige Weise die Anwesenheit von Knoten in
MANETs berprüft werden kann.

Der zentrale Beitrag der Arbeit besteht in der Entwicklung eines Ansatzes zur
Präsenzerkennung. Als Grundlage dienen dabei Bloom-Filter, um Informationen über
die Anwesenheit von Netzknoten effizient zu sammeln und zu verteilen. Gewöhnliche
Bloom-Filter unterstützen jedoch nicht das Entfernen von Elementen aus einer gespei-
cherten Menge. Um dieses Problem zu lösen, wurden Bloom-Filter durch einen Soft-
State-Mechanismus erweitert. Weiterhin wurde untersucht, wie die Anwesenheitsinfor-
mationen vor Missbrauch geschtzt werden können.

Der Soft-state-Ansatz liefert zusätzlich Informationen ber die Distanz zu einem an-
wesenden Knoten. In einigen Anwendungen ist dies eine nützliche Information. Aller-
dings stellt sich die Frage, ob ein noch effizienterer Mechanismus zur Präsenzerkennung
möglich ist, welcher diese Information nicht bereitstellt. Der zweite Beitrag der
Arbeit besteht daher in der Einführung eines Algorithmus zur Phasen-basierten
Präsenzerkennung, welcher in vielen Fällen die notwendige Datenrate des Soft-State-
Ansatzes deutliche unterschreitet. Dieser Ansatz macht von gewöhnlichen Bloom-Filtern
in Kombination mit einem losen Zeitsynchronisation Gebrauch, um Knoten die das Sys-
tem verlassen haben, aus den Präsenzinformationen zu entfernen.

Schließlich wird das Problem der Präsenzerkennung im strengen Sinn untersucht. Hier
gilt ein Knoten nur dann als anwesend, wenn man eine bidirektionale Kommunikation

v

Zusammenfassung

mit ihm durchführen kann. Es wird eine Verfahren vorgeschlagen, welches die beiden
oben erwähnten Ansätze so erweitert, dass nur Knoten als anwesend betrachtet werden,
mit denen eine bidirektionale Kommunikation möglich ist.

Die Ergebnisse der Arbeit wurden analytisch untersucht, mit Simulationen bewertet und
schließlich in einer konkreten Anwendung implementiert. So enstand der Instant Messan-
ger xWhoisthere, der den Präsenzstatus und die Erreichbarkeit von Freunden berwacht.
Die Software wurde für die Durchführung einer Reihe von Realwelt-Experimenten ver-
wendet, welche die Ergebnisse der analytischen und simulativen Evaluation bestätigen.

vi

Acknowledgments

Although only my name appears on the cover page, this dissertation was made possible
with the contribution of many people. I am grateful to them all.

First of all, I would like to express my gratitude to my advisor, Prof. Martin Mauve, for
his great inspiration, guidance, and support throughout my PhD study. His infectious
enthusiasm has been a great driving force through my research years at the University
of Düsseldorf. I have been amazingly fortunate to have an advisor like him and I hope
that one day I would become as good an advisor to my students as Martin has been to
me. I would also like to thank Prof. Stefan Conrad for being my co-advisor and for his
support and constructive suggestions.

I am also thankful to Prof. Jörg Rothe and Prof. Phan Minh Dung, who was my advisor
during my Master study in AIT, for those valuable discussions on problems related to
cryptography.

This is a great opportunity to express my respect to Björn Scheuermann, Wolfgang
Kieß, Christian Lochert, Jedrzej Rybicki, Michael Stini, Markus Koegel, and all the
other colleagues at the Computer Networks and Communication Systems group at the
University of Düsseldorf for their discussions and their most valuable feedback on my
ideas and papers. My special thanks go to Björn for helping me through the painful
process of writing papers and to Wolfgang for great advice on real-world experiments.
Without their discussions, I would have had much harder times ironing out my fuzzy
ideas. They both also helped considerably with their proof-reading of this dissertation.
My experiments with PDAs would not have been possible without student helpers.
Among them are Thomas Ogilvie and other programmers of the EXC software.

My thanks also go to Marga Potthoff and Sabine Freese, who guided me through the
bureaucracy inside as well as outside the university, and to Christian Knieling for main-
taining our wonderful networking environment and helping me with the software and
hardware I needed to carry out my experiments.

vii

Acknowledgments

I am grateful to the Deutscher Akademischer Austausch Dienst for the financial support
for my study in Germany. I am deeply indepted to the people who work hard for the
money and the opportunity that people like me are granted.

My sincere gratitude is also to German people, who have made my stay in Germany a
wonderful time. When I go back home, I will take with me the love for this beautiful
country and the admiration of this great nation.

This thesis is dedicated to my extended family and friends, who have always been the
source of love and support. I cannot find the right words to thank my parents, my
husband and child, who held me up with their endless love.

viii

Contents

Frontmatter i
Title . i
Abstract . iii
Zusammenfassung (German Abstract) . vi
Acknowledgements . viii
Table of Contents . x
List of Figures . xii
List of Tables . xiii
List of Algorithms . xv
List of Abbreviations . xvii

1 Introduction 1

2 Related Work 5

3 Soft-state Presence Detection 9
3.1 Scalable Presence Detection . 10

3.1.1 The Bloom Filter . 11
3.1.2 Presence Detection . 12
3.1.3 Decoupling Information Decay and Beaconing Intervals 15
3.1.4 Aggregate Compression . 16

3.2 Evaluation . 17
3.2.1 False Positive Rate . 18
3.2.2 Accuracy of the Seen Distance 20
3.2.3 Node Movement . 21
3.2.4 Speed of Information Propagation 23
3.2.5 Effectiveness of Arithmetic Coding Compression 27
3.2.6 Choosing the Parameters . 27

3.3 An Example Application . 29
3.3.1 Worst Case Performance . 30
3.3.2 Introducing Absent Nodes . 31
3.3.3 Arriving and Leaving Nodes . 35
3.3.4 Periodically Sleeping Nodes . 35

3.4 Real-world Experiments . 36
3.4.1 Static indoor . 37
3.4.2 Dynamic outdoor . 41

ix

Contents

3.5 Privacy Concerns . 42
3.5.1 Hash Keys that Change over Time 44
3.5.2 Effects on False Positive Rate . 46
3.5.3 “Friend” Groups . 47
3.5.4 Related Work . 48

3.6 Chapter Summary . 48

4 Reducing the Overhead of Presence Detection 51
4.1 Algorithm . 52

4.1.1 Phase Synchronization . 52
4.1.2 Overcoming Temporary Inconsistencies 55
4.1.3 Detailed Algorithm Description 56

4.2 Evaluation . 58
4.2.1 False Positive Rate . 58
4.2.2 Choosing the Phase Length . 59
4.2.3 Speed of Information Propagation 60

4.3 Example Application . 61
4.3.1 Algorithm Parametrization . 63
4.3.2 Worst case . 63
4.3.3 Absent nodes . 64

4.4 Chapter Summary . 67

5 Reachability 71
5.1 Algorithm . 72
5.2 Evaluation . 74

5.2.1 Bandwidth . 74
5.2.2 False Positive Rate . 74
5.2.3 Speed of Information Propagation 75

5.3 Real-world Experiments . 75
5.3.1 Method of Assessment . 75
5.3.2 xWhoisthere Software . 78
5.3.3 Experimental Results . 80

5.4 Chapter Summary . 82

6 Conclusion 85

A Propagation Delay Calculations 89

B Phase-based Approach to Reachability Detection 91

Bibliography 96

Index 97

x

List of Figures

3.1 A Bloom filter. 11
3.2 A soft state Bloom filter. 15
3.3 Oscillations of distance estimates for varying beacon packet error rates. 22
3.4 Deviations between seen distances and true shortest hop distances for

different maximum node speeds. 23
3.5 Average delay before a node is recognized as present. 25
3.6 Time until information is received by all nodes. 27
3.7 Average beacon size when compressed. 28
3.8 Worst case network performance. 31
3.9 Packet delivery ratio as the number of connection attempts to non-present

nodes increases. 32
3.10 Bandwidth use per node as the number of connection attempts to non-

present nodes increases. 33
3.11 Delivery ratio in the case with compressed and uncompressed Bloom filters. 34
3.12 Bandwidth in the case with compressed Bloom filters. 34
3.13 Delivery ratio with arriving and leaving nodes. 35
3.14 Delivery ratio with periodically sleeping nodes. 36
3.15 AODV packet count in the simulations with periodically sleeping nodes. 37
3.16 Ping snapshots of two static experiment sets. 38
3.17 Test-beds: Average delay before a node is recognized as present. 40
3.18 Movement in a mobile experiment. 41
3.19 Presence information. 42
3.20 False positive rates. k = 4, m = 1024 47

4.1 Phase synchronization for the removal of old information. 54
4.2 Temporary inconsistency. 55
4.3 Close-up at one node. 56
4.4 Time until information is received by all nodes. 62
4.5 Packet delivery ratio as the number of connections increases, in a worst-

case scenario. 65
4.6 Packet delivery ratio as the number of connection attempts to non-present

nodes increases. 66
4.7 Medium-sized networks: bandwidth use per node as the number of con-

nection attempts to non-present nodes increases. 68

xi

List of Figures

4.8 Large-sized networks: bandwidth use per node as the number of connec-
tion attempts to non-present nodes increases. 69

5.1 Experiments on multihop two-way communication with node 0. AODV
worked up to point A. Simple flooding worked up to point B. 77

5.2 xWhoisthere screenshot. 79
5.3 Sample experiment. 81

xii

List of Tables

3.1 Shortest hop distances to node 0, set 1, run 03 39
3.2 Shortest hop distances to node 0, set 2, run 08 40

xiii

List of Tables

xiv

List of Algorithms

4.1.1 Timeout and refresh . 57
4.1.2 Merge operation . 58

B.0.1Timeout and refresh . 91
B.0.2Merge operation . 92

xv

List of Algorithms

xvi

List of Abbreviations

AODV Ad-hoc On-demand Distance Vector routing

ARP Address Resolution Protocol

CIDR Cluster-based Inter-Domain Routing

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

EXC EXperiment Control

GLS Grid Location Service

HLS Hierarchical Location Service

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

MAC Medium Access Control

MANET Mobile Ad-hoc NETwork

NHDP NeighborHood Discovery Protocol

OLSR Optimized Link State Routing protocol

PDA Personal Digital Assistant

SANET Sensor and Actuator NETwork

TDBF Time-Decaying Bloom Filter

TTL Time-To-Live

xvii

List of Abbreviations

xviii

A stupid man’s report of what a clever man says is never accurate,
because he unconsciously translates what he hears

into something that he can understand.
Bertrand Russell

xix

xx

Chapter 1

Introduction

Node mobility is a key challenge in mobile ad-hoc networks. As a consequence, the
impact of a dynamic network topology on medium access, network and transport func-
tionality has been studied extensively. However, there is another aspect of mobility
besides having to deal with a dynamic network topology. Mobility also implies that
nodes may enter and leave the network at any time. This can happen either physically
by entering or leaving the network area, or logically by switching the networked de-
vice on or off. In contrast to supporting dynamic topologies, the impact of varying node
presence has not yet been systematically studied, although it can affect the performance
of a network significantly.

One example—by far not the only one, but a particularly good one—is reactive routing in
MANETs with protocols like DSR [JM96] or AODV [PR99]. These have been designed
and evaluated under the premise that all communication partners to which a route is to
be established are actually present in the network. Routes are found by flooding route
requests. Flooding is repeated if no answer arrives within some time interval. Thus, if
the intended communication partner is not present, route discovery causes a maximum
amount of unnecessary network traffic. The problem could be avoided if there was a
way to tell whether some potential communication partner is currently present or not.
While proactive routing protocols would certainly be able to provide this service, they
additionally spend resources to track all other mobility-induced topology changes. This
overhead was the key reason to develop reactive routing protocols in the first place. We
therefore argue that a presence detection scheme should be lightweight: it should track
only the presence of nodes and not the state of all links.

Many other protocols and applications for mobile ad-hoc networks could likewise profit
from presence detection. Further examples are mechanisms for service discovery, where
one wants to find a provider of a certain service, or location services used for geographic

1

Chapter 1 Introduction

routing. Both could benefit from a way to check whether the subject of the query is
present at all, before actually attempting to locate it.

This thesis addresses the problem of detecting presence of nodes in MANETs and pro-
vides lightweight solutions to the problem. Our main contributions are as follows:

1. We point out the problem of lightweight presence detection as an important open
research problem in the context of MANETs.

2. We propose a solution to the problem using soft-state Bloom filters, assess the per-
formance of this solution in various regards: analytically, by means of simulation
and test-bed.

3. We devise a phase-based solution which saves a significant amount of network
bandwidth using a more space-efficient method to remove old information.

4. We extend the problem of presence detection to reachability detection, adapt the
proposed algorithms to solve the new problem, and develop an instant messenger
application to demonstrate our solution.

Our core contribution is presented in Chapter 3, where we propose a soft-state
lightweight presence detection service for mobile ad-hoc networks. It enables nodes
to check whether other nodes are present within a given hop-count radius. This soft-
state approach is based on a space-efficient approximate set membership data structure
called Bloom filter [Blo70]. Essentially, this provides a lossy compression of presence
information in order to minimize communication overhead. In our approach, the nodes
periodically send beacon messages announcing the compressed presence information that
they have gathered so far. They integrate the information received from neighbors into
their own knowledge base and include it in their next announcement. Stale presence
information about nodes that have left will automatically vanish.

Next, we observe that the soft-state approach not only solves the problem of lightweight
presence detection, but also has a side effect that allows nodes to estimate their distance
to other nodes at the cost of more bandwidth required for the exchange of soft-state
Bloom filters. By using standard Bloom filters combined with a loose mechanism of
phase synchronization to deal with the removal of information, we significantly reduce
bandwidth cost to trade off with the nodes’ ability to estimate distances. The result is
the phase-based presence detection proposed and assessed in Chapter 4, an even more
lightweight solution to the problem of presence detection.

2

While the problem of presence detection concerns only the physical presence of nodes
in the network, there are applications that are interested in whether communication to
a node is possible. Communication ability to a node does not always follow the fact
that a node is present in the network. Hence, in Chapter 5, we extend the problem of
presence detection and address the question of reachability, i.e. whether communication
to a node is possible. The algorithm we propose has been implemented in a real-world
application, xWhoisthere, which is a group-aware application that demonstrates the
effectiveness of our approach to detecting node reachability.

In short, the thesis is structured as follows. Chapter 2 gives an overview of related work.
Chapter 3 presents our soft state approach to presence detection. The more lightweight
phase-based approach is described in Chapter 4. Thereafter, Chapter 5 presents our so-
lution to reachability detection. Finally, Chapter 6 follows with concluding remarks.

3

Chapter 1 Introduction

4

Chapter 2

Related Work

Although detecting the presence of nodes is a largely unexplored field, not only in the
context of MANETs, there are a number of research directions that deal more or less
directly with the presence of nodes in wireless networks. This chapter surveys related
work in the area of obtaining information about the set of nodes that are active in the
network.

As already mentioned, routing protocols for mobile ad-hoc networks are able to deter-
mine the presence status of a node. However, reactive protocols like AODV [PR99] or
DSR [JM96], which do not take the initiative for finding a route to a destination until
required, induce very high, unnecessary network traffic in the case of a route discovery
to a non-present destination. Thus, they might actually benefit from an additional pres-
ence detection service. In contrast, proactive routing protocols like OLSR [JMC+01],
a link-state based algorithm, can immediately determine the presence of a node. How-
ever, as stated in Chapter 1, this comes at the cost of tracking the complete network
topology, too. Due to the continued maintenance of all routes by periodically flooding
the network with updates of network topology, proactive routing protocols need to con-
stantly exchange a great amount of information. Thus, they do not scale very well and
are not suited for highly dynamic network environments. A presence detection system
in combination with reactive routing is able to combine the benefits of both reactive
and proactive approaches: there is no expensive search for non-present communication
partners in reactive routing, while the high effort for maintaining many unused routes
is also avoided. Since the presence information is far less dynamic than the topology of
the network, the maintenance effort is significantly smaller.

5

Chapter 2 Related Work

An example of routing protocols that benefit from presence information is Cluster-based
Inter-domain Routing (CIDR) [ZCG09] 1, a protocol that supports scalability and ro-
bustness to mobility in routing between dynamic clusters of network nodes. CIDR re-
quires periodic communication between nodes within a network cluster to discover and
advertise cluster membership. Though the authors also proposed to use Bloom filter in
membership management and advertisement, they have not yet a specific mechanism to
propagate membership advertisement apart from a suggestion to use DSDV-like proto-
cols for the purpose. Once again, DSDV distance information contains more than just
presence information and thus is more expensive in terms of bandwidth. Meanwhile,
our lightweight approach to presence detection perfectly fits the task of membership
discovering and managing that CIDR requires.

Close relatives to presence detection are location services for geographic routing, which
map the address of a node to its geographic position. Examples are homezone-based
systems [Sto99, GH99], the Grid location service (GLS) [MJK+00], and the hierarchical
location service (HLS) [KFWM04]. However, a location service provides significantly
more information about a node than just telling whether it is present or not, namely its
current position. This information is much more dynamic than pure presence informa-
tion. Therefore, the cost to keep it up-to-date and to look up in such a service is much
higher. Like reactive routing, most location services exhibit their worst-case behavior in
terms of effort in the case of a request for information about a non-present node. Thus,
location services might actually benefit from an additional presence detection service.

Some approaches to presence detection in wireless systems have been successful appli-
cations on their own. An example is the matchmaker Lovegety [Iwa98]. Users give the
devices some information on what they have in mind, such as “talk” and “karaoke”, the
Lovegety then alarms them when it detects a nearby user of the opposite sex who is a
mutual match, so as to help the users involved either in finding or avoiding each other.
A number of research projects deal with the exchange of presence information via single-
hop wireless communication, with or without infrastructure. Hummingbird [HFW99],
a custom-designed mobile device that alerts users when they are in the physical vicin-
ity of each other, was designed to support group awareness and collaborations without
depending on an infrastructure. Social Net [TMRL02] is a interest-matching applica-
tion that broadcasts a user presence, detects those who are nearby, and infers interests
shared by users based on patterns it records over time of physical proximity between
people. Serendipity [EP05] is also a matching application. Running on mobile phone,

1The paper was published in 2009, two years after our first paper on the topic of presence detection
([TSM07])

6

it combines Bluetooth proximity detection with a central server containing user profiles
to detect nearby users who share similarities and alert its user. However, none of these
systems considers presence detection over multiple wireless hops. The same can be said
about protocols that are able to discover one- or two-hop neighborhood. NHDP[CDD08]
is an example of such a protocol.

Finally, [LW06] presents a design for an instant messaging system for sparse mobile
ad-hoc networks called SPEED. Instead of the presence of nodes, the authors consider
the dissemination of presence states of users, such as “available”, “busy”, or “do not
disturb”, with the assumption that users’ devices stay in the network even if a user is
“non-present”. SPEED distributes user presence information via periodical announce-
ments and requests, both of which are flooded in the network. This design is well-suited
for an instant messaging service. However, for our purposes a much more lightweight
solution is necessary. Interestingly, like many of the previously discussed protocols,
SPEED generates significant overhead in the case of users whose devices are not pre-
sent in the network. Therefore, it might in fact profit from additional node presence
detection in such cases.

7

Chapter 2 Related Work

8

Chapter 3

Soft-state Presence Detection

In this chapter, we propose a soft-state lightweight presence detection service for mobile
ad-hoc networks. It enables nodes to check whether other nodes are present within
a given hop-count radius. Our approach is based on a space-efficient approximate set
membership data structure called Bloom filter [Blo70]. Essentially, this provides a lossy
compression of presence information in order to minimize communication overhead. In
our approach, the nodes periodically announce the compressed presence information that
they have gathered so far in beacon messages. They integrate the information received
from neighbors into their own knowledge base and include it in their next announcement.
Stale presence information about nodes that have left will automatically vanish.

The cost of aggregating presence information is a small number of so-called false posi-
tives, where nodes are wrongly considered to be present. Note that this is not critical
for typical applications of a presence detection service. When such a service is used, for
instance, to avoid unnecessary route discoveries with reactive routing, the cost of a false
positive is an unnecessary discovery attempt. This is exactly what happens without
presence detection. Thus, in the rare error case, the system behaves like one without
presence detection.

The soft state approach proposed in this chapter not only solves the problem of
lightweight presence detection, but also has a side effect that allows nodes to estimate
their distance to other nodes. As shown by Gupta and Kumar [GK00], the per-node ca-
pacity of an ad-hoc network decreases dramatically with the average distance between
communication partners. Therefore, it is desirable that applications and algorithms
for mobile ad-hoc networks are able to determine the distance between communication
partners before attempting to exchange data.

In this chapter, Section 3.1 presents the algorithm we propose for lightweight presence
detection, as well as optional enhancements to the algorithm. Section 3.2 evaluates our

9

Chapter 3 Soft-state Presence Detection

approach both analytically and by means of ns-2 simulations in terms of false positive
rates, the accuracy of the distance estimates, and the speed of information propagation.
In Section 3.3, we discuss an application of our approach for avoiding unnecessary
overhead in reactive MANET routing and present corresponding simulation results.
Section 3.4 presents our experiment results with a testbed, demonstrating that the
algorithm works in real-world environment as well as in simulations. Finally, the privacy
issue is addressed in Section 3.5 before the chapter concludes.

This chapter is based on two papers that have been published: [TSM07] and
[TSM09a].

3.1 Scalable Presence Detection

We assume that each node has some static, unique ID. This could, for example, be a
MAC- or statically assigned IP address.

The most naive approach for a presence detection mechanism would be simply distribut-
ing a list of all available node IDs throughout the network. This could be done, e. g.,
by transmitting the IDs of the nodes via beacon messages. The obvious problem of this
approach is that the amount of data distributed to each node would increase linearly
with the number of nodes in the network, which increases the network load accordingly.
This is not appropriate for a lightweight service.

In order to avoid this problem, we propose to aggregate presence information. Generally,
aggregation can be lossy or lossless. Lossless aggregation is efficient if there is some
structure in the entries to be aggregated. For instance, IP routing table entries can be
efficiently aggregated without losses, because the addresses are organized hierarchically.
For nodes present in a MANET, such a structure is typically not given. Thus, we
propose to use a lossy aggregation scheme.

When performing lossy aggregation of presence information, two types of errors may
occur. Either a node may be reported as being present while it is not, or it may be
reported as being absent while it is in fact present. The former situation is called a
false positive, the latter a false negative. Given the application of presence detection in
mobile ad-hoc networks, a false negative would “hide” an actually present target node,
which is generally not acceptable. A low rate of false positives, on the other hand, is
often quite tolerable: in the rare case of a false positive, the applications would simply
behave as if there was no presence detection service active, e. g., a routing protocol would

10

3.1 Scalable Presence Detection

Bit array a

m bits- �

Element x h1(x) h2(x) h3(x) h4(x)

1 1 1 1

PPPPPPPPq

�
�

�	

��
�����

�
�
��

Figure 3.1: A Bloom filter.

attempt to set up a route to a node not present in the network. The actual absence of
the node, and thus the occurrence of a false positive will become clear if communicating
with the node fails. Therefore, for presence detection a scalable data structure that
supports lossy aggregation of presence information without introducing false negatives
is needed. Bloom filters are such a data structure.

3.1.1 The Bloom Filter

A Bloom filter [Blo70], is a data structure that represents a set S = {s1, s2, . . . , sn} of n

elements to support membership queries. It is described by an array a of m bits, which
are initially set to 0. k independent hash functions h1, . . . , hk are used, each maps every
possible item in the set to a uniformly distributed value in the range {1, . . . ,m}. Any
hash function with good random distribution and outputs long enough for the Bloom
filter size can be selected.

There are two basic operations that can be performed on a Bloom filter. New elements
can be added, and the presence of an element can be queried. To add a new element
s, which is a node ID in our specific case, the bits at positions h1(s), h2(s), . . . , hk(s) in
a are set to 1, as depicted in Figure 3.1. In order to determine the presence of some
node x, the bits at these positions are checked. If any of these is 0, then it is certain
that x is not in S. Otherwise, it can be assumed that x is in S with some remaining
probability of a false positive that occurs when an element is actually not in the set,
but all respective bit positions have been set to 1 by adding other elements.

The union of two Bloom filters is calculated by a bit-wise OR operation. Hence, to
disseminate presence information, nodes may periodically send beacons containing a
Bloom filter of the node IDs they know are present. Upon receiving such a beacon, they
can merge the received information with what they already know. Since beacons contain

11

Chapter 3 Soft-state Presence Detection

aggregated data and are sent only to neighboring nodes, presence information is dis-
seminated without flooding the network. For such a scheme to work, the hash functions
need to be agreed upon beforehand and then used by all nodes in the network.

However, in a presence detection system the removal of no longer present nodes is also
necessary. The standard Bloom filter has the drawback that there is no method to delete
a value once it has been added. Since it is entirely possible that a given bit position
has been set to 1 during the addition of more than one element, simply deleting all bit
positions that refer to the element that should be removed is not an option.

3.1.2 Presence Detection

If we ignore the specifics of Bloom filters for a moment, there are two alternative ap-
proaches to remove the presence of a node from an aggregate. The first is to remove
it explicitly when the node leaves the network. This is called a hard state approach.
Alternatively, the presence information for each node can decay over time and has to be
refreshed periodically in order to remain in the aggregate. Using this technique yields
a so-called soft state approach.

There are extensions of Bloom filters (e. g., the counting Bloom filter in [FCAB00])
that enable explicit removal of items. Those could be used as a basis of a hard state
approach. However, a hard state approach faces two major challenges when used for
presence detection in MANETs. First, it must be guaranteed that the event of a node
leaving the network actually triggers the removal. Second, the information on this event
needs to be distributed in the network. Both problems are very hard to solve in the
given decentralized environment. We therefore use a soft state approach. This requires
an extension of Bloom filters that enables decay and refresh operations.

Soft state Bloom filters

In order to support these, we modify the Bloom filter used in the aggregates. Each
entry now consists of l bits instead of one, where l is typically small, e. g., l = 3 or l = 4.
Each of these l-bit words stores a counter. These counter values can be interpreted as
the “age” of the respective Bloom filter entry. A node initializes all counters with the
maximum value 2l − 1. This maximum value indicates that the position of the Bloom
filter is not set, it is equivalent to setting a bit position to 0 in the standard Bloom filter.
Periodically, just before a beacon is sent, a node applies the hash functions to its own

12

3.1 Scalable Presence Detection

ID. It sets all counters at the resulting positions to 0. All other counters that are not
already at the maximum value are incremented by one. Thus, each node continuously
announces its own presence with the age of 0 and ages all other presence information
by 1 each interval.

The aging of the information means that entries of leaving nodes will eventually die
out. Hence, it provides the removal of nodes from the Bloom filter if they are no longer
present. As already discussed, it is also desirable to be able to put a limit on the
distance to a target node for it to be considered present. Applications can thereby
take the expected communication effort into account, respecting the inherent capacity
limits of wireless multihop networking. More formally, this can be stated as: node x

is regarded as present by some other node u if and only if the length of the shortest
hop-count path from u to x does not exceed some threshold Tu. Thus, x should be
regarded as non-present by u if either x is not at all in the network or it is too far
away. Since the entries in our scheme age with every hop over which the information is
propagated, their value—as a side effect—also provides an indication of the distance to
sought-after nodes.

Our Bloom filter modification bears certain similarities to some of the many Bloom filter
variants that have been discussed in the literature. For example in the routing context,
in [RK02] and [GJW+06] schemes are discussed which use a set of Bloom filters: there
is one Bloom filter for each hop distance, containing the information on all nodes at
that distance. In [LYKH06], a scheme for service discovery is proposed that stores the
minimum distance to a service using Bloom filters. The Time-Decaying Bloom Filter
(TDBF) as introduced in [CXI+05, CIXU05] is used to continuously analyze a data
stream like, e. g., web page hits. Like in counting Bloom filters [FCAB00], but unlike
in our approach, the number of occurrences of an item is stored in counters at each bit
position. TDBF then reduces the contribution of less recent occurrences by periodically
decaying all counters.

Aggregate structure

We define the structure of an aggregate as follows. It consists of m l-bit entries
a1, a2, . . . , am, each of which is interpreted as an integer in the range 0, . . . , 2l − 1.
ai represents the age of the Bloom filter’s “bit” i. Initially, all the ai are set to 2l− 1.

13

Chapter 3 Soft-state Presence Detection

l needs to be chosen large enough to account for the maximum of all nodes’ distance
thresholds. Thus, if N is the set of nodes,

l > max
u∈N
dlog2 Tue. (3.1)

Each node u can select and change its Tu at will, but l is fixed and constant for the
whole network.

Timeout and refresh

To accommodate the new aggregate structure, the operations on the Bloom filter are
modified accordingly. The most central one is the timeout and refresh operation. Each
node performs it periodically. It consists of three steps:

1. Increment each ai by one, if it is not already at the limit of 2l − 1.

2. Refresh the information about the node’s own presence, by setting ahj(ID) = 0 for
all j = 1, . . . , k, where ID is the ID of the local node.

3. Broadcast the updated aggregate to the neighbors.

This algorithm results in each position eventually reaching the maximal value when it
is no longer refreshed by some node. Therefore, a no longer present node will vanish
from the aggregate.

Merge operation

When a node receives a beacon message, the information is merged into the local ag-
gregate. Instead of the bit-wise OR for standard Bloom filters, we use a position-wise
minimum operation, i. e., we set each Bloom filter position to the minimum of local and
received ages.

Query operation

In order to determine whether some other node x is present, a node u checks its local
aggregate at positions h1(x), h2(x), . . . , hk(x). Let

t := 1 + max
1≤i≤k

ahi(x). (3.2)

14

3.1 Scalable Presence Detection

Array a

m counters- �

Element x h1(x) h2(x) h3(x) h4(x)

4 0 3 4

PPPPPPPPq

�
�

�	

��
�����

�
�
��

Figure 3.2: A soft state Bloom filter.

If t = 2l, we conclude that x is not present. Otherwise, we say that it is seen at a
distance of t hops from u, with some probability of a false positive. Depending on the
choice of the threshold Tu, u considers x as present or not accordingly. By means of
analysis and simulation, we will later show that this “seen distance” is in fact very close
to the real minimum hop distance.

Figure 3.2 shows the entries corresponding to a sought-after node x. The age of the
information about x is four, which means that x is seen at a distance of five hops. For
instance, if Tu = 10 then x is said to be present. If Tu = 3 the node is said to be not
present, as the distance at which x is seen exceeds the value of Tu.

3.1.3 Decoupling Information Decay and Beaconing Intervals

In the presented algorithm, the “age” of presence information increases with each beacon
interval. In some situations, it might prove beneficial to increase the flexibility by
decoupling the beaconing rate and the speed of information decay. This is possible, but
it requires a small modification to the proposed algorithm.

In order to understand why this is the case, consider a situation where the aging of
information is slowed down with respect to the beaconing in a naive way, by incrementing
the counter values only every b > 1 beaconing intervals. Let A and B be two neighboring
nodes; for simplicity, we neglect all other nodes and their beacons for the moment.
Assume that some aggregate position ai is currently at value 5 in both these nodes, but
is no longer refreshed and should thus be subject to decay. A is first to age its counter
values, and increments ai to 6. But B’s value of ai is still 5, and hence A will very
soon receive another beacon from B with ai = 5, thus resetting A’s aggregate. B will
be next to age its own aggregate, but will in the very same way immediately be reset
by A’s next beacon. The reason for this misbehavior of the naive modification is that it

15

Chapter 3 Soft-state Presence Detection

may happen that a node repeats a counter value received from another node in its own
broadcasted aggregate, without aging it at least once.

This problem can be overcome by introducing the following small extension to the soft
state Bloom filter based presence detection protocol: whenever a beacon is sent without
previously aging the counter values in the local aggregate, the sent-out copy of the
aggregate must be decayed (and refreshed) prior to sending it to the neighbors. That
is, if A’s value of ai is currently 5, and it sends a beacon without decaying its local copy
of the aggregate, in its beacon it will broadcast the value ai = 6. This ensures that a
received counter value is never repeated un-decayed in own beacons, and hence avoids
the described problem.

3.1.4 Aggregate Compression

Mitzenmacher showed that (standard) Bloom filters can be compressed to reduce their
size [Mit02]. In theory, these compressed Bloom filters are a space-optimal representa-
tion of a set of items with a given false positive rate. On the one hand, this supports
our choice of Bloom filters as the underlying data structure for our protocol. On the
other hand, it points to an interesting additional option for further reducing the size
of the presence detection beacons—or for achieving a lower false positive rate without
increasing the size.

The counter values in soft state Bloom filters will typically not be equidistributed: not
every counter value is equally likely. Therefore it is possible to save bandwidth by
applying lossless compression to the beacons before they are transmitted. It turns out
that arithmetic coding with an adaptive model as described by Witten et al. [WNC87]
is very well-suited for this particular task.

The basic idea behind arithmetic coding is to divide the interval [0, 1] first into sub-
intervals according to the probability distribution of the possible values of the first
character of the to-be-compressed input. For compressing soft state Bloom filters, the
first character corresponds to the first Bloom filter position, i. e., to the first counter,
which may take values in the range 0 . . . 2l − 1. The sub-interval corresponding to the
counter’s value is then chosen. It is again subdivided, matching the probability distri-
bution for the second entry, and so on. The sender generates a binary representation
of a value within the finally resulting (tiny) interval. The problem that arises when
this is to be applied in practice is that the probabilities of the input values need to be
known by both the encoder and the decoder. It has been shown that, given a suitable

16

3.2 Evaluation

probability distribution model, arithmetic coding is able to compress down virtually to
the entropy limit.

Witten et al. use arithmetic coding with a dynamic model. In their scheme, the input
probability distribution is “learned” while processing the input. Basically, the algorithm
keeps track of the input distribution in the data processed so far, continuously adjusting
the model. This is very well-suited for the problem at hand, because all entries of a soft
state Bloom filter do indeed exhibit the same input probability distribution. So, what
has been learned during the compression of the first part of the filter is indeed a very good
model for the remaining part. Another big benefit in particular on resource constained
hardware is that both encoder and decoder can be implemented very efficiently with
integer arithmetic. Both require only a constant, very small amount of memory, and
encoding and decoding complexity is linear in the input length.

We propose to apply arithmetic coding as a kind of filter in our presence detection
protocol: it comes into action when beacons are assembled (then, the transmitted soft
state Bloom filter is passed through the arithmetic coding encoder and is thereby signif-
icantly reduced in size), and when beacons are received from other nodes (in this case,
the decoder restores the originally transmitted soft state Bloom filter).

Since the compression with arithmetic coding is lossless, this technique does not have
any direct impact on other aspects of the protocol itself or on which nodes are considered
present or absent. Applying it comes at the cost of a slightly increased workload for the
network nodes, for the compression and decompression of sent and received beacons;
whether the achievable bandwidth savings outweigh this cost or not heavily depends on
the particular devices and on the application scenario. However, as mentioned above,
arithmetic coding can be implemented very efficiently even on resource-constrained de-
vices, and it will thus often constitute an interesting extension.

3.2 Evaluation

In the previous section, we introduced an algorithm to disseminate presence information
and to reliably remove no longer present nodes with a soft state approach. In this section,
we assess the performance and suitability of the proposed scheme. In particular, we
concentrate on five aspects: the reliability of the scheme in terms of the false positive
rate, the accuracy of the seen distance, the effects of node movement, the speed of
information propagation, and the effectiveness of compressing soft state Bloom filters
with arithmetic coding.

17

Chapter 3 Soft-state Presence Detection

3.2.1 False Positive Rate

For a practical application of presence detection, it is desirable to know the false positive
rate: what is the probability of considering a non-present node to be present?

A false positive occurs when the bit positions corresponding to the sought-after node
are all set by other added elements. In standard Bloom filters, the probability that a
false positive occurs depends on three factors: the number of bit positions in the filter
m, the number of hash functions k, and the number of elements n that are present in the
set. The probability that a bit position is still zero after n elements with k bit positions
each have been added is (1− 1/m)kn. Thus, the probability that all k bit positions of
the sought-after node are one can be calculated as(

1−
(

1− 1
m

)kn
)k

≈
(
1− e−kn/m

)k
. (3.3)

So, if standard Bloom filters were used, the false positive rate would depend on the
total number of nodes in the network. For our modified Bloom filter with decaying of
information and counters at each filter position, however, the situation is slightly more
complicated—and turns out to be significantly better.

Consider a node x that is regarded as present by u based on the local aggregate. As
stated earlier, the maximum age at x’s entries in the Bloom filter plus one is the distance
in hops at which x is seen. Let this number like before be denoted by t. If x is actually
not present at this distance, all of x’s entries must have been set by other nodes. All these
nodes must be at distance t hops or less. Let n(t) denote the number of nodes within
this maximum distance. Then, the probability that a non-present node is considered
present at a distance of less than or equal to t is

Pfp(m, k, t, ρ) =

(
1−

(
1− 1

m

)kn(t)
)k

≈
(
1− e−

kn(t)
m

)k
. (3.4)

Consequently, the probability of a false positive at distance t ≥ 1 is

Pfp(m, k, t, ρ)− Pfp(m, k, t− 1, ρ). (3.5)

Being seen wrongly at distance t can either mean not being in the network at all, or
being in the network but at a larger distance. These cases are hard to distinguish, since

18

3.2 Evaluation

the Bloom filter positions that should contain information on x are all overridden by
information on other nodes.

Note the implications of these effects: the probability of a false positive at distance t

does not depend on the total number of nodes in the network, but only on the number
of nodes within the t-hop neighborhood, and therefore on the local network density.
This also means that the confidence in the presence of a node increases rapidly when it
comes closer: the closer a node is seen, the higher is the chance that it is in fact there.
This can be exploited by an application, by being more aggressive or spending more
resources on contacting a node which is detected nearby and is therefore very likely to
be actually present.

The results presented so far allow to estimate the false positive rate depending on the
distance of some node and the number of t-hop neighbors. In practice, however, the
latter will typically not be known, and it is hard to estimate. If, at run-time, a node
intends to estimate the current false positive rate, however, this can also be done based
on the node’s local knowledge. Back to the initial point of our considerations, the
probability of a false positive is the probability that all k filter entries corresponding to
x are set by other nodes. Thus, given the status of the local aggregate, it is actually
sufficient to know the probability that a randomly selected position is set.

Let s(t) be the number of filter positions where the age stored in the counter value is
less than t, i. e.,

s(t) := |{i | 1 ≤ i ≤ m and ai < t}| . (3.6)

Then, the probability of a randomly selected position being set is s(t)/m, and conse-
quently the probability of a false positive at distance t, which equals the probability of
k randomly chosen positions being set, is simply given by

(s(t)/m)k . (3.7)

While estimating the same quantity, Formula 3.5 and Formula 3.7 are applicable to two
different situations. The former calculates the expected false positive rates given a set
of configuration parameters and thus can be used in tuning the approach’s parameters
to suit environment characteristics. On the other hand, using the latter, a node can
rate the quality of specific positive answers from the presence detection service given
the current status of its local aggregate. With such information, nodes can adapt the
behavior of an application accordingly, depending on how likely a wrong answer is, and
how big the potentially incurred overhead would be.

19

Chapter 3 Soft-state Presence Detection

3.2.2 Accuracy of the Seen Distance

Let us now have a look at the relation between the seen distance and the true minimum
hop distance between two nodes. That these two are related is intuitively clear: the
soft state Bloom filter entries age by one over each hop, and hence the seen distance
also increases by one every time the aggregate is handed over to the next node via a
beacon. Due to the merging rule of the position-wise minimum, if information arrives
over multiple paths, the lowest age (i. e., the lowest counter values, and hence the shortest
path) will have precedence. However, there are effects that cause deviations between
the seen distance at some point in time, and the true minimum hop distance.

In the proposed presence detection algorithm, each node periodically increments the age
of the Bloom filter positions in its aggregate before sending a beacon. While waiting for
the next beaconing interval to expire, updates are received from the neighboring nodes,
potentially resetting the incremented positions to their previous values. Therefore, the
Bloom filter entries go up and down periodically. Furthermore, if beacons are lost—
either due to transmission errors or because of congestion or packet collisions—, this will
lead to temporarily further increased counters: information gets through only from time
to time. This influences the distance at which other nodes are seen; the seen distance
is not always exactly the minimum hop count distance, but it will oscillate between the
exact distance and slightly higher values.

The oscillations due to the alternating decay and refresh operations occur always, even
in the case of an ideal medium without losses. Higher oscillation amplitudes are caused
by packet losses.

Simulations using the ns-2 network simulator [ns2] were carried out to see to which
extent the error rates effect on the fluctuation of reported pair distances. We placed
200 nodes randomly on a square area of 1500 meters side length. These parameters make
sufficiently sure that the network is fully connected; they are similar to the settings used
in other work on wireless multihop networks such as, for instance, [KK00] and [FZL+03].
We used our presence detection algorithm with m = 1024 filter positions, l = 4 bits
counter length, and a beaconing interval of three seconds. Ns-2’s default transmission
range of 250 meters was used. A randomized error model was used to make a varying
fraction of beacon receptions, 0%, 25 %, and 50 %, fail, in addition to medium-related
losses like those caused by packet collisions. Figure 3.3 shows the influence of the true
distance between two nodes and the beacon packet error rates on the oscillations. Each
vertical bar stands for a shortest hop distance; it is an average over all node pairs

20

3.2 Evaluation

with the respective distance. It shows for which fraction of time the distance has been
reported correctly, as well as how long and how far it has been overestimated.

The results show that even high packet loss rates have surprisingly little effect on the
oscillation of reported distances. For most of the time, either the reported distances
between node pairs are correct, or they are overestimated by one, i. e., the decay op-
eration has occurred and the Bloom filter positions have not yet been refreshed by a
newly received aggregate. Distance estimates that are wrong by more than two hops
are extremely rare: overestimates by three or more are barely visible in Figure 3.3 (c).
The reason for this trait is that there often exist many alternative paths between a pair
of nodes. They increase the chances for the information to get through and provide
significant redundancy for the best path to be a fast one.

Whether the remaining oscillations are a problem essentially depends on the applica-
tion’s requirements. If an application requires higher stability of the seen distances, a
simple way to achieve this is the following. In addition to the current local aggregate A,
a node may store the aggregates from n previous broadcasting intervals, as they looked
like just before incrementing the counters. When checking for the presence of node x,
instead of using just the distance reported by the current aggregate, the minimum value
from the current and all n previous aggregates is used. This technique yields very good
results even and especially for small n, like n = 2 or n = 3. It comes at the cost of a
slightly increased time until a no longer present node is considered absent, and until an
actually increasing distance of a node is recognized. Both events will only be recognized
after an additional delay of n beaconing intervals. This, however, will often be tolerable.
The time until some newly arriving node is recognized as present does not change.

3.2.3 Node Movement

The movement of the nodes in a mobile ad-hoc network can influence the presence detec-
tion in two ways. First, the distances between nodes change over time, and there is some
delay until these changes are correctly reflected in the presence detection aggregates.
Furthermore, a node that moves to a different network area might “carry” presence
information with it, making nodes from the area where it is coming from appear closer
to the nodes in the new vicinity than they actually are.

In order to assess the impact of these effects, we carried out another set of experiments
with key parameters chosen as above, except that the nodes move according to the
modified Random Waypoint mobility model without pause times and with different

21

Chapter 3 Soft-state Presence Detection

 0
 20
 40
 60
 80

 100

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
fra

ct
io

n
(%

)

Distance

exact +1 +2 ≥ 3

(a) Beacon error rate 0.

 0
 20
 40
 60
 80

 100

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
fra

ct
io

n
(%

)

Distance

exact +1 +2 ≥ 3

(b) Beacon error rate 0.25.

 0
 20
 40
 60
 80

 100

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
fra

ct
io

n
(%

)

Distance

exact +1 +2 ≥ 3

(c) Beacon error rate 0.5.

Figure 3.3: Oscillations of distance estimates for varying beacon packet error rates.

22

3.2 Evaluation

 0

 20

 40

 60

 80

 100

-2 -1 0 +1 +2 -2 -1 0 +1 +2 -2 -1 0 +1 +2 -2 -1 0 +1 +2

Fr
ac

tio
n

of
 ti

m
e

(%
)

15 m/s10 m/s5 m/s0 m/s

Figure 3.4: Deviations between seen distances and true shortest hop distances for dif-
ferent maximum node speeds.

maximum speeds. In order to overcome the well-known limitations [YLN03], we have
used the modified version of the Random Waypoint model, initialized with the steady-
state distribution. The results given in Figure 3.4 show that at all considered movement
speeds, the shortest hop-distances are reported quite accurately. For this figure, we took
100 snapshots at random points in simulation time, calculated the true hop-distances
for each node pair based on the current node positions, and compared them to the
distances reported in the respective presence detection aggregates. With increasing
mobility, there is an increase in underestimated distances, due to the reasons discussed
above. However, even when node mobility is high, overestimated distances due to lost
beacons and oscillations are much more common than underestimated ones. In the case
of zero maximum speed, i. e., no mobility at all, there is a tiny number of cases in which
the distance is underestimated; these are false positives that make a node appear closer
than it is.

3.2.4 Speed of Information Propagation

Our scheme uses periodic beaconing to distribute presence information. Thus, a naive
assumption on the propagation speed could be that the information travels one hop
per beaconing interval, i. e., a node at a distance of d hops from a newly arrived node
will notice its presence after d broadcasting intervals. Further investigation, however,
quickly shows that this approximation is far too pessimistic.

The key reason why the dissemination of presence information is much faster in practice
is that the beaconing cycles of the nodes are not synchronized. Assuming independent

23

Chapter 3 Soft-state Presence Detection

offsets of the beaconing times, the time between the reception of information by some
node and the next beaconing cycle of that node is only half a beaconing interval on
average. Therefore, on average, the propagation of the information along a chain of
nodes with length d hops takes only d/2 broadcasting intervals. A dissemination delay
of d broadcasting intervals is only the unlikely worst case.

In a topology that is more complex than a simple chain the results improve further:
typically, there are many paths along which the information might propagate, and it is
sufficient that it arrives along one of them. So, the time until a node x is recognized as
present by some other node u is the minimum information propagation delay over all
paths from x to u. Since the number of these paths quickly increases with increasing
node density, it is reasonable to expect a propagation delay that is far below the worst
case of d broadcasting intervals, and also less than the expected propagation delay along
a single path of d/2 broadcasting intervals.

In order to illustrate this, we consider the situation of two nodes u and x that are two
hops apart. We estimate the number of potential forwarders of the presence information
between two such nodes. We assume a given node density ρ > 0 in the network area
around the two nodes, and a circular one-hop neighborhood area of radius r > 0. Here,
we sketch how an estimate of the delay of information propagation over two hops can
be obtained. More details on the calculations can be found in the appendix.

Note that the distance d between two nodes that are two hops apart must be within
]r, 2r]. It can be shown that the probability of having n nodes in the intersection of the
radio ranges of two such nodes is

P (n nodes) =

2r∫
r

2δ(ρA(δ))ne−ρA(δ)

3r2n!
dδ. (3.8)

This can be used to calculate the probability of having n potential forwarders between
two nodes that actually are two-hop neighbors (i. e., for which there exists at least one
node that can directly communicate with both).

The expected time until a broadcast interval expires at the first out of n potential
forwarders is B/(n + 1), where B is the broadcasting interval length. Combining the
results mentioned above (calculation details are given in Appendix A) yields an expected
delay for the second hop’s delay for a random pair of nodes u, x at two-hop distance

24

3.2 Evaluation

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7 8

D
el

ay
 (i

n
be

ac
on

in
g

in
te

rv
al

s)

Minimum hop distance between nodes

exp. delay along a chain
avg. delay in simulation

Figure 3.5: Average delay before a node is recognized as present.

of
∞∑

n=1

B · ρn

(n + 1)!
·
∫ 2r
r δ(A(δ))ne−ρA(δ) dδ
3
2r2 −

∫ 2r
r δe−ρA(δ) dδ

. (3.9)

In order to verify the predicted information dissemination speed, a simulation was car-
ried out using the ns-2 network simulator [ns2]. We placed 200 nodes randomly on
a square area of 1500 meters side length, and used our presence detection algorithm
with m = 1024 filter positions, l = 4 bits counter length, and a beaconing interval
of three seconds. The simulation uses IEEE 802.11 at 1 MBit/s. All local aggregates
were initialized empty. Then, for each pair of nodes, the delay was measured until one
node recognized the other one as present. Figure 3.5 shows the results of these sim-
ulations. The x-axis denotes the distance between the nodes, i. e., the minimum hop
count. The y-axis then shows the average time until the presence information arrives,
with 95-percentile error bars. The dashed line shows the expected dissemination speed
along a single path.

It is evident that, as predicted by the theoretical arguments above, the dissemination
speed is surprisingly high. For example, presence information travels over a distance of
eight hops in less than two broadcasting intervals on average. This is because a high
number of alternative paths are available, which increases the probability that for one
of these paths the offsets of the nodes’ periodic broadcasting are beneficially aligned,
allowing for a quick information forwarding. For the first hop, there is only one single
node which is able to forward the information, the source itself. At this point, the

25

Chapter 3 Soft-state Presence Detection

simulation results for the one-hop delay therefore match the delay predicted for a chain,
B/2, exactly.

Evaluating (3.9) for the parameters of our simulation, i. e., for ρ = 200/15002 and
r = 250, yields an expected delay for the second hop of 0.29 broadcasting intervals.
In the simulation, the delay is even lower, around 0.23 broadcasting intervals. This is
because it frequently happens that for a two-hop neighbor, an alternative path which
is longer than two hops is even faster than all available two-hop paths. Such paths are
not covered by (3.9).

So far, we have discussed the time until a node is considered present by other nodes
after its arrival. The other interesting parameter is the time until it is no longer consid-
ered present after it has left. This, however, is straightforward: if the counters at the
respective Bloom filter positions are no longer refreshed, they decay. Thus, after node x

has left, it will be considered present by some other node u until the counters exceed u’s
threshold Tu, which can be expected to happen after Tu − t + 1 more beaconing cycles,
if x is currently seen at distance t. During that time, x will be seen at an increasing
distance.

We conducted another set of simulations, with similar parameters as above, in order
to underline our results. We chose a distance threshold of 10. In these simulations,
nodes enter and leave the network. Figure 3.6 shows the time until a node is considered
present by all other nodes within 10-hop distance after it has arrived, and the time until
it is recognized by all as no longer present when it leaves. It also shows the time until all
other nodes detect that a node has left if the beaconing interval and the decaying speed
are decoupled, as discussed in Section 3.1.3. Specifically, the decaying is slowed down
by a factor of two in these simulations, in relation to the beaconing interval. The times
are shown for different beaconing intervals with 99-percentile error bars. It can be seen
that, as expected, both delays increase linearly with the beaconing interval length, and
the delay until a no longer present node vanishes from the aggregate is generally longer
than the delay until a newly arriving node is seen by the other nodes. As expected, the
version with decoupled decaying exhibits a correspondingly longer delay until leaving
nodes vanish from the aggregates: when aggregates are decayed only every other interval,
the delay doubles.

The main lesson which one can learn from these results is that the propagation speed
is significantly higher than what one would intuitively expect given a certain beaconing
frequency. It is worth noting that these results hold for any information dissemination
scheme that uses periodic broadcasting.

26

3.2 Evaluation

 0

 50

 100

 150

 200

 0 5 10

D
el

ay
 (i

n
se

co
nd

s)

Beaconing interval (in seconds)

leaving node (decoupled decay)
leaving node (normal decay)

arriving node

Figure 3.6: Time until information is received by all nodes.

3.2.5 Effectiveness of Arithmetic Coding Compression

In Section 3.1.4 we have introduced a mechanism to reduce the size of the beacons
by piping the transmitted and received soft state Bloom filters through an arithmetic
coding encoder or decoder, respectively. Now, we assess how effective this mechanism
turns out to be in practice. For this purpose, we have implemented arithmetic coding
based compression and applied it to the aggregates occurring in the presence detection
service in different simulated scenarios.

We found that the size of the beacons can—depending on the density of the network—
typically be reduced by 30–80 %, as shown in Figure 3.7. The figure shows—for a
varying node density—the size of compressed 2048-entry filters, compressed 1024-entry
filters, and uncompressed 1024-entry filters (represented by the dotted line). It can be
seen in Figure 3.7 that compressed soft state Bloom filters with 2048 entries could un-
der most circumstances easily replace uncompressed 1024-entry soft state Bloom filters
without requiring more bandwidth. For practical applications, this implies that, with
compression, we could reduce false positive rate by using Bloom filters of larger size at
no additional bandwidth cost.

3.2.6 Choosing the Parameters

In the discussed algorithm, there are quite a number of parameters: the Bloom filter
length m, the number of hash functions k, the distance thresholds Tu to be used, the

27

Chapter 3 Soft-state Presence Detection

 0

 100

 200

 300

 400

 500

 600

 0 25 50 75 100

A
gg

re
ga

te
 s

iz
e

(b
yt

es
)

Network density (nodes/km2)

1024-compressed
1024-uncompressed

2048-compressed

Figure 3.7: Average beacon size when compressed.

number of bits per Bloom filter position l, and the beaconing interval B. The best-
suited values for these parameters depend on the application’s requirements. Typically,
one will find a tradeoff between bandwidth usage for beaconing, the delay of presence
and disappearance detection, the false positive rate, and the achievable hop distance
thresholds Tu. We consider it a very valuable property of our approach that it is possible
to adjust this tradeoff in a very wide range, and thereby to tailor it for many specific
application scenarios.

While it is relatively straightforward how one can find appropriate values for Tu, l, and
B, the parameters m and k, which are directly related to the Bloom filter, deserve a
little more attention. Actually, the optimal combination of m and k depends on the
distance that is of main interest to the application: for given m, the optimal k for a
minimum false positive rate is not the same for each distance. The analytical results
regarding the false positives provide some hints. For a given Bloom filter length m and
node count n(t) within the considered t-hop radius, the false positive rate according to
(3.4) is minimized for

k =
m · ln 2

n(t)
. (3.10)

In practice, k must of course be chosen to be an integer.

Before we focus on a specific application for presence detection in the next section, let us
now consider a concrete example network to illustrate what our results presented above
actually mean in practice. Consider a mobile ad-hoc network using a 1MBit/s channel

28

3.3 An Example Application

(which is—considering today’s wireless hardware—actually quite limited and therefore
particularly challenging for a proactive, beacon-based protocol). We allow each node
to spend 0.2 % of this bandwidth for presence detection beacons. Say that there is a
total of 200 nodes in the network, which has a diameter of approximately ten hops. Let
us furthermore assume that, for the considered application and network, a beaconing
frequency of one beacon every three seconds suffices. So, the presence detection beacons
may have a size of up to 3 s· 2 KBit/s = 768 bytes. We want to cover the whole network
with the presence detection, so we may set l = 4. Therefore, we can use m = 1400 and
still have plenty of space left for headers.

If we decide to optimize the false positive rate for longer distances, i. e., for the whole
network, (3.10) suggests we use k = 5 hash functions. In this configuration, the expected
false positive rate for a node at maximum search radius is 3.47 %. This will be fine for
many applications. By spending slightly more bandwidth, 0.25% instead of 0.2 %, and
using m = 1800 and k = 6, the expected false positive rate is reduced to 1.33 %.

As we have pointed out in Section 3.2.1, the false positive rate also quickly decreases
with a smaller search radius: if, for example, within some smaller radius there are only
100 nodes, there will only be 0.24 % false positives in the 0.2% bandwith usage case,
and 0.05 % when allowing to use 0.25 % of the bandwidth.

3.3 An Example Application

After having discussed the general features and applicability of presence detection in
mobile ad-hoc networks, we now focus on one possible application: reactive routing.
Finding a route to some destination node when a reactive routing protocol is used can
be an expensive process, as it typically requires flooding a route request in the network.
If the destination device is not present or too far away from the source device to be
reached within the TTL limitation of the route request packet, much bandwidth is
wasted. Furthermore, a route request is typically repeated if no answer arrives before
some timeout expires, thus reactive routing exhibits worst-case behavior in the case of
a non-present node.

In this section, we will analyze the presence detection service when it is used in conjunc-
tion with AODV routing [PR99]. We query the presence detection service at the source
node before starting a route request for a new connection. If the destination node is

29

Chapter 3 Soft-state Presence Detection

considered present, the connection will be initiated as usual. Otherwise, the route re-
quest is delayed until the presence detection service indicates that the destination node
is present.

We want to stress that this “model application” provides a hint on the possible effects
of presence detection for a real application. It therefore complements the application-
independent evaluation results from the previous section. The results shown here may
not be arbitrarily generalized: the degree to which other applications benefit from pres-
ence detection depends on their cost associated with not having information on the
presence of nodes and whether this outweighs the cost of the presence detection ser-
vice.

The simulation study was conducted using ns-2 [ns2], with setups similar to those used
before: 200 nodes in an area of 1500 by 1500 meters. IEEE 802.11 at 1 MBit/s network
bandwidth is used; note that a low communication bandwidth is the worst case for a
protocol that causes a constant beaconing load. The communication radius is 250 me-
ters, with a 550 meter carrier sense range. Like above, the nodes move according to the
modified Random Waypoint mobility model [YLN03]. The random speeds are in the
range from 1 to 10 meters per second and the pause time is 20 seconds. All connections
last 100 seconds and start at some random time between 10 and 190 simulation sec-
onds. During a connection, the source node sends CBR traffic with four data packets
per second, each with a payload size of 512 bytes. The results are averages over 25
scenarios, each with different traffic and movement patterns. Here, compared to the
example given in the previous section, we can tolerate even some more false positives,
because the negative impact is at most an unnecessary route discovery—ten percent
seems tolerable. We trade the additional false positives off for a reduced beacon size
and use m = 1024, k = 4, and a beaconing interval of three seconds. All plots in this
section show 95% confidence intervals.

3.3.1 Worst Case Performance

The worst case for the presence detection service is a situation where all network nodes
are permanently present. In that case, the network will not profit from presence de-
tection services, while they still consume bandwidth. Figure 3.8 shows the network
performance, in terms of the packet delivery ratio, for an increasing number of connec-
tions. The negative impact of the presence detection is quite low, and sometimes there
is actually a slightly better performance with presence detection.

30

3.3 An Example Application

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
presence detection

Figure 3.8: Worst case network performance.

The reason for these unexpected performance benefit with presence detection is a little
subtle. When the network is so congested around some node that it cannot send its data
packets, the node will not send any presence announcement until the situation improves.
This is an acceptable behavior since there is no use for a node in a congested area to
announce its presence: the node is not able to receive any more data packets anyway.
When congested nodes are temporarily considered non-present, connections attempts to
those nodes are delayed until they are again able to send beacons, i. e., they are effectively
back in the network. Thus, employing presence detection has accidentally introduced
some form of congestion control. We do not consider this to be a true advantage of
presence detection, but it is certainly an interesting observation which may be exploited
in future work.

3.3.2 Introducing Absent Nodes

Now we keep the number of “working” connections to present, available nodes fixed at
25. Figure 3.9 shows the effects on the network performance, again with 95% confidence
intervals, when the number of additional connection attempts to non-present nodes
increases. It can be seen that, without presence detection, more connection attempts
to non-present nodes severely deteriorate the network performance. The performance
with presence detection, on the other hand, does not show significant negative effects,
no matter how many connections to non-present nodes are attempted.

31

Chapter 3 Soft-state Presence Detection

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
presence detection

Figure 3.9: Packet delivery ratio as the number of connection attempts to non-present
nodes increases.

Figure 3.10 compares the average bandwidth spent by a node in the network with and
without presence detection, broken down to bandwidth used for routing packets, data
packets, and presence detection beacons. The beaconing load in the case with presence
detection is constant. It is obvious that, without presence detection, the bandwidth
used for routing packets quickly increases, while the available bandwidth for application
data decreases. Only a small portion of the bandwidth is actually effectively used.

The situation with presence detection services running is much better. Since the pres-
ence detection service blocks the vast majority of connection attempts to non-present
nodes, the bandwidth usage does not change significantly. There is only a minor increase
in bandwidth used by AODV, which is due to false positives, causing some non-present
nodes to appear as present.

Note that in a real network, the amount of connection attempts to non-present nodes
heavily depends on the nature of the network and the application. Our results here
show that it is possible to gain a benefit from exploiting presence information.

We also carried out the same simulation but using compressed aggregates for presence
detection service. Figure 3.11 shows a small gain of network performance in terms of
delivery ratio compared with the case when aggregates are not compressed. The gain
can be explained by smaller bandwidth usage in the case of compressed Bloom filter as
depicted in Figure 3.12.

32

3.3 An Example Application

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

(a) Without presence detection.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

Beacons
AODV

Data

(b) With presence detection.

Figure 3.10: Bandwidth use per node as the number of connection attempts to non-
present nodes increases.

33

Chapter 3 Soft-state Presence Detection

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
ra

tio

Number of connections

with compression
no compression

Figure 3.11: Delivery ratio in the case with compressed and uncompressed Bloom filters.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

Beacons

Figure 3.12: Bandwidth in the case with compressed Bloom filters.

34

3.3 An Example Application

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 12 14 16 18 20 22 24 26

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
presence detection

Figure 3.13: Delivery ratio with arriving and leaving nodes.

3.3.3 Arriving and Leaving Nodes

In this set of simulations, nodes actually enter and leave the network. One third of
the nodes to which connections are attempted is permanently present, another third
are switched on at some random time during the simulation, and the remaining nodes
are initially present, but are switched off at some random time. This means that some
connections run smoothly, some others can possibly be delayed until the destination is
up, or they might be abruptly terminated because the destination is switched off while
the connection is running. In Figure 3.13 it can once again be seen that the presence
detection service helps to achieve a substantially better network performance.

3.3.4 Periodically Sleeping Nodes

Our last set of simulations emulates a situation in which nodes periodically go to sleep.
This kind of periodic sleeping has, for example, been suggested for sensor and actuator
networks (SANETs) [AK04]. During the simulation, the network nodes are switched on
and off according to an exponential random model, in which the average up-time and
down-time of nodes are 180 and 120 seconds, respectively. The only exception are the
25 senders, which are permanently on. As a result some connections run smoothly, some
others can possibly be delayed until the destination is up, or they might be abruptly
terminated because the destination goes to sleep.

35

Chapter 3 Soft-state Presence Detection

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 25 50 75 100 125

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
presence detection

Figure 3.14: Delivery ratio with periodically sleeping nodes.

In Figure 3.14, it can once again be seen that the presence detection service helps
to achieve a substantially better network performance. This can be explained by the
numbers of AODV protocol packets being transmitted in the simulation, shown in Fig-
ure 3.15. In the case without presence detection the number of AODV packets sent is
almost twice as large as is the case with presence detection.

3.4 Real-world Experiments

In the previous sections, we introduced an algorithm to detect the presence of nodes,
assessed the performance and suitability of the proposed scheme, and evaluated the
algorithm in an example application using the ns-2 network simulator. To accompany
all that with a test-bed, we implemented a whoisthere service providing the basic
functionality of presence detection. This section will describe the real-world experiments
we then carried out to see whether the algorithm works as expected and whether there
are any observations that are different from what had been seen in simulations.

In order to control and repeat the experiments, we used the experiment control software
EXC [KOM08] on an IBM Thinkpad X40 laptop as the monitoring node. Other nodes
executing whoisthere were Zaurus SL-6000 PDAs running OpenZaurus Linux version
3.5.4.2. The EXC software issued commands requesting nodes to switch on and off
whoisthere according to specific experiment scenarios. Thanks to the central control

36

3.4 Real-world Experiments

 0

 100

 200

 300

 400

 500

 600

 700

 25 50 75 100 125

A
O

D
V

 p
ac

ke
ts

 (p
er

 s
ec

on
d)

Number of connections

no presence detection
presence detection

Figure 3.15: AODV packet count in the simulations with periodically sleeping nodes.

of timing, EXC provides us with two advantages. First, experiment scenarios can be
repeated with precise timing. Second, clock differences between nodes create no problem
in measuring the time between events, since nodes’ local timestamps of events, as offsets
to nodes’ on-times, can all be converted to EXC time using EXC’s local records of nodes’
on-time.

3.4.1 Static indoor

The sets of experiments presented in this section were designed to see how quickly
nodes detect the presence of others. Here we investigated one of the most interesting
aspects evaluated in Section 3.2: the speed of information propagation. In particular,
we wanted to measure the delay over varying hop distances in order to see how well
real-world experiments results match the simulations, noting that simulations and real-
world are two different environments by nature and that we did not have many devices
to form real-world networks as dense as we can in simulations.

To know roughly the hop-distances between nodes, we had to limit our experiments to
static networks, since it would be extremely difficult to determine actual hop-distances in
a network whose topology changes constantly. For each experiment, we used a network
of 8-9 nodes distributed on the second floor of the computer science building. One node
in the network switched on and off its presence detection service, thus ’disappeared’
from the network when the software was switched off and ’entered’ the network when

37

Chapter 3 Soft-state Presence Detection

(a) Set 1: Network of 9 nodes including a controller node, 8.

(b) Set 2: Network of 8 nodes, excluding the controller node, C, who did not run the presence
detection service

Figure 3.16: Ping snapshots of two static experiment sets.

the software was switched on. We measured the time until a newly ’appearing’ node was
seen as present by other nodes and compared this with the corresponding simulation
results.

In the first set of experiments (Figure 3.16(a)), we arranged nodes in a chain-like topol-
ogy. One node at the end of the chain was to switch its presence detection service on
and off periodically. This is the worst case in the terms of propagation speed, since
chain-like networks should enjoy little or no multi-path effect as has been seen in Sec-
tion 3.2’s simulations. Unlike in simulations, setting up a perfect chain in a real-world
situation is very difficult as signals can sometimes reach over longer distances creating
a temporary short-cut. In our experiments, we have, in fact, observed runs in which the
network was not fully connected, while in other runs of the same scenario the shortest
hop distance between two ends of the networks were as small as 5 hops (see Tables 3.1
and 3.2).

In the second set (Figure 3.16(b)), nodes were placed in a more random manner, and
thus better connected. We expected to see higher propagation speeds than those of the
first scenario, though both are unlikely to be as fast as those in simulations due to the
limited density of the network.

38

3.4 Real-world Experiments

Distance reported
Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 111 16 0 0 0 0 0 0 0 0 0 0 0 0
2 117 6 1 0 0 0 0 0 0 0 0 0 0 0 0
3 85 39 3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 112 14 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 112 17 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 96 24 2 1 0 0 0 0 0 0 0 4
7 0 0 0 0 93 24 2 1 0 0 0 0 0 0 8
8 82 44 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.1: Shortest hop distances to node 0, set 1, run 03

Figure 3.17 depicts the results of the two experiment sets, averaged over ten runs.
The x-axis denotes the shortest hop-distances between nodes, i.e. the shortest distance
recorded for each pair of nodes during all the experiments. The y-axis then shows the
average time until the presence information of one node arrives at another. The dashed
line shows the expected information propagation speed along a single path. Simulation
results from Section 3.2.4 are also included in the figure for comparison.

Complementing to Figure 3.17, Tables 3.1 and 3.2 show the statistics of hop-distances
to node 0 reported at the other nodes during two sample runs. During the experiments,
nodes recorded hop-distances to node 0 at the end of each beacon interval. The value
of the table cell at the intersection row i and column j is the number of times when the
distance to node 0 is reported at node i as j hops.

We can see in Figure 3.17 that set 1’s curve stays mostly above but very close to the
line of theoretically expected delay over a chain of nodes, and so does set 2’s curve
to that of simulational random-topologied networks. The first reason why test-bed
results are not as good as simulation results, as explained above, is that information
dissemination in scarce networks, which is the case in our test-bed experiments, does
not enjoy multi-forwarder effects as much as that in dense networks, which is the case
in our simulations. Second, link quality in the real-world is usually not as consistent
as in simulations. During experiments, the actual shortest path between a node pair is
sometimes longer than the shortest path recorded over time. Table 3.2 shows a run in
which the overall shortest paths (shown in Figure 3.17) failed far more often than they
succeeded. Thus, taking these limitations into account, the average propagation speeds
in real-world experiments are very close to our expectation, and the test-bed results are
consistent with the simulation results.

39

Chapter 3 Soft-state Presence Detection

 0

 1

 2

 3

 4

 0 1 2 3 4 5 6 7 8

D
el

ay
 (b

ea
co

ni
ng

 in
te

rv
al

s)

Minimum hop distance between nodes

expected delay along a chain
average delay in simulation

test-bed, set 1
test-bed, set 2

Figure 3.17: Test-beds: Average delay before a node is recognized as present.

Distance reported
Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 129 3 0 0 0 0 0 0 0 0 0 0 0 0 1
2 106 26 1 0 0 0 0 0 0 0 0 0 0 0 1
3 30 100 0 0 0 0 0 0 0 0 0 0 0 0 2
4 0 29 95 1 1 0 0 0 0 0 0 0 0 0 8
5 0 0 28 75 7 2 1 1 1 0 0 0 0 0 17
6 0 0 0 27 73 11 3 1 1 1 0 0 0 0 17
7 0 0 0 0 26 68 10 3 1 1 1 0 0 0 21

Table 3.2: Shortest hop distances to node 0, set 2, run 08

40

3.4 Real-world Experiments

Figure 3.18: Movement of the four mobile nodes (61-64) and position of the stationary
node 60 during mobile outdoor experiment.

3.4.2 Dynamic outdoor

In this set of experiments, we wanted to observe the presence detection service in dy-
namic networks, looking for any interesting behaviors resulting from changes of topology
and connectivity that have not been seen before in our simulations.

Our mobile experiment consisted of five nodes: four mobile nodes (IDs 61-64) and one
static node (ID 60), which also served as the monitor. Figure 3.18 shows the experiment’s
map and node movement. Nodes 61-64 started at the same position as node 60, then
moved away in different directions before returning to the starting point at the end of
the scenario.

Similarly to the static experiments discussed in Section 3.4.1, one of the network nodes,
i.e. node 61, periodically switched on and off its whoisthere service, and we measured
the time until the other nodes recognized node 61’s appearance and disappearance.
However, unlike in the static scenarios, nodes participating in this experiment moved
all the time. The real hop-distance between nodes changed and nodes were sometimes
disconnected because of either long distances or obstacles.

In this dynamic scenario, it is impossible to determine ’actual’ hop-distances at a given
point in time. Hence, it is impossible to construct a diagram showing delays over

41

Chapter 3 Soft-state Presence Detection

#61

#60

#62

#63

#64

 0 50 100 150 200 250

ob
se

rv
er

 n
od

e
ID

run-time (seconds)

1 2 3 4 5 6 7 8 9

Figure 3.19: Presence information of node 61 at each node during run 1. Horizontal
line segments represent periods when node 61 is “seen.” Node 61’s own
segments represent actual on-times

distances similar to that in Figure 3.17. Instead, Figure 3.19 shows an example of how
the presence of node 61 is perceived at the other nodes during the experiment. We
can see in the figure that node 61’s presence information usually took almost no time
to reach the others and always took some time to die out after node 61 had gone off.
That demonstrates the expected behavior of the presence detection service when nodes
are well connected. The interesting parts are in the middle of the run, when nodes
were farther away from each other and sometimes disconnected due to long distances
or obstacles. At the third, forth and sixth on-times, node 61 was “on” but unseen by
the others because its beacons could not reach any of them. At its fifth and seventh
on-times, the long “delay” were actually not propagation delay but the time before node
61 got close enough to other nodes for its beacons to reach them.

This experiment again demonstrates that our approach to presence detection works well
in real-world environments.

3.5 Privacy Concerns

The fact that nodes in a network all read Bloom filters from others and transmit their
own Bloom filters to others leads to several issues concerning the accuracy and secrecy
of the information the presence detection service provides. First, accepting beacons
produced by strangers entails the possibility of receiving false information. Second,

42

3.5 Privacy Concerns

beacons being read by strangers could lead to the risk of presence information being
revealed to unwanted parties.

In the first problem, there are false positives created by a node adding fake presence
information or indiscriminately setting Bloom filter entries to low values, and false neg-
atives caused by a node removing some presence information from its outgoing beacons
by setting entries to high values. Because the merge operation by nature always regis-
ters the most positive presence information available and ignores the rest, and because
presence information is disseminated in all directions and received via multiple paths
(except in the rare case of a perfect chain of nodes), false negatives are quickly cor-
rected and thus only rarely cause mis-information. Meanwhile, false positives cannot be
corrected that way causing some non-present nodes to appear as present. Thus, in the
worst case, an attack would be able to create the situation we had before introducing
presence detection.

The second problem concerns node privacy. The presence status of a node is available to
all nodes. For example, by examining an incoming beacon, a spying node can recognize
the ’bit pattern’ of the neighbor who sent the beacon, i.e. the set of Bloom filter entries
that neighbor uses for its own presence announcement. In soft state Bloom filters, this
pattern stands out as the set of entries with the freshest value. From then on, the spy
can monitor the presence status of that node as long as they are in the same network.

In this section, we will tackle the second problem and propose a preliminary solution.
Our objective is to prevent nodes from monitoring others without their permissions,
while maintaining the effectiveness of the present detection service.

Let us call the nodes which are allowed to see the node u as “friends” of u. We assume
that they can be trusted not to reveal u’s secret keys and not to disclose u’s presence
status in any way. Otherwise, in the case that a “friend” is also a spy, even when
presence detection service employs the ideally best mechanism against privacy invasion,
the spy can always forward the secret information in a way that is far beyond the scope
of a presence detection service, an example of which might be as simple as an email
with the content “Watch out! The guy is around!”

To extract presence status of a node from a Bloom filter, it requires either the node’s
hash key(s) or, more directly, the list of Bloom entries the node reserves for its own
presence announcements–its ’bit pattern’. Protecting node privacy means keeping both
of them secret. The hash keys can be practically protected against all non-friend nodes
by using encryption in the case of key transmissions, and by using good cryptographic

43

Chapter 3 Soft-state Presence Detection

hash functions as Bloom filter hash functions to prevent cryptanalytic attacks. However,
the ’bit pattern’ cannot be shielded from all. As explained in the example above, a non-
friend neighbor can recognize ’bit patterns’ from incoming beacons. Obviously, having
been near a spy only once will lead to being spied on forever, unless the node changes
its ’bit pattern’ over time. In other words, hash keys must change over time.

Next comes the question of how the sought-after node changes hash keys without dis-
rupting normal look-up operations of its friends, i.e. the second half of our objective
stated above. Suppose the node should inform its friends by sending the new keys to
all of them. However, there is a risk that some friends fail to receive the latest key
announcement, because they were not around at the right time or the announcement
itself got lost on the way, and, as a result, they will not be able to ’see’ the node un-
til after receiving the next announcement. If keys are announced frequently enough
to reduce the risk, the cost will be high bandwidth usage, which defeats the idea of a
lightweight presence detection service. Therefore, nodes should be able to independently
calculate friends’ hash keys instead of waiting for key announcements from friends and
periodically sending one’s own.

3.5.1 Hash Keys that Change over Time

We now describe in details our algorithm which deals with the privacy problem.

Each node u has two keys, which need to be securely distributed to its friends in ad-
vance:

• sku, a unique secret code, similar to node ID in normal cases,

• tku, period of time in seconds between two consecutive changes of hash keys,

The hash key node u uses for its own presence information is constructed from sku and
t–a time-dependent factor to be described later–using a predesignated function that com-
bines the pair, an example of which is the concatenation of the pair’s bit-representations.
Once the hash keys for Bloom filter have been calculated, the algorithms for refresh,
merge, query operations are the same as described in Section 3.1.2.

Let c be the current local time at u, we define t at u as⌊
c

tku

⌋
(3.11)

44

3.5 Privacy Concerns

Calculations of t in refresh operation are as simple as that, as nodes always know their
own local time.

However, in query operation, it is not as straightforward to determine t. Looking up u in
an aggregate, a node v does not know the c value that u used to calculate t for the piece
of information v is now trying to locate. One might think of using timestamps to fix the
problem. However, as Bloom filters contain information from various nodes gathered at
different points in time, each entry in a Bloom filter would need one timestamp of its
own, which makes timestamp an unaffordable solution.

Therefore, v must try to “guess” the exact t that u so as to “get” the correct hash key
to the presence information of u. Theoretically, t can be calculated as⌊

c− τ − δ

tku

⌋
(3.12)

where c is the clock value when v receives the information, δ is the clock difference
between u and v, and τ is the time needed for presence information to travel from u to
v. However, δ is generally not known to v, neither is τ as it is expected to constantly
change in a mobile ad-hoc network. Thus, while guaranteeing to give the correct answer,
this theoretical method of calculating exact t is infeasible.

Nevertheless, it can help in estimating t using v’s current clock value. Let Mc and
Mt be the upper bound of δ and τ , respectively, whose values are to be estimated in
advance with regards to the knowledge of the network in use. We have −Mc ≤ δ ≤Mc

and 0 ≤ τ ≤ Mt. It follows that (c − Mt − Mc) ≤ (c − τ − δ) ≤ (c + Mc), or
c−Mt−Mc

tku
≤ c−τ−δ

tku
≤ c+Mc

tku

Applying (3.12), we conclude that t must be an integer in the range[⌊
c−Mt−Mc

tku
c, bc + Mc

tku

⌋]
(3.13)

Given Mc and Mt, carrying out look-ups with each integer in that range, v cannot miss
the presence information of u.

In short, whenever v wants to query presence information of u, instead of performing
one Bloom filter look-up for u using one set of hash keys as in the original algorithm
presented in Section 3.1.2, v will have to perform one or more look-ups with different
hash key sets. If any of those look-ups gives a positive answer, v will conclude that u is
present, otherwise, “not present” will be the answer.

45

Chapter 3 Soft-state Presence Detection

3.5.2 Effects on False Positive Rate

The fact that more than one look-up might be required for each query of node presence
raises the question of how badly it affects the accuracy of the query’s answer, or more
specifically, how it increases the false positive rate. Our analysis as well as simulations
presented below will show that the cost is acceptable.

From (3.13), we have the number of necessary look-ups, i.e. the number of t’s candidate
values, (denoted as λ) is

λ :=
⌊

c + Mc

tku

⌋
−
⌊

c−Mt−Mc

tku

⌋
+ 1 (3.14)

Since c+Mc
tku

≥
⌊

c+Mc
tku

⌋
> (c+Mc

tku
− 1) and (1− c−Mt−Mc

tku
) > −

⌊
c−Mt−Mc

tku

⌋
≥ − c−Mt−Mc

tku
,

by adding up corresponding parts of the two inequations, we have:

(Mt+2Mc
tku

+ 1) >
⌊

c+Mc
tku

⌋
−
⌊

c−Mt−Mc
tku

⌋
> (Mt+2Mc

tku
− 1)

which is equivalent to

(
Mt + 2Mc

tku
+ 2
)

> λ >
Mt + 2Mc

tku
(3.15)

Noting that λ must be an integer that is strictly less than the upper bound given in
(3.15), it turns out that (Mt+2Mc

tku
+2) is not too high an upper bound for λ. Let us take

an example. Suppose u changes keys after every rather short period of ten minutes, i.e.
tku = 600. Then the time it takes for presence information to travel across the network
plus twice the clock difference between pairs of nodes, i.e. Mt+2Mc, could be as much
as ten minutes, or 600 seconds, without causing the number of required look-ups (λ) to
exceed 2.

There is another issue that affects the false positive rate. After a node switches to a
new key, until its presence information using the old key die out, the node appears to
be registered multiple times. This increased number of set positions in the Bloom filter
can lead to temporary higher rates of false positives.

To better show the cost of our privacy protection mechanism, we carried out simulations
using the ns-2 network simulator. We placed network nodes randomly on a square area
of 1500 meters side length, and used the presence detection algorithm with m = 1024
filter positions, k = 4 hash functions for Bloom filter, and a beaconing interval of 1.5
seconds. The network size varies from 50 to 300 nodes. We chose the upper bound

46

3.5 Privacy Concerns

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

Fa
ls

e
po

si
tiv

e
ra

te
 (%

)

Number of nodes present

with privacy protection
standard and in theory

Figure 3.20: False positive rates. k = 4, m = 1024

of clock difference as Mc = 300 seconds, which is equivalent to five minutes; and the
estimated maximal time needed for information to travel across the network as Mt = 10
seconds, which is quite generous an estimation given the statistics of information delay
in Figures 3.5 and 3.6. Each node had a value tk randomly generated in the range [600,
3600] seconds, i.e. [10, 60] minutes. During each run, after presence information had
been fully disseminated, 10,000 queries were issued on random node IDs regardless of
whether the nodes were present in the network or not. False positive rates were then
calculated from the results of these queries.

The results are presented in Figure 3.20 in comparison with the theoretical false positive
rates of Bloom filters of the same size (Formula 3.3). We can see from the figure that the
cost of the privacy protection is rather small, it increases only slightly the false positive
rates of Bloom filters.

3.5.3 “Friend” Groups

To further the idea of “friends”, a node could enjoy the flexibility of having more than
one groups of friends by dedicating a separate key pair (sk, tk) to each group. This way,
the node can actively choose to “appear” present to some groups while staying “non-
present” to the others. In addition, the node can modify the member list of a friend
group at will by setting a new key pair and send it to only the should-be members of

47

Chapter 3 Soft-state Presence Detection

the group dropping the others out. This feature of friend groups is readily supported
by our algorithm.

3.5.4 Related Work

The idea of keys changing over time has been discussed in [CDM07]. While our approach
allows nodes to have asymmetric relations with one another, the problem solved in the
paper requires nodes in one clique to have symmetric relations sharing a common key.
Although keys in [CDM07] also change over time and are calculated independently at
different nodes, new keys are obtained just by applying hash functions to the current
keys regardless of time difference between nodes. As a result, the mechanism described in
that paper requires time synchronization among nodes or suffers resulting loss of signals,
which is the very problem we have solved with our method of estimating t. Combined
with it, the idea of hashing the key of one time slot to obtain the key for the next slot
is, on the other hand, applicable to our problem without disallowing asymmetric node
relations. However, the resulting t calculation will be computationally more expensive,
especially in the case of high frequency of key changes.

3.6 Chapter Summary

In this chapter, we have presented a scalable solution to the presence detection problem,
which is also able to estimate the number of hops required to reach a given node. A
soft state variant of the well-known Bloom filter allows for an efficient aggregation of
presence information. In particular, we extended Bloom filters to support soft state
decay and refresh operations. Our algorithm aggregates presence information using
these soft state Bloom filters. The aggregation comes at the cost of an adjustable
amount of false positives, while it guarantees the absence of false negatives.

We investigated several key aspects of this approach, such as the speed of informa-
tion propagation, the probability of false positives, and the bandwidth consumption by
means of analysis and simulation. To underline the practical benefits that can be ob-
tained by using presence detection, we also presented simulation results where presence
detection was applied to the route discovery process of AODV. We were able to avoid
issuing route requests to non-present destination nodes. We showed that the additional
network load for the presence detection beacons is very limited and that substantial per-
formance gains are possible if spurious flooding of the network with unsuccessful route

48

3.6 Chapter Summary

discovery attempts can be avoided. Real-world experiments on PDAs also show that the
presence detection works well both in static indoor and dynamic outdoor environments.
In addition, the privacy issue was addressed and a mechanism was proposed to prevent
spying on network nodes.

49

Chapter 3 Soft-state Presence Detection

50

Chapter 4

Reducing the Overhead of Presence

Detection

In Chapter 3, we have proposed a first mechanism that tackles the problem of detecting
the presence of nodes. However, the mechanism provides more information than just
node presence, it also yields a distance estimate to the respective node. This is a
result of the employed data structure, a soft state variant of Bloom filters. This data
structure provides a lossy compression of presence information and at the same time
allows to remove old, timed-out information by aging information over time and distance.
Distance estimates are a result of this particular data representation.

Although such hop distance estimates may be useful in some situations, it is not al-
ways necessary. It actually turns out that presence information can be represented in a
substantially more compact form without distance information. This saves a significant
amount of network bandwidth. The key to do so is a new, more space efficient method
to remove old information. Here, we use a phase-based, coarse synchronization mech-
anism in order to periodically remove outdated presence information. We introduce a
protocol that implements this mechanism and present both analytical and simulation
results. Finally, in order to underline and concretize the effects of this reduced over-
head presence detection mechanism, we apply it to the application scenario—reactive
MANET routing—which was also used as the example application in Chapter 3. In
both the general evaluation results and the application scenario, we compare the al-
gorithm presented here with the presence detection mechanism previously proposed in
Chapter 3.

In the following sections, we describe the approach with reduced overhead in Section 4.1,
then evaluate it in Section 4.2. Section 4.3 contains the application study with reactive
MANET routing. We finally conclude this chapter with a summary in Section 4.4.

51

Chapter 4 Reducing the Overhead of Presence Detection

The content of this chapter has been published in [TSM09b].

4.1 Algorithm

One primary objective of using a presence detection protocol in a network is to reduce
unnecessary overhead, which may otherwise occur when communication with nodes or
services is attempted, even though the intended communication partner is currently not
available. For achieving this goal, it is of utmost importance that the overhead of the
presence detection protocol itself is small—otherwise it will in many situations outweigh
the benefits.

A way to achieve a small footprint of presence detection is to compress the presence
information exchanged between the nodes. A central observation made in Chapter 3
is that presence information does not need to be absolutely accurate, as long as only
a small number of false positives occur. In case of a false positive, a node is wrongly
considered to be present. This is not critical for many typical applications: in the worst
case, the cost of a false positive is an unnecessary attempt to contact a non-present
node, just as if no presence detection were used. Thus, in that case, the system behaves
like one without presence detection. False negatives, however, must not occur, because
they would result in connection attempts not being made, even though the destination
node is in fact present. Because a certain number of false positives is tolerable, while
false negatives are unacceptable, Bloom filters [Blo70] are an interesting candidate for
representing the set of currently present nodes in a very compact form.

The central problem that arises is to remove information about no longer present nodes
from the aggregates. The solution proposed in Chapter 3, called soft state Bloom
filter, achieves this goal but comes at the cost of substantially increasing the size of
the standard Bloom filter. The additional information carried in the modified Bloom
filter can be useful, because it allows to provides the querying node with an idea about
the distance to the destination, if it is present. Often, though, such distance estimates
are not necessary—and therefore the central question arises: is it possible to perform
presence detection with unmodified Bloom filters, and still remove old information?

4.1.1 Phase Synchronization

Because the information in a soft state Bloom filter’s positions ages while traveling
through the network, the values of the counters at the bit positions corresponding to a

52

4.1 Algorithm

node give an idea of the distance to this node. The cost of this information is, however,
high: the algorithm proposed in Section 3.1.2 results in a size increase of the exchanged
Bloom filters by a factor of l, in comparison to standard, unmodified Bloom filters. As it
turns out, it is actually possible to achieve network-wide soft state behavior without the
need to transmit soft state Bloom filters with counters at each position in the presence
announcement beacons.

In order to get rid of the overhead for counters in each bit position, we return to
exchanging standard Bloom filters in periodic beacons. As mentioned before, they
do not allow to selectively remove information about single, specific, no longer present
nodes. The general idea how old information can nevertheless be removed is surprisingly
simple, at least at a first glance: we may periodically reset all bits in all nodes, and then
start over by collecting information about all (still) present nodes again. However, two
challenging problems make implementing such an approach more tricky than it initially
seems.

The first such issue is related to synchronizing the process of resetting the Bloom filters
in the nodes. If old information is removed asynchronously, it will not be permanently
removed. To see why, consider the example shown in Figure 4.1(a). For simplicity’s
sake, instead of “real” Bloom filters, presence information of the three nodes x, y, and
z is represented by a single bit each in our examples; in the example aggregates, x

maps to the first, y to the second, and z to the third bit. In Figure 4.1(a), z has just
left the network. Its presence has been (and is still) known by x and y, which can be
seen from the third bit in their aggregates being set. x is first to reset its aggregate.
However, with a naive reset, x may then receive a beacon from y that still contains the
old information. As a result, not only the information about y’s presence, but also the
outdated information about z is recovered. If y later resets its own aggregate, the next
beacon from x will again revive the information about z. In short, presence information
of the no longer present node z will never die out.

Accurately synchronized clocks in all nodes could provide a solution to the problem by
scheduling them to reset all the Bloom filters at the same time. However, perfect time
synchronization is not realistic in many distributed real-word applications. So, instead
of relying on time synchronization, we solve the problem by using a phase synchroniza-
tion mechanism. Each node maintains a phase counter, which increments periodically.
A node advances to the next phase after having operated in its current phase for a
globally specified maximum phase duration (C beaconing intervals). Whenever such a
phase transition occurs, the node resets its Bloom filter and starts over with collecting

53

Chapter 4 Reducing the Overhead of Presence Detection

(a) Naive resetting. (b) Phase synchronization.

Figure 4.1: Phase synchronization for the removal of old information.

information about other nodes from scratch. The current phase ID is attached to every
transmitted beacon. A phase will typically last a few seconds, and therefore a small
(for instance, 32 bit) integer phase ID suffices even for a very long timespan, so that
it does not significantly increase the beacon size. The phase ID in the beacons allows
nodes to recognize and ignore beacons from neighbors which are less advanced in phases,
making sure that old information—from phases with lower IDs—will not reappear in
the aggregate.

Figure 4.1(b) depicts a situation similar to that in Figure 4.1(a), except that phase IDs
are used. In the figure, x resets its aggregate, transitioning from phase 8 to phase 9.
When it receives a beacon from y with phase ID 8, this information is ignored. As
soon as y is also in phase 9, information is accepted again. Therefore, information on
y’s presence is accepted, but outdated information on the no longer present node z is
reliably removed.

However, such an approach requires that the nodes in a network must somehow come
to be in the same phase. We therefore let nodes in less advanced phases “catch up”
with more advanced neighbor nodes, thereby (coarsely) synchronizing their phases. The
principle we apply in this synchronization process is that every node catches up with
its most advanced neighbor. Each node maintains that principle by examining the
phase IDs in received beacons, and adjusting its own phase accordingly if the ID is
higher than its own current value. In Figure 4.1(b), y performs such a transition when
receiving a phase 9 beacon from x. Of course, such a neighbor-triggered phase transition

54

4.1 Algorithm

Figure 4.2: Temporary inconsistency.

also includes resetting the local aggregate, just like a timeout-triggered one. Note that
an accurate synchronization—i. e., all nodes advancing to the next phase exactly at
the same time—is not necessary, as long as the nodes remain within the same phase
for long enough, so that presence information can be disseminated through the whole
network. We will soon return to the issue of choosing phase length and beaconing
interval appropriately in more detail.

4.1.2 Overcoming Temporary Inconsistencies

Temporary inconsistencies after a phase transition are the second central problem that
needs to be solved in order to make presence detection with small, unmodified Bloom
filters viable. Immediately after a phase transition, a node’s aggregate is empty. Until
information has been gathered again in the new phase, it is of no use for presence
detection—recall that false negatives are to be avoided. It takes time before information
from all present nodes reappears at each aggregate. An example is depicted in Figure
4.2: x is first to transition from phase 8 to phase 9, resetting its aggregate. There is a
short period during which y is not seen, and an even longer time until z, which is not a
direct neighbor of x, also reappears.

To overcome this, we use an additional, more durable local copy of presence information.
We reuse the soft state Bloom filter described in Section 3.1.2 for this purpose. However,
in contrast to the algorithm described in Chapter 3, the soft state Bloom filter is kept
only locally. It is not transmitted over the network. Whenever information from a

55

Chapter 4 Reducing the Overhead of Presence Detection

Figure 4.3: Close-up at one node.

received beacon is incorporated into the local aggregate, the corresponding positions in
the local soft state Bloom filter are also refreshed. However, the soft state Bloom filter
is not reset upon a phase transition. Instead, the information gradually decays where it
is no longer refreshed and eventually fades out just as described above. The local soft
state Bloom filter thus bridges the gaps after phase transitions, in some sense smoothing
out the algorithm’s behavior.

4.1.3 Detailed Algorithm Description

After having outlined and motivated the phase-based approach to remove old presence
information from unmodified Bloom filter aggregates, we will now proceed by more
formally introducing the complete protocol and data structures.

Data structure

For our phase-based presence detection protocol, each node locally maintains four data
items: the current phase ID p of this node, the node’s Bloom filter presence aggregate

56

4.1 Algorithm

a for the current phase (which is used for information exchange), the soft state Bloom
filter b for local presence lookups, and the interval counter c indicating for how many
beaconing intervals the current phase already lasts at this node.

Timeout

Periodically each node transmits a beacon. All nodes use the same beaconing interval
length B, but their beaconing cycles do not need to be synchronized, i. e., they need not
(and typically will not) generate beacons at exactly the same time. At the beginning of
each beaconing interval, a node performs an operation consisting of four steps:

Decay the entries in the local soft state Bloom filter b.
if c ≥ C then {c is at the threshold C}

p← p + 1
c← 0
Empty a and add own presence information to a

end if
Broadcast (a, p, c) to the neighbors.
Increment c.

Algorithm 4.1.1: Timeout and refresh

The beacons contain the current interval counter c because this allows for nodes to
“catch up” when they receive beacons in which the interval counter c is higher than
their own current value. This results in an even tighter synchronization.

Merge operation

The merge operation is performed whenever a presence detection beacon is received
from a neighbor. It accomplishes two main functions: (1) it adds presence information
received from neighbors who are either in the same phase or in a more advanced one,
and (2) it synchronizes the node to the most advanced neighbor.

Upon receival of a beacon (p′, a′, c′) from a neighbor, by examining the phase ID p′,
the node decides whether it should ignore the beacon, or catch up with the neighbor,
or simply perform a normal update to its local information (p, a, b, c). The detailed
procedure is shown in Algorithm 4.1.2.

Figure 4.3 depicts an example of state changes in response to events such as timeouts,
phase changes, and received beacons, showing all the aggregates and counters in a
node.

57

Chapter 4 Reducing the Overhead of Presence Detection

if p > p′ then {the sender is less advanced}
{do nothing}

else if p = p′ then {both are in the same phase}
a← merge bloom filters(a, a′)
b← merge bf into softstate bf(b, a′)
c← max{c, c′}

else {the sender is more advanced}
a← a′

add own presence information to a
b← merge bf into softstate bf(b, a′)
c← c′

p← p′

end if
Algorithm 4.1.2: Merge operation

Query operation

In order to determine whether some node x is present, a node checks its local soft state
aggregate b at positions h1(x), h2(x), . . . , hk(x). If any of the bit positions corresponding
to node x is not set (i. e., either it has never been set or it has already expired), it may be
concluded that x is not present. Otherwise, x is considered present with some probability
of a false positive.

4.2 Evaluation

In the previous section, we introduced a phased-based algorithm to disseminate presence
information. In this section, we assess the performance and suitability of the proposed
scheme. In particular, we concentrate on three aspects: the reliability of the scheme in
terms of the false positive rate, how to choose the length of a phase, and the speed of
information propagation. Where appropriate, comparison with the soft state approach
from Chapter 3 is also presented.

4.2.1 False Positive Rate

A false positive occurs when the bit positions corresponding to the sought-after node
are all set by other added elements. We use standard Bloom filters, so the probability of
a false positive is well-known. It depends on three factors: the number of bit positions
in the filter m, the number of hash functions k, and the number of elements n that are

58

4.2 Evaluation

present in the set. The probability that a bit position is still zero after n elements with
k bit positions each have been added is (1− 1/m)kn. Thus, the probability that all k

bit positions of the sought-after node are one is(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k
.

4.2.2 Choosing the Phase Length

The algorithm proposed here spreads information bi-directionally among nodes in the
same phase, and uni-directionally otherwise, i. e., information from a more advanced
node is accepted at a less advanced node, but not the other way around. However, once
a uni-directional dissemination takes place, the less advanced node will at the same time
synchronize itself with the more advanced neighbor. Consequently, a central issue is to
choose an appropriate phase length: excessively long phases will delay the removal of
outdated information from the network. On the other hand, if a phase is too short, a
“complete” picture will not have been collected before the most advanced node again
transitions to the next phase, resetting the aggregates.

It is straightforward to see that the worst case is the following simple scenario: assume
the network has a chain topology with nodes labeled 0, 1, 2, . . . , d. Let 0 be the most
advanced node and d the least advanced node within the current phase, i. e., 0 will be
the first to transition to the next phase. In order for 0 to receive presence information
from d, the new phase must first propagate along the chain from 0 to d, i. e., every node
0, . . . , d − 1 must send a beacon. Once d is synchronized to the new phase, each node
d, . . . , 1 must send a beacon in that order for the bits set by d announcing its presence
to arrive at node 0. At this point in time, 0 must not yet have advanced to a new phase
again. In other words, a phase length should be no shorter than the time needed to
relay information in beacons from 0 to d and back.

Let u and v be neighboring nodes. Let xu,v be the time between u sending a beacon
and v sending the next beacon after receiving the one previously transmitted by u. We
may safely assume that (at least over shorter timespans) the relative offset between the
periodic beaconing cycles of two nodes remains approximately the same, such that for
each pair of nodes xu,v is constant. The time D needed to relay beacons from node 0
to d and back is

D = x0,1 + x1,2 + . . . + xd−1,d + xd,d−1 + . . . + x2,1 + x1,0.

59

Chapter 4 Reducing the Overhead of Presence Detection

Observe that xu,v + xv,u is just the time between two successive beacons sent by u—
i. e., it is the beaconing interval length, here denoted by B. By reordering we therefore
obtain

D =
d−1∑
i=0

(xi,i+1 + xi+1,i) = d ·B.

Consequently, the phase length C in beaconing intervals should at least be the network
diameter in hops, plus potentially some additional time to account for possible beacon
losses. Note that this is significantly shorter than what one could have expected at a
naive first glance: d beaconing intervals actually suffice for information to travel over d

hops forth and back again!

As explained in Section 4.1.2, to overcome the temporarily incomplete information in
the Bloom filters after a phase transition, we use soft state Bloom filters locally as
the more durable local copy of presence information. Its TTL parameter, determining
how many beaconing intervals a soft state Bloom filter entry remains set without being
refreshed, should be set to a value with the same lower bound as the phase length C.

4.2.3 Speed of Information Propagation

In the phase-based approach, information is propagated in the same manner as in the soft
state approach presented in Chapter 3. Thus, it may be expected that the dissemination
time should be the same as for the soft state approach, plus an additional delay of one
beaconing interval for arriving nodes to get phase-synchronized with the rest of the
network (this synchronization takes place as soon as a newly arriving node receives the
first beacon).

The other interesting parameter is the time until a leaving node is no longer considered
present. In the soft state approach, after node x has left, it will be considered present
until the counters have completely decayed. If the presence information about x is
currently t beaconing intervals old, this will happen after TTL − t more beaconing
cycles. In the phase-based approach, after x leaves, it will be removed first from the
exchanged aggregate (the unmodified Bloom filter) when a node transitions to the next
phase, and later from the node’s local soft state Bloom filter when the TTL expires.
Thus, depending on whether x left right at the beginning or more towards the end of a
phase, the time until information about x is removed at another node varies in the range

60

4.3 Example Application

TTL . . . (C +TTL) beaconing intervals, plus or minus a time less than one phase length
due to the fact that some nodes are more advanced within the phase than others.

As explicated above, both the phase length C and the TTL should be chosen slightly
higher than the expected network diameter. Thus, the phase-based approach can be ex-
pected to react half as fast as the soft state approach, and the delay will be proportional
to both the length of the beaconing interval and the network diameter.

We conducted simulations to verify this expectation using the ns-2 network simula-
tor [ns2]. We placed 200 nodes randomly on a square area of 1500 meters side length,
and used the phased-based presence detection algorithm with m = 1024 filter positions,
and a beaconing interval of three seconds. As the maximal diameter of these networks is
10, we chose a phase length of 10 intervals, The simulation uses IEEE 802.11 at 1 MBit/s
and 250 m radio range. 199 nodes were initialized with random phase IDs. After they
have all synchronized and learned about the presence of each other, the 200th node
enters the network and the delay until it was recognized as present by other nodes is
measured. The node to be watched always starts with phase ID 0, so that it has to
synchronize with neighbors before its presence is recognized.

Figure 4.4 shows the time until a node is considered present by all other nodes within
10-hop distance after it has arrived, and the time until presence information of leaving
nodes vanished from the aggregates of all other nodes. Corresponding results of the soft
state approach are included for comparison. The times are given for different beaconing
intervals with 95-percentile error bars.

For arriving nodes, it can be seen that, as expected, the delay increases linearly with the
beaconing interval length, and that the average dissemination time in the phased-based
approach is one interval longer than that in the soft state approach. For leaving nodes,
the simulation results also confirm the theoretical expectations.

4.3 Example Application

In the previous section we assessed the general properties of the algorithm analytically
and in simulations. Node presence detection can, as stated before, be used in a large
range of applications. The results presented in this section quantify its impact in one
specific, exemplary one. Again we compare the results to those obtained with the soft
state Bloom filter presence detection mechanism from Chapter 3.

61

Chapter 4 Reducing the Overhead of Presence Detection

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 5 10 15 20

D
el

ay
 (i

n
se

co
nd

s)

Beaconing interval (in seconds)

soft state leaving
phase-based leaving

soft state arrival
phased-based arrival

Figure 4.4: Time until information is received by all nodes.

We analyze both algorithms in the same exemplary application discussed in Section 3.3.
In networks with AODV routing [PR99], we query the presence detection service at the
source node before starting a route request for a new connection. If the destination node
is considered present, the connection will be initiated as usual. Otherwise, the route
request is delayed until the presence detection service indicates that the destination node
is present. This avoids unnecessary route discovery attempts to currently non-present
nodes.

In order to be able to investigate the impact of the network size, we used two classes of
networks: (1) networks of 200 nodes in an area of 1500 by 1500 meters (we refer to those
as “medium-size”), and (2) networks of 400 nodes in an area of 2500 by 2500 meters
(“large-size”). The simulation study was conducted using ns-2 [ns2]. IEEE 802.11 is
used at 1 MBit/s bandwidth. This is a relatively low value; however, note that a low
network bandwidth is particularly hard for a beacon-based presence detection scheme:
at higher total bandwidths, the fraction of the network capacity spent for presence
detection beacons will be lower. We therefore chose to assess our scheme under these
particularly difficult circumstances.

We use the same setting as that in Section 3.3. The communication radius in our simu-
lations is 250 meters, with a 550 meter carrier sense range. The nodes move according
to the random waypoint mobility model with random speeds in the range from 1 to
10 meters per second and a pause time of 20 seconds. Again, in order to overcome
the well-known limitations of random waypoint [YLN03], we used the modified version

62

4.3 Example Application

of the model, initialized with the steady-state distribution. The beaconing interval is
set to three seconds. All connections last 100 seconds and start at some random time
between 10 and 190 simulation seconds. During a connection, the source node sends
constant bit rate traffic with four data packets per second, each with a payload size of
512 bytes. The results are averages over 25 scenarios, each with different traffic and
movement patterns. All plots in this section show 95 % confidence intervals.

We then examine the impact of additional load caused by additional connections to
present and non-present nodes and by the present detection schemes.

4.3.1 Algorithm Parametrization

In simulations with medium-sized networks of 200 nodes, we re-used the soft state
Bloom filter simulation results described in Section 3.3 and carried out equivalent phase-
based approach simulations. Specifically, we choose the same Bloom filter parameters of
m = 1024, k = 4, which produces the false positive rate is about 0.086. Since networks
of these dimensions do typically never exceed a diameter of ten hops, four bits per soft
state Bloom filter position was used in the soft state approach. In the phase-based
approach, we set both the phase length and the TTL parameter of the local soft state
Bloom filters to 10. As a result, the sizes of the aggregates in the beacons are 512 bytes
for the soft state Bloom filter protocol and 128 bytes for the phase-based approach.

In the case of large-sized networks of 400 nodes, to have the same false positive rate of
0.086 as in medium-sized simulations, we used the Bloom filter parameters m = 2048
and k = 4 in both approaches. The soft state Bloom filter approach uses five bits per
position to be able to detect nodes at distances of more than 15 hops in these bigger
networks. For the phase-based approach, phase length and TTL are set to 25. As a
result, the sizes of the aggregates used by the soft state and phase-based approaches are
1280 bytes and 256 bytes, respectively.

4.3.2 Worst case

The worst case for the presence detection service is a situation where all network nodes
are permanently present. In that case, the network will not profit from presence detec-
tion services, while they still consume bandwidth.

Figure 4.5 shows the performance of networks of medium and large size, in terms of
the packet delivery ratio with 95% confidence intervals, for an increasing number of

63

Chapter 4 Reducing the Overhead of Presence Detection

connections. Because all nodes are always present, we may not expect any benefit from
presence detection. But we can assess the impact caused by the additional beaconing
traffic in this worst case situation. For medium-sized networks, Figure 4.5(a) shows little
negative impact of both approaches, the network performance in all three cases is roughly
the same. The cost of both presence detection approach is so small that it does not
add significantly to the congestion level of the network. However, in large-size networks
(Figure 4.5(b)), the impact of the soft state approach becomes quite pronounced, due
to the large beacon size.

4.3.3 Absent nodes

Now we keep the number of “working” connections to present, available nodes fixed
at 25. Figure 4.6 shows the effects on the network performance, when the number
of additional connection attempts to non-present nodes increases. It can be seen that,
without presence detection, an increasing number of connection attempts to non-present
nodes severely deteriorates the network performance. The performance with presence
detection, on the other hand, does not show significant negative effects, no matter how
many connections to non-present nodes are attempted. In medium-sized networks, the
performance of both approaches is stable at a high level. For large networks the soft
state approach’s delivery ratio is 30% less that the phase-based approach’s. Again, the
reason for this difference is the bandwidth spent on beaconing.

We compared the average bandwidth spent by a node for routing packets, data packets,
and presence detection beacons, for the cases with and without presence detection.
Without presence detection the bandwidth used for routing packets quickly increases,
while the available bandwidth for application data decreases. Only a small portion of
the bandwidth is actually effectively used. For large networks this is shown in Figure 4.8.
For medium-sized networks the results are shown in Figure 4.7; the effect is very similar,
though.

Both presence detection services are able to block the vast majority of connection at-
tempts to non-present nodes. Thus, with presence detection, the bandwidth usage re-
mains almost constant: with an increasing number of connections to non-present nodes
there is only a minor increase in bandwidth used by AODV, caused by false positives.
In medium-sized networks the bandwidth cost by the phase-based approach is already
significantly lower than that of the soft state approach, a trait that becomes even more
pronounced in large networks. In Figure 4.8(b), it is evident that with soft state Bloom

64

4.3 Example Application

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
soft state

phase-based

(a) Medium-sized networks.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 15 20 25 30 35 40 45

D
el

iv
er

y
ra

tio

Number of connections

no presence detection
soft state

phase-based

(b) Large-sized networks.

Figure 4.5: Packet delivery ratio as the number of connections increases, in a worst-case
scenario.

65

Chapter 4 Reducing the Overhead of Presence Detection

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
ra

tio

Number of dead connections

no presence detection
soft state

phase-based

(a) Medium-sized networks.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

D
el

iv
er

y
ra

tio

Number of dead connections

no presence detection
soft state

phase-based

(b) Large-sized networks.

Figure 4.6: Packet delivery ratio as the number of connection attempts to non-present
nodes increases.

66

4.4 Chapter Summary

filter based presence detection, the average bandwidth each node spends on beaconing is
in fact the largest part of the three types of traffic. This limits the network performance
in terms of packet delivery ratio, as observed in Figure 4.6. The phase-based approach,
on the other hand, maintains a low overhead for beacon information and can therefore
deliver a much higher percentage of the data packets to their destination.

4.4 Chapter Summary

In this chapter we proposed an alternative presence detection scheme for MANETS.
In comparison to the work in Chapter 3, it requires significantly less bandwidth for
the distribution of presence information. The key idea is to rely on phases to remove
information on nodes that are no longer present in the network. We investigated key
aspects of the approach, such as the speed of information propagation, the probability
of false positives, and the bandwidth consumption by means of analysis and simulation.
To underline the practical benefits that can be obtained by using presence detection, and
the advantages as well as disadvantages in comparison to prior work, we also showed
simulation results from the same exemplary application of presence detection to the
route discovery process of AODV.

67

Chapter 4 Reducing the Overhead of Presence Detection

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

(a) Without presence detection.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

Beacons
AODV

Data

(b) With presence detection.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

Beacons
AODV

Data

(c) Phase-based presence detection.

Figure 4.7: Medium-sized networks: bandwidth use per node as the number of connec-
tion attempts to non-present nodes increases.

68

4.4 Chapter Summary

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

(a) Without presence detection.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

Beacons

(b) Soft state presence detection.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

B
an

dw
id

th
 p

er
 n

od
e

(in
 b

yt
es

/s
)

Number of dead connections

AODV
Data

Beacons

(c) Phase-based presence detection.

Figure 4.8: Large-sized networks: bandwidth use per node as the number of connection
attempts to non-present nodes increases.

69

Chapter 4 Reducing the Overhead of Presence Detection

70

Chapter 5

Reachability

In mobile ad-hoc networks, information on the presence of nodes can be perceived in
two ways: physical locality and communication possibility. The approach we proposed
in the previous chapters definitely solve the problem of detecting nodes that physically
are in the network. But “seeing” a node being present in that sense does not necessarily
mean being able to communicate with the node. That is because a node “sees” others
essentially by receiving information from those nodes, which does not require its own
information to be received by the other nodes. For example, if the links between two
nodes u and v allow data to be transferred from u to v but not the other way, and if
there is no other path from v to u, then v can see u but cannot communicate with u.
Unlike in simulations, this situation of uni-directional links are not uncommon in real-
world situations [MD02]. In our test-bed experiments, we have seen situations lasting
dozens of seconds, in which all out-going packets from a node were delayed while the
node was able to receive packets without any problems. The issue matters even more in
the case of unicast communication when a bi-directional link is required for every hop
along a communication path.

In this chapter, we extend the problem further to address the question of reachability,
and propose an algorithm that solves the problem. The idea is similar to the presence
detection approach described in Chapter 3, except that only bidirectional links are
registered while uni-directional links are ignored, since communication is feasible across
the former but not the latter. Upon receiving a beacon, a node would first check if
the sender has recently received its beacons, i.e. whether communication in the other
direction was possible. The beacon will be accepted and further processed as normal
if the answer is yes, otherwise, it will be discarded. This way, presence information is
disseminated across the network via bi-directional links only, and thus has the stricter
meanings of ‘reachability information’.

71

Chapter 5 Reachability

The solution we propose in this chapter is applicable both to the soft-state approach
presented in Chapter 3 as well as the phase-based approach presented in Chapter 4.
Hence, in this chapter, we focus on the soft state approach only. Details on adapting
the phase-based approach to solve the problem of reachability detection can be found
in Appendix B.

This chapter also describes our real-world experiments with the proposed solution im-
plemented as a feature of an instant messenger application. The experiment results
demonstrate that the algorithm works as expected.

5.1 Algorithm

We use Bloom filters to store reachability information in the same way as presence
information in Chapter 3. To enable a node u to recognize beacons from neighbors
who have received beacons from u, these neighbors must somehow store the information
“I have received beacons from u” in their outgoing beacons. In other words, beacons
broadcasted from a node must contain information about all the neighbors that the node
has recently heard from. Standard approaches such as OLSR [JMC+01], a link-state
based routing protocol, store this information in a list of addresses of the neighbors.
Their HELLO messages, as a result, may become very large in dense networks. In our
problem, we need some lightweight data structure. Again, standard Bloom filters serve
the purpose well. Each node will have such a Bloom filter stored locally. We call this a
‘neighbor aggregate’. Whenever a node receives a beacon, it will hash the sender address
to the filter, which is to be included in the next beacon it broadcasts. As a result, by
looking up its own address in an incoming beacon’s neighbor aggregate, a node can see
whether the beacon’s sender has recently received its beacons.

Neighbor aggregate structure

We define the structure of the neighbor aggregate as a α-bit standard Bloom filter
nb1, nb2, . . . , nbα, whose entries are initialized to zero.

The size α and the set of hash functions to be used on neighbor aggregates must be
agreed upon in advance by all nodes in the network, so that neighbor aggregates sent
by a node can be understood by its neighbors.

72

5.1 Algorithm

Timeout and refresh

This is the operation performed periodically at each interval when a node announces its
presence to its neighbors and starts a new beacon interval. This is also the time when
the node tells its neighbors whether it heard anything from them during the last interval.
With such information, the neighbors can see whether the links were bi-directional. Also,
the local neighbor aggregates must be emptied periodically so as to remove the addresses
of non-recently heard neighbors. The more frequent this ’refreshing’, the stricter the
meanings of ’recently’. We choose the strictest meanings of ’recently’ as ’during the last
beacon interval’, thus, nodes empty the local neighbor aggregates at the beginning of
each interval, i.e. in the timeout operation.

Modifications to the soft state or phase-base approach’s algorithm include adding the
neighbor aggregate to the beacon to be sent, then emptying the aggregate.

The soft state algorithm for timeout and refresh now is:

1. Increment each ai by one, if it is not already at the limit of 2l − 1.

2. Refresh the information about the node’s own presence, by setting ahj(ID) = 0 for
all j = 1, . . . , k, where ID is the ID of the local node.

3. Broadcast (a, nb) to the neighbors.

4. Empty nb.

Merge operation

This procedure is to be carried out when a node receives beacon (a′, nb′). It registers
the sender to the local neighbor aggregate and decides whether it should proceed with
the merging of reachability Bloom filters.

1. Hash the beacon’s sender address to the local neighbor aggregate nb.

2. Look up the node’s own address in the beacon’s neighbor aggregate nb′.

3. If the answer is negative, discard the beacon.

4. Otherwise, merge a′ to a using position-wise minimum operation, i.e. set each ai

to the minimum of ai and a′i.

73

Chapter 5 Reachability

The addresses to be hashed into neighbor aggregates could be either IP or MAC ad-
dresses, which are readlily available in packet headers. To be consistent, nodes should
agree upon which type of address to be used, although choosing one of them is simply
a matter of convenience.

The look-up operation is performed solely on the main aggregate that stores reachability
information. Therefore, it is the same as described in Section 3.1.2.

5.2 Evaluation

In this section, we assess the cost of the proposed reachability detection service in
comparison with soft-state presence detection. Specifically, we will look at the aspects
of bandwidth cost, false positive rate, and speed of information propagation.

5.2.1 Bandwidth

Compared to soft state presence detection, the reachability detection service needs more
bandwidth to include neighbor aggregates in beacons. Though α needs to be chosen
large enough to accommodate the expected number nodes in one-hop range, this value
could be very small. For example, a 256-bit aggregate takes up only 32 bytes but can
store 50 neighbors with a false positive rate of about 0.10. Compared to the size of
the main soft-state Bloom filter taking up the most space of the beacon, this extra
bandwidth requirement is rather insignificant and can be ignored.

5.2.2 False Positive Rate

Since two Bloom filters are involved in our reachability detection algorithm, there are
two types of Bloom filter related false positives.

The first type are those of the soft-state reachability aggregate, which is the same as
that in soft-state presence detection (see Section 3.2.1).

The second type are those in the neighbor aggregate, which is a standard Bloom filter
as discussed in Section 4.2.1. Similar to the case of present information Bloom filters,
false positives in neighbor Bloom filters are acceptable. The cost of such a false positive
is that a uni-directional link is mistaken as bi-direction and as a result some present but
out-of-reach node might be wrongly seen as reachable.

74

5.3 Real-world Experiments

5.2.3 Speed of Information Propagation

The reachability detection service propagates information in the same manner as in
the soft state approach presented in Chapter 3. Thus, it can be expected that the
dissemination time should be the same as for the soft state approach, plus an additional
delay of up to one beaconing interval for arriving nodes to receive beacons from neighbors
for the first time before being accepted by them as reachable neighbors.

5.3 Real-world Experiments

In order to verify how well the algorithm works, we carried out a number of real-world
experiments and compared the algorithm’s detection results with the nodes’ actual abil-
ity to communicate with one another. For all these experiments, networks with moving
nodes were chosen because dynamic networks frequently show the gradual changes of
connectivity, which result in asymmetrical links.

Note that a positive answer of our reachability detection algorithm to a query concerning
a pair of nodes is based on actual two-way communication along a path connecting
these two nodes. So by definition, a positive answer means true communication ability,
except that this type of ’communication’ was delayed at each hop along the path for
significantly longer than in normal communication. In a sense, one could say that, in
an ideal situation when packets are lost only due to distance or obstacles, our algorithm
gives correct but delayed information about the past. We now wanted to compare them
with information that is more recent.

5.3.1 Method of Assessment

One of the most interesting problems that arose was how to determine the baseline with
which the algorithm’s result can be compared, i.e. how to know for certain or almost
certain if a pair of nodes can communicate with each other at a specific point in time.

In a network where distances between nodes change over time, it is very hard to de-
termine whether a link works at a point in time without any packets actually being
received or lost around that time. The sole information on the exact physical locations
of the nodes at that time is not enough for the purpose, either. There are a number
of other factors, such as someone opens a door, that would contribute to the success or
failure of the would-be-sent packet.

75

Chapter 5 Reachability

Hence, we decided to test the ’reality’ in real-time by sending actual packets to the node
in question. Another question arose: how to send packets over multiple hops across a
dynamic network. Static routing is not an answer since routes change over time due to
nodes’ movement. AODV, a well-known routing protocol for ad-hoc networks, is not
a good choice, either. 1 In real world experiments, we often experienced situations
when communication using broadcast ran smoothly but neighboring nodes could not
ping each other 2 or AODV failed to re-establish a broken route despite the fact that all
nodes were well within radio range of each other and had stopped moving. Moreover,
these situations of false negatives lasted too long to be considered simply as noise of the
would-be baseline. Figure 5.1 depicts one of our experiments with AODV, in which three
nodes 1, 2, 3 were static and well-connected and node 0 was mobile. In every run, the
route from node 0 to node 1 broke whenever node 0 reached position A in the diagram
and never managed to recover despite node 0 staying at A in waiting for a long time.
Meanwhile, communication between node 0 and node 1 using simple flooding worked
well when node 0 continued in that direction up to position B, which is so far away
from the node chain that it makes AODV’s failure at point A unacceptable. Failure of
routing using AODV while communication using broadcast runs smoothly is not equal
to the failure of communication in general.

So, instead of AODV, we decided to use simple flooding to send probe messages to all
nodes in the network discovering its current topology in terms of connectivity. Note
that packet flooding in small scarce networks do not use up so much bandwidth that
it would disrupt other types of communication in the network. In this simple flooding
mechanism, upon hearing a probe for the first time, the receiver node immediately
forwards that same probe message, and it will ignore later receptions of the probe.
Although the bandwidth spent on beaconing and probing is rather low given the small
size of the network, interference or rare incidents of collision are still possible and could
result in some probe messages being lost. In order to ensure that such noise does not
have significant effects on the overall results, each probe was sent three times from each
node. During the experiments, each node logged the probes it received, and the graph
formed by successful messages of one probing round is the snapshot of the network’s
connectivity at the time when the probing round was carried out. If the graph contains

1For these experiments, we used AODV-UU 0.9.5, the latest AODV implementation by CoreSoftware,
Uppsala University.[aod]

2Such incidents show no pattern in terms of machines or network configurations and cannot be repeated.
They can last very long but cannot be stopped at will. Wireshark logs show either of two situations:
the pinger received ARP replies from the pingee but the pingee never heard any of the pinger’s
ICMPs that follow; the pinger never heard any of the pingee’s ARP replies and kept sending ARP
requests.

76

5.3 Real-world Experiments

Figure 5.1: Experiments on multihop two-way communication with node 0. AODV
worked up to point A. Simple flooding worked up to point B.

77

Chapter 5 Reachability

a bi-directional path to the destination node, we say that communication with the node
is possible at that point in time.

The experiments were carried out in the computer science and adjacent buildings. The
network consisted of four nodes: three Lenovo ThinkPad X61s (nodes 0, 1, 3) and one
IBM ThinkPad X40 (node 2) with built-in wireless card, all running Kubuntu Linux
operating system. Unlike the Zaurus SL-6000 PDAs that participated in Section 3.4
experiments, these systems provide much better compatibility and support for the pro-
gramming library packages needed for the user-friendly application software that we
used in these experiments. Three nodes (1, 2, 3) were static. They form a chain along
the corridor of the computer science building (see examples in Figures 5.3(a) and 5.1).
The fourth node (0) was carried by a person walking along the chain repeatedly leaving
and re-entering the network at either end of it. Instead of having all the nodes moved
around in different directions as in Section 3.4.2, by limiting mobility to one node, we
were able to better anticipate node behaviors as well as link status so as to better re-
late node movements to changes in connectivity while assessing algorithm performance.
During the experiments, a probing round is triggered by node 1 every 5 seconds. This
rate was chosen high enough to get frequent snapshots of the constantly changing net-
work, and, at the same time, low enough not to significantly disrupt beacons of the
presence detection service whose rate was one beacon per second.

5.3.2 xWhoisthere Software

We implemented xWhoisthere (See Figure 5.2) as an instant messenger that provides
presence and reachability detection service. Apart from the main purpose of serving
our experiments in this chapter, the software can be readily deployed as a group-aware
application that supports collaborations among group members.

Similar to whoisthere used in Section 3.4 experiments, each xWhoisthere user has an
unique ID, or nick name, known to the others, which is to be hashed when someone
looks up the user. Unlike whoisthere, xWhoisthere provides a graphical interface
allowing users to monitor presence status and reachability of other users, as well as
to send instant messages to one another. From the perspective of presence awareness,
running on devices within a mobile ad-hoc network, xWhoisthere works perfectly as
an Inter-Personal Awareness Device (IPAD) as proposed in [HFW99] but are more
powerful than the Hummingbird described there, as xWhoisthere works over multiple
hops. As an instant messenger, xWhoisthere requires neither an Internet connection

78

5.3 Real-world Experiments

Figure 5.2: xWhoisthere screenshot.

79

Chapter 5 Reachability

nor a network infrastructure. And most importantly with regards to the our problem of
reachability, xWhoisthere constantly provides its user with estimates of hop-distances
to other nodes, both two-way paths, in the case of reachability, and one-way paths, in the
case of presence information. To serve the purpose of assessing our approach to detect
reachability, the xWhoisthere used in experiments has special features including user-
initiated network topology probing function described above, and automatic logging of
all information that is important to our analysis, such as messages sent and received, for
later off-line processing. Of course, these special-purpose features are otherwise useless
and to be removed from non-experimental versions of xWhoisthere.

As specified by the algorithm, beacons are exchanged using broadcasts. Instant messages
as well as network topology probes could be sent using either simple controlled flooding
or unicasts together with AODV routing, depending on which version of xWhoisthere
is in use. However, due to the misleadingly poor performance of unicasts together
with AODV routing, as discussed in Section 5.3.1, we used controlled flooding for our
main experiments whose results will be described in the next section. xWhoisthere was
implemented using C++ together with GTK+.

5.3.3 Experimental Results

We carried out a number of experiments with scenarios as described in Section 5.3.1
and obtained outcomes that are similar to each other. Figure 5.3 depicts one of the
experiments and results of one segment of it. The outcome shown in the Figure 5.3(b)
is data reported from node 3 while node 0 moved around the area in building 25.02
(position C in Figure 5.3(a)). This segment is typical of those interesting periods when
the node 0 was close to the edge of the network moving continuously in and out of it.
Depicted in Figure 5.3(b) is the information available at node 3 on: the reachability
of node 0 (two-way hop-distance); presence information of node 0 (one-way distance);
and probes covering both the nodes, i.e. successful two-way communication between
the pair. High values of estimated distances mean node 0 is going (or already) out of
touch, and low values mean presence or possibility of communication.

Given the fact that some probes can be lost due to collisions, which is a type of noise
in logged data, we can see in the figure that periods of successful probes are consistent
with the pattern of two-way distance: heading upwards to the maximal value after the
end of a series of successful probes, and sharply going down around the time when the
next series starts.

80

5.3 Real-world Experiments

(a) Network layout and movement of node 0.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 950 1000 1050 1100 1150 1200 1250 1300

di
st

an
ce

 re
po

rte
d

(h
op

s)

local run-time (seconds)

two-way one-way successful probes

(b) Hop-distance from node 3 to node 0, reported at node 3 while node 0 moved back and
forth around point C.

Figure 5.3: Sample experiment.

81

Chapter 5 Reachability

On the other hand, estimates of one-way distances is not as consistent to our baseline
of topology probes. Node 0 was sometimes reported as being present in the middle
of a non-communicable period. As the results of a presence detection algorithm, it is
perfectly correct with regards to the meaning of ’present’ as being physically in the
network. However, it demonstrates that correct results of presence detection can be
Bloom-filter-unrelated false positive answers to the problem of detecting reachability of
nodes. Observing short periods of ’false positives’ given by presence detection algorithm
in Figure 5.3(b), one could argue that such periods are ignorable in applications. Never-
theless, we have learned from our experience with real-world experiments that network
nodes can be arranged in a way that results in much longer and thus important periods
of false positive answers.

There is an interesting observation in the case of a node leaving the network. In the-
ory, there is a delay before xWhoisthere officially concludes that a node is no longer
reachable, i.e. the time before the decaying estimated two-way distance to the node
reaches the predefined threshold. In practice, however, a user could ’see’ a node disap-
pearing well before that conclusion of xWhoisthere by looking at recent changes of the
estimated distance to the node. When the estimated two-way hop-distance to a node
steadily increments with every beacon interval during a number of intervals, there is
a very high chance that there is no longer a path to the node, or, in other words, the
node is no longer reachable. With short beacon intervals, node mobility that sustains
one communication path or another normally does not result in such fast and steady
increase of hop distances.

5.4 Chapter Summary

In this chapter, we addressed the problem of detecting node reachability, i.e. whether
two-way communication to a node is possible. We solved the problem using an in-
formation exchange scheme that allows presence information to be disseminated over
bi-directional communication links only, thus ensuring two-way communication ability.
This mechanism is adaptable to both soft state and phase-based approaches to presence
detection.

We have also implemented xWhoisthere, an instant messaging application for mobile
ad-hoc networks that detects presence as well as reachability of friends. This software
can be readily deployed as a group-aware application that supports collaborations among
group members.

82

5.4 Chapter Summary

Our real-world experiments using xWhoisthere demonstrates that the proposed mech-
anism to detect two-way communication ability works as expected. Observations made
during the course of these experiments give rise to an idea for further research: the
quality of the would-be communication to a node could be predicted from the pattern
of changes in estimates of the hop-distance to the node.

83

Chapter 5 Reachability

84

Chapter 6

Conclusion

In this thesis, we investigated the problem of detecting whether specific nodes are present
in a mobile ad-hoc network and provided scalable lightweight solutions to the problem.

Chapter 2 surveys research directions in the area of obtaining information about the set
of nodes that are active in the network, dealing more or less directly with the presence
of nodes in wireless networks.

In Chapter 3, we introduced the soft state solution to the presence detection problem,
which also provides estimates of hop-distances between nodes. Our algorithm aggregates
presence information using soft state Bloom filters, a variant of the well-known Bloom
filter that allows for an efficient aggregation of presence information as well as the
removal of old information. The aggregation comes at the cost of an adjustable amount
of false positives, while it guarantees the absence of false negatives.

Also in Chapter 3, we investigated several key aspects of the soft state approach, such
as the speed of information propagation, the probability of false positives, and the
bandwidth consumption by means of analysis and simulation. In an application of our
presence detection service to the route discovery process of AODV, our simulation re-
sults underline the practical benefits that can be obtained by using presence detection:
substantial network performance gains are possible as unsuccessful route discovery at-
tempts can be avoided while the additional network load for the presence detection
beacons is very limited. Test-bed experiments on PDAs also show that the presence
detection works as expected in various environments. In addition, the privacy issue was
addressed and a mechanism was proposed to prevent spying on network nodes.

With the results of this chapter, we are convinced that presence detection is an important
building block for wireless multihop networks. Service discovery, routing, and location

85

Chapter 6 Conclusion

services are just three examples where presence detection is vital to ensure an acceptable
system performance if the presence of nodes changes over time.

Chapter 4 described an alternative approach to solve the problem of presence detection
in MANETs: the phase-based presence detection scheme. Using standard Bloom filters
in combination with a loose synchronization mechanism, this approach improves upon
the soft state approach by significantly reducing the overhead that is required to decide
whether a node is present. The key idea is to rely on phases to remove information
on nodes that are no longer present in the network. Similarly to the previous chapter,
key aspects of the phase-based approach, such as the speed of information propagation,
the probability of false positives, and the bandwidth consumption were investigated
by means of analysis and simulation in comparison with the soft state approach. Being
more lightweight than the soft state presence detection, the phase-based approach shows
more benefits in terms of network performance in large-sized networks, and hence would
be a better choice for presence detection services in such networks.

In Chapter 5, we investigated the presence detection problem in the stricter sense,
i.e. being present means communication ability. We proposed an algorithm to adapt
the previously discussed approaches to solve the new problem. xWhoisthere, an instant
messenger application integrated with a presence and reachability detection service, was
developed to demonstrate that our solution works well in real-world environments.

Although we now conclude our thesis on the presence detection of nodes, observations
made during the course of the experiments with our presence detection algorithms gave
rise to several ideas for further research. First, the pattern of changes in hop-distance
estimates given by the soft state approach could be useful in guessing the quality of the
would-be communication to nodes. For example, small oscillations of estimated distance
to a node could mean the stability of link quality, while a steady increase of hop-distance
is the very likely sign of a no-longer-present node. Second, estimates of hop-distances
provided by the soft state approach opens the possibility of communication without
relying on a routing protocol, in which packets are directed using estimated distances
to their destinations.

86

Appendix

87

Appendix A

Propagation Delay Calculations

In this appendix, we detail the calculations on the propagation delay of the presence
information over two hops. We assume a constant network density ρ > 0 with randomly
placed, equidistributed nodes, and a fixed communication radius r > 0. Let u and x be
two randomly placed nodes. Under the condition that their distance δ is in]r, 2r]—a
necessary condition for u and x being two hops apart—, it follows from basic geometric
probability calculations that the probability density function of their distance is

f(δ | r < δ ≤ 2r) =
2

3r2
δ. (A.1)

The area in which potential forwarders are located is the lens-shaped intersection of the
one-hop neighborhoods of u and x. The size of this area is

A(δ) = 2r2 arccos
δ

2r
− δ

√
r2 − δ2

4
. (A.2)

The number of nodes in this area is Poisson distributed. Thus, we obtain the probability
of n nodes being in the intersection of the one-hop neighborhoods of u and x, if their
distance is in]r, 2r]:

P (n forwarders) =

2r∫
r

2δ(ρA(δ))ne−ρA(δ)

3r2n!
dδ. (A.3)

Two nodes with distance in]r, 2r] are two-hop neighbors if and only if there is at least
one node in the intersection area of their one-hop neighborhoods. Then the probability

89

Appendix A Propagation Delay Calculations

of n potential forwarders, n > 0, is

P (n forwarders | 2 hops) =
P (n forwarders)

1− P (0 forwarders)
. (A.4)

We now turn towards the expected time until the first forwarder’s broadcasting inter-
vals expires, given that the offsets are independent. The time until the first forwarder
broadcasts can be modelled as the minimum of n pairwise independent random variables
which are all equidistributed in [0, B[, for beaconing interval B. The probability density
of the minimum (in [0, B[) is

fn(t) =
n

B

(
1− t

B

)n−1

. (A.5)

This can be shown by induction over n, exploiting the fact that min{X1, . . . , Xn+1} =
min{min{X1, . . . , Xn}, Xn+1}. Then the expected time until the first node sends a
beacon is

B∫
0

τ
n

B

(
1− τ

B

)n−1
dτ =

B

n + 1
. (A.6)

By combining (A.4) and (A.6) it results that the expected time for the second hop delay
for any node pair u, x with two hops distance is

∞∑
n=1

B

n + 1
· P (n nodes)
1− P (0 nodes)

=
∞∑

n=1

B

n + 1
·
∫ 2r
r

2δ(ρA(δ))ne−ρA(δ)

3r2n!
dδ

1−
∫ 2r
r

2δe−ρA(δ)

3r2 dδ

=
∞∑

n=1

B · ρn

(n + 1)!
·
∫ 2r
r δ(A(δ))ne−ρA(δ) dδ
3
2r2 −

∫ 2r
r δe−ρA(δ) dδ

.

(A.7)

90

Appendix B

Phase-based Approach to Reachability

Detection

In this appendix, we briefly describe how to adapt the phase-based algorithm of Chap-
ter 4 to solve the problem of detecting reachability of nodes.

Out of three operations, two need modifications. The query operation is not affected.

In the timeout and refresh operation, the local neighbor aggregate needs to be included
in the beacon to be broadcasted; this aggregate is then to be emptied so as to be
ready to record neighbors during the next interval. The adapted algorithm for the
timeout and refresh operation is given in Algorithm B.0.1, in which a, p, c and nb are
the local reachability information aggregate, phase ID, counter and neighbor aggregate,
respectively.

Decay the entries in the local soft state Bloom filter b.
if c ≥ C then {c is at the threshold C}

p← p + 1
c← 0
Empty a and add own presence information to a

end if
Broadcast (a, p, c, nb) to the neighbors.
c← c + 1
Empty nb.

Algorithm B.0.1: Timeout and refresh

The merge operation is performed upon receival of a beacon. This operation requires
two additional tasks. First, the sender address of the incoming beacon needs to be
registered to the local neighbor aggregate. Second, the node must look up its own
address in the received neighbor aggregate to see if the beacon sender did receive its

91

Appendix B Phase-based Approach to Reachability Detection

last beacon, then reject the beacon if the look-up gives negative answer. Denoting the
data in the incoming beacon as (a′, p′, c′, nb′), Algorithm B.0.2 is the adapted merge
algorithm.

Add sender address to nb
Look up own address in nb′

if the answer is negative then {the sender did not receive my last beacon}
{do nothing}

else if p > p′ then {the sender is less advanced}
{do nothing}

else if p = p′ then {both are in the same phase}
a← merge bloom filters(a, a′)
b← merge bf into softstate bf(b, a′)
c← max{c, c′}

else {the sender is more advanced}
a← a′

add own presence information to a
b← merge bf into softstate bf(b, a′)
c← c′

p← p′

end if
Algorithm B.0.2: Merge operation

92

Bibliography

Own Publications

[TSM07] Thi Minh Chau Tran, Björn Scheuermann, and Martin Mauve. Detect-
ing the presence of nodes in MANETs. In CHANTS ’07: Proceedings of
the 3rd ACM MobiCom Workshop on Challenged Networks, pages 43–50,
September 2007.

[TSM09a] Thi Minh Chau Tran, Björn Scheuermann, and Martin Mauve. Lightweight
detection of node presence in MANETs. Elsevier Ad Hoc Networks,
7(7):1386–1399, 2009.

[TSM09b] Thi Minh Chau Tran, Björn Scheuermann, and Martin Mauve. Node
presence detection with reduced overhead. In WONS ’09: Proceedings of
the 6th Annual Conference on Wireless On-demand Network Systems and
Services, pages 37–44, February 2009.

Other References

[AK04] Ian F. Akyildiz and Ismail H. Kasimoglu. Wireless sensor and actor net-
works: research challenges. Ad Hoc Networks, 2(4):351–367, 2004.

[aod] AODV-UU, version 0.9.5. Online, http://core.it.uu.se/core/index.
php/AODV-UU.

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Communications of the ACM, 3(7):422–426, July 1970.

[CDD08] T. Clausen, C. Dearlove, and J. Dean. Manet neighborhood discovery
protocol (NHDP), 2008. draft-ietf-manet-nhdp-07.

[CDM07] Landon P. Cox, Angela Dalton, and Varun Marupadi. SmokeScreen: Flex-
ible Privacy Controls for Presence-sharing. In MobiSys ’07: Proceedings
of the 5th International Conference on Mobile Systems, Applications, and
Services, pages 233–245, June 2007.

93

Bibliography

[CIXU05] Kai Cheng, Mizuho Iwaihara, Limin Xiang, and Kazuo Ushijima. Efficient
Web Profiling by Time-Decaying Bloom Filters. Database Society of Japan
Letters, 4(1):137–140, June 2005.

[CXI+05] Kai Cheng, Limin Xiang, Mizuho Iwaihara, Haiyan Xu, and Mukesh M.
Mohania. Time-Decaying Bloom Filters for Data Streams with Skewed
Distributions. In RIDE-SDMA ’05: Proceedings of the 15th International
Workshop on Research Issues in Data Engineering: Stream Data Mining
and Applications, pages 63–69, April 2005.

[EP05] Nathan Eagle and Alex Pentland. Social Serendipity: Mobilizing Social
Software. IEEE Pervasive Computing, 4(2):28–34, April 2005.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache:
A Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM Trans-
actions on Networking, 8(3):281–293, June 2000.

[FZL+03] Zhenghua Fu, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia Zhang, and
Mario Gerla. The impact of multihop wireless channel on TCP throughput
and loss. In INFOCOM ’03: Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies, volume 3,
pages 1744–1753, March 2003.

[GH99] Silvia Giordano and Maher Hamdi. Mobility Management: The Virtual
Home Region. Technical Report SSC/1999/037, EPFL-ICA, Lausanne,
Switzerland, October 1999.

[GJW+06] Robert Gilbert, Kerby Johnson, Shaomei Wu, Ben Y. Zhao, and Haitao
Zheng. Location Independent Compact Routing for Wireless Networks.
In MobiShare ’06: Proceedings of the 1st International Workshop on De-
centralized Resource Sharing in Mobile Computing and Networking, pages
57–59, July 2006.

[GK00] Piyush Gupta and P. R. Kumar. The Capacity of Wireless Networks. IEEE
Transactions on Information Theory, 46(2):388–404, March 2000.

[HFW99] Lars Erik Holmquist, Jennica Falk, and Joakim Wigström. Supporting
Group Collaboration with Interpersonal Awareness Devices. Springer Per-
sonal and Ubiquitous Computing, 3(1/2):13–21, March 1999.

[Iwa98] Yukari Iwatani. Love: Japanese Style. Wired News, online, http://www.
wired.com/news/culture/0,1284,12899,00.html, June 1998.

[JM96] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad
Hoc Wireless Networks. In Tomasz Imielinski and Henry F. Korth, editors,
Mobile Computing, pages 153–181. Kluwer Academic Publishers, Norwell,
MA, USA, January 1996.

94

Bibliography

[JMC+01] Philippe Jacquet, Paul Mühlethaler, Thomas Clausen, Anis Laouiti, Amir
Qayyum, and Laurent Viennot. Optimized Link State Routing Protocol.
In INMIC ’01: Proceedings of the 5th IEEE International Multi Topic Con-
ference, pages 62–68, December 2001.

[KFWM04] Wolfgang Kiess, Holger Füßler, Jörg Widmer, and Martin Mauve. Hi-
erarchical Location Service for Mobile Ad-Hoc Networks. ACM Mobile
Computing and Communications Review, 8(4):47–58, October 2004.

[KK00] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for
wireless networks. In MobiCom ’00: Proceedings of the 6th Annual ACM
International Conference on Mobile Computing and Networking, pages 243–
254, August 2000.

[KOM08] Wolfgang Kiess, Thomas Ogilvie, and Martin Mauve. The EXC Toolkit for
Real-World Experiments with Wireless Multihop Networks. In EXPON-
WIRELESS ’08: Proceedings of the 3rd Workshop on Advanced Experimen-
tal Activities on Wireless Networks Systems, June 2008.

[LW06] Christoph Lindemann and Oliver P. Waldhorst. Effective Dissemination of
Presence Information in Highly Partitioned Mobile Ad Hoc Networks. In
SECON ’06: Proceedings of the 3rd IEEE ComSoc Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, September 2006.

[LYKH06] Choonhwa Lee, Sungshick Yoon, Eunsam Kim, and Abdelsalam Helal.
An Efficient Service Propagation Scheme for Large-Scale MANETs. In
MPAC ’06: Proceedings of the 4th International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, pages 9–12, November 2006.

[MD02] Mahesh K. Marina and Samir R. Das. Routing performance in the presence
of unidirectional links in multihop wireless networks. In MobiHoc ’02:
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc
Networking and Computing, pages 12 – 23, June 2002.

[Mit02] M. Mitzenmacher. Compressed bloom filters. IEEE ACM Transaction on
Networking, 10:604–612, 2002.

[MJK+00] Robert Morris, John Jannotti, Frans Kaashoek, Jinyang Li, and Douglas
S. J. DeCouto. CarNet: A Scalable Ad Hoc Wireless Network System.
In Proceedings of the 9th ACM SIGOPS European Workshop, pages 61–65,
September 2000.

[ns2] The Network Simulator ns-2, version 2.30. Online, http://www.isi.edu/
nsnam/ns/.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc On-Demand Distance
Vector Routing. In WMCSA ’99: Proceedings of the 2nd IEEE Workshop
on Mobile Computing Systems and Applications, pages 90–100, February
1999.

95

Bibliography

[RK02] Sean C. Rhea and John Kubiatowicz. Probabilistic Location and Routing.
In INFOCOM ’02: Proceedings of the 19th Annual Joint Conference of
the IEEE Computer and Communications Societies, volume 3, pages 1248–
1257, June 2002.

[Sto99] Ivan Stojmenovic. Home Agent Based Location Update and Destination
Search Schemes in Ad Hoc Wireless Networks. Technical Report TR-99-10,
University of Ottawa, September 1999.

[TMRL02] Michael Terry, Elizabeth D. Mynatt, Kathy Ryall, and Darren Leigh. So-
cial Net: Using Patterns of Physical Proximity Over Time to Infer Shared
Interests. In CHI ’02: Extended Abstracts on Human Factors in Computing
Systems, pages 816–817, April 2002.

[WNC87] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding
for data compression. Communications of the ACM, 30(6):520–540, 1987.

[YLN03] J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In
INFOCOM ’03: Proceedings of the 22nd Annual Joint Conference of the
IEEE Computer and Communications Societies, March 2003.

[ZCG09] Biao Zhou, Zhen Cao, and Mario Gerla. Cluster-based inter-domain routing
(cidr) protocol for manets. In WONS ’09: Proceedings of the 6th Annual
Conference on Wireless On-demand Network Systems and Services, pages
19–26, February 2009.

96

Index

A

address
IP . 10
MAC . 10

aggregate 10, 13 f, 16, 72
AODV.5, 9, 29, 61, 75
arithmetic coding.16, 27

B

bandwidth usage 64, 74
beacon . 11, 14
beacon interval . 60
beaconing interval15
bi-directional dissemination 59
bi-directional link 71
Bloom filter . 11

soft state . 52
standard . 9, 72

C

chain topology 38 f, 59, 76
CIDR . 5
clock value . 45, 53
compression . 16, 27
counting Bloom filter.13

D

DDSV . 5
dissemination speed.23, 37, 75
distance estimate 18, 21, 52

oscillation. .21
overestimate . 23
underestimate.23

DSR . 5

E

encryption . 43
EXC . 36

F

false negative . 10
false positive 9 f, 46, 52, 80
false positive rate. . . .16, 18 f, 46, 58, 74
flooding . 76
friend . 47
friend group. .47

G

GLS . 6

H

hash . 44
hash function . 44

cryptographic 43
hash key . 44
HLS. .6
hop-count . 13
hop-distance 13, 18, 20 f, 23, 37, 80

I

IEEE 802.11 . 29
information decay 12 f, 15, 20, 26
information propagation 60, 75
information removal 12 f
instant messaging.7, 78

97

Index

L

location service .6
look-up. 14, 44

M

MANET . 5
merge. .14, 57, 73
mobility . 21, 41

N

NHDP . 7
non-present node . 64
ns-2 . 20, 25, 46, 61 f

O

OLSR . 5
overhead . 52 f

P

phase length 55, 59 ff
presence announcement 9, 14, 42
privacy. .42
propagation speed.23, 38, 60 f, 75

Q

query . 14, 45, 58

R

Random Waypoint model 21
reachability . 71
real-world experiment 36, 75
refresh . 14, 57, 73
route discovery . 61
routing. .10

geographic . 6
proactive . 5
reactive . 5

S

SANET . 29
soft state Bloom filter 12

soft state presence detection 9, 61
standard Bloom filter 18

T

TDBF . 13
test-bed . 36
time synchronization 48
timeout . 14, 57, 73
TTL . 61, 63

U

uni-directional dissemination 59
uni-directional link 71

W

whoisthere . 36, 78
worst case . 30, 63

X

xWhoisthere . 78

98

Die hier vorgelegte Dissertation habe ich eigenständig und ohne unerlaubte Hilfe ange-
fertigt. Die Dissertation wurde in der vorgelegten oder in änlicher Form noch bei keiner
anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche
unternommen.

Düsseldorf, den 19.06.2009

Tran Thi Minh Chau

